xref: /freebsd/sys/dev/mpr/mpr.c (revision 69e85eb8)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * Copyright 2000-2020 Broadcom Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /* Communications core for Avago Technologies (LSI) MPT3 */
37 
38 /* TODO Move headers to mprvar */
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/selinfo.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/module.h>
47 #include <sys/bus.h>
48 #include <sys/conf.h>
49 #include <sys/bio.h>
50 #include <sys/malloc.h>
51 #include <sys/uio.h>
52 #include <sys/sysctl.h>
53 #include <sys/smp.h>
54 #include <sys/queue.h>
55 #include <sys/kthread.h>
56 #include <sys/taskqueue.h>
57 #include <sys/endian.h>
58 #include <sys/eventhandler.h>
59 #include <sys/sbuf.h>
60 #include <sys/priv.h>
61 
62 #include <machine/bus.h>
63 #include <machine/resource.h>
64 #include <sys/rman.h>
65 #include <sys/proc.h>
66 
67 #include <dev/pci/pcivar.h>
68 
69 #include <cam/cam.h>
70 #include <cam/cam_ccb.h>
71 #include <cam/scsi/scsi_all.h>
72 
73 #include <dev/mpr/mpi/mpi2_type.h>
74 #include <dev/mpr/mpi/mpi2.h>
75 #include <dev/mpr/mpi/mpi2_ioc.h>
76 #include <dev/mpr/mpi/mpi2_sas.h>
77 #include <dev/mpr/mpi/mpi2_pci.h>
78 #include <dev/mpr/mpi/mpi2_cnfg.h>
79 #include <dev/mpr/mpi/mpi2_init.h>
80 #include <dev/mpr/mpi/mpi2_tool.h>
81 #include <dev/mpr/mpr_ioctl.h>
82 #include <dev/mpr/mprvar.h>
83 #include <dev/mpr/mpr_table.h>
84 #include <dev/mpr/mpr_sas.h>
85 
86 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
87 static int mpr_init_queues(struct mpr_softc *sc);
88 static void mpr_resize_queues(struct mpr_softc *sc);
89 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
90 static int mpr_transition_operational(struct mpr_softc *sc);
91 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
92 static void mpr_iocfacts_free(struct mpr_softc *sc);
93 static void mpr_startup(void *arg);
94 static int mpr_send_iocinit(struct mpr_softc *sc);
95 static int mpr_alloc_queues(struct mpr_softc *sc);
96 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
97 static int mpr_alloc_replies(struct mpr_softc *sc);
98 static int mpr_alloc_requests(struct mpr_softc *sc);
99 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
100 static int mpr_attach_log(struct mpr_softc *sc);
101 static __inline void mpr_complete_command(struct mpr_softc *sc,
102     struct mpr_command *cm);
103 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
104     MPI2_EVENT_NOTIFICATION_REPLY *reply);
105 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
106 static void mpr_periodic(void *);
107 static int mpr_reregister_events(struct mpr_softc *sc);
108 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
109 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
110 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
111 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
112 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
113 static void mpr_parse_debug(struct mpr_softc *sc, char *list);
114 
115 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
116 
117 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
118 
119 /*
120  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
121  * any state and back to its initialization state machine.
122  */
123 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
124 
125 /*
126  * Added this union to smoothly convert le64toh cm->cm_desc.Words.
127  * Compiler only supports uint64_t to be passed as an argument.
128  * Otherwise it will throw this error:
129  * "aggregate value used where an integer was expected"
130  */
131 typedef union _reply_descriptor {
132         u64 word;
133         struct {
134                 u32 low;
135                 u32 high;
136         } u;
137 } reply_descriptor, request_descriptor;
138 
139 /* Rate limit chain-fail messages to 1 per minute */
140 static struct timeval mpr_chainfail_interval = { 60, 0 };
141 
142 /*
143  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
144  * If this function is called from process context, it can sleep
145  * and there is no harm to sleep, in case if this fuction is called
146  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
147  * based on sleep flags driver will call either msleep, pause or DELAY.
148  * msleep and pause are of same variant, but pause is used when mpr_mtx
149  * is not hold by driver.
150  */
151 static int
152 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
153 {
154 	uint32_t reg;
155 	int i, error, tries = 0;
156 	uint8_t first_wait_done = FALSE;
157 
158 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
159 
160 	/* Clear any pending interrupts */
161 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
162 
163 	/*
164 	 * Force NO_SLEEP for threads prohibited to sleep
165  	 * e.a Thread from interrupt handler are prohibited to sleep.
166  	 */
167 #if __FreeBSD_version >= 1000029
168 	if (curthread->td_no_sleeping)
169 #else //__FreeBSD_version < 1000029
170 	if (curthread->td_pflags & TDP_NOSLEEPING)
171 #endif //__FreeBSD_version >= 1000029
172 		sleep_flag = NO_SLEEP;
173 
174 	mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
175 	/* Push the magic sequence */
176 	error = ETIMEDOUT;
177 	while (tries++ < 20) {
178 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
179 			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
180 			    mpt2_reset_magic[i]);
181 
182 		/* wait 100 msec */
183 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
184 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
185 			    "mprdiag", hz/10);
186 		else if (sleep_flag == CAN_SLEEP)
187 			pause("mprdiag", hz/10);
188 		else
189 			DELAY(100 * 1000);
190 
191 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
192 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
193 			error = 0;
194 			break;
195 		}
196 	}
197 	if (error) {
198 		mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
199 		    error);
200 		return (error);
201 	}
202 
203 	/* Send the actual reset.  XXX need to refresh the reg? */
204 	reg |= MPI2_DIAG_RESET_ADAPTER;
205 	mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
206 	    reg);
207 	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
208 
209 	/* Wait up to 300 seconds in 50ms intervals */
210 	error = ETIMEDOUT;
211 	for (i = 0; i < 6000; i++) {
212 		/*
213 		 * Wait 50 msec. If this is the first time through, wait 256
214 		 * msec to satisfy Diag Reset timing requirements.
215 		 */
216 		if (first_wait_done) {
217 			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
218 				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
219 				    "mprdiag", hz/20);
220 			else if (sleep_flag == CAN_SLEEP)
221 				pause("mprdiag", hz/20);
222 			else
223 				DELAY(50 * 1000);
224 		} else {
225 			DELAY(256 * 1000);
226 			first_wait_done = TRUE;
227 		}
228 		/*
229 		 * Check for the RESET_ADAPTER bit to be cleared first, then
230 		 * wait for the RESET state to be cleared, which takes a little
231 		 * longer.
232 		 */
233 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
234 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
235 			continue;
236 		}
237 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
238 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
239 			error = 0;
240 			break;
241 		}
242 	}
243 	if (error) {
244 		mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
245 		    error);
246 		return (error);
247 	}
248 
249 	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
250 	mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
251 
252 	return (0);
253 }
254 
255 static int
256 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
257 {
258 	int error;
259 
260 	MPR_FUNCTRACE(sc);
261 
262 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
263 
264 	error = 0;
265 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
266 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
267 	    MPI2_DOORBELL_FUNCTION_SHIFT);
268 
269 	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
270 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
271 		    "Doorbell handshake failed\n");
272 		error = ETIMEDOUT;
273 	}
274 
275 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
276 	return (error);
277 }
278 
279 static int
280 mpr_transition_ready(struct mpr_softc *sc)
281 {
282 	uint32_t reg, state;
283 	int error, tries = 0;
284 	int sleep_flags;
285 
286 	MPR_FUNCTRACE(sc);
287 	/* If we are in attach call, do not sleep */
288 	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
289 	    ? CAN_SLEEP : NO_SLEEP;
290 
291 	error = 0;
292 
293 	mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
294 	    __func__, sleep_flags);
295 
296 	while (tries++ < 1200) {
297 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
298 		mpr_dprint(sc, MPR_INIT, "  Doorbell= 0x%x\n", reg);
299 
300 		/*
301 		 * Ensure the IOC is ready to talk.  If it's not, try
302 		 * resetting it.
303 		 */
304 		if (reg & MPI2_DOORBELL_USED) {
305 			mpr_dprint(sc, MPR_INIT, "  Not ready, sending diag "
306 			    "reset\n");
307 			mpr_diag_reset(sc, sleep_flags);
308 			DELAY(50000);
309 			continue;
310 		}
311 
312 		/* Is the adapter owned by another peer? */
313 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
314 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
315 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
316 			    "control of another peer host, aborting "
317 			    "initialization.\n");
318 			error = ENXIO;
319 			break;
320 		}
321 
322 		state = reg & MPI2_IOC_STATE_MASK;
323 		if (state == MPI2_IOC_STATE_READY) {
324 			/* Ready to go! */
325 			error = 0;
326 			break;
327 		} else if (state == MPI2_IOC_STATE_FAULT) {
328 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
329 			    "state 0x%x, resetting\n",
330 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
331 			mpr_diag_reset(sc, sleep_flags);
332 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
333 			/* Need to take ownership */
334 			mpr_message_unit_reset(sc, sleep_flags);
335 		} else if (state == MPI2_IOC_STATE_RESET) {
336 			/* Wait a bit, IOC might be in transition */
337 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
338 			    "IOC in unexpected reset state\n");
339 		} else {
340 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
341 			    "IOC in unknown state 0x%x\n", state);
342 			error = EINVAL;
343 			break;
344 		}
345 
346 		/* Wait 50ms for things to settle down. */
347 		DELAY(50000);
348 	}
349 
350 	if (error)
351 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
352 		    "Cannot transition IOC to ready\n");
353 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
354 	return (error);
355 }
356 
357 static int
358 mpr_transition_operational(struct mpr_softc *sc)
359 {
360 	uint32_t reg, state;
361 	int error;
362 
363 	MPR_FUNCTRACE(sc);
364 
365 	error = 0;
366 	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
367 	mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
368 
369 	state = reg & MPI2_IOC_STATE_MASK;
370 	if (state != MPI2_IOC_STATE_READY) {
371 		mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
372 		if ((error = mpr_transition_ready(sc)) != 0) {
373 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
374 			    "failed to transition ready, exit\n");
375 			return (error);
376 		}
377 	}
378 
379 	error = mpr_send_iocinit(sc);
380 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
381 
382 	return (error);
383 }
384 
385 static void
386 mpr_resize_queues(struct mpr_softc *sc)
387 {
388 	u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
389 
390 	/*
391 	 * Size the queues. Since the reply queues always need one free
392 	 * entry, we'll deduct one reply message here.  The LSI documents
393 	 * suggest instead to add a count to the request queue, but I think
394 	 * that it's better to deduct from reply queue.
395 	 */
396 	prireqcr = MAX(1, sc->max_prireqframes);
397 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
398 
399 	reqcr = MAX(2, sc->max_reqframes);
400 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
401 
402 	sc->num_reqs = prireqcr + reqcr;
403 	sc->num_prireqs = prireqcr;
404 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
405 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
406 
407 	/* Store the request frame size in bytes rather than as 32bit words */
408 	sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
409 
410 	/*
411 	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
412 	 * get the size of a Chain Frame.  Previous versions use the size as a
413 	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
414 	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
415 	 * number of 16-byte elelements that can fit in a Chain Frame, which is
416 	 * the size of an IEEE Simple SGE.
417 	 */
418 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
419 		chain_seg_size = htole16(sc->facts->IOCMaxChainSegmentSize);
420 		if (chain_seg_size == 0)
421 			chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
422 		sc->chain_frame_size = chain_seg_size *
423 		    MPR_MAX_CHAIN_ELEMENT_SIZE;
424 	} else {
425 		sc->chain_frame_size = sc->reqframesz;
426 	}
427 
428 	/*
429 	 * Max IO Size is Page Size * the following:
430 	 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
431 	 * + 1 for no chain needed in last frame
432 	 *
433 	 * If user suggests a Max IO size to use, use the smaller of the
434 	 * user's value and the calculated value as long as the user's
435 	 * value is larger than 0. The user's value is in pages.
436 	 */
437 	sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
438 	maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
439 
440 	/*
441 	 * If I/O size limitation requested then use it and pass up to CAM.
442 	 * If not, use MAXPHYS as an optimization hint, but report HW limit.
443 	 */
444 	if (sc->max_io_pages > 0) {
445 		maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
446 		sc->maxio = maxio;
447 	} else {
448 		sc->maxio = maxio;
449 		maxio = min(maxio, MAXPHYS);
450 	}
451 
452 	sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
453 	    sges_per_frame * reqcr;
454 	if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
455 		sc->num_chains = sc->max_chains;
456 
457 	/*
458 	 * Figure out the number of MSIx-based queues.  If the firmware or
459 	 * user has done something crazy and not allowed enough credit for
460 	 * the queues to be useful then don't enable multi-queue.
461 	 */
462 	if (sc->facts->MaxMSIxVectors < 2)
463 		sc->msi_msgs = 1;
464 
465 	if (sc->msi_msgs > 1) {
466 		sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
467 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
468 		if (sc->num_reqs / sc->msi_msgs < 2)
469 			sc->msi_msgs = 1;
470 	}
471 
472 	mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
473 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
474 }
475 
476 /*
477  * This is called during attach and when re-initializing due to a Diag Reset.
478  * IOC Facts is used to allocate many of the structures needed by the driver.
479  * If called from attach, de-allocation is not required because the driver has
480  * not allocated any structures yet, but if called from a Diag Reset, previously
481  * allocated structures based on IOC Facts will need to be freed and re-
482  * allocated bases on the latest IOC Facts.
483  */
484 static int
485 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
486 {
487 	int error;
488 	Mpi2IOCFactsReply_t saved_facts;
489 	uint8_t saved_mode, reallocating;
490 
491 	mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
492 
493 	/* Save old IOC Facts and then only reallocate if Facts have changed */
494 	if (!attaching) {
495 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
496 	}
497 
498 	/*
499 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
500 	 * a re-initialization and only return the error if attaching so the OS
501 	 * can handle it.
502 	 */
503 	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
504 		if (attaching) {
505 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
506 			    "IOC Facts with error %d, exit\n", error);
507 			return (error);
508 		} else {
509 			panic("%s failed to get IOC Facts with error %d\n",
510 			    __func__, error);
511 		}
512 	}
513 
514 	MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
515 
516 	snprintf(sc->fw_version, sizeof(sc->fw_version),
517 	    "%02d.%02d.%02d.%02d",
518 	    sc->facts->FWVersion.Struct.Major,
519 	    sc->facts->FWVersion.Struct.Minor,
520 	    sc->facts->FWVersion.Struct.Unit,
521 	    sc->facts->FWVersion.Struct.Dev);
522 
523 	snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
524 	    (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
525 	    MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT,
526 	    (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
527 	    MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
528 
529 	mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
530 	    MPR_DRIVER_VERSION);
531 	mpr_dprint(sc, MPR_INFO,
532 	    "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
533 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
534 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
535 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
536 	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
537 
538 	/*
539 	 * If the chip doesn't support event replay then a hard reset will be
540 	 * required to trigger a full discovery.  Do the reset here then
541 	 * retransition to Ready.  A hard reset might have already been done,
542 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
543 	 * for a Diag Reset.
