xref: /freebsd/sys/dev/jme/if_jme.c (revision 716fd348)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/proc.h>
43 #include <sys/queue.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/ip.h>
62 #include <netinet/tcp.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 
73 #include <dev/jme/if_jmereg.h>
74 #include <dev/jme/if_jmevar.h>
75 
76 /* "device miibus" required.  See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78 
79 /* Define the following to disable printing Rx errors. */
80 #undef	JME_SHOW_ERRORS
81 
82 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
83 
84 MODULE_DEPEND(jme, pci, 1, 1, 1);
85 MODULE_DEPEND(jme, ether, 1, 1, 1);
86 MODULE_DEPEND(jme, miibus, 1, 1, 1);
87 
88 /* Tunables. */
89 static int msi_disable = 0;
90 static int msix_disable = 0;
91 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
92 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
93 
94 /*
95  * Devices supported by this driver.
96  */
97 static struct jme_dev {
98 	uint16_t	jme_vendorid;
99 	uint16_t	jme_deviceid;
100 	const char	*jme_name;
101 } jme_devs[] = {
102 	{ VENDORID_JMICRON, DEVICEID_JMC250,
103 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
104 	{ VENDORID_JMICRON, DEVICEID_JMC260,
105 	    "JMicron Inc, JMC26x Fast Ethernet" },
106 };
107 
108 static int jme_miibus_readreg(device_t, int, int);
109 static int jme_miibus_writereg(device_t, int, int, int);
110 static void jme_miibus_statchg(device_t);
111 static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
112 static int jme_mediachange(struct ifnet *);
113 static int jme_probe(device_t);
114 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
115 static int jme_eeprom_macaddr(struct jme_softc *);
116 static int jme_efuse_macaddr(struct jme_softc *);
117 static void jme_reg_macaddr(struct jme_softc *);
118 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
119 static void jme_map_intr_vector(struct jme_softc *);
120 static int jme_attach(device_t);
121 static int jme_detach(device_t);
122 static void jme_sysctl_node(struct jme_softc *);
123 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
124 static int jme_dma_alloc(struct jme_softc *);
125 static void jme_dma_free(struct jme_softc *);
126 static int jme_shutdown(device_t);
127 static void jme_setlinkspeed(struct jme_softc *);
128 static void jme_setwol(struct jme_softc *);
129 static int jme_suspend(device_t);
130 static int jme_resume(device_t);
131 static int jme_encap(struct jme_softc *, struct mbuf **);
132 static void jme_start(struct ifnet *);
133 static void jme_start_locked(struct ifnet *);
134 static void jme_watchdog(struct jme_softc *);
135 static int jme_ioctl(struct ifnet *, u_long, caddr_t);
136 static void jme_mac_config(struct jme_softc *);
137 static void jme_link_task(void *, int);
138 static int jme_intr(void *);
139 static void jme_int_task(void *, int);
140 static void jme_txeof(struct jme_softc *);
141 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
142 static void jme_rxeof(struct jme_softc *);
143 static int jme_rxintr(struct jme_softc *, int);
144 static void jme_tick(void *);
145 static void jme_reset(struct jme_softc *);
146 static void jme_init(void *);
147 static void jme_init_locked(struct jme_softc *);
148 static void jme_stop(struct jme_softc *);
149 static void jme_stop_tx(struct jme_softc *);
150 static void jme_stop_rx(struct jme_softc *);
151 static int jme_init_rx_ring(struct jme_softc *);
152 static void jme_init_tx_ring(struct jme_softc *);
153 static void jme_init_ssb(struct jme_softc *);
154 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
155 static void jme_set_vlan(struct jme_softc *);
156 static void jme_set_filter(struct jme_softc *);
157 static void jme_stats_clear(struct jme_softc *);
158 static void jme_stats_save(struct jme_softc *);
159 static void jme_stats_update(struct jme_softc *);
160 static void jme_phy_down(struct jme_softc *);
161 static void jme_phy_up(struct jme_softc *);
162 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
163 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
165 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
166 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
167 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
168 
169 
170 static device_method_t jme_methods[] = {
171 	/* Device interface. */
172 	DEVMETHOD(device_probe,		jme_probe),
173 	DEVMETHOD(device_attach,	jme_attach),
174 	DEVMETHOD(device_detach,	jme_detach),
175 	DEVMETHOD(device_shutdown,	jme_shutdown),
176 	DEVMETHOD(device_suspend,	jme_suspend),
177 	DEVMETHOD(device_resume,	jme_resume),
178 
179 	/* MII interface. */
180 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
181 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
182 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
183 
184 	{ NULL, NULL }
185 };
186 
187 static driver_t jme_driver = {
188 	"jme",
189 	jme_methods,
190 	sizeof(struct jme_softc)
191 };
192 
193 DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
194 DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
195 
196 static struct resource_spec jme_res_spec_mem[] = {
197 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static struct resource_spec jme_irq_spec_legacy[] = {
202 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
203 	{ -1,			0,		0 }
204 };
205 
206 static struct resource_spec jme_irq_spec_msi[] = {
207 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
208 	{ -1,			0,		0 }
209 };
210 
211 /*
212  *	Read a PHY register on the MII of the JMC250.
213  */
214 static int
215 jme_miibus_readreg(device_t dev, int phy, int reg)
216 {
217 	struct jme_softc *sc;
218 	uint32_t val;
219 	int i;
220 
221 	sc = device_get_softc(dev);
222 
223 	/* For FPGA version, PHY address 0 should be ignored. */
224 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
225 		return (0);
226 
227 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
228 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
229 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
230 		DELAY(1);
231 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
232 			break;
233 	}
234 
235 	if (i == 0) {
236 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
237 		return (0);
238 	}
239 
240 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
241 }
242 
243 /*
244  *	Write a PHY register on the MII of the JMC250.
245  */
246 static int
247 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
248 {
249 	struct jme_softc *sc;
250 	int i;
251 
252 	sc = device_get_softc(dev);
253 
254 	/* For FPGA version, PHY address 0 should be ignored. */
255 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
256 		return (0);
257 
258 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
259 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
260 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
261 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
262 		DELAY(1);
263 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
264 			break;
265 	}
266 
267 	if (i == 0)
268 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
269 
270 	return (0);
271 }
272 
273 /*
274  *	Callback from MII layer when media changes.
275  */
276 static void
277 jme_miibus_statchg(device_t dev)
278 {
279 	struct jme_softc *sc;
280 
281 	sc = device_get_softc(dev);
282 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
283 }
284 
285 /*
286  *	Get the current interface media status.
287  */
288 static void
289 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
290 {
291 	struct jme_softc *sc;
292 	struct mii_data *mii;
293 
294 	sc = ifp->if_softc;
295 	JME_LOCK(sc);
296 	if ((ifp->if_flags & IFF_UP) == 0) {
297 		JME_UNLOCK(sc);
298 		return;
299 	}
300 	mii = device_get_softc(sc->jme_miibus);
301 
302 	mii_pollstat(mii);
303 	ifmr->ifm_status = mii->mii_media_status;
304 	ifmr->ifm_active = mii->mii_media_active;
305 	JME_UNLOCK(sc);
306 }
307 
308 /*
309  *	Set hardware to newly-selected media.
310  */
311 static int
312 jme_mediachange(struct ifnet *ifp)
313 {
314 	struct jme_softc *sc;
315 	struct mii_data *mii;
316 	struct mii_softc *miisc;
317 	int error;
318 
319 	sc = ifp->if_softc;
320 	JME_LOCK(sc);
321 	mii = device_get_softc(sc->jme_miibus);
322 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
323 		PHY_RESET(miisc);
324 	error = mii_mediachg(mii);
325 	JME_UNLOCK(sc);
326 
327 	return (error);
328 }
329 
330 static int
331 jme_probe(device_t dev)
332 {
333 	struct jme_dev *sp;
334 	int i;
335 	uint16_t vendor, devid;
336 
337 	vendor = pci_get_vendor(dev);
338 	devid = pci_get_device(dev);
339 	sp = jme_devs;
340 	for (i = 0; i < nitems(jme_devs); i++, sp++) {
341 		if (vendor == sp->jme_vendorid &&
342 		    devid == sp->jme_deviceid) {
343 			device_set_desc(dev, sp->jme_name);
344 			return (BUS_PROBE_DEFAULT);
345 		}
346 	}
347 
348 	return (ENXIO);
349 }
350 
351 static int
352 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
353 {
354 	uint32_t reg;
355 	int i;
356 
357 	*val = 0;
358 	for (i = JME_TIMEOUT; i > 0; i--) {
359 		reg = CSR_READ_4(sc, JME_SMBCSR);
360 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
361 			break;
362 		DELAY(1);
363 	}
364 
365 	if (i == 0) {
366 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
367 		return (ETIMEDOUT);
368 	}
369 
370 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
371 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
372 	for (i = JME_TIMEOUT; i > 0; i--) {
373 		DELAY(1);
374 		reg = CSR_READ_4(sc, JME_SMBINTF);
375 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
376 			break;
377 	}
378 
379 	if (i == 0) {
380 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
381 		return (ETIMEDOUT);
382 	}
383 
384 	reg = CSR_READ_4(sc, JME_SMBINTF);
385 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
386 
387 	return (0);
388 }
389 
390 static int
391 jme_eeprom_macaddr(struct jme_softc *sc)
392 {
393 	uint8_t eaddr[ETHER_ADDR_LEN];
394 	uint8_t fup, reg, val;
395 	uint32_t offset;
396 	int match;
397 
398 	offset = 0;
399 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
400 	    fup != JME_EEPROM_SIG0)
401 		return (ENOENT);
402 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
403 	    fup != JME_EEPROM_SIG1)
404 		return (ENOENT);
405 	match = 0;
406 	do {
407 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
408 			break;
409 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
410 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
411 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
412 				break;
413 			if (reg >= JME_PAR0 &&
414 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
415 				if (jme_eeprom_read_byte(sc, offset + 2,
416 				    &val) != 0)
417 					break;
418 				eaddr[reg - JME_PAR0] = val;
419 				match++;
420 			}
421 		}
422 		/* Check for the end of EEPROM descriptor. */
423 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
424 			break;
425 		/* Try next eeprom descriptor. */
426 		offset += JME_EEPROM_DESC_BYTES;
427 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
428 
429 	if (match == ETHER_ADDR_LEN) {
430 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
431 		return (0);
432 	}
433 
434 	return (ENOENT);
435 }
436 
437 static int
438 jme_efuse_macaddr(struct jme_softc *sc)
439 {
440 	uint32_t reg;
441 	int i;
442 
443 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
444 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
445 	    EFUSE_CTL1_AUTOLAOD_DONE)
446 		return (ENOENT);
447 	/* Reset eFuse controller. */
448 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
449 	reg |= EFUSE_CTL2_RESET;
450 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
451 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
452 	reg &= ~EFUSE_CTL2_RESET;
453 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
454 
455 	/* Have eFuse reload station address to MAC controller. */
456 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
457 	reg &= ~EFUSE_CTL1_CMD_MASK;
458 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
459 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
460 
461 	/*
462 	 * Verify completion of eFuse autload command.  It should be
463 	 * completed within 108us.
464 	 */
465 	DELAY(110);
466 	for (i = 10; i > 0; i--) {
467 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
468 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
469 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
470 			DELAY(20);
471 			continue;
472 		}
473 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
474 			break;
475 		/* Station address loading is still in progress. */
476 		DELAY(20);
477 	}
478 	if (i == 0) {
479 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
480 		return (ETIMEDOUT);
481 	}
482 
483 	return (0);
484 }
485 
486 static void
487 jme_reg_macaddr(struct jme_softc *sc)
488 {
489 	uint32_t par0, par1;
490 
491 	/* Read station address. */
492 	par0 = CSR_READ_4(sc, JME_PAR0);
493 	par1 = CSR_READ_4(sc, JME_PAR1);
494 	par1 &= 0xFFFF;
495 	if ((par0 == 0 && par1 == 0) ||
496 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
497 		device_printf(sc->jme_dev,
498 		    "Failed to retrieve Ethernet address.\n");
499 	} else {
500 		/*
501 		 * For controllers that use eFuse, the station address
502 		 * could also be extracted from JME_PCI_PAR0 and
503 		 * JME_PCI_PAR1 registers in PCI configuration space.
504 		 * Each register holds exactly half of station address(24bits)
505 		 * so use JME_PAR0, JME_PAR1 registers instead.
