xref: /freebsd/sys/dev/mpr/mpr.c (revision 38069501)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /* Communications core for Avago Technologies (LSI) MPT3 */
36 
37 /* TODO Move headers to mprvar */
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/selinfo.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/module.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/bio.h>
49 #include <sys/malloc.h>
50 #include <sys/uio.h>
51 #include <sys/sysctl.h>
52 #include <sys/smp.h>
53 #include <sys/queue.h>
54 #include <sys/kthread.h>
55 #include <sys/taskqueue.h>
56 #include <sys/endian.h>
57 #include <sys/eventhandler.h>
58 #include <sys/sbuf.h>
59 
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/rman.h>
63 #include <sys/proc.h>
64 
65 #include <dev/pci/pcivar.h>
66 
67 #include <cam/cam.h>
68 #include <cam/cam_ccb.h>
69 #include <cam/scsi/scsi_all.h>
70 
71 #include <dev/mpr/mpi/mpi2_type.h>
72 #include <dev/mpr/mpi/mpi2.h>
73 #include <dev/mpr/mpi/mpi2_ioc.h>
74 #include <dev/mpr/mpi/mpi2_sas.h>
75 #include <dev/mpr/mpi/mpi2_pci.h>
76 #include <dev/mpr/mpi/mpi2_cnfg.h>
77 #include <dev/mpr/mpi/mpi2_init.h>
78 #include <dev/mpr/mpi/mpi2_tool.h>
79 #include <dev/mpr/mpr_ioctl.h>
80 #include <dev/mpr/mprvar.h>
81 #include <dev/mpr/mpr_table.h>
82 #include <dev/mpr/mpr_sas.h>
83 
84 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
85 static int mpr_init_queues(struct mpr_softc *sc);
86 static void mpr_resize_queues(struct mpr_softc *sc);
87 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
88 static int mpr_transition_operational(struct mpr_softc *sc);
89 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
90 static void mpr_iocfacts_free(struct mpr_softc *sc);
91 static void mpr_startup(void *arg);
92 static int mpr_send_iocinit(struct mpr_softc *sc);
93 static int mpr_alloc_queues(struct mpr_softc *sc);
94 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
95 static int mpr_alloc_replies(struct mpr_softc *sc);
96 static int mpr_alloc_requests(struct mpr_softc *sc);
97 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
98 static int mpr_attach_log(struct mpr_softc *sc);
99 static __inline void mpr_complete_command(struct mpr_softc *sc,
100     struct mpr_command *cm);
101 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
102     MPI2_EVENT_NOTIFICATION_REPLY *reply);
103 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
104 static void mpr_periodic(void *);
105 static int mpr_reregister_events(struct mpr_softc *sc);
106 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
107 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
108 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
109 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
110 static void mpr_parse_debug(struct mpr_softc *sc, char *list);
111 
112 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
113 
114 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
115 
116 /*
117  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
118  * any state and back to its initialization state machine.
119  */
120 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
121 
122 /*
123  * Added this union to smoothly convert le64toh cm->cm_desc.Words.
124  * Compiler only supports uint64_t to be passed as an argument.
125  * Otherwise it will throw this error:
126  * "aggregate value used where an integer was expected"
127  */
128 typedef union _reply_descriptor {
129         u64 word;
130         struct {
131                 u32 low;
132                 u32 high;
133         } u;
134 } reply_descriptor, request_descriptor;
135 
136 /* Rate limit chain-fail messages to 1 per minute */
137 static struct timeval mpr_chainfail_interval = { 60, 0 };
138 
139 /*
140  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
141  * If this function is called from process context, it can sleep
142  * and there is no harm to sleep, in case if this fuction is called
143  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
144  * based on sleep flags driver will call either msleep, pause or DELAY.
145  * msleep and pause are of same variant, but pause is used when mpr_mtx
146  * is not hold by driver.
147  */
148 static int
149 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
150 {
151 	uint32_t reg;
152 	int i, error, tries = 0;
153 	uint8_t first_wait_done = FALSE;
154 
155 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
156 
157 	/* Clear any pending interrupts */
158 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
159 
160 	/*
161 	 * Force NO_SLEEP for threads prohibited to sleep
162  	 * e.a Thread from interrupt handler are prohibited to sleep.
163  	 */
164 #if __FreeBSD_version >= 1000029
165 	if (curthread->td_no_sleeping)
166 #else //__FreeBSD_version < 1000029
167 	if (curthread->td_pflags & TDP_NOSLEEPING)
168 #endif //__FreeBSD_version >= 1000029
169 		sleep_flag = NO_SLEEP;
170 
171 	mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
172 	/* Push the magic sequence */
173 	error = ETIMEDOUT;
174 	while (tries++ < 20) {
175 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
176 			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
177 			    mpt2_reset_magic[i]);
178 
179 		/* wait 100 msec */
180 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
181 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
182 			    "mprdiag", hz/10);
183 		else if (sleep_flag == CAN_SLEEP)
184 			pause("mprdiag", hz/10);
185 		else
186 			DELAY(100 * 1000);
187 
188 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
189 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
190 			error = 0;
191 			break;
192 		}
193 	}
194 	if (error) {
195 		mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
196 		    error);
197 		return (error);
198 	}
199 
200 	/* Send the actual reset.  XXX need to refresh the reg? */
201 	reg |= MPI2_DIAG_RESET_ADAPTER;
202 	mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
203 	    reg);
204 	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
205 
206 	/* Wait up to 300 seconds in 50ms intervals */
207 	error = ETIMEDOUT;
208 	for (i = 0; i < 6000; i++) {
209 		/*
210 		 * Wait 50 msec. If this is the first time through, wait 256
211 		 * msec to satisfy Diag Reset timing requirements.
212 		 */
213 		if (first_wait_done) {
214 			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
215 				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
216 				    "mprdiag", hz/20);
217 			else if (sleep_flag == CAN_SLEEP)
218 				pause("mprdiag", hz/20);
219 			else
220 				DELAY(50 * 1000);
221 		} else {
222 			DELAY(256 * 1000);
223 			first_wait_done = TRUE;
224 		}
225 		/*
226 		 * Check for the RESET_ADAPTER bit to be cleared first, then
227 		 * wait for the RESET state to be cleared, which takes a little
228 		 * longer.
229 		 */
230 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
231 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
232 			continue;
233 		}
234 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
235 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
236 			error = 0;
237 			break;
238 		}
239 	}
240 	if (error) {
241 		mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
242 		    error);
243 		return (error);
244 	}
245 
246 	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
247 	mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
248 
249 	return (0);
250 }
251 
252 static int
253 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
254 {
255 	int error;
256 
257 	MPR_FUNCTRACE(sc);
258 
259 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
260 
261 	error = 0;
262 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
263 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
264 	    MPI2_DOORBELL_FUNCTION_SHIFT);
265 
266 	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
267 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
268 		    "Doorbell handshake failed\n");
269 		error = ETIMEDOUT;
270 	}
271 
272 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
273 	return (error);
274 }
275 
276 static int
277 mpr_transition_ready(struct mpr_softc *sc)
278 {
279 	uint32_t reg, state;
280 	int error, tries = 0;
281 	int sleep_flags;
282 
283 	MPR_FUNCTRACE(sc);
284 	/* If we are in attach call, do not sleep */
285 	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
286 	    ? CAN_SLEEP : NO_SLEEP;
287 
288 	error = 0;
289 
290 	mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
291 	    __func__, sleep_flags);
292 
293 	while (tries++ < 1200) {
294 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
295 		mpr_dprint(sc, MPR_INIT, "  Doorbell= 0x%x\n", reg);
296 
297 		/*
298 		 * Ensure the IOC is ready to talk.  If it's not, try
299 		 * resetting it.
300 		 */
301 		if (reg & MPI2_DOORBELL_USED) {
302 			mpr_dprint(sc, MPR_INIT, "  Not ready, sending diag "
303 			    "reset\n");
304 			mpr_diag_reset(sc, sleep_flags);
305 			DELAY(50000);
306 			continue;
307 		}
308 
309 		/* Is the adapter owned by another peer? */
310 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
311 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
312 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
313 			    "control of another peer host, aborting "
314 			    "initialization.\n");
315 			error = ENXIO;
316 			break;
317 		}
318 
319 		state = reg & MPI2_IOC_STATE_MASK;
320 		if (state == MPI2_IOC_STATE_READY) {
321 			/* Ready to go! */
322 			error = 0;
323 			break;
324 		} else if (state == MPI2_IOC_STATE_FAULT) {
325 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
326 			    "state 0x%x, resetting\n",
327 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
328 			mpr_diag_reset(sc, sleep_flags);
329 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
330 			/* Need to take ownership */
331 			mpr_message_unit_reset(sc, sleep_flags);
332 		} else if (state == MPI2_IOC_STATE_RESET) {
333 			/* Wait a bit, IOC might be in transition */
334 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
335 			    "IOC in unexpected reset state\n");
336 		} else {
337 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
338 			    "IOC in unknown state 0x%x\n", state);
339 			error = EINVAL;
340 			break;
341 		}
342 
343 		/* Wait 50ms for things to settle down. */
344 		DELAY(50000);
345 	}
346 
347 	if (error)
348 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
349 		    "Cannot transition IOC to ready\n");
350 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
351 	return (error);
352 }
353 
354 static int
355 mpr_transition_operational(struct mpr_softc *sc)
356 {
357 	uint32_t reg, state;
358 	int error;
359 
360 	MPR_FUNCTRACE(sc);
361 
362 	error = 0;
363 	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
364 	mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
365 
366 	state = reg & MPI2_IOC_STATE_MASK;
367 	if (state != MPI2_IOC_STATE_READY) {
368 		mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
369 		if ((error = mpr_transition_ready(sc)) != 0) {
370 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
371 			    "failed to transition ready, exit\n");
372 			return (error);
373 		}
374 	}
375 
376 	error = mpr_send_iocinit(sc);
377 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
378 
379 	return (error);
380 }
381 
382 static void
383 mpr_resize_queues(struct mpr_softc *sc)
384 {
385 	int reqcr, prireqcr;
386 
387 	/*
388 	 * Size the queues. Since the reply queues always need one free
389 	 * entry, we'll deduct one reply message here.  The LSI documents
390 	 * suggest instead to add a count to the request queue, but I think
391 	 * that it's better to deduct from reply queue.
392 	 */
393 	prireqcr = MAX(1, sc->max_prireqframes);
394 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
395 
396 	reqcr = MAX(2, sc->max_reqframes);
397 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
398 
399 	sc->num_reqs = prireqcr + reqcr;
400 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
401 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
402 
403 	/*
404 	 * Figure out the number of MSIx-based queues.  If the firmware or
405 	 * user has done something crazy and not allowed enough credit for
406 	 * the queues to be useful then don't enable multi-queue.
407 	 */
408 	if (sc->facts->MaxMSIxVectors < 2)
409 		sc->msi_msgs = 1;
410 
411 	if (sc->msi_msgs > 1) {
412 		sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
413 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
414 		if (sc->num_reqs / sc->msi_msgs < 2)
415 			sc->msi_msgs = 1;
416 	}
417 
418 	mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
419 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
420 }
421 
422 /*
423  * This is called during attach and when re-initializing due to a Diag Reset.
424  * IOC Facts is used to allocate many of the structures needed by the driver.
425  * If called from attach, de-allocation is not required because the driver has
426  * not allocated any structures yet, but if called from a Diag Reset, previously
427  * allocated structures based on IOC Facts will need to be freed and re-
428  * allocated bases on the latest IOC Facts.
429  */
430 static int
431 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
432 {
433 	int error;
434 	Mpi2IOCFactsReply_t saved_facts;
435 	uint8_t saved_mode, reallocating;
436 
437 	mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
438 
439 	/* Save old IOC Facts and then only reallocate if Facts have changed */
440 	if (!attaching) {
441 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
442 	}
443 
444 	/*
445 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
446 	 * a re-initialization and only return the error if attaching so the OS
447 	 * can handle it.
448 	 */
449 	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
450 		if (attaching) {
451 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
452 			    "IOC Facts with error %d, exit\n", error);
453 			return (error);
454 		} else {
455 			panic("%s failed to get IOC Facts with error %d\n",
456 			    __func__, error);
457 		}
458 	}
459 
460 	MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
461 
462 	snprintf(sc->fw_version, sizeof(sc->fw_version),
463 	    "%02d.%02d.%02d.%02d",
464 	    sc->facts->FWVersion.Struct.Major,
465 	    sc->facts->FWVersion.Struct.Minor,
466 	    sc->facts->FWVersion.Struct.Unit,
467 	    sc->facts->FWVersion.Struct.Dev);
468 
469 	mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
470 	    MPR_DRIVER_VERSION);
471 	mpr_dprint(sc, MPR_INFO,
472 	    "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
473 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
474 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
475 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
476 	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
477 
478 	/*
479 	 * If the chip doesn't support event replay then a hard reset will be
480 	 * required to trigger a full discovery.  Do the reset here then
481 	 * retransition to Ready.  A hard reset might have already been done,
482 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
483 	 * for a Diag Reset.
484 	 */
485 	if (attaching && ((sc->facts->IOCCapabilities &
486 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
487 		mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
488 		mpr_diag_reset(sc, NO_SLEEP);
489 		if ((error = mpr_transition_ready(sc)) != 0) {
490 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
491 			    "transition to ready with error %d, exit\n",
492 			    error);
493 			return (error);
494 		}
495 	}
496 
497 	/*
498 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
499 	 * changed from the previous IOC Facts, log a warning, but only if
500 	 * checking this after a Diag Reset and not during attach.
501 	 */
502 	saved_mode = sc->ir_firmware;
503 	if (sc->facts->IOCCapabilities &
504 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
505 		sc->ir_firmware = 1;
506 	if (!attaching) {
507 		if (sc->ir_firmware != saved_mode) {
508 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
509 			    "in IOC Facts does not match previous mode\n");
510 		}
511 	}
512 
513 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
514 	reallocating = FALSE;
515 	sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
516 
517 	if ((!attaching) &&
518 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
519 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
520 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
521 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
522 	    (saved_facts.ProductID != sc->facts->ProductID) ||
523 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
524 	    (saved_facts.IOCRequestFrameSize !=
525 	    sc->facts->IOCRequestFrameSize) ||
526 	    (saved_facts.IOCMaxChainSegmentSize !=
527 	    sc->facts->IOCMaxChainSegmentSize) ||
528 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
529 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
530 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
531 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
532 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
533 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
534 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
535 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
536 	    (saved_facts.MaxPersistentEntries !=
537 	    sc->facts->MaxPersistentEntries))) {
538 		reallocating = TRUE;
539 
540 		/* Record that we reallocated everything */
541 		sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
542 	}
543 
544 	/*
545 	 * Some things should be done if attaching or re-allocating after a Diag
546 	 * Reset, but are not needed after a Diag Reset if the FW has not
547 	 * changed.