544 	 */
545 	if (attaching && ((sc->facts->IOCCapabilities &
546 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
547 		mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
548 		mpr_diag_reset(sc, NO_SLEEP);
549 		if ((error = mpr_transition_ready(sc)) != 0) {
550 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
551 			    "transition to ready with error %d, exit\n",
552 			    error);
553 			return (error);
554 		}
555 	}
556 
557 	/*
558 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
559 	 * changed from the previous IOC Facts, log a warning, but only if
560 	 * checking this after a Diag Reset and not during attach.
561 	 */
562 	saved_mode = sc->ir_firmware;
563 	if (sc->facts->IOCCapabilities &
564 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
565 		sc->ir_firmware = 1;
566 	if (!attaching) {
567 		if (sc->ir_firmware != saved_mode) {
568 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
569 			    "in IOC Facts does not match previous mode\n");
570 		}
571 	}
572 
573 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
574 	reallocating = FALSE;
575 	sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
576 
577 	if ((!attaching) &&
578 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
579 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
580 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
581 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
582 	    (saved_facts.ProductID != sc->facts->ProductID) ||
583 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
584 	    (saved_facts.IOCRequestFrameSize !=
585 	    sc->facts->IOCRequestFrameSize) ||
586 	    (saved_facts.IOCMaxChainSegmentSize !=
587 	    sc->facts->IOCMaxChainSegmentSize) ||
588 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
589 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
590 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
591 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
592 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
593 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
594 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
595 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
596 	    (saved_facts.MaxPersistentEntries !=
597 	    sc->facts->MaxPersistentEntries))) {
598 		reallocating = TRUE;
599 
600 		/* Record that we reallocated everything */
601 		sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
602 	}
603 
604 	/*
605 	 * Some things should be done if attaching or re-allocating after a Diag
606 	 * Reset, but are not needed after a Diag Reset if the FW has not
607 	 * changed.
608 	 */
609 	if (attaching || reallocating) {
610 		/*
611 		 * Check if controller supports FW diag buffers and set flag to
612 		 * enable each type.
613 		 */
614 		if (sc->facts->IOCCapabilities &
615 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
616 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
617 			    enabled = TRUE;
618 		if (sc->facts->IOCCapabilities &
619 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
620 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
621 			    enabled = TRUE;
622 		if (sc->facts->IOCCapabilities &
623 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
624 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
625 			    enabled = TRUE;
626 
627 		/*
628 		 * Set flags for some supported items.
629 		 */
630 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
631 			sc->eedp_enabled = TRUE;
632 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
633 			sc->control_TLR = TRUE;
634 		if ((sc->facts->IOCCapabilities &
635 		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) &&
636 		    (sc->mpr_flags & MPR_FLAGS_SEA_IOC))
637 			sc->atomic_desc_capable = TRUE;
638 
639 		mpr_resize_queues(sc);
640 
641 		/*
642 		 * Initialize all Tail Queues
643 		 */
644 		TAILQ_INIT(&sc->req_list);
645 		TAILQ_INIT(&sc->high_priority_req_list);
646 		TAILQ_INIT(&sc->chain_list);
647 		TAILQ_INIT(&sc->prp_page_list);
648 		TAILQ_INIT(&sc->tm_list);
649 	}
650 
651 	/*
652 	 * If doing a Diag Reset and the FW is significantly different
653 	 * (reallocating will be set above in IOC Facts comparison), then all
654 	 * buffers based on the IOC Facts will need to be freed before they are
655 	 * reallocated.
656 	 */
657 	if (reallocating) {
658 		mpr_iocfacts_free(sc);
659 		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
660 		    saved_facts.MaxVolumes);
661 	}
662 
663 	/*
664 	 * Any deallocation has been completed.  Now start reallocating
665 	 * if needed.  Will only need to reallocate if attaching or if the new
666 	 * IOC Facts are different from the previous IOC Facts after a Diag
667 	 * Reset. Targets have already been allocated above if needed.
668 	 */
669 	error = 0;
670 	while (attaching || reallocating) {
671 		if ((error = mpr_alloc_hw_queues(sc)) != 0)
672 			break;
673 		if ((error = mpr_alloc_replies(sc)) != 0)
674 			break;
675 		if ((error = mpr_alloc_requests(sc)) != 0)
676 			break;
677 		if ((error = mpr_alloc_queues(sc)) != 0)
678 			break;
679 		break;
680 	}
681 	if (error) {
682 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
683 		    "Failed to alloc queues with error %d\n", error);
684 		mpr_free(sc);
685 		return (error);
686 	}
687 
688 	/* Always initialize the queues */
689 	bzero(sc->free_queue, sc->fqdepth * 4);
690 	mpr_init_queues(sc);
691 
692 	/*
693 	 * Always get the chip out of the reset state, but only panic if not
694 	 * attaching.  If attaching and there is an error, that is handled by
695 	 * the OS.
696 	 */
697 	error = mpr_transition_operational(sc);
698 	if (error != 0) {
699 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
700 		    "transition to operational with error %d\n", error);
701 		mpr_free(sc);
702 		return (error);
703 	}
704 
705 	/*
706 	 * Finish the queue initialization.
707 	 * These are set here instead of in mpr_init_queues() because the
708 	 * IOC resets these values during the state transition in
709 	 * mpr_transition_operational().  The free index is set to 1
710 	 * because the corresponding index in the IOC is set to 0, and the
711 	 * IOC treats the queues as full if both are set to the same value.
712 	 * Hence the reason that the queue can't hold all of the possible
713 	 * replies.
714 	 */
715 	sc->replypostindex = 0;
716 	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
717 	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
718 
719 	/*
720 	 * Attach the subsystems so they can prepare their event masks.
721 	 * XXX Should be dynamic so that IM/IR and user modules can attach
722 	 */
723 	error = 0;
724 	while (attaching) {
725 		mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
726 		if ((error = mpr_attach_log(sc)) != 0)
727 			break;
728 		if ((error = mpr_attach_sas(sc)) != 0)
729 			break;
730 		if ((error = mpr_attach_user(sc)) != 0)
731 			break;
732 		break;
733 	}
734 	if (error) {
735 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
736 		    "Failed to attach all subsystems: error %d\n", error);
737 		mpr_free(sc);
738 		return (error);
739 	}
740 
741 	/*
742 	 * XXX If the number of MSI-X vectors changes during re-init, this
743 	 * won't see it and adjust.
744 	 */
745 	if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) {
746 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
747 		    "Failed to setup interrupts\n");
748 		mpr_free(sc);
749 		return (error);
750 	}
751 
752 	return (error);
753 }
754 
755 /*
756  * This is called if memory is being free (during detach for example) and when
757  * buffers need to be reallocated due to a Diag Reset.
758  */
759 static void
760 mpr_iocfacts_free(struct mpr_softc *sc)
761 {
762 	struct mpr_command *cm;
763 	int i;
764 
765 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
766 
767 	if (sc->free_busaddr != 0)
768 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
769 	if (sc->free_queue != NULL)
770 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
771 		    sc->queues_map);
772 	if (sc->queues_dmat != NULL)
773 		bus_dma_tag_destroy(sc->queues_dmat);
774 
775 	if (sc->chain_frames != NULL) {
776 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
777 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
778 		    sc->chain_map);
779 	}
780 	if (sc->chain_dmat != NULL)
781 		bus_dma_tag_destroy(sc->chain_dmat);
782 
783 	if (sc->sense_busaddr != 0)
784 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
785 	if (sc->sense_frames != NULL)
786 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
787 		    sc->sense_map);
788 	if (sc->sense_dmat != NULL)
789 		bus_dma_tag_destroy(sc->sense_dmat);
790 
791 	if (sc->prp_page_busaddr != 0)
792 		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
793 	if (sc->prp_pages != NULL)
794 		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
795 		    sc->prp_page_map);
796 	if (sc->prp_page_dmat != NULL)
797 		bus_dma_tag_destroy(sc->prp_page_dmat);
798 
799 	if (sc->reply_busaddr != 0)
800 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
801 	if (sc->reply_frames != NULL)
802 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
803 		    sc->reply_map);
804 	if (sc->reply_dmat != NULL)
805 		bus_dma_tag_destroy(sc->reply_dmat);
806 
807 	if (sc->req_busaddr != 0)
808 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
809 	if (sc->req_frames != NULL)
810 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
811 	if (sc->req_dmat != NULL)
812 		bus_dma_tag_destroy(sc->req_dmat);
813 
814 	if (sc->chains != NULL)
815 		free(sc->chains, M_MPR);
816 	if (sc->prps != NULL)
817 		free(sc->prps, M_MPR);
818 	if (sc->commands != NULL) {
819 		for (i = 1; i < sc->num_reqs; i++) {
820 			cm = &sc->commands[i];
821 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
822 		}
823 		free(sc->commands, M_MPR);
824 	}
825 	if (sc->buffer_dmat != NULL)
826 		bus_dma_tag_destroy(sc->buffer_dmat);
827 
828 	mpr_pci_free_interrupts(sc);
829 	free(sc->queues, M_MPR);
830 	sc->queues = NULL;
831 }
832 
833 /*
834  * The terms diag reset and hard reset are used interchangeably in the MPI
835  * docs to mean resetting the controller chip.  In this code diag reset
836  * cleans everything up, and the hard reset function just sends the reset
837  * sequence to the chip.  This should probably be refactored so that every
838  * subsystem gets a reset notification of some sort, and can clean up
839  * appropriately.
840  */
841 int
842 mpr_reinit(struct mpr_softc *sc)
843 {
844 	int error;
845 	struct mprsas_softc *sassc;
846 
847 	sassc = sc->sassc;
848 
849 	MPR_FUNCTRACE(sc);
850 
851 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
852 
853 	mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
854 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
855 		mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
856 		return 0;
857 	}
858 
859 	/*
860 	 * Make sure the completion callbacks can recognize they're getting
861 	 * a NULL cm_reply due to a reset.
862 	 */
863 	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
864 
865 	/*
866 	 * Mask interrupts here.
867 	 */
868 	mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
869 	mpr_mask_intr(sc);
870 
871 	error = mpr_diag_reset(sc, CAN_SLEEP);
872 	if (error != 0) {
873 		panic("%s hard reset failed with error %d\n", __func__, error);
874 	}
875 
876 	/* Restore the PCI state, including the MSI-X registers */
877 	mpr_pci_restore(sc);
878 
879 	/* Give the I/O subsystem special priority to get itself prepared */
880 	mprsas_handle_reinit(sc);
881 
882 	/*
883 	 * Get IOC Facts and allocate all structures based on this information.
884 	 * The attach function will also call mpr_iocfacts_allocate at startup.
885 	 * If relevant values have changed in IOC Facts, this function will free
886 	 * all of the memory based on IOC Facts and reallocate that memory.
887 	 */
888 	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
889 		panic("%s IOC Facts based allocation failed with error %d\n",
890 		    __func__, error);
891 	}
892 
893 	/*
894 	 * Mapping structures will be re-allocated after getting IOC Page8, so
895 	 * free these structures here.
896 	 */
897 	mpr_mapping_exit(sc);
898 
899 	/*
900 	 * The static page function currently read is IOC Page8.  Others can be
901 	 * added in future.  It's possible that the values in IOC Page8 have
902 	 * changed after a Diag Reset due to user modification, so always read
903 	 * these.  Interrupts are masked, so unmask them before getting config
904 	 * pages.
905 	 */
906 	mpr_unmask_intr(sc);
907 	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
908 	mpr_base_static_config_pages(sc);
909 
910 	/*
911 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
912 	 * mapping tables.
913 	 */
914 	mpr_mapping_initialize(sc);
915 
916 	/*
917 	 * Restart will reload the event masks clobbered by the reset, and
918 	 * then enable the port.
919 	 */
920 	mpr_reregister_events(sc);
921 
922 	/* the end of discovery will release the simq, so we're done. */
923 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
924 	    sc, sc->replypostindex, sc->replyfreeindex);
925 	mprsas_release_simq_reinit(sassc);
926 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
927 
928 	return 0;
929 }
930 
931 /* Wait for the chip to ACK a word that we've put into its FIFO
932  * Wait for <timeout> seconds. In single loop wait for busy loop
933  * for 500 microseconds.
934  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
935  * */
936 static int
937 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
938 {
939 	u32 cntdn, count;
940 	u32 int_status;
941 	u32 doorbell;
942 
943 	count = 0;
944 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
945 	do {
946 		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
947 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
948 			mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
949 			    "timeout(%d)\n", __func__, count, timeout);
950 			return 0;
951 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
952 			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
953 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
954 			    MPI2_IOC_STATE_FAULT) {
955 				mpr_dprint(sc, MPR_FAULT,
956 				    "fault_state(0x%04x)!\n", doorbell);
957 				return (EFAULT);
958 			}
959 		} else if (int_status == 0xFFFFFFFF)
960 			goto out;
961 
962 		/*
963 		 * If it can sleep, sleep for 1 milisecond, else busy loop for
964  		 * 0.5 milisecond
965 		 */
966 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
967 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
968 			    hz/1000);
969 		else if (sleep_flag == CAN_SLEEP)
970 			pause("mprdba", hz/1000);
971 		else
972 			DELAY(500);
973 		count++;
974 	} while (--cntdn);
975 
976 out:
977 	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
978 		"int_status(%x)!\n", __func__, count, int_status);
979 	return (ETIMEDOUT);
980 }
981 
982 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
983 static int
984 mpr_wait_db_int(struct mpr_softc *sc)
985 {
986 	int retry;
987 
988 	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
989 		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
990 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
991 			return (0);
992 		DELAY(2000);
993 	}
994 	return (ETIMEDOUT);
995 }
996 
997 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
998 static int
999 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
1000     int req_sz, int reply_sz, int timeout)
1001 {
1002 	uint32_t *data32;
1003 	uint16_t *data16;
1004 	int i, count, ioc_sz, residual;
1005 	int sleep_flags = CAN_SLEEP;
1006 
1007 #if __FreeBSD_version >= 1000029
1008 	if (curthread->td_no_sleeping)
1009 #else //__FreeBSD_version < 1000029
1010 	if (curthread->td_pflags & TDP_NOSLEEPING)
1011 #endif //__FreeBSD_version >= 1000029
1012 		sleep_flags = NO_SLEEP;
1013 
1014 	/* Step 1 */
1015 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1016 
1017 	/* Step 2 */
1018 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1019 		return (EBUSY);
1020 
1021 	/* Step 3
1022 	 * Announce that a message is coming through the doorbell.  Messages
1023 	 * are pushed at 32bit words, so round up if needed.
1024 	 */
1025 	count = (req_sz + 3) / 4;
1026 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
1027 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
1028 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
1029 
1030 	/* Step 4 */
1031 	if (mpr_wait_db_int(sc) ||
1032 	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
1033 		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
1034 		return (ENXIO);
1035 	}
1036 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1037 	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1038 		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
1039 		return (ENXIO);
1040 	}
1041 
1042 	/* Step 5 */
1043 	/* Clock out the message data synchronously in 32-bit dwords*/
1044 	data32 = (uint32_t *)req;
1045 	for (i = 0; i < count; i++) {
1046 		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1047 		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1048 			mpr_dprint(sc, MPR_FAULT,
1049 			    "Timeout while writing doorbell\n");
1050 			return (ENXIO);
1051 		}
1052 	}
1053 
1054 	/* Step 6 */
1055 	/* Clock in the reply in 16-bit words.  The total length of the
1056 	 * message is always in the 4th byte, so clock out the first 2 words
1057 	 * manually, then loop the rest.
