xref: /freebsd/sys/dev/mpt/mpt.c (revision 780fb4a2)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-3-Clause
6  *
7  * Copyright (c) 2000, 2001 by Greg Ansley
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice immediately at the beginning of the file, without modification,
14  *    this list of conditions, and the following disclaimer.
15  * 2. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 /*-
31  * Copyright (c) 2002, 2006 by Matthew Jacob
32  * All rights reserved.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions are
36  * met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
40  *    substantially similar to the "NO WARRANTY" disclaimer below
41  *    ("Disclaimer") and any redistribution must be conditioned upon including
42  *    a substantially similar Disclaimer requirement for further binary
43  *    redistribution.
44  * 3. Neither the names of the above listed copyright holders nor the names
45  *    of any contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
49  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
52  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
58  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  *
60  * Support from Chris Ellsworth in order to make SAS adapters work
61  * is gratefully acknowledged.
62  *
63  *
64  * Support from LSI-Logic has also gone a great deal toward making this a
65  * workable subsystem and is gratefully acknowledged.
66  */
67 /*-
68  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
69  * Copyright (c) 2005, WHEEL Sp. z o.o.
70  * Copyright (c) 2004, 2005 Justin T. Gibbs
71  * All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions are
75  * met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
79  *    substantially similar to the "NO WARRANTY" disclaimer below
80  *    ("Disclaimer") and any redistribution must be conditioned upon including
81  *    a substantially similar Disclaimer requirement for further binary
82  *    redistribution.
83  * 3. Neither the names of the above listed copyright holders nor the names
84  *    of any contributors may be used to endorse or promote products derived
85  *    from this software without specific prior written permission.
86  *
87  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
88  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
91  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
92  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
93  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
94  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
95  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
96  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
97  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include <dev/mpt/mpt.h>
104 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
105 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
106 
107 #include <dev/mpt/mpilib/mpi.h>
108 #include <dev/mpt/mpilib/mpi_ioc.h>
109 #include <dev/mpt/mpilib/mpi_fc.h>
110 #include <dev/mpt/mpilib/mpi_targ.h>
111 
112 #include <sys/sysctl.h>
113 
114 #define MPT_MAX_TRYS 3
115 #define MPT_MAX_WAIT 300000
116 
117 static int maxwait_ack = 0;
118 static int maxwait_int = 0;
119 static int maxwait_state = 0;
120 
121 static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
122 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
123 
124 static mpt_reply_handler_t mpt_default_reply_handler;
125 static mpt_reply_handler_t mpt_config_reply_handler;
126 static mpt_reply_handler_t mpt_handshake_reply_handler;
127 static mpt_reply_handler_t mpt_event_reply_handler;
128 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
129 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
130 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
131 static int mpt_soft_reset(struct mpt_softc *mpt);
132 static void mpt_hard_reset(struct mpt_softc *mpt);
133 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
134 static void mpt_dma_buf_free(struct mpt_softc *mpt);
135 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
136 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
137 
138 /************************* Personality Module Support *************************/
139 /*
140  * We include one extra entry that is guaranteed to be NULL
141  * to simplify our itterator.
142  */
143 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
144 static __inline struct mpt_personality*
145 	mpt_pers_find(struct mpt_softc *, u_int);
146 static __inline struct mpt_personality*
147 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
148 
149 static __inline struct mpt_personality *
150 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
151 {
152 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
153 		("mpt_pers_find: starting position out of range"));
154 
155 	while (start_at < MPT_MAX_PERSONALITIES
156 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
157 		start_at++;
158 	}
159 	return (mpt_personalities[start_at]);
160 }
161 
162 /*
163  * Used infrequently, so no need to optimize like a forward
164  * traversal where we use the MAX+1 is guaranteed to be NULL
165  * trick.
166  */
167 static __inline struct mpt_personality *
168 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
169 {
170 	while (start_at < MPT_MAX_PERSONALITIES
171 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
172 		start_at--;
173 	}
174 	if (start_at < MPT_MAX_PERSONALITIES)
175 		return (mpt_personalities[start_at]);
176 	return (NULL);
177 }
178 
179 #define MPT_PERS_FOREACH(mpt, pers)				\
180 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
181 	     pers != NULL;					\
182 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
183 
184 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
185 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
186 	     pers != NULL;						\
187 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
188 
189 static mpt_load_handler_t      mpt_stdload;
190 static mpt_probe_handler_t     mpt_stdprobe;
191 static mpt_attach_handler_t    mpt_stdattach;
192 static mpt_enable_handler_t    mpt_stdenable;
193 static mpt_ready_handler_t     mpt_stdready;
194 static mpt_event_handler_t     mpt_stdevent;
195 static mpt_reset_handler_t     mpt_stdreset;
196 static mpt_shutdown_handler_t  mpt_stdshutdown;
197 static mpt_detach_handler_t    mpt_stddetach;
198 static mpt_unload_handler_t    mpt_stdunload;
199 static struct mpt_personality mpt_default_personality =
200 {
201 	.load		= mpt_stdload,
202 	.probe		= mpt_stdprobe,
203 	.attach		= mpt_stdattach,
204 	.enable		= mpt_stdenable,
205 	.ready		= mpt_stdready,
206 	.event		= mpt_stdevent,
207 	.reset		= mpt_stdreset,
208 	.shutdown	= mpt_stdshutdown,
209 	.detach		= mpt_stddetach,
210 	.unload		= mpt_stdunload
211 };
212 
213 static mpt_load_handler_t      mpt_core_load;
214 static mpt_attach_handler_t    mpt_core_attach;
215 static mpt_enable_handler_t    mpt_core_enable;
216 static mpt_reset_handler_t     mpt_core_ioc_reset;
217 static mpt_event_handler_t     mpt_core_event;
218 static mpt_shutdown_handler_t  mpt_core_shutdown;
219 static mpt_shutdown_handler_t  mpt_core_detach;
220 static mpt_unload_handler_t    mpt_core_unload;
221 static struct mpt_personality mpt_core_personality =
222 {
223 	.name		= "mpt_core",
224 	.load		= mpt_core_load,
225 //	.attach		= mpt_core_attach,
226 //	.enable		= mpt_core_enable,
227 	.event		= mpt_core_event,
228 	.reset		= mpt_core_ioc_reset,
229 	.shutdown	= mpt_core_shutdown,
230 	.detach		= mpt_core_detach,
231 	.unload		= mpt_core_unload,
232 };
233 
234 /*
235  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
236  * ordering information.  We want the core to always register FIRST.
237  * other modules are set to SI_ORDER_SECOND.
