xref: /freebsd/sys/dev/jme/if_jme.c (revision 1d386b48)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/mbuf.h>
38 #include <sys/rman.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/jme/if_jmereg.h>
72 #include <dev/jme/if_jmevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 /* Define the following to disable printing Rx errors. */
78 #undef	JME_SHOW_ERRORS
79 
80 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(jme, pci, 1, 1, 1);
83 MODULE_DEPEND(jme, ether, 1, 1, 1);
84 MODULE_DEPEND(jme, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct jme_dev {
96 	uint16_t	jme_vendorid;
97 	uint16_t	jme_deviceid;
98 	const char	*jme_name;
99 } jme_devs[] = {
100 	{ VENDORID_JMICRON, DEVICEID_JMC250,
101 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
102 	{ VENDORID_JMICRON, DEVICEID_JMC260,
103 	    "JMicron Inc, JMC26x Fast Ethernet" },
104 };
105 
106 static int jme_miibus_readreg(device_t, int, int);
107 static int jme_miibus_writereg(device_t, int, int, int);
108 static void jme_miibus_statchg(device_t);
109 static void jme_mediastatus(if_t, struct ifmediareq *);
110 static int jme_mediachange(if_t);
111 static int jme_probe(device_t);
112 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
113 static int jme_eeprom_macaddr(struct jme_softc *);
114 static int jme_efuse_macaddr(struct jme_softc *);
115 static void jme_reg_macaddr(struct jme_softc *);
116 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
117 static void jme_map_intr_vector(struct jme_softc *);
118 static int jme_attach(device_t);
119 static int jme_detach(device_t);
120 static void jme_sysctl_node(struct jme_softc *);
121 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
122 static int jme_dma_alloc(struct jme_softc *);
123 static void jme_dma_free(struct jme_softc *);
124 static int jme_shutdown(device_t);
125 static void jme_setlinkspeed(struct jme_softc *);
126 static void jme_setwol(struct jme_softc *);
127 static int jme_suspend(device_t);
128 static int jme_resume(device_t);
129 static int jme_encap(struct jme_softc *, struct mbuf **);
130 static void jme_start(if_t);
131 static void jme_start_locked(if_t);
132 static void jme_watchdog(struct jme_softc *);
133 static int jme_ioctl(if_t, u_long, caddr_t);
134 static void jme_mac_config(struct jme_softc *);
135 static void jme_link_task(void *, int);
136 static int jme_intr(void *);
137 static void jme_int_task(void *, int);
138 static void jme_txeof(struct jme_softc *);
139 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
140 static void jme_rxeof(struct jme_softc *);
141 static int jme_rxintr(struct jme_softc *, int);
142 static void jme_tick(void *);
143 static void jme_reset(struct jme_softc *);
144 static void jme_init(void *);
145 static void jme_init_locked(struct jme_softc *);
146 static void jme_stop(struct jme_softc *);
147 static void jme_stop_tx(struct jme_softc *);
148 static void jme_stop_rx(struct jme_softc *);
149 static int jme_init_rx_ring(struct jme_softc *);
150 static void jme_init_tx_ring(struct jme_softc *);
151 static void jme_init_ssb(struct jme_softc *);
152 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
153 static void jme_set_vlan(struct jme_softc *);
154 static void jme_set_filter(struct jme_softc *);
155 static void jme_stats_clear(struct jme_softc *);
156 static void jme_stats_save(struct jme_softc *);
157 static void jme_stats_update(struct jme_softc *);
158 static void jme_phy_down(struct jme_softc *);
159 static void jme_phy_up(struct jme_softc *);
160 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
161 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
162 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
163 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
165 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
166 
167 
168 static device_method_t jme_methods[] = {
169 	/* Device interface. */
170 	DEVMETHOD(device_probe,		jme_probe),
171 	DEVMETHOD(device_attach,	jme_attach),
172 	DEVMETHOD(device_detach,	jme_detach),
173 	DEVMETHOD(device_shutdown,	jme_shutdown),
174 	DEVMETHOD(device_suspend,	jme_suspend),
175 	DEVMETHOD(device_resume,	jme_resume),
176 
177 	/* MII interface. */
178 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
179 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
180 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
181 
182 	{ NULL, NULL }
183 };
184 
185 static driver_t jme_driver = {
186 	"jme",
187 	jme_methods,
188 	sizeof(struct jme_softc)
189 };
190 
191 DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
192 DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
193 
194 static struct resource_spec jme_res_spec_mem[] = {
195 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
196 	{ -1,			0,		0 }
197 };
198 
199 static struct resource_spec jme_irq_spec_legacy[] = {
200 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
201 	{ -1,			0,		0 }
202 };
203 
204 static struct resource_spec jme_irq_spec_msi[] = {
205 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
206 	{ -1,			0,		0 }
207 };
208 
209 /*
210  *	Read a PHY register on the MII of the JMC250.
211  */
212 static int
213 jme_miibus_readreg(device_t dev, int phy, int reg)
214 {
215 	struct jme_softc *sc;
216 	uint32_t val;
217 	int i;
218 
219 	sc = device_get_softc(dev);
220 
221 	/* For FPGA version, PHY address 0 should be ignored. */
222 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
223 		return (0);
224 
225 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
226 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
227 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
228 		DELAY(1);
229 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
230 			break;
231 	}
232 
233 	if (i == 0) {
234 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
235 		return (0);
236 	}
237 
238 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
239 }
240 
241 /*
242  *	Write a PHY register on the MII of the JMC250.
243  */
244 static int
245 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
246 {
247 	struct jme_softc *sc;
248 	int i;
249 
250 	sc = device_get_softc(dev);
251 
252 	/* For FPGA version, PHY address 0 should be ignored. */
253 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
254 		return (0);
255 
256 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
257 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
258 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
259 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
260 		DELAY(1);
261 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
262 			break;
263 	}
264 
265 	if (i == 0)
266 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
267 
268 	return (0);
269 }
270 
271 /*
272  *	Callback from MII layer when media changes.
273  */
274 static void
275 jme_miibus_statchg(device_t dev)
276 {
277 	struct jme_softc *sc;
278 
279 	sc = device_get_softc(dev);
280 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
281 }
282 
283 /*
284  *	Get the current interface media status.
285  */
286 static void
287 jme_mediastatus(if_t ifp, struct ifmediareq *ifmr)
288 {
289 	struct jme_softc *sc;
290 	struct mii_data *mii;
291 
292 	sc = if_getsoftc(ifp);
293 	JME_LOCK(sc);
294 	if ((if_getflags(ifp) & IFF_UP) == 0) {
295 		JME_UNLOCK(sc);
296 		return;
297 	}
298 	mii = device_get_softc(sc->jme_miibus);
299 
300 	mii_pollstat(mii);
301 	ifmr->ifm_status = mii->mii_media_status;
302 	ifmr->ifm_active = mii->mii_media_active;
303 	JME_UNLOCK(sc);
304 }
305 
306 /*
307  *	Set hardware to newly-selected media.
308  */
309 static int
310 jme_mediachange(if_t ifp)
311 {
312 	struct jme_softc *sc;
313 	struct mii_data *mii;
314 	struct mii_softc *miisc;
315 	int error;
316 
317 	sc = if_getsoftc(ifp);
318 	JME_LOCK(sc);
319 	mii = device_get_softc(sc->jme_miibus);
320 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
321 		PHY_RESET(miisc);
322 	error = mii_mediachg(mii);
323 	JME_UNLOCK(sc);
324 
325 	return (error);
326 }
327 
328 static int
329 jme_probe(device_t dev)
330 {
331 	struct jme_dev *sp;
332 	int i;
333 	uint16_t vendor, devid;
334 
335 	vendor = pci_get_vendor(dev);
336 	devid = pci_get_device(dev);
337 	sp = jme_devs;
338 	for (i = 0; i < nitems(jme_devs); i++, sp++) {
339 		if (vendor == sp->jme_vendorid &&
340 		    devid == sp->jme_deviceid) {
341 			device_set_desc(dev, sp->jme_name);
342 			return (BUS_PROBE_DEFAULT);
343 		}
344 	}
345 
346 	return (ENXIO);
347 }
348 
349 static int
350 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
351 {
352 	uint32_t reg;
353 	int i;
354 
355 	*val = 0;
356 	for (i = JME_TIMEOUT; i > 0; i--) {
357 		reg = CSR_READ_4(sc, JME_SMBCSR);
358 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
359 			break;
360 		DELAY(1);
361 	}
362 
363 	if (i == 0) {
364 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
365 		return (ETIMEDOUT);
366 	}
367 
368 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
369 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
370 	for (i = JME_TIMEOUT; i > 0; i--) {
371 		DELAY(1);
372 		reg = CSR_READ_4(sc, JME_SMBINTF);
373 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
374 			break;
375 	}
376 
377 	if (i == 0) {
378 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
379 		return (ETIMEDOUT);
380 	}
381 
382 	reg = CSR_READ_4(sc, JME_SMBINTF);
383 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
384 
385 	return (0);
386 }
387 
388 static int
389 jme_eeprom_macaddr(struct jme_softc *sc)
390 {
391 	uint8_t eaddr[ETHER_ADDR_LEN];
392 	uint8_t fup, reg, val;
393 	uint32_t offset;
394 	int match;
395 
396 	offset = 0;
397 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
398 	    fup != JME_EEPROM_SIG0)
399 		return (ENOENT);
400 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
401 	    fup != JME_EEPROM_SIG1)
402 		return (ENOENT);
403 	match = 0;
404 	do {
405 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
406 			break;
407 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
408 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
409 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
410 				break;
411 			if (reg >= JME_PAR0 &&
412 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
413 				if (jme_eeprom_read_byte(sc, offset + 2,
414 				    &val) != 0)
415 					break;
416 				eaddr[reg - JME_PAR0] = val;
417 				match++;
418 			}
419 		}
420 		/* Check for the end of EEPROM descriptor. */
421 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
422 			break;
423 		/* Try next eeprom descriptor. */
424 		offset += JME_EEPROM_DESC_BYTES;
425 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
426 
427 	if (match == ETHER_ADDR_LEN) {
428 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
429 		return (0);
430 	}
431 
432 	return (ENOENT);
433 }
434 
435 static int
436 jme_efuse_macaddr(struct jme_softc *sc)
437 {
438 	uint32_t reg;
439 	int i;
440 
441 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
442 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
443 	    EFUSE_CTL1_AUTOLAOD_DONE)
444 		return (ENOENT);
445 	/* Reset eFuse controller. */
446 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
447 	reg |= EFUSE_CTL2_RESET;
448 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
449 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
450 	reg &= ~EFUSE_CTL2_RESET;
451 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
452 
453 	/* Have eFuse reload station address to MAC controller. */
454 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
455 	reg &= ~EFUSE_CTL1_CMD_MASK;
456 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
457 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
458 
459 	/*
460 	 * Verify completion of eFuse autload command.  It should be
461 	 * completed within 108us.
462 	 */
463 	DELAY(110);
464 	for (i = 10; i > 0; i--) {
465 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
466 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
467 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
468 			DELAY(20);
469 			continue;
470 		}
471 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
472 			break;
473 		/* Station address loading is still in progress. */
474 		DELAY(20);
475 	}
476 	if (i == 0) {
477 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
478 		return (ETIMEDOUT);
479 	}
480 
481 	return (0);
482 }
483 
484 static void
485 jme_reg_macaddr(struct jme_softc *sc)
486 {
487 	uint32_t par0, par1;
488 
489 	/* Read station address. */
490 	par0 = CSR_READ_4(sc, JME_PAR0);
491 	par1 = CSR_READ_4(sc, JME_PAR1);
492 	par1 &= 0xFFFF;
493 	if ((par0 == 0 && par1 == 0) ||
494 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
495 		device_printf(sc->jme_dev,
496 		    "Failed to retrieve Ethernet address.\n");
497 	} else {
498 		/*
499 		 * For controllers that use eFuse, the station address
500 		 * could also be extracted from JME_PCI_PAR0 and
501 		 * JME_PCI_PAR1 registers in PCI configuration space.
502 		 * Each register holds exactly half of station address(24bits)
503 		 * so use JME_PAR0, JME_PAR1 registers instead.
504 		 */
505 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
506 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
507 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
508 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
509 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
510 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
511 	}
512 }
513 
514 static void
515 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
516 {
517 	uint32_t val;
518 	int i;
519 
520 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
521 		/*
522 		 * Avoid reprogramming station address if the address
523 		 * is the same as previous one.  Note, reprogrammed
524 		 * station address is permanent as if it was written
525 		 * to EEPROM. So if station address was changed by
526 		 * admistrator it's possible to lose factory configured
527 		 * address when driver fails to restore its address.