1058 	 */
1059 	data16 = (uint16_t *)reply;
1060 	if (mpr_wait_db_int(sc) != 0) {
1061 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
1062 		return (ENXIO);
1063 	}
1064 	data16[0] =
1065 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1066 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1067 	if (mpr_wait_db_int(sc) != 0) {
1068 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1069 		return (ENXIO);
1070 	}
1071 	data16[1] =
1072 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1073 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1074 
1075 	/* Number of 32bit words in the message */
1076 	ioc_sz = reply->MsgLength;
1077 
1078 	/*
1079 	 * Figure out how many 16bit words to clock in without overrunning.
1080 	 * The precision loss with dividing reply_sz can safely be
1081 	 * ignored because the messages can only be multiples of 32bits.
1082 	 */
1083 	residual = 0;
1084 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1085 	if (count < ioc_sz * 2) {
1086 		residual = ioc_sz * 2 - count;
1087 		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1088 		    "residual message words\n", residual);
1089 	}
1090 
1091 	for (i = 2; i < count; i++) {
1092 		if (mpr_wait_db_int(sc) != 0) {
1093 			mpr_dprint(sc, MPR_FAULT,
1094 			    "Timeout reading doorbell %d\n", i);
1095 			return (ENXIO);
1096 		}
1097 		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
1098 		    MPI2_DOORBELL_DATA_MASK;
1099 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1100 	}
1101 
1102 	/*
1103 	 * Pull out residual words that won't fit into the provided buffer.
1104 	 * This keeps the chip from hanging due to a driver programming
1105 	 * error.
1106 	 */
1107 	while (residual--) {
1108 		if (mpr_wait_db_int(sc) != 0) {
1109 			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1110 			return (ENXIO);
1111 		}
1112 		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1113 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1114 	}
1115 
1116 	/* Step 7 */
1117 	if (mpr_wait_db_int(sc) != 0) {
1118 		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1119 		return (ENXIO);
1120 	}
1121 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1122 		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1123 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1124 
1125 	return (0);
1126 }
1127 
1128 static void
1129 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1130 {
1131 	request_descriptor rd;
1132 
1133 	MPR_FUNCTRACE(sc);
1134 	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1135 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1136 
1137 	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1138 	    MPR_FLAGS_SHUTDOWN))
1139 		mtx_assert(&sc->mpr_mtx, MA_OWNED);
1140 
1141 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1142 		sc->io_cmds_highwater++;
1143 
1144 	KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n"));
1145 	cm->cm_state = MPR_CM_STATE_INQUEUE;
1146 
1147 	if (sc->atomic_desc_capable) {
1148 		rd.u.low = cm->cm_desc.Words.Low;
1149 		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1150 		    rd.u.low);
1151 	} else {
1152 		rd.u.low = cm->cm_desc.Words.Low;
1153 		rd.u.high = cm->cm_desc.Words.High;
1154 		rd.word = htole64(rd.word);
1155 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1156 		    rd.u.low);
1157 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1158 		    rd.u.high);
1159 	}
1160 }
1161 
1162 /*
1163  * Just the FACTS, ma'am.
1164  */
1165 static int
1166 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1167 {
1168 	MPI2_DEFAULT_REPLY *reply;
1169 	MPI2_IOC_FACTS_REQUEST request;
1170 	int error, req_sz, reply_sz;
1171 
1172 	MPR_FUNCTRACE(sc);
1173 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1174 
1175 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1176 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1177 	reply = (MPI2_DEFAULT_REPLY *)facts;
1178 
1179 	bzero(&request, req_sz);
1180 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1181 	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1182 
1183 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1184 	return (error);
1185 }
1186 
1187 static int
1188 mpr_send_iocinit(struct mpr_softc *sc)
1189 {
1190 	MPI2_IOC_INIT_REQUEST	init;
1191 	MPI2_DEFAULT_REPLY	reply;
1192 	int req_sz, reply_sz, error;
1193 	struct timeval now;
1194 	uint64_t time_in_msec;
1195 
1196 	MPR_FUNCTRACE(sc);
1197 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1198 
1199 	/* Do a quick sanity check on proper initialization */
1200 	if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1201 	    || (sc->replyframesz == 0)) {
1202 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1203 		    "Driver not fully initialized for IOCInit\n");
1204 		return (EINVAL);
1205 	}
1206 
1207 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1208 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1209 	bzero(&init, req_sz);
1210 	bzero(&reply, reply_sz);
1211 
1212 	/*
1213 	 * Fill in the init block.  Note that most addresses are
1214 	 * deliberately in the lower 32bits of memory.  This is a micro-
1215 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1216 	 */
1217 	init.Function = MPI2_FUNCTION_IOC_INIT;
1218 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1219 	init.MsgVersion = htole16(MPI2_VERSION);
1220 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1221 	init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1222 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1223 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1224 	init.SenseBufferAddressHigh = 0;
1225 	init.SystemReplyAddressHigh = 0;
1226 	init.SystemRequestFrameBaseAddress.High = 0;
1227 	init.SystemRequestFrameBaseAddress.Low =
1228 	    htole32((uint32_t)sc->req_busaddr);
1229 	init.ReplyDescriptorPostQueueAddress.High = 0;
1230 	init.ReplyDescriptorPostQueueAddress.Low =
1231 	    htole32((uint32_t)sc->post_busaddr);
1232 	init.ReplyFreeQueueAddress.High = 0;
1233 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1234 	getmicrotime(&now);
1235 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1236 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1237 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1238 	init.HostPageSize = HOST_PAGE_SIZE_4K;
1239 
1240 	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1241 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1242 		error = ENXIO;
1243 
1244 	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1245 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1246 	return (error);
1247 }
1248 
1249 void
1250 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1251 {
1252 	bus_addr_t *addr;
1253 
1254 	addr = arg;
1255 	*addr = segs[0].ds_addr;
1256 }
1257 
1258 void
1259 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1260 {
1261 	struct mpr_busdma_context *ctx;
1262 	int need_unload, need_free;
1263 
1264 	ctx = (struct mpr_busdma_context *)arg;
1265 	need_unload = 0;
1266 	need_free = 0;
1267 
1268 	mpr_lock(ctx->softc);
1269 	ctx->error = error;
1270 	ctx->completed = 1;
1271 	if ((error == 0) && (ctx->abandoned == 0)) {
1272 		*ctx->addr = segs[0].ds_addr;
1273 	} else {
1274 		if (nsegs != 0)
1275 			need_unload = 1;
1276 		if (ctx->abandoned != 0)
1277 			need_free = 1;
1278 	}
1279 	if (need_free == 0)
1280 		wakeup(ctx);
1281 
1282 	mpr_unlock(ctx->softc);
1283 
1284 	if (need_unload != 0) {
1285 		bus_dmamap_unload(ctx->buffer_dmat,
1286 				  ctx->buffer_dmamap);
1287 		*ctx->addr = 0;
1288 	}
1289 
1290 	if (need_free != 0)
1291 		free(ctx, M_MPR);
1292 }
1293 
1294 static int
1295 mpr_alloc_queues(struct mpr_softc *sc)
1296 {
1297 	struct mpr_queue *q;
1298 	int nq, i;
1299 
1300 	nq = sc->msi_msgs;
1301 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1302 
1303 	sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR,
1304 	     M_NOWAIT|M_ZERO);
1305 	if (sc->queues == NULL)
1306 		return (ENOMEM);
1307 
1308 	for (i = 0; i < nq; i++) {
1309 		q = &sc->queues[i];
1310 		mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1311 		q->sc = sc;
1312 		q->qnum = i;
1313 	}
1314 	return (0);
1315 }
1316 
1317 static int
1318 mpr_alloc_hw_queues(struct mpr_softc *sc)
1319 {
1320 	bus_dma_tag_template_t t;
1321 	bus_addr_t queues_busaddr;
1322 	uint8_t *queues;
1323 	int qsize, fqsize, pqsize;
1324 
1325 	/*
1326 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1327 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1328 	 * This queue supplies fresh reply frames for the firmware to use.
1329 	 *
1330 	 * The reply descriptor post queue contains 8 byte entries in
1331 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1332 	 * contains filled-in reply frames sent from the firmware to the host.
1333 	 *
1334 	 * These two queues are allocated together for simplicity.
1335 	 */
1336 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1337 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1338 	fqsize= sc->fqdepth * 4;
1339 	pqsize = sc->pqdepth * 8;
1340 	qsize = fqsize + pqsize;
1341 
1342 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1343 	t.alignment = 16;
1344 	t.lowaddr = BUS_SPACE_MAXADDR_32BIT;
1345 	t.maxsize = t.maxsegsize = qsize;
1346 	t.nsegments = 1;
1347 	if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
1348 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1349 		return (ENOMEM);
1350         }
1351         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1352 	    &sc->queues_map)) {
1353 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1354 		return (ENOMEM);
1355         }
1356         bzero(queues, qsize);
1357         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1358 	    mpr_memaddr_cb, &queues_busaddr, 0);
1359 
1360 	sc->free_queue = (uint32_t *)queues;
1361 	sc->free_busaddr = queues_busaddr;
1362 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1363 	sc->post_busaddr = queues_busaddr + fqsize;
1364 	mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
1365 	    (uintmax_t)sc->free_busaddr, fqsize);
1366 	mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
1367 	    (uintmax_t)sc->post_busaddr, pqsize);
1368 
1369 	return (0);
1370 }
1371 
1372 static int
1373 mpr_alloc_replies(struct mpr_softc *sc)
1374 {
1375 	bus_dma_tag_template_t t;
1376 	int rsize, num_replies;
1377 
1378 	/* Store the reply frame size in bytes rather than as 32bit words */
1379 	sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1380 
1381 	/*
1382 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1383 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1384 	 * replies can be used at once.
1385 	 */
1386 	num_replies = max(sc->fqdepth, sc->num_replies);
1387 
1388 	rsize = sc->replyframesz * num_replies;
1389 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1390 	t.alignment = 4;
1391 	t.lowaddr = BUS_SPACE_MAXADDR_32BIT;
1392 	t.maxsize = t.maxsegsize = rsize;
1393 	t.nsegments = 1;
1394 	if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
1395 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1396 		return (ENOMEM);
1397         }
1398         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1399 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1400 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1401 		return (ENOMEM);
1402         }
1403         bzero(sc->reply_frames, rsize);
1404         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1405 	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1406 	mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
1407 	    (uintmax_t)sc->reply_busaddr, rsize);
1408 
1409 	return (0);
1410 }
1411 
1412 static void
1413 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1414 {
1415 	struct mpr_softc *sc = arg;
1416 	struct mpr_chain *chain;
1417 	bus_size_t bo;
1418 	int i, o, s;
1419 
1420 	if (error != 0)
1421 		return;
1422 
1423 	for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1424 		for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
1425 		    bo += sc->chain_frame_size) {
1426 			chain = &sc->chains[i++];
1427 			chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1428 			chain->chain_busaddr = segs[s].ds_addr + bo;
1429 			o += sc->chain_frame_size;
1430 			mpr_free_chain(sc, chain);
1431 		}
1432 		if (bo != segs[s].ds_len)
1433 			o += segs[s].ds_len - bo;
1434 	}
1435 	sc->chain_free_lowwater = i;
1436 }
1437 
1438 static int
1439 mpr_alloc_requests(struct mpr_softc *sc)
1440 {
1441 	bus_dma_tag_template_t t;
1442 	struct mpr_command *cm;
1443 	int i, rsize, nsegs;
1444 
1445 	rsize = sc->reqframesz * sc->num_reqs;
1446 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1447 	t.alignment = 16;
1448 	t.lowaddr = BUS_SPACE_MAXADDR_32BIT;
1449 	t.maxsize = t.maxsegsize = rsize;
1450 	t.nsegments = 1;
1451 	if (bus_dma_template_tag(&t, &sc->req_dmat)) {
1452 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1453 		return (ENOMEM);
1454         }
1455         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1456 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1457 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1458 		return (ENOMEM);
1459         }
1460         bzero(sc->req_frames, rsize);
1461         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1462 	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1463 	mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
1464 	    (uintmax_t)sc->req_busaddr, rsize);
1465 
1466 	sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
1467 	    M_NOWAIT | M_ZERO);
1468 	if (!sc->chains) {
1469 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1470 		return (ENOMEM);
1471 	}
1472 	rsize = sc->chain_frame_size * sc->num_chains;
1473 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1474 	t.alignment = 16;
1475 	t.maxsize = t.maxsegsize = rsize;
1476 	t.nsegments = howmany(rsize, PAGE_SIZE);
1477 	if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
1478 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1479 		return (ENOMEM);
1480 	}
1481 	if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1482 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1483 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1484 		return (ENOMEM);
1485 	}
1486 	if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1487 	    rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1488 		mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
1489 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1490 		    sc->chain_map);
1491 		return (ENOMEM);
1492 	}
1493 
1494 	rsize = MPR_SENSE_LEN * sc->num_reqs;
1495 	bus_dma_template_clone(&t, sc->req_dmat);
1496 	t.maxsize = t.maxsegsize = rsize;
1497 	if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
1498 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1499 		return (ENOMEM);
1500         }
1501         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1502 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1503 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1504 		return (ENOMEM);
1505         }
1506         bzero(sc->sense_frames, rsize);
1507         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1508 	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1509 	mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
1510 	    (uintmax_t)sc->sense_busaddr, rsize);
1511 
1512 	/*
1513 	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1514 	 * these devices.
1515 	 */
1516 	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1517 	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1518 		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1519 			return (ENOMEM);
1520 	}
1521 
1522 	nsegs = (sc->maxio / PAGE_SIZE) + 1;
1523 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1524 	t.nsegments = nsegs;
1525 	t.flags = BUS_DMA_ALLOCNOW;
1526 	t.lockfunc = busdma_lock_mutex;
1527 	t.lockfuncarg = &sc->mpr_mtx;
1528 	if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
1529 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1530 		return (ENOMEM);
1531         }
1532 
1533 	/*
1534 	 * SMID 0 cannot be used as a free command per the firmware spec.
1535 	 * Just drop that command instead of risking accounting bugs.