238  */
239 static moduledata_t mpt_core_mod = {
240 	"mpt_core", mpt_modevent, &mpt_core_personality
241 };
242 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
243 MODULE_VERSION(mpt_core, 1);
244 
245 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
246 
247 int
248 mpt_modevent(module_t mod, int type, void *data)
249 {
250 	struct mpt_personality *pers;
251 	int error;
252 
253 	pers = (struct mpt_personality *)data;
254 
255 	error = 0;
256 	switch (type) {
257 	case MOD_LOAD:
258 	{
259 		mpt_load_handler_t **def_handler;
260 		mpt_load_handler_t **pers_handler;
261 		int i;
262 
263 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
264 			if (mpt_personalities[i] == NULL)
265 				break;
266 		}
267 		if (i >= MPT_MAX_PERSONALITIES) {
268 			error = ENOMEM;
269 			break;
270 		}
271 		pers->id = i;
272 		mpt_personalities[i] = pers;
273 
274 		/* Install standard/noop handlers for any NULL entries. */
275 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
276 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
277 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
278 			if (*pers_handler == NULL)
279 				*pers_handler = *def_handler;
280 			pers_handler++;
281 			def_handler++;
282 		}
283 
284 		error = (pers->load(pers));
285 		if (error != 0)
286 			mpt_personalities[i] = NULL;
287 		break;
288 	}
289 	case MOD_SHUTDOWN:
290 		break;
291 	case MOD_QUIESCE:
292 		break;
293 	case MOD_UNLOAD:
294 		error = pers->unload(pers);
295 		mpt_personalities[pers->id] = NULL;
296 		break;
297 	default:
298 		error = EINVAL;
299 		break;
300 	}
301 	return (error);
302 }
303 
304 static int
305 mpt_stdload(struct mpt_personality *pers)
306 {
307 
308 	/* Load is always successful. */
309 	return (0);
310 }
311 
312 static int
313 mpt_stdprobe(struct mpt_softc *mpt)
314 {
315 
316 	/* Probe is always successful. */
317 	return (0);
318 }
319 
320 static int
321 mpt_stdattach(struct mpt_softc *mpt)
322 {
323 
324 	/* Attach is always successful. */
325 	return (0);
326 }
327 
328 static int
329 mpt_stdenable(struct mpt_softc *mpt)
330 {
331 
332 	/* Enable is always successful. */
333 	return (0);
334 }
335 
336 static void
337 mpt_stdready(struct mpt_softc *mpt)
338 {
339 
340 }
341 
342 static int
343 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344 {
345 
346 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347 	/* Event was not for us. */
348 	return (0);
349 }
350 
351 static void
352 mpt_stdreset(struct mpt_softc *mpt, int type)
353 {
354 
355 }
356 
357 static void
358 mpt_stdshutdown(struct mpt_softc *mpt)
359 {
360 
361 }
362 
363 static void
364 mpt_stddetach(struct mpt_softc *mpt)
365 {
366 
367 }
368 
369 static int
370 mpt_stdunload(struct mpt_personality *pers)
371 {
372 
373 	/* Unload is always successful. */
374 	return (0);
375 }
376 
377 /*
378  * Post driver attachment, we may want to perform some global actions.
379  * Here is the hook to do so.
380  */
381 
382 static void
383 mpt_postattach(void *unused)
384 {
385 	struct mpt_softc *mpt;
386 	struct mpt_personality *pers;
387 
388 	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389 		MPT_PERS_FOREACH(mpt, pers)
390 			pers->ready(mpt);
391 	}
392 }
393 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394 
395 /******************************* Bus DMA Support ******************************/
396 void
397 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398 {
399 	struct mpt_map_info *map_info;
400 
401 	map_info = (struct mpt_map_info *)arg;
402 	map_info->error = error;
403 	map_info->phys = segs->ds_addr;
404 }
405 
406 /**************************** Reply/Event Handling ****************************/
407 int
408 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409 		     mpt_handler_t handler, uint32_t *phandler_id)
410 {
411 
412 	switch (type) {
413 	case MPT_HANDLER_REPLY:
414 	{
415 		u_int cbi;
416 		u_int free_cbi;
417 
418 		if (phandler_id == NULL)
419 			return (EINVAL);
420 
421 		free_cbi = MPT_HANDLER_ID_NONE;
422 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423 			/*
424 			 * If the same handler is registered multiple
425 			 * times, don't error out.  Just return the
426 			 * index of the original registration.
427 			 */
428 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429 				*phandler_id = MPT_CBI_TO_HID(cbi);
430 				return (0);
431 			}
432 
433 			/*
434 			 * Fill from the front in the hope that
435 			 * all registered handlers consume only a
436 			 * single cache line.
437 			 *
438 			 * We don't break on the first empty slot so
439 			 * that the full table is checked to see if
440 			 * this handler was previously registered.
441 			 */
442 			if (free_cbi == MPT_HANDLER_ID_NONE &&
443 			    (mpt_reply_handlers[cbi]
444 			  == mpt_default_reply_handler))
445 				free_cbi = cbi;
446 		}
447 		if (free_cbi == MPT_HANDLER_ID_NONE) {
448 			return (ENOMEM);
449 		}
450 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
451 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
452 		break;
453 	}
454 	default:
455 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456 		return (EINVAL);
457 	}
458 	return (0);
459 }
460 
461 int
462 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463 		       mpt_handler_t handler, uint32_t handler_id)
464 {
465 
466 	switch (type) {
467 	case MPT_HANDLER_REPLY:
468 	{
469 		u_int cbi;
470 
471 		cbi = MPT_CBI(handler_id);
472 		if (cbi >= MPT_NUM_REPLY_HANDLERS
473 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
474 			return (ENOENT);
475 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476 		break;
477 	}
478 	default:
479 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480 		return (EINVAL);
481 	}
482 	return (0);
483 }
484 
485 static int
486 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488 {
489 
490 	mpt_prt(mpt,
491 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492 	    req, req->serno, reply_desc, reply_frame);
493 
494 	if (reply_frame != NULL)
495 		mpt_dump_reply_frame(mpt, reply_frame);
496 
497 	mpt_prt(mpt, "Reply Frame Ignored\n");
498 
499 	return (/*free_reply*/TRUE);
500 }
501 
502 static int
503 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505 {
506 
507 	if (req != NULL) {
508 		if (reply_frame != NULL) {
509 			MSG_CONFIG *cfgp;
510 			MSG_CONFIG_REPLY *reply;
511 
512 			cfgp = (MSG_CONFIG *)req->req_vbuf;
513 			reply = (MSG_CONFIG_REPLY *)reply_frame;
514 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
515 			bcopy(&reply->Header, &cfgp->Header,
516 			      sizeof(cfgp->Header));
517 			cfgp->ExtPageLength = reply->ExtPageLength;
518 			cfgp->ExtPageType = reply->ExtPageType;
519 		}
520 		req->state &= ~REQ_STATE_QUEUED;
521 		req->state |= REQ_STATE_DONE;
522 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524 			wakeup(req);
525 		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526 			/*
527 			 * Whew- we can free this request (late completion)
528 			 */
529 			mpt_free_request(mpt, req);
530 		}
531 	}
532 
533 	return (TRUE);
534 }
535 
536 static int
537 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539 {
540 
541 	/* Nothing to be done. */
542 	return (TRUE);
543 }
544 
545 static int
546 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548 {
549 	int free_reply;
550 
551 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553 
554 	free_reply = TRUE;
555 	switch (reply_frame->Function) {
556 	case MPI_FUNCTION_EVENT_NOTIFICATION:
557 	{
558 		MSG_EVENT_NOTIFY_REPLY *msg;
559 		struct mpt_personality *pers;
560 		u_int handled;
561 
562 		handled = 0;
563 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564 		msg->EventDataLength = le16toh(msg->EventDataLength);
565 		msg->IOCStatus = le16toh(msg->IOCStatus);
566 		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567 		msg->Event = le32toh(msg->Event);
568 		MPT_PERS_FOREACH(mpt, pers)
569 			handled += pers->event(mpt, req, msg);
570 
571 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
572 			mpt_lprt(mpt, MPT_PRT_INFO,
573 				"No Handlers For Any Event Notify Frames. "
574 				"Event %#x (ACK %sequired).\n",
575 				msg->Event, msg->AckRequired? "r" : "not r");
576 		} else if (handled == 0) {
577 			mpt_lprt(mpt,
578 				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579 				"Unhandled Event Notify Frame. Event %#x "
580 				"(ACK %sequired).\n",
581 				msg->Event, msg->AckRequired? "r" : "not r");
582 		}
583 
584 		if (msg->AckRequired) {
585 			request_t *ack_req;
586 			uint32_t context;
587 
588 			context = req->index | MPT_REPLY_HANDLER_EVENTS;
589 			ack_req = mpt_get_request(mpt, FALSE);
590 			if (ack_req == NULL) {
591 				struct mpt_evtf_record *evtf;
592 
593 				evtf = (struct mpt_evtf_record *)reply_frame;
594 				evtf->context = context;
595 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596 				free_reply = FALSE;
597 				break;
598 			}
599 			mpt_send_event_ack(mpt, ack_req, msg, context);
600 			/*
601 			 * Don't check for CONTINUATION_REPLY here
602 			 */
603 			return (free_reply);
604 		}
605 		break;
606 	}
607 	case MPI_FUNCTION_PORT_ENABLE:
608 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609 		break;
610 	case MPI_FUNCTION_EVENT_ACK:
611 		break;
612 	default:
613 		mpt_prt(mpt, "unknown event function: %x\n",
614 			reply_frame->Function);
615 		break;
616 	}
617 
618 	/*
619 	 * I'm not sure that this continuation stuff works as it should.