528 		 * (e.g. reboot or system crash)
529 		 */
530 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
531 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
532 				val = JME_EFUSE_EEPROM_FUNC0 <<
533 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
534 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
535 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
536 				val |= (JME_PAR0 + i) <<
537 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
538 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
539 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
540 				    val | JME_EFUSE_EEPROM_WRITE, 4);
541 			}
542 		}
543 	} else {
544 		CSR_WRITE_4(sc, JME_PAR0,
545 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
546 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
547 	}
548 }
549 
550 static void
551 jme_map_intr_vector(struct jme_softc *sc)
552 {
553 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
554 
555 	bzero(map, sizeof(map));
556 
557 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
558 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
559 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
560 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
561 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
562 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
563 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
564 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
565 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
566 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
567 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
568 	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
569 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
570 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
571 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
572 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
573 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
574 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
575 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
576 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
577 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
578 
579 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
580 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
581 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
582 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
583 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
584 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
585 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
586 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
587 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
588 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
589 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
590 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
591 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
592 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
593 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
594 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
595 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
596 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
597 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
598 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
599 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
600 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
601 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
602 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
603 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
604 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
605 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
606 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
607 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
608 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
609 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
610 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
611 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
612 
613 	/* Map all other interrupts source to MSI/MSIX vector 0. */
614 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
615 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
616 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
617 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
618 }
619 
620 static int
621 jme_attach(device_t dev)
622 {
623 	struct jme_softc *sc;
624 	if_t ifp;
625 	struct mii_softc *miisc;
626 	struct mii_data *mii;
627 	uint32_t reg;
628 	uint16_t burst;
629 	int error, i, mii_flags, msic, msixc, pmc;
630 
631 	error = 0;
632 	sc = device_get_softc(dev);
633 	sc->jme_dev = dev;
634 
635 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
636 	    MTX_DEF);
637 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
638 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
639 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
640 
641 	/*
642 	 * Map the device. JMC250 supports both memory mapped and I/O
643 	 * register space access. Because I/O register access should
644 	 * use different BARs to access registers it's waste of time
645 	 * to use I/O register spce access. JMC250 uses 16K to map
646 	 * entire memory space.
647 	 */
648 	pci_enable_busmaster(dev);
649 	sc->jme_res_spec = jme_res_spec_mem;
650 	sc->jme_irq_spec = jme_irq_spec_legacy;
651 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
652 	if (error != 0) {
653 		device_printf(dev, "cannot allocate memory resources.\n");
654 		goto fail;
655 	}
656 
657 	/* Allocate IRQ resources. */
658 	msixc = pci_msix_count(dev);
659 	msic = pci_msi_count(dev);
660 	if (bootverbose) {
661 		device_printf(dev, "MSIX count : %d\n", msixc);
662 		device_printf(dev, "MSI count : %d\n", msic);
663 	}
664 
665 	/* Use 1 MSI/MSI-X. */
666 	if (msixc > 1)
667 		msixc = 1;
668 	if (msic > 1)
669 		msic = 1;
670 	/* Prefer MSIX over MSI. */
671 	if (msix_disable == 0 || msi_disable == 0) {
672 		if (msix_disable == 0 && msixc > 0 &&
673 		    pci_alloc_msix(dev, &msixc) == 0) {
674 			if (msixc == 1) {
675 				device_printf(dev, "Using %d MSIX messages.\n",
676 				    msixc);
677 				sc->jme_flags |= JME_FLAG_MSIX;
678 				sc->jme_irq_spec = jme_irq_spec_msi;
679 			} else
680 				pci_release_msi(dev);
681 		}
682 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
683 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
684 			if (msic == 1) {
685 				device_printf(dev, "Using %d MSI messages.\n",
686 				    msic);
687 				sc->jme_flags |= JME_FLAG_MSI;
688 				sc->jme_irq_spec = jme_irq_spec_msi;
689 			} else
690 				pci_release_msi(dev);
691 		}
692 		/* Map interrupt vector 0, 1 and 2. */
693 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
694 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
695 			jme_map_intr_vector(sc);
696 	}
697 
698 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
699 	if (error != 0) {
700 		device_printf(dev, "cannot allocate IRQ resources.\n");
701 		goto fail;
702 	}
703 
704 	sc->jme_rev = pci_get_device(dev);
705 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
706 		sc->jme_flags |= JME_FLAG_FASTETH;
707 		sc->jme_flags |= JME_FLAG_NOJUMBO;
708 	}
709 	reg = CSR_READ_4(sc, JME_CHIPMODE);
710 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
711 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
712 	    CHIPMODE_NOT_FPGA)
713 		sc->jme_flags |= JME_FLAG_FPGA;
714 	if (bootverbose) {
715 		device_printf(dev, "PCI device revision : 0x%04x\n",
716 		    sc->jme_rev);
717 		device_printf(dev, "Chip revision : 0x%02x\n",
718 		    sc->jme_chip_rev);
719 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
720 			device_printf(dev, "FPGA revision : 0x%04x\n",
721 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
722 			    CHIPMODE_FPGA_REV_SHIFT);
723 	}
724 	if (sc->jme_chip_rev == 0xFF) {
725 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
726 		    sc->jme_rev);
727 		error = ENXIO;
728 		goto fail;
729 	}
730 
731 	/* Identify controller features and bugs. */
732 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
733 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
734 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
735 			sc->jme_flags |= JME_FLAG_DMA32BIT;
736 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
737 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
738 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
739 		sc->jme_flags |= JME_FLAG_HWMIB;
740 	}
741 
742 	/* Reset the ethernet controller. */
743 	jme_reset(sc);
744 
745 	/* Get station address. */
746 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
747 		error = jme_efuse_macaddr(sc);
748 		if (error == 0)
749 			jme_reg_macaddr(sc);
750 	} else {
751 		error = ENOENT;
752 		reg = CSR_READ_4(sc, JME_SMBCSR);
753 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
754 			error = jme_eeprom_macaddr(sc);
755 		if (error != 0 && bootverbose)
756 			device_printf(sc->jme_dev,
757 			    "ethernet hardware address not found in EEPROM.\n");
758 		if (error != 0)
759 			jme_reg_macaddr(sc);
760 	}
761 
762 	/*
763 	 * Save PHY address.
764 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
765 	 * requires PHY probing to get correct PHY address.
766 	 */
767 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
768 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
769 		    GPREG0_PHY_ADDR_MASK;
770 		if (bootverbose)
771 			device_printf(dev, "PHY is at address %d.\n",
772 			    sc->jme_phyaddr);
773 	} else
774 		sc->jme_phyaddr = 0;
775 
776 	/* Set max allowable DMA size. */
777 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
778 		sc->jme_flags |= JME_FLAG_PCIE;
779 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
780 		if (bootverbose) {
781 			device_printf(dev, "Read request size : %d bytes.\n",
782 			    128 << ((burst >> 12) & 0x07));
783 			device_printf(dev, "TLP payload size : %d bytes.\n",
784 			    128 << ((burst >> 5) & 0x07));
785 		}
786 		switch ((burst >> 12) & 0x07) {
787 		case 0:
788 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
789 			break;
790 		case 1:
791 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
792 			break;
793 		default:
794 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
795 			break;
796 		}
797 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
798 	} else {
799 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
800 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
801 	}
802 	/* Create coalescing sysctl node. */
803 	jme_sysctl_node(sc);
804 	if ((error = jme_dma_alloc(sc)) != 0)
805 		goto fail;
806 
807 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
808 	if (ifp == NULL) {
809 		device_printf(dev, "cannot allocate ifnet structure.\n");
810 		error = ENXIO;
811 		goto fail;
812 	}
813 
814 	if_setsoftc(ifp, sc);
815 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
816 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
817 	if_setioctlfn(ifp, jme_ioctl);
818 	if_setstartfn(ifp, jme_start);
819 	if_setinitfn(ifp, jme_init);
820 	if_setsendqlen(ifp, JME_TX_RING_CNT - 1);
821 	if_setsendqready(ifp);
822 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
823 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
824 	if_sethwassist(ifp, JME_CSUM_FEATURES | CSUM_TSO);
825 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
826 		sc->jme_flags |= JME_FLAG_PMCAP;
827 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
828 	}
829 	if_setcapenable(ifp, if_getcapabilities(ifp));
830 
831 	/* Wakeup PHY. */
832 	jme_phy_up(sc);
833 	mii_flags = MIIF_DOPAUSE;
834 	/* Ask PHY calibration to PHY driver. */
835 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
836 		mii_flags |= MIIF_MACPRIV0;
837 	/* Set up MII bus. */
838 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
839 	    jme_mediastatus, BMSR_DEFCAPMASK,
840 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
841 	    MII_OFFSET_ANY, mii_flags);
842 	if (error != 0) {
843 		device_printf(dev, "attaching PHYs failed\n");
844 		goto fail;
845 	}
846 
847 	/*
848 	 * Force PHY to FPGA mode.