506 		 */
507 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
508 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
509 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
510 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
511 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
512 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
513 	}
514 }
515 
516 static void
517 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
518 {
519 	uint32_t val;
520 	int i;
521 
522 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
523 		/*
524 		 * Avoid reprogramming station address if the address
525 		 * is the same as previous one.  Note, reprogrammed
526 		 * station address is permanent as if it was written
527 		 * to EEPROM. So if station address was changed by
528 		 * admistrator it's possible to lose factory configured
529 		 * address when driver fails to restore its address.
530 		 * (e.g. reboot or system crash)
531 		 */
532 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
533 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
534 				val = JME_EFUSE_EEPROM_FUNC0 <<
535 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
536 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
537 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
538 				val |= (JME_PAR0 + i) <<
539 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
540 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
541 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
542 				    val | JME_EFUSE_EEPROM_WRITE, 4);
543 			}
544 		}
545 	} else {
546 		CSR_WRITE_4(sc, JME_PAR0,
547 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
548 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
549 	}
550 }
551 
552 static void
553 jme_map_intr_vector(struct jme_softc *sc)
554 {
555 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
556 
557 	bzero(map, sizeof(map));
558 
559 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
560 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
561 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
562 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
563 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
564 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
565 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
566 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
567 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
568 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
569 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
570 	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
571 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
572 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
573 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
574 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
575 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
576 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
577 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
578 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
579 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
580 
581 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
582 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
583 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
584 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
585 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
586 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
587 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
588 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
589 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
590 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
591 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
592 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
593 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
594 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
595 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
596 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
597 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
598 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
599 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
600 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
601 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
602 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
603 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
604 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
605 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
606 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
607 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
608 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
609 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
610 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
611 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
612 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
613 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
614 
615 	/* Map all other interrupts source to MSI/MSIX vector 0. */
616 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
617 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
618 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
619 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
620 }
621 
622 static int
623 jme_attach(device_t dev)
624 {
625 	struct jme_softc *sc;
626 	struct ifnet *ifp;
627 	struct mii_softc *miisc;
628 	struct mii_data *mii;
629 	uint32_t reg;
630 	uint16_t burst;
631 	int error, i, mii_flags, msic, msixc, pmc;
632 
633 	error = 0;
634 	sc = device_get_softc(dev);
635 	sc->jme_dev = dev;
636 
637 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
638 	    MTX_DEF);
639 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
640 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
641 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
642 
643 	/*
644 	 * Map the device. JMC250 supports both memory mapped and I/O
645 	 * register space access. Because I/O register access should
646 	 * use different BARs to access registers it's waste of time
647 	 * to use I/O register spce access. JMC250 uses 16K to map
648 	 * entire memory space.
649 	 */
650 	pci_enable_busmaster(dev);
651 	sc->jme_res_spec = jme_res_spec_mem;
652 	sc->jme_irq_spec = jme_irq_spec_legacy;
653 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
654 	if (error != 0) {
655 		device_printf(dev, "cannot allocate memory resources.\n");
656 		goto fail;
657 	}
658 
659 	/* Allocate IRQ resources. */
660 	msixc = pci_msix_count(dev);
661 	msic = pci_msi_count(dev);
662 	if (bootverbose) {
663 		device_printf(dev, "MSIX count : %d\n", msixc);
664 		device_printf(dev, "MSI count : %d\n", msic);
665 	}
666 
667 	/* Use 1 MSI/MSI-X. */
668 	if (msixc > 1)
669 		msixc = 1;
670 	if (msic > 1)
671 		msic = 1;
672 	/* Prefer MSIX over MSI. */
673 	if (msix_disable == 0 || msi_disable == 0) {
674 		if (msix_disable == 0 && msixc > 0 &&
675 		    pci_alloc_msix(dev, &msixc) == 0) {
676 			if (msixc == 1) {
677 				device_printf(dev, "Using %d MSIX messages.\n",
678 				    msixc);
679 				sc->jme_flags |= JME_FLAG_MSIX;
680 				sc->jme_irq_spec = jme_irq_spec_msi;
681 			} else
682 				pci_release_msi(dev);
683 		}
684 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
685 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
686 			if (msic == 1) {
687 				device_printf(dev, "Using %d MSI messages.\n",
688 				    msic);
689 				sc->jme_flags |= JME_FLAG_MSI;
690 				sc->jme_irq_spec = jme_irq_spec_msi;
691 			} else
692 				pci_release_msi(dev);
693 		}
694 		/* Map interrupt vector 0, 1 and 2. */
695 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
696 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
697 			jme_map_intr_vector(sc);
698 	}
699 
700 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
701 	if (error != 0) {
702 		device_printf(dev, "cannot allocate IRQ resources.\n");
703 		goto fail;
704 	}
705 
706 	sc->jme_rev = pci_get_device(dev);
707 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
708 		sc->jme_flags |= JME_FLAG_FASTETH;
709 		sc->jme_flags |= JME_FLAG_NOJUMBO;
710 	}
711 	reg = CSR_READ_4(sc, JME_CHIPMODE);
712 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
713 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
714 	    CHIPMODE_NOT_FPGA)
715 		sc->jme_flags |= JME_FLAG_FPGA;
716 	if (bootverbose) {
717 		device_printf(dev, "PCI device revision : 0x%04x\n",
718 		    sc->jme_rev);
719 		device_printf(dev, "Chip revision : 0x%02x\n",
720 		    sc->jme_chip_rev);
721 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
722 			device_printf(dev, "FPGA revision : 0x%04x\n",
723 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
724 			    CHIPMODE_FPGA_REV_SHIFT);
725 	}
726 	if (sc->jme_chip_rev == 0xFF) {
727 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
728 		    sc->jme_rev);
729 		error = ENXIO;
730 		goto fail;
731 	}
732 
733 	/* Identify controller features and bugs. */
734 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
735 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
736 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
737 			sc->jme_flags |= JME_FLAG_DMA32BIT;
738 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
739 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
740 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
741 		sc->jme_flags |= JME_FLAG_HWMIB;
742 	}
743 
744 	/* Reset the ethernet controller. */
745 	jme_reset(sc);
746 
747 	/* Get station address. */
748 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
749 		error = jme_efuse_macaddr(sc);
750 		if (error == 0)
751 			jme_reg_macaddr(sc);
752 	} else {
753 		error = ENOENT;
754 		reg = CSR_READ_4(sc, JME_SMBCSR);
755 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
756 			error = jme_eeprom_macaddr(sc);
757 		if (error != 0 && bootverbose)
758 			device_printf(sc->jme_dev,
759 			    "ethernet hardware address not found in EEPROM.\n");
760 		if (error != 0)
761 			jme_reg_macaddr(sc);
762 	}
763 
764 	/*
765 	 * Save PHY address.
766 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
767 	 * requires PHY probing to get correct PHY address.
768 	 */
769 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
770 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
771 		    GPREG0_PHY_ADDR_MASK;
772 		if (bootverbose)
773 			device_printf(dev, "PHY is at address %d.\n",
774 			    sc->jme_phyaddr);
775 	} else
776 		sc->jme_phyaddr = 0;
777 
778 	/* Set max allowable DMA size. */
779 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
780 		sc->jme_flags |= JME_FLAG_PCIE;
781 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
782 		if (bootverbose) {
783 			device_printf(dev, "Read request size : %d bytes.\n",
784 			    128 << ((burst >> 12) & 0x07));
785 			device_printf(dev, "TLP payload size : %d bytes.\n",
786 			    128 << ((burst >> 5) & 0x07));
787 		}
788 		switch ((burst >> 12) & 0x07) {
789 		case 0:
790 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
791 			break;
792 		case 1:
793 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
794 			break;
795 		default:
796 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
797 			break;
798 		}
799 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
800 	} else {
801 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
802 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
803 	}
804 	/* Create coalescing sysctl node. */
805 	jme_sysctl_node(sc);
806 	if ((error = jme_dma_alloc(sc)) != 0)
807 		goto fail;
808 
809 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
810 	if (ifp == NULL) {
811 		device_printf(dev, "cannot allocate ifnet structure.\n");
812 		error = ENXIO;
813 		goto fail;
814 	}
815 
816 	ifp->if_softc = sc;
817 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
818 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
819 	ifp->if_ioctl = jme_ioctl;
820 	ifp->if_start = jme_start;
821 	ifp->if_init = jme_init;
822 	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
823 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
824 	IFQ_SET_READY(&ifp->if_snd);
825 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
826 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
827 	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
828 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
829 		sc->jme_flags |= JME_FLAG_PMCAP;
830 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
831 	}
832 	ifp->if_capenable = ifp->if_capabilities;
833 
834 	/* Wakeup PHY. */
835 	jme_phy_up(sc);
836 	mii_flags = MIIF_DOPAUSE;
837 	/* Ask PHY calibration to PHY driver. */
838 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
839 		mii_flags |= MIIF_MACPRIV0;
840 	/* Set up MII bus. */
841 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
842 	    jme_mediastatus, BMSR_DEFCAPMASK,
843 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
844 	    MII_OFFSET_ANY, mii_flags);
845 	if (error != 0) {
846 		device_printf(dev, "attaching PHYs failed\n");
847 		goto fail;
848 	}
849 
850 	/*
851 	 * Force PHY to FPGA mode.