620 	 *
621 	 * I've had FC async events occur that free the frame up because
622 	 * the continuation bit isn't set, and then additional async events
623 	 * then occur using the same context. As you might imagine, this
624 	 * leads to Very Bad Thing.
625 	 *
626 	 *  Let's just be safe for now and not free them up until we figure
627 	 * out what's actually happening here.
628 	 */
629 #if	0
630 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632 		mpt_free_request(mpt, req);
633 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634 		    reply_frame->Function, req, req->serno);
635 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636 			MSG_EVENT_NOTIFY_REPLY *msg =
637 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639 			    msg->Event, msg->AckRequired);
640 		}
641 	} else {
642 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643 		    reply_frame->Function, req, req->serno);
644 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645 			MSG_EVENT_NOTIFY_REPLY *msg =
646 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648 			    msg->Event, msg->AckRequired);
649 		}
650 		mpt_prtc(mpt, "\n");
651 	}
652 #endif
653 	return (free_reply);
654 }
655 
656 /*
657  * Process an asynchronous event from the IOC.
658  */
659 static int
660 mpt_core_event(struct mpt_softc *mpt, request_t *req,
661 	       MSG_EVENT_NOTIFY_REPLY *msg)
662 {
663 
664 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665                  msg->Event & 0xFF);
666 	switch(msg->Event & 0xFF) {
667 	case MPI_EVENT_NONE:
668 		break;
669 	case MPI_EVENT_LOG_DATA:
670 	{
671 		int i;
672 
673 		/* Some error occurred that LSI wants logged */
674 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675 			msg->IOCLogInfo);
676 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
677 		for (i = 0; i < msg->EventDataLength; i++)
678 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
679 		mpt_prtc(mpt, "\n");
680 		break;
681 	}
682 	case MPI_EVENT_EVENT_CHANGE:
683 		/*
684 		 * This is just an acknowledgement
685 		 * of our mpt_send_event_request.
686 		 */
687 		break;
688 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689 		break;
690 	default:
691 		return (0);
692 		break;
693 	}
694 	return (1);
695 }
696 
697 static void
698 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700 {
701 	MSG_EVENT_ACK *ackp;
702 
703 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704 	memset(ackp, 0, sizeof (*ackp));
705 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
706 	ackp->Event = htole32(msg->Event);
707 	ackp->EventContext = htole32(msg->EventContext);
708 	ackp->MsgContext = htole32(context);
709 	mpt_check_doorbell(mpt);
710 	mpt_send_cmd(mpt, ack_req);
711 }
712 
713 /***************************** Interrupt Handling *****************************/
714 void
715 mpt_intr(void *arg)
716 {
717 	struct mpt_softc *mpt;
718 	uint32_t reply_desc;
719 	int ntrips = 0;
720 
721 	mpt = (struct mpt_softc *)arg;
722 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723 	MPT_LOCK_ASSERT(mpt);
724 
725 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726 		request_t	  *req;
727 		MSG_DEFAULT_REPLY *reply_frame;
728 		uint32_t	   reply_baddr;
729 		uint32_t           ctxt_idx;
730 		u_int		   cb_index;
731 		u_int		   req_index;
732 		u_int		   offset;
733 		int		   free_rf;
734 
735 		req = NULL;
736 		reply_frame = NULL;
737 		reply_baddr = 0;
738 		offset = 0;
739 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740 			/*
741 			 * Ensure that the reply frame is coherent.
742 			 */
743 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
744 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745 			bus_dmamap_sync_range(mpt->reply_dmat,
746 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747 			    BUS_DMASYNC_POSTREAD);
748 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
749 			ctxt_idx = le32toh(reply_frame->MsgContext);
750 		} else {
751 			uint32_t type;
752 
753 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754 			ctxt_idx = reply_desc;
755 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756 				    reply_desc);
757 
758 			switch (type) {
759 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761 				break;
762 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763 				ctxt_idx = GET_IO_INDEX(reply_desc);
764 				if (mpt->tgt_cmd_ptrs == NULL) {
765 					mpt_prt(mpt,
766 					    "mpt_intr: no target cmd ptrs\n");
767 					reply_desc = MPT_REPLY_EMPTY;
768 					break;
769 				}
770 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771 					mpt_prt(mpt,
772 					    "mpt_intr: bad tgt cmd ctxt %u\n",
773 					    ctxt_idx);
774 					reply_desc = MPT_REPLY_EMPTY;
775 					ntrips = 1000;
776 					break;
777 				}
778 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
779 				if (req == NULL) {
780 					mpt_prt(mpt, "no request backpointer "
781 					    "at index %u", ctxt_idx);
782 					reply_desc = MPT_REPLY_EMPTY;
783 					ntrips = 1000;
784 					break;
785 				}
786 				/*
787 				 * Reformulate ctxt_idx to be just as if
788 				 * it were another type of context reply
789 				 * so the code below will find the request
790 				 * via indexing into the pool.
791 				 */
792 				ctxt_idx =
793 				    req->index | mpt->scsi_tgt_handler_id;
794 				req = NULL;
795 				break;
796 			case MPI_CONTEXT_REPLY_TYPE_LAN:
797 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798 				    reply_desc);
799 				reply_desc = MPT_REPLY_EMPTY;
800 				break;
801 			default:
802 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803 				reply_desc = MPT_REPLY_EMPTY;
804 				break;
805 			}
806 			if (reply_desc == MPT_REPLY_EMPTY) {
807 				if (ntrips++ > 1000) {
808 					break;
809 				}
810 				continue;
811 			}
812 		}
813 
814 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
817 			req = &mpt->request_pool[req_index];
818 		} else {
819 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820 			    " 0x%x)\n", req_index, reply_desc);
821 		}
822 
823 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
826 		    reply_desc, reply_frame);
827 
828 		if (reply_frame != NULL && free_rf) {
829 			bus_dmamap_sync_range(mpt->reply_dmat,
830 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831 			    BUS_DMASYNC_PREREAD);
832 			mpt_free_reply(mpt, reply_baddr);
833 		}
834 
835 		/*
836 		 * If we got ourselves disabled, don't get stuck in a loop
837 		 */
838 		if (mpt->disabled) {
839 			mpt_disable_ints(mpt);
840 			break;
841 		}
842 		if (ntrips++ > 1000) {
843 			break;
844 		}
845 	}
846 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847 }
848 
849 /******************************* Error Recovery *******************************/
850 void
851 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852 			    u_int iocstatus)
853 {
854 	MSG_DEFAULT_REPLY  ioc_status_frame;
855 	request_t	  *req;
856 
857 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859 	ioc_status_frame.IOCStatus = iocstatus;
860 	while((req = TAILQ_FIRST(chain)) != NULL) {
861 		MSG_REQUEST_HEADER *msg_hdr;
862 		u_int		    cb_index;
863 
864 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867 		ioc_status_frame.Function = msg_hdr->Function;
868 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871 		    &ioc_status_frame);
872 		if (mpt_req_on_pending_list(mpt, req) != 0)
873 			TAILQ_REMOVE(chain, req, links);
874 	}
875 }
876 
877 /********************************* Diagnostics ********************************/
878 /*
879  * Perform a diagnostic dump of a reply frame.