849 	 */
850 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
851 		mii = device_get_softc(sc->jme_miibus);
852 		if (mii->mii_instance != 0) {
853 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
854 				if (miisc->mii_phy != 0) {
855 					sc->jme_phyaddr = miisc->mii_phy;
856 					break;
857 				}
858 			}
859 			if (sc->jme_phyaddr != 0) {
860 				device_printf(sc->jme_dev,
861 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
862 				/* vendor magic. */
863 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
864 				    0x0004);
865 			}
866 		}
867 	}
868 
869 	ether_ifattach(ifp, sc->jme_eaddr);
870 
871 	/* VLAN capability setup */
872 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
873 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
874 	if_setcapenable(ifp, if_getcapabilities(ifp));
875 
876 	/* Tell the upper layer(s) we support long frames. */
877 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
878 
879 	/* Create local taskq. */
880 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
881 	    taskqueue_thread_enqueue, &sc->jme_tq);
882 	if (sc->jme_tq == NULL) {
883 		device_printf(dev, "could not create taskqueue.\n");
884 		ether_ifdetach(ifp);
885 		error = ENXIO;
886 		goto fail;
887 	}
888 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
889 	    device_get_nameunit(sc->jme_dev));
890 
891 	for (i = 0; i < 1; i++) {
892 		error = bus_setup_intr(dev, sc->jme_irq[i],
893 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
894 		    &sc->jme_intrhand[i]);
895 		if (error != 0)
896 			break;
897 	}
898 
899 	if (error != 0) {
900 		device_printf(dev, "could not set up interrupt handler.\n");
901 		taskqueue_free(sc->jme_tq);
902 		sc->jme_tq = NULL;
903 		ether_ifdetach(ifp);
904 		goto fail;
905 	}
906 
907 fail:
908 	if (error != 0)
909 		jme_detach(dev);
910 
911 	return (error);
912 }
913 
914 static int
915 jme_detach(device_t dev)
916 {
917 	struct jme_softc *sc;
918 	if_t ifp;
919 	int i;
920 
921 	sc = device_get_softc(dev);
922 
923 	ifp = sc->jme_ifp;
924 	if (device_is_attached(dev)) {
925 		JME_LOCK(sc);
926 		sc->jme_flags |= JME_FLAG_DETACH;
927 		jme_stop(sc);
928 		JME_UNLOCK(sc);
929 		callout_drain(&sc->jme_tick_ch);
930 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
931 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
932 		/* Restore possibly modified station address. */
933 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
934 			jme_set_macaddr(sc, sc->jme_eaddr);
935 		ether_ifdetach(ifp);
936 	}
937 
938 	if (sc->jme_tq != NULL) {
939 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
940 		taskqueue_free(sc->jme_tq);
941 		sc->jme_tq = NULL;
942 	}
943 
944 	if (sc->jme_miibus != NULL) {
945 		device_delete_child(dev, sc->jme_miibus);
946 		sc->jme_miibus = NULL;
947 	}
948 	bus_generic_detach(dev);
949 	jme_dma_free(sc);
950 
951 	if (ifp != NULL) {
952 		if_free(ifp);
953 		sc->jme_ifp = NULL;
954 	}
955 
956 	for (i = 0; i < 1; i++) {
957 		if (sc->jme_intrhand[i] != NULL) {
958 			bus_teardown_intr(dev, sc->jme_irq[i],
959 			    sc->jme_intrhand[i]);
960 			sc->jme_intrhand[i] = NULL;
961 		}
962 	}
963 
964 	if (sc->jme_irq[0] != NULL)
965 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
966 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
967 		pci_release_msi(dev);
968 	if (sc->jme_res[0] != NULL)
969 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
970 	mtx_destroy(&sc->jme_mtx);
971 
972 	return (0);
973 }
974 
975 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
976 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
977 
978 static void
979 jme_sysctl_node(struct jme_softc *sc)
980 {
981 	struct sysctl_ctx_list *ctx;
982 	struct sysctl_oid_list *child, *parent;
983 	struct sysctl_oid *tree;
984 	struct jme_hw_stats *stats;
985 	int error;
986 
987 	stats = &sc->jme_stats;
988 	ctx = device_get_sysctl_ctx(sc->jme_dev);
989 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
990 
991 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
992 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
993 	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
994 
995 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
996 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
997 	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
998 
999 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1000 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
1001 	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1002 
1003 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1004 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
1005 	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1006 
1007 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1008 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1009 	    &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
1010 	    "max number of Rx events to process");
1011 
1012 	/* Pull in device tunables. */
1013 	sc->jme_process_limit = JME_PROC_DEFAULT;
1014 	error = resource_int_value(device_get_name(sc->jme_dev),
1015 	    device_get_unit(sc->jme_dev), "process_limit",
1016 	    &sc->jme_process_limit);
1017 	if (error == 0) {
1018 		if (sc->jme_process_limit < JME_PROC_MIN ||
1019 		    sc->jme_process_limit > JME_PROC_MAX) {
1020 			device_printf(sc->jme_dev,
1021 			    "process_limit value out of range; "
1022 			    "using default: %d\n", JME_PROC_DEFAULT);
1023 			sc->jme_process_limit = JME_PROC_DEFAULT;
1024 		}
1025 	}
1026 
1027 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1028 	error = resource_int_value(device_get_name(sc->jme_dev),
1029 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1030 	if (error == 0) {
1031 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1032 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1033 			device_printf(sc->jme_dev,
1034 			    "tx_coal_to value out of range; "
1035 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1036 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1037 		}
1038 	}
1039 
1040 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1041 	error = resource_int_value(device_get_name(sc->jme_dev),
1042 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1043 	if (error == 0) {
1044 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1045 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1046 			device_printf(sc->jme_dev,
1047 			    "tx_coal_pkt value out of range; "
1048 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1049 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1050 		}
1051 	}
1052 
1053 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1054 	error = resource_int_value(device_get_name(sc->jme_dev),
1055 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1056 	if (error == 0) {
1057 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1058 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1059 			device_printf(sc->jme_dev,
1060 			    "rx_coal_to value out of range; "
1061 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1062 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1063 		}
1064 	}
1065 
1066 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1067 	error = resource_int_value(device_get_name(sc->jme_dev),
1068 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1069 	if (error == 0) {
1070 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1071 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1072 			device_printf(sc->jme_dev,
1073 			    "tx_coal_pkt value out of range; "
1074 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1075 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1076 		}
1077 	}
1078 
1079 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1080 		return;
1081 
1082 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1083 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
1084 	parent = SYSCTL_CHILDREN(tree);
1085 
1086 	/* Rx statistics. */
1087 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
1088 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
1089 	child = SYSCTL_CHILDREN(tree);
1090 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1091 	    &stats->rx_good_frames, "Good frames");
1092 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1093 	    &stats->rx_crc_errs, "CRC errors");
1094 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1095 	    &stats->rx_mii_errs, "MII errors");
1096 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1097 	    &stats->rx_fifo_oflows, "FIFO overflows");
1098 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1099 	    &stats->rx_desc_empty, "Descriptor empty");
1100 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1101 	    &stats->rx_bad_frames, "Bad frames");
1102 
1103 	/* Tx statistics. */
1104 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
1105 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
1106 	child = SYSCTL_CHILDREN(tree);
1107 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1108 	    &stats->tx_good_frames, "Good frames");
1109 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1110 	    &stats->tx_bad_frames, "Bad frames");
1111 }
1112 
1113 #undef	JME_SYSCTL_STAT_ADD32
1114 
1115 struct jme_dmamap_arg {
1116 	bus_addr_t	jme_busaddr;
1117 };
1118 
1119 static void
1120 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1121 {
1122 	struct jme_dmamap_arg *ctx;
1123 
1124 	if (error != 0)
1125 		return;
1126 
1127 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1128 
1129 	ctx = (struct jme_dmamap_arg *)arg;
1130 	ctx->jme_busaddr = segs[0].ds_addr;
1131 }
1132 
1133 static int
1134 jme_dma_alloc(struct jme_softc *sc)
1135 {
1136 	struct jme_dmamap_arg ctx;
1137 	struct jme_txdesc *txd;
1138 	struct jme_rxdesc *rxd;
1139 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1140 	int error, i;
1141 
1142 	lowaddr = BUS_SPACE_MAXADDR;
1143 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1144 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1145 
1146 again:
1147 	/* Create parent ring tag. */
1148 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1149 	    1, 0,			/* algnmnt, boundary */
1150 	    lowaddr,			/* lowaddr */
1151 	    BUS_SPACE_MAXADDR,		/* highaddr */
1152 	    NULL, NULL,			/* filter, filterarg */
1153 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1154 	    0,				/* nsegments */
1155 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1156 	    0,				/* flags */
1157 	    NULL, NULL,			/* lockfunc, lockarg */
1158 	    &sc->jme_cdata.jme_ring_tag);
1159 	if (error != 0) {
1160 		device_printf(sc->jme_dev,
1161 		    "could not create parent ring DMA tag.\n");
1162 		goto fail;
1163 	}
1164 	/* Create tag for Tx ring. */
1165 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1166 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1167 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1168 	    BUS_SPACE_MAXADDR,		/* highaddr */
1169 	    NULL, NULL,			/* filter, filterarg */
1170 	    JME_TX_RING_SIZE,		/* maxsize */
1171 	    1,				/* nsegments */
1172 	    JME_TX_RING_SIZE,		/* maxsegsize */
1173 	    0,				/* flags */
1174 	    NULL, NULL,			/* lockfunc, lockarg */
1175 	    &sc->jme_cdata.jme_tx_ring_tag);
1176 	if (error != 0) {
1177 		device_printf(sc->jme_dev,
1178 		    "could not allocate Tx ring DMA tag.\n");
1179 		goto fail;
1180 	}
1181 
1182 	/* Create tag for Rx ring. */
1183 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1184 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1185 	    lowaddr,			/* lowaddr */
1186 	    BUS_SPACE_MAXADDR,		/* highaddr */
1187 	    NULL, NULL,			/* filter, filterarg */
1188 	    JME_RX_RING_SIZE,		/* maxsize */
1189 	    1,				/* nsegments */
1190 	    JME_RX_RING_SIZE,		/* maxsegsize */
1191 	    0,				/* flags */
1192 	    NULL, NULL,			/* lockfunc, lockarg */
1193 	    &sc->jme_cdata.jme_rx_ring_tag);
1194 	if (error != 0) {
1195 		device_printf(sc->jme_dev,
1196 		    "could not allocate Rx ring DMA tag.\n");
1197 		goto fail;
1198 	}
1199 
1200 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1201 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1202 	    (void **)&sc->jme_rdata.jme_tx_ring,
1203 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1204 	    &sc->jme_cdata.jme_tx_ring_map);
1205 	if (error != 0) {
1206 		device_printf(sc->jme_dev,
1207 		    "could not allocate DMA'able memory for Tx ring.\n");
1208 		goto fail;
1209 	}
1210 
1211 	ctx.jme_busaddr = 0;
1212 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1213 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1214 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1215 	if (error != 0 || ctx.jme_busaddr == 0) {
1216 		device_printf(sc->jme_dev,
1217 		    "could not load DMA'able memory for Tx ring.\n");
1218 		goto fail;
1219 	}
1220 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1221 
1222 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1223 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1224 	    (void **)&sc->jme_rdata.jme_rx_ring,
1225 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1226 	    &sc->jme_cdata.jme_rx_ring_map);
1227 	if (error != 0) {
1228 		device_printf(sc->jme_dev,
1229 		    "could not allocate DMA'able memory for Rx ring.\n");
1230 		goto fail;
1231 	}
1232 
1233 	ctx.jme_busaddr = 0;
1234 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1235 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1236 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1237 	if (error != 0 || ctx.jme_busaddr == 0) {
1238 		device_printf(sc->jme_dev,
1239 		    "could not load DMA'able memory for Rx ring.\n");
1240 		goto fail;
1241 	}
1242 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1243 
1244 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1245 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1246 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1247 		    JME_TX_RING_SIZE;
1248 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1249 		    JME_RX_RING_SIZE;
1250 		if ((JME_ADDR_HI(tx_ring_end) !=
1251 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1252 		    (JME_ADDR_HI(rx_ring_end) !=
1253 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1254 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1255 			    "switching to 32bit DMA address mode.\n");
1256 			jme_dma_free(sc);
1257 			/* Limit DMA address space to 32bit and try again. */
1258 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1259 			goto again;
1260 		}
1261 	}
1262 
1263 	lowaddr = BUS_SPACE_MAXADDR;
1264 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1265 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1266 	/* Create parent buffer tag. */
1267 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1268 	    1, 0,			/* algnmnt, boundary */
1269 	    lowaddr,			/* lowaddr */
1270 	    BUS_SPACE_MAXADDR,		/* highaddr */
1271 	    NULL, NULL,			/* filter, filterarg */
1272 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1273 	    0,				/* nsegments */
1274 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1275 	    0,				/* flags */
1276 	    NULL, NULL,			/* lockfunc, lockarg */
1277 	    &sc->jme_cdata.jme_buffer_tag);
1278 	if (error != 0) {
1279 		device_printf(sc->jme_dev,
1280 		    "could not create parent buffer DMA tag.\n");
1281 		goto fail;
1282 	}
1283 
1284 	/* Create shadow status block tag. */
1285 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1286 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1287 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1288 	    BUS_SPACE_MAXADDR,		/* highaddr */
1289 	    NULL, NULL,			/* filter, filterarg */
1290 	    JME_SSB_SIZE,		/* maxsize */
1291 	    1,				/* nsegments */
1292 	    JME_SSB_SIZE,		/* maxsegsize */
1293 	    0,				/* flags */
1294 	    NULL, NULL,			/* lockfunc, lockarg */
1295 	    &sc->jme_cdata.jme_ssb_tag);
1296 	if (error != 0) {
1297 		device_printf(sc->jme_dev,
1298 		    "could not create shared status block DMA tag.\n");
1299 		goto fail;
1300 	}
1301 
1302 	/* Create tag for Tx buffers. */
1303 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1304 	    1, 0,			/* algnmnt, boundary */
1305 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1306 	    BUS_SPACE_MAXADDR,		/* highaddr */
1307 	    NULL, NULL,			/* filter, filterarg */
1308 	    JME_TSO_MAXSIZE,		/* maxsize */
1309 	    JME_MAXTXSEGS,		/* nsegments */
1310 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1311 	    0,				/* flags */
1312 	    NULL, NULL,			/* lockfunc, lockarg */
1313 	    &sc->jme_cdata.jme_tx_tag);
1314 	if (error != 0) {
1315 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1316 		goto fail;
1317 	}
1318 
1319 	/* Create tag for Rx buffers. */
1320 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1321 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1322 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1323 	    BUS_SPACE_MAXADDR,		/* highaddr */
1324 	    NULL, NULL,			/* filter, filterarg */
1325 	    MCLBYTES,			/* maxsize */
1326 	    1,				/* nsegments */
1327 	    MCLBYTES,			/* maxsegsize */
1328 	    0,				/* flags */
1329 	    NULL, NULL,			/* lockfunc, lockarg */
1330 	    &sc->jme_cdata.jme_rx_tag);
1331 	if (error != 0) {
1332 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1333 		goto fail;
1334 	}
1335 
1336 	/*
1337 	 * Allocate DMA'able memory and load the DMA map for shared
1338 	 * status block.