548 	 */
549 	if (attaching || reallocating) {
550 		/*
551 		 * Check if controller supports FW diag buffers and set flag to
552 		 * enable each type.
553 		 */
554 		if (sc->facts->IOCCapabilities &
555 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
556 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
557 			    enabled = TRUE;
558 		if (sc->facts->IOCCapabilities &
559 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
560 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
561 			    enabled = TRUE;
562 		if (sc->facts->IOCCapabilities &
563 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
564 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
565 			    enabled = TRUE;
566 
567 		/*
568 		 * Set flags for some supported items.
569 		 */
570 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
571 			sc->eedp_enabled = TRUE;
572 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
573 			sc->control_TLR = TRUE;
574 		if (sc->facts->IOCCapabilities &
575 		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
576 			sc->atomic_desc_capable = TRUE;
577 
578 		mpr_resize_queues(sc);
579 
580 		/*
581 		 * Initialize all Tail Queues
582 		 */
583 		TAILQ_INIT(&sc->req_list);
584 		TAILQ_INIT(&sc->high_priority_req_list);
585 		TAILQ_INIT(&sc->chain_list);
586 		TAILQ_INIT(&sc->prp_page_list);
587 		TAILQ_INIT(&sc->tm_list);
588 	}
589 
590 	/*
591 	 * If doing a Diag Reset and the FW is significantly different
592 	 * (reallocating will be set above in IOC Facts comparison), then all
593 	 * buffers based on the IOC Facts will need to be freed before they are
594 	 * reallocated.
595 	 */
596 	if (reallocating) {
597 		mpr_iocfacts_free(sc);
598 		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
599 		    saved_facts.MaxVolumes);
600 	}
601 
602 	/*
603 	 * Any deallocation has been completed.  Now start reallocating
604 	 * if needed.  Will only need to reallocate if attaching or if the new
605 	 * IOC Facts are different from the previous IOC Facts after a Diag
606 	 * Reset. Targets have already been allocated above if needed.
607 	 */
608 	error = 0;
609 	while (attaching || reallocating) {
610 		if ((error = mpr_alloc_hw_queues(sc)) != 0)
611 			break;
612 		if ((error = mpr_alloc_replies(sc)) != 0)
613 			break;
614 		if ((error = mpr_alloc_requests(sc)) != 0)
615 			break;
616 		if ((error = mpr_alloc_queues(sc)) != 0)
617 			break;
618 		break;
619 	}
620 	if (error) {
621 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
622 		    "Failed to alloc queues with error %d\n", error);
623 		mpr_free(sc);
624 		return (error);
625 	}
626 
627 	/* Always initialize the queues */
628 	bzero(sc->free_queue, sc->fqdepth * 4);
629 	mpr_init_queues(sc);
630 
631 	/*
632 	 * Always get the chip out of the reset state, but only panic if not
633 	 * attaching.  If attaching and there is an error, that is handled by
634 	 * the OS.
635 	 */
636 	error = mpr_transition_operational(sc);
637 	if (error != 0) {
638 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
639 		    "transition to operational with error %d\n", error);
640 		mpr_free(sc);
641 		return (error);
642 	}
643 
644 	/*
645 	 * Finish the queue initialization.
646 	 * These are set here instead of in mpr_init_queues() because the
647 	 * IOC resets these values during the state transition in
648 	 * mpr_transition_operational().  The free index is set to 1
649 	 * because the corresponding index in the IOC is set to 0, and the
650 	 * IOC treats the queues as full if both are set to the same value.
651 	 * Hence the reason that the queue can't hold all of the possible
652 	 * replies.
653 	 */
654 	sc->replypostindex = 0;
655 	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
656 	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
657 
658 	/*
659 	 * Attach the subsystems so they can prepare their event masks.
660 	 * XXX Should be dynamic so that IM/IR and user modules can attach
661 	 */
662 	error = 0;
663 	while (attaching) {
664 		mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
665 		if ((error = mpr_attach_log(sc)) != 0)
666 			break;
667 		if ((error = mpr_attach_sas(sc)) != 0)
668 			break;
669 		if ((error = mpr_attach_user(sc)) != 0)
670 			break;
671 		break;
672 	}
673 	if (error) {
674 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
675 		    "Failed to attach all subsystems: error %d\n", error);
676 		mpr_free(sc);
677 		return (error);
678 	}
679 
680 	if ((error = mpr_pci_setup_interrupts(sc)) != 0) {
681 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
682 		    "Failed to setup interrupts\n");
683 		mpr_free(sc);
684 		return (error);
685 	}
686 
687 	return (error);
688 }
689 
690 /*
691  * This is called if memory is being free (during detach for example) and when
692  * buffers need to be reallocated due to a Diag Reset.
693  */
694 static void
695 mpr_iocfacts_free(struct mpr_softc *sc)
696 {
697 	struct mpr_command *cm;
698 	int i;
699 
700 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
701 
702 	if (sc->free_busaddr != 0)
703 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
704 	if (sc->free_queue != NULL)
705 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
706 		    sc->queues_map);
707 	if (sc->queues_dmat != NULL)
708 		bus_dma_tag_destroy(sc->queues_dmat);
709 
710 	if (sc->chain_busaddr != 0)
711 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
712 	if (sc->chain_frames != NULL)
713 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
714 		    sc->chain_map);
715 	if (sc->chain_dmat != NULL)
716 		bus_dma_tag_destroy(sc->chain_dmat);
717 
718 	if (sc->sense_busaddr != 0)
719 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
720 	if (sc->sense_frames != NULL)
721 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
722 		    sc->sense_map);
723 	if (sc->sense_dmat != NULL)
724 		bus_dma_tag_destroy(sc->sense_dmat);
725 
726 	if (sc->prp_page_busaddr != 0)
727 		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
728 	if (sc->prp_pages != NULL)
729 		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
730 		    sc->prp_page_map);
731 	if (sc->prp_page_dmat != NULL)
732 		bus_dma_tag_destroy(sc->prp_page_dmat);
733 
734 	if (sc->reply_busaddr != 0)
735 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
736 	if (sc->reply_frames != NULL)
737 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
738 		    sc->reply_map);
739 	if (sc->reply_dmat != NULL)
740 		bus_dma_tag_destroy(sc->reply_dmat);
741 
742 	if (sc->req_busaddr != 0)
743 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
744 	if (sc->req_frames != NULL)
745 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
746 	if (sc->req_dmat != NULL)
747 		bus_dma_tag_destroy(sc->req_dmat);
748 
749 	if (sc->chains != NULL)
750 		free(sc->chains, M_MPR);
751 	if (sc->prps != NULL)
752 		free(sc->prps, M_MPR);
753 	if (sc->commands != NULL) {
754 		for (i = 1; i < sc->num_reqs; i++) {
755 			cm = &sc->commands[i];
756 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
757 		}
758 		free(sc->commands, M_MPR);
759 	}
760 	if (sc->buffer_dmat != NULL)
761 		bus_dma_tag_destroy(sc->buffer_dmat);
762 
763 	mpr_pci_free_interrupts(sc);
764 	free(sc->queues, M_MPR);
765 	sc->queues = NULL;
766 }
767 
768 /*
769  * The terms diag reset and hard reset are used interchangeably in the MPI
770  * docs to mean resetting the controller chip.  In this code diag reset
771  * cleans everything up, and the hard reset function just sends the reset
772  * sequence to the chip.  This should probably be refactored so that every
773  * subsystem gets a reset notification of some sort, and can clean up
774  * appropriately.
775  */
776 int
777 mpr_reinit(struct mpr_softc *sc)
778 {
779 	int error;
780 	struct mprsas_softc *sassc;
781 
782 	sassc = sc->sassc;
783 
784 	MPR_FUNCTRACE(sc);
785 
786 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
787 
788 	mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
789 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
790 		mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
791 		return 0;
792 	}
793 
794 	/*
795 	 * Make sure the completion callbacks can recognize they're getting
796 	 * a NULL cm_reply due to a reset.
797 	 */
798 	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
799 
800 	/*
801 	 * Mask interrupts here.
802 	 */
803 	mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
804 	mpr_mask_intr(sc);
805 
806 	error = mpr_diag_reset(sc, CAN_SLEEP);
807 	if (error != 0) {
808 		panic("%s hard reset failed with error %d\n", __func__, error);
809 	}
810 
811 	/* Restore the PCI state, including the MSI-X registers */
812 	mpr_pci_restore(sc);
813 
814 	/* Give the I/O subsystem special priority to get itself prepared */
815 	mprsas_handle_reinit(sc);
816 
817 	/*
818 	 * Get IOC Facts and allocate all structures based on this information.
819 	 * The attach function will also call mpr_iocfacts_allocate at startup.
820 	 * If relevant values have changed in IOC Facts, this function will free
821 	 * all of the memory based on IOC Facts and reallocate that memory.
822 	 */
823 	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
824 		panic("%s IOC Facts based allocation failed with error %d\n",
825 		    __func__, error);
826 	}
827 
828 	/*
829 	 * Mapping structures will be re-allocated after getting IOC Page8, so
830 	 * free these structures here.
831 	 */
832 	mpr_mapping_exit(sc);
833 
834 	/*
835 	 * The static page function currently read is IOC Page8.  Others can be
836 	 * added in future.  It's possible that the values in IOC Page8 have
837 	 * changed after a Diag Reset due to user modification, so always read
838 	 * these.  Interrupts are masked, so unmask them before getting config
839 	 * pages.
840 	 */
841 	mpr_unmask_intr(sc);
842 	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
843 	mpr_base_static_config_pages(sc);
844 
845 	/*
846 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
847 	 * mapping tables.
848 	 */
849 	mpr_mapping_initialize(sc);
850 
851 	/*
852 	 * Restart will reload the event masks clobbered by the reset, and
853 	 * then enable the port.
854 	 */
855 	mpr_reregister_events(sc);
856 
857 	/* the end of discovery will release the simq, so we're done. */
858 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
859 	    sc, sc->replypostindex, sc->replyfreeindex);
860 	mprsas_release_simq_reinit(sassc);
861 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
862 
863 	return 0;
864 }
865 
866 /* Wait for the chip to ACK a word that we've put into its FIFO
867  * Wait for <timeout> seconds. In single loop wait for busy loop
868  * for 500 microseconds.
869  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
870  * */
871 static int
872 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
873 {
874 	u32 cntdn, count;
875 	u32 int_status;
876 	u32 doorbell;
877 
878 	count = 0;
879 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
880 	do {
881 		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
882 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
883 			mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
884 			    "timeout(%d)\n", __func__, count, timeout);
885 			return 0;
886 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
887 			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
888 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
889 			    MPI2_IOC_STATE_FAULT) {
890 				mpr_dprint(sc, MPR_FAULT,
891 				    "fault_state(0x%04x)!\n", doorbell);
892 				return (EFAULT);
893 			}
894 		} else if (int_status == 0xFFFFFFFF)
895 			goto out;
896 
897 		/*
898 		 * If it can sleep, sleep for 1 milisecond, else busy loop for
899  		 * 0.5 milisecond
900 		 */
901 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
902 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
903 			    hz/1000);
904 		else if (sleep_flag == CAN_SLEEP)
905 			pause("mprdba", hz/1000);
906 		else
907 			DELAY(500);
908 		count++;
909 	} while (--cntdn);
910 
911 out:
912 	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
913 		"int_status(%x)!\n", __func__, count, int_status);
914 	return (ETIMEDOUT);
915 }
916 
917 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
918 static int
919 mpr_wait_db_int(struct mpr_softc *sc)
920 {
921 	int retry;
922 
923 	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
924 		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
925 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
926 			return (0);
927 		DELAY(2000);
928 	}
929 	return (ETIMEDOUT);
930 }
931 
932 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
933 static int
934 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
935     int req_sz, int reply_sz, int timeout)
936 {
937 	uint32_t *data32;
938 	uint16_t *data16;
939 	int i, count, ioc_sz, residual;
940 	int sleep_flags = CAN_SLEEP;
941 
942 #if __FreeBSD_version >= 1000029
943 	if (curthread->td_no_sleeping)
944 #else //__FreeBSD_version < 1000029
945 	if (curthread->td_pflags & TDP_NOSLEEPING)
946 #endif //__FreeBSD_version >= 1000029
947 		sleep_flags = NO_SLEEP;
948 
949 	/* Step 1 */
950 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
951 
952 	/* Step 2 */
953 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
954 		return (EBUSY);
955 
956 	/* Step 3
957 	 * Announce that a message is coming through the doorbell.  Messages
958 	 * are pushed at 32bit words, so round up if needed.
959 	 */
960 	count = (req_sz + 3) / 4;
961 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
962 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
963 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
964 
965 	/* Step 4 */
966 	if (mpr_wait_db_int(sc) ||
967 	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
968 		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
969 		return (ENXIO);
970 	}
971 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
972 	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
973 		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
974 		return (ENXIO);
975 	}
976 
977 	/* Step 5 */
978 	/* Clock out the message data synchronously in 32-bit dwords*/
979 	data32 = (uint32_t *)req;
980 	for (i = 0; i < count; i++) {
981 		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
982 		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
983 			mpr_dprint(sc, MPR_FAULT,
984 			    "Timeout while writing doorbell\n");
985 			return (ENXIO);
986 		}
987 	}
988 
989 	/* Step 6 */
990 	/* Clock in the reply in 16-bit words.  The total length of the
991 	 * message is always in the 4th byte, so clock out the first 2 words
992 	 * manually, then loop the rest.
993 	 */
994 	data16 = (uint16_t *)reply;
995 	if (mpr_wait_db_int(sc) != 0) {
996 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
997 		return (ENXIO);
998 	}
999 	data16[0] =
1000 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1001 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1002 	if (mpr_wait_db_int(sc) != 0) {
1003 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1004 		return (ENXIO);
1005 	}
1006 	data16[1] =
1007 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1008 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1009 
1010 	/* Number of 32bit words in the message */
1011 	ioc_sz = reply->MsgLength;
1012 
1013 	/*
1014 	 * Figure out how many 16bit words to clock in without overrunning.