880  */
881 void
882 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883 {
884 
885 	mpt_prt(mpt, "Address Reply:\n");
886 	mpt_print_reply(reply_frame);
887 }
888 
889 /******************************* Doorbell Access ******************************/
890 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892 
893 static __inline uint32_t
894 mpt_rd_db(struct mpt_softc *mpt)
895 {
896 
897 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898 }
899 
900 static __inline uint32_t
901 mpt_rd_intr(struct mpt_softc *mpt)
902 {
903 
904 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905 }
906 
907 /* Busy wait for a door bell to be read by IOC */
908 static int
909 mpt_wait_db_ack(struct mpt_softc *mpt)
910 {
911 	int i;
912 
913 	for (i=0; i < MPT_MAX_WAIT; i++) {
914 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916 			return (MPT_OK);
917 		}
918 		DELAY(200);
919 	}
920 	return (MPT_FAIL);
921 }
922 
923 /* Busy wait for a door bell interrupt */
924 static int
925 mpt_wait_db_int(struct mpt_softc *mpt)
926 {
927 	int i;
928 
929 	for (i = 0; i < MPT_MAX_WAIT; i++) {
930 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931 			maxwait_int = i > maxwait_int ? i : maxwait_int;
932 			return MPT_OK;
933 		}
934 		DELAY(100);
935 	}
936 	return (MPT_FAIL);
937 }
938 
939 /* Wait for IOC to transition to a give state */
940 void
941 mpt_check_doorbell(struct mpt_softc *mpt)
942 {
943 	uint32_t db = mpt_rd_db(mpt);
944 
945 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946 		mpt_prt(mpt, "Device not running\n");
947 		mpt_print_db(db);
948 	}
949 }
950 
951 /* Wait for IOC to transition to a give state */
952 static int
953 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954 {
955 	int i;
956 
957 	for (i = 0; i < MPT_MAX_WAIT; i++) {
958 		uint32_t db = mpt_rd_db(mpt);
959 		if (MPT_STATE(db) == state) {
960 			maxwait_state = i > maxwait_state ? i : maxwait_state;
961 			return (MPT_OK);
962 		}
963 		DELAY(100);
964 	}
965 	return (MPT_FAIL);
966 }
967 
968 
969 /************************* Initialization/Configuration ************************/
970 static int mpt_download_fw(struct mpt_softc *mpt);
971 
972 /* Issue the reset COMMAND to the IOC */
973 static int
974 mpt_soft_reset(struct mpt_softc *mpt)
975 {
976 
977 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
978 
979 	/* Have to use hard reset if we are not in Running state */
980 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
981 		mpt_prt(mpt, "soft reset failed: device not running\n");
982 		return (MPT_FAIL);
983 	}
984 
985 	/* If door bell is in use we don't have a chance of getting
986 	 * a word in since the IOC probably crashed in message
987 	 * processing. So don't waste our time.
988 	 */
989 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
990 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
991 		return (MPT_FAIL);
992 	}
993 
994 	/* Send the reset request to the IOC */
995 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
996 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
997 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
998 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
999 		return (MPT_FAIL);
1000 	}
1001 
1002 	/* Wait for the IOC to reload and come out of reset state */
1003 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1004 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1005 		return (MPT_FAIL);
1006 	}
1007 
1008 	return MPT_OK;
1009 }
1010 
1011 static int
1012 mpt_enable_diag_mode(struct mpt_softc *mpt)
1013 {
1014 	int try;
1015 
1016 	try = 20;
1017 	while (--try) {
1018 
1019 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1020 			break;
1021 
1022 		/* Enable diagnostic registers */
1023 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1024 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1025 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1026 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1027 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1028 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1029 
1030 		DELAY(100000);
1031 	}
1032 	if (try == 0)
1033 		return (EIO);
1034 	return (0);
1035 }
1036 
1037 static void
1038 mpt_disable_diag_mode(struct mpt_softc *mpt)
1039 {
1040 
1041 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1042 }
1043 
1044 /* This is a magic diagnostic reset that resets all the ARM
1045  * processors in the chip.
1046  */
1047 static void
1048 mpt_hard_reset(struct mpt_softc *mpt)
1049 {
1050 	int error;
1051 	int wait;
1052 	uint32_t diagreg;
1053 
1054 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1055 
1056 	if (mpt->is_1078) {
1057 		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1058 		DELAY(1000);
1059 		return;
1060 	}
1061 
1062 	error = mpt_enable_diag_mode(mpt);
1063 	if (error) {
1064 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1065 		mpt_prt(mpt, "Trying to reset anyway.\n");
1066 	}
1067 
1068 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1069 
1070 	/*
1071 	 * This appears to be a workaround required for some
1072 	 * firmware or hardware revs.
1073 	 */
1074 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1075 	DELAY(1000);
1076 
1077 	/* Diag. port is now active so we can now hit the reset bit */
1078 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1079 
1080         /*
1081          * Ensure that the reset has finished.  We delay 1ms
1082          * prior to reading the register to make sure the chip
1083          * has sufficiently completed its reset to handle register
1084          * accesses.
1085          */
1086 	wait = 5000;
1087 	do {
1088 		DELAY(1000);
1089 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1090 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1091 
1092 	if (wait == 0) {
1093 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1094 			"Trying to initialize anyway.\n");
1095 	}
1096 
1097 	/*
1098 	 * If we have firmware to download, it must be loaded before
1099 	 * the controller will become operational.  Do so now.
1100 	 */
1101 	if (mpt->fw_image != NULL) {
1102 
1103 		error = mpt_download_fw(mpt);
1104 
1105 		if (error) {
1106 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1107 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * Reseting the controller should have disabled write
1113 	 * access to the diagnostic registers, but disable
1114 	 * manually to be sure.
1115 	 */
1116 	mpt_disable_diag_mode(mpt);
1117 }
1118 
1119 static void
1120 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1121 {
1122 
1123 	/*
1124 	 * Complete all pending requests with a status
1125 	 * appropriate for an IOC reset.
1126 	 */
1127 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1128 				   MPI_IOCSTATUS_INVALID_STATE);
1129 }
1130 
1131 /*
1132  * Reset the IOC when needed. Try software command first then if needed
1133  * poke at the magic diagnostic reset. Note that a hard reset resets
1134  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1135  * fouls up the PCI configuration registers.
1136  */
1137 int
1138 mpt_reset(struct mpt_softc *mpt, int reinit)
1139 {
1140 	struct	mpt_personality *pers;
1141 	int	ret;
1142 	int	retry_cnt = 0;
1143 
1144 	/*
1145 	 * Try a soft reset. If that fails, get out the big hammer.
1146 	 */
1147  again:
1148 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1149 		int	cnt;
1150 		for (cnt = 0; cnt < 5; cnt++) {
1151 			/* Failed; do a hard reset */
1152 			mpt_hard_reset(mpt);
1153 
1154 			/*
1155 			 * Wait for the IOC to reload
1156 			 * and come out of reset state
1157 			 */
1158 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1159 			if (ret == MPT_OK) {
1160 				break;
1161 			}
1162 			/*
1163 			 * Okay- try to check again...