1339 	 */
1340 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1341 	    (void **)&sc->jme_rdata.jme_ssb_block,
1342 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1343 	    &sc->jme_cdata.jme_ssb_map);
1344 	if (error != 0) {
1345 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1346 		    "memory for shared status block.\n");
1347 		goto fail;
1348 	}
1349 
1350 	ctx.jme_busaddr = 0;
1351 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1352 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1353 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1354 	if (error != 0 || ctx.jme_busaddr == 0) {
1355 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1356 		    "for shared status block.\n");
1357 		goto fail;
1358 	}
1359 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1360 
1361 	/* Create DMA maps for Tx buffers. */
1362 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1363 		txd = &sc->jme_cdata.jme_txdesc[i];
1364 		txd->tx_m = NULL;
1365 		txd->tx_dmamap = NULL;
1366 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1367 		    &txd->tx_dmamap);
1368 		if (error != 0) {
1369 			device_printf(sc->jme_dev,
1370 			    "could not create Tx dmamap.\n");
1371 			goto fail;
1372 		}
1373 	}
1374 	/* Create DMA maps for Rx buffers. */
1375 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1376 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1377 		device_printf(sc->jme_dev,
1378 		    "could not create spare Rx dmamap.\n");
1379 		goto fail;
1380 	}
1381 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1382 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1383 		rxd->rx_m = NULL;
1384 		rxd->rx_dmamap = NULL;
1385 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1386 		    &rxd->rx_dmamap);
1387 		if (error != 0) {
1388 			device_printf(sc->jme_dev,
1389 			    "could not create Rx dmamap.\n");
1390 			goto fail;
1391 		}
1392 	}
1393 
1394 fail:
1395 	return (error);
1396 }
1397 
1398 static void
1399 jme_dma_free(struct jme_softc *sc)
1400 {
1401 	struct jme_txdesc *txd;
1402 	struct jme_rxdesc *rxd;
1403 	int i;
1404 
1405 	/* Tx ring */
1406 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1407 		if (sc->jme_rdata.jme_tx_ring_paddr)
1408 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1409 			    sc->jme_cdata.jme_tx_ring_map);
1410 		if (sc->jme_rdata.jme_tx_ring)
1411 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1412 			    sc->jme_rdata.jme_tx_ring,
1413 			    sc->jme_cdata.jme_tx_ring_map);
1414 		sc->jme_rdata.jme_tx_ring = NULL;
1415 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1416 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1417 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1418 	}
1419 	/* Rx ring */
1420 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1421 		if (sc->jme_rdata.jme_rx_ring_paddr)
1422 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1423 			    sc->jme_cdata.jme_rx_ring_map);
1424 		if (sc->jme_rdata.jme_rx_ring)
1425 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1426 			    sc->jme_rdata.jme_rx_ring,
1427 			    sc->jme_cdata.jme_rx_ring_map);
1428 		sc->jme_rdata.jme_rx_ring = NULL;
1429 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1430 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1431 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1432 	}
1433 	/* Tx buffers */
1434 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1435 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1436 			txd = &sc->jme_cdata.jme_txdesc[i];
1437 			if (txd->tx_dmamap != NULL) {
1438 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1439 				    txd->tx_dmamap);
1440 				txd->tx_dmamap = NULL;
1441 			}
1442 		}
1443 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1444 		sc->jme_cdata.jme_tx_tag = NULL;
1445 	}
1446 	/* Rx buffers */
1447 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1448 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1449 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1450 			if (rxd->rx_dmamap != NULL) {
1451 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1452 				    rxd->rx_dmamap);
1453 				rxd->rx_dmamap = NULL;
1454 			}
1455 		}
1456 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1457 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1458 			    sc->jme_cdata.jme_rx_sparemap);
1459 			sc->jme_cdata.jme_rx_sparemap = NULL;
1460 		}
1461 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1462 		sc->jme_cdata.jme_rx_tag = NULL;
1463 	}
1464 
1465 	/* Shared status block. */
1466 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1467 		if (sc->jme_rdata.jme_ssb_block_paddr)
1468 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1469 			    sc->jme_cdata.jme_ssb_map);
1470 		if (sc->jme_rdata.jme_ssb_block)
1471 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1472 			    sc->jme_rdata.jme_ssb_block,
1473 			    sc->jme_cdata.jme_ssb_map);
1474 		sc->jme_rdata.jme_ssb_block = NULL;
1475 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1476 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1477 		sc->jme_cdata.jme_ssb_tag = NULL;
1478 	}
1479 
1480 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1481 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1482 		sc->jme_cdata.jme_buffer_tag = NULL;
1483 	}
1484 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1485 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1486 		sc->jme_cdata.jme_ring_tag = NULL;
1487 	}
1488 }
1489 
1490 /*
1491  *	Make sure the interface is stopped at reboot time.
1492  */
1493 static int
1494 jme_shutdown(device_t dev)
1495 {
1496 
1497 	return (jme_suspend(dev));
1498 }
1499 
1500 /*
1501  * Unlike other ethernet controllers, JMC250 requires
1502  * explicit resetting link speed to 10/100Mbps as gigabit
1503  * link will cunsume more power than 375mA.
1504  * Note, we reset the link speed to 10/100Mbps with
1505  * auto-negotiation but we don't know whether that operation
1506  * would succeed or not as we have no control after powering
1507  * off. If the renegotiation fail WOL may not work. Running
1508  * at 1Gbps draws more power than 375mA at 3.3V which is
1509  * specified in PCI specification and that would result in
1510  * complete shutdowning power to ethernet controller.
1511  *
1512  * TODO
1513  *  Save current negotiated media speed/duplex/flow-control
1514  *  to softc and restore the same link again after resuming.
1515  *  PHY handling such as power down/resetting to 100Mbps
1516  *  may be better handled in suspend method in phy driver.
1517  */
1518 static void
1519 jme_setlinkspeed(struct jme_softc *sc)
1520 {
1521 	struct mii_data *mii;
1522 	int aneg, i;
1523 
1524 	JME_LOCK_ASSERT(sc);
1525 
1526 	mii = device_get_softc(sc->jme_miibus);
1527 	mii_pollstat(mii);
1528 	aneg = 0;
1529 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1530 		switch IFM_SUBTYPE(mii->mii_media_active) {
1531 		case IFM_10_T:
1532 		case IFM_100_TX:
1533 			return;
1534 		case IFM_1000_T:
1535 			aneg++;
1536 		default:
1537 			break;
1538 		}
1539 	}
1540 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1541 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1542 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1543 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1544 	    BMCR_AUTOEN | BMCR_STARTNEG);
1545 	DELAY(1000);
1546 	if (aneg != 0) {
1547 		/* Poll link state until jme(4) get a 10/100 link. */
1548 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1549 			mii_pollstat(mii);
1550 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1551 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1552 				case IFM_10_T:
1553 				case IFM_100_TX:
1554 					jme_mac_config(sc);
1555 					return;
1556 				default:
1557 					break;
1558 				}
1559 			}
1560 			JME_UNLOCK(sc);
1561 			pause("jmelnk", hz);
1562 			JME_LOCK(sc);
1563 		}
1564 		if (i == MII_ANEGTICKS_GIGE)
1565 			device_printf(sc->jme_dev, "establishing link failed, "
1566 			    "WOL may not work!");
1567 	}
1568 	/*
1569 	 * No link, force MAC to have 100Mbps, full-duplex link.
1570 	 * This is the last resort and may/may not work.
1571 	 */
1572 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1573 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1574 	jme_mac_config(sc);
1575 }
1576 
1577 static void
1578 jme_setwol(struct jme_softc *sc)
1579 {
1580 	if_t ifp;
1581 	uint32_t gpr, pmcs;
1582 	uint16_t pmstat;
1583 	int pmc;
1584 
1585 	JME_LOCK_ASSERT(sc);
1586 
1587 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1588 		/* Remove Tx MAC/offload clock to save more power. */
1589 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1590 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1591 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1592 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1593 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1594 			CSR_WRITE_4(sc, JME_GPREG1,
1595 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1596 		/* No PME capability, PHY power down. */
1597 		jme_phy_down(sc);
1598 		return;
1599 	}
1600 
1601 	ifp = sc->jme_ifp;
1602 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1603 	pmcs = CSR_READ_4(sc, JME_PMCS);
1604 	pmcs &= ~PMCS_WOL_ENB_MASK;
1605 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1606 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1607 		/* Enable PME message. */
1608 		gpr |= GPREG0_PME_ENB;
1609 		/* For gigabit controllers, reset link speed to 10/100. */
1610 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1611 			jme_setlinkspeed(sc);
1612 	}
1613 
1614 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1615 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1616 	/* Remove Tx MAC/offload clock to save more power. */
1617 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1618 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1619 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1620 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1621 	/* Request PME. */
1622 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1623 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1624 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1625 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1626 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1627 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1628 		/* No WOL, PHY power down. */
1629 		jme_phy_down(sc);
1630 	}
1631 }
1632 
1633 static int
1634 jme_suspend(device_t dev)
1635 {
1636 	struct jme_softc *sc;
1637 
1638 	sc = device_get_softc(dev);
1639 
1640 	JME_LOCK(sc);
1641 	jme_stop(sc);
1642 	jme_setwol(sc);
1643 	JME_UNLOCK(sc);
1644 
1645 	return (0);
1646 }
1647 
1648 static int
1649 jme_resume(device_t dev)
1650 {
1651 	struct jme_softc *sc;
1652 	if_t ifp;
1653 	uint16_t pmstat;
1654 	int pmc;
1655 
1656 	sc = device_get_softc(dev);
1657 
1658 	JME_LOCK(sc);
1659 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1660 		pmstat = pci_read_config(sc->jme_dev,
1661 		    pmc + PCIR_POWER_STATUS, 2);
1662 		/* Disable PME clear PME status. */
1663 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1664 		pci_write_config(sc->jme_dev,
1665 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1666 	}
1667 	/* Wakeup PHY. */
1668 	jme_phy_up(sc);
1669 	ifp = sc->jme_ifp;
1670 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1671 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1672 		jme_init_locked(sc);
1673 	}
1674 
1675 	JME_UNLOCK(sc);
1676 
1677 	return (0);
1678 }
1679 
1680 static int
1681 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1682 {
1683 	struct jme_txdesc *txd;
1684 	struct jme_desc *desc;
1685 	struct mbuf *m;
1686 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1687 	int error, i, nsegs, prod;
1688 	uint32_t cflags, tsosegsz;
1689 
1690 	JME_LOCK_ASSERT(sc);
1691 
1692 	M_ASSERTPKTHDR((*m_head));
1693 
1694 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1695 		/*
1696 		 * Due to the adherence to NDIS specification JMC250
1697 		 * assumes upper stack computed TCP pseudo checksum
1698 		 * without including payload length. This breaks
1699 		 * checksum offload for TSO case so recompute TCP
1700 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1701 		 * be much burden on modern CPUs.
1702 		 */
1703 		struct ether_header *eh;
1704 		struct ip *ip;
1705 		struct tcphdr *tcp;
1706 		uint32_t ip_off, poff;
1707 
1708 		if (M_WRITABLE(*m_head) == 0) {
1709 			/* Get a writable copy. */
1710 			m = m_dup(*m_head, M_NOWAIT);
1711 			m_freem(*m_head);
1712 			if (m == NULL) {
1713 				*m_head = NULL;
1714 				return (ENOBUFS);
1715 			}
1716 			*m_head = m;
1717 		}
1718 		ip_off = sizeof(struct ether_header);
1719 		m = m_pullup(*m_head, ip_off);
1720 		if (m == NULL) {
1721 			*m_head = NULL;
1722 			return (ENOBUFS);
1723 		}
1724 		eh = mtod(m, struct ether_header *);
1725 		/* Check the existence of VLAN tag. */
1726 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1727 			ip_off = sizeof(struct ether_vlan_header);
1728 			m = m_pullup(m, ip_off);
1729 			if (m == NULL) {
1730 				*m_head = NULL;
1731 				return (ENOBUFS);
1732 			}
1733 		}
1734 		m = m_pullup(m, ip_off + sizeof(struct ip));
1735 		if (m == NULL) {
1736 			*m_head = NULL;
1737 			return (ENOBUFS);
1738 		}
1739 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1740 		poff = ip_off + (ip->ip_hl << 2);
1741 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1742 		if (m == NULL) {
1743 			*m_head = NULL;
1744 			return (ENOBUFS);
1745 		}
1746 		/*
1747 		 * Reset IP checksum and recompute TCP pseudo
1748 		 * checksum that NDIS specification requires.