1536 	 */
1537 	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1538 	    M_MPR, M_WAITOK | M_ZERO);
1539 	if (!sc->commands) {
1540 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n");
1541 		return (ENOMEM);
1542 	}
1543 	for (i = 1; i < sc->num_reqs; i++) {
1544 		cm = &sc->commands[i];
1545 		cm->cm_req = sc->req_frames + i * sc->reqframesz;
1546 		cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1547 		cm->cm_sense = &sc->sense_frames[i];
1548 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1549 		cm->cm_desc.Default.SMID = i;
1550 		cm->cm_sc = sc;
1551 		cm->cm_state = MPR_CM_STATE_BUSY;
1552 		TAILQ_INIT(&cm->cm_chain_list);
1553 		TAILQ_INIT(&cm->cm_prp_page_list);
1554 		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1555 
1556 		/* XXX Is a failure here a critical problem? */
1557 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1558 		    == 0) {
1559 			if (i <= sc->num_prireqs)
1560 				mpr_free_high_priority_command(sc, cm);
1561 			else
1562 				mpr_free_command(sc, cm);
1563 		} else {
1564 			panic("failed to allocate command %d\n", i);
1565 			sc->num_reqs = i;
1566 			break;
1567 		}
1568 	}
1569 
1570 	return (0);
1571 }
1572 
1573 /*
1574  * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1575  * which are scatter/gather lists for NVMe devices.
1576  *
1577  * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1578  * and translated by FW.
1579  *
1580  * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1581  */
1582 static int
1583 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1584 {
1585 	bus_dma_tag_template_t t;
1586 	struct mpr_prp_page *prp_page;
1587 	int PRPs_per_page, PRPs_required, pages_required;
1588 	int rsize, i;
1589 
1590 	/*
1591 	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1592 	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1593 	 * MAX_IO_SIZE / PAGE_SIZE = 256
1594 	 *
1595 	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1596 	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1597 	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1598 	 *
1599 	 * Each of these buffers will need to be contiguous. For simplicity,
1600 	 * only one buffer is allocated here, which has all of the space
1601 	 * required for the NVMe Queue Depth. If there are problems allocating
1602 	 * this one buffer, this function will need to change to allocate
1603 	 * individual, contiguous NVME_QDEPTH buffers.
1604 	 *
1605 	 * The real calculation will use the real max io size. Above is just an
1606 	 * example.
1607 	 *
1608 	 */
1609 	PRPs_required = sc->maxio / PAGE_SIZE;
1610 	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1611 	pages_required = (PRPs_required / PRPs_per_page) + 1;
1612 
1613 	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1614 	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1615 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1616 	t.alignment = 4;
1617 	t.lowaddr = BUS_SPACE_MAXADDR_32BIT;
1618 	t.maxsize = t.maxsegsize = rsize;
1619 	t.nsegments = 1;
1620 	if (bus_dma_template_tag(&t, &sc->prp_page_dmat)) {
1621 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1622 		    "tag\n");
1623 		return (ENOMEM);
1624 	}
1625 	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1626 	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1627 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1628 		return (ENOMEM);
1629 	}
1630 	bzero(sc->prp_pages, rsize);
1631 	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1632 	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1633 
1634 	sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1635 	    M_WAITOK | M_ZERO);
1636 	for (i = 0; i < NVME_QDEPTH; i++) {
1637 		prp_page = &sc->prps[i];
1638 		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1639 		    i * sc->prp_buffer_size);
1640 		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1641 		    i * sc->prp_buffer_size);
1642 		mpr_free_prp_page(sc, prp_page);
1643 		sc->prp_pages_free_lowwater++;
1644 	}
1645 
1646 	return (0);
1647 }
1648 
1649 static int
1650 mpr_init_queues(struct mpr_softc *sc)
1651 {
1652 	int i;
1653 
1654 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1655 
1656 	/*
1657 	 * According to the spec, we need to use one less reply than we
1658 	 * have space for on the queue.  So sc->num_replies (the number we
1659 	 * use) should be less than sc->fqdepth (allocated size).
1660 	 */
1661 	if (sc->num_replies >= sc->fqdepth)
1662 		return (EINVAL);
1663 
1664 	/*
1665 	 * Initialize all of the free queue entries.
1666 	 */
1667 	for (i = 0; i < sc->fqdepth; i++) {
1668 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
1669 	}
1670 	sc->replyfreeindex = sc->num_replies;
1671 
1672 	return (0);
1673 }
1674 
1675 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1676  * Next are the global settings, if they exist.  Highest are the per-unit
1677  * settings, if they exist.
1678  */
1679 void
1680 mpr_get_tunables(struct mpr_softc *sc)
1681 {
1682 	char tmpstr[80], mpr_debug[80];
1683 
1684 	/* XXX default to some debugging for now */
1685 	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1686 	sc->disable_msix = 0;
1687 	sc->disable_msi = 0;
1688 	sc->max_msix = MPR_MSIX_MAX;
1689 	sc->max_chains = MPR_CHAIN_FRAMES;
1690 	sc->max_io_pages = MPR_MAXIO_PAGES;
1691 	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1692 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1693 	sc->use_phynum = 1;
1694 	sc->max_reqframes = MPR_REQ_FRAMES;
1695 	sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1696 	sc->max_replyframes = MPR_REPLY_FRAMES;
1697 	sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1698 
1699 	/*
1700 	 * Grab the global variables.
1701 	 */
1702 	bzero(mpr_debug, 80);
1703 	if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
1704 		mpr_parse_debug(sc, mpr_debug);
1705 	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1706 	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1707 	TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
1708 	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1709 	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1710 	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1711 	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1712 	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1713 	TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1714 	TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1715 	TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1716 	TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1717 
1718 	/* Grab the unit-instance variables */
1719 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1720 	    device_get_unit(sc->mpr_dev));
1721 	bzero(mpr_debug, 80);
1722 	if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
1723 		mpr_parse_debug(sc, mpr_debug);
1724 
1725 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1726 	    device_get_unit(sc->mpr_dev));
1727 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1728 
1729 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1730 	    device_get_unit(sc->mpr_dev));
1731 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1732 
1733 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
1734 	    device_get_unit(sc->mpr_dev));
1735 	TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1736 
1737 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1738 	    device_get_unit(sc->mpr_dev));
1739 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1740 
1741 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1742 	    device_get_unit(sc->mpr_dev));
1743 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1744 
1745 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1746 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1747 	    device_get_unit(sc->mpr_dev));
1748 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1749 
1750 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1751 	    device_get_unit(sc->mpr_dev));
1752 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1753 
1754 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1755 	    device_get_unit(sc->mpr_dev));
1756 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1757 
1758 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1759 	    device_get_unit(sc->mpr_dev));
1760 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1761 
1762 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1763 	    device_get_unit(sc->mpr_dev));
1764 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1765 
1766 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1767 	    device_get_unit(sc->mpr_dev));
1768 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1769 
1770 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1771 	    device_get_unit(sc->mpr_dev));
1772 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1773 
1774 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1775 	    device_get_unit(sc->mpr_dev));
1776 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1777 }
1778 
1779 static void
1780 mpr_setup_sysctl(struct mpr_softc *sc)
1781 {
1782 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1783 	struct sysctl_oid	*sysctl_tree = NULL;
1784 	char tmpstr[80], tmpstr2[80];
1785 
1786 	/*
1787 	 * Setup the sysctl variable so the user can change the debug level
1788 	 * on the fly.
1789 	 */
1790 	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1791 	    device_get_unit(sc->mpr_dev));
1792 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1793 
1794 	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1795 	if (sysctl_ctx != NULL)
1796 		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1797 
1798 	if (sysctl_tree == NULL) {
1799 		sysctl_ctx_init(&sc->sysctl_ctx);
1800 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1801 		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1802 		    CTLFLAG_RD, 0, tmpstr);
1803 		if (sc->sysctl_tree == NULL)
1804 			return;
1805 		sysctl_ctx = &sc->sysctl_ctx;
1806 		sysctl_tree = sc->sysctl_tree;
1807 	}
1808 
1809 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1810 	    OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1811 	    sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
1812 
1813 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1814 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1815 	    "Disable the use of MSI-X interrupts");
1816 
1817 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1818 	    OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1819 	    "User-defined maximum number of MSIX queues");
1820 
1821 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1822 	    OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1823 	    "Negotiated number of MSIX queues");
1824 
1825 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1826 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1827 	    "Total number of allocated request frames");
1828 
1829 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1830 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1831 	    "Total number of allocated high priority request frames");
1832 
1833 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1834 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1835 	    "Total number of allocated reply frames");
1836 
1837 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1838 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1839 	    "Total number of event frames allocated");
1840 
1841 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1842 	    OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
1843 	    strlen(sc->fw_version), "firmware version");
1844 
1845 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1846 	    OID_AUTO, "driver_version", CTLFLAG_RD, MPR_DRIVER_VERSION,
1847 	    strlen(MPR_DRIVER_VERSION), "driver version");
1848 
1849 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1850 	    OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
1851 	    strlen(sc->msg_version), "message interface version");
1852 
1853 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1854 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1855 	    &sc->io_cmds_active, 0, "number of currently active commands");
1856 
1857 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1858 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1859 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1860 
1861 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1862 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1863 	    &sc->chain_free, 0, "number of free chain elements");
1864 
1865 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1866 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1867 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1868 
1869 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1870 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1871 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1872 
1873 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1874 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1875 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1876 	    "IOCFacts)");
1877 
1878 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1879 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1880 	    "enable SSU to SATA SSD/HDD at shutdown");
1881 
1882 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1883 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1884 	    &sc->chain_alloc_fail, "chain allocation failures");
1885 
1886 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1887 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1888 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1889 	    "spinup after SATA ID error");
1890 
1891 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1892 	    OID_AUTO, "dump_reqs", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP, sc, 0,
1893 	    mpr_dump_reqs, "I", "Dump Active Requests");
1894 
1895 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1896 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1897 	    "Use the phy number for enumeration");
1898 
1899 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1900 	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1901 	    &sc->prp_pages_free, 0, "number of free PRP pages");
1902 
1903 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1904 	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1905 	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1906 
1907 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1908 	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1909 	    &sc->prp_page_alloc_fail, "PRP page allocation failures");
1910 }
1911 
1912 static struct mpr_debug_string {
1913 	char *name;
1914 	int flag;
1915 } mpr_debug_strings[] = {
1916 	{"info", MPR_INFO},
1917 	{"fault", MPR_FAULT},
1918 	{"event", MPR_EVENT},
1919 	{"log", MPR_LOG},
1920 	{"recovery", MPR_RECOVERY},
1921 	{"error", MPR_ERROR},
1922 	{"init", MPR_INIT},
1923 	{"xinfo", MPR_XINFO},
1924 	{"user", MPR_USER},
1925 	{"mapping", MPR_MAPPING},
1926 	{"trace", MPR_TRACE}
1927 };
1928 
1929 enum mpr_debug_level_combiner {
1930 	COMB_NONE,
1931 	COMB_ADD,
1932 	COMB_SUB
1933 };
1934 
1935 static int
1936 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
1937 {
1938 	struct mpr_softc *sc;
1939 	struct mpr_debug_string *string;
1940 	struct sbuf *sbuf;
1941 	char *buffer;
1942 	size_t sz;
1943 	int i, len, debug, error;
1944 
1945 	sc = (struct mpr_softc *)arg1;
1946 
1947 	error = sysctl_wire_old_buffer(req, 0);
1948 	if (error != 0)
1949 		return (error);
1950 
1951 	sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1952 	debug = sc->mpr_debug;
1953 
1954 	sbuf_printf(sbuf, "%#x", debug);
1955 
1956 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
1957 	for (i = 0; i < sz; i++) {
1958 		string = &mpr_debug_strings[i];
1959 		if (debug & string->flag)
1960 			sbuf_printf(sbuf, ",%s", string->name);
1961 	}
1962 
1963 	error = sbuf_finish(sbuf);
1964 	sbuf_delete(sbuf);
1965 
1966 	if (error || req->newptr == NULL)
1967 		return (error);
1968 
1969 	len = req->newlen - req->newidx;
1970 	if (len == 0)
1971 		return (0);
1972 
1973 	buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
1974 	error = SYSCTL_IN(req, buffer, len);
1975 
1976 	mpr_parse_debug(sc, buffer);
1977 
1978 	free(buffer, M_MPR);
1979 	return (error);
1980 }
1981 
1982 static void
1983 mpr_parse_debug(struct mpr_softc *sc, char *list)
1984 {
1985 	struct mpr_debug_string *string;
1986 	enum mpr_debug_level_combiner op;
1987 	char *token, *endtoken;
1988 	size_t sz;
1989 	int flags, i;
1990 
1991 	if (list == NULL || *list == '\0')
1992 		return;
1993 
1994 	if (*list == '+') {
1995 		op = COMB_ADD;
1996 		list++;
1997 	} else if (*list == '-') {
1998 		op = COMB_SUB;
1999 		list++;
2000 	} else
2001 		op = COMB_NONE;
2002 	if (*list == '\0')
2003 		return;
2004 
2005 	flags = 0;
2006 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
2007 	while ((token = strsep(&list, ":,")) != NULL) {
2008 
2009 		/* Handle integer flags */
2010 		flags |= strtol(token, &endtoken, 0);
2011 		if (token != endtoken)
2012 			continue;
2013 
2014 		/* Handle text flags */
2015 		for (i = 0; i < sz; i++) {
2016 			string = &mpr_debug_strings[i];
2017 			if (strcasecmp(token, string->name) == 0) {
2018 				flags |= string->flag;
2019 				break;
2020 			}
2021 		}
2022 	}
2023 
2024 	switch (op) {
2025 	case COMB_NONE:
2026 		sc->mpr_debug = flags;
2027 		break;
2028 	case COMB_ADD:
2029 		sc->mpr_debug |= flags;
2030 		break;
2031 	case COMB_SUB:
2032 		sc->mpr_debug &= (~flags);
2033 		break;
2034 	}
2035 	return;
2036 }
2037 
2038 struct mpr_dumpreq_hdr {
2039 	uint32_t	smid;
2040 	uint32_t	state;
2041 	uint32_t	numframes;
2042 	uint32_t	deschi;
2043 	uint32_t	desclo;
2044 };
2045 
2046 static int
2047 mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
2048 {
2049 	struct mpr_softc *sc;
2050 	struct mpr_chain *chain, *chain1;
2051 	struct mpr_command *cm;
2052 	struct mpr_dumpreq_hdr hdr;
2053 	struct sbuf *sb;
2054 	uint32_t smid, state;
2055 	int i, numreqs, error = 0;
2056 
2057 	sc = (struct mpr_softc *)arg1;
2058 
2059 	if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
2060 		printf("priv check error %d\n", error);
2061 		return (error);
2062 	}
2063 
2064 	state = MPR_CM_STATE_INQUEUE;
2065 	smid = 1;
2066 	numreqs = sc->num_reqs;
2067 
2068 	if (req->newptr != NULL)
2069 		return (EINVAL);
2070 
2071 	if (smid == 0 || smid > sc->num_reqs)
2072 		return (EINVAL);
2073 	if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
2074 		numreqs = sc->num_reqs;
2075 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
2076 
2077 	/* Best effort, no locking */
2078 	for (i = smid; i < numreqs; i++) {
2079 		cm = &sc->commands[i];
2080 		if (cm->cm_state != state)
2081 			continue;
2082 		hdr.smid = i;
2083 		hdr.state = cm->cm_state;
2084 		hdr.numframes = 1;
2085 		hdr.deschi = cm->cm_desc.Words.High;
2086 		hdr.desclo = cm->cm_desc.Words.Low;
2087 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2088 		   chain1)
2089 			hdr.numframes++;
2090 		sbuf_bcat(sb, &hdr, sizeof(hdr));
2091 		sbuf_bcat(sb, cm->cm_req, 128);
2092 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2093 		    chain1)
2094 			sbuf_bcat(sb, chain->chain, 128);
2095 	}
2096 
2097 	error = sbuf_finish(sb);
2098 	sbuf_delete(sb);
2099 	return (error);
2100 }
2101 
2102 int
2103 mpr_attach(struct mpr_softc *sc)
2104 {
2105 	int error;
2106 
2107 	MPR_FUNCTRACE(sc);
2108 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2109 
2110 	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
2111 	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
2112 	callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
2113 	TAILQ_INIT(&sc->event_list);
2114 	timevalclear(&sc->lastfail);
2115 
2116 	if ((error = mpr_transition_ready(sc)) != 0) {
2117 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2118 		    "Failed to transition ready\n");
2119 		return (error);
2120 	}
2121 
2122 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
2123 	    M_ZERO|M_NOWAIT);
2124 	if (!sc->facts) {
2125 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2126 		    "Cannot allocate memory, exit\n");
2127 		return (ENOMEM);
2128 	}
2129 
2130 	/*
2131 	 * Get IOC Facts and allocate all structures based on this information.