1015 	 * The precision loss with dividing reply_sz can safely be
1016 	 * ignored because the messages can only be multiples of 32bits.
1017 	 */
1018 	residual = 0;
1019 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1020 	if (count < ioc_sz * 2) {
1021 		residual = ioc_sz * 2 - count;
1022 		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1023 		    "residual message words\n", residual);
1024 	}
1025 
1026 	for (i = 2; i < count; i++) {
1027 		if (mpr_wait_db_int(sc) != 0) {
1028 			mpr_dprint(sc, MPR_FAULT,
1029 			    "Timeout reading doorbell %d\n", i);
1030 			return (ENXIO);
1031 		}
1032 		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
1033 		    MPI2_DOORBELL_DATA_MASK;
1034 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1035 	}
1036 
1037 	/*
1038 	 * Pull out residual words that won't fit into the provided buffer.
1039 	 * This keeps the chip from hanging due to a driver programming
1040 	 * error.
1041 	 */
1042 	while (residual--) {
1043 		if (mpr_wait_db_int(sc) != 0) {
1044 			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1045 			return (ENXIO);
1046 		}
1047 		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1048 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1049 	}
1050 
1051 	/* Step 7 */
1052 	if (mpr_wait_db_int(sc) != 0) {
1053 		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1054 		return (ENXIO);
1055 	}
1056 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1057 		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1058 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1059 
1060 	return (0);
1061 }
1062 
1063 static void
1064 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1065 {
1066 	request_descriptor rd;
1067 
1068 	MPR_FUNCTRACE(sc);
1069 	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1070 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1071 
1072 	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1073 	    MPR_FLAGS_SHUTDOWN))
1074 		mtx_assert(&sc->mpr_mtx, MA_OWNED);
1075 
1076 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1077 		sc->io_cmds_highwater++;
1078 
1079 	if (sc->atomic_desc_capable) {
1080 		rd.u.low = cm->cm_desc.Words.Low;
1081 		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1082 		    rd.u.low);
1083 	} else {
1084 		rd.u.low = cm->cm_desc.Words.Low;
1085 		rd.u.high = cm->cm_desc.Words.High;
1086 		rd.word = htole64(rd.word);
1087 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1088 		    rd.u.low);
1089 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1090 		    rd.u.high);
1091 	}
1092 }
1093 
1094 /*
1095  * Just the FACTS, ma'am.
1096  */
1097 static int
1098 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1099 {
1100 	MPI2_DEFAULT_REPLY *reply;
1101 	MPI2_IOC_FACTS_REQUEST request;
1102 	int error, req_sz, reply_sz;
1103 
1104 	MPR_FUNCTRACE(sc);
1105 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1106 
1107 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1108 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1109 	reply = (MPI2_DEFAULT_REPLY *)facts;
1110 
1111 	bzero(&request, req_sz);
1112 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1113 	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1114 
1115 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1116 	return (error);
1117 }
1118 
1119 static int
1120 mpr_send_iocinit(struct mpr_softc *sc)
1121 {
1122 	MPI2_IOC_INIT_REQUEST	init;
1123 	MPI2_DEFAULT_REPLY	reply;
1124 	int req_sz, reply_sz, error;
1125 	struct timeval now;
1126 	uint64_t time_in_msec;
1127 
1128 	MPR_FUNCTRACE(sc);
1129 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1130 
1131 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1132 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1133 	bzero(&init, req_sz);
1134 	bzero(&reply, reply_sz);
1135 
1136 	/*
1137 	 * Fill in the init block.  Note that most addresses are
1138 	 * deliberately in the lower 32bits of memory.  This is a micro-
1139 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1140 	 */
1141 	init.Function = MPI2_FUNCTION_IOC_INIT;
1142 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1143 	init.MsgVersion = htole16(MPI2_VERSION);
1144 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1145 	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1146 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1147 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1148 	init.SenseBufferAddressHigh = 0;
1149 	init.SystemReplyAddressHigh = 0;
1150 	init.SystemRequestFrameBaseAddress.High = 0;
1151 	init.SystemRequestFrameBaseAddress.Low =
1152 	    htole32((uint32_t)sc->req_busaddr);
1153 	init.ReplyDescriptorPostQueueAddress.High = 0;
1154 	init.ReplyDescriptorPostQueueAddress.Low =
1155 	    htole32((uint32_t)sc->post_busaddr);
1156 	init.ReplyFreeQueueAddress.High = 0;
1157 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1158 	getmicrotime(&now);
1159 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1160 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1161 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1162 	init.HostPageSize = HOST_PAGE_SIZE_4K;
1163 
1164 	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1165 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1166 		error = ENXIO;
1167 
1168 	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1169 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1170 	return (error);
1171 }
1172 
1173 void
1174 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1175 {
1176 	bus_addr_t *addr;
1177 
1178 	addr = arg;
1179 	*addr = segs[0].ds_addr;
1180 }
1181 
1182 static int
1183 mpr_alloc_queues(struct mpr_softc *sc)
1184 {
1185 	struct mpr_queue *q;
1186 	int nq, i;
1187 
1188 	nq = sc->msi_msgs;
1189 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1190 
1191 	sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR,
1192 	     M_NOWAIT|M_ZERO);
1193 	if (sc->queues == NULL)
1194 		return (ENOMEM);
1195 
1196 	for (i = 0; i < nq; i++) {
1197 		q = &sc->queues[i];
1198 		mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1199 		q->sc = sc;
1200 		q->qnum = i;
1201 	}
1202 	return (0);
1203 }
1204 
1205 static int
1206 mpr_alloc_hw_queues(struct mpr_softc *sc)
1207 {
1208 	bus_addr_t queues_busaddr;
1209 	uint8_t *queues;
1210 	int qsize, fqsize, pqsize;
1211 
1212 	/*
1213 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1214 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1215 	 * This queue supplies fresh reply frames for the firmware to use.
1216 	 *
1217 	 * The reply descriptor post queue contains 8 byte entries in
1218 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1219 	 * contains filled-in reply frames sent from the firmware to the host.
1220 	 *
1221 	 * These two queues are allocated together for simplicity.
1222 	 */
1223 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1224 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1225 	fqsize= sc->fqdepth * 4;
1226 	pqsize = sc->pqdepth * 8;
1227 	qsize = fqsize + pqsize;
1228 
1229         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1230 				16, 0,			/* algnmnt, boundary */
1231 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1232 				BUS_SPACE_MAXADDR,	/* highaddr */
1233 				NULL, NULL,		/* filter, filterarg */
1234                                 qsize,			/* maxsize */
1235                                 1,			/* nsegments */
1236                                 qsize,			/* maxsegsize */
1237                                 0,			/* flags */
1238                                 NULL, NULL,		/* lockfunc, lockarg */
1239                                 &sc->queues_dmat)) {
1240 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1241 		return (ENOMEM);
1242         }
1243         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1244 	    &sc->queues_map)) {
1245 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1246 		return (ENOMEM);
1247         }
1248         bzero(queues, qsize);
1249         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1250 	    mpr_memaddr_cb, &queues_busaddr, 0);
1251 
1252 	sc->free_queue = (uint32_t *)queues;
1253 	sc->free_busaddr = queues_busaddr;
1254 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1255 	sc->post_busaddr = queues_busaddr + fqsize;
1256 
1257 	return (0);
1258 }
1259 
1260 static int
1261 mpr_alloc_replies(struct mpr_softc *sc)
1262 {
1263 	int rsize, num_replies;
1264 
1265 	/*
1266 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1267 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1268 	 * replies can be used at once.
1269 	 */
1270 	num_replies = max(sc->fqdepth, sc->num_replies);
1271 
1272 	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1273         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1274 				4, 0,			/* algnmnt, boundary */
1275 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1276 				BUS_SPACE_MAXADDR,	/* highaddr */
1277 				NULL, NULL,		/* filter, filterarg */
1278                                 rsize,			/* maxsize */
1279                                 1,			/* nsegments */
1280                                 rsize,			/* maxsegsize */
1281                                 0,			/* flags */
1282                                 NULL, NULL,		/* lockfunc, lockarg */
1283                                 &sc->reply_dmat)) {
1284 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1285 		return (ENOMEM);
1286         }
1287         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1288 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1289 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1290 		return (ENOMEM);
1291         }
1292         bzero(sc->reply_frames, rsize);
1293         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1294 	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1295 
1296 	return (0);
1297 }
1298 
1299 static int
1300 mpr_alloc_requests(struct mpr_softc *sc)
1301 {
1302 	struct mpr_command *cm;
1303 	struct mpr_chain *chain;
1304 	int i, rsize, nsegs;
1305 
1306 	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1307         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1308 				16, 0,			/* algnmnt, boundary */
1309 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1310 				BUS_SPACE_MAXADDR,	/* highaddr */
1311 				NULL, NULL,		/* filter, filterarg */
1312                                 rsize,			/* maxsize */
1313                                 1,			/* nsegments */
1314                                 rsize,			/* maxsegsize */
1315                                 0,			/* flags */
1316                                 NULL, NULL,		/* lockfunc, lockarg */
1317                                 &sc->req_dmat)) {
1318 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1319 		return (ENOMEM);
1320         }
1321         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1322 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1323 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1324 		return (ENOMEM);
1325         }
1326         bzero(sc->req_frames, rsize);
1327         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1328 	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1329 
1330 	/*
1331 	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
1332 	 * get the size of a Chain Frame.  Previous versions use the size as a
1333 	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
1334 	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
1335 	 * number of 16-byte elelements that can fit in a Chain Frame, which is
1336 	 * the size of an IEEE Simple SGE.
1337 	 */
1338 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
1339 		sc->chain_seg_size =
1340 		    htole16(sc->facts->IOCMaxChainSegmentSize);
1341 		if (sc->chain_seg_size == 0) {
1342 			sc->chain_frame_size = MPR_DEFAULT_CHAIN_SEG_SIZE *
1343 			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1344 		} else {
1345 			sc->chain_frame_size = sc->chain_seg_size *
1346 			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1347 		}
1348 	} else {
1349 		sc->chain_frame_size = sc->facts->IOCRequestFrameSize * 4;
1350 	}
1351 	rsize = sc->chain_frame_size * sc->max_chains;
1352         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1353 				16, 0,			/* algnmnt, boundary */
1354 				BUS_SPACE_MAXADDR,	/* lowaddr */
1355 				BUS_SPACE_MAXADDR,	/* highaddr */
1356 				NULL, NULL,		/* filter, filterarg */
1357                                 rsize,			/* maxsize */
1358                                 1,			/* nsegments */
1359                                 rsize,			/* maxsegsize */
1360                                 0,			/* flags */
1361                                 NULL, NULL,		/* lockfunc, lockarg */
1362                                 &sc->chain_dmat)) {
1363 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1364 		return (ENOMEM);
1365         }
1366         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1367 	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1368 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1369 		return (ENOMEM);
1370         }
1371         bzero(sc->chain_frames, rsize);
1372         bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1373 	    mpr_memaddr_cb, &sc->chain_busaddr, 0);
1374 
1375 	rsize = MPR_SENSE_LEN * sc->num_reqs;
1376 	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1377 				1, 0,			/* algnmnt, boundary */
1378 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1379 				BUS_SPACE_MAXADDR,	/* highaddr */
1380 				NULL, NULL,		/* filter, filterarg */
1381                                 rsize,			/* maxsize */
1382                                 1,			/* nsegments */
1383                                 rsize,			/* maxsegsize */
1384                                 0,			/* flags */
1385                                 NULL, NULL,		/* lockfunc, lockarg */
1386                                 &sc->sense_dmat)) {
1387 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1388 		return (ENOMEM);
1389         }
1390         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1391 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1392 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1393 		return (ENOMEM);
1394         }
1395         bzero(sc->sense_frames, rsize);
1396         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1397 	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1398 
1399 	sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
1400 	    M_WAITOK | M_ZERO);
1401 	if (!sc->chains) {
1402 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1403 		return (ENOMEM);
1404 	}
1405 	for (i = 0; i < sc->max_chains; i++) {
1406 		chain = &sc->chains[i];
1407 		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1408 		    i * sc->chain_frame_size);
1409 		chain->chain_busaddr = sc->chain_busaddr +
1410 		    i * sc->chain_frame_size;
1411 		mpr_free_chain(sc, chain);
1412 		sc->chain_free_lowwater++;
1413 	}
1414 
1415 	/*
1416 	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1417 	 * these devices.
1418 	 */
1419 	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1420 	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1421 		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1422 			return (ENOMEM);
1423 	}
1424 
1425 	/* XXX Need to pick a more precise value */
1426 	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1427         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1428 				1, 0,			/* algnmnt, boundary */
1429 				BUS_SPACE_MAXADDR,	/* lowaddr */
1430 				BUS_SPACE_MAXADDR,	/* highaddr */
1431 				NULL, NULL,		/* filter, filterarg */
1432                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1433                                 nsegs,			/* nsegments */
1434                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1435                                 BUS_DMA_ALLOCNOW,	/* flags */
1436                                 busdma_lock_mutex,	/* lockfunc */
1437 				&sc->mpr_mtx,		/* lockarg */
1438                                 &sc->buffer_dmat)) {
1439 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1440 		return (ENOMEM);
1441         }
1442 
1443 	/*
1444 	 * SMID 0 cannot be used as a free command per the firmware spec.
1445 	 * Just drop that command instead of risking accounting bugs.
1446 	 */
1447 	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1448 	    M_MPR, M_WAITOK | M_ZERO);
1449 	if (!sc->commands) {
1450 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n");
1451 		return (ENOMEM);
1452 	}
1453 	for (i = 1; i < sc->num_reqs; i++) {
1454 		cm = &sc->commands[i];
1455 		cm->cm_req = sc->req_frames +
1456 		    i * sc->facts->IOCRequestFrameSize * 4;
1457 		cm->cm_req_busaddr = sc->req_busaddr +
1458 		    i * sc->facts->IOCRequestFrameSize * 4;
1459 		cm->cm_sense = &sc->sense_frames[i];
1460 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1461 		cm->cm_desc.Default.SMID = i;
1462 		cm->cm_sc = sc;
1463 		TAILQ_INIT(&cm->cm_chain_list);
1464 		TAILQ_INIT(&cm->cm_prp_page_list);
1465 		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1466 
1467 		/* XXX Is a failure here a critical problem? */
1468 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1469 		    == 0) {
1470 			if (i <= sc->facts->HighPriorityCredit)
1471 				mpr_free_high_priority_command(sc, cm);
1472 			else
1473 				mpr_free_command(sc, cm);
1474 		} else {
1475 			panic("failed to allocate command %d\n", i);
1476 			sc->num_reqs = i;
1477 			break;
1478 		}
1479 	}
1480 
1481 	return (0);
1482 }
1483 
1484 /*
1485  * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1486  * which are scatter/gather lists for NVMe devices.