1164 			 */
1165 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1166 			if (ret == MPT_OK) {
1167 				break;
1168 			}
1169 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1170 			    retry_cnt, cnt);
1171 		}
1172 	}
1173 
1174 	if (retry_cnt == 0) {
1175 		/*
1176 		 * Invoke reset handlers.  We bump the reset count so
1177 		 * that mpt_wait_req() understands that regardless of
1178 		 * the specified wait condition, it should stop its wait.
1179 		 */
1180 		mpt->reset_cnt++;
1181 		MPT_PERS_FOREACH(mpt, pers)
1182 			pers->reset(mpt, ret);
1183 	}
1184 
1185 	if (reinit) {
1186 		ret = mpt_enable_ioc(mpt, 1);
1187 		if (ret == MPT_OK) {
1188 			mpt_enable_ints(mpt);
1189 		}
1190 	}
1191 	if (ret != MPT_OK && retry_cnt++ < 2) {
1192 		goto again;
1193 	}
1194 	return ret;
1195 }
1196 
1197 /* Return a command buffer to the free queue */
1198 void
1199 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1200 {
1201 	request_t *nxt;
1202 	struct mpt_evtf_record *record;
1203 	uint32_t offset, reply_baddr;
1204 
1205 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1206 		panic("mpt_free_request: bad req ptr");
1207 	}
1208 	if ((nxt = req->chain) != NULL) {
1209 		req->chain = NULL;
1210 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1211 	}
1212 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1213 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1214 	MPT_LOCK_ASSERT(mpt);
1215 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1216 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1217 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1218 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1219 	    ("mpt_free_request: req %p:%u func %x on pending list",
1220 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1221 #ifdef	INVARIANTS
1222 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1223 #endif
1224 
1225 	req->ccb = NULL;
1226 	if (LIST_EMPTY(&mpt->ack_frames)) {
1227 		/*
1228 		 * Insert free ones at the tail
1229 		 */
1230 		req->serno = 0;
1231 		req->state = REQ_STATE_FREE;
1232 #ifdef	INVARIANTS
1233 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1234 #endif
1235 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1236 		if (mpt->getreqwaiter != 0) {
1237 			mpt->getreqwaiter = 0;
1238 			wakeup(&mpt->request_free_list);
1239 		}
1240 		return;
1241 	}
1242 
1243 	/*
1244 	 * Process an ack frame deferred due to resource shortage.
1245 	 */
1246 	record = LIST_FIRST(&mpt->ack_frames);
1247 	LIST_REMOVE(record, links);
1248 	req->state = REQ_STATE_ALLOCATED;
1249 	mpt_assign_serno(mpt, req);
1250 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1251 	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1252 	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1253 	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1254 	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1255 	mpt_free_reply(mpt, reply_baddr);
1256 }
1257 
1258 /* Get a command buffer from the free queue */
1259 request_t *
1260 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1261 {
1262 	request_t *req;
1263 
1264 retry:
1265 	MPT_LOCK_ASSERT(mpt);
1266 	req = TAILQ_FIRST(&mpt->request_free_list);
1267 	if (req != NULL) {
1268 		KASSERT(req == &mpt->request_pool[req->index],
1269 		    ("mpt_get_request: corrupted request free list"));
1270 		KASSERT(req->state == REQ_STATE_FREE,
1271 		    ("req %p:%u not free on free list %x index %d function %x",
1272 		    req, req->serno, req->state, req->index,
1273 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1274 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1275 		req->state = REQ_STATE_ALLOCATED;
1276 		req->chain = NULL;
1277 		mpt_assign_serno(mpt, req);
1278 	} else if (sleep_ok != 0) {
1279 		mpt->getreqwaiter = 1;
1280 		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1281 		goto retry;
1282 	}
1283 	return (req);
1284 }
1285 
1286 /* Pass the command to the IOC */
1287 void
1288 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1289 {
1290 
1291 	if (mpt->verbose > MPT_PRT_DEBUG2) {
1292 		mpt_dump_request(mpt, req);
1293 	}
1294 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1295 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1296 	req->state |= REQ_STATE_QUEUED;
1297 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1298 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1299 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1300 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1301 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1302 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1303 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1304 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1305 }
1306 
1307 /*
1308  * Wait for a request to complete.
1309  *
1310  * Inputs:
1311  *	mpt		softc of controller executing request
1312  *	req		request to wait for
1313  *	sleep_ok	nonzero implies may sleep in this context
1314  *	time_ms		timeout in ms.  0 implies no timeout.
1315  *
1316  * Return Values:
1317  *	0		Request completed
1318  *	non-0		Timeout fired before request completion.
1319  */
1320 int
1321 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1322 	     mpt_req_state_t state, mpt_req_state_t mask,
1323 	     int sleep_ok, int time_ms)
1324 {
1325 	int   timeout;
1326 	u_int saved_cnt;
1327 	sbintime_t sbt;
1328 
1329 	/*
1330 	 * time_ms is in ms, 0 indicates infinite wait.
1331 	 * Convert to sbintime_t or 500us units depending on
1332 	 * our sleep mode.
1333 	 */
1334 	if (sleep_ok != 0) {
1335 		sbt = SBT_1MS * time_ms;
1336 		/* Set timeout as well so final timeout check works. */
1337 		timeout = time_ms;
1338 	} else {
1339 		sbt = 0; /* Squelch bogus gcc warning. */
1340 		timeout = time_ms * 2;
1341 	}
1342 	req->state |= REQ_STATE_NEED_WAKEUP;
1343 	mask &= ~REQ_STATE_NEED_WAKEUP;
1344 	saved_cnt = mpt->reset_cnt;
1345 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1346 		if (sleep_ok != 0) {
1347 			if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) ==
1348 			    EWOULDBLOCK) {
1349 				timeout = 0;
1350 				break;
1351 			}
1352 		} else {
1353 			if (time_ms != 0 && --timeout == 0) {
1354 				break;
1355 			}
1356 			DELAY(500);
1357 			mpt_intr(mpt);
1358 		}
1359 	}
1360 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1361 	if (mpt->reset_cnt != saved_cnt) {
1362 		return (EIO);
1363 	}
1364 	if (time_ms && timeout <= 0) {
1365 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1366 		req->state |= REQ_STATE_TIMEDOUT;
1367 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1368 		return (ETIMEDOUT);
1369 	}
1370 	return (0);
1371 }
1372 
1373 /*
1374  * Send a command to the IOC via the handshake register.
1375  *
1376  * Only done at initialization time and for certain unusual
1377  * commands such as device/bus reset as specified by LSI.
1378  */
1379 int
1380 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1381 {
1382 	int i;
1383 	uint32_t data, *data32;
1384 
1385 	/* Check condition of the IOC */
1386 	data = mpt_rd_db(mpt);
1387 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1388 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1389 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1390 	 || MPT_DB_IS_IN_USE(data)) {
1391 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1392 		mpt_print_db(data);
1393 		return (EBUSY);
1394 	}
1395 
1396 	/* We move things in 32 bit chunks */
1397 	len = (len + 3) >> 2;
1398 	data32 = cmd;
1399 
1400 	/* Clear any left over pending doorbell interrupts */
1401 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1402 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1403 
1404 	/*
1405 	 * Tell the handshake reg. we are going to send a command
1406          * and how long it is going to be.