852 	 */
853 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
854 		mii = device_get_softc(sc->jme_miibus);
855 		if (mii->mii_instance != 0) {
856 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
857 				if (miisc->mii_phy != 0) {
858 					sc->jme_phyaddr = miisc->mii_phy;
859 					break;
860 				}
861 			}
862 			if (sc->jme_phyaddr != 0) {
863 				device_printf(sc->jme_dev,
864 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
865 				/* vendor magic. */
866 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
867 				    0x0004);
868 			}
869 		}
870 	}
871 
872 	ether_ifattach(ifp, sc->jme_eaddr);
873 
874 	/* VLAN capability setup */
875 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
876 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
877 	ifp->if_capenable = ifp->if_capabilities;
878 
879 	/* Tell the upper layer(s) we support long frames. */
880 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
881 
882 	/* Create local taskq. */
883 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
884 	    taskqueue_thread_enqueue, &sc->jme_tq);
885 	if (sc->jme_tq == NULL) {
886 		device_printf(dev, "could not create taskqueue.\n");
887 		ether_ifdetach(ifp);
888 		error = ENXIO;
889 		goto fail;
890 	}
891 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
892 	    device_get_nameunit(sc->jme_dev));
893 
894 	for (i = 0; i < 1; i++) {
895 		error = bus_setup_intr(dev, sc->jme_irq[i],
896 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
897 		    &sc->jme_intrhand[i]);
898 		if (error != 0)
899 			break;
900 	}
901 
902 	if (error != 0) {
903 		device_printf(dev, "could not set up interrupt handler.\n");
904 		taskqueue_free(sc->jme_tq);
905 		sc->jme_tq = NULL;
906 		ether_ifdetach(ifp);
907 		goto fail;
908 	}
909 
910 fail:
911 	if (error != 0)
912 		jme_detach(dev);
913 
914 	return (error);
915 }
916 
917 static int
918 jme_detach(device_t dev)
919 {
920 	struct jme_softc *sc;
921 	struct ifnet *ifp;
922 	int i;
923 
924 	sc = device_get_softc(dev);
925 
926 	ifp = sc->jme_ifp;
927 	if (device_is_attached(dev)) {
928 		JME_LOCK(sc);
929 		sc->jme_flags |= JME_FLAG_DETACH;
930 		jme_stop(sc);
931 		JME_UNLOCK(sc);
932 		callout_drain(&sc->jme_tick_ch);
933 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
934 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
935 		/* Restore possibly modified station address. */
936 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
937 			jme_set_macaddr(sc, sc->jme_eaddr);
938 		ether_ifdetach(ifp);
939 	}
940 
941 	if (sc->jme_tq != NULL) {
942 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
943 		taskqueue_free(sc->jme_tq);
944 		sc->jme_tq = NULL;
945 	}
946 
947 	if (sc->jme_miibus != NULL) {
948 		device_delete_child(dev, sc->jme_miibus);
949 		sc->jme_miibus = NULL;
950 	}
951 	bus_generic_detach(dev);
952 	jme_dma_free(sc);
953 
954 	if (ifp != NULL) {
955 		if_free(ifp);
956 		sc->jme_ifp = NULL;
957 	}
958 
959 	for (i = 0; i < 1; i++) {
960 		if (sc->jme_intrhand[i] != NULL) {
961 			bus_teardown_intr(dev, sc->jme_irq[i],
962 			    sc->jme_intrhand[i]);
963 			sc->jme_intrhand[i] = NULL;
964 		}
965 	}
966 
967 	if (sc->jme_irq[0] != NULL)
968 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
969 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
970 		pci_release_msi(dev);
971 	if (sc->jme_res[0] != NULL)
972 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
973 	mtx_destroy(&sc->jme_mtx);
974 
975 	return (0);
976 }
977 
978 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
979 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
980 
981 static void
982 jme_sysctl_node(struct jme_softc *sc)
983 {
984 	struct sysctl_ctx_list *ctx;
985 	struct sysctl_oid_list *child, *parent;
986 	struct sysctl_oid *tree;
987 	struct jme_hw_stats *stats;
988 	int error;
989 
990 	stats = &sc->jme_stats;
991 	ctx = device_get_sysctl_ctx(sc->jme_dev);
992 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
993 
994 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
995 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
996 	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
997 
998 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
999 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
1000 	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
1001 
1002 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1003 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
1004 	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1005 
1006 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1007 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
1008 	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1009 
1010 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1011 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1012 	    &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
1013 	    "max number of Rx events to process");
1014 
1015 	/* Pull in device tunables. */
1016 	sc->jme_process_limit = JME_PROC_DEFAULT;
1017 	error = resource_int_value(device_get_name(sc->jme_dev),
1018 	    device_get_unit(sc->jme_dev), "process_limit",
1019 	    &sc->jme_process_limit);
1020 	if (error == 0) {
1021 		if (sc->jme_process_limit < JME_PROC_MIN ||
1022 		    sc->jme_process_limit > JME_PROC_MAX) {
1023 			device_printf(sc->jme_dev,
1024 			    "process_limit value out of range; "
1025 			    "using default: %d\n", JME_PROC_DEFAULT);
1026 			sc->jme_process_limit = JME_PROC_DEFAULT;
1027 		}
1028 	}
1029 
1030 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1031 	error = resource_int_value(device_get_name(sc->jme_dev),
1032 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1033 	if (error == 0) {
1034 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1035 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1036 			device_printf(sc->jme_dev,
1037 			    "tx_coal_to value out of range; "
1038 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1039 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1040 		}
1041 	}
1042 
1043 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1044 	error = resource_int_value(device_get_name(sc->jme_dev),
1045 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1046 	if (error == 0) {
1047 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1048 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1049 			device_printf(sc->jme_dev,
1050 			    "tx_coal_pkt value out of range; "
1051 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1052 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1053 		}
1054 	}
1055 
1056 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1057 	error = resource_int_value(device_get_name(sc->jme_dev),
1058 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1059 	if (error == 0) {
1060 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1061 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1062 			device_printf(sc->jme_dev,
1063 			    "rx_coal_to value out of range; "
1064 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1065 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1066 		}
1067 	}
1068 
1069 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1070 	error = resource_int_value(device_get_name(sc->jme_dev),
1071 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1072 	if (error == 0) {
1073 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1074 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1075 			device_printf(sc->jme_dev,
1076 			    "tx_coal_pkt value out of range; "
1077 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1078 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1079 		}
1080 	}
1081 
1082 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1083 		return;
1084 
1085 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1086 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
1087 	parent = SYSCTL_CHILDREN(tree);
1088 
1089 	/* Rx statistics. */
1090 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
1091 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
1092 	child = SYSCTL_CHILDREN(tree);
1093 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1094 	    &stats->rx_good_frames, "Good frames");
1095 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1096 	    &stats->rx_crc_errs, "CRC errors");
1097 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1098 	    &stats->rx_mii_errs, "MII errors");
1099 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1100 	    &stats->rx_fifo_oflows, "FIFO overflows");
1101 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1102 	    &stats->rx_desc_empty, "Descriptor empty");
1103 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1104 	    &stats->rx_bad_frames, "Bad frames");
1105 
1106 	/* Tx statistics. */
1107 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
1108 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
1109 	child = SYSCTL_CHILDREN(tree);
1110 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1111 	    &stats->tx_good_frames, "Good frames");
1112 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1113 	    &stats->tx_bad_frames, "Bad frames");
1114 }
1115 
1116 #undef	JME_SYSCTL_STAT_ADD32
1117 
1118 struct jme_dmamap_arg {
1119 	bus_addr_t	jme_busaddr;
1120 };
1121 
1122 static void
1123 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1124 {
1125 	struct jme_dmamap_arg *ctx;
1126 
1127 	if (error != 0)
1128 		return;
1129 
1130 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1131 
1132 	ctx = (struct jme_dmamap_arg *)arg;
1133 	ctx->jme_busaddr = segs[0].ds_addr;
1134 }
1135 
1136 static int
1137 jme_dma_alloc(struct jme_softc *sc)
1138 {
1139 	struct jme_dmamap_arg ctx;
1140 	struct jme_txdesc *txd;
1141 	struct jme_rxdesc *rxd;
1142 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1143 	int error, i;
1144 
1145 	lowaddr = BUS_SPACE_MAXADDR;
1146 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1147 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1148 
1149 again:
1150 	/* Create parent ring tag. */
1151 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1152 	    1, 0,			/* algnmnt, boundary */
1153 	    lowaddr,			/* lowaddr */
1154 	    BUS_SPACE_MAXADDR,		/* highaddr */
1155 	    NULL, NULL,			/* filter, filterarg */
1156 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1157 	    0,				/* nsegments */
1158 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1159 	    0,				/* flags */
1160 	    NULL, NULL,			/* lockfunc, lockarg */
1161 	    &sc->jme_cdata.jme_ring_tag);
1162 	if (error != 0) {
1163 		device_printf(sc->jme_dev,
1164 		    "could not create parent ring DMA tag.\n");
1165 		goto fail;
1166 	}
1167 	/* Create tag for Tx ring. */
1168 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1169 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1170 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1171 	    BUS_SPACE_MAXADDR,		/* highaddr */
1172 	    NULL, NULL,			/* filter, filterarg */
1173 	    JME_TX_RING_SIZE,		/* maxsize */
1174 	    1,				/* nsegments */
1175 	    JME_TX_RING_SIZE,		/* maxsegsize */
1176 	    0,				/* flags */
1177 	    NULL, NULL,			/* lockfunc, lockarg */
1178 	    &sc->jme_cdata.jme_tx_ring_tag);
1179 	if (error != 0) {
1180 		device_printf(sc->jme_dev,
1181 		    "could not allocate Tx ring DMA tag.\n");
1182 		goto fail;
1183 	}
1184 
1185 	/* Create tag for Rx ring. */
1186 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1187 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1188 	    lowaddr,			/* lowaddr */
1189 	    BUS_SPACE_MAXADDR,		/* highaddr */
1190 	    NULL, NULL,			/* filter, filterarg */
1191 	    JME_RX_RING_SIZE,		/* maxsize */
1192 	    1,				/* nsegments */
1193 	    JME_RX_RING_SIZE,		/* maxsegsize */
1194 	    0,				/* flags */
1195 	    NULL, NULL,			/* lockfunc, lockarg */
1196 	    &sc->jme_cdata.jme_rx_ring_tag);
1197 	if (error != 0) {
1198 		device_printf(sc->jme_dev,
1199 		    "could not allocate Rx ring DMA tag.\n");
1200 		goto fail;
1201 	}
1202 
1203 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1204 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1205 	    (void **)&sc->jme_rdata.jme_tx_ring,
1206 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1207 	    &sc->jme_cdata.jme_tx_ring_map);
1208 	if (error != 0) {
1209 		device_printf(sc->jme_dev,
1210 		    "could not allocate DMA'able memory for Tx ring.\n");
1211 		goto fail;
1212 	}
1213 
1214 	ctx.jme_busaddr = 0;
1215 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1216 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1217 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1218 	if (error != 0 || ctx.jme_busaddr == 0) {
1219 		device_printf(sc->jme_dev,
1220 		    "could not load DMA'able memory for Tx ring.\n");
1221 		goto fail;
1222 	}
1223 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1224 
1225 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1226 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1227 	    (void **)&sc->jme_rdata.jme_rx_ring,
1228 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1229 	    &sc->jme_cdata.jme_rx_ring_map);
1230 	if (error != 0) {
1231 		device_printf(sc->jme_dev,
1232 		    "could not allocate DMA'able memory for Rx ring.\n");
1233 		goto fail;
1234 	}
1235 
1236 	ctx.jme_busaddr = 0;
1237 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1238 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1239 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1240 	if (error != 0 || ctx.jme_busaddr == 0) {
1241 		device_printf(sc->jme_dev,
1242 		    "could not load DMA'able memory for Rx ring.\n");
1243 		goto fail;
1244 	}
1245 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1246 
1247 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1248 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1249 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1250 		    JME_TX_RING_SIZE;
1251 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1252 		    JME_RX_RING_SIZE;
1253 		if ((JME_ADDR_HI(tx_ring_end) !=
1254 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1255 		    (JME_ADDR_HI(rx_ring_end) !=
1256 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1257 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1258 			    "switching to 32bit DMA address mode.\n");
1259 			jme_dma_free(sc);
1260 			/* Limit DMA address space to 32bit and try again. */
1261 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1262 			goto again;
1263 		}
1264 	}
1265 
1266 	lowaddr = BUS_SPACE_MAXADDR;
1267 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1268 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1269 	/* Create parent buffer tag. */
1270 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1271 	    1, 0,			/* algnmnt, boundary */
1272 	    lowaddr,			/* lowaddr */
1273 	    BUS_SPACE_MAXADDR,		/* highaddr */
1274 	    NULL, NULL,			/* filter, filterarg */
1275 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1276 	    0,				/* nsegments */
1277 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1278 	    0,				/* flags */
1279 	    NULL, NULL,			/* lockfunc, lockarg */
1280 	    &sc->jme_cdata.jme_buffer_tag);
1281 	if (error != 0) {
1282 		device_printf(sc->jme_dev,
1283 		    "could not create parent buffer DMA tag.\n");
1284 		goto fail;
1285 	}
1286 
1287 	/* Create shadow status block tag. */
1288 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1289 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1290 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1291 	    BUS_SPACE_MAXADDR,		/* highaddr */
1292 	    NULL, NULL,			/* filter, filterarg */
1293 	    JME_SSB_SIZE,		/* maxsize */
1294 	    1,				/* nsegments */
1295 	    JME_SSB_SIZE,		/* maxsegsize */
1296 	    0,				/* flags */
1297 	    NULL, NULL,			/* lockfunc, lockarg */
1298 	    &sc->jme_cdata.jme_ssb_tag);
1299 	if (error != 0) {
1300 		device_printf(sc->jme_dev,
1301 		    "could not create shared status block DMA tag.\n");
1302 		goto fail;
1303 	}
1304 
1305 	/* Create tag for Tx buffers. */
1306 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1307 	    1, 0,			/* algnmnt, boundary */
1308 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1309 	    BUS_SPACE_MAXADDR,		/* highaddr */
1310 	    NULL, NULL,			/* filter, filterarg */
1311 	    JME_TSO_MAXSIZE,		/* maxsize */
1312 	    JME_MAXTXSEGS,		/* nsegments */
1313 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1314 	    0,				/* flags */
1315 	    NULL, NULL,			/* lockfunc, lockarg */
1316 	    &sc->jme_cdata.jme_tx_tag);
1317 	if (error != 0) {
1318 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1319 		goto fail;
1320 	}
1321 
1322 	/* Create tag for Rx buffers. */
1323 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1324 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1325 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1326 	    BUS_SPACE_MAXADDR,		/* highaddr */
1327 	    NULL, NULL,			/* filter, filterarg */
1328 	    MCLBYTES,			/* maxsize */
1329 	    1,				/* nsegments */
1330 	    MCLBYTES,			/* maxsegsize */
1331 	    0,				/* flags */
1332 	    NULL, NULL,			/* lockfunc, lockarg */
1333 	    &sc->jme_cdata.jme_rx_tag);
1334 	if (error != 0) {
1335 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1336 		goto fail;
1337 	}
1338 
1339 	/*
1340 	 * Allocate DMA'able memory and load the DMA map for shared
1341 	 * status block.