1749 		 */
1750 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1751 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1752 		ip->ip_sum = 0;
1753 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1754 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1755 			    ip->ip_dst.s_addr,
1756 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1757 			/* No need to TSO, force IP checksum offload. */
1758 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1759 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1760 		} else
1761 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1762 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1763 		*m_head = m;
1764 	}
1765 
1766 	prod = sc->jme_cdata.jme_tx_prod;
1767 	txd = &sc->jme_cdata.jme_txdesc[prod];
1768 
1769 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1770 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1771 	if (error == EFBIG) {
1772 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1773 		if (m == NULL) {
1774 			m_freem(*m_head);
1775 			*m_head = NULL;
1776 			return (ENOMEM);
1777 		}
1778 		*m_head = m;
1779 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1780 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1781 		if (error != 0) {
1782 			m_freem(*m_head);
1783 			*m_head = NULL;
1784 			return (error);
1785 		}
1786 	} else if (error != 0)
1787 		return (error);
1788 	if (nsegs == 0) {
1789 		m_freem(*m_head);
1790 		*m_head = NULL;
1791 		return (EIO);
1792 	}
1793 
1794 	/*
1795 	 * Check descriptor overrun. Leave one free descriptor.
1796 	 * Since we always use 64bit address mode for transmitting,
1797 	 * each Tx request requires one more dummy descriptor.
1798 	 */
1799 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1800 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1801 		return (ENOBUFS);
1802 	}
1803 
1804 	m = *m_head;
1805 	cflags = 0;
1806 	tsosegsz = 0;
1807 	/* Configure checksum offload and TSO. */
1808 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1809 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1810 		    JME_TD_MSS_SHIFT;
1811 		cflags |= JME_TD_TSO;
1812 	} else {
1813 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1814 			cflags |= JME_TD_IPCSUM;
1815 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1816 			cflags |= JME_TD_TCPCSUM;
1817 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1818 			cflags |= JME_TD_UDPCSUM;
1819 	}
1820 	/* Configure VLAN. */
1821 	if ((m->m_flags & M_VLANTAG) != 0) {
1822 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1823 		cflags |= JME_TD_VLAN_TAG;
1824 	}
1825 
1826 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1827 	desc->flags = htole32(cflags);
1828 	desc->buflen = htole32(tsosegsz);
1829 	desc->addr_hi = htole32(m->m_pkthdr.len);
1830 	desc->addr_lo = 0;
1831 	sc->jme_cdata.jme_tx_cnt++;
1832 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1833 	for (i = 0; i < nsegs; i++) {
1834 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1835 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1836 		desc->buflen = htole32(txsegs[i].ds_len);
1837 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1838 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1839 		sc->jme_cdata.jme_tx_cnt++;
1840 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1841 	}
1842 
1843 	/* Update producer index. */
1844 	sc->jme_cdata.jme_tx_prod = prod;
1845 	/*
1846 	 * Finally request interrupt and give the first descriptor
1847 	 * owenership to hardware.
1848 	 */
1849 	desc = txd->tx_desc;
1850 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1851 
1852 	txd->tx_m = m;
1853 	txd->tx_ndesc = nsegs + 1;
1854 
1855 	/* Sync descriptors. */
1856 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1857 	    BUS_DMASYNC_PREWRITE);
1858 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1859 	    sc->jme_cdata.jme_tx_ring_map,
1860 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1861 
1862 	return (0);
1863 }
1864 
1865 static void
1866 jme_start(if_t ifp)
1867 {
1868         struct jme_softc *sc;
1869 
1870 	sc = if_getsoftc(ifp);
1871 	JME_LOCK(sc);
1872 	jme_start_locked(ifp);
1873 	JME_UNLOCK(sc);
1874 }
1875 
1876 static void
1877 jme_start_locked(if_t ifp)
1878 {
1879         struct jme_softc *sc;
1880         struct mbuf *m_head;
1881 	int enq;
1882 
1883 	sc = if_getsoftc(ifp);
1884 
1885 	JME_LOCK_ASSERT(sc);
1886 
1887 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1888 		jme_txeof(sc);
1889 
1890 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1891 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1892 		return;
1893 
1894 	for (enq = 0; !if_sendq_empty(ifp); ) {
1895 		m_head = if_dequeue(ifp);
1896 		if (m_head == NULL)
1897 			break;
1898 		/*
1899 		 * Pack the data into the transmit ring. If we
1900 		 * don't have room, set the OACTIVE flag and wait
1901 		 * for the NIC to drain the ring.
1902 		 */
1903 		if (jme_encap(sc, &m_head)) {
1904 			if (m_head == NULL)
1905 				break;
1906 			if_sendq_prepend(ifp, m_head);
1907 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1908 			break;
1909 		}
1910 
1911 		enq++;
1912 		/*
1913 		 * If there's a BPF listener, bounce a copy of this frame
1914 		 * to him.
1915 		 */
1916 		ETHER_BPF_MTAP(ifp, m_head);
1917 	}
1918 
1919 	if (enq > 0) {
1920 		/*
1921 		 * Reading TXCSR takes very long time under heavy load
1922 		 * so cache TXCSR value and writes the ORed value with
1923 		 * the kick command to the TXCSR. This saves one register
1924 		 * access cycle.
1925 		 */
1926 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1927 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1928 		/* Set a timeout in case the chip goes out to lunch. */
1929 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1930 	}
1931 }
1932 
1933 static void
1934 jme_watchdog(struct jme_softc *sc)
1935 {
1936 	if_t ifp;
1937 
1938 	JME_LOCK_ASSERT(sc);
1939 
1940 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1941 		return;
1942 
1943 	ifp = sc->jme_ifp;
1944 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1945 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1946 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1947 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1948 		jme_init_locked(sc);
1949 		return;
1950 	}
1951 	jme_txeof(sc);
1952 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1953 		if_printf(sc->jme_ifp,
1954 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1955 		if (!if_sendq_empty(ifp))
1956 			jme_start_locked(ifp);
1957 		return;
1958 	}
1959 
1960 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1961 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1962 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1963 	jme_init_locked(sc);
1964 	if (!if_sendq_empty(ifp))
1965 		jme_start_locked(ifp);
1966 }
1967 
1968 static int
1969 jme_ioctl(if_t ifp, u_long cmd, caddr_t data)
1970 {
1971 	struct jme_softc *sc;
1972 	struct ifreq *ifr;
1973 	struct mii_data *mii;
1974 	uint32_t reg;
1975 	int error, mask;
1976 
1977 	sc = if_getsoftc(ifp);
1978 	ifr = (struct ifreq *)data;
1979 	error = 0;
1980 	switch (cmd) {
1981 	case SIOCSIFMTU:
1982 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1983 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1984 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1985 			error = EINVAL;
1986 			break;
1987 		}
1988 
1989 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
1990 			/*
1991 			 * No special configuration is required when interface
1992 			 * MTU is changed but availability of TSO/Tx checksum
1993 			 * offload should be chcked against new MTU size as
1994 			 * FIFO size is just 2K.
1995 			 */
1996 			JME_LOCK(sc);
1997 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1998 				if_setcapenablebit(ifp, 0,
1999 				    IFCAP_TXCSUM | IFCAP_TSO4);
2000 				if_sethwassistbits(ifp, 0,
2001 				    JME_CSUM_FEATURES | CSUM_TSO);
2002 				VLAN_CAPABILITIES(ifp);
2003 			}
2004 			if_setmtu(ifp, ifr->ifr_mtu);
2005 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2006 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2007 				jme_init_locked(sc);
2008 			}
2009 			JME_UNLOCK(sc);
2010 		}
2011 		break;
2012 	case SIOCSIFFLAGS:
2013 		JME_LOCK(sc);
2014 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2015 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2016 				if (((if_getflags(ifp) ^ sc->jme_if_flags)
2017 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2018 					jme_set_filter(sc);
2019 			} else {
2020 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2021 					jme_init_locked(sc);
2022 			}
2023 		} else {
2024 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2025 				jme_stop(sc);
2026 		}
2027 		sc->jme_if_flags = if_getflags(ifp);
2028 		JME_UNLOCK(sc);
2029 		break;
2030 	case SIOCADDMULTI:
2031 	case SIOCDELMULTI:
2032 		JME_LOCK(sc);
2033 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2034 			jme_set_filter(sc);
2035 		JME_UNLOCK(sc);
2036 		break;
2037 	case SIOCSIFMEDIA:
2038 	case SIOCGIFMEDIA:
2039 		mii = device_get_softc(sc->jme_miibus);
2040 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2041 		break;
2042 	case SIOCSIFCAP:
2043 		JME_LOCK(sc);
2044 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2045 		if ((mask & IFCAP_TXCSUM) != 0 &&
2046 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2047 			if ((IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2048 				if_togglecapenable(ifp, IFCAP_TXCSUM);
2049 				if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2050 					if_sethwassistbits(ifp, JME_CSUM_FEATURES, 0);
2051 				else
2052 					if_sethwassistbits(ifp, 0, JME_CSUM_FEATURES);
2053 			}
2054 		}
2055 		if ((mask & IFCAP_RXCSUM) != 0 &&
2056 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
2057 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2058 			reg = CSR_READ_4(sc, JME_RXMAC);
2059 			reg &= ~RXMAC_CSUM_ENB;
2060 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2061 				reg |= RXMAC_CSUM_ENB;
2062 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2063 		}
2064 		if ((mask & IFCAP_TSO4) != 0 &&
2065 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2066 			if ((IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
2067 				if_togglecapenable(ifp, IFCAP_TSO4);
2068 				if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
2069 					if_sethwassistbits(ifp, CSUM_TSO, 0);
2070 				else
2071 					if_sethwassistbits(ifp, 0, CSUM_TSO);
2072 			}
2073 		}
2074 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2075 		    (IFCAP_WOL_MAGIC & if_getcapabilities(ifp)) != 0)
2076 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2077 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2078 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2079 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2080 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2081 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2082 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2083 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2084 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2085 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2086 			jme_set_vlan(sc);
2087 		}
2088 		JME_UNLOCK(sc);
2089 		VLAN_CAPABILITIES(ifp);
2090 		break;
2091 	default:
2092 		error = ether_ioctl(ifp, cmd, data);
2093 		break;
2094 	}
2095 
2096 	return (error);
2097 }
2098 
2099 static void
2100 jme_mac_config(struct jme_softc *sc)
2101 {
2102 	struct mii_data *mii;
2103 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2104 	uint32_t txclk;
2105 
2106 	JME_LOCK_ASSERT(sc);
2107 
2108 	mii = device_get_softc(sc->jme_miibus);
2109 
2110 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2111 	DELAY(10);
2112 	CSR_WRITE_4(sc, JME_GHC, 0);
2113 	ghc = 0;
2114 	txclk = 0;
2115 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2116 	rxmac &= ~RXMAC_FC_ENB;
2117 	txmac = CSR_READ_4(sc, JME_TXMAC);
2118 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2119 	txpause = CSR_READ_4(sc, JME_TXPFC);
2120 	txpause &= ~TXPFC_PAUSE_ENB;
2121 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2122 		ghc |= GHC_FULL_DUPLEX;
2123 		rxmac &= ~RXMAC_COLL_DET_ENB;
2124 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2125 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2126 		    TXMAC_FRAME_BURST);
2127 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2128 			txpause |= TXPFC_PAUSE_ENB;
2129 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2130 			rxmac |= RXMAC_FC_ENB;
2131 		/* Disable retry transmit timer/retry limit. */
2132 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2133 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2134 	} else {
2135 		rxmac |= RXMAC_COLL_DET_ENB;
2136 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2137 		/* Enable retry transmit timer/retry limit. */
2138 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2139 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2140 	}
2141 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2142 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2143 	case IFM_10_T:
2144 		ghc |= GHC_SPEED_10;
2145 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2146 		break;
2147 	case IFM_100_TX:
2148 		ghc |= GHC_SPEED_100;
2149 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2150 		break;
2151 	case IFM_1000_T:
2152 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2153 			break;
2154 		ghc |= GHC_SPEED_1000;
2155 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2156 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2157 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2158 		break;
2159 	default:
2160 		break;
2161 	}
2162 	if (sc->jme_rev == DEVICEID_JMC250 &&
2163 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2164 		/*
2165 		 * Workaround occasional packet loss issue of JMC250 A2
2166 		 * when it runs on half-duplex media.