1407 	 */
1408 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1409 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1410 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1411 
1412 	/* Wait for the chip to notice */
1413 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1414 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1415 		return (ETIMEDOUT);
1416 	}
1417 
1418 	/* Clear the interrupt */
1419 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1420 
1421 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1422 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1423 		return (ETIMEDOUT);
1424 	}
1425 
1426 	/* Send the command */
1427 	for (i = 0; i < len; i++) {
1428 		mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++);
1429 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1430 			mpt_prt(mpt,
1431 			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1432 			return (ETIMEDOUT);
1433 		}
1434 	}
1435 	return MPT_OK;
1436 }
1437 
1438 /* Get the response from the handshake register */
1439 int
1440 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1441 {
1442 	int left, reply_left;
1443 	u_int16_t *data16;
1444 	uint32_t data;
1445 	MSG_DEFAULT_REPLY *hdr;
1446 
1447 	/* We move things out in 16 bit chunks */
1448 	reply_len >>= 1;
1449 	data16 = (u_int16_t *)reply;
1450 
1451 	hdr = (MSG_DEFAULT_REPLY *)reply;
1452 
1453 	/* Get first word */
1454 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1455 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1456 		return ETIMEDOUT;
1457 	}
1458 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1459 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1460 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1461 
1462 	/* Get second word */
1463 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1464 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1465 		return ETIMEDOUT;
1466 	}
1467 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1468 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1469 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1470 
1471 	/*
1472 	 * With the second word, we can now look at the length.
1473 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1474 	 */
1475 	if ((reply_len >> 1) != hdr->MsgLength &&
1476 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1477 		mpt_prt(mpt, "reply length does not match message length: "
1478 			"got %x; expected %zx for function %x\n",
1479 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1480 	}
1481 
1482 	/* Get rest of the reply; but don't overflow the provided buffer */
1483 	left = (hdr->MsgLength << 1) - 2;
1484 	reply_left =  reply_len - 2;
1485 	while (left--) {
1486 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1487 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1488 			return ETIMEDOUT;
1489 		}
1490 		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1491 		if (reply_left-- > 0)
1492 			*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1493 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1494 	}
1495 
1496 	/* One more wait & clear at the end */
1497 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1498 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1499 		return ETIMEDOUT;
1500 	}
1501 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1502 
1503 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1504 		if (mpt->verbose >= MPT_PRT_TRACE)
1505 			mpt_print_reply(hdr);
1506 		return (MPT_FAIL | hdr->IOCStatus);
1507 	}
1508 
1509 	return (0);
1510 }
1511 
1512 static int
1513 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1514 {
1515 	MSG_IOC_FACTS f_req;
1516 	int error;
1517 
1518 	memset(&f_req, 0, sizeof f_req);
1519 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1520 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1521 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1522 	if (error) {
1523 		return(error);
1524 	}
1525 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1526 	return (error);
1527 }
1528 
1529 static int
1530 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1531 {
1532 	MSG_PORT_FACTS f_req;
1533 	int error;
1534 
1535 	memset(&f_req, 0, sizeof f_req);
1536 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1537 	f_req.PortNumber = port;
1538 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1539 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1540 	if (error) {
1541 		return(error);
1542 	}
1543 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1544 	return (error);
1545 }
1546 
1547 /*
1548  * Send the initialization request. This is where we specify how many
1549  * SCSI buses and how many devices per bus we wish to emulate.
1550  * This is also the command that specifies the max size of the reply
1551  * frames from the IOC that we will be allocating.
1552  */
1553 static int
1554 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1555 {
1556 	int error = 0;
1557 	MSG_IOC_INIT init;
1558 	MSG_IOC_INIT_REPLY reply;
1559 
1560 	memset(&init, 0, sizeof init);
1561 	init.WhoInit = who;
1562 	init.Function = MPI_FUNCTION_IOC_INIT;
1563 	init.MaxDevices = 0;	/* at least 256 devices per bus */
1564 	init.MaxBuses = 16;	/* at least 16 buses */
1565 
1566 	init.MsgVersion = htole16(MPI_VERSION);
1567 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1568 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1569 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1570 
1571 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1572 		return(error);
1573 	}
1574 
1575 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1576 	return (error);
1577 }
1578 
1579 
1580 /*
1581  * Utiltity routine to read configuration headers and pages
1582  */
1583 int
1584 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1585 		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1586 {
1587 	MSG_CONFIG *cfgp;
1588 	SGE_SIMPLE32 *se;
1589 
1590 	cfgp = req->req_vbuf;
1591 	memset(cfgp, 0, sizeof *cfgp);
1592 	cfgp->Action = params->Action;
1593 	cfgp->Function = MPI_FUNCTION_CONFIG;
1594 	cfgp->Header.PageVersion = params->PageVersion;
1595 	cfgp->Header.PageNumber = params->PageNumber;
1596 	cfgp->PageAddress = htole32(params->PageAddress);
1597 	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1598 	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1599 		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1600 		cfgp->Header.PageLength = 0;
1601 		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1602 		cfgp->ExtPageType = params->ExtPageType;
1603 	} else {
1604 		cfgp->Header.PageType = params->PageType;
1605 		cfgp->Header.PageLength = params->PageLength;
1606 	}
1607 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1608 	se->Address = htole32(addr);
1609 	MPI_pSGE_SET_LENGTH(se, len);
1610 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1611 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1612 	    MPI_SGE_FLAGS_END_OF_LIST |
1613 	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1614 	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1615 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1616 	se->FlagsLength = htole32(se->FlagsLength);
1617 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1618 
1619 	mpt_check_doorbell(mpt);
1620 	mpt_send_cmd(mpt, req);
1621 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1622 			     sleep_ok, timeout_ms));
1623 }
1624 
1625 int
1626 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1627 		       uint32_t PageAddress, int ExtPageType,
1628 		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1629 		       int sleep_ok, int timeout_ms)
1630 {
1631 	request_t  *req;
1632 	cfgparms_t params;
1633 	MSG_CONFIG_REPLY *cfgp;
1634 	int	    error;
1635 
1636 	req = mpt_get_request(mpt, sleep_ok);
1637 	if (req == NULL) {
1638 		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1639 		return (ENOMEM);
1640 	}
1641 
1642 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1643 	params.PageVersion = PageVersion;
1644 	params.PageLength = 0;
1645 	params.PageNumber = PageNumber;
1646 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1647 	params.PageAddress = PageAddress;
1648 	params.ExtPageType = ExtPageType;
1649 	params.ExtPageLength = 0;
1650 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1651 				  sleep_ok, timeout_ms);
1652 	if (error != 0) {
1653 		/*
1654 		 * Leave the request. Without resetting the chip, it's
1655 		 * still owned by it and we'll just get into trouble
1656 		 * freeing it now. Mark it as abandoned so that if it
1657 		 * shows up later it can be freed.