1342 	 */
1343 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1344 	    (void **)&sc->jme_rdata.jme_ssb_block,
1345 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1346 	    &sc->jme_cdata.jme_ssb_map);
1347 	if (error != 0) {
1348 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1349 		    "memory for shared status block.\n");
1350 		goto fail;
1351 	}
1352 
1353 	ctx.jme_busaddr = 0;
1354 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1355 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1356 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1357 	if (error != 0 || ctx.jme_busaddr == 0) {
1358 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1359 		    "for shared status block.\n");
1360 		goto fail;
1361 	}
1362 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1363 
1364 	/* Create DMA maps for Tx buffers. */
1365 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1366 		txd = &sc->jme_cdata.jme_txdesc[i];
1367 		txd->tx_m = NULL;
1368 		txd->tx_dmamap = NULL;
1369 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1370 		    &txd->tx_dmamap);
1371 		if (error != 0) {
1372 			device_printf(sc->jme_dev,
1373 			    "could not create Tx dmamap.\n");
1374 			goto fail;
1375 		}
1376 	}
1377 	/* Create DMA maps for Rx buffers. */
1378 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1379 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1380 		device_printf(sc->jme_dev,
1381 		    "could not create spare Rx dmamap.\n");
1382 		goto fail;
1383 	}
1384 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1385 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1386 		rxd->rx_m = NULL;
1387 		rxd->rx_dmamap = NULL;
1388 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1389 		    &rxd->rx_dmamap);
1390 		if (error != 0) {
1391 			device_printf(sc->jme_dev,
1392 			    "could not create Rx dmamap.\n");
1393 			goto fail;
1394 		}
1395 	}
1396 
1397 fail:
1398 	return (error);
1399 }
1400 
1401 static void
1402 jme_dma_free(struct jme_softc *sc)
1403 {
1404 	struct jme_txdesc *txd;
1405 	struct jme_rxdesc *rxd;
1406 	int i;
1407 
1408 	/* Tx ring */
1409 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1410 		if (sc->jme_rdata.jme_tx_ring_paddr)
1411 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1412 			    sc->jme_cdata.jme_tx_ring_map);
1413 		if (sc->jme_rdata.jme_tx_ring)
1414 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1415 			    sc->jme_rdata.jme_tx_ring,
1416 			    sc->jme_cdata.jme_tx_ring_map);
1417 		sc->jme_rdata.jme_tx_ring = NULL;
1418 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1419 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1420 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1421 	}
1422 	/* Rx ring */
1423 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1424 		if (sc->jme_rdata.jme_rx_ring_paddr)
1425 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1426 			    sc->jme_cdata.jme_rx_ring_map);
1427 		if (sc->jme_rdata.jme_rx_ring)
1428 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1429 			    sc->jme_rdata.jme_rx_ring,
1430 			    sc->jme_cdata.jme_rx_ring_map);
1431 		sc->jme_rdata.jme_rx_ring = NULL;
1432 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1433 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1434 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1435 	}
1436 	/* Tx buffers */
1437 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1438 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1439 			txd = &sc->jme_cdata.jme_txdesc[i];
1440 			if (txd->tx_dmamap != NULL) {
1441 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1442 				    txd->tx_dmamap);
1443 				txd->tx_dmamap = NULL;
1444 			}
1445 		}
1446 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1447 		sc->jme_cdata.jme_tx_tag = NULL;
1448 	}
1449 	/* Rx buffers */
1450 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1451 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1452 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1453 			if (rxd->rx_dmamap != NULL) {
1454 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1455 				    rxd->rx_dmamap);
1456 				rxd->rx_dmamap = NULL;
1457 			}
1458 		}
1459 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1460 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1461 			    sc->jme_cdata.jme_rx_sparemap);
1462 			sc->jme_cdata.jme_rx_sparemap = NULL;
1463 		}
1464 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1465 		sc->jme_cdata.jme_rx_tag = NULL;
1466 	}
1467 
1468 	/* Shared status block. */
1469 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1470 		if (sc->jme_rdata.jme_ssb_block_paddr)
1471 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1472 			    sc->jme_cdata.jme_ssb_map);
1473 		if (sc->jme_rdata.jme_ssb_block)
1474 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1475 			    sc->jme_rdata.jme_ssb_block,
1476 			    sc->jme_cdata.jme_ssb_map);
1477 		sc->jme_rdata.jme_ssb_block = NULL;
1478 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1479 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1480 		sc->jme_cdata.jme_ssb_tag = NULL;
1481 	}
1482 
1483 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1484 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1485 		sc->jme_cdata.jme_buffer_tag = NULL;
1486 	}
1487 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1488 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1489 		sc->jme_cdata.jme_ring_tag = NULL;
1490 	}
1491 }
1492 
1493 /*
1494  *	Make sure the interface is stopped at reboot time.
1495  */
1496 static int
1497 jme_shutdown(device_t dev)
1498 {
1499 
1500 	return (jme_suspend(dev));
1501 }
1502 
1503 /*
1504  * Unlike other ethernet controllers, JMC250 requires
1505  * explicit resetting link speed to 10/100Mbps as gigabit
1506  * link will cunsume more power than 375mA.
1507  * Note, we reset the link speed to 10/100Mbps with
1508  * auto-negotiation but we don't know whether that operation
1509  * would succeed or not as we have no control after powering
1510  * off. If the renegotiation fail WOL may not work. Running
1511  * at 1Gbps draws more power than 375mA at 3.3V which is
1512  * specified in PCI specification and that would result in
1513  * complete shutdowning power to ethernet controller.
1514  *
1515  * TODO
1516  *  Save current negotiated media speed/duplex/flow-control
1517  *  to softc and restore the same link again after resuming.
1518  *  PHY handling such as power down/resetting to 100Mbps
1519  *  may be better handled in suspend method in phy driver.
1520  */
1521 static void
1522 jme_setlinkspeed(struct jme_softc *sc)
1523 {
1524 	struct mii_data *mii;
1525 	int aneg, i;
1526 
1527 	JME_LOCK_ASSERT(sc);
1528 
1529 	mii = device_get_softc(sc->jme_miibus);
1530 	mii_pollstat(mii);
1531 	aneg = 0;
1532 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1533 		switch IFM_SUBTYPE(mii->mii_media_active) {
1534 		case IFM_10_T:
1535 		case IFM_100_TX:
1536 			return;
1537 		case IFM_1000_T:
1538 			aneg++;
1539 		default:
1540 			break;
1541 		}
1542 	}
1543 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1544 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1545 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1546 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1547 	    BMCR_AUTOEN | BMCR_STARTNEG);
1548 	DELAY(1000);
1549 	if (aneg != 0) {
1550 		/* Poll link state until jme(4) get a 10/100 link. */
1551 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1552 			mii_pollstat(mii);
1553 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1554 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1555 				case IFM_10_T:
1556 				case IFM_100_TX:
1557 					jme_mac_config(sc);
1558 					return;
1559 				default:
1560 					break;
1561 				}
1562 			}
1563 			JME_UNLOCK(sc);
1564 			pause("jmelnk", hz);
1565 			JME_LOCK(sc);
1566 		}
1567 		if (i == MII_ANEGTICKS_GIGE)
1568 			device_printf(sc->jme_dev, "establishing link failed, "
1569 			    "WOL may not work!");
1570 	}
1571 	/*
1572 	 * No link, force MAC to have 100Mbps, full-duplex link.
1573 	 * This is the last resort and may/may not work.
1574 	 */
1575 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1576 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1577 	jme_mac_config(sc);
1578 }
1579 
1580 static void
1581 jme_setwol(struct jme_softc *sc)
1582 {
1583 	struct ifnet *ifp;
1584 	uint32_t gpr, pmcs;
1585 	uint16_t pmstat;
1586 	int pmc;
1587 
1588 	JME_LOCK_ASSERT(sc);
1589 
1590 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1591 		/* Remove Tx MAC/offload clock to save more power. */
1592 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1593 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1594 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1595 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1596 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1597 			CSR_WRITE_4(sc, JME_GPREG1,
1598 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1599 		/* No PME capability, PHY power down. */
1600 		jme_phy_down(sc);
1601 		return;
1602 	}
1603 
1604 	ifp = sc->jme_ifp;
1605 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1606 	pmcs = CSR_READ_4(sc, JME_PMCS);
1607 	pmcs &= ~PMCS_WOL_ENB_MASK;
1608 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1609 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1610 		/* Enable PME message. */
1611 		gpr |= GPREG0_PME_ENB;
1612 		/* For gigabit controllers, reset link speed to 10/100. */
1613 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1614 			jme_setlinkspeed(sc);
1615 	}
1616 
1617 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1618 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1619 	/* Remove Tx MAC/offload clock to save more power. */
1620 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1621 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1622 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1623 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1624 	/* Request PME. */
1625 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1626 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1627 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1628 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1629 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1630 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1631 		/* No WOL, PHY power down. */
1632 		jme_phy_down(sc);
1633 	}
1634 }
1635 
1636 static int
1637 jme_suspend(device_t dev)
1638 {
1639 	struct jme_softc *sc;
1640 
1641 	sc = device_get_softc(dev);
1642 
1643 	JME_LOCK(sc);
1644 	jme_stop(sc);
1645 	jme_setwol(sc);
1646 	JME_UNLOCK(sc);
1647 
1648 	return (0);
1649 }
1650 
1651 static int
1652 jme_resume(device_t dev)
1653 {
1654 	struct jme_softc *sc;
1655 	struct ifnet *ifp;
1656 	uint16_t pmstat;
1657 	int pmc;
1658 
1659 	sc = device_get_softc(dev);
1660 
1661 	JME_LOCK(sc);
1662 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1663 		pmstat = pci_read_config(sc->jme_dev,
1664 		    pmc + PCIR_POWER_STATUS, 2);
1665 		/* Disable PME clear PME status. */
1666 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1667 		pci_write_config(sc->jme_dev,
1668 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1669 	}
1670 	/* Wakeup PHY. */
1671 	jme_phy_up(sc);
1672 	ifp = sc->jme_ifp;
1673 	if ((ifp->if_flags & IFF_UP) != 0) {
1674 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1675 		jme_init_locked(sc);
1676 	}
1677 
1678 	JME_UNLOCK(sc);
1679 
1680 	return (0);
1681 }
1682 
1683 static int
1684 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1685 {
1686 	struct jme_txdesc *txd;
1687 	struct jme_desc *desc;
1688 	struct mbuf *m;
1689 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1690 	int error, i, nsegs, prod;
1691 	uint32_t cflags, tsosegsz;
1692 
1693 	JME_LOCK_ASSERT(sc);
1694 
1695 	M_ASSERTPKTHDR((*m_head));
1696 
1697 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1698 		/*
1699 		 * Due to the adherence to NDIS specification JMC250
1700 		 * assumes upper stack computed TCP pseudo checksum
1701 		 * without including payload length. This breaks
1702 		 * checksum offload for TSO case so recompute TCP
1703 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1704 		 * be much burden on modern CPUs.
1705 		 */
1706 		struct ether_header *eh;
1707 		struct ip *ip;
1708 		struct tcphdr *tcp;
1709 		uint32_t ip_off, poff;
1710 
1711 		if (M_WRITABLE(*m_head) == 0) {
1712 			/* Get a writable copy. */
1713 			m = m_dup(*m_head, M_NOWAIT);
1714 			m_freem(*m_head);
1715 			if (m == NULL) {
1716 				*m_head = NULL;
1717 				return (ENOBUFS);
1718 			}
1719 			*m_head = m;
1720 		}
1721 		ip_off = sizeof(struct ether_header);
1722 		m = m_pullup(*m_head, ip_off);
1723 		if (m == NULL) {
1724 			*m_head = NULL;
1725 			return (ENOBUFS);
1726 		}
1727 		eh = mtod(m, struct ether_header *);
1728 		/* Check the existence of VLAN tag. */
1729 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1730 			ip_off = sizeof(struct ether_vlan_header);
1731 			m = m_pullup(m, ip_off);
1732 			if (m == NULL) {
1733 				*m_head = NULL;
1734 				return (ENOBUFS);
1735 			}
1736 		}
1737 		m = m_pullup(m, ip_off + sizeof(struct ip));
1738 		if (m == NULL) {
1739 			*m_head = NULL;
1740 			return (ENOBUFS);
1741 		}
1742 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1743 		poff = ip_off + (ip->ip_hl << 2);
1744 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1745 		if (m == NULL) {
1746 			*m_head = NULL;
1747 			return (ENOBUFS);
1748 		}
1749 		/*
1750 		 * Reset IP checksum and recompute TCP pseudo
1751 		 * checksum that NDIS specification requires.