1487  *
1488  * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1489  * and translated by FW.
1490  *
1491  * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1492  */
1493 static int
1494 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1495 {
1496 	int PRPs_per_page, PRPs_required, pages_required;
1497 	int rsize, i;
1498 	struct mpr_prp_page *prp_page;
1499 
1500 	/*
1501 	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1502 	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1503 	 * MAX_IO_SIZE / PAGE_SIZE = 256
1504 	 *
1505 	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1506 	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1507 	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1508 	 *
1509 	 * Each of these buffers will need to be contiguous. For simplicity,
1510 	 * only one buffer is allocated here, which has all of the space
1511 	 * required for the NVMe Queue Depth. If there are problems allocating
1512 	 * this one buffer, this function will need to change to allocate
1513 	 * individual, contiguous NVME_QDEPTH buffers.
1514 	 *
1515 	 * The real calculation will use the real max io size. Above is just an
1516 	 * example.
1517 	 *
1518 	 */
1519 	PRPs_required = sc->maxio / PAGE_SIZE;
1520 	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1521 	pages_required = (PRPs_required / PRPs_per_page) + 1;
1522 
1523 	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1524 	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1525 	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1526 				4, 0,			/* algnmnt, boundary */
1527 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1528 				BUS_SPACE_MAXADDR,	/* highaddr */
1529 				NULL, NULL,		/* filter, filterarg */
1530 				rsize,			/* maxsize */
1531 				1,			/* nsegments */
1532 				rsize,			/* maxsegsize */
1533 				0,			/* flags */
1534 				NULL, NULL,		/* lockfunc, lockarg */
1535 				&sc->prp_page_dmat)) {
1536 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1537 		    "tag\n");
1538 		return (ENOMEM);
1539 	}
1540 	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1541 	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1542 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1543 		return (ENOMEM);
1544 	}
1545 	bzero(sc->prp_pages, rsize);
1546 	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1547 	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1548 
1549 	sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1550 	    M_WAITOK | M_ZERO);
1551 	for (i = 0; i < NVME_QDEPTH; i++) {
1552 		prp_page = &sc->prps[i];
1553 		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1554 		    i * sc->prp_buffer_size);
1555 		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1556 		    i * sc->prp_buffer_size);
1557 		mpr_free_prp_page(sc, prp_page);
1558 		sc->prp_pages_free_lowwater++;
1559 	}
1560 
1561 	return (0);
1562 }
1563 
1564 static int
1565 mpr_init_queues(struct mpr_softc *sc)
1566 {
1567 	int i;
1568 
1569 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1570 
1571 	/*
1572 	 * According to the spec, we need to use one less reply than we
1573 	 * have space for on the queue.  So sc->num_replies (the number we
1574 	 * use) should be less than sc->fqdepth (allocated size).
1575 	 */
1576 	if (sc->num_replies >= sc->fqdepth)
1577 		return (EINVAL);
1578 
1579 	/*
1580 	 * Initialize all of the free queue entries.
1581 	 */
1582 	for (i = 0; i < sc->fqdepth; i++) {
1583 		sc->free_queue[i] = sc->reply_busaddr +
1584 		    (i * sc->facts->ReplyFrameSize * 4);
1585 	}
1586 	sc->replyfreeindex = sc->num_replies;
1587 
1588 	return (0);
1589 }
1590 
1591 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1592  * Next are the global settings, if they exist.  Highest are the per-unit
1593  * settings, if they exist.
1594  */
1595 void
1596 mpr_get_tunables(struct mpr_softc *sc)
1597 {
1598 	char tmpstr[80], mpr_debug[80];
1599 
1600 	/* XXX default to some debugging for now */
1601 	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1602 	sc->disable_msix = 0;
1603 	sc->disable_msi = 0;
1604 	sc->max_msix = MPR_MSIX_MAX;
1605 	sc->max_chains = MPR_CHAIN_FRAMES;
1606 	sc->max_io_pages = MPR_MAXIO_PAGES;
1607 	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1608 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1609 	sc->use_phynum = 1;
1610 	sc->max_reqframes = MPR_REQ_FRAMES;
1611 	sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1612 	sc->max_replyframes = MPR_REPLY_FRAMES;
1613 	sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1614 
1615 	/*
1616 	 * Grab the global variables.
1617 	 */
1618 	bzero(mpr_debug, 80);
1619 	if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
1620 		mpr_parse_debug(sc, mpr_debug);
1621 	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1622 	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1623 	TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
1624 	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1625 	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1626 	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1627 	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1628 	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1629 	TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1630 	TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1631 	TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1632 	TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1633 
1634 	/* Grab the unit-instance variables */
1635 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1636 	    device_get_unit(sc->mpr_dev));
1637 	bzero(mpr_debug, 80);
1638 	if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
1639 		mpr_parse_debug(sc, mpr_debug);
1640 
1641 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1642 	    device_get_unit(sc->mpr_dev));
1643 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1644 
1645 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1646 	    device_get_unit(sc->mpr_dev));
1647 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1648 
1649 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
1650 	    device_get_unit(sc->mpr_dev));
1651 	TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1652 
1653 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1654 	    device_get_unit(sc->mpr_dev));
1655 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1656 
1657 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1658 	    device_get_unit(sc->mpr_dev));
1659 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1660 
1661 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1662 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1663 	    device_get_unit(sc->mpr_dev));
1664 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1665 
1666 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1667 	    device_get_unit(sc->mpr_dev));
1668 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1669 
1670 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1671 	    device_get_unit(sc->mpr_dev));
1672 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1673 
1674 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1675 	    device_get_unit(sc->mpr_dev));
1676 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1677 
1678 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1679 	    device_get_unit(sc->mpr_dev));
1680 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1681 
1682 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1683 	    device_get_unit(sc->mpr_dev));
1684 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1685 
1686 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1687 	    device_get_unit(sc->mpr_dev));
1688 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1689 
1690 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1691 	    device_get_unit(sc->mpr_dev));
1692 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1693 }
1694 
1695 static void
1696 mpr_setup_sysctl(struct mpr_softc *sc)
1697 {
1698 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1699 	struct sysctl_oid	*sysctl_tree = NULL;
1700 	char tmpstr[80], tmpstr2[80];
1701 
1702 	/*
1703 	 * Setup the sysctl variable so the user can change the debug level
1704 	 * on the fly.
1705 	 */
1706 	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1707 	    device_get_unit(sc->mpr_dev));
1708 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1709 
1710 	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1711 	if (sysctl_ctx != NULL)
1712 		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1713 
1714 	if (sysctl_tree == NULL) {
1715 		sysctl_ctx_init(&sc->sysctl_ctx);
1716 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1717 		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1718 		    CTLFLAG_RD, 0, tmpstr);
1719 		if (sc->sysctl_tree == NULL)
1720 			return;
1721 		sysctl_ctx = &sc->sysctl_ctx;
1722 		sysctl_tree = sc->sysctl_tree;
1723 	}
1724 
1725 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1726 	    OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1727 	    sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
1728 
1729 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1730 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1731 	    "Disable the use of MSI-X interrupts");
1732 
1733 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1734 	    OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1735 	    "User-defined maximum number of MSIX queues");
1736 
1737 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1738 	    OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1739 	    "Negotiated number of MSIX queues");
1740 
1741 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1742 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1743 	    "Total number of allocated request frames");
1744 
1745 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1746 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1747 	    "Total number of allocated high priority request frames");
1748 
1749 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1750 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1751 	    "Total number of allocated reply frames");
1752 
1753 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1754 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1755 	    "Total number of event frames allocated");
1756 
1757 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1758 	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1759 	    strlen(sc->fw_version), "firmware version");
1760 
1761 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1762 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1763 	    strlen(MPR_DRIVER_VERSION), "driver version");
1764 
1765 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1766 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1767 	    &sc->io_cmds_active, 0, "number of currently active commands");
1768 
1769 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1770 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1771 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1772 
1773 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1774 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1775 	    &sc->chain_free, 0, "number of free chain elements");
1776 
1777 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1778 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1779 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1780 
1781 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1782 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1783 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1784 
1785 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1786 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1787 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1788 	    "IOCFacts)");
1789 
1790 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1791 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1792 	    "enable SSU to SATA SSD/HDD at shutdown");
1793 
1794 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1795 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1796 	    &sc->chain_alloc_fail, "chain allocation failures");
1797 
1798 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1799 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1800 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1801 	    "spinup after SATA ID error");
1802 
1803 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1804 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1805 	    "Use the phy number for enumeration");
1806 
1807 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1808 	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1809 	    &sc->prp_pages_free, 0, "number of free PRP pages");
1810 
1811 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1812 	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1813 	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1814 
1815 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1816 	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1817 	    &sc->prp_page_alloc_fail, "PRP page allocation failures");
1818 }
1819 
1820 static struct mpr_debug_string {
1821 	char *name;
1822 	int flag;
1823 } mpr_debug_strings[] = {
1824 	{"info", MPR_INFO},
1825 	{"fault", MPR_FAULT},
1826 	{"event", MPR_EVENT},
1827 	{"log", MPR_LOG},
1828 	{"recovery", MPR_RECOVERY},
1829 	{"error", MPR_ERROR},
1830 	{"init", MPR_INIT},
1831 	{"xinfo", MPR_XINFO},
1832 	{"user", MPR_USER},
1833 	{"mapping", MPR_MAPPING},
1834 	{"trace", MPR_TRACE}
1835 };
1836 
1837 enum mpr_debug_level_combiner {
1838 	COMB_NONE,
1839 	COMB_ADD,
1840 	COMB_SUB
1841 };
1842 
1843 static int
1844 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
1845 {
1846 	struct mpr_softc *sc;
1847 	struct mpr_debug_string *string;
1848 	struct sbuf *sbuf;
1849 	char *buffer;
1850 	size_t sz;
1851 	int i, len, debug, error;
1852 
1853 	sc = (struct mpr_softc *)arg1;
1854 
1855 	error = sysctl_wire_old_buffer(req, 0);
1856 	if (error != 0)
1857 		return (error);
1858 
1859 	sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1860 	debug = sc->mpr_debug;
1861 
1862 	sbuf_printf(sbuf, "%#x", debug);
1863 
1864 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
1865 	for (i = 0; i < sz; i++) {
1866 		string = &mpr_debug_strings[i];
1867 		if (debug & string->flag)
1868 			sbuf_printf(sbuf, ",%s", string->name);
1869 	}
1870 
1871 	error = sbuf_finish(sbuf);
1872 	sbuf_delete(sbuf);
1873 
1874 	if (error || req->newptr == NULL)
1875 		return (error);
1876 
1877 	len = req->newlen - req->newidx;
1878 	if (len == 0)
1879 		return (0);
1880 
1881 	buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
1882 	error = SYSCTL_IN(req, buffer, len);
1883 
1884 	mpr_parse_debug(sc, buffer);
1885 
1886 	free(buffer, M_MPR);
1887 	return (error);
1888 }
1889 
1890 static void
1891 mpr_parse_debug(struct mpr_softc *sc, char *list)
1892 {
1893 	struct mpr_debug_string *string;
1894 	enum mpr_debug_level_combiner op;
1895 	char *token, *endtoken;
1896 	size_t sz;
1897 	int flags, i;
1898 
1899 	if (list == NULL || *list == '\0')
1900 		return;
1901 
1902 	if (*list == '+') {
1903 		op = COMB_ADD;
1904 		list++;
1905 	} else if (*list == '-') {
1906 		op = COMB_SUB;
1907 		list++;
1908 	} else
1909 		op = COMB_NONE;
1910 	if (*list == '\0')
1911 		return;
1912 
1913 	flags = 0;
1914 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
1915 	while ((token = strsep(&list, ":,")) != NULL) {
1916 
1917 		/* Handle integer flags */
1918 		flags |= strtol(token, &endtoken, 0);
1919 		if (token != endtoken)
1920 			continue;
1921 
1922 		/* Handle text flags */
1923 		for (i = 0; i < sz; i++) {
1924 			string = &mpr_debug_strings[i];
1925 			if (strcasecmp(token, string->name) == 0) {
1926 				flags |= string->flag;
1927 				break;
1928 			}
1929 		}
1930 	}
1931 
1932 	switch (op) {
1933 	case COMB_NONE:
1934 		sc->mpr_debug = flags;
1935 		break;
1936 	case COMB_ADD:
1937 		sc->mpr_debug |= flags;
1938 		break;
1939 	case COMB_SUB:
1940 		sc->mpr_debug &= (~flags);
1941 		break;
1942 	}
1943 	return;
1944 }
1945 
1946 int
1947 mpr_attach(struct mpr_softc *sc)
1948 {
1949 	int error;
1950 
1951 	MPR_FUNCTRACE(sc);
1952 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1953 
1954 	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
1955 	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
1956 	callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
1957 	TAILQ_INIT(&sc->event_list);
1958 	timevalclear(&sc->lastfail);
1959 
1960 	if ((error = mpr_transition_ready(sc)) != 0) {
1961 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
1962 		    "Failed to transition ready\n");
1963 		return (error);
1964 	}
1965 
1966 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1967 	    M_ZERO|M_NOWAIT);
1968 	if (!sc->facts) {
1969 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
1970 		    "Cannot allocate memory, exit\n");
1971 		return (ENOMEM);
1972 	}
1973 
1974 	/*
1975 	 * Get IOC Facts and allocate all structures based on this information.
1976 	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1977 	 * Facts. If relevant values have changed in IOC Facts, this function
1978 	 * will free all of the memory based on IOC Facts and reallocate that
1979 	 * memory.  If this fails, any allocated memory should already be freed.
1980 	 */
1981 	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1982 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
1983 		    "failed with error %d\n", error);
1984 		return (error);
1985 	}
1986 
1987 	/* Start the periodic watchdog check on the IOC Doorbell */
1988 	mpr_periodic(sc);
1989 
1990 	/*
1991 	 * The portenable will kick off discovery events that will drive the
1992 	 * rest of the initialization process.  The CAM/SAS module will
1993 	 * hold up the boot sequence until discovery is complete.