1658 		 */
1659 		mpt_prt(mpt, "read_extcfg_header timed out\n");
1660 		return (ETIMEDOUT);
1661 	}
1662 
1663         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1664 	case MPI_IOCSTATUS_SUCCESS:
1665 		cfgp = req->req_vbuf;
1666 		rslt->PageVersion = cfgp->Header.PageVersion;
1667 		rslt->PageNumber = cfgp->Header.PageNumber;
1668 		rslt->PageType = cfgp->Header.PageType;
1669 		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1670 		rslt->ExtPageType = cfgp->ExtPageType;
1671 		error = 0;
1672 		break;
1673 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1674 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1675 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1676 		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1677 		error = EINVAL;
1678 		break;
1679 	default:
1680 		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1681 			req->IOCStatus);
1682 		error = EIO;
1683 		break;
1684 	}
1685 	mpt_free_request(mpt, req);
1686 	return (error);
1687 }
1688 
1689 int
1690 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1691 		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1692 		     int sleep_ok, int timeout_ms)
1693 {
1694 	request_t    *req;
1695 	cfgparms_t    params;
1696 	int	      error;
1697 
1698 	req = mpt_get_request(mpt, sleep_ok);
1699 	if (req == NULL) {
1700 		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1701 		return (-1);
1702 	}
1703 
1704 	params.Action = Action;
1705 	params.PageVersion = hdr->PageVersion;
1706 	params.PageLength = 0;
1707 	params.PageNumber = hdr->PageNumber;
1708 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1709 	params.PageAddress = PageAddress;
1710 	params.ExtPageType = hdr->ExtPageType;
1711 	params.ExtPageLength = hdr->ExtPageLength;
1712 	error = mpt_issue_cfg_req(mpt, req, &params,
1713 				  req->req_pbuf + MPT_RQSL(mpt),
1714 				  len, sleep_ok, timeout_ms);
1715 	if (error != 0) {
1716 		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1717 		return (-1);
1718 	}
1719 
1720 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1721 		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1722 			req->IOCStatus);
1723 		mpt_free_request(mpt, req);
1724 		return (-1);
1725 	}
1726 	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1727 	mpt_free_request(mpt, req);
1728 	return (0);
1729 }
1730 
1731 int
1732 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1733 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1734 		    int sleep_ok, int timeout_ms)
1735 {
1736 	request_t  *req;
1737 	cfgparms_t params;
1738 	MSG_CONFIG *cfgp;
1739 	int	    error;
1740 
1741 	req = mpt_get_request(mpt, sleep_ok);
1742 	if (req == NULL) {
1743 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1744 		return (ENOMEM);
1745 	}
1746 
1747 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1748 	params.PageVersion = 0;
1749 	params.PageLength = 0;
1750 	params.PageNumber = PageNumber;
1751 	params.PageType = PageType;
1752 	params.PageAddress = PageAddress;
1753 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1754 				  sleep_ok, timeout_ms);
1755 	if (error != 0) {
1756 		/*
1757 		 * Leave the request. Without resetting the chip, it's
1758 		 * still owned by it and we'll just get into trouble
1759 		 * freeing it now. Mark it as abandoned so that if it
1760 		 * shows up later it can be freed.
1761 		 */
1762 		mpt_prt(mpt, "read_cfg_header timed out\n");
1763 		return (ETIMEDOUT);
1764 	}
1765 
1766         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1767 	case MPI_IOCSTATUS_SUCCESS:
1768 		cfgp = req->req_vbuf;
1769 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1770 		error = 0;
1771 		break;
1772 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1773 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1774 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1775 		    PageType, PageNumber, PageAddress);
1776 		error = EINVAL;
1777 		break;
1778 	default:
1779 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1780 			req->IOCStatus);
1781 		error = EIO;
1782 		break;
1783 	}
1784 	mpt_free_request(mpt, req);
1785 	return (error);
1786 }
1787 
1788 int
1789 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1790 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1791 		  int timeout_ms)
1792 {
1793 	request_t    *req;
1794 	cfgparms_t    params;
1795 	int	      error;
1796 
1797 	req = mpt_get_request(mpt, sleep_ok);
1798 	if (req == NULL) {
1799 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1800 		return (-1);
1801 	}
1802 
1803 	params.Action = Action;
1804 	params.PageVersion = hdr->PageVersion;
1805 	params.PageLength = hdr->PageLength;
1806 	params.PageNumber = hdr->PageNumber;
1807 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1808 	params.PageAddress = PageAddress;
1809 	error = mpt_issue_cfg_req(mpt, req, &params,
1810 				  req->req_pbuf + MPT_RQSL(mpt),
1811 				  len, sleep_ok, timeout_ms);
1812 	if (error != 0) {
1813 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1814 		return (-1);
1815 	}
1816 
1817 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1818 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1819 			req->IOCStatus);
1820 		mpt_free_request(mpt, req);
1821 		return (-1);
1822 	}
1823 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1824 	mpt_free_request(mpt, req);
1825 	return (0);
1826 }
1827 
1828 int
1829 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1830 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1831 		   int timeout_ms)
1832 {
1833 	request_t    *req;
1834 	cfgparms_t    params;
1835 	u_int	      hdr_attr;
1836 	int	      error;
1837 
1838 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1839 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1840 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1841 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1842 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1843 		return (-1);
1844 	}
1845 
1846 #if	0
1847 	/*
1848 	 * We shouldn't mask off other bits here.
1849 	 */
1850 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1851 #endif
1852 
1853 	req = mpt_get_request(mpt, sleep_ok);
1854 	if (req == NULL)
1855 		return (-1);
1856 
1857 	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1858 
1859 	/*
1860 	 * There isn't any point in restoring stripped out attributes
1861 	 * if you then mask them going down to issue the request.
1862 	 */
1863 
1864 	params.Action = Action;
1865 	params.PageVersion = hdr->PageVersion;
1866 	params.PageLength = hdr->PageLength;
1867 	params.PageNumber = hdr->PageNumber;
1868 	params.PageAddress = PageAddress;
1869 #if	0
1870 	/* Restore stripped out attributes */
1871 	hdr->PageType |= hdr_attr;
1872 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1873 #else
1874 	params.PageType = hdr->PageType;
1875 #endif
1876 	error = mpt_issue_cfg_req(mpt, req, &params,
1877 				  req->req_pbuf + MPT_RQSL(mpt),
1878 				  len, sleep_ok, timeout_ms);
1879 	if (error != 0) {
1880 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1881 		return (-1);
1882 	}
1883 
1884         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1885 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1886 			req->IOCStatus);
1887 		mpt_free_request(mpt, req);
1888 		return (-1);
1889 	}
1890 	mpt_free_request(mpt, req);
1891 	return (0);
1892 }
1893 
1894 /*
1895  * Read IOC configuration information
1896  */
1897 static int
1898 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1899 {
1900 	CONFIG_PAGE_HEADER hdr;
1901 	struct mpt_raid_volume *mpt_raid;
1902 	int rv;
1903 	int i;
1904 	size_t len;
1905 
1906 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1907 		2, 0, &hdr, FALSE, 5000);
1908 	/*
1909 	 * If it's an invalid page, so what? Not a supported function....
1910 	 */
1911 	if (rv == EINVAL) {
1912 		return (0);
1913 	}
1914 	if (rv) {
1915 		return (rv);
1916 	}
1917 
1918 	mpt_lprt(mpt, MPT_PRT_DEBUG,
1919 	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1920 	    hdr.PageVersion, hdr.PageLength << 2,
1921 	    hdr.PageNumber, hdr.PageType);
1922 
1923 	len = hdr.PageLength * sizeof(uint32_t);
1924 	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1925 	if (mpt->ioc_page2 == NULL) {
1926 		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1927 		mpt_raid_free_mem(mpt);
1928 		return (ENOMEM);
1929 	}
1930 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1931 	rv = mpt_read_cur_cfg_page(mpt, 0,
1932 	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1933 	if (rv) {
1934 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1935 		mpt_raid_free_mem(mpt);
1936 		return (EIO);
1937 	}
1938 	mpt2host_config_page_ioc2(mpt->ioc_page2);
1939 
1940 	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1941 		uint32_t mask;
1942 
1943 		mpt_prt(mpt, "Capabilities: (");
1944 		for (mask = 1; mask != 0; mask <<= 1) {
1945 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1946 				continue;
1947 			}
1948 			switch (mask) {
1949 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1950 				mpt_prtc(mpt, " RAID-0");
1951 				break;
1952 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1953 				mpt_prtc(mpt, " RAID-1E");
1954 				break;
1955 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1956 				mpt_prtc(mpt, " RAID-1");
1957 				break;
1958 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1959 				mpt_prtc(mpt, " SES");
1960 				break;
1961 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1962 				mpt_prtc(mpt, " SAFTE");
1963 				break;
1964 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1965 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1966 			default:
1967 				break;
1968 			}
1969 		}
1970 		mpt_prtc(mpt, " )\n");
1971 		if ((mpt->ioc_page2->CapabilitiesFlags
1972 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1973 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1974 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1975 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1976 				mpt->ioc_page2->NumActiveVolumes,
1977 				mpt->ioc_page2->NumActiveVolumes != 1
1978 			      ? "s " : " ",
1979 				mpt->ioc_page2->MaxVolumes);
1980 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1981 				mpt->ioc_page2->NumActivePhysDisks,
1982 				mpt->ioc_page2->NumActivePhysDisks != 1
1983 			      ? "s " : " ",
1984 				mpt->ioc_page2->MaxPhysDisks);
1985 		}
1986 	}
1987 
1988 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1989 	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1990 	if (mpt->raid_volumes == NULL) {
1991 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1992 		mpt_raid_free_mem(mpt);
1993 		return (ENOMEM);
1994 	}
1995 
1996 	/*
1997 	 * Copy critical data out of ioc_page2 so that we can
1998 	 * safely refresh the page without windows of unreliable
1999 	 * data.