1752 		 */
1753 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1754 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1755 		ip->ip_sum = 0;
1756 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1757 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1758 			    ip->ip_dst.s_addr,
1759 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1760 			/* No need to TSO, force IP checksum offload. */
1761 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1762 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1763 		} else
1764 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1765 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1766 		*m_head = m;
1767 	}
1768 
1769 	prod = sc->jme_cdata.jme_tx_prod;
1770 	txd = &sc->jme_cdata.jme_txdesc[prod];
1771 
1772 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1773 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1774 	if (error == EFBIG) {
1775 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1776 		if (m == NULL) {
1777 			m_freem(*m_head);
1778 			*m_head = NULL;
1779 			return (ENOMEM);
1780 		}
1781 		*m_head = m;
1782 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1783 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1784 		if (error != 0) {
1785 			m_freem(*m_head);
1786 			*m_head = NULL;
1787 			return (error);
1788 		}
1789 	} else if (error != 0)
1790 		return (error);
1791 	if (nsegs == 0) {
1792 		m_freem(*m_head);
1793 		*m_head = NULL;
1794 		return (EIO);
1795 	}
1796 
1797 	/*
1798 	 * Check descriptor overrun. Leave one free descriptor.
1799 	 * Since we always use 64bit address mode for transmitting,
1800 	 * each Tx request requires one more dummy descriptor.
1801 	 */
1802 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1803 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1804 		return (ENOBUFS);
1805 	}
1806 
1807 	m = *m_head;
1808 	cflags = 0;
1809 	tsosegsz = 0;
1810 	/* Configure checksum offload and TSO. */
1811 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1812 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1813 		    JME_TD_MSS_SHIFT;
1814 		cflags |= JME_TD_TSO;
1815 	} else {
1816 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1817 			cflags |= JME_TD_IPCSUM;
1818 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1819 			cflags |= JME_TD_TCPCSUM;
1820 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1821 			cflags |= JME_TD_UDPCSUM;
1822 	}
1823 	/* Configure VLAN. */
1824 	if ((m->m_flags & M_VLANTAG) != 0) {
1825 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1826 		cflags |= JME_TD_VLAN_TAG;
1827 	}
1828 
1829 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1830 	desc->flags = htole32(cflags);
1831 	desc->buflen = htole32(tsosegsz);
1832 	desc->addr_hi = htole32(m->m_pkthdr.len);
1833 	desc->addr_lo = 0;
1834 	sc->jme_cdata.jme_tx_cnt++;
1835 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1836 	for (i = 0; i < nsegs; i++) {
1837 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1838 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1839 		desc->buflen = htole32(txsegs[i].ds_len);
1840 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1841 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1842 		sc->jme_cdata.jme_tx_cnt++;
1843 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1844 	}
1845 
1846 	/* Update producer index. */
1847 	sc->jme_cdata.jme_tx_prod = prod;
1848 	/*
1849 	 * Finally request interrupt and give the first descriptor
1850 	 * owenership to hardware.
1851 	 */
1852 	desc = txd->tx_desc;
1853 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1854 
1855 	txd->tx_m = m;
1856 	txd->tx_ndesc = nsegs + 1;
1857 
1858 	/* Sync descriptors. */
1859 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1860 	    BUS_DMASYNC_PREWRITE);
1861 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1862 	    sc->jme_cdata.jme_tx_ring_map,
1863 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1864 
1865 	return (0);
1866 }
1867 
1868 static void
1869 jme_start(struct ifnet *ifp)
1870 {
1871         struct jme_softc *sc;
1872 
1873 	sc = ifp->if_softc;
1874 	JME_LOCK(sc);
1875 	jme_start_locked(ifp);
1876 	JME_UNLOCK(sc);
1877 }
1878 
1879 static void
1880 jme_start_locked(struct ifnet *ifp)
1881 {
1882         struct jme_softc *sc;
1883         struct mbuf *m_head;
1884 	int enq;
1885 
1886 	sc = ifp->if_softc;
1887 
1888 	JME_LOCK_ASSERT(sc);
1889 
1890 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1891 		jme_txeof(sc);
1892 
1893 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1894 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1895 		return;
1896 
1897 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1898 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1899 		if (m_head == NULL)
1900 			break;
1901 		/*
1902 		 * Pack the data into the transmit ring. If we
1903 		 * don't have room, set the OACTIVE flag and wait
1904 		 * for the NIC to drain the ring.
1905 		 */
1906 		if (jme_encap(sc, &m_head)) {
1907 			if (m_head == NULL)
1908 				break;
1909 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1910 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1911 			break;
1912 		}
1913 
1914 		enq++;
1915 		/*
1916 		 * If there's a BPF listener, bounce a copy of this frame
1917 		 * to him.
1918 		 */
1919 		ETHER_BPF_MTAP(ifp, m_head);
1920 	}
1921 
1922 	if (enq > 0) {
1923 		/*
1924 		 * Reading TXCSR takes very long time under heavy load
1925 		 * so cache TXCSR value and writes the ORed value with
1926 		 * the kick command to the TXCSR. This saves one register
1927 		 * access cycle.
1928 		 */
1929 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1930 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1931 		/* Set a timeout in case the chip goes out to lunch. */
1932 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1933 	}
1934 }
1935 
1936 static void
1937 jme_watchdog(struct jme_softc *sc)
1938 {
1939 	struct ifnet *ifp;
1940 
1941 	JME_LOCK_ASSERT(sc);
1942 
1943 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1944 		return;
1945 
1946 	ifp = sc->jme_ifp;
1947 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1948 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1949 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1950 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1951 		jme_init_locked(sc);
1952 		return;
1953 	}
1954 	jme_txeof(sc);
1955 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1956 		if_printf(sc->jme_ifp,
1957 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1958 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1959 			jme_start_locked(ifp);
1960 		return;
1961 	}
1962 
1963 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1964 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1965 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1966 	jme_init_locked(sc);
1967 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1968 		jme_start_locked(ifp);
1969 }
1970 
1971 static int
1972 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1973 {
1974 	struct jme_softc *sc;
1975 	struct ifreq *ifr;
1976 	struct mii_data *mii;
1977 	uint32_t reg;
1978 	int error, mask;
1979 
1980 	sc = ifp->if_softc;
1981 	ifr = (struct ifreq *)data;
1982 	error = 0;
1983 	switch (cmd) {
1984 	case SIOCSIFMTU:
1985 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1986 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1987 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1988 			error = EINVAL;
1989 			break;
1990 		}
1991 
1992 		if (ifp->if_mtu != ifr->ifr_mtu) {
1993 			/*
1994 			 * No special configuration is required when interface
1995 			 * MTU is changed but availability of TSO/Tx checksum
1996 			 * offload should be chcked against new MTU size as
1997 			 * FIFO size is just 2K.
1998 			 */
1999 			JME_LOCK(sc);
2000 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
2001 				ifp->if_capenable &=
2002 				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
2003 				ifp->if_hwassist &=
2004 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
2005 				VLAN_CAPABILITIES(ifp);
2006 			}
2007 			ifp->if_mtu = ifr->ifr_mtu;
2008 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2009 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2010 				jme_init_locked(sc);
2011 			}
2012 			JME_UNLOCK(sc);
2013 		}
2014 		break;
2015 	case SIOCSIFFLAGS:
2016 		JME_LOCK(sc);
2017 		if ((ifp->if_flags & IFF_UP) != 0) {
2018 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2019 				if (((ifp->if_flags ^ sc->jme_if_flags)
2020 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2021 					jme_set_filter(sc);
2022 			} else {
2023 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2024 					jme_init_locked(sc);
2025 			}
2026 		} else {
2027 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2028 				jme_stop(sc);
2029 		}
2030 		sc->jme_if_flags = ifp->if_flags;
2031 		JME_UNLOCK(sc);
2032 		break;
2033 	case SIOCADDMULTI:
2034 	case SIOCDELMULTI:
2035 		JME_LOCK(sc);
2036 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2037 			jme_set_filter(sc);
2038 		JME_UNLOCK(sc);
2039 		break;
2040 	case SIOCSIFMEDIA:
2041 	case SIOCGIFMEDIA:
2042 		mii = device_get_softc(sc->jme_miibus);
2043 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2044 		break;
2045 	case SIOCSIFCAP:
2046 		JME_LOCK(sc);
2047 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2048 		if ((mask & IFCAP_TXCSUM) != 0 &&
2049 		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2050 			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2051 				ifp->if_capenable ^= IFCAP_TXCSUM;
2052 				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2053 					ifp->if_hwassist |= JME_CSUM_FEATURES;
2054 				else
2055 					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
2056 			}
2057 		}
2058 		if ((mask & IFCAP_RXCSUM) != 0 &&
2059 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
2060 			ifp->if_capenable ^= IFCAP_RXCSUM;
2061 			reg = CSR_READ_4(sc, JME_RXMAC);
2062 			reg &= ~RXMAC_CSUM_ENB;
2063 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2064 				reg |= RXMAC_CSUM_ENB;
2065 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2066 		}
2067 		if ((mask & IFCAP_TSO4) != 0 &&
2068 		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2069 			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
2070 				ifp->if_capenable ^= IFCAP_TSO4;
2071 				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2072 					ifp->if_hwassist |= CSUM_TSO;
2073 				else
2074 					ifp->if_hwassist &= ~CSUM_TSO;
2075 			}
2076 		}
2077 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2078 		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
2079 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2080 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2081 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2082 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2083 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2084 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2085 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2086 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2087 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2088 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2089 			jme_set_vlan(sc);
2090 		}
2091 		JME_UNLOCK(sc);
2092 		VLAN_CAPABILITIES(ifp);
2093 		break;
2094 	default:
2095 		error = ether_ioctl(ifp, cmd, data);
2096 		break;
2097 	}
2098 
2099 	return (error);
2100 }
2101 
2102 static void
2103 jme_mac_config(struct jme_softc *sc)
2104 {
2105 	struct mii_data *mii;
2106 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2107 	uint32_t txclk;
2108 
2109 	JME_LOCK_ASSERT(sc);
2110 
2111 	mii = device_get_softc(sc->jme_miibus);
2112 
2113 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2114 	DELAY(10);
2115 	CSR_WRITE_4(sc, JME_GHC, 0);
2116 	ghc = 0;
2117 	txclk = 0;
2118 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2119 	rxmac &= ~RXMAC_FC_ENB;
2120 	txmac = CSR_READ_4(sc, JME_TXMAC);
2121 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2122 	txpause = CSR_READ_4(sc, JME_TXPFC);
2123 	txpause &= ~TXPFC_PAUSE_ENB;
2124 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2125 		ghc |= GHC_FULL_DUPLEX;
2126 		rxmac &= ~RXMAC_COLL_DET_ENB;
2127 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2128 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2129 		    TXMAC_FRAME_BURST);
2130 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2131 			txpause |= TXPFC_PAUSE_ENB;
2132 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2133 			rxmac |= RXMAC_FC_ENB;
2134 		/* Disable retry transmit timer/retry limit. */
2135 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2136 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2137 	} else {
2138 		rxmac |= RXMAC_COLL_DET_ENB;
2139 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2140 		/* Enable retry transmit timer/retry limit. */
2141 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2142 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2143 	}
2144 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2145 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2146 	case IFM_10_T:
2147 		ghc |= GHC_SPEED_10;
2148 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2149 		break;
2150 	case IFM_100_TX:
2151 		ghc |= GHC_SPEED_100;
2152 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2153 		break;
2154 	case IFM_1000_T:
2155 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2156 			break;
2157 		ghc |= GHC_SPEED_1000;
2158 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2159 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2160 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2161 		break;
2162 	default:
2163 		break;
2164 	}
2165 	if (sc->jme_rev == DEVICEID_JMC250 &&
2166 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2167 		/*
2168 		 * Workaround occasional packet loss issue of JMC250 A2
2169 		 * when it runs on half-duplex media.