1994 	 */
1995 	sc->mpr_ich.ich_func = mpr_startup;
1996 	sc->mpr_ich.ich_arg = sc;
1997 	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1998 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1999 		    "Cannot establish MPR config hook\n");
2000 		error = EINVAL;
2001 	}
2002 
2003 	/*
2004 	 * Allow IR to shutdown gracefully when shutdown occurs.
2005 	 */
2006 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2007 	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2008 
2009 	if (sc->shutdown_eh == NULL)
2010 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2011 		    "shutdown event registration failed\n");
2012 
2013 	mpr_setup_sysctl(sc);
2014 
2015 	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
2016 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2017 
2018 	return (error);
2019 }
2020 
2021 /* Run through any late-start handlers. */
2022 static void
2023 mpr_startup(void *arg)
2024 {
2025 	struct mpr_softc *sc;
2026 
2027 	sc = (struct mpr_softc *)arg;
2028 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2029 
2030 	mpr_lock(sc);
2031 	mpr_unmask_intr(sc);
2032 
2033 	/* initialize device mapping tables */
2034 	mpr_base_static_config_pages(sc);
2035 	mpr_mapping_initialize(sc);
2036 	mprsas_startup(sc);
2037 	mpr_unlock(sc);
2038 
2039 	mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2040 	config_intrhook_disestablish(&sc->mpr_ich);
2041 	sc->mpr_ich.ich_arg = NULL;
2042 
2043 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2044 }
2045 
2046 /* Periodic watchdog.  Is called with the driver lock already held. */
2047 static void
2048 mpr_periodic(void *arg)
2049 {
2050 	struct mpr_softc *sc;
2051 	uint32_t db;
2052 
2053 	sc = (struct mpr_softc *)arg;
2054 	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2055 		return;
2056 
2057 	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2058 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2059 		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2060 		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2061 			panic("TEMPERATURE FAULT: STOPPING.");
2062 		}
2063 		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2064 		mpr_reinit(sc);
2065 	}
2066 
2067 	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
2068 }
2069 
2070 static void
2071 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2072     MPI2_EVENT_NOTIFICATION_REPLY *event)
2073 {
2074 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2075 
2076 	MPR_DPRINT_EVENT(sc, generic, event);
2077 
2078 	switch (event->Event) {
2079 	case MPI2_EVENT_LOG_DATA:
2080 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2081 		if (sc->mpr_debug & MPR_EVENT)
2082 			hexdump(event->EventData, event->EventDataLength, NULL,
2083 			    0);
2084 		break;
2085 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2086 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2087 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2088 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2089 		     entry->LogSequence);
2090 		break;
2091 	default:
2092 		break;
2093 	}
2094 	return;
2095 }
2096 
2097 static int
2098 mpr_attach_log(struct mpr_softc *sc)
2099 {
2100 	uint8_t events[16];
2101 
2102 	bzero(events, 16);
2103 	setbit(events, MPI2_EVENT_LOG_DATA);
2104 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2105 
2106 	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2107 	    &sc->mpr_log_eh);
2108 
2109 	return (0);
2110 }
2111 
2112 static int
2113 mpr_detach_log(struct mpr_softc *sc)
2114 {
2115 
2116 	if (sc->mpr_log_eh != NULL)
2117 		mpr_deregister_events(sc, sc->mpr_log_eh);
2118 	return (0);
2119 }
2120 
2121 /*
2122  * Free all of the driver resources and detach submodules.  Should be called
2123  * without the lock held.
2124  */
2125 int
2126 mpr_free(struct mpr_softc *sc)
2127 {
2128 	int error;
2129 
2130 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2131 	/* Turn off the watchdog */
2132 	mpr_lock(sc);
2133 	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2134 	mpr_unlock(sc);
2135 	/* Lock must not be held for this */
2136 	callout_drain(&sc->periodic);
2137 	callout_drain(&sc->device_check_callout);
2138 
2139 	if (((error = mpr_detach_log(sc)) != 0) ||
2140 	    ((error = mpr_detach_sas(sc)) != 0)) {
2141 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2142 		    "subsystems, error= %d, exit\n", error);
2143 		return (error);
2144 	}
2145 
2146 	mpr_detach_user(sc);
2147 
2148 	/* Put the IOC back in the READY state. */
2149 	mpr_lock(sc);
2150 	if ((error = mpr_transition_ready(sc)) != 0) {
2151 		mpr_unlock(sc);
2152 		return (error);
2153 	}
2154 	mpr_unlock(sc);
2155 
2156 	if (sc->facts != NULL)
2157 		free(sc->facts, M_MPR);
2158 
2159 	/*
2160 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2161 	 * to free these buffers too.
2162 	 */
2163 	mpr_iocfacts_free(sc);
2164 
2165 	if (sc->sysctl_tree != NULL)
2166 		sysctl_ctx_free(&sc->sysctl_ctx);
2167 
2168 	/* Deregister the shutdown function */
2169 	if (sc->shutdown_eh != NULL)
2170 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2171 
2172 	mtx_destroy(&sc->mpr_mtx);
2173 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2174 
2175 	return (0);
2176 }
2177 
2178 static __inline void
2179 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2180 {
2181 	MPR_FUNCTRACE(sc);
2182 
2183 	if (cm == NULL) {
2184 		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2185 		return;
2186 	}
2187 
2188 	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2189 		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2190 
2191 	if (cm->cm_complete != NULL) {
2192 		mpr_dprint(sc, MPR_TRACE,
2193 		    "%s cm %p calling cm_complete %p data %p reply %p\n",
2194 		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
2195 		    cm->cm_reply);
2196 		cm->cm_complete(sc, cm);
2197 	}
2198 
2199 	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2200 		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2201 		wakeup(cm);
2202 	}
2203 
2204 	if (sc->io_cmds_active != 0) {
2205 		sc->io_cmds_active--;
2206 	} else {
2207 		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2208 		    "out of sync - resynching to 0\n");
2209 	}
2210 }
2211 
2212 static void
2213 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2214 {
2215 	union loginfo_type {
2216 		u32	loginfo;
2217 		struct {
2218 			u32	subcode:16;
2219 			u32	code:8;
2220 			u32	originator:4;
2221 			u32	bus_type:4;
2222 		} dw;
2223 	};
2224 	union loginfo_type sas_loginfo;
2225 	char *originator_str = NULL;
2226 
2227 	sas_loginfo.loginfo = log_info;
2228 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2229 		return;
2230 
2231 	/* each nexus loss loginfo */
2232 	if (log_info == 0x31170000)
2233 		return;
2234 
2235 	/* eat the loginfos associated with task aborts */
2236 	if ((log_info == 30050000) || (log_info == 0x31140000) ||
2237 	    (log_info == 0x31130000))
2238 		return;
2239 
2240 	switch (sas_loginfo.dw.originator) {
2241 	case 0:
2242 		originator_str = "IOP";
2243 		break;
2244 	case 1:
2245 		originator_str = "PL";
2246 		break;
2247 	case 2:
2248 		originator_str = "IR";
2249 		break;
2250 	}
2251 
2252 	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2253 	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2254 	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2255 }
2256 
2257 static void
2258 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2259 {
2260 	MPI2DefaultReply_t *mpi_reply;
2261 	u16 sc_status;
2262 
2263 	mpi_reply = (MPI2DefaultReply_t*)reply;
2264 	sc_status = le16toh(mpi_reply->IOCStatus);
2265 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2266 		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2267 }
2268 
2269 void
2270 mpr_intr(void *data)
2271 {
2272 	struct mpr_softc *sc;
2273 	uint32_t status;
2274 
2275 	sc = (struct mpr_softc *)data;
2276 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2277 
2278 	/*
2279 	 * Check interrupt status register to flush the bus.  This is
2280 	 * needed for both INTx interrupts and driver-driven polling
2281 	 */
2282 	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2283 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2284 		return;
2285 
2286 	mpr_lock(sc);
2287 	mpr_intr_locked(data);
2288 	mpr_unlock(sc);
2289 	return;
2290 }
2291 
2292 /*
2293  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2294  * chip.  Hopefully this theory is correct.
2295  */
2296 void
2297 mpr_intr_msi(void *data)
2298 {
2299 	struct mpr_softc *sc;
2300 
2301 	sc = (struct mpr_softc *)data;
2302 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2303 	mpr_lock(sc);
2304 	mpr_intr_locked(data);
2305 	mpr_unlock(sc);
2306 	return;
2307 }
2308 
2309 /*
2310  * The locking is overly broad and simplistic, but easy to deal with for now.
2311  */
2312 void
2313 mpr_intr_locked(void *data)
2314 {
2315 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2316 	struct mpr_softc *sc;
2317 	struct mpr_command *cm = NULL;
2318 	uint8_t flags;
2319 	u_int pq;
2320 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2321 	mpr_fw_diagnostic_buffer_t *pBuffer;
2322 
2323 	sc = (struct mpr_softc *)data;
2324 
2325 	pq = sc->replypostindex;
2326 	mpr_dprint(sc, MPR_TRACE,
2327 	    "%s sc %p starting with replypostindex %u\n",
2328 	    __func__, sc, sc->replypostindex);
2329 
2330 	for ( ;; ) {
2331 		cm = NULL;
2332 		desc = &sc->post_queue[sc->replypostindex];
2333 		flags = desc->Default.ReplyFlags &
2334 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2335 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2336 		    (le32toh(desc->Words.High) == 0xffffffff))
2337 			break;
2338 
2339 		/* increment the replypostindex now, so that event handlers
2340 		 * and cm completion handlers which decide to do a diag
2341 		 * reset can zero it without it getting incremented again
2342 		 * afterwards, and we break out of this loop on the next
2343 		 * iteration since the reply post queue has been cleared to
2344 		 * 0xFF and all descriptors look unused (which they are).
2345 		 */
2346 		if (++sc->replypostindex >= sc->pqdepth)
2347 			sc->replypostindex = 0;
2348 
2349 		switch (flags) {
2350 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2351 		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2352 		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2353 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2354 			cm->cm_reply = NULL;
2355 			break;
2356 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2357 		{
2358 			uint32_t baddr;
2359 			uint8_t *reply;
2360 
2361 			/*
2362 			 * Re-compose the reply address from the address
2363 			 * sent back from the chip.  The ReplyFrameAddress
2364 			 * is the lower 32 bits of the physical address of
2365 			 * particular reply frame.  Convert that address to
2366 			 * host format, and then use that to provide the
2367 			 * offset against the virtual address base
2368 			 * (sc->reply_frames).
2369 			 */
2370 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2371 			reply = sc->reply_frames +
2372 				(baddr - ((uint32_t)sc->reply_busaddr));
2373 			/*
2374 			 * Make sure the reply we got back is in a valid
2375 			 * range.  If not, go ahead and panic here, since
2376 			 * we'll probably panic as soon as we deference the
2377 			 * reply pointer anyway.
2378 			 */
2379 			if ((reply < sc->reply_frames)
2380 			 || (reply > (sc->reply_frames +
2381 			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
2382 				printf("%s: WARNING: reply %p out of range!\n",
2383 				       __func__, reply);
2384 				printf("%s: reply_frames %p, fqdepth %d, "
2385 				       "frame size %d\n", __func__,
2386 				       sc->reply_frames, sc->fqdepth,
2387 				       sc->facts->ReplyFrameSize * 4);
2388 				printf("%s: baddr %#x,\n", __func__, baddr);
2389 				/* LSI-TODO. See Linux Code for Graceful exit */
2390 				panic("Reply address out of range");
2391 			}
2392 			if (le16toh(desc->AddressReply.SMID) == 0) {
2393 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2394 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2395 					/*
2396 					 * If SMID is 0 for Diag Buffer Post,
2397 					 * this implies that the reply is due to
2398 					 * a release function with a status that
2399 					 * the buffer has been released.  Set
2400 					 * the buffer flags accordingly.
2401 					 */
2402 					rel_rep =
2403 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2404 					if ((le16toh(rel_rep->IOCStatus) &
2405 					    MPI2_IOCSTATUS_MASK) ==
2406 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2407 					{
2408 						pBuffer =
2409 						    &sc->fw_diag_buffer_list[
2410 						    rel_rep->BufferType];
2411 						pBuffer->valid_data = TRUE;
2412 						pBuffer->owned_by_firmware =
2413 						    FALSE;
2414 						pBuffer->immediate = FALSE;
2415 					}
2416 				} else
2417 					mpr_dispatch_event(sc, baddr,
2418 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2419 					    reply);
2420 			} else {
2421 				cm = &sc->commands[
2422 				    le16toh(desc->AddressReply.SMID)];
2423 				cm->cm_reply = reply;
2424 				cm->cm_reply_data =
2425 				    le32toh(desc->AddressReply.
2426 				    ReplyFrameAddress);
2427 			}
2428 			break;
2429 		}
2430 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2431 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2432 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2433 		default:
2434 			/* Unhandled */
2435 			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2436 			    desc->Default.ReplyFlags);
2437 			cm = NULL;
2438 			break;
2439 		}
2440 
2441 		if (cm != NULL) {
2442 			// Print Error reply frame
2443 			if (cm->cm_reply)
2444 				mpr_display_reply_info(sc,cm->cm_reply);
2445 			mpr_complete_command(sc, cm);
2446 		}
2447 
2448 		desc->Words.Low = 0xffffffff;
2449 		desc->Words.High = 0xffffffff;
2450 	}
2451 
2452 	if (pq != sc->replypostindex) {
2453 		mpr_dprint(sc, MPR_TRACE,
2454 		    "%s sc %p writing postindex %d\n",
2455 		    __func__, sc, sc->replypostindex);
2456 		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2457 		    sc->replypostindex);
2458 	}
2459 
2460 	return;
2461 }
2462 
2463 static void
2464 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2465     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2466 {
2467 	struct mpr_event_handle *eh;
2468 	int event, handled = 0;
2469 
2470 	event = le16toh(reply->Event);
2471 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2472 		if (isset(eh->mask, event)) {
2473 			eh->callback(sc, data, reply);
2474 			handled++;
2475 		}
2476 	}
2477 
2478 	if (handled == 0)
2479 		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2480 		    le16toh(event));
2481 
2482 	/*
2483 	 * This is the only place that the event/reply should be freed.
2484 	 * Anything wanting to hold onto the event data should have
2485 	 * already copied it into their own storage.