2132 	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
2133 	 * Facts. If relevant values have changed in IOC Facts, this function
2134 	 * will free all of the memory based on IOC Facts and reallocate that
2135 	 * memory.  If this fails, any allocated memory should already be freed.
2136 	 */
2137 	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
2138 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
2139 		    "failed with error %d\n", error);
2140 		return (error);
2141 	}
2142 
2143 	/* Start the periodic watchdog check on the IOC Doorbell */
2144 	mpr_periodic(sc);
2145 
2146 	/*
2147 	 * The portenable will kick off discovery events that will drive the
2148 	 * rest of the initialization process.  The CAM/SAS module will
2149 	 * hold up the boot sequence until discovery is complete.
2150 	 */
2151 	sc->mpr_ich.ich_func = mpr_startup;
2152 	sc->mpr_ich.ich_arg = sc;
2153 	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
2154 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2155 		    "Cannot establish MPR config hook\n");
2156 		error = EINVAL;
2157 	}
2158 
2159 	/*
2160 	 * Allow IR to shutdown gracefully when shutdown occurs.
2161 	 */
2162 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2163 	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2164 
2165 	if (sc->shutdown_eh == NULL)
2166 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2167 		    "shutdown event registration failed\n");
2168 
2169 	mpr_setup_sysctl(sc);
2170 
2171 	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
2172 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2173 
2174 	return (error);
2175 }
2176 
2177 /* Run through any late-start handlers. */
2178 static void
2179 mpr_startup(void *arg)
2180 {
2181 	struct mpr_softc *sc;
2182 
2183 	sc = (struct mpr_softc *)arg;
2184 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2185 
2186 	mpr_lock(sc);
2187 	mpr_unmask_intr(sc);
2188 
2189 	/* initialize device mapping tables */
2190 	mpr_base_static_config_pages(sc);
2191 	mpr_mapping_initialize(sc);
2192 	mprsas_startup(sc);
2193 	mpr_unlock(sc);
2194 
2195 	mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2196 	config_intrhook_disestablish(&sc->mpr_ich);
2197 	sc->mpr_ich.ich_arg = NULL;
2198 
2199 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2200 }
2201 
2202 /* Periodic watchdog.  Is called with the driver lock already held. */
2203 static void
2204 mpr_periodic(void *arg)
2205 {
2206 	struct mpr_softc *sc;
2207 	uint32_t db;
2208 
2209 	sc = (struct mpr_softc *)arg;
2210 	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2211 		return;
2212 
2213 	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2214 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2215 		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2216 		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2217 			panic("TEMPERATURE FAULT: STOPPING.");
2218 		}
2219 		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2220 		mpr_reinit(sc);
2221 	}
2222 
2223 	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
2224 }
2225 
2226 static void
2227 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2228     MPI2_EVENT_NOTIFICATION_REPLY *event)
2229 {
2230 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2231 
2232 	MPR_DPRINT_EVENT(sc, generic, event);
2233 
2234 	switch (event->Event) {
2235 	case MPI2_EVENT_LOG_DATA:
2236 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2237 		if (sc->mpr_debug & MPR_EVENT)
2238 			hexdump(event->EventData, event->EventDataLength, NULL,
2239 			    0);
2240 		break;
2241 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2242 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2243 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2244 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2245 		     entry->LogSequence);
2246 		break;
2247 	default:
2248 		break;
2249 	}
2250 	return;
2251 }
2252 
2253 static int
2254 mpr_attach_log(struct mpr_softc *sc)
2255 {
2256 	uint8_t events[16];
2257 
2258 	bzero(events, 16);
2259 	setbit(events, MPI2_EVENT_LOG_DATA);
2260 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2261 
2262 	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2263 	    &sc->mpr_log_eh);
2264 
2265 	return (0);
2266 }
2267 
2268 static int
2269 mpr_detach_log(struct mpr_softc *sc)
2270 {
2271 
2272 	if (sc->mpr_log_eh != NULL)
2273 		mpr_deregister_events(sc, sc->mpr_log_eh);
2274 	return (0);
2275 }
2276 
2277 /*
2278  * Free all of the driver resources and detach submodules.  Should be called
2279  * without the lock held.
2280  */
2281 int
2282 mpr_free(struct mpr_softc *sc)
2283 {
2284 	int error;
2285 
2286 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2287 	/* Turn off the watchdog */
2288 	mpr_lock(sc);
2289 	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2290 	mpr_unlock(sc);
2291 	/* Lock must not be held for this */
2292 	callout_drain(&sc->periodic);
2293 	callout_drain(&sc->device_check_callout);
2294 
2295 	if (((error = mpr_detach_log(sc)) != 0) ||
2296 	    ((error = mpr_detach_sas(sc)) != 0)) {
2297 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2298 		    "subsystems, error= %d, exit\n", error);
2299 		return (error);
2300 	}
2301 
2302 	mpr_detach_user(sc);
2303 
2304 	/* Put the IOC back in the READY state. */
2305 	mpr_lock(sc);
2306 	if ((error = mpr_transition_ready(sc)) != 0) {
2307 		mpr_unlock(sc);
2308 		return (error);
2309 	}
2310 	mpr_unlock(sc);
2311 
2312 	if (sc->facts != NULL)
2313 		free(sc->facts, M_MPR);
2314 
2315 	/*
2316 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2317 	 * to free these buffers too.
2318 	 */
2319 	mpr_iocfacts_free(sc);
2320 
2321 	if (sc->sysctl_tree != NULL)
2322 		sysctl_ctx_free(&sc->sysctl_ctx);
2323 
2324 	/* Deregister the shutdown function */
2325 	if (sc->shutdown_eh != NULL)
2326 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2327 
2328 	mtx_destroy(&sc->mpr_mtx);
2329 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2330 
2331 	return (0);
2332 }
2333 
2334 static __inline void
2335 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2336 {
2337 	MPR_FUNCTRACE(sc);
2338 
2339 	if (cm == NULL) {
2340 		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2341 		return;
2342 	}
2343 
2344 	cm->cm_state = MPR_CM_STATE_BUSY;
2345 	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2346 		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2347 
2348 	if (cm->cm_complete != NULL) {
2349 		mpr_dprint(sc, MPR_TRACE,
2350 		    "%s cm %p calling cm_complete %p data %p reply %p\n",
2351 		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
2352 		    cm->cm_reply);
2353 		cm->cm_complete(sc, cm);
2354 	}
2355 
2356 	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2357 		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2358 		wakeup(cm);
2359 	}
2360 
2361 	if (sc->io_cmds_active != 0) {
2362 		sc->io_cmds_active--;
2363 	} else {
2364 		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2365 		    "out of sync - resynching to 0\n");
2366 	}
2367 }
2368 
2369 static void
2370 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2371 {
2372 	union loginfo_type {
2373 		u32	loginfo;
2374 		struct {
2375 			u32	subcode:16;
2376 			u32	code:8;
2377 			u32	originator:4;
2378 			u32	bus_type:4;
2379 		} dw;
2380 	};
2381 	union loginfo_type sas_loginfo;
2382 	char *originator_str = NULL;
2383 
2384 	sas_loginfo.loginfo = log_info;
2385 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2386 		return;
2387 
2388 	/* each nexus loss loginfo */
2389 	if (log_info == 0x31170000)
2390 		return;
2391 
2392 	/* eat the loginfos associated with task aborts */
2393 	if ((log_info == 30050000) || (log_info == 0x31140000) ||
2394 	    (log_info == 0x31130000))
2395 		return;
2396 
2397 	switch (sas_loginfo.dw.originator) {
2398 	case 0:
2399 		originator_str = "IOP";
2400 		break;
2401 	case 1:
2402 		originator_str = "PL";
2403 		break;
2404 	case 2:
2405 		originator_str = "IR";
2406 		break;
2407 	}
2408 
2409 	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2410 	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2411 	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2412 }
2413 
2414 static void
2415 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2416 {
2417 	MPI2DefaultReply_t *mpi_reply;
2418 	u16 sc_status;
2419 
2420 	mpi_reply = (MPI2DefaultReply_t*)reply;
2421 	sc_status = le16toh(mpi_reply->IOCStatus);
2422 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2423 		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2424 }
2425 
2426 void
2427 mpr_intr(void *data)
2428 {
2429 	struct mpr_softc *sc;
2430 	uint32_t status;
2431 
2432 	sc = (struct mpr_softc *)data;
2433 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2434 
2435 	/*
2436 	 * Check interrupt status register to flush the bus.  This is
2437 	 * needed for both INTx interrupts and driver-driven polling
2438 	 */
2439 	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2440 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2441 		return;
2442 
2443 	mpr_lock(sc);
2444 	mpr_intr_locked(data);
2445 	mpr_unlock(sc);
2446 	return;
2447 }
2448 
2449 /*
2450  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2451  * chip.  Hopefully this theory is correct.
2452  */
2453 void
2454 mpr_intr_msi(void *data)
2455 {
2456 	struct mpr_softc *sc;
2457 
2458 	sc = (struct mpr_softc *)data;
2459 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2460 	mpr_lock(sc);
2461 	mpr_intr_locked(data);
2462 	mpr_unlock(sc);
2463 	return;
2464 }
2465 
2466 /*
2467  * The locking is overly broad and simplistic, but easy to deal with for now.
2468  */
2469 void
2470 mpr_intr_locked(void *data)
2471 {
2472 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2473 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2474 	mpr_fw_diagnostic_buffer_t *pBuffer;
2475 	struct mpr_softc *sc;
2476 	uint64_t tdesc;
2477 	struct mpr_command *cm = NULL;
2478 	uint8_t flags;
2479 	u_int pq;
2480 
2481 	sc = (struct mpr_softc *)data;
2482 
2483 	pq = sc->replypostindex;
2484 	mpr_dprint(sc, MPR_TRACE,
2485 	    "%s sc %p starting with replypostindex %u\n",
2486 	    __func__, sc, sc->replypostindex);
2487 
2488 	for ( ;; ) {
2489 		cm = NULL;
2490 		desc = &sc->post_queue[sc->replypostindex];
2491 
2492 		/*
2493 		 * Copy and clear out the descriptor so that any reentry will
2494 		 * immediately know that this descriptor has already been
2495 		 * looked at.  There is unfortunate casting magic because the
2496 		 * MPI API doesn't have a cardinal 64bit type.
2497 		 */
2498 		tdesc = 0xffffffffffffffff;
2499 		tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2500 		desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2501 
2502 		flags = desc->Default.ReplyFlags &
2503 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2504 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2505 		    (le32toh(desc->Words.High) == 0xffffffff))
2506 			break;
2507 
2508 		/* increment the replypostindex now, so that event handlers
2509 		 * and cm completion handlers which decide to do a diag
2510 		 * reset can zero it without it getting incremented again
2511 		 * afterwards, and we break out of this loop on the next
2512 		 * iteration since the reply post queue has been cleared to
2513 		 * 0xFF and all descriptors look unused (which they are).
2514 		 */
2515 		if (++sc->replypostindex >= sc->pqdepth)
2516 			sc->replypostindex = 0;
2517 
2518 		switch (flags) {
2519 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2520 		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2521 		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2522 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2523 			KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2524 			    ("command not inqueue\n"));
2525 			cm->cm_state = MPR_CM_STATE_BUSY;
2526 			cm->cm_reply = NULL;
2527 			break;
2528 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2529 		{
2530 			uint32_t baddr;
2531 			uint8_t *reply;
2532 
2533 			/*
2534 			 * Re-compose the reply address from the address
2535 			 * sent back from the chip.  The ReplyFrameAddress
2536 			 * is the lower 32 bits of the physical address of
2537 			 * particular reply frame.  Convert that address to
2538 			 * host format, and then use that to provide the
2539 			 * offset against the virtual address base
2540 			 * (sc->reply_frames).
2541 			 */
2542 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2543 			reply = sc->reply_frames +
2544 				(baddr - ((uint32_t)sc->reply_busaddr));
2545 			/*
2546 			 * Make sure the reply we got back is in a valid
2547 			 * range.  If not, go ahead and panic here, since
2548 			 * we'll probably panic as soon as we deference the
2549 			 * reply pointer anyway.
2550 			 */
2551 			if ((reply < sc->reply_frames)
2552 			 || (reply > (sc->reply_frames +
2553 			     (sc->fqdepth * sc->replyframesz)))) {
2554 				printf("%s: WARNING: reply %p out of range!\n",
2555 				       __func__, reply);
2556 				printf("%s: reply_frames %p, fqdepth %d, "
2557 				       "frame size %d\n", __func__,
2558 				       sc->reply_frames, sc->fqdepth,
2559 				       sc->replyframesz);
2560 				printf("%s: baddr %#x,\n", __func__, baddr);
2561 				/* LSI-TODO. See Linux Code for Graceful exit */
2562 				panic("Reply address out of range");
2563 			}
2564 			if (le16toh(desc->AddressReply.SMID) == 0) {
2565 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2566 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2567 					/*
2568 					 * If SMID is 0 for Diag Buffer Post,
2569 					 * this implies that the reply is due to
2570 					 * a release function with a status that
2571 					 * the buffer has been released.  Set
2572 					 * the buffer flags accordingly.
2573 					 */
2574 					rel_rep =
2575 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2576 					if ((le16toh(rel_rep->IOCStatus) &
2577 					    MPI2_IOCSTATUS_MASK) ==
2578 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2579 					{
2580 						pBuffer =
2581 						    &sc->fw_diag_buffer_list[
2582 						    rel_rep->BufferType];
2583 						pBuffer->valid_data = TRUE;
2584 						pBuffer->owned_by_firmware =
2585 						    FALSE;
2586 						pBuffer->immediate = FALSE;
2587 					}
2588 				} else
2589 					mpr_dispatch_event(sc, baddr,
2590 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2591 					    reply);
2592 			} else {
2593 				cm = &sc->commands[
2594 				    le16toh(desc->AddressReply.SMID)];
2595 				if (cm->cm_state == MPR_CM_STATE_INQUEUE) {
2596 					cm->cm_reply = reply;
2597 					cm->cm_reply_data =
2598 					    le32toh(desc->AddressReply.