2170 		 */
2171 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2172 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2173 			gpreg &= ~GPREG1_HDPX_FIX;
2174 		else
2175 			gpreg |= GPREG1_HDPX_FIX;
2176 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2177 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2178 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2179 			/* Extend interface FIFO depth. */
2180 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2181 			    0x1B, 0x0000);
2182 		} else {
2183 			/* Select default interface FIFO depth. */
2184 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2185 			    0x1B, 0x0004);
2186 		}
2187 	}
2188 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2189 		ghc |= txclk;
2190 	CSR_WRITE_4(sc, JME_GHC, ghc);
2191 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2192 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2193 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2194 }
2195 
2196 static void
2197 jme_link_task(void *arg, int pending)
2198 {
2199 	struct jme_softc *sc;
2200 	struct mii_data *mii;
2201 	struct ifnet *ifp;
2202 	struct jme_txdesc *txd;
2203 	bus_addr_t paddr;
2204 	int i;
2205 
2206 	sc = (struct jme_softc *)arg;
2207 
2208 	JME_LOCK(sc);
2209 	mii = device_get_softc(sc->jme_miibus);
2210 	ifp = sc->jme_ifp;
2211 	if (mii == NULL || ifp == NULL ||
2212 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2213 		JME_UNLOCK(sc);
2214 		return;
2215 	}
2216 
2217 	sc->jme_flags &= ~JME_FLAG_LINK;
2218 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2219 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2220 		case IFM_10_T:
2221 		case IFM_100_TX:
2222 			sc->jme_flags |= JME_FLAG_LINK;
2223 			break;
2224 		case IFM_1000_T:
2225 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2226 				break;
2227 			sc->jme_flags |= JME_FLAG_LINK;
2228 			break;
2229 		default:
2230 			break;
2231 		}
2232 	}
2233 
2234 	/*
2235 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2236 	 * JME_TXNDA/JME_RXNDA register to the first address of
2237 	 * Tx/Rx descriptor address. So driver should reset its
2238 	 * internal procucer/consumer pointer and reclaim any
2239 	 * allocated resources. Note, just saving the value of
2240 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2241 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2242 	 * sufficient to make sure correct MAC state because
2243 	 * stopping MAC operation can take a while and hardware
2244 	 * might have updated JME_TXNDA/JME_RXNDA registers
2245 	 * during the stop operation.
2246 	 */
2247 	/* Block execution of task. */
2248 	taskqueue_block(sc->jme_tq);
2249 	/* Disable interrupts and stop driver. */
2250 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2251 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2252 	callout_stop(&sc->jme_tick_ch);
2253 	sc->jme_watchdog_timer = 0;
2254 
2255 	/* Stop receiver/transmitter. */
2256 	jme_stop_rx(sc);
2257 	jme_stop_tx(sc);
2258 
2259 	/* XXX Drain all queued tasks. */
2260 	JME_UNLOCK(sc);
2261 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2262 	JME_LOCK(sc);
2263 
2264 	if (sc->jme_cdata.jme_rxhead != NULL)
2265 		m_freem(sc->jme_cdata.jme_rxhead);
2266 	JME_RXCHAIN_RESET(sc);
2267 	jme_txeof(sc);
2268 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2269 		/* Remove queued packets for transmit. */
2270 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2271 			txd = &sc->jme_cdata.jme_txdesc[i];
2272 			if (txd->tx_m != NULL) {
2273 				bus_dmamap_sync(
2274 				    sc->jme_cdata.jme_tx_tag,
2275 				    txd->tx_dmamap,
2276 				    BUS_DMASYNC_POSTWRITE);
2277 				bus_dmamap_unload(
2278 				    sc->jme_cdata.jme_tx_tag,
2279 				    txd->tx_dmamap);
2280 				m_freem(txd->tx_m);
2281 				txd->tx_m = NULL;
2282 				txd->tx_ndesc = 0;
2283 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2284 			}
2285 		}
2286 	}
2287 
2288 	/*
2289 	 * Reuse configured Rx descriptors and reset
2290 	 * producer/consumer index.
2291 	 */
2292 	sc->jme_cdata.jme_rx_cons = 0;
2293 	sc->jme_morework = 0;
2294 	jme_init_tx_ring(sc);
2295 	/* Initialize shadow status block. */
2296 	jme_init_ssb(sc);
2297 
2298 	/* Program MAC with resolved speed/duplex/flow-control. */
2299 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2300 		jme_mac_config(sc);
2301 		jme_stats_clear(sc);
2302 
2303 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2304 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2305 
2306 		/* Set Tx ring address to the hardware. */
2307 		paddr = JME_TX_RING_ADDR(sc, 0);
2308 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2309 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2310 
2311 		/* Set Rx ring address to the hardware. */
2312 		paddr = JME_RX_RING_ADDR(sc, 0);
2313 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2314 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2315 
2316 		/* Restart receiver/transmitter. */
2317 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2318 		    RXCSR_RXQ_START);
2319 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2320 		/* Lastly enable TX/RX clock. */
2321 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2322 			CSR_WRITE_4(sc, JME_GHC,
2323 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2324 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2325 			CSR_WRITE_4(sc, JME_GPREG1,
2326 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2327 	}
2328 
2329 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2330 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2331 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2332 	/* Unblock execution of task. */
2333 	taskqueue_unblock(sc->jme_tq);
2334 	/* Reenable interrupts. */
2335 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2336 
2337 	JME_UNLOCK(sc);
2338 }
2339 
2340 static int
2341 jme_intr(void *arg)
2342 {
2343 	struct jme_softc *sc;
2344 	uint32_t status;
2345 
2346 	sc = (struct jme_softc *)arg;
2347 
2348 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2349 	if (status == 0 || status == 0xFFFFFFFF)
2350 		return (FILTER_STRAY);
2351 	/* Disable interrupts. */
2352 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2353 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2354 
2355 	return (FILTER_HANDLED);
2356 }
2357 
2358 static void
2359 jme_int_task(void *arg, int pending)
2360 {
2361 	struct jme_softc *sc;
2362 	struct ifnet *ifp;
2363 	uint32_t status;
2364 	int more;
2365 
2366 	sc = (struct jme_softc *)arg;
2367 	ifp = sc->jme_ifp;
2368 
2369 	JME_LOCK(sc);
2370 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2371 	if (sc->jme_morework != 0) {
2372 		sc->jme_morework = 0;
2373 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2374 	}
2375 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2376 		goto done;
2377 	/* Reset PCC counter/timer and Ack interrupts. */
2378 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2379 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2380 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2381 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2382 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2383 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2384 	more = 0;
2385 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2386 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2387 			more = jme_rxintr(sc, sc->jme_process_limit);
2388 			if (more != 0)
2389 				sc->jme_morework = 1;
2390 		}
2391 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2392 			/*
2393 			 * Notify hardware availability of new Rx
2394 			 * buffers.
2395 			 * Reading RXCSR takes very long time under
2396 			 * heavy load so cache RXCSR value and writes
2397 			 * the ORed value with the kick command to
2398 			 * the RXCSR. This saves one register access
2399 			 * cycle.
2400 			 */
2401 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2402 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2403 		}
2404 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2405 			jme_start_locked(ifp);
2406 	}
2407 
2408 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2409 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2410 		JME_UNLOCK(sc);
2411 		return;
2412 	}
2413 done:
2414 	JME_UNLOCK(sc);
2415 
2416 	/* Reenable interrupts. */
2417 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2418 }
2419 
2420 static void
2421 jme_txeof(struct jme_softc *sc)
2422 {
2423 	struct ifnet *ifp;
2424 	struct jme_txdesc *txd;
2425 	uint32_t status;
2426 	int cons, nsegs;
2427 
2428 	JME_LOCK_ASSERT(sc);
2429 
2430 	ifp = sc->jme_ifp;
2431 
2432 	cons = sc->jme_cdata.jme_tx_cons;
2433 	if (cons == sc->jme_cdata.jme_tx_prod)
2434 		return;
2435 
2436 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2437 	    sc->jme_cdata.jme_tx_ring_map,
2438 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2439 
2440 	/*
2441 	 * Go through our Tx list and free mbufs for those
2442 	 * frames which have been transmitted.
2443 	 */
2444 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2445 		txd = &sc->jme_cdata.jme_txdesc[cons];
2446 		status = le32toh(txd->tx_desc->flags);
2447 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2448 			break;
2449 
2450 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2451 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2452 		else {
2453 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2454 			if ((status & JME_TD_COLLISION) != 0)
2455 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2456 				    le32toh(txd->tx_desc->buflen) &
2457 				    JME_TD_BUF_LEN_MASK);
2458 		}
2459 		/*
2460 		 * Only the first descriptor of multi-descriptor
2461 		 * transmission is updated so driver have to skip entire
2462 		 * chained buffers for the transmiited frame. In other
2463 		 * words, JME_TD_OWN bit is valid only at the first
2464 		 * descriptor of a multi-descriptor transmission.
2465 		 */
2466 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2467 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2468 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2469 		}
2470 
2471 		/* Reclaim transferred mbufs. */
2472 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2473 		    BUS_DMASYNC_POSTWRITE);
2474 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2475 
2476 		KASSERT(txd->tx_m != NULL,
2477 		    ("%s: freeing NULL mbuf!\n", __func__));
2478 		m_freem(txd->tx_m);
2479 		txd->tx_m = NULL;
2480 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2481 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2482 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2483 		txd->tx_ndesc = 0;
2484 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2485 	}
2486 	sc->jme_cdata.jme_tx_cons = cons;
2487 	/* Unarm watchdog timer when there is no pending descriptors in queue. */
2488 	if (sc->jme_cdata.jme_tx_cnt == 0)
2489 		sc->jme_watchdog_timer = 0;
2490 
2491 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2492 	    sc->jme_cdata.jme_tx_ring_map,
2493 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2494 }
2495 
2496 static __inline void
2497 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2498 {
2499 	struct jme_desc *desc;
2500 
2501 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2502 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2503 	desc->buflen = htole32(MCLBYTES);
2504 }
2505 
2506 /* Receive a frame. */
2507 static void
2508 jme_rxeof(struct jme_softc *sc)
2509 {
2510 	struct ifnet *ifp;
2511 	struct jme_desc *desc;
2512 	struct jme_rxdesc *rxd;
2513 	struct mbuf *mp, *m;
2514 	uint32_t flags, status;
2515 	int cons, count, nsegs;
2516 
2517 	JME_LOCK_ASSERT(sc);
2518 
2519 	ifp = sc->jme_ifp;
2520 
2521 	cons = sc->jme_cdata.jme_rx_cons;
2522 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2523 	flags = le32toh(desc->flags);
2524 	status = le32toh(desc->buflen);
2525 	nsegs = JME_RX_NSEGS(status);
2526 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2527 	if ((status & JME_RX_ERR_STAT) != 0) {
2528 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2529 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2530 #ifdef JME_SHOW_ERRORS
2531 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2532 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2533 #endif
2534 		sc->jme_cdata.jme_rx_cons += nsegs;
2535 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2536 		return;
2537 	}
2538 
2539 	for (count = 0; count < nsegs; count++,
2540 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2541 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2542 		mp = rxd->rx_m;
2543 		/* Add a new receive buffer to the ring. */
2544 		if (jme_newbuf(sc, rxd) != 0) {
2545 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2546 			/* Reuse buffer. */
2547 			for (; count < nsegs; count++) {
2548 				jme_discard_rxbuf(sc, cons);
2549 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2550 			}
2551 			if (sc->jme_cdata.jme_rxhead != NULL) {
2552 				m_freem(sc->jme_cdata.jme_rxhead);
2553 				JME_RXCHAIN_RESET(sc);
2554 			}
2555 			break;
2556 		}
2557 
2558 		/*
2559 		 * Assume we've received a full sized frame.
2560 		 * Actual size is fixed when we encounter the end of
2561 		 * multi-segmented frame.
2562 		 */
2563 		mp->m_len = MCLBYTES;
2564 
2565 		/* Chain received mbufs. */
2566 		if (sc->jme_cdata.jme_rxhead == NULL) {
2567 			sc->jme_cdata.jme_rxhead = mp;
2568 			sc->jme_cdata.jme_rxtail = mp;
2569 		} else {
2570 			/*
2571 			 * Receive processor can receive a maximum frame
2572 			 * size of 65535 bytes.
2573 			 */
2574 			mp->m_flags &= ~M_PKTHDR;
2575 			sc->jme_cdata.jme_rxtail->m_next = mp;
2576 			sc->jme_cdata.jme_rxtail = mp;
2577 		}
2578 
2579 		if (count == nsegs - 1) {
2580 			/* Last desc. for this frame. */
2581 			m = sc->jme_cdata.jme_rxhead;
2582 			m->m_flags |= M_PKTHDR;
2583 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2584 			if (nsegs > 1) {
2585 				/* Set first mbuf size. */
2586 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2587 				/* Set last mbuf size. */
2588 				mp->m_len = sc->jme_cdata.jme_rxlen -
2589 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2590 				    (MCLBYTES * (nsegs - 2)));
2591 			} else
2592 				m->m_len = sc->jme_cdata.jme_rxlen;
2593 			m->m_pkthdr.rcvif = ifp;
2594 
2595 			/*
2596 			 * Account for 10bytes auto padding which is used
2597 			 * to align IP header on 32bit boundary. Also note,
2598 			 * CRC bytes is automatically removed by the
2599 			 * hardware.