2486 	 */
2487 	mpr_free_reply(sc, data);
2488 }
2489 
2490 static void
2491 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2492 {
2493 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2494 
2495 	if (cm->cm_reply)
2496 		MPR_DPRINT_EVENT(sc, generic,
2497 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2498 
2499 	mpr_free_command(sc, cm);
2500 
2501 	/* next, send a port enable */
2502 	mprsas_startup(sc);
2503 }
2504 
2505 /*
2506  * For both register_events and update_events, the caller supplies a bitmap
2507  * of events that it _wants_.  These functions then turn that into a bitmask
2508  * suitable for the controller.
2509  */
2510 int
2511 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2512     mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2513 {
2514 	struct mpr_event_handle *eh;
2515 	int error = 0;
2516 
2517 	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2518 	if (!eh) {
2519 		mpr_dprint(sc, MPR_EVENT|MPR_ERROR,
2520 		    "Cannot allocate event memory\n");
2521 		return (ENOMEM);
2522 	}
2523 	eh->callback = cb;
2524 	eh->data = data;
2525 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2526 	if (mask != NULL)
2527 		error = mpr_update_events(sc, eh, mask);
2528 	*handle = eh;
2529 
2530 	return (error);
2531 }
2532 
2533 int
2534 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2535     uint8_t *mask)
2536 {
2537 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2538 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2539 	struct mpr_command *cm = NULL;
2540 	struct mpr_event_handle *eh;
2541 	int error, i;
2542 
2543 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2544 
2545 	if ((mask != NULL) && (handle != NULL))
2546 		bcopy(mask, &handle->mask[0], 16);
2547 	memset(sc->event_mask, 0xff, 16);
2548 
2549 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2550 		for (i = 0; i < 16; i++)
2551 			sc->event_mask[i] &= ~eh->mask[i];
2552 	}
2553 
2554 	if ((cm = mpr_alloc_command(sc)) == NULL)
2555 		return (EBUSY);
2556 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2557 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2558 	evtreq->MsgFlags = 0;
2559 	evtreq->SASBroadcastPrimitiveMasks = 0;
2560 #ifdef MPR_DEBUG_ALL_EVENTS
2561 	{
2562 		u_char fullmask[16];
2563 		memset(fullmask, 0x00, 16);
2564 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2565 	}
2566 #else
2567 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2568 #endif
2569 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2570 	cm->cm_data = NULL;
2571 
2572 	error = mpr_request_polled(sc, &cm);
2573 	if (cm != NULL)
2574 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2575 	if ((reply == NULL) ||
2576 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2577 		error = ENXIO;
2578 
2579 	if (reply)
2580 		MPR_DPRINT_EVENT(sc, generic, reply);
2581 
2582 	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2583 
2584 	if (cm != NULL)
2585 		mpr_free_command(sc, cm);
2586 	return (error);
2587 }
2588 
2589 static int
2590 mpr_reregister_events(struct mpr_softc *sc)
2591 {
2592 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2593 	struct mpr_command *cm;
2594 	struct mpr_event_handle *eh;
2595 	int error, i;
2596 
2597 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2598 
2599 	/* first, reregister events */
2600 
2601 	memset(sc->event_mask, 0xff, 16);
2602 
2603 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2604 		for (i = 0; i < 16; i++)
2605 			sc->event_mask[i] &= ~eh->mask[i];
2606 	}
2607 
2608 	if ((cm = mpr_alloc_command(sc)) == NULL)
2609 		return (EBUSY);
2610 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2611 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2612 	evtreq->MsgFlags = 0;
2613 	evtreq->SASBroadcastPrimitiveMasks = 0;
2614 #ifdef MPR_DEBUG_ALL_EVENTS
2615 	{
2616 		u_char fullmask[16];
2617 		memset(fullmask, 0x00, 16);
2618 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2619 	}
2620 #else
2621 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2622 #endif
2623 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2624 	cm->cm_data = NULL;
2625 	cm->cm_complete = mpr_reregister_events_complete;
2626 
2627 	error = mpr_map_command(sc, cm);
2628 
2629 	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2630 	    error);
2631 	return (error);
2632 }
2633 
2634 int
2635 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2636 {
2637 
2638 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2639 	free(handle, M_MPR);
2640 	return (mpr_update_events(sc, NULL, NULL));
2641 }
2642 
2643 /**
2644 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2645 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2646 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2647 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2648 * describe a larger data buffer. If the data buffer is too large to describe
2649 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2650 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2651 * elsewhere in memory to describe the remaining data memory segments. The PRP
2652 * list will be contiguous.
2653 
2654 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2655 * consists of a list of PRP entries to describe a number of noncontigous
2656 * physical memory segments as a single memory buffer, just as a SGL does. Note
2657 * however, that this function is only used by the IOCTL call, so the memory
2658 * given will be guaranteed to be contiguous. There is no need to translate
2659 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2660 * space that is one page size each.
2661 *
2662 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2663 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2664 * the second PRP element if the memory being described fits within 2 PRP
2665 * entries, or a PRP list pointer if the PRP spans more than two entries.
2666 *
2667 * A PRP list pointer contains the address of a PRP list, structured as a linear
2668 * array of PRP entries. Each PRP entry in this list describes a segment of
2669 * physical memory.
2670 *
2671 * Each 64-bit PRP entry comprises an address and an offset field. The address
2672 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2673 * offset describes where within that page the memory segment begins. Only the
2674 * first element in a PRP list may contain a non-zero offest, implying that all
2675 * memory segments following the first begin at the start of a PAGE_SIZE page.
2676 *
2677 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2678 * with exceptions for the first and last elements in the list. If the memory
2679 * being described by the list begins at a non-zero offset within the first page,
2680 * then the first PRP element will contain a non-zero offset indicating where the
2681 * region begins within the page. The last memory segment may end before the end
2682 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2683 * described by the PRP list.
2684 *
2685 * Since PRP entries lack any indication of size, the overall data buffer length
2686 * is used to determine where the end of the data memory buffer is located, and
2687 * how many PRP entries are required to describe it.
2688 *
2689 * Returns nothing.
2690 */
2691 void
2692 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2693     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2694     uint32_t data_in_sz, uint32_t data_out_sz)
2695 {
2696 	int			prp_size = PRP_ENTRY_SIZE;
2697 	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2698 	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2699 	uint32_t		offset, entry_len, page_mask_result, page_mask;
2700 	bus_addr_t		paddr;
2701 	size_t			length;
2702 	struct mpr_prp_page	*prp_page_info = NULL;
2703 
2704 	/*
2705 	 * Not all commands require a data transfer. If no data, just return
2706 	 * without constructing any PRP.
2707 	 */
2708 	if (!data_in_sz && !data_out_sz)
2709 		return;
2710 
2711 	/*
2712 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2713 	 * located at a 24 byte offset from the start of the NVMe command. Then
2714 	 * set the current PRP entry pointer to PRP1.
2715 	 */
2716 	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2717 	    NVME_CMD_PRP1_OFFSET);
2718 	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2719 	    NVME_CMD_PRP2_OFFSET);
2720 	prp_entry = prp1_entry;
2721 
2722 	/*
2723 	 * For the PRP entries, use the specially allocated buffer of
2724 	 * contiguous memory. PRP Page allocation failures should not happen
2725 	 * because there should be enough PRP page buffers to account for the
2726 	 * possible NVMe QDepth.
2727 	 */
2728 	prp_page_info = mpr_alloc_prp_page(sc);
2729 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2730 	    "used for building a native NVMe SGL.\n", __func__));
2731 	prp_page = (uint64_t *)prp_page_info->prp_page;
2732 	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2733 
2734 	/*
2735 	 * Insert the allocated PRP page into the command's PRP page list. This
2736 	 * will be freed when the command is freed.
2737 	 */
2738 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2739 
2740 	/*
2741 	 * Check if we are within 1 entry of a page boundary we don't want our
2742 	 * first entry to be a PRP List entry.
2743 	 */
2744 	page_mask = PAGE_SIZE - 1;
2745 	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2746 	    page_mask;
2747 	if (!page_mask_result)
2748 	{
2749 		/* Bump up to next page boundary. */
2750 		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2751 		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2752 		    prp_size);
2753 	}
2754 
2755 	/*
2756 	 * Set PRP physical pointer, which initially points to the current PRP
2757 	 * DMA memory page.
2758 	 */
2759 	prp_entry_phys = prp_page_phys;
2760 
2761 	/* Get physical address and length of the data buffer. */
2762 	paddr = (bus_addr_t)data;
2763 	if (data_in_sz)
2764 		length = data_in_sz;
2765 	else
2766 		length = data_out_sz;
2767 
2768 	/* Loop while the length is not zero. */
2769 	while (length)
2770 	{
2771 		/*
2772 		 * Check if we need to put a list pointer here if we are at page
2773 		 * boundary - prp_size (8 bytes).
2774 		 */
2775 		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2776 		    prp_size) & page_mask;
2777 		if (!page_mask_result)
2778 		{
2779 			/*
2780 			 * This is the last entry in a PRP List, so we need to
2781 			 * put a PRP list pointer here. What this does is:
2782 			 *   - bump the current memory pointer to the next
2783 			 *     address, which will be the next full page.
2784 			 *   - set the PRP Entry to point to that page. This is
2785 			 *     now the PRP List pointer.
2786 			 *   - bump the PRP Entry pointer the start of the next
2787 			 *     page. Since all of this PRP memory is contiguous,
2788 			 *     no need to get a new page - it's just the next
2789 			 *     address.
2790 			 */
2791 			prp_entry_phys++;
2792 			*prp_entry =
2793 			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
2794 			prp_entry++;
2795 		}
2796 
2797 		/* Need to handle if entry will be part of a page. */
2798 		offset = (uint32_t)paddr & page_mask;
2799 		entry_len = PAGE_SIZE - offset;
2800 
2801 		if (prp_entry == prp1_entry)
2802 		{
2803 			/*
2804 			 * Must fill in the first PRP pointer (PRP1) before
2805 			 * moving on.
2806 			 */
2807 			*prp1_entry = htole64((uint64_t)paddr);
2808 
2809 			/*
2810 			 * Now point to the second PRP entry within the
2811 			 * command (PRP2).
2812 			 */
2813 			prp_entry = prp2_entry;
2814 		}
2815 		else if (prp_entry == prp2_entry)
2816 		{
2817 			/*
2818 			 * Should the PRP2 entry be a PRP List pointer or just a
2819 			 * regular PRP pointer? If there is more than one more
2820 			 * page of data, must use a PRP List pointer.
2821 			 */
2822 			if (length > PAGE_SIZE)
2823 			{
2824 				/*
2825 				 * PRP2 will contain a PRP List pointer because
2826 				 * more PRP's are needed with this command. The
2827 				 * list will start at the beginning of the
2828 				 * contiguous buffer.
2829 				 */
2830 				*prp2_entry =
2831 				    htole64(
2832 				    (uint64_t)(uintptr_t)prp_entry_phys);
2833 
2834 				/*
2835 				 * The next PRP Entry will be the start of the
2836 				 * first PRP List.
2837 				 */
2838 				prp_entry = prp_page;
2839 			}
2840 			else
2841 			{
2842 				/*
2843 				 * After this, the PRP Entries are complete.
2844 				 * This command uses 2 PRP's and no PRP list.
2845 				 */
2846 				*prp2_entry = htole64((uint64_t)paddr);
2847 			}
2848 		}
2849 		else
2850 		{
2851 			/*
2852 			 * Put entry in list and bump the addresses.
2853 			 *
2854 			 * After PRP1 and PRP2 are filled in, this will fill in
2855 			 * all remaining PRP entries in a PRP List, one per each
2856 			 * time through the loop.
2857 			 */
2858 			*prp_entry = htole64((uint64_t)paddr);
2859 			prp_entry++;
2860 			prp_entry_phys++;
2861 		}
2862 
2863 		/*
2864 		 * Bump the phys address of the command's data buffer by the
2865 		 * entry_len.
2866 		 */
2867 		paddr += entry_len;
2868 
2869 		/* Decrement length accounting for last partial page. */
2870 		if (entry_len > length)
2871 			length = 0;
2872 		else
2873 			length -= entry_len;
2874 	}
2875 }
2876 
2877 /*
2878  * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
2879  * determine if the driver needs to build a native SGL. If so, that native SGL
2880  * is built in the contiguous buffers allocated especially for PCIe SGL
2881  * creation. If the driver will not build a native SGL, return TRUE and a
2882  * normal IEEE SGL will be built. Currently this routine supports NVMe devices
2883  * only.
2884  *
2885  * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
2886  */
2887 static int
2888 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
2889     bus_dma_segment_t *segs, int segs_left)
2890 {
2891 	uint32_t		i, sge_dwords, length, offset, entry_len;
2892 	uint32_t		num_entries, buff_len = 0, sges_in_segment;
2893 	uint32_t		page_mask, page_mask_result, *curr_buff;
2894 	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
2895 	uint32_t		first_page_data_size, end_residual;
2896 	uint64_t		*msg_phys;
2897 	bus_addr_t		paddr;
2898 	int			build_native_sgl = 0, first_prp_entry;
2899 	int			prp_size = PRP_ENTRY_SIZE;
2900 	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
2901 	struct mpr_prp_page	*prp_page_info = NULL;
2902 
2903 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2904 
2905 	/*
2906 	 * Add up the sizes of each segment length to get the total transfer
2907 	 * size, which will be checked against the Maximum Data Transfer Size.
2908 	 * If the data transfer length exceeds the MDTS for this device, just
2909 	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
2910 	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
2911 	 */
2912 	for (i = 0; i < segs_left; i++)
2913 		buff_len += htole32(segs[i].ds_len);
2914 	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
2915 		return 1;
2916 
2917 	/* Create page_mask (to get offset within page) */
2918 	page_mask = PAGE_SIZE - 1;
2919 
2920 	/*
2921 	 * Check if the number of elements exceeds the max number that can be
2922 	 * put in the main message frame (H/W can only translate an SGL that
2923 	 * is contained entirely in the main message frame).
2924 	 */
2925 	sges_in_segment = (sc->facts->IOCRequestFrameSize -
2926 	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
2927 	if (segs_left > sges_in_segment)
2928 		build_native_sgl = 1;
2929 	else
2930 	{
2931 		/*
2932 		 * NVMe uses one PRP for each physical page (or part of physical
2933 		 * page).