2167 		 */
2168 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2169 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2170 			gpreg &= ~GPREG1_HDPX_FIX;
2171 		else
2172 			gpreg |= GPREG1_HDPX_FIX;
2173 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2174 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2175 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2176 			/* Extend interface FIFO depth. */
2177 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2178 			    0x1B, 0x0000);
2179 		} else {
2180 			/* Select default interface FIFO depth. */
2181 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2182 			    0x1B, 0x0004);
2183 		}
2184 	}
2185 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2186 		ghc |= txclk;
2187 	CSR_WRITE_4(sc, JME_GHC, ghc);
2188 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2189 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2190 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2191 }
2192 
2193 static void
2194 jme_link_task(void *arg, int pending)
2195 {
2196 	struct jme_softc *sc;
2197 	struct mii_data *mii;
2198 	if_t ifp;
2199 	struct jme_txdesc *txd;
2200 	bus_addr_t paddr;
2201 	int i;
2202 
2203 	sc = (struct jme_softc *)arg;
2204 
2205 	JME_LOCK(sc);
2206 	mii = device_get_softc(sc->jme_miibus);
2207 	ifp = sc->jme_ifp;
2208 	if (mii == NULL || ifp == NULL ||
2209 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2210 		JME_UNLOCK(sc);
2211 		return;
2212 	}
2213 
2214 	sc->jme_flags &= ~JME_FLAG_LINK;
2215 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2216 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2217 		case IFM_10_T:
2218 		case IFM_100_TX:
2219 			sc->jme_flags |= JME_FLAG_LINK;
2220 			break;
2221 		case IFM_1000_T:
2222 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2223 				break;
2224 			sc->jme_flags |= JME_FLAG_LINK;
2225 			break;
2226 		default:
2227 			break;
2228 		}
2229 	}
2230 
2231 	/*
2232 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2233 	 * JME_TXNDA/JME_RXNDA register to the first address of
2234 	 * Tx/Rx descriptor address. So driver should reset its
2235 	 * internal procucer/consumer pointer and reclaim any
2236 	 * allocated resources. Note, just saving the value of
2237 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2238 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2239 	 * sufficient to make sure correct MAC state because
2240 	 * stopping MAC operation can take a while and hardware
2241 	 * might have updated JME_TXNDA/JME_RXNDA registers
2242 	 * during the stop operation.
2243 	 */
2244 	/* Block execution of task. */
2245 	taskqueue_block(sc->jme_tq);
2246 	/* Disable interrupts and stop driver. */
2247 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2248 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2249 	callout_stop(&sc->jme_tick_ch);
2250 	sc->jme_watchdog_timer = 0;
2251 
2252 	/* Stop receiver/transmitter. */
2253 	jme_stop_rx(sc);
2254 	jme_stop_tx(sc);
2255 
2256 	/* XXX Drain all queued tasks. */
2257 	JME_UNLOCK(sc);
2258 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2259 	JME_LOCK(sc);
2260 
2261 	if (sc->jme_cdata.jme_rxhead != NULL)
2262 		m_freem(sc->jme_cdata.jme_rxhead);
2263 	JME_RXCHAIN_RESET(sc);
2264 	jme_txeof(sc);
2265 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2266 		/* Remove queued packets for transmit. */
2267 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2268 			txd = &sc->jme_cdata.jme_txdesc[i];
2269 			if (txd->tx_m != NULL) {
2270 				bus_dmamap_sync(
2271 				    sc->jme_cdata.jme_tx_tag,
2272 				    txd->tx_dmamap,
2273 				    BUS_DMASYNC_POSTWRITE);
2274 				bus_dmamap_unload(
2275 				    sc->jme_cdata.jme_tx_tag,
2276 				    txd->tx_dmamap);
2277 				m_freem(txd->tx_m);
2278 				txd->tx_m = NULL;
2279 				txd->tx_ndesc = 0;
2280 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2281 			}
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * Reuse configured Rx descriptors and reset
2287 	 * producer/consumer index.
2288 	 */
2289 	sc->jme_cdata.jme_rx_cons = 0;
2290 	sc->jme_morework = 0;
2291 	jme_init_tx_ring(sc);
2292 	/* Initialize shadow status block. */
2293 	jme_init_ssb(sc);
2294 
2295 	/* Program MAC with resolved speed/duplex/flow-control. */
2296 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2297 		jme_mac_config(sc);
2298 		jme_stats_clear(sc);
2299 
2300 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2301 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2302 
2303 		/* Set Tx ring address to the hardware. */
2304 		paddr = JME_TX_RING_ADDR(sc, 0);
2305 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2306 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2307 
2308 		/* Set Rx ring address to the hardware. */
2309 		paddr = JME_RX_RING_ADDR(sc, 0);
2310 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2311 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2312 
2313 		/* Restart receiver/transmitter. */
2314 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2315 		    RXCSR_RXQ_START);
2316 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2317 		/* Lastly enable TX/RX clock. */
2318 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2319 			CSR_WRITE_4(sc, JME_GHC,
2320 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2321 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2322 			CSR_WRITE_4(sc, JME_GPREG1,
2323 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2324 	}
2325 
2326 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2327 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2328 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2329 	/* Unblock execution of task. */
2330 	taskqueue_unblock(sc->jme_tq);
2331 	/* Reenable interrupts. */
2332 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2333 
2334 	JME_UNLOCK(sc);
2335 }
2336 
2337 static int
2338 jme_intr(void *arg)
2339 {
2340 	struct jme_softc *sc;
2341 	uint32_t status;
2342 
2343 	sc = (struct jme_softc *)arg;
2344 
2345 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2346 	if (status == 0 || status == 0xFFFFFFFF)
2347 		return (FILTER_STRAY);
2348 	/* Disable interrupts. */
2349 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2350 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2351 
2352 	return (FILTER_HANDLED);
2353 }
2354 
2355 static void
2356 jme_int_task(void *arg, int pending)
2357 {
2358 	struct jme_softc *sc;
2359 	if_t ifp;
2360 	uint32_t status;
2361 	int more;
2362 
2363 	sc = (struct jme_softc *)arg;
2364 	ifp = sc->jme_ifp;
2365 
2366 	JME_LOCK(sc);
2367 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2368 	if (sc->jme_morework != 0) {
2369 		sc->jme_morework = 0;
2370 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2371 	}
2372 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2373 		goto done;
2374 	/* Reset PCC counter/timer and Ack interrupts. */
2375 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2376 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2377 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2378 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2379 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2380 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2381 	more = 0;
2382 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2383 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2384 			more = jme_rxintr(sc, sc->jme_process_limit);
2385 			if (more != 0)
2386 				sc->jme_morework = 1;
2387 		}
2388 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2389 			/*
2390 			 * Notify hardware availability of new Rx
2391 			 * buffers.
2392 			 * Reading RXCSR takes very long time under
2393 			 * heavy load so cache RXCSR value and writes
2394 			 * the ORed value with the kick command to
2395 			 * the RXCSR. This saves one register access
2396 			 * cycle.
2397 			 */
2398 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2399 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2400 		}
2401 		if (!if_sendq_empty(ifp))
2402 			jme_start_locked(ifp);
2403 	}
2404 
2405 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2406 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2407 		JME_UNLOCK(sc);
2408 		return;
2409 	}
2410 done:
2411 	JME_UNLOCK(sc);
2412 
2413 	/* Reenable interrupts. */
2414 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2415 }
2416 
2417 static void
2418 jme_txeof(struct jme_softc *sc)
2419 {
2420 	if_t ifp;
2421 	struct jme_txdesc *txd;
2422 	uint32_t status;
2423 	int cons, nsegs;
2424 
2425 	JME_LOCK_ASSERT(sc);
2426 
2427 	ifp = sc->jme_ifp;
2428 
2429 	cons = sc->jme_cdata.jme_tx_cons;
2430 	if (cons == sc->jme_cdata.jme_tx_prod)
2431 		return;
2432 
2433 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2434 	    sc->jme_cdata.jme_tx_ring_map,
2435 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2436 
2437 	/*
2438 	 * Go through our Tx list and free mbufs for those
2439 	 * frames which have been transmitted.
2440 	 */
2441 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2442 		txd = &sc->jme_cdata.jme_txdesc[cons];
2443 		status = le32toh(txd->tx_desc->flags);
2444 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2445 			break;
2446 
2447 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2448 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2449 		else {
2450 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2451 			if ((status & JME_TD_COLLISION) != 0)
2452 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2453 				    le32toh(txd->tx_desc->buflen) &
2454 				    JME_TD_BUF_LEN_MASK);
2455 		}
2456 		/*
2457 		 * Only the first descriptor of multi-descriptor
2458 		 * transmission is updated so driver have to skip entire
2459 		 * chained buffers for the transmiited frame. In other
2460 		 * words, JME_TD_OWN bit is valid only at the first
2461 		 * descriptor of a multi-descriptor transmission.
2462 		 */
2463 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2464 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2465 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2466 		}
2467 
2468 		/* Reclaim transferred mbufs. */
2469 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2470 		    BUS_DMASYNC_POSTWRITE);
2471 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2472 
2473 		KASSERT(txd->tx_m != NULL,
2474 		    ("%s: freeing NULL mbuf!\n", __func__));
2475 		m_freem(txd->tx_m);
2476 		txd->tx_m = NULL;
2477 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2478 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2479 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2480 		txd->tx_ndesc = 0;
2481 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2482 	}
2483 	sc->jme_cdata.jme_tx_cons = cons;
2484 	/* Unarm watchdog timer when there is no pending descriptors in queue. */
2485 	if (sc->jme_cdata.jme_tx_cnt == 0)
2486 		sc->jme_watchdog_timer = 0;
2487 
2488 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2489 	    sc->jme_cdata.jme_tx_ring_map,
2490 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2491 }
2492 
2493 static __inline void
2494 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2495 {
2496 	struct jme_desc *desc;
2497 
2498 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2499 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2500 	desc->buflen = htole32(MCLBYTES);
2501 }
2502 
2503 /* Receive a frame. */
2504 static void
2505 jme_rxeof(struct jme_softc *sc)
2506 {
2507 	if_t ifp;
2508 	struct jme_desc *desc;
2509 	struct jme_rxdesc *rxd;
2510 	struct mbuf *mp, *m;
2511 	uint32_t flags, status;
2512 	int cons, count, nsegs;
2513 
2514 	JME_LOCK_ASSERT(sc);
2515 
2516 	ifp = sc->jme_ifp;
2517 
2518 	cons = sc->jme_cdata.jme_rx_cons;
2519 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2520 	flags = le32toh(desc->flags);
2521 	status = le32toh(desc->buflen);
2522 	nsegs = JME_RX_NSEGS(status);
2523 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2524 	if ((status & JME_RX_ERR_STAT) != 0) {
2525 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2526 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2527 #ifdef JME_SHOW_ERRORS
2528 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2529 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2530 #endif
2531 		sc->jme_cdata.jme_rx_cons += nsegs;
2532 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2533 		return;
2534 	}
2535 
2536 	for (count = 0; count < nsegs; count++,
2537 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2538 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2539 		mp = rxd->rx_m;
2540 		/* Add a new receive buffer to the ring. */
2541 		if (jme_newbuf(sc, rxd) != 0) {
2542 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2543 			/* Reuse buffer. */
2544 			for (; count < nsegs; count++) {
2545 				jme_discard_rxbuf(sc, cons);
2546 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2547 			}
2548 			if (sc->jme_cdata.jme_rxhead != NULL) {
2549 				m_freem(sc->jme_cdata.jme_rxhead);
2550 				JME_RXCHAIN_RESET(sc);
2551 			}
2552 			break;
2553 		}
2554 
2555 		/*
2556 		 * Assume we've received a full sized frame.
2557 		 * Actual size is fixed when we encounter the end of
2558 		 * multi-segmented frame.
2559 		 */
2560 		mp->m_len = MCLBYTES;
2561 
2562 		/* Chain received mbufs. */
2563 		if (sc->jme_cdata.jme_rxhead == NULL) {
2564 			sc->jme_cdata.jme_rxhead = mp;
2565 			sc->jme_cdata.jme_rxtail = mp;
2566 		} else {
2567 			/*
2568 			 * Receive processor can receive a maximum frame
2569 			 * size of 65535 bytes.
2570 			 */
2571 			mp->m_flags &= ~M_PKTHDR;
2572 			sc->jme_cdata.jme_rxtail->m_next = mp;
2573 			sc->jme_cdata.jme_rxtail = mp;
2574 		}
2575 
2576 		if (count == nsegs - 1) {
2577 			/* Last desc. for this frame. */
2578 			m = sc->jme_cdata.jme_rxhead;
2579 			m->m_flags |= M_PKTHDR;
2580 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2581 			if (nsegs > 1) {
2582 				/* Set first mbuf size. */
2583 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2584 				/* Set last mbuf size. */
2585 				mp->m_len = sc->jme_cdata.jme_rxlen -
2586 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2587 				    (MCLBYTES * (nsegs - 2)));
2588 			} else
2589 				m->m_len = sc->jme_cdata.jme_rxlen;
2590 			m->m_pkthdr.rcvif = ifp;
2591 
2592 			/*
2593 			 * Account for 10bytes auto padding which is used
2594 			 * to align IP header on 32bit boundary. Also note,
2595 			 * CRC bytes is automatically removed by the
2596 			 * hardware.