2600 			 */
2601 			m->m_data += JME_RX_PAD_BYTES;
2602 
2603 			/* Set checksum information. */
2604 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2605 			    (flags & JME_RD_IPV4) != 0) {
2606 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2607 				if ((flags & JME_RD_IPCSUM) != 0)
2608 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2609 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2610 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2611 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2612 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2613 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2614 					m->m_pkthdr.csum_flags |=
2615 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2616 					m->m_pkthdr.csum_data = 0xffff;
2617 				}
2618 			}
2619 
2620 			/* Check for VLAN tagged packets. */
2621 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2622 			    (flags & JME_RD_VLAN_TAG) != 0) {
2623 				m->m_pkthdr.ether_vtag =
2624 				    flags & JME_RD_VLAN_MASK;
2625 				m->m_flags |= M_VLANTAG;
2626 			}
2627 
2628 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2629 			/* Pass it on. */
2630 			JME_UNLOCK(sc);
2631 			(*ifp->if_input)(ifp, m);
2632 			JME_LOCK(sc);
2633 
2634 			/* Reset mbuf chains. */
2635 			JME_RXCHAIN_RESET(sc);
2636 		}
2637 	}
2638 
2639 	sc->jme_cdata.jme_rx_cons += nsegs;
2640 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2641 }
2642 
2643 static int
2644 jme_rxintr(struct jme_softc *sc, int count)
2645 {
2646 	struct jme_desc *desc;
2647 	int nsegs, prog, pktlen;
2648 
2649 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2650 	    sc->jme_cdata.jme_rx_ring_map,
2651 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2652 
2653 	for (prog = 0; count > 0; prog++) {
2654 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2655 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2656 			break;
2657 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2658 			break;
2659 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2660 		/*
2661 		 * Check number of segments against received bytes.
2662 		 * Non-matching value would indicate that hardware
2663 		 * is still trying to update Rx descriptors. I'm not
2664 		 * sure whether this check is needed.
2665 		 */
2666 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2667 		if (nsegs != howmany(pktlen, MCLBYTES))
2668 			break;
2669 		prog++;
2670 		/* Received a frame. */
2671 		jme_rxeof(sc);
2672 		count -= nsegs;
2673 	}
2674 
2675 	if (prog > 0)
2676 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2677 		    sc->jme_cdata.jme_rx_ring_map,
2678 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2679 
2680 	return (count > 0 ? 0 : EAGAIN);
2681 }
2682 
2683 static void
2684 jme_tick(void *arg)
2685 {
2686 	struct jme_softc *sc;
2687 	struct mii_data *mii;
2688 
2689 	sc = (struct jme_softc *)arg;
2690 
2691 	JME_LOCK_ASSERT(sc);
2692 
2693 	mii = device_get_softc(sc->jme_miibus);
2694 	mii_tick(mii);
2695 	/*
2696 	 * Reclaim Tx buffers that have been completed. It's not
2697 	 * needed here but it would release allocated mbuf chains
2698 	 * faster and limit the maximum delay to a hz.
2699 	 */
2700 	jme_txeof(sc);
2701 	jme_stats_update(sc);
2702 	jme_watchdog(sc);
2703 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2704 }
2705 
2706 static void
2707 jme_reset(struct jme_softc *sc)
2708 {
2709 	uint32_t ghc, gpreg;
2710 
2711 	/* Stop receiver, transmitter. */
2712 	jme_stop_rx(sc);
2713 	jme_stop_tx(sc);
2714 
2715 	/* Reset controller. */
2716 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2717 	CSR_READ_4(sc, JME_GHC);
2718 	DELAY(10);
2719 	/*
2720 	 * Workaround Rx FIFO overruns seen under certain conditions.
2721 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2722 	 * enabled only after enabling TX/RX MACs.
2723 	 */
2724 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2725 		/* Disable TX clock. */
2726 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2727 		/* Disable RX clock. */
2728 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2729 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2730 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2731 		/* De-assert RESET but still disable TX clock. */
2732 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2733 		ghc = CSR_READ_4(sc, JME_GHC);
2734 
2735 		/* Enable TX clock. */
2736 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2737 		/* Enable RX clock. */
2738 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2739 		CSR_READ_4(sc, JME_GPREG1);
2740 
2741 		/* Disable TX/RX clock again. */
2742 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2743 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2744 	} else
2745 		CSR_WRITE_4(sc, JME_GHC, 0);
2746 	CSR_READ_4(sc, JME_GHC);
2747 	DELAY(10);
2748 }
2749 
2750 static void
2751 jme_init(void *xsc)
2752 {
2753 	struct jme_softc *sc;
2754 
2755 	sc = (struct jme_softc *)xsc;
2756 	JME_LOCK(sc);
2757 	jme_init_locked(sc);
2758 	JME_UNLOCK(sc);
2759 }
2760 
2761 static void
2762 jme_init_locked(struct jme_softc *sc)
2763 {
2764 	struct ifnet *ifp;
2765 	struct mii_data *mii;
2766 	bus_addr_t paddr;
2767 	uint32_t reg;
2768 	int error;
2769 
2770 	JME_LOCK_ASSERT(sc);
2771 
2772 	ifp = sc->jme_ifp;
2773 	mii = device_get_softc(sc->jme_miibus);
2774 
2775 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2776 		return;
2777 	/*
2778 	 * Cancel any pending I/O.
2779 	 */
2780 	jme_stop(sc);
2781 
2782 	/*
2783 	 * Reset the chip to a known state.
2784 	 */
2785 	jme_reset(sc);
2786 
2787 	/* Init descriptors. */
2788 	error = jme_init_rx_ring(sc);
2789         if (error != 0) {
2790                 device_printf(sc->jme_dev,
2791                     "%s: initialization failed: no memory for Rx buffers.\n",
2792 		    __func__);
2793                 jme_stop(sc);
2794 		return;
2795         }
2796 	jme_init_tx_ring(sc);
2797 	/* Initialize shadow status block. */
2798 	jme_init_ssb(sc);
2799 
2800 	/* Reprogram the station address. */
2801 	jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
2802 
2803 	/*
2804 	 * Configure Tx queue.
2805 	 *  Tx priority queue weight value : 0
2806 	 *  Tx FIFO threshold for processing next packet : 16QW
2807 	 *  Maximum Tx DMA length : 512
2808 	 *  Allow Tx DMA burst.
2809 	 */
2810 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2811 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2812 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2813 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2814 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2815 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2816 
2817 	/* Set Tx descriptor counter. */
2818 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2819 
2820 	/* Set Tx ring address to the hardware. */
2821 	paddr = JME_TX_RING_ADDR(sc, 0);
2822 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2823 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2824 
2825 	/* Configure TxMAC parameters. */
2826 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2827 	reg |= TXMAC_THRESH_1_PKT;
2828 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2829 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2830 
2831 	/*
2832 	 * Configure Rx queue.
2833 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2834 	 *  FIFO threshold for processing next packet : 128QW
2835 	 *  Rx queue 0 select
2836 	 *  Max Rx DMA length : 128
2837 	 *  Rx descriptor retry : 32
2838 	 *  Rx descriptor retry time gap : 256ns
2839 	 *  Don't receive runt/bad frame.
2840 	 */
2841 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2842 	/*
2843 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2844 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2845 	 * decrease FIFO threshold to reduce the FIFO overruns for
2846 	 * frames larger than 4000 bytes.
2847 	 * For best performance of standard MTU sized frames use
2848 	 * maximum allowable FIFO threshold, 128QW. Note these do
2849 	 * not hold on chip full mask version >=2. For these
2850 	 * controllers 64QW and 128QW are not valid value.
2851 	 */
2852 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2853 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2854 	else {
2855 		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2856 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2857 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2858 		else
2859 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2860 	}
2861 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2862 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2863 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2864 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2865 
2866 	/* Set Rx descriptor counter. */
2867 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2868 
2869 	/* Set Rx ring address to the hardware. */
2870 	paddr = JME_RX_RING_ADDR(sc, 0);
2871 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2872 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2873 
2874 	/* Clear receive filter. */
2875 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2876 	/* Set up the receive filter. */
2877 	jme_set_filter(sc);
2878 	jme_set_vlan(sc);
2879 
2880 	/*
2881 	 * Disable all WOL bits as WOL can interfere normal Rx
2882 	 * operation. Also clear WOL detection status bits.
2883 	 */
2884 	reg = CSR_READ_4(sc, JME_PMCS);
2885 	reg &= ~PMCS_WOL_ENB_MASK;
2886 	CSR_WRITE_4(sc, JME_PMCS, reg);
2887 
2888 	reg = CSR_READ_4(sc, JME_RXMAC);
2889 	/*
2890 	 * Pad 10bytes right before received frame. This will greatly
2891 	 * help Rx performance on strict-alignment architectures as
2892 	 * it does not need to copy the frame to align the payload.
2893 	 */
2894 	reg |= RXMAC_PAD_10BYTES;
2895 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2896 		reg |= RXMAC_CSUM_ENB;
2897 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2898 
2899 	/* Configure general purpose reg0 */
2900 	reg = CSR_READ_4(sc, JME_GPREG0);
2901 	reg &= ~GPREG0_PCC_UNIT_MASK;
2902 	/* Set PCC timer resolution to micro-seconds unit. */
2903 	reg |= GPREG0_PCC_UNIT_US;
2904 	/*
2905 	 * Disable all shadow register posting as we have to read
2906 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2907 	 * that it's hard to synchronize interrupt status between
2908 	 * hardware and software with shadow posting due to
2909 	 * requirements of bus_dmamap_sync(9).
2910 	 */
2911 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2912 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2913 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2914 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2915 	/* Disable posting of DW0. */
2916 	reg &= ~GPREG0_POST_DW0_ENB;
2917 	/* Clear PME message. */
2918 	reg &= ~GPREG0_PME_ENB;
2919 	/* Set PHY address. */
2920 	reg &= ~GPREG0_PHY_ADDR_MASK;
2921 	reg |= sc->jme_phyaddr;
2922 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2923 
2924 	/* Configure Tx queue 0 packet completion coalescing. */
2925 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2926 	    PCCTX_COAL_TO_MASK;
2927 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2928 	    PCCTX_COAL_PKT_MASK;
2929 	reg |= PCCTX_COAL_TXQ0;
2930 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2931 
2932 	/* Configure Rx queue 0 packet completion coalescing. */
2933 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2934 	    PCCRX_COAL_TO_MASK;
2935 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2936 	    PCCRX_COAL_PKT_MASK;
2937 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2938 
2939 	/*
2940 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2941 	 * generates an interrupt when the time interval between two
2942 	 * back-to-back incoming/outgoing packet is long enough for
2943 	 * it to reach its timer value 0. The arrival of new packets
2944 	 * after timer has started causes the PCD timer to restart.
2945 	 * Unfortunately, it's not clear how PCD is useful at this
2946 	 * moment, so just use the same of PCC parameters.
2947 	 */
2948 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2949 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2950 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2951 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2952 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2953 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2954 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2955 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2956 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2957 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2958 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2959 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2960 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2961 	}
2962 
2963 	/* Configure shadow status block but don't enable posting. */
2964 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2965 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2966 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2967 
2968 	/* Disable Timer 1 and Timer 2. */
2969 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2970 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2971 
2972 	/* Configure retry transmit period, retry limit value. */
2973 	CSR_WRITE_4(sc, JME_TXTRHD,
2974 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2975 	    TXTRHD_RT_PERIOD_MASK) |
2976 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2977 	    TXTRHD_RT_LIMIT_SHIFT));
2978 
2979 	/* Disable RSS. */
2980 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2981 
2982 	/* Initialize the interrupt mask. */
2983 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2984 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2985 
2986 	/*
2987 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2988 	 * done after detection of valid link in jme_link_task.
2989 	 */
2990 
2991 	sc->jme_flags &= ~JME_FLAG_LINK;
2992 	/* Set the current media. */
2993 	mii_mediachg(mii);
2994 
2995 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2996 
2997 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2998 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2999 }
3000 
3001 static void
3002 jme_stop(struct jme_softc *sc)
3003 {
3004 	struct ifnet *ifp;
3005 	struct jme_txdesc *txd;
3006 	struct jme_rxdesc *rxd;
3007 	int i;
3008 
3009 	JME_LOCK_ASSERT(sc);
3010 	/*
3011 	 * Mark the interface down and cancel the watchdog timer.