2599 						ReplyFrameAddress);
2600 				} else {
2601 					mpr_dprint(sc, MPR_RECOVERY,
2602 					    "Bad state for ADDRESS_REPLY status,"
2603 					    " ignoring state %d cm %p\n",
2604 					    cm->cm_state, cm);
2605 				}
2606 			}
2607 			break;
2608 		}
2609 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2610 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2611 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2612 		default:
2613 			/* Unhandled */
2614 			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2615 			    desc->Default.ReplyFlags);
2616 			cm = NULL;
2617 			break;
2618 		}
2619 
2620 		if (cm != NULL) {
2621 			// Print Error reply frame
2622 			if (cm->cm_reply)
2623 				mpr_display_reply_info(sc,cm->cm_reply);
2624 			mpr_complete_command(sc, cm);
2625 		}
2626 	}
2627 
2628 	if (pq != sc->replypostindex) {
2629 		mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
2630 		    __func__, sc, sc->replypostindex);
2631 		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2632 		    sc->replypostindex);
2633 	}
2634 
2635 	return;
2636 }
2637 
2638 static void
2639 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2640     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2641 {
2642 	struct mpr_event_handle *eh;
2643 	int event, handled = 0;
2644 
2645 	event = le16toh(reply->Event);
2646 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2647 		if (isset(eh->mask, event)) {
2648 			eh->callback(sc, data, reply);
2649 			handled++;
2650 		}
2651 	}
2652 
2653 	if (handled == 0)
2654 		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2655 		    le16toh(event));
2656 
2657 	/*
2658 	 * This is the only place that the event/reply should be freed.
2659 	 * Anything wanting to hold onto the event data should have
2660 	 * already copied it into their own storage.
2661 	 */
2662 	mpr_free_reply(sc, data);
2663 }
2664 
2665 static void
2666 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2667 {
2668 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2669 
2670 	if (cm->cm_reply)
2671 		MPR_DPRINT_EVENT(sc, generic,
2672 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2673 
2674 	mpr_free_command(sc, cm);
2675 
2676 	/* next, send a port enable */
2677 	mprsas_startup(sc);
2678 }
2679 
2680 /*
2681  * For both register_events and update_events, the caller supplies a bitmap
2682  * of events that it _wants_.  These functions then turn that into a bitmask
2683  * suitable for the controller.
2684  */
2685 int
2686 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2687     mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2688 {
2689 	struct mpr_event_handle *eh;
2690 	int error = 0;
2691 
2692 	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2693 	if (!eh) {
2694 		mpr_dprint(sc, MPR_EVENT|MPR_ERROR,
2695 		    "Cannot allocate event memory\n");
2696 		return (ENOMEM);
2697 	}
2698 	eh->callback = cb;
2699 	eh->data = data;
2700 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2701 	if (mask != NULL)
2702 		error = mpr_update_events(sc, eh, mask);
2703 	*handle = eh;
2704 
2705 	return (error);
2706 }
2707 
2708 int
2709 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2710     uint8_t *mask)
2711 {
2712 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2713 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2714 	struct mpr_command *cm = NULL;
2715 	struct mpr_event_handle *eh;
2716 	int error, i;
2717 
2718 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2719 
2720 	if ((mask != NULL) && (handle != NULL))
2721 		bcopy(mask, &handle->mask[0], 16);
2722 	memset(sc->event_mask, 0xff, 16);
2723 
2724 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2725 		for (i = 0; i < 16; i++)
2726 			sc->event_mask[i] &= ~eh->mask[i];
2727 	}
2728 
2729 	if ((cm = mpr_alloc_command(sc)) == NULL)
2730 		return (EBUSY);
2731 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2732 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2733 	evtreq->MsgFlags = 0;
2734 	evtreq->SASBroadcastPrimitiveMasks = 0;
2735 #ifdef MPR_DEBUG_ALL_EVENTS
2736 	{
2737 		u_char fullmask[16];
2738 		memset(fullmask, 0x00, 16);
2739 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2740 	}
2741 #else
2742 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2743 #endif
2744 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2745 	cm->cm_data = NULL;
2746 
2747 	error = mpr_request_polled(sc, &cm);
2748 	if (cm != NULL)
2749 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2750 	if ((reply == NULL) ||
2751 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2752 		error = ENXIO;
2753 
2754 	if (reply)
2755 		MPR_DPRINT_EVENT(sc, generic, reply);
2756 
2757 	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2758 
2759 	if (cm != NULL)
2760 		mpr_free_command(sc, cm);
2761 	return (error);
2762 }
2763 
2764 static int
2765 mpr_reregister_events(struct mpr_softc *sc)
2766 {
2767 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2768 	struct mpr_command *cm;
2769 	struct mpr_event_handle *eh;
2770 	int error, i;
2771 
2772 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2773 
2774 	/* first, reregister events */
2775 
2776 	memset(sc->event_mask, 0xff, 16);
2777 
2778 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2779 		for (i = 0; i < 16; i++)
2780 			sc->event_mask[i] &= ~eh->mask[i];
2781 	}
2782 
2783 	if ((cm = mpr_alloc_command(sc)) == NULL)
2784 		return (EBUSY);
2785 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2786 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2787 	evtreq->MsgFlags = 0;
2788 	evtreq->SASBroadcastPrimitiveMasks = 0;
2789 #ifdef MPR_DEBUG_ALL_EVENTS
2790 	{
2791 		u_char fullmask[16];
2792 		memset(fullmask, 0x00, 16);
2793 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2794 	}
2795 #else
2796 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2797 #endif
2798 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2799 	cm->cm_data = NULL;
2800 	cm->cm_complete = mpr_reregister_events_complete;
2801 
2802 	error = mpr_map_command(sc, cm);
2803 
2804 	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2805 	    error);
2806 	return (error);
2807 }
2808 
2809 int
2810 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2811 {
2812 
2813 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2814 	free(handle, M_MPR);
2815 	return (mpr_update_events(sc, NULL, NULL));
2816 }
2817 
2818 /**
2819 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2820 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2821 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2822 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2823 * describe a larger data buffer. If the data buffer is too large to describe
2824 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2825 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2826 * elsewhere in memory to describe the remaining data memory segments. The PRP
2827 * list will be contiguous.
2828 
2829 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2830 * consists of a list of PRP entries to describe a number of noncontigous
2831 * physical memory segments as a single memory buffer, just as a SGL does. Note
2832 * however, that this function is only used by the IOCTL call, so the memory
2833 * given will be guaranteed to be contiguous. There is no need to translate
2834 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2835 * space that is one page size each.
2836 *
2837 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2838 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2839 * the second PRP element if the memory being described fits within 2 PRP
2840 * entries, or a PRP list pointer if the PRP spans more than two entries.
2841 *
2842 * A PRP list pointer contains the address of a PRP list, structured as a linear
2843 * array of PRP entries. Each PRP entry in this list describes a segment of
2844 * physical memory.
2845 *
2846 * Each 64-bit PRP entry comprises an address and an offset field. The address
2847 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2848 * offset describes where within that page the memory segment begins. Only the
2849 * first element in a PRP list may contain a non-zero offest, implying that all
2850 * memory segments following the first begin at the start of a PAGE_SIZE page.
2851 *
2852 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2853 * with exceptions for the first and last elements in the list. If the memory
2854 * being described by the list begins at a non-zero offset within the first page,
2855 * then the first PRP element will contain a non-zero offset indicating where the
2856 * region begins within the page. The last memory segment may end before the end
2857 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2858 * described by the PRP list.
2859 *
2860 * Since PRP entries lack any indication of size, the overall data buffer length
2861 * is used to determine where the end of the data memory buffer is located, and
2862 * how many PRP entries are required to describe it.
2863 *
2864 * Returns nothing.
2865 */
2866 void
2867 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2868     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2869     uint32_t data_in_sz, uint32_t data_out_sz)
2870 {
2871 	int			prp_size = PRP_ENTRY_SIZE;
2872 	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2873 	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2874 	uint32_t		offset, entry_len, page_mask_result, page_mask;
2875 	bus_addr_t		paddr;
2876 	size_t			length;
2877 	struct mpr_prp_page	*prp_page_info = NULL;
2878 
2879 	/*
2880 	 * Not all commands require a data transfer. If no data, just return
2881 	 * without constructing any PRP.
2882 	 */
2883 	if (!data_in_sz && !data_out_sz)
2884 		return;
2885 
2886 	/*
2887 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2888 	 * located at a 24 byte offset from the start of the NVMe command. Then
2889 	 * set the current PRP entry pointer to PRP1.
2890 	 */
2891 	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2892 	    NVME_CMD_PRP1_OFFSET);
2893 	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2894 	    NVME_CMD_PRP2_OFFSET);
2895 	prp_entry = prp1_entry;
2896 
2897 	/*
2898 	 * For the PRP entries, use the specially allocated buffer of
2899 	 * contiguous memory. PRP Page allocation failures should not happen
2900 	 * because there should be enough PRP page buffers to account for the
2901 	 * possible NVMe QDepth.
2902 	 */
2903 	prp_page_info = mpr_alloc_prp_page(sc);
2904 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2905 	    "used for building a native NVMe SGL.\n", __func__));
2906 	prp_page = (uint64_t *)prp_page_info->prp_page;
2907 	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2908 
2909 	/*
2910 	 * Insert the allocated PRP page into the command's PRP page list. This
2911 	 * will be freed when the command is freed.
2912 	 */
2913 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2914 
2915 	/*
2916 	 * Check if we are within 1 entry of a page boundary we don't want our
2917 	 * first entry to be a PRP List entry.
2918 	 */
2919 	page_mask = PAGE_SIZE - 1;
2920 	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2921 	    page_mask;
2922 	if (!page_mask_result)
2923 	{
2924 		/* Bump up to next page boundary. */
2925 		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2926 		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2927 		    prp_size);
2928 	}
2929 
2930 	/*
2931 	 * Set PRP physical pointer, which initially points to the current PRP
2932 	 * DMA memory page.
2933 	 */
2934 	prp_entry_phys = prp_page_phys;
2935 
2936 	/* Get physical address and length of the data buffer. */
2937 	paddr = (bus_addr_t)(uintptr_t)data;
2938 	if (data_in_sz)
2939 		length = data_in_sz;
2940 	else
2941 		length = data_out_sz;
2942 
2943 	/* Loop while the length is not zero. */
2944 	while (length)
2945 	{
2946 		/*
2947 		 * Check if we need to put a list pointer here if we are at page
2948 		 * boundary - prp_size (8 bytes).
2949 		 */
2950 		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2951 		    prp_size) & page_mask;
2952 		if (!page_mask_result)
2953 		{
2954 			/*
2955 			 * This is the last entry in a PRP List, so we need to
2956 			 * put a PRP list pointer here. What this does is:
2957 			 *   - bump the current memory pointer to the next
2958 			 *     address, which will be the next full page.
2959 			 *   - set the PRP Entry to point to that page. This is
2960 			 *     now the PRP List pointer.
2961 			 *   - bump the PRP Entry pointer the start of the next
2962 			 *     page. Since all of this PRP memory is contiguous,
2963 			 *     no need to get a new page - it's just the next
2964 			 *     address.
2965 			 */
2966 			prp_entry_phys++;
2967 			*prp_entry =
2968 			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
2969 			prp_entry++;
2970 		}
2971 
2972 		/* Need to handle if entry will be part of a page. */
2973 		offset = (uint32_t)paddr & page_mask;
2974 		entry_len = PAGE_SIZE - offset;
2975 
2976 		if (prp_entry == prp1_entry)
2977 		{
2978 			/*
2979 			 * Must fill in the first PRP pointer (PRP1) before
2980 			 * moving on.
2981 			 */
2982 			*prp1_entry = htole64((uint64_t)paddr);
2983 
2984 			/*
2985 			 * Now point to the second PRP entry within the
2986 			 * command (PRP2).
2987 			 */
2988 			prp_entry = prp2_entry;
2989 		}
2990 		else if (prp_entry == prp2_entry)
2991 		{
2992 			/*
2993 			 * Should the PRP2 entry be a PRP List pointer or just a
2994 			 * regular PRP pointer? If there is more than one more
2995 			 * page of data, must use a PRP List pointer.
2996 			 */
2997 			if (length > PAGE_SIZE)
2998 			{
2999 				/*
3000 				 * PRP2 will contain a PRP List pointer because
3001 				 * more PRP's are needed with this command. The
3002 				 * list will start at the beginning of the
3003 				 * contiguous buffer.
3004 				 */
3005 				*prp2_entry =
3006 				    htole64(
3007 				    (uint64_t)(uintptr_t)prp_entry_phys);
3008 
3009 				/*
3010 				 * The next PRP Entry will be the start of the
3011 				 * first PRP List.
3012 				 */
3013 				prp_entry = prp_page;
3014 			}
3015 			else
3016 			{
3017 				/*
3018 				 * After this, the PRP Entries are complete.
3019 				 * This command uses 2 PRP's and no PRP list.
3020 				 */
3021 				*prp2_entry = htole64((uint64_t)paddr);
3022 			}
3023 		}
3024 		else
3025 		{
3026 			/*
3027 			 * Put entry in list and bump the addresses.
3028 			 *
3029 			 * After PRP1 and PRP2 are filled in, this will fill in
3030 			 * all remaining PRP entries in a PRP List, one per each
3031 			 * time through the loop.
3032 			 */
3033 			*prp_entry = htole64((uint64_t)paddr);
3034 			prp_entry++;
3035 			prp_entry_phys++;
3036 		}
3037 
3038 		/*
3039 		 * Bump the phys address of the command's data buffer by the
3040 		 * entry_len.
3041 		 */
3042 		paddr += entry_len;
3043 
3044 		/* Decrement length accounting for last partial page. */
3045 		if (entry_len > length)
3046 			length = 0;
3047 		else
3048 			length -= entry_len;
3049 	}
3050 }
3051 
3052 /*
3053  * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
3054  * determine if the driver needs to build a native SGL. If so, that native SGL
3055  * is built in the contiguous buffers allocated especially for PCIe SGL
3056  * creation. If the driver will not build a native SGL, return TRUE and a
3057  * normal IEEE SGL will be built. Currently this routine supports NVMe devices
3058  * only.
3059  *
3060  * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
3061  */
3062 static int
3063 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
3064     bus_dma_segment_t *segs, int segs_left)
3065 {
3066 	uint32_t		i, sge_dwords, length, offset, entry_len;
3067 	uint32_t		num_entries, buff_len = 0, sges_in_segment;
3068 	uint32_t		page_mask, page_mask_result, *curr_buff;
3069 	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
3070 	uint32_t		first_page_data_size, end_residual;
3071 	uint64_t		*msg_phys;
3072 	bus_addr_t		paddr;
3073 	int			build_native_sgl = 0, first_prp_entry;
3074 	int			prp_size = PRP_ENTRY_SIZE;
3075 	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
3076 	struct mpr_prp_page	*prp_page_info = NULL;
3077 
3078 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
3079 
3080 	/*
3081 	 * Add up the sizes of each segment length to get the total transfer
3082 	 * size, which will be checked against the Maximum Data Transfer Size.