2934 		 *    if 4 pages or less then IEEE is OK
2935 		 *    if > 5 pages then we need to build a native SGL
2936 		 *    if > 4 and <= 5 pages, then check the physical address of
2937 		 *      the first SG entry, then if this first size in the page
2938 		 *      is >= the residual beyond 4 pages then use IEEE,
2939 		 *      otherwise use native SGL
2940 		 */
2941 		if (buff_len > (PAGE_SIZE * 5))
2942 			build_native_sgl = 1;
2943 		else if ((buff_len > (PAGE_SIZE * 4)) &&
2944 		    (buff_len <= (PAGE_SIZE * 5)) )
2945 		{
2946 			msg_phys = (uint64_t *)segs[0].ds_addr;
2947 			first_page_offset =
2948 			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
2949 			    page_mask);
2950 			first_page_data_size = PAGE_SIZE - first_page_offset;
2951 			end_residual = buff_len % PAGE_SIZE;
2952 
2953 			/*
2954 			 * If offset into first page pushes the end of the data
2955 			 * beyond end of the 5th page, we need the extra PRP
2956 			 * list.
2957 			 */
2958 			if (first_page_data_size < end_residual)
2959 				build_native_sgl = 1;
2960 
2961 			/*
2962 			 * Check if first SG entry size is < residual beyond 4
2963 			 * pages.
2964 			 */
2965 			if (htole32(segs[0].ds_len) <
2966 			    (buff_len - (PAGE_SIZE * 4)))
2967 				build_native_sgl = 1;
2968 		}
2969 	}
2970 
2971 	/* check if native SGL is needed */
2972 	if (!build_native_sgl)
2973 		return 1;
2974 
2975 	/*
2976 	 * Native SGL is needed.
2977 	 * Put a chain element in main message frame that points to the first
2978 	 * chain buffer.
2979 	 *
2980 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2981 	 *        a native SGL.
2982 	 */
2983 
2984 	/* Set main message chain element pointer */
2985 	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
2986 
2987 	/*
2988 	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
2989 	 * message.
2990 	 */
2991 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2992 	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2993 
2994 	/*
2995 	 * For the PRP entries, use the specially allocated buffer of
2996 	 * contiguous memory. PRP Page allocation failures should not happen
2997 	 * because there should be enough PRP page buffers to account for the
2998 	 * possible NVMe QDepth.
2999 	 */
3000 	prp_page_info = mpr_alloc_prp_page(sc);
3001 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
3002 	    "used for building a native NVMe SGL.\n", __func__));
3003 	curr_buff = (uint32_t *)prp_page_info->prp_page;
3004 	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
3005 
3006 	/*
3007 	 * Insert the allocated PRP page into the command's PRP page list. This
3008 	 * will be freed when the command is freed.
3009 	 */
3010 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
3011 
3012 	/*
3013 	 * Check if we are within 1 entry of a page boundary we don't want our
3014 	 * first entry to be a PRP List entry.
3015 	 */
3016 	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3017 	    page_mask;
3018 	if (!page_mask_result) {
3019 		/* Bump up to next page boundary. */
3020 		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3021 		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3022 	}
3023 
3024 	/* Fill in the chain element and make it an NVMe segment type. */
3025 	main_chain_element->Address.High =
3026 	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3027 	main_chain_element->Address.Low =
3028 	    htole32((uint32_t)(uintptr_t)msg_phys);
3029 	main_chain_element->NextChainOffset = 0;
3030 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3031 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3032 	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3033 
3034 	/* Set SGL pointer to start of contiguous PCIe buffer. */
3035 	ptr_sgl = curr_buff;
3036 	sge_dwords = 2;
3037 	num_entries = 0;
3038 
3039 	/*
3040 	 * NVMe has a very convoluted PRP format. One PRP is required for each
3041 	 * page or partial page. We need to split up OS SG entries if they are
3042 	 * longer than one page or cross a page boundary. We also have to insert
3043 	 * a PRP list pointer entry as the last entry in each physical page of
3044 	 * the PRP list.
3045 	 *
3046 	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3047 	 * in the main message in IEEE 64 format. The 2nd entry in the main
3048 	 * message is the chain element, and the rest of the PRP entries are
3049 	 * built in the contiguous PCIe buffer.
3050 	 */
3051 	first_prp_entry = 1;
3052 	ptr_first_sgl = (uint32_t *)cm->cm_sge;
3053 
3054 	for (i = 0; i < segs_left; i++) {
3055 		/* Get physical address and length of this SG entry. */
3056 		paddr = segs[i].ds_addr;
3057 		length = segs[i].ds_len;
3058 
3059 		/*
3060 		 * Check whether a given SGE buffer lies on a non-PAGED
3061 		 * boundary if this is not the first page. If so, this is not
3062 		 * expected so have FW build the SGL.
3063 		 */
3064 		if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3065 			mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3066 			    "building NVMe PRPs, low address is 0x%x\n",
3067 			    (uint32_t)paddr);
3068 			return 1;
3069 		}
3070 
3071 		/* Apart from last SGE, if any other SGE boundary is not page
3072 		 * aligned then it means that hole exists. Existence of hole
3073 		 * leads to data corruption. So fallback to IEEE SGEs.
3074 		 */
3075 		if (i != (segs_left - 1)) {
3076 			if (((uint32_t)paddr + length) & page_mask) {
3077 				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3078 				    "boundary while building NVMe PRPs, low "
3079 				    "address: 0x%x and length: %u\n",
3080 				    (uint32_t)paddr, length);
3081 				return 1;
3082 			}
3083 		}
3084 
3085 		/* Loop while the length is not zero. */
3086 		while (length) {
3087 			/*
3088 			 * Check if we need to put a list pointer here if we are
3089 			 * at page boundary - prp_size.
3090 			 */
3091 			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3092 			    prp_size) & page_mask;
3093 			if (!page_mask_result) {
3094 				/*
3095 				 * Need to put a PRP list pointer here.
3096 				 */
3097 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3098 				    prp_size);
3099 				*ptr_sgl = htole32((uintptr_t)msg_phys);
3100 				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3101 				    msg_phys >> 32);
3102 				ptr_sgl += sge_dwords;
3103 				num_entries++;
3104 			}
3105 
3106 			/* Need to handle if entry will be part of a page. */
3107 			offset = (uint32_t)paddr & page_mask;
3108 			entry_len = PAGE_SIZE - offset;
3109 			if (first_prp_entry) {
3110 				/*
3111 				 * Put IEEE entry in first SGE in main message.
3112 				 * (Simple element, System addr, not end of
3113 				 * list.)
3114 				 */
3115 				*ptr_first_sgl = htole32((uint32_t)paddr);
3116 				*(ptr_first_sgl + 1) =
3117 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3118 				*(ptr_first_sgl + 2) = htole32(entry_len);
3119 				*(ptr_first_sgl + 3) = 0;
3120 
3121 				/* No longer the first PRP entry. */
3122 				first_prp_entry = 0;
3123 			} else {
3124 				/* Put entry in list. */
3125 				*ptr_sgl = htole32((uint32_t)paddr);
3126 				*(ptr_sgl + 1) =
3127 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3128 
3129 				/* Bump ptr_sgl, msg_phys, and num_entries. */
3130 				ptr_sgl += sge_dwords;
3131 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3132 				    prp_size);
3133 				num_entries++;
3134 			}
3135 
3136 			/* Bump the phys address by the entry_len. */
3137 			paddr += entry_len;
3138 
3139 			/* Decrement length accounting for last partial page. */
3140 			if (entry_len > length)
3141 				length = 0;
3142 			else
3143 				length -= entry_len;
3144 		}
3145 	}
3146 
3147 	/* Set chain element Length. */
3148 	main_chain_element->Length = htole32(num_entries * prp_size);
3149 
3150 	/* Return 0, indicating we built a native SGL. */
3151 	return 0;
3152 }
3153 
3154 /*
3155  * Add a chain element as the next SGE for the specified command.
3156  * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3157  * only required for IEEE commands.  Therefore there is no code for commands
3158  * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3159  * shouldn't be requesting chains).
3160  */
3161 static int
3162 mpr_add_chain(struct mpr_command *cm, int segsleft)
3163 {
3164 	struct mpr_softc *sc = cm->cm_sc;
3165 	MPI2_REQUEST_HEADER *req;
3166 	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3167 	struct mpr_chain *chain;
3168 	int sgc_size, current_segs, rem_segs, segs_per_frame;
3169 	uint8_t next_chain_offset = 0;
3170 
3171 	/*
3172 	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
3173 	 * only IEEE commands should be requesting chains.  Return some error
3174 	 * code other than 0.
3175 	 */
3176 	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3177 		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3178 		    "an MPI SGL.\n");
3179 		return(ENOBUFS);
3180 	}
3181 
3182 	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3183 	if (cm->cm_sglsize < sgc_size)
3184 		panic("MPR: Need SGE Error Code\n");
3185 
3186 	chain = mpr_alloc_chain(cm->cm_sc);
3187 	if (chain == NULL)
3188 		return (ENOBUFS);
3189 
3190 	/*
3191 	 * Note: a double-linked list is used to make it easier to walk for
3192 	 * debugging.
3193 	 */
3194 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3195 
3196 	/*
3197 	 * Need to know if the number of frames left is more than 1 or not.  If
3198 	 * more than 1 frame is required, NextChainOffset will need to be set,
3199 	 * which will just be the last segment of the frame.
3200 	 */
3201 	rem_segs = 0;
3202 	if (cm->cm_sglsize < (sgc_size * segsleft)) {
3203 		/*
3204 		 * rem_segs is the number of segements remaining after the
3205 		 * segments that will go into the current frame.  Since it is
3206 		 * known that at least one more frame is required, account for
3207 		 * the chain element.  To know if more than one more frame is
3208 		 * required, just check if there will be a remainder after using
3209 		 * the current frame (with this chain) and the next frame.  If
3210 		 * so the NextChainOffset must be the last element of the next
3211 		 * frame.
3212 		 */
3213 		current_segs = (cm->cm_sglsize / sgc_size) - 1;
3214 		rem_segs = segsleft - current_segs;
3215 		segs_per_frame = sc->chain_frame_size / sgc_size;
3216 		if (rem_segs > segs_per_frame) {
3217 			next_chain_offset = segs_per_frame - 1;
3218 		}
3219 	}
3220 	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3221 	ieee_sgc->Length = next_chain_offset ?
3222 	    htole32((uint32_t)sc->chain_frame_size) :
3223 	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3224 	ieee_sgc->NextChainOffset = next_chain_offset;
3225 	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3226 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3227 	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3228 	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3229 	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3230 	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3231 	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3232 
3233 	cm->cm_sglsize = sc->chain_frame_size;
3234 	return (0);
3235 }
3236 
3237 /*
3238  * Add one scatter-gather element to the scatter-gather list for a command.
3239  * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3240  * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
3241  * chain, so don't consider any chain additions.
3242  */
3243 int
3244 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3245     int segsleft)
3246 {
3247 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3248 	u32 sge_flags;
3249 
3250 	/*
3251 	 * case 1: >=1 more segment, no room for anything (error)
3252 	 * case 2: 1 more segment and enough room for it
3253          */
3254 
3255 	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3256 		mpr_dprint(cm->cm_sc, MPR_ERROR,
3257 		    "%s: warning: Not enough room for MPI SGL in frame.\n",
3258 		    __func__);
3259 		return(ENOBUFS);
3260 	}
3261 
3262 	KASSERT(segsleft == 1,
3263 	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3264 	    segsleft));
3265 
3266 	/*
3267 	 * There is one more segment left to add for the MPI SGL and there is
3268 	 * enough room in the frame to add it.  This is the normal case because
3269 	 * MPI SGL's don't have chains, otherwise something is wrong.
3270 	 *
3271 	 * If this is a bi-directional request, need to account for that
3272 	 * here.  Save the pre-filled sge values.  These will be used
3273 	 * either for the 2nd SGL or for a single direction SGL.  If
3274 	 * cm_out_len is non-zero, this is a bi-directional request, so
3275 	 * fill in the OUT SGL first, then the IN SGL, otherwise just
3276 	 * fill in the IN SGL.  Note that at this time, when filling in
3277 	 * 2 SGL's for a bi-directional request, they both use the same
3278 	 * DMA buffer (same cm command).
3279 	 */
3280 	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3281 	saved_address_low = sge->Address.Low;
3282 	saved_address_high = sge->Address.High;
3283 	if (cm->cm_out_len) {
3284 		sge->FlagsLength = cm->cm_out_len |
3285 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3286 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
3287 		    MPI2_SGE_FLAGS_HOST_TO_IOC |
3288 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3289 		    MPI2_SGE_FLAGS_SHIFT);
3290 		cm->cm_sglsize -= len;
3291 		/* Endian Safe code */
3292 		sge_flags = sge->FlagsLength;
3293 		sge->FlagsLength = htole32(sge_flags);
3294 		sge->Address.High = htole32(sge->Address.High);
3295 		sge->Address.Low = htole32(sge->Address.Low);
3296 		bcopy(sge, cm->cm_sge, len);
3297 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3298 	}
3299 	sge->FlagsLength = saved_buf_len |
3300 	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3301 	    MPI2_SGE_FLAGS_END_OF_BUFFER |
3302 	    MPI2_SGE_FLAGS_LAST_ELEMENT |
3303 	    MPI2_SGE_FLAGS_END_OF_LIST |
3304 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3305 	    MPI2_SGE_FLAGS_SHIFT);
3306 	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3307 		sge->FlagsLength |=
3308 		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3309 		    MPI2_SGE_FLAGS_SHIFT);
3310 	} else {
3311 		sge->FlagsLength |=
3312 		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3313 		    MPI2_SGE_FLAGS_SHIFT);
3314 	}
3315 	sge->Address.Low = saved_address_low;
3316 	sge->Address.High = saved_address_high;
3317 
3318 	cm->cm_sglsize -= len;
3319 	/* Endian Safe code */
3320 	sge_flags = sge->FlagsLength;
3321 	sge->FlagsLength = htole32(sge_flags);
3322 	sge->Address.High = htole32(sge->Address.High);
3323 	sge->Address.Low = htole32(sge->Address.Low);
3324 	bcopy(sge, cm->cm_sge, len);
3325 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3326 	return (0);
3327 }
3328 
3329 /*
3330  * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3331  * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3332  * remaining size and pointer to the next SGE to fill in, respectively.
3333  */
3334 int
3335 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3336 {
3337 	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3338 	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3339 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3340 	uint32_t sge_length;
3341 
3342 	/*
3343 	 * case 1: No room for chain or segment (error).
3344 	 * case 2: Two or more segments left but only room for chain.