3012 	 */
3013 	ifp = sc->jme_ifp;
3014 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3015 	sc->jme_flags &= ~JME_FLAG_LINK;
3016 	callout_stop(&sc->jme_tick_ch);
3017 	sc->jme_watchdog_timer = 0;
3018 
3019 	/*
3020 	 * Disable interrupts.
3021 	 */
3022 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3023 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3024 
3025 	/* Disable updating shadow status block. */
3026 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3027 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3028 
3029 	/* Stop receiver, transmitter. */
3030 	jme_stop_rx(sc);
3031 	jme_stop_tx(sc);
3032 
3033 	 /* Reclaim Rx/Tx buffers that have been completed. */
3034 	jme_rxintr(sc, JME_RX_RING_CNT);
3035 	if (sc->jme_cdata.jme_rxhead != NULL)
3036 		m_freem(sc->jme_cdata.jme_rxhead);
3037 	JME_RXCHAIN_RESET(sc);
3038 	jme_txeof(sc);
3039 	/*
3040 	 * Free RX and TX mbufs still in the queues.
3041 	 */
3042 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3043 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3044 		if (rxd->rx_m != NULL) {
3045 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3046 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3047 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3048 			    rxd->rx_dmamap);
3049 			m_freem(rxd->rx_m);
3050 			rxd->rx_m = NULL;
3051 		}
3052         }
3053 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3054 		txd = &sc->jme_cdata.jme_txdesc[i];
3055 		if (txd->tx_m != NULL) {
3056 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3057 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3058 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3059 			    txd->tx_dmamap);
3060 			m_freem(txd->tx_m);
3061 			txd->tx_m = NULL;
3062 			txd->tx_ndesc = 0;
3063 		}
3064         }
3065 	jme_stats_update(sc);
3066 	jme_stats_save(sc);
3067 }
3068 
3069 static void
3070 jme_stop_tx(struct jme_softc *sc)
3071 {
3072 	uint32_t reg;
3073 	int i;
3074 
3075 	reg = CSR_READ_4(sc, JME_TXCSR);
3076 	if ((reg & TXCSR_TX_ENB) == 0)
3077 		return;
3078 	reg &= ~TXCSR_TX_ENB;
3079 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3080 	for (i = JME_TIMEOUT; i > 0; i--) {
3081 		DELAY(1);
3082 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3083 			break;
3084 	}
3085 	if (i == 0)
3086 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3087 }
3088 
3089 static void
3090 jme_stop_rx(struct jme_softc *sc)
3091 {
3092 	uint32_t reg;
3093 	int i;
3094 
3095 	reg = CSR_READ_4(sc, JME_RXCSR);
3096 	if ((reg & RXCSR_RX_ENB) == 0)
3097 		return;
3098 	reg &= ~RXCSR_RX_ENB;
3099 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3100 	for (i = JME_TIMEOUT; i > 0; i--) {
3101 		DELAY(1);
3102 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3103 			break;
3104 	}
3105 	if (i == 0)
3106 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3107 }
3108 
3109 static void
3110 jme_init_tx_ring(struct jme_softc *sc)
3111 {
3112 	struct jme_ring_data *rd;
3113 	struct jme_txdesc *txd;
3114 	int i;
3115 
3116 	sc->jme_cdata.jme_tx_prod = 0;
3117 	sc->jme_cdata.jme_tx_cons = 0;
3118 	sc->jme_cdata.jme_tx_cnt = 0;
3119 
3120 	rd = &sc->jme_rdata;
3121 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3122 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3123 		txd = &sc->jme_cdata.jme_txdesc[i];
3124 		txd->tx_m = NULL;
3125 		txd->tx_desc = &rd->jme_tx_ring[i];
3126 		txd->tx_ndesc = 0;
3127 	}
3128 
3129 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3130 	    sc->jme_cdata.jme_tx_ring_map,
3131 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3132 }
3133 
3134 static void
3135 jme_init_ssb(struct jme_softc *sc)
3136 {
3137 	struct jme_ring_data *rd;
3138 
3139 	rd = &sc->jme_rdata;
3140 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3141 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3142 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3143 }
3144 
3145 static int
3146 jme_init_rx_ring(struct jme_softc *sc)
3147 {
3148 	struct jme_ring_data *rd;
3149 	struct jme_rxdesc *rxd;
3150 	int i;
3151 
3152 	sc->jme_cdata.jme_rx_cons = 0;
3153 	JME_RXCHAIN_RESET(sc);
3154 	sc->jme_morework = 0;
3155 
3156 	rd = &sc->jme_rdata;
3157 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3158 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3159 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3160 		rxd->rx_m = NULL;
3161 		rxd->rx_desc = &rd->jme_rx_ring[i];
3162 		if (jme_newbuf(sc, rxd) != 0)
3163 			return (ENOBUFS);
3164 	}
3165 
3166 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3167 	    sc->jme_cdata.jme_rx_ring_map,
3168 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3169 
3170 	return (0);
3171 }
3172 
3173 static int
3174 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3175 {
3176 	struct jme_desc *desc;
3177 	struct mbuf *m;
3178 	bus_dma_segment_t segs[1];
3179 	bus_dmamap_t map;
3180 	int nsegs;
3181 
3182 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3183 	if (m == NULL)
3184 		return (ENOBUFS);
3185 	/*
3186 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3187 	 * takes advantage of 10 bytes padding feature of hardware
3188 	 * in order not to copy entire frame to align IP header on
3189 	 * 32bit boundary.
3190 	 */
3191 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3192 
3193 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3194 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3195 		m_freem(m);
3196 		return (ENOBUFS);
3197 	}
3198 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3199 
3200 	if (rxd->rx_m != NULL) {
3201 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3202 		    BUS_DMASYNC_POSTREAD);
3203 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3204 	}
3205 	map = rxd->rx_dmamap;
3206 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3207 	sc->jme_cdata.jme_rx_sparemap = map;
3208 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3209 	    BUS_DMASYNC_PREREAD);
3210 	rxd->rx_m = m;
3211 
3212 	desc = rxd->rx_desc;
3213 	desc->buflen = htole32(segs[0].ds_len);
3214 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3215 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3216 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3217 
3218 	return (0);
3219 }
3220 
3221 static void
3222 jme_set_vlan(struct jme_softc *sc)
3223 {
3224 	struct ifnet *ifp;
3225 	uint32_t reg;
3226 
3227 	JME_LOCK_ASSERT(sc);
3228 
3229 	ifp = sc->jme_ifp;
3230 	reg = CSR_READ_4(sc, JME_RXMAC);
3231 	reg &= ~RXMAC_VLAN_ENB;
3232 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3233 		reg |= RXMAC_VLAN_ENB;
3234 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3235 }
3236 
3237 static u_int
3238 jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3239 {
3240 	uint32_t crc, *mchash = arg;
3241 
3242 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3243 
3244 	/* Just want the 6 least significant bits. */
3245 	crc &= 0x3f;
3246 
3247 	/* Set the corresponding bit in the hash table. */
3248 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
3249 
3250 	return (1);
3251 }
3252 
3253 static void
3254 jme_set_filter(struct jme_softc *sc)
3255 {
3256 	struct ifnet *ifp;
3257 	uint32_t mchash[2];
3258 	uint32_t rxcfg;
3259 
3260 	JME_LOCK_ASSERT(sc);
3261 
3262 	ifp = sc->jme_ifp;
3263 
3264 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3265 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3266 	    RXMAC_ALLMULTI);
3267 	/* Always accept frames destined to our station address. */
3268 	rxcfg |= RXMAC_UNICAST;
3269 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3270 		rxcfg |= RXMAC_BROADCAST;
3271 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3272 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3273 			rxcfg |= RXMAC_PROMISC;
3274 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3275 			rxcfg |= RXMAC_ALLMULTI;
3276 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3277 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3278 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3279 		return;
3280 	}
3281 
3282 	/*
3283 	 * Set up the multicast address filter by passing all multicast
3284 	 * addresses through a CRC generator, and then using the low-order
3285 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3286 	 * high order bits select the register, while the rest of the bits
3287 	 * select the bit within the register.
3288 	 */
3289 	rxcfg |= RXMAC_MULTICAST;
3290 	bzero(mchash, sizeof(mchash));
3291 	if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
3292 
3293 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3294 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3295 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3296 }
3297 
3298 static void
3299 jme_stats_clear(struct jme_softc *sc)
3300 {
3301 
3302 	JME_LOCK_ASSERT(sc);
3303 
3304 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3305 		return;
3306 
3307 	/* Disable and clear counters. */
3308 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3309 	/* Activate hw counters. */
3310 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3311 	CSR_READ_4(sc, JME_STATCSR);
3312 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3313 }
3314 
3315 static void
3316 jme_stats_save(struct jme_softc *sc)
3317 {
3318 
3319 	JME_LOCK_ASSERT(sc);
3320 
3321 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3322 		return;
3323 	/* Save current counters. */
3324 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3325 	/* Disable and clear counters. */
3326 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3327 }
3328 
3329 static void
3330 jme_stats_update(struct jme_softc *sc)
3331 {
3332 	struct jme_hw_stats *stat, *ostat;
3333 	uint32_t reg;
3334 
3335 	JME_LOCK_ASSERT(sc);
3336 
3337 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3338 		return;
3339 	stat = &sc->jme_stats;
3340 	ostat = &sc->jme_ostats;
3341 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3342 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3343 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3344 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3345 	    STAT_RX_CRC_ERR_SHIFT;
3346 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3347 	    STAT_RX_MII_ERR_SHIFT;
3348 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3349 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3350 	    STAT_RXERR_OFLOW_SHIFT;
3351 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3352 	    STAT_RXERR_MPTY_SHIFT;
3353 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3354 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3355 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3356 
3357 	/* Account for previous counters. */
3358 	stat->rx_good_frames += ostat->rx_good_frames;
3359 	stat->rx_crc_errs += ostat->rx_crc_errs;
3360 	stat->rx_mii_errs += ostat->rx_mii_errs;
3361 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3362 	stat->rx_desc_empty += ostat->rx_desc_empty;
3363 	stat->rx_bad_frames += ostat->rx_bad_frames;
3364 	stat->tx_good_frames += ostat->tx_good_frames;
3365 	stat->tx_bad_frames += ostat->tx_bad_frames;
3366 }
3367 
3368 static void
3369 jme_phy_down(struct jme_softc *sc)
3370 {
3371 	uint32_t reg;
3372 
3373 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3374 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3375 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3376 		reg |= 0x0000000F;
3377 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3378 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3379 		reg &= ~PE1_GIGA_PDOWN_MASK;
3380 		reg |= PE1_GIGA_PDOWN_D3;
3381 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3382 	}
3383 }
3384 
3385 static void
3386 jme_phy_up(struct jme_softc *sc)
3387 {
3388 	uint32_t reg;
3389 	uint16_t bmcr;
3390 
3391 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3392 	bmcr &= ~BMCR_PDOWN;
3393 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3394 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3395 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3396 		reg &= ~0x0000000F;
3397 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3398 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3399 		reg &= ~PE1_GIGA_PDOWN_MASK;
3400 		reg |= PE1_GIGA_PDOWN_DIS;
3401 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3402 	}
3403 }
3404 
3405 static int
3406 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3407 {
3408 	int error, value;
3409 
3410 	if (arg1 == NULL)
3411 		return (EINVAL);
3412 	value = *(int *)arg1;
3413 	error = sysctl_handle_int(oidp, &value, 0, req);
3414 	if (error || req->newptr == NULL)
3415 		return (error);
3416 	if (value < low || value > high)
3417 		return (EINVAL);
3418         *(int *)arg1 = value;
3419 
3420         return (0);
3421 }
3422 
3423 static int
3424 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3425 {
3426 	return (sysctl_int_range(oidp, arg1, arg2, req,
3427 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3428 }
3429 
3430 static int
3431 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3432 {
3433 	return (sysctl_int_range(oidp, arg1, arg2, req,
3434 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3435 }
3436 
3437 static int
3438 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3439 {
3440 	return (sysctl_int_range(oidp, arg1, arg2, req,
3441 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3442 }
3443 
3444 static int
3445 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3446 {
3447 	return (sysctl_int_range(oidp, arg1, arg2, req,
3448 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3449 }
3450 
3451 static int
3452 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3453 {
3454 	return (sysctl_int_range(oidp, arg1, arg2, req,
3455 	    JME_PROC_MIN, JME_PROC_MAX));
3456 }
3457