3083 	 * If the data transfer length exceeds the MDTS for this device, just
3084 	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
3085 	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
3086 	 */
3087 	for (i = 0; i < segs_left; i++)
3088 		buff_len += htole32(segs[i].ds_len);
3089 	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
3090 		return 1;
3091 
3092 	/* Create page_mask (to get offset within page) */
3093 	page_mask = PAGE_SIZE - 1;
3094 
3095 	/*
3096 	 * Check if the number of elements exceeds the max number that can be
3097 	 * put in the main message frame (H/W can only translate an SGL that
3098 	 * is contained entirely in the main message frame).
3099 	 */
3100 	sges_in_segment = (sc->reqframesz -
3101 	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
3102 	if (segs_left > sges_in_segment)
3103 		build_native_sgl = 1;
3104 	else
3105 	{
3106 		/*
3107 		 * NVMe uses one PRP for each physical page (or part of physical
3108 		 * page).
3109 		 *    if 4 pages or less then IEEE is OK
3110 		 *    if > 5 pages then we need to build a native SGL
3111 		 *    if > 4 and <= 5 pages, then check the physical address of
3112 		 *      the first SG entry, then if this first size in the page
3113 		 *      is >= the residual beyond 4 pages then use IEEE,
3114 		 *      otherwise use native SGL
3115 		 */
3116 		if (buff_len > (PAGE_SIZE * 5))
3117 			build_native_sgl = 1;
3118 		else if ((buff_len > (PAGE_SIZE * 4)) &&
3119 		    (buff_len <= (PAGE_SIZE * 5)) )
3120 		{
3121 			msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
3122 			first_page_offset =
3123 			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
3124 			    page_mask);
3125 			first_page_data_size = PAGE_SIZE - first_page_offset;
3126 			end_residual = buff_len % PAGE_SIZE;
3127 
3128 			/*
3129 			 * If offset into first page pushes the end of the data
3130 			 * beyond end of the 5th page, we need the extra PRP
3131 			 * list.
3132 			 */
3133 			if (first_page_data_size < end_residual)
3134 				build_native_sgl = 1;
3135 
3136 			/*
3137 			 * Check if first SG entry size is < residual beyond 4
3138 			 * pages.
3139 			 */
3140 			if (htole32(segs[0].ds_len) <
3141 			    (buff_len - (PAGE_SIZE * 4)))
3142 				build_native_sgl = 1;
3143 		}
3144 	}
3145 
3146 	/* check if native SGL is needed */
3147 	if (!build_native_sgl)
3148 		return 1;
3149 
3150 	/*
3151 	 * Native SGL is needed.
3152 	 * Put a chain element in main message frame that points to the first
3153 	 * chain buffer.
3154 	 *
3155 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
3156 	 *        a native SGL.
3157 	 */
3158 
3159 	/* Set main message chain element pointer */
3160 	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
3161 
3162 	/*
3163 	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
3164 	 * message.
3165 	 */
3166 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
3167 	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
3168 
3169 	/*
3170 	 * For the PRP entries, use the specially allocated buffer of
3171 	 * contiguous memory. PRP Page allocation failures should not happen
3172 	 * because there should be enough PRP page buffers to account for the
3173 	 * possible NVMe QDepth.
3174 	 */
3175 	prp_page_info = mpr_alloc_prp_page(sc);
3176 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
3177 	    "used for building a native NVMe SGL.\n", __func__));
3178 	curr_buff = (uint32_t *)prp_page_info->prp_page;
3179 	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
3180 
3181 	/*
3182 	 * Insert the allocated PRP page into the command's PRP page list. This
3183 	 * will be freed when the command is freed.
3184 	 */
3185 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
3186 
3187 	/*
3188 	 * Check if we are within 1 entry of a page boundary we don't want our
3189 	 * first entry to be a PRP List entry.
3190 	 */
3191 	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3192 	    page_mask;
3193 	if (!page_mask_result) {
3194 		/* Bump up to next page boundary. */
3195 		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3196 		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3197 	}
3198 
3199 	/* Fill in the chain element and make it an NVMe segment type. */
3200 	main_chain_element->Address.High =
3201 	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3202 	main_chain_element->Address.Low =
3203 	    htole32((uint32_t)(uintptr_t)msg_phys);
3204 	main_chain_element->NextChainOffset = 0;
3205 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3206 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3207 	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3208 
3209 	/* Set SGL pointer to start of contiguous PCIe buffer. */
3210 	ptr_sgl = curr_buff;
3211 	sge_dwords = 2;
3212 	num_entries = 0;
3213 
3214 	/*
3215 	 * NVMe has a very convoluted PRP format. One PRP is required for each
3216 	 * page or partial page. We need to split up OS SG entries if they are
3217 	 * longer than one page or cross a page boundary. We also have to insert
3218 	 * a PRP list pointer entry as the last entry in each physical page of
3219 	 * the PRP list.
3220 	 *
3221 	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3222 	 * in the main message in IEEE 64 format. The 2nd entry in the main
3223 	 * message is the chain element, and the rest of the PRP entries are
3224 	 * built in the contiguous PCIe buffer.
3225 	 */
3226 	first_prp_entry = 1;
3227 	ptr_first_sgl = (uint32_t *)cm->cm_sge;
3228 
3229 	for (i = 0; i < segs_left; i++) {
3230 		/* Get physical address and length of this SG entry. */
3231 		paddr = segs[i].ds_addr;
3232 		length = segs[i].ds_len;
3233 
3234 		/*
3235 		 * Check whether a given SGE buffer lies on a non-PAGED
3236 		 * boundary if this is not the first page. If so, this is not
3237 		 * expected so have FW build the SGL.
3238 		 */
3239 		if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3240 			mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3241 			    "building NVMe PRPs, low address is 0x%x\n",
3242 			    (uint32_t)paddr);
3243 			return 1;
3244 		}
3245 
3246 		/* Apart from last SGE, if any other SGE boundary is not page
3247 		 * aligned then it means that hole exists. Existence of hole
3248 		 * leads to data corruption. So fallback to IEEE SGEs.
3249 		 */
3250 		if (i != (segs_left - 1)) {
3251 			if (((uint32_t)paddr + length) & page_mask) {
3252 				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3253 				    "boundary while building NVMe PRPs, low "
3254 				    "address: 0x%x and length: %u\n",
3255 				    (uint32_t)paddr, length);
3256 				return 1;
3257 			}
3258 		}
3259 
3260 		/* Loop while the length is not zero. */
3261 		while (length) {
3262 			/*
3263 			 * Check if we need to put a list pointer here if we are
3264 			 * at page boundary - prp_size.
3265 			 */
3266 			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3267 			    prp_size) & page_mask;
3268 			if (!page_mask_result) {
3269 				/*
3270 				 * Need to put a PRP list pointer here.
3271 				 */
3272 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3273 				    prp_size);
3274 				*ptr_sgl = htole32((uintptr_t)msg_phys);
3275 				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3276 				    msg_phys >> 32);
3277 				ptr_sgl += sge_dwords;
3278 				num_entries++;
3279 			}
3280 
3281 			/* Need to handle if entry will be part of a page. */
3282 			offset = (uint32_t)paddr & page_mask;
3283 			entry_len = PAGE_SIZE - offset;
3284 			if (first_prp_entry) {
3285 				/*
3286 				 * Put IEEE entry in first SGE in main message.
3287 				 * (Simple element, System addr, not end of
3288 				 * list.)
3289 				 */
3290 				*ptr_first_sgl = htole32((uint32_t)paddr);
3291 				*(ptr_first_sgl + 1) =
3292 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3293 				*(ptr_first_sgl + 2) = htole32(entry_len);
3294 				*(ptr_first_sgl + 3) = 0;
3295 
3296 				/* No longer the first PRP entry. */
3297 				first_prp_entry = 0;
3298 			} else {
3299 				/* Put entry in list. */
3300 				*ptr_sgl = htole32((uint32_t)paddr);
3301 				*(ptr_sgl + 1) =
3302 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3303 
3304 				/* Bump ptr_sgl, msg_phys, and num_entries. */
3305 				ptr_sgl += sge_dwords;
3306 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3307 				    prp_size);
3308 				num_entries++;
3309 			}
3310 
3311 			/* Bump the phys address by the entry_len. */
3312 			paddr += entry_len;
3313 
3314 			/* Decrement length accounting for last partial page. */
3315 			if (entry_len > length)
3316 				length = 0;
3317 			else
3318 				length -= entry_len;
3319 		}
3320 	}
3321 
3322 	/* Set chain element Length. */
3323 	main_chain_element->Length = htole32(num_entries * prp_size);
3324 
3325 	/* Return 0, indicating we built a native SGL. */
3326 	return 0;
3327 }
3328 
3329 /*
3330  * Add a chain element as the next SGE for the specified command.
3331  * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3332  * only required for IEEE commands.  Therefore there is no code for commands
3333  * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3334  * shouldn't be requesting chains).
3335  */
3336 static int
3337 mpr_add_chain(struct mpr_command *cm, int segsleft)
3338 {
3339 	struct mpr_softc *sc = cm->cm_sc;
3340 	MPI2_REQUEST_HEADER *req;
3341 	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3342 	struct mpr_chain *chain;
3343 	int sgc_size, current_segs, rem_segs, segs_per_frame;
3344 	uint8_t next_chain_offset = 0;
3345 
3346 	/*
3347 	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
3348 	 * only IEEE commands should be requesting chains.  Return some error
3349 	 * code other than 0.
3350 	 */
3351 	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3352 		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3353 		    "an MPI SGL.\n");
3354 		return(ENOBUFS);
3355 	}
3356 
3357 	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3358 	if (cm->cm_sglsize < sgc_size)
3359 		panic("MPR: Need SGE Error Code\n");
3360 
3361 	chain = mpr_alloc_chain(cm->cm_sc);
3362 	if (chain == NULL)
3363 		return (ENOBUFS);
3364 
3365 	/*
3366 	 * Note: a double-linked list is used to make it easier to walk for
3367 	 * debugging.
3368 	 */
3369 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3370 
3371 	/*
3372 	 * Need to know if the number of frames left is more than 1 or not.  If
3373 	 * more than 1 frame is required, NextChainOffset will need to be set,
3374 	 * which will just be the last segment of the frame.
3375 	 */
3376 	rem_segs = 0;
3377 	if (cm->cm_sglsize < (sgc_size * segsleft)) {
3378 		/*
3379 		 * rem_segs is the number of segements remaining after the
3380 		 * segments that will go into the current frame.  Since it is
3381 		 * known that at least one more frame is required, account for
3382 		 * the chain element.  To know if more than one more frame is
3383 		 * required, just check if there will be a remainder after using
3384 		 * the current frame (with this chain) and the next frame.  If
3385 		 * so the NextChainOffset must be the last element of the next
3386 		 * frame.
3387 		 */
3388 		current_segs = (cm->cm_sglsize / sgc_size) - 1;
3389 		rem_segs = segsleft - current_segs;
3390 		segs_per_frame = sc->chain_frame_size / sgc_size;
3391 		if (rem_segs > segs_per_frame) {
3392 			next_chain_offset = segs_per_frame - 1;
3393 		}
3394 	}
3395 	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3396 	ieee_sgc->Length = next_chain_offset ?
3397 	    htole32((uint32_t)sc->chain_frame_size) :
3398 	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3399 	ieee_sgc->NextChainOffset = next_chain_offset;
3400 	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3401 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3402 	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3403 	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3404 	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3405 	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3406 	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3407 
3408 	cm->cm_sglsize = sc->chain_frame_size;
3409 	return (0);
3410 }
3411 
3412 /*
3413  * Add one scatter-gather element to the scatter-gather list for a command.
3414  * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3415  * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
3416  * chain, so don't consider any chain additions.
3417  */
3418 int
3419 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3420     int segsleft)
3421 {
3422 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3423 	u32 sge_flags;
3424 
3425 	/*
3426 	 * case 1: >=1 more segment, no room for anything (error)
3427 	 * case 2: 1 more segment and enough room for it
3428          */
3429 
3430 	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3431 		mpr_dprint(cm->cm_sc, MPR_ERROR,
3432 		    "%s: warning: Not enough room for MPI SGL in frame.\n",
3433 		    __func__);
3434 		return(ENOBUFS);
3435 	}
3436 
3437 	KASSERT(segsleft == 1,
3438 	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3439 	    segsleft));
3440 
3441 	/*
3442 	 * There is one more segment left to add for the MPI SGL and there is
3443 	 * enough room in the frame to add it.  This is the normal case because
3444 	 * MPI SGL's don't have chains, otherwise something is wrong.
3445 	 *
3446 	 * If this is a bi-directional request, need to account for that
3447 	 * here.  Save the pre-filled sge values.  These will be used
3448 	 * either for the 2nd SGL or for a single direction SGL.  If
3449 	 * cm_out_len is non-zero, this is a bi-directional request, so
3450 	 * fill in the OUT SGL first, then the IN SGL, otherwise just
3451 	 * fill in the IN SGL.  Note that at this time, when filling in
3452 	 * 2 SGL's for a bi-directional request, they both use the same
3453 	 * DMA buffer (same cm command).
3454 	 */
3455 	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3456 	saved_address_low = sge->Address.Low;
3457 	saved_address_high = sge->Address.High;
3458 	if (cm->cm_out_len) {
3459 		sge->FlagsLength = cm->cm_out_len |
3460 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3461 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
3462 		    MPI2_SGE_FLAGS_HOST_TO_IOC |
3463 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3464 		    MPI2_SGE_FLAGS_SHIFT);
3465 		cm->cm_sglsize -= len;
3466 		/* Endian Safe code */
3467 		sge_flags = sge->FlagsLength;
3468 		sge->FlagsLength = htole32(sge_flags);
3469 		sge->Address.High = htole32(sge->Address.High);
3470 		sge->Address.Low = htole32(sge->Address.Low);
3471 		bcopy(sge, cm->cm_sge, len);
3472 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3473 	}
3474 	sge->FlagsLength = saved_buf_len |
3475 	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3476 	    MPI2_SGE_FLAGS_END_OF_BUFFER |
3477 	    MPI2_SGE_FLAGS_LAST_ELEMENT |
3478 	    MPI2_SGE_FLAGS_END_OF_LIST |
3479 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3480 	    MPI2_SGE_FLAGS_SHIFT);
3481 	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3482 		sge->FlagsLength |=
3483 		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3484 		    MPI2_SGE_FLAGS_SHIFT);
3485 	} else {
3486 		sge->FlagsLength |=
3487 		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3488 		    MPI2_SGE_FLAGS_SHIFT);
3489 	}
3490 	sge->Address.Low = saved_address_low;
3491 	sge->Address.High = saved_address_high;
3492 
3493 	cm->cm_sglsize -= len;
3494 	/* Endian Safe code */
3495 	sge_flags = sge->FlagsLength;
3496 	sge->FlagsLength = htole32(sge_flags);
3497 	sge->Address.High = htole32(sge->Address.High);
3498 	sge->Address.Low = htole32(sge->Address.Low);
3499 	bcopy(sge, cm->cm_sge, len);
3500 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3501 	return (0);
3502 }
3503 
3504 /*
3505  * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3506  * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3507  * remaining size and pointer to the next SGE to fill in, respectively.