3345 	 * case 3: Last segment and room for it, so set flags.
3346 	 */
3347 
3348 	/*
3349 	 * There should be room for at least one element, or there is a big
3350 	 * problem.
3351 	 */
3352 	if (cm->cm_sglsize < ieee_sge_size)
3353 		panic("MPR: Need SGE Error Code\n");
3354 
3355 	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3356 		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3357 			return (error);
3358 	}
3359 
3360 	if (segsleft == 1) {
3361 		/*
3362 		 * If this is a bi-directional request, need to account for that
3363 		 * here.  Save the pre-filled sge values.  These will be used
3364 		 * either for the 2nd SGL or for a single direction SGL.  If
3365 		 * cm_out_len is non-zero, this is a bi-directional request, so
3366 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3367 		 * fill in the IN SGL.  Note that at this time, when filling in
3368 		 * 2 SGL's for a bi-directional request, they both use the same
3369 		 * DMA buffer (same cm command).
3370 		 */
3371 		saved_buf_len = sge->Length;
3372 		saved_address_low = sge->Address.Low;
3373 		saved_address_high = sge->Address.High;
3374 		if (cm->cm_out_len) {
3375 			sge->Length = cm->cm_out_len;
3376 			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3377 			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3378 			cm->cm_sglsize -= ieee_sge_size;
3379 			/* Endian Safe code */
3380 			sge_length = sge->Length;
3381 			sge->Length = htole32(sge_length);
3382 			sge->Address.High = htole32(sge->Address.High);
3383 			sge->Address.Low = htole32(sge->Address.Low);
3384 			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3385 			cm->cm_sge =
3386 			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3387 			    ieee_sge_size);
3388 		}
3389 		sge->Length = saved_buf_len;
3390 		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3391 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3392 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3393 		sge->Address.Low = saved_address_low;
3394 		sge->Address.High = saved_address_high;
3395 	}
3396 
3397 	cm->cm_sglsize -= ieee_sge_size;
3398 	/* Endian Safe code */
3399 	sge_length = sge->Length;
3400 	sge->Length = htole32(sge_length);
3401 	sge->Address.High = htole32(sge->Address.High);
3402 	sge->Address.Low = htole32(sge->Address.Low);
3403 	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3404 	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3405 	    ieee_sge_size);
3406 	return (0);
3407 }
3408 
3409 /*
3410  * Add one dma segment to the scatter-gather list for a command.
3411  */
3412 int
3413 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3414     int segsleft)
3415 {
3416 	MPI2_SGE_SIMPLE64 sge;
3417 	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3418 
3419 	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3420 		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3421 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3422 		ieee_sge.Length = len;
3423 		mpr_from_u64(pa, &ieee_sge.Address);
3424 
3425 		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3426 	} else {
3427 		/*
3428 		 * This driver always uses 64-bit address elements for
3429 		 * simplicity.
3430 		 */
3431 		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3432 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3433 		/* Set Endian safe macro in mpr_push_sge */
3434 		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3435 		mpr_from_u64(pa, &sge.Address);
3436 
3437 		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3438 	}
3439 }
3440 
3441 static void
3442 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3443 {
3444 	struct mpr_softc *sc;
3445 	struct mpr_command *cm;
3446 	u_int i, dir, sflags;
3447 
3448 	cm = (struct mpr_command *)arg;
3449 	sc = cm->cm_sc;
3450 
3451 	/*
3452 	 * In this case, just print out a warning and let the chip tell the
3453 	 * user they did the wrong thing.
3454 	 */
3455 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3456 		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3457 		    "segments, more than the %d allowed\n", __func__, nsegs,
3458 		    cm->cm_max_segs);
3459 	}
3460 
3461 	/*
3462 	 * Set up DMA direction flags.  Bi-directional requests are also handled
3463 	 * here.  In that case, both direction flags will be set.
3464 	 */
3465 	sflags = 0;
3466 	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3467 		/*
3468 		 * We have to add a special case for SMP passthrough, there
3469 		 * is no easy way to generically handle it.  The first
3470 		 * S/G element is used for the command (therefore the
3471 		 * direction bit needs to be set).  The second one is used
3472 		 * for the reply.  We'll leave it to the caller to make
3473 		 * sure we only have two buffers.
3474 		 */
3475 		/*
3476 		 * Even though the busdma man page says it doesn't make
3477 		 * sense to have both direction flags, it does in this case.
3478 		 * We have one s/g element being accessed in each direction.
3479 		 */
3480 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3481 
3482 		/*
3483 		 * Set the direction flag on the first buffer in the SMP
3484 		 * passthrough request.  We'll clear it for the second one.
3485 		 */
3486 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3487 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3488 	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3489 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3490 		dir = BUS_DMASYNC_PREWRITE;
3491 	} else
3492 		dir = BUS_DMASYNC_PREREAD;
3493 
3494 	/* Check if a native SG list is needed for an NVMe PCIe device. */
3495 	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3496 	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3497 		/* A native SG list was built, skip to end. */
3498 		goto out;
3499 	}
3500 
3501 	for (i = 0; i < nsegs; i++) {
3502 		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3503 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3504 		}
3505 		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3506 		    sflags, nsegs - i);
3507 		if (error != 0) {
3508 			/* Resource shortage, roll back! */
3509 			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3510 				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3511 				    "consider increasing hw.mpr.max_chains.\n");
3512 			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3513 			mpr_complete_command(sc, cm);
3514 			return;
3515 		}
3516 	}
3517 
3518 out:
3519 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3520 	mpr_enqueue_request(sc, cm);
3521 
3522 	return;
3523 }
3524 
3525 static void
3526 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3527 	     int error)
3528 {
3529 	mpr_data_cb(arg, segs, nsegs, error);
3530 }
3531 
3532 /*
3533  * This is the routine to enqueue commands ansynchronously.
3534  * Note that the only error path here is from bus_dmamap_load(), which can
3535  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3536  * assumed that if you have a command in-hand, then you have enough credits
3537  * to use it.
3538  */
3539 int
3540 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3541 {
3542 	int error = 0;
3543 
3544 	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3545 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3546 		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3547 	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3548 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3549 		    cm->cm_data, mpr_data_cb, cm, 0);
3550 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3551 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3552 		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3553 	} else {
3554 		/* Add a zero-length element as needed */
3555 		if (cm->cm_sge != NULL)
3556 			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3557 		mpr_enqueue_request(sc, cm);
3558 	}
3559 
3560 	return (error);
3561 }
3562 
3563 /*
3564  * This is the routine to enqueue commands synchronously.  An error of
3565  * EINPROGRESS from mpr_map_command() is ignored since the command will
3566  * be executed and enqueued automatically.  Other errors come from msleep().
3567  */
3568 int
3569 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3570     int sleep_flag)
3571 {
3572 	int error, rc;
3573 	struct timeval cur_time, start_time;
3574 	struct mpr_command *cm = *cmp;
3575 
3576 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3577 		return  EBUSY;
3578 
3579 	cm->cm_complete = NULL;
3580 	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3581 	error = mpr_map_command(sc, cm);
3582 	if ((error != 0) && (error != EINPROGRESS))
3583 		return (error);
3584 
3585 	// Check for context and wait for 50 mSec at a time until time has
3586 	// expired or the command has finished.  If msleep can't be used, need
3587 	// to poll.
3588 #if __FreeBSD_version >= 1000029
3589 	if (curthread->td_no_sleeping)
3590 #else //__FreeBSD_version < 1000029
3591 	if (curthread->td_pflags & TDP_NOSLEEPING)
3592 #endif //__FreeBSD_version >= 1000029
3593 		sleep_flag = NO_SLEEP;
3594 	getmicrouptime(&start_time);
3595 	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3596 		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3597 		if (error == EWOULDBLOCK) {
3598 			/*
3599 			 * Record the actual elapsed time in the case of a
3600 			 * timeout for the message below.
3601 			 */
3602 			getmicrouptime(&cur_time);
3603 			timevalsub(&cur_time, &start_time);
3604 		}
3605 	} else {
3606 		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3607 			mpr_intr_locked(sc);
3608 			if (sleep_flag == CAN_SLEEP)
3609 				pause("mprwait", hz/20);
3610 			else
3611 				DELAY(50000);
3612 
3613 			getmicrouptime(&cur_time);
3614 			timevalsub(&cur_time, &start_time);
3615 			if (cur_time.tv_sec > timeout) {
3616 				error = EWOULDBLOCK;
3617 				break;
3618 			}
3619 		}
3620 	}
3621 
3622 	if (error == EWOULDBLOCK) {
3623 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3624 		    " elapsed=%jd\n", __func__, timeout,
3625 		    (intmax_t)cur_time.tv_sec);
3626 		rc = mpr_reinit(sc);
3627 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3628 		    "failed");
3629 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3630 			/*
3631 			 * Tell the caller that we freed the command in a
3632 			 * reinit.
3633 			 */
3634 			*cmp = NULL;
3635 		}
3636 		error = ETIMEDOUT;
3637 	}
3638 	return (error);
3639 }
3640 
3641 /*
3642  * This is the routine to enqueue a command synchonously and poll for
3643  * completion.  Its use should be rare.
3644  */
3645 int
3646 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3647 {
3648 	int error, rc;
3649 	struct timeval cur_time, start_time;
3650 	struct mpr_command *cm = *cmp;
3651 
3652 	error = 0;
3653 
3654 	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3655 	cm->cm_complete = NULL;
3656 	mpr_map_command(sc, cm);
3657 
3658 	getmicrouptime(&start_time);
3659 	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3660 		mpr_intr_locked(sc);
3661 
3662 		if (mtx_owned(&sc->mpr_mtx))
3663 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3664 			    "mprpoll", hz/20);
3665 		else
3666 			pause("mprpoll", hz/20);
3667 
3668 		/*
3669 		 * Check for real-time timeout and fail if more than 60 seconds.
3670 		 */
3671 		getmicrouptime(&cur_time);
3672 		timevalsub(&cur_time, &start_time);
3673 		if (cur_time.tv_sec > 60) {
3674 			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3675 			error = ETIMEDOUT;
3676 			break;
3677 		}
3678 	}
3679 
3680 	if (error) {
3681 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3682 		rc = mpr_reinit(sc);
3683 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3684 		    "failed");
3685 
3686 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3687 			/*
3688 			 * Tell the caller that we freed the command in a
3689 			 * reinit.
3690 			 */
3691 			*cmp = NULL;
3692 		}
3693 	}
3694 	return (error);
3695 }
3696 
3697 /*
3698  * The MPT driver had a verbose interface for config pages.  In this driver,
3699  * reduce it to much simpler terms, similar to the Linux driver.
3700  */
3701 int
3702 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3703 {
3704 	MPI2_CONFIG_REQUEST *req;
3705 	struct mpr_command *cm;
3706 	int error;
3707 
3708 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3709 		return (EBUSY);
3710 	}
3711 
3712 	cm = mpr_alloc_command(sc);
3713 	if (cm == NULL) {
3714 		return (EBUSY);
3715 	}
3716 
3717 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3718 	req->Function = MPI2_FUNCTION_CONFIG;
3719 	req->Action = params->action;
3720 	req->SGLFlags = 0;
3721 	req->ChainOffset = 0;
3722 	req->PageAddress = params->page_address;
3723 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3724 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3725 
3726 		hdr = &params->hdr.Ext;
3727 		req->ExtPageType = hdr->ExtPageType;
3728 		req->ExtPageLength = hdr->ExtPageLength;
3729 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3730 		req->Header.PageLength = 0; /* Must be set to zero */
3731 		req->Header.PageNumber = hdr->PageNumber;
3732 		req->Header.PageVersion = hdr->PageVersion;
3733 	} else {
3734 		MPI2_CONFIG_PAGE_HEADER *hdr;
3735 
3736 		hdr = &params->hdr.Struct;
3737 		req->Header.PageType = hdr->PageType;
3738 		req->Header.PageNumber = hdr->PageNumber;
3739 		req->Header.PageLength = hdr->PageLength;
3740 		req->Header.PageVersion = hdr->PageVersion;
3741 	}
3742 
3743 	cm->cm_data = params->buffer;
3744 	cm->cm_length = params->length;
3745 	if (cm->cm_data != NULL) {
3746 		cm->cm_sge = &req->PageBufferSGE;
3747 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3748 		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3749 	} else
3750 		cm->cm_sge = NULL;
3751 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3752 
3753 	cm->cm_complete_data = params;
3754 	if (params->callback != NULL) {
3755 		cm->cm_complete = mpr_config_complete;
3756 		return (mpr_map_command(sc, cm));
3757 	} else {
3758 		error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3759 		if (error) {
3760 			mpr_dprint(sc, MPR_FAULT,
3761 			    "Error %d reading config page\n", error);
3762 			if (cm != NULL)
3763 				mpr_free_command(sc, cm);
3764 			return (error);
3765 		}
3766 		mpr_config_complete(sc, cm);
3767 	}
3768 
3769 	return (0);
3770 }
3771 
3772 int
3773 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3774 {
3775 	return (EINVAL);
3776 }
3777 
3778 static void
3779 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3780 {
3781 	MPI2_CONFIG_REPLY *reply;
3782 	struct mpr_config_params *params;
3783 
3784 	MPR_FUNCTRACE(sc);
3785 	params = cm->cm_complete_data;
3786 
3787 	if (cm->cm_data != NULL) {
3788 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3789 		    BUS_DMASYNC_POSTREAD);
3790 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3791 	}
3792 
3793 	/*
3794 	 * XXX KDM need to do more error recovery?  This results in the
3795 	 * device in question not getting probed.
3796 	 */
3797 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3798 		params->status = MPI2_IOCSTATUS_BUSY;
3799 		goto done;
3800 	}
3801 
3802 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3803 	if (reply == NULL) {
3804 		params->status = MPI2_IOCSTATUS_BUSY;
3805 		goto done;
3806 	}
3807 	params->status = reply->IOCStatus;
3808 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3809 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3810 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3811 		params->hdr.Ext.PageType = reply->Header.PageType;
3812 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3813 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3814 	} else {
3815 		params->hdr.Struct.PageType = reply->Header.PageType;
3816 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3817 		params->hdr.Struct.PageLength = reply->Header.PageLength;
3818 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3819 	}
3820 
3821 done:
3822 	mpr_free_command(sc, cm);
3823 	if (params->callback != NULL)
3824 		params->callback(sc, params);
3825 
3826 	return;
3827 }
3828