2597 			 */
2598 			m->m_data += JME_RX_PAD_BYTES;
2599 
2600 			/* Set checksum information. */
2601 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2602 			    (flags & JME_RD_IPV4) != 0) {
2603 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2604 				if ((flags & JME_RD_IPCSUM) != 0)
2605 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2606 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2607 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2608 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2609 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2610 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2611 					m->m_pkthdr.csum_flags |=
2612 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2613 					m->m_pkthdr.csum_data = 0xffff;
2614 				}
2615 			}
2616 
2617 			/* Check for VLAN tagged packets. */
2618 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2619 			    (flags & JME_RD_VLAN_TAG) != 0) {
2620 				m->m_pkthdr.ether_vtag =
2621 				    flags & JME_RD_VLAN_MASK;
2622 				m->m_flags |= M_VLANTAG;
2623 			}
2624 
2625 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2626 			/* Pass it on. */
2627 			JME_UNLOCK(sc);
2628 			if_input(ifp, m);
2629 			JME_LOCK(sc);
2630 
2631 			/* Reset mbuf chains. */
2632 			JME_RXCHAIN_RESET(sc);
2633 		}
2634 	}
2635 
2636 	sc->jme_cdata.jme_rx_cons += nsegs;
2637 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2638 }
2639 
2640 static int
2641 jme_rxintr(struct jme_softc *sc, int count)
2642 {
2643 	struct jme_desc *desc;
2644 	int nsegs, prog, pktlen;
2645 
2646 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2647 	    sc->jme_cdata.jme_rx_ring_map,
2648 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2649 
2650 	for (prog = 0; count > 0; prog++) {
2651 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2652 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2653 			break;
2654 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2655 			break;
2656 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2657 		/*
2658 		 * Check number of segments against received bytes.
2659 		 * Non-matching value would indicate that hardware
2660 		 * is still trying to update Rx descriptors. I'm not
2661 		 * sure whether this check is needed.
2662 		 */
2663 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2664 		if (nsegs != howmany(pktlen, MCLBYTES))
2665 			break;
2666 		prog++;
2667 		/* Received a frame. */
2668 		jme_rxeof(sc);
2669 		count -= nsegs;
2670 	}
2671 
2672 	if (prog > 0)
2673 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2674 		    sc->jme_cdata.jme_rx_ring_map,
2675 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2676 
2677 	return (count > 0 ? 0 : EAGAIN);
2678 }
2679 
2680 static void
2681 jme_tick(void *arg)
2682 {
2683 	struct jme_softc *sc;
2684 	struct mii_data *mii;
2685 
2686 	sc = (struct jme_softc *)arg;
2687 
2688 	JME_LOCK_ASSERT(sc);
2689 
2690 	mii = device_get_softc(sc->jme_miibus);
2691 	mii_tick(mii);
2692 	/*
2693 	 * Reclaim Tx buffers that have been completed. It's not
2694 	 * needed here but it would release allocated mbuf chains
2695 	 * faster and limit the maximum delay to a hz.
2696 	 */
2697 	jme_txeof(sc);
2698 	jme_stats_update(sc);
2699 	jme_watchdog(sc);
2700 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2701 }
2702 
2703 static void
2704 jme_reset(struct jme_softc *sc)
2705 {
2706 	uint32_t ghc, gpreg;
2707 
2708 	/* Stop receiver, transmitter. */
2709 	jme_stop_rx(sc);
2710 	jme_stop_tx(sc);
2711 
2712 	/* Reset controller. */
2713 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2714 	CSR_READ_4(sc, JME_GHC);
2715 	DELAY(10);
2716 	/*
2717 	 * Workaround Rx FIFO overruns seen under certain conditions.
2718 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2719 	 * enabled only after enabling TX/RX MACs.
2720 	 */
2721 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2722 		/* Disable TX clock. */
2723 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2724 		/* Disable RX clock. */
2725 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2726 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2727 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2728 		/* De-assert RESET but still disable TX clock. */
2729 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2730 		ghc = CSR_READ_4(sc, JME_GHC);
2731 
2732 		/* Enable TX clock. */
2733 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2734 		/* Enable RX clock. */
2735 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2736 		CSR_READ_4(sc, JME_GPREG1);
2737 
2738 		/* Disable TX/RX clock again. */
2739 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2740 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2741 	} else
2742 		CSR_WRITE_4(sc, JME_GHC, 0);
2743 	CSR_READ_4(sc, JME_GHC);
2744 	DELAY(10);
2745 }
2746 
2747 static void
2748 jme_init(void *xsc)
2749 {
2750 	struct jme_softc *sc;
2751 
2752 	sc = (struct jme_softc *)xsc;
2753 	JME_LOCK(sc);
2754 	jme_init_locked(sc);
2755 	JME_UNLOCK(sc);
2756 }
2757 
2758 static void
2759 jme_init_locked(struct jme_softc *sc)
2760 {
2761 	if_t ifp;
2762 	struct mii_data *mii;
2763 	bus_addr_t paddr;
2764 	uint32_t reg;
2765 	int error;
2766 
2767 	JME_LOCK_ASSERT(sc);
2768 
2769 	ifp = sc->jme_ifp;
2770 	mii = device_get_softc(sc->jme_miibus);
2771 
2772 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2773 		return;
2774 	/*
2775 	 * Cancel any pending I/O.
2776 	 */
2777 	jme_stop(sc);
2778 
2779 	/*
2780 	 * Reset the chip to a known state.
2781 	 */
2782 	jme_reset(sc);
2783 
2784 	/* Init descriptors. */
2785 	error = jme_init_rx_ring(sc);
2786         if (error != 0) {
2787                 device_printf(sc->jme_dev,
2788                     "%s: initialization failed: no memory for Rx buffers.\n",
2789 		    __func__);
2790                 jme_stop(sc);
2791 		return;
2792         }
2793 	jme_init_tx_ring(sc);
2794 	/* Initialize shadow status block. */
2795 	jme_init_ssb(sc);
2796 
2797 	/* Reprogram the station address. */
2798 	jme_set_macaddr(sc, if_getlladdr(sc->jme_ifp));
2799 
2800 	/*
2801 	 * Configure Tx queue.
2802 	 *  Tx priority queue weight value : 0
2803 	 *  Tx FIFO threshold for processing next packet : 16QW
2804 	 *  Maximum Tx DMA length : 512
2805 	 *  Allow Tx DMA burst.
2806 	 */
2807 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2808 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2809 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2810 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2811 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2812 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2813 
2814 	/* Set Tx descriptor counter. */
2815 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2816 
2817 	/* Set Tx ring address to the hardware. */
2818 	paddr = JME_TX_RING_ADDR(sc, 0);
2819 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2820 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2821 
2822 	/* Configure TxMAC parameters. */
2823 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2824 	reg |= TXMAC_THRESH_1_PKT;
2825 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2826 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2827 
2828 	/*
2829 	 * Configure Rx queue.
2830 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2831 	 *  FIFO threshold for processing next packet : 128QW
2832 	 *  Rx queue 0 select
2833 	 *  Max Rx DMA length : 128
2834 	 *  Rx descriptor retry : 32
2835 	 *  Rx descriptor retry time gap : 256ns
2836 	 *  Don't receive runt/bad frame.
2837 	 */
2838 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2839 	/*
2840 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2841 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2842 	 * decrease FIFO threshold to reduce the FIFO overruns for
2843 	 * frames larger than 4000 bytes.
2844 	 * For best performance of standard MTU sized frames use
2845 	 * maximum allowable FIFO threshold, 128QW. Note these do
2846 	 * not hold on chip full mask version >=2. For these
2847 	 * controllers 64QW and 128QW are not valid value.
2848 	 */
2849 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2850 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2851 	else {
2852 		if ((if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2853 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2854 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2855 		else
2856 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2857 	}
2858 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2859 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2860 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2861 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2862 
2863 	/* Set Rx descriptor counter. */
2864 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2865 
2866 	/* Set Rx ring address to the hardware. */
2867 	paddr = JME_RX_RING_ADDR(sc, 0);
2868 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2869 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2870 
2871 	/* Clear receive filter. */
2872 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2873 	/* Set up the receive filter. */
2874 	jme_set_filter(sc);
2875 	jme_set_vlan(sc);
2876 
2877 	/*
2878 	 * Disable all WOL bits as WOL can interfere normal Rx
2879 	 * operation. Also clear WOL detection status bits.
2880 	 */
2881 	reg = CSR_READ_4(sc, JME_PMCS);
2882 	reg &= ~PMCS_WOL_ENB_MASK;
2883 	CSR_WRITE_4(sc, JME_PMCS, reg);
2884 
2885 	reg = CSR_READ_4(sc, JME_RXMAC);
2886 	/*
2887 	 * Pad 10bytes right before received frame. This will greatly
2888 	 * help Rx performance on strict-alignment architectures as
2889 	 * it does not need to copy the frame to align the payload.
2890 	 */
2891 	reg |= RXMAC_PAD_10BYTES;
2892 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2893 		reg |= RXMAC_CSUM_ENB;
2894 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2895 
2896 	/* Configure general purpose reg0 */
2897 	reg = CSR_READ_4(sc, JME_GPREG0);
2898 	reg &= ~GPREG0_PCC_UNIT_MASK;
2899 	/* Set PCC timer resolution to micro-seconds unit. */
2900 	reg |= GPREG0_PCC_UNIT_US;
2901 	/*
2902 	 * Disable all shadow register posting as we have to read
2903 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2904 	 * that it's hard to synchronize interrupt status between
2905 	 * hardware and software with shadow posting due to
2906 	 * requirements of bus_dmamap_sync(9).
2907 	 */
2908 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2909 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2910 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2911 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2912 	/* Disable posting of DW0. */
2913 	reg &= ~GPREG0_POST_DW0_ENB;
2914 	/* Clear PME message. */
2915 	reg &= ~GPREG0_PME_ENB;
2916 	/* Set PHY address. */
2917 	reg &= ~GPREG0_PHY_ADDR_MASK;
2918 	reg |= sc->jme_phyaddr;
2919 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2920 
2921 	/* Configure Tx queue 0 packet completion coalescing. */
2922 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2923 	    PCCTX_COAL_TO_MASK;
2924 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2925 	    PCCTX_COAL_PKT_MASK;
2926 	reg |= PCCTX_COAL_TXQ0;
2927 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2928 
2929 	/* Configure Rx queue 0 packet completion coalescing. */
2930 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2931 	    PCCRX_COAL_TO_MASK;
2932 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2933 	    PCCRX_COAL_PKT_MASK;
2934 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2935 
2936 	/*
2937 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2938 	 * generates an interrupt when the time interval between two
2939 	 * back-to-back incoming/outgoing packet is long enough for
2940 	 * it to reach its timer value 0. The arrival of new packets
2941 	 * after timer has started causes the PCD timer to restart.
2942 	 * Unfortunately, it's not clear how PCD is useful at this
2943 	 * moment, so just use the same of PCC parameters.
2944 	 */
2945 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2946 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2947 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2948 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2949 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2950 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2951 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2952 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2953 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2954 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2955 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2956 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2957 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2958 	}
2959 
2960 	/* Configure shadow status block but don't enable posting. */
2961 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2962 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2963 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2964 
2965 	/* Disable Timer 1 and Timer 2. */
2966 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2967 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2968 
2969 	/* Configure retry transmit period, retry limit value. */
2970 	CSR_WRITE_4(sc, JME_TXTRHD,
2971 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2972 	    TXTRHD_RT_PERIOD_MASK) |
2973 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2974 	    TXTRHD_RT_LIMIT_SHIFT));
2975 
2976 	/* Disable RSS. */
2977 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2978 
2979 	/* Initialize the interrupt mask. */
2980 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2981 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2982 
2983 	/*
2984 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2985 	 * done after detection of valid link in jme_link_task.
2986 	 */
2987 
2988 	sc->jme_flags &= ~JME_FLAG_LINK;
2989 	/* Set the current media. */
2990 	mii_mediachg(mii);
2991 
2992 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2993 
2994 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2995 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2996 }
2997 
2998 static void
2999 jme_stop(struct jme_softc *sc)
3000 {
3001 	if_t ifp;
3002 	struct jme_txdesc *txd;
3003 	struct jme_rxdesc *rxd;
3004 	int i;
3005 
3006 	JME_LOCK_ASSERT(sc);
3007 	/*
3008 	 * Mark the interface down and cancel the watchdog timer.