3508  */
3509 int
3510 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3511 {
3512 	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3513 	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3514 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3515 	uint32_t sge_length;
3516 
3517 	/*
3518 	 * case 1: No room for chain or segment (error).
3519 	 * case 2: Two or more segments left but only room for chain.
3520 	 * case 3: Last segment and room for it, so set flags.
3521 	 */
3522 
3523 	/*
3524 	 * There should be room for at least one element, or there is a big
3525 	 * problem.
3526 	 */
3527 	if (cm->cm_sglsize < ieee_sge_size)
3528 		panic("MPR: Need SGE Error Code\n");
3529 
3530 	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3531 		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3532 			return (error);
3533 	}
3534 
3535 	if (segsleft == 1) {
3536 		/*
3537 		 * If this is a bi-directional request, need to account for that
3538 		 * here.  Save the pre-filled sge values.  These will be used
3539 		 * either for the 2nd SGL or for a single direction SGL.  If
3540 		 * cm_out_len is non-zero, this is a bi-directional request, so
3541 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3542 		 * fill in the IN SGL.  Note that at this time, when filling in
3543 		 * 2 SGL's for a bi-directional request, they both use the same
3544 		 * DMA buffer (same cm command).
3545 		 */
3546 		saved_buf_len = sge->Length;
3547 		saved_address_low = sge->Address.Low;
3548 		saved_address_high = sge->Address.High;
3549 		if (cm->cm_out_len) {
3550 			sge->Length = cm->cm_out_len;
3551 			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3552 			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3553 			cm->cm_sglsize -= ieee_sge_size;
3554 			/* Endian Safe code */
3555 			sge_length = sge->Length;
3556 			sge->Length = htole32(sge_length);
3557 			sge->Address.High = htole32(sge->Address.High);
3558 			sge->Address.Low = htole32(sge->Address.Low);
3559 			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3560 			cm->cm_sge =
3561 			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3562 			    ieee_sge_size);
3563 		}
3564 		sge->Length = saved_buf_len;
3565 		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3566 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3567 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3568 		sge->Address.Low = saved_address_low;
3569 		sge->Address.High = saved_address_high;
3570 	}
3571 
3572 	cm->cm_sglsize -= ieee_sge_size;
3573 	/* Endian Safe code */
3574 	sge_length = sge->Length;
3575 	sge->Length = htole32(sge_length);
3576 	sge->Address.High = htole32(sge->Address.High);
3577 	sge->Address.Low = htole32(sge->Address.Low);
3578 	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3579 	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3580 	    ieee_sge_size);
3581 	return (0);
3582 }
3583 
3584 /*
3585  * Add one dma segment to the scatter-gather list for a command.
3586  */
3587 int
3588 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3589     int segsleft)
3590 {
3591 	MPI2_SGE_SIMPLE64 sge;
3592 	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3593 
3594 	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3595 		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3596 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3597 		ieee_sge.Length = len;
3598 		mpr_from_u64(pa, &ieee_sge.Address);
3599 
3600 		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3601 	} else {
3602 		/*
3603 		 * This driver always uses 64-bit address elements for
3604 		 * simplicity.
3605 		 */
3606 		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3607 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3608 		/* Set Endian safe macro in mpr_push_sge */
3609 		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3610 		mpr_from_u64(pa, &sge.Address);
3611 
3612 		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3613 	}
3614 }
3615 
3616 static void
3617 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3618 {
3619 	struct mpr_softc *sc;
3620 	struct mpr_command *cm;
3621 	u_int i, dir, sflags;
3622 
3623 	cm = (struct mpr_command *)arg;
3624 	sc = cm->cm_sc;
3625 
3626 	/*
3627 	 * In this case, just print out a warning and let the chip tell the
3628 	 * user they did the wrong thing.
3629 	 */
3630 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3631 		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3632 		    "segments, more than the %d allowed\n", __func__, nsegs,
3633 		    cm->cm_max_segs);
3634 	}
3635 
3636 	/*
3637 	 * Set up DMA direction flags.  Bi-directional requests are also handled
3638 	 * here.  In that case, both direction flags will be set.
3639 	 */
3640 	sflags = 0;
3641 	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3642 		/*
3643 		 * We have to add a special case for SMP passthrough, there
3644 		 * is no easy way to generically handle it.  The first
3645 		 * S/G element is used for the command (therefore the
3646 		 * direction bit needs to be set).  The second one is used
3647 		 * for the reply.  We'll leave it to the caller to make
3648 		 * sure we only have two buffers.
3649 		 */
3650 		/*
3651 		 * Even though the busdma man page says it doesn't make
3652 		 * sense to have both direction flags, it does in this case.
3653 		 * We have one s/g element being accessed in each direction.
3654 		 */
3655 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3656 
3657 		/*
3658 		 * Set the direction flag on the first buffer in the SMP
3659 		 * passthrough request.  We'll clear it for the second one.
3660 		 */
3661 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3662 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3663 	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3664 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3665 		dir = BUS_DMASYNC_PREWRITE;
3666 	} else
3667 		dir = BUS_DMASYNC_PREREAD;
3668 
3669 	/* Check if a native SG list is needed for an NVMe PCIe device. */
3670 	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3671 	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3672 		/* A native SG list was built, skip to end. */
3673 		goto out;
3674 	}
3675 
3676 	for (i = 0; i < nsegs; i++) {
3677 		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3678 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3679 		}
3680 		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3681 		    sflags, nsegs - i);
3682 		if (error != 0) {
3683 			/* Resource shortage, roll back! */
3684 			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3685 				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3686 				    "consider increasing hw.mpr.max_chains.\n");
3687 			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3688 			mpr_complete_command(sc, cm);
3689 			return;
3690 		}
3691 	}
3692 
3693 out:
3694 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3695 	mpr_enqueue_request(sc, cm);
3696 
3697 	return;
3698 }
3699 
3700 static void
3701 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3702 	     int error)
3703 {
3704 	mpr_data_cb(arg, segs, nsegs, error);
3705 }
3706 
3707 /*
3708  * This is the routine to enqueue commands ansynchronously.
3709  * Note that the only error path here is from bus_dmamap_load(), which can
3710  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3711  * assumed that if you have a command in-hand, then you have enough credits
3712  * to use it.
3713  */
3714 int
3715 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3716 {
3717 	int error = 0;
3718 
3719 	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3720 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3721 		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3722 	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3723 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3724 		    cm->cm_data, mpr_data_cb, cm, 0);
3725 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3726 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3727 		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3728 	} else {
3729 		/* Add a zero-length element as needed */
3730 		if (cm->cm_sge != NULL)
3731 			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3732 		mpr_enqueue_request(sc, cm);
3733 	}
3734 
3735 	return (error);
3736 }
3737 
3738 /*
3739  * This is the routine to enqueue commands synchronously.  An error of
3740  * EINPROGRESS from mpr_map_command() is ignored since the command will
3741  * be executed and enqueued automatically.  Other errors come from msleep().
3742  */
3743 int
3744 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3745     int sleep_flag)
3746 {
3747 	int error, rc;
3748 	struct timeval cur_time, start_time;
3749 	struct mpr_command *cm = *cmp;
3750 
3751 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3752 		return  EBUSY;
3753 
3754 	cm->cm_complete = NULL;
3755 	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3756 	error = mpr_map_command(sc, cm);
3757 	if ((error != 0) && (error != EINPROGRESS))
3758 		return (error);
3759 
3760 	// Check for context and wait for 50 mSec at a time until time has
3761 	// expired or the command has finished.  If msleep can't be used, need
3762 	// to poll.
3763 #if __FreeBSD_version >= 1000029
3764 	if (curthread->td_no_sleeping)
3765 #else //__FreeBSD_version < 1000029
3766 	if (curthread->td_pflags & TDP_NOSLEEPING)
3767 #endif //__FreeBSD_version >= 1000029
3768 		sleep_flag = NO_SLEEP;
3769 	getmicrouptime(&start_time);
3770 	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3771 		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3772 		if (error == EWOULDBLOCK) {
3773 			/*
3774 			 * Record the actual elapsed time in the case of a
3775 			 * timeout for the message below.
3776 			 */
3777 			getmicrouptime(&cur_time);
3778 			timevalsub(&cur_time, &start_time);
3779 		}
3780 	} else {
3781 		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3782 			mpr_intr_locked(sc);
3783 			if (sleep_flag == CAN_SLEEP)
3784 				pause("mprwait", hz/20);
3785 			else
3786 				DELAY(50000);
3787 
3788 			getmicrouptime(&cur_time);
3789 			timevalsub(&cur_time, &start_time);
3790 			if (cur_time.tv_sec > timeout) {
3791 				error = EWOULDBLOCK;
3792 				break;
3793 			}
3794 		}
3795 	}
3796 
3797 	if (error == EWOULDBLOCK) {
3798 		if (cm->cm_timeout_handler == NULL) {
3799 			mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3800 			    " elapsed=%jd\n", __func__, timeout,
3801 			    (intmax_t)cur_time.tv_sec);
3802 			rc = mpr_reinit(sc);
3803 			mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3804 			    "failed");
3805 		} else
3806 			cm->cm_timeout_handler(sc, cm);
3807 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3808 			/*
3809 			 * Tell the caller that we freed the command in a
3810 			 * reinit.
3811 			 */
3812 			*cmp = NULL;
3813 		}
3814 		error = ETIMEDOUT;
3815 	}
3816 	return (error);
3817 }
3818 
3819 /*
3820  * This is the routine to enqueue a command synchonously and poll for
3821  * completion.  Its use should be rare.
3822  */
3823 int
3824 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3825 {
3826 	int error, rc;
3827 	struct timeval cur_time, start_time;
3828 	struct mpr_command *cm = *cmp;
3829 
3830 	error = 0;
3831 
3832 	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3833 	cm->cm_complete = NULL;
3834 	mpr_map_command(sc, cm);
3835 
3836 	getmicrouptime(&start_time);
3837 	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3838 		mpr_intr_locked(sc);
3839 
3840 		if (mtx_owned(&sc->mpr_mtx))
3841 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3842 			    "mprpoll", hz/20);
3843 		else
3844 			pause("mprpoll", hz/20);
3845 
3846 		/*
3847 		 * Check for real-time timeout and fail if more than 60 seconds.
3848 		 */
3849 		getmicrouptime(&cur_time);
3850 		timevalsub(&cur_time, &start_time);
3851 		if (cur_time.tv_sec > 60) {
3852 			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3853 			error = ETIMEDOUT;
3854 			break;
3855 		}
3856 	}
3857 	cm->cm_state = MPR_CM_STATE_BUSY;
3858 	if (error) {
3859 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3860 		rc = mpr_reinit(sc);
3861 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3862 		    "failed");
3863 
3864 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3865 			/*
3866 			 * Tell the caller that we freed the command in a
3867 			 * reinit.
3868 			 */
3869 			*cmp = NULL;
3870 		}
3871 	}
3872 	return (error);
3873 }
3874 
3875 /*
3876  * The MPT driver had a verbose interface for config pages.  In this driver,
3877  * reduce it to much simpler terms, similar to the Linux driver.
3878  */
3879 int
3880 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3881 {
3882 	MPI2_CONFIG_REQUEST *req;
3883 	struct mpr_command *cm;
3884 	int error;
3885 
3886 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3887 		return (EBUSY);
3888 	}
3889 
3890 	cm = mpr_alloc_command(sc);
3891 	if (cm == NULL) {
3892 		return (EBUSY);
3893 	}
3894 
3895 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3896 	req->Function = MPI2_FUNCTION_CONFIG;
3897 	req->Action = params->action;
3898 	req->SGLFlags = 0;
3899 	req->ChainOffset = 0;
3900 	req->PageAddress = params->page_address;
3901 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3902 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3903 
3904 		hdr = &params->hdr.Ext;
3905 		req->ExtPageType = hdr->ExtPageType;
3906 		req->ExtPageLength = hdr->ExtPageLength;
3907 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3908 		req->Header.PageLength = 0; /* Must be set to zero */
3909 		req->Header.PageNumber = hdr->PageNumber;
3910 		req->Header.PageVersion = hdr->PageVersion;
3911 	} else {
3912 		MPI2_CONFIG_PAGE_HEADER *hdr;
3913 
3914 		hdr = &params->hdr.Struct;
3915 		req->Header.PageType = hdr->PageType;
3916 		req->Header.PageNumber = hdr->PageNumber;
3917 		req->Header.PageLength = hdr->PageLength;
3918 		req->Header.PageVersion = hdr->PageVersion;
3919 	}
3920 
3921 	cm->cm_data = params->buffer;
3922 	cm->cm_length = params->length;
3923 	if (cm->cm_data != NULL) {
3924 		cm->cm_sge = &req->PageBufferSGE;
3925 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3926 		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3927 	} else
3928 		cm->cm_sge = NULL;
3929 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3930 
3931 	cm->cm_complete_data = params;
3932 	if (params->callback != NULL) {
3933 		cm->cm_complete = mpr_config_complete;
3934 		return (mpr_map_command(sc, cm));
3935 	} else {
3936 		error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3937 		if (error) {
3938 			mpr_dprint(sc, MPR_FAULT,
3939 			    "Error %d reading config page\n", error);
3940 			if (cm != NULL)
3941 				mpr_free_command(sc, cm);
3942 			return (error);
3943 		}
3944 		mpr_config_complete(sc, cm);
3945 	}
3946 
3947 	return (0);
3948 }
3949 
3950 int
3951 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3952 {
3953 	return (EINVAL);
3954 }
3955 
3956 static void
3957 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3958 {
3959 	MPI2_CONFIG_REPLY *reply;
3960 	struct mpr_config_params *params;
3961 
3962 	MPR_FUNCTRACE(sc);
3963 	params = cm->cm_complete_data;
3964 
3965 	if (cm->cm_data != NULL) {
3966 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3967 		    BUS_DMASYNC_POSTREAD);
3968 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3969 	}
3970 
3971 	/*
3972 	 * XXX KDM need to do more error recovery?  This results in the
3973 	 * device in question not getting probed.
3974 	 */
3975 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3976 		params->status = MPI2_IOCSTATUS_BUSY;
3977 		goto done;
3978 	}
3979 
3980 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3981 	if (reply == NULL) {
3982 		params->status = MPI2_IOCSTATUS_BUSY;
3983 		goto done;
3984 	}
3985 	params->status = reply->IOCStatus;
3986 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3987 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3988 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3989 		params->hdr.Ext.PageType = reply->Header.PageType;
3990 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3991 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3992 	} else {
3993 		params->hdr.Struct.PageType = reply->Header.PageType;
3994 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3995 		params->hdr.Struct.PageLength = reply->Header.PageLength;
3996 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3997 	}
3998 
3999 done:
4000 	mpr_free_command(sc, cm);
4001 	if (params->callback != NULL)
4002 		params->callback(sc, params);
4003 
4004 	return;
4005 }
4006