3009 	 */
3010 	ifp = sc->jme_ifp;
3011 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3012 	sc->jme_flags &= ~JME_FLAG_LINK;
3013 	callout_stop(&sc->jme_tick_ch);
3014 	sc->jme_watchdog_timer = 0;
3015 
3016 	/*
3017 	 * Disable interrupts.
3018 	 */
3019 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3020 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3021 
3022 	/* Disable updating shadow status block. */
3023 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3024 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3025 
3026 	/* Stop receiver, transmitter. */
3027 	jme_stop_rx(sc);
3028 	jme_stop_tx(sc);
3029 
3030 	 /* Reclaim Rx/Tx buffers that have been completed. */
3031 	jme_rxintr(sc, JME_RX_RING_CNT);
3032 	if (sc->jme_cdata.jme_rxhead != NULL)
3033 		m_freem(sc->jme_cdata.jme_rxhead);
3034 	JME_RXCHAIN_RESET(sc);
3035 	jme_txeof(sc);
3036 	/*
3037 	 * Free RX and TX mbufs still in the queues.
3038 	 */
3039 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3040 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3041 		if (rxd->rx_m != NULL) {
3042 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3043 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3044 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3045 			    rxd->rx_dmamap);
3046 			m_freem(rxd->rx_m);
3047 			rxd->rx_m = NULL;
3048 		}
3049         }
3050 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3051 		txd = &sc->jme_cdata.jme_txdesc[i];
3052 		if (txd->tx_m != NULL) {
3053 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3054 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3055 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3056 			    txd->tx_dmamap);
3057 			m_freem(txd->tx_m);
3058 			txd->tx_m = NULL;
3059 			txd->tx_ndesc = 0;
3060 		}
3061         }
3062 	jme_stats_update(sc);
3063 	jme_stats_save(sc);
3064 }
3065 
3066 static void
3067 jme_stop_tx(struct jme_softc *sc)
3068 {
3069 	uint32_t reg;
3070 	int i;
3071 
3072 	reg = CSR_READ_4(sc, JME_TXCSR);
3073 	if ((reg & TXCSR_TX_ENB) == 0)
3074 		return;
3075 	reg &= ~TXCSR_TX_ENB;
3076 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3077 	for (i = JME_TIMEOUT; i > 0; i--) {
3078 		DELAY(1);
3079 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3080 			break;
3081 	}
3082 	if (i == 0)
3083 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3084 }
3085 
3086 static void
3087 jme_stop_rx(struct jme_softc *sc)
3088 {
3089 	uint32_t reg;
3090 	int i;
3091 
3092 	reg = CSR_READ_4(sc, JME_RXCSR);
3093 	if ((reg & RXCSR_RX_ENB) == 0)
3094 		return;
3095 	reg &= ~RXCSR_RX_ENB;
3096 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3097 	for (i = JME_TIMEOUT; i > 0; i--) {
3098 		DELAY(1);
3099 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3100 			break;
3101 	}
3102 	if (i == 0)
3103 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3104 }
3105 
3106 static void
3107 jme_init_tx_ring(struct jme_softc *sc)
3108 {
3109 	struct jme_ring_data *rd;
3110 	struct jme_txdesc *txd;
3111 	int i;
3112 
3113 	sc->jme_cdata.jme_tx_prod = 0;
3114 	sc->jme_cdata.jme_tx_cons = 0;
3115 	sc->jme_cdata.jme_tx_cnt = 0;
3116 
3117 	rd = &sc->jme_rdata;
3118 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3119 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3120 		txd = &sc->jme_cdata.jme_txdesc[i];
3121 		txd->tx_m = NULL;
3122 		txd->tx_desc = &rd->jme_tx_ring[i];
3123 		txd->tx_ndesc = 0;
3124 	}
3125 
3126 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3127 	    sc->jme_cdata.jme_tx_ring_map,
3128 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3129 }
3130 
3131 static void
3132 jme_init_ssb(struct jme_softc *sc)
3133 {
3134 	struct jme_ring_data *rd;
3135 
3136 	rd = &sc->jme_rdata;
3137 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3138 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3139 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3140 }
3141 
3142 static int
3143 jme_init_rx_ring(struct jme_softc *sc)
3144 {
3145 	struct jme_ring_data *rd;
3146 	struct jme_rxdesc *rxd;
3147 	int i;
3148 
3149 	sc->jme_cdata.jme_rx_cons = 0;
3150 	JME_RXCHAIN_RESET(sc);
3151 	sc->jme_morework = 0;
3152 
3153 	rd = &sc->jme_rdata;
3154 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3155 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3156 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3157 		rxd->rx_m = NULL;
3158 		rxd->rx_desc = &rd->jme_rx_ring[i];
3159 		if (jme_newbuf(sc, rxd) != 0)
3160 			return (ENOBUFS);
3161 	}
3162 
3163 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3164 	    sc->jme_cdata.jme_rx_ring_map,
3165 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3166 
3167 	return (0);
3168 }
3169 
3170 static int
3171 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3172 {
3173 	struct jme_desc *desc;
3174 	struct mbuf *m;
3175 	bus_dma_segment_t segs[1];
3176 	bus_dmamap_t map;
3177 	int nsegs;
3178 
3179 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3180 	if (m == NULL)
3181 		return (ENOBUFS);
3182 	/*
3183 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3184 	 * takes advantage of 10 bytes padding feature of hardware
3185 	 * in order not to copy entire frame to align IP header on
3186 	 * 32bit boundary.
3187 	 */
3188 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3189 
3190 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3191 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3192 		m_freem(m);
3193 		return (ENOBUFS);
3194 	}
3195 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3196 
3197 	if (rxd->rx_m != NULL) {
3198 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3199 		    BUS_DMASYNC_POSTREAD);
3200 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3201 	}
3202 	map = rxd->rx_dmamap;
3203 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3204 	sc->jme_cdata.jme_rx_sparemap = map;
3205 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3206 	    BUS_DMASYNC_PREREAD);
3207 	rxd->rx_m = m;
3208 
3209 	desc = rxd->rx_desc;
3210 	desc->buflen = htole32(segs[0].ds_len);
3211 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3212 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3213 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3214 
3215 	return (0);
3216 }
3217 
3218 static void
3219 jme_set_vlan(struct jme_softc *sc)
3220 {
3221 	if_t ifp;
3222 	uint32_t reg;
3223 
3224 	JME_LOCK_ASSERT(sc);
3225 
3226 	ifp = sc->jme_ifp;
3227 	reg = CSR_READ_4(sc, JME_RXMAC);
3228 	reg &= ~RXMAC_VLAN_ENB;
3229 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3230 		reg |= RXMAC_VLAN_ENB;
3231 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3232 }
3233 
3234 static u_int
3235 jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3236 {
3237 	uint32_t crc, *mchash = arg;
3238 
3239 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3240 
3241 	/* Just want the 6 least significant bits. */
3242 	crc &= 0x3f;
3243 
3244 	/* Set the corresponding bit in the hash table. */
3245 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
3246 
3247 	return (1);
3248 }
3249 
3250 static void
3251 jme_set_filter(struct jme_softc *sc)
3252 {
3253 	if_t ifp;
3254 	uint32_t mchash[2];
3255 	uint32_t rxcfg;
3256 
3257 	JME_LOCK_ASSERT(sc);
3258 
3259 	ifp = sc->jme_ifp;
3260 
3261 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3262 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3263 	    RXMAC_ALLMULTI);
3264 	/* Always accept frames destined to our station address. */
3265 	rxcfg |= RXMAC_UNICAST;
3266 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3267 		rxcfg |= RXMAC_BROADCAST;
3268 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3269 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3270 			rxcfg |= RXMAC_PROMISC;
3271 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3272 			rxcfg |= RXMAC_ALLMULTI;
3273 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3274 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3275 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3276 		return;
3277 	}
3278 
3279 	/*
3280 	 * Set up the multicast address filter by passing all multicast
3281 	 * addresses through a CRC generator, and then using the low-order
3282 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3283 	 * high order bits select the register, while the rest of the bits
3284 	 * select the bit within the register.
3285 	 */
3286 	rxcfg |= RXMAC_MULTICAST;
3287 	bzero(mchash, sizeof(mchash));
3288 	if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
3289 
3290 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3291 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3292 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3293 }
3294 
3295 static void
3296 jme_stats_clear(struct jme_softc *sc)
3297 {
3298 
3299 	JME_LOCK_ASSERT(sc);
3300 
3301 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3302 		return;
3303 
3304 	/* Disable and clear counters. */
3305 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3306 	/* Activate hw counters. */
3307 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3308 	CSR_READ_4(sc, JME_STATCSR);
3309 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3310 }
3311 
3312 static void
3313 jme_stats_save(struct jme_softc *sc)
3314 {
3315 
3316 	JME_LOCK_ASSERT(sc);
3317 
3318 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3319 		return;
3320 	/* Save current counters. */
3321 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3322 	/* Disable and clear counters. */
3323 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3324 }
3325 
3326 static void
3327 jme_stats_update(struct jme_softc *sc)
3328 {
3329 	struct jme_hw_stats *stat, *ostat;
3330 	uint32_t reg;
3331 
3332 	JME_LOCK_ASSERT(sc);
3333 
3334 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3335 		return;
3336 	stat = &sc->jme_stats;
3337 	ostat = &sc->jme_ostats;
3338 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3339 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3340 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3341 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3342 	    STAT_RX_CRC_ERR_SHIFT;
3343 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3344 	    STAT_RX_MII_ERR_SHIFT;
3345 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3346 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3347 	    STAT_RXERR_OFLOW_SHIFT;
3348 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3349 	    STAT_RXERR_MPTY_SHIFT;
3350 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3351 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3352 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3353 
3354 	/* Account for previous counters. */
3355 	stat->rx_good_frames += ostat->rx_good_frames;
3356 	stat->rx_crc_errs += ostat->rx_crc_errs;
3357 	stat->rx_mii_errs += ostat->rx_mii_errs;
3358 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3359 	stat->rx_desc_empty += ostat->rx_desc_empty;
3360 	stat->rx_bad_frames += ostat->rx_bad_frames;
3361 	stat->tx_good_frames += ostat->tx_good_frames;
3362 	stat->tx_bad_frames += ostat->tx_bad_frames;
3363 }
3364 
3365 static void
3366 jme_phy_down(struct jme_softc *sc)
3367 {
3368 	uint32_t reg;
3369 
3370 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3371 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3372 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3373 		reg |= 0x0000000F;
3374 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3375 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3376 		reg &= ~PE1_GIGA_PDOWN_MASK;
3377 		reg |= PE1_GIGA_PDOWN_D3;
3378 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3379 	}
3380 }
3381 
3382 static void
3383 jme_phy_up(struct jme_softc *sc)
3384 {
3385 	uint32_t reg;
3386 	uint16_t bmcr;
3387 
3388 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3389 	bmcr &= ~BMCR_PDOWN;
3390 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3391 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3392 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3393 		reg &= ~0x0000000F;
3394 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3395 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3396 		reg &= ~PE1_GIGA_PDOWN_MASK;
3397 		reg |= PE1_GIGA_PDOWN_DIS;
3398 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3399 	}
3400 }
3401 
3402 static int
3403 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3404 {
3405 	int error, value;
3406 
3407 	if (arg1 == NULL)
3408 		return (EINVAL);
3409 	value = *(int *)arg1;
3410 	error = sysctl_handle_int(oidp, &value, 0, req);
3411 	if (error || req->newptr == NULL)
3412 		return (error);
3413 	if (value < low || value > high)
3414 		return (EINVAL);
3415         *(int *)arg1 = value;
3416 
3417         return (0);
3418 }
3419 
3420 static int
3421 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3422 {
3423 	return (sysctl_int_range(oidp, arg1, arg2, req,
3424 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3425 }
3426 
3427 static int
3428 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3429 {
3430 	return (sysctl_int_range(oidp, arg1, arg2, req,
3431 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3432 }
3433 
3434 static int
3435 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3436 {
3437 	return (sysctl_int_range(oidp, arg1, arg2, req,
3438 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3439 }
3440 
3441 static int
3442 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3443 {
3444 	return (sysctl_int_range(oidp, arg1, arg2, req,
3445 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3446 }
3447 
3448 static int
3449 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3450 {
3451 	return (sysctl_int_range(oidp, arg1, arg2, req,
3452 	    JME_PROC_MIN, JME_PROC_MAX));
3453 }
3454