2000 	 */
2001 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2002 
2003 	len = sizeof(*mpt->raid_volumes->config_page) +
2004 	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2005 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2006 		mpt_raid = &mpt->raid_volumes[i];
2007 		mpt_raid->config_page =
2008 		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2009 		if (mpt_raid->config_page == NULL) {
2010 			mpt_prt(mpt, "Could not allocate RAID page data\n");
2011 			mpt_raid_free_mem(mpt);
2012 			return (ENOMEM);
2013 		}
2014 	}
2015 	mpt->raid_page0_len = len;
2016 
2017 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2018 	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2019 	if (mpt->raid_disks == NULL) {
2020 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2021 		mpt_raid_free_mem(mpt);
2022 		return (ENOMEM);
2023 	}
2024 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2025 
2026 	/*
2027 	 * Load page 3.
2028 	 */
2029 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2030 	    3, 0, &hdr, FALSE, 5000);
2031 	if (rv) {
2032 		mpt_raid_free_mem(mpt);
2033 		return (EIO);
2034 	}
2035 
2036 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2037 	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2038 
2039 	len = hdr.PageLength * sizeof(uint32_t);
2040 	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2041 	if (mpt->ioc_page3 == NULL) {
2042 		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2043 		mpt_raid_free_mem(mpt);
2044 		return (ENOMEM);
2045 	}
2046 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2047 	rv = mpt_read_cur_cfg_page(mpt, 0,
2048 	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2049 	if (rv) {
2050 		mpt_raid_free_mem(mpt);
2051 		return (EIO);
2052 	}
2053 	mpt2host_config_page_ioc3(mpt->ioc_page3);
2054 	mpt_raid_wakeup(mpt);
2055 	return (0);
2056 }
2057 
2058 /*
2059  * Enable IOC port
2060  */
2061 static int
2062 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2063 {
2064 	request_t	*req;
2065 	MSG_PORT_ENABLE *enable_req;
2066 	int		 error;
2067 
2068 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2069 	if (req == NULL)
2070 		return (-1);
2071 
2072 	enable_req = req->req_vbuf;
2073 	memset(enable_req, 0,  MPT_RQSL(mpt));
2074 
2075 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2076 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2077 	enable_req->PortNumber = port;
2078 
2079 	mpt_check_doorbell(mpt);
2080 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2081 
2082 	mpt_send_cmd(mpt, req);
2083 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2084 	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2085 	if (error != 0) {
2086 		mpt_prt(mpt, "port %d enable timed out\n", port);
2087 		return (-1);
2088 	}
2089 	mpt_free_request(mpt, req);
2090 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2091 	return (0);
2092 }
2093 
2094 /*
2095  * Enable/Disable asynchronous event reporting.
2096  */
2097 static int
2098 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2099 {
2100 	request_t *req;
2101 	MSG_EVENT_NOTIFY *enable_req;
2102 
2103 	req = mpt_get_request(mpt, FALSE);
2104 	if (req == NULL) {
2105 		return (ENOMEM);
2106 	}
2107 	enable_req = req->req_vbuf;
2108 	memset(enable_req, 0, sizeof *enable_req);
2109 
2110 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2111 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2112 	enable_req->Switch     = onoff;
2113 
2114 	mpt_check_doorbell(mpt);
2115 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2116 	    onoff ? "en" : "dis");
2117 	/*
2118 	 * Send the command off, but don't wait for it.
2119 	 */
2120 	mpt_send_cmd(mpt, req);
2121 	return (0);
2122 }
2123 
2124 /*
2125  * Un-mask the interrupts on the chip.
2126  */
2127 void
2128 mpt_enable_ints(struct mpt_softc *mpt)
2129 {
2130 
2131 	/* Unmask every thing except door bell int */
2132 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2133 }
2134 
2135 /*
2136  * Mask the interrupts on the chip.
2137  */
2138 void
2139 mpt_disable_ints(struct mpt_softc *mpt)
2140 {
2141 
2142 	/* Mask all interrupts */
2143 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2144 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2145 }
2146 
2147 static void
2148 mpt_sysctl_attach(struct mpt_softc *mpt)
2149 {
2150 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2151 	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2152 
2153 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2154 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2155 		       "Debugging/Verbose level");
2156 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2157 		       "role", CTLFLAG_RD, &mpt->role, 0,
2158 		       "HBA role");
2159 #ifdef	MPT_TEST_MULTIPATH
2160 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2161 		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2162 		       "Next Target to Fail");
2163 #endif
2164 }
2165 
2166 int
2167 mpt_attach(struct mpt_softc *mpt)
2168 {
2169 	struct mpt_personality *pers;
2170 	int i;
2171 	int error;
2172 
2173 	mpt_core_attach(mpt);
2174 	mpt_core_enable(mpt);
2175 
2176 	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2177 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2178 		pers = mpt_personalities[i];
2179 		if (pers == NULL) {
2180 			continue;
2181 		}
2182 		if (pers->probe(mpt) == 0) {
2183 			error = pers->attach(mpt);
2184 			if (error != 0) {
2185 				mpt_detach(mpt);
2186 				return (error);
2187 			}
2188 			mpt->mpt_pers_mask |= (0x1 << pers->id);
2189 			pers->use_count++;
2190 		}
2191 	}
2192 
2193 	/*
2194 	 * Now that we've attached everything, do the enable function
2195 	 * for all of the personalities. This allows the personalities
2196 	 * to do setups that are appropriate for them prior to enabling
2197 	 * any ports.
2198 	 */
2199 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2200 		pers = mpt_personalities[i];
2201 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2202 			error = pers->enable(mpt);
2203 			if (error != 0) {
2204 				mpt_prt(mpt, "personality %s attached but would"
2205 				    " not enable (%d)\n", pers->name, error);
2206 				mpt_detach(mpt);
2207 				return (error);
2208 			}
2209 		}
2210 	}
2211 	return (0);
2212 }
2213 
2214 int
2215 mpt_shutdown(struct mpt_softc *mpt)
2216 {
2217 	struct mpt_personality *pers;
2218 
2219 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2220 		pers->shutdown(mpt);
2221 	}
2222 	return (0);
2223 }
2224 
2225 int
2226 mpt_detach(struct mpt_softc *mpt)
2227 {
2228 	struct mpt_personality *pers;
2229 
2230 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2231 		pers->detach(mpt);
2232 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2233 		pers->use_count--;
2234 	}
2235 	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2236 	return (0);
2237 }
2238 
2239 static int
2240 mpt_core_load(struct mpt_personality *pers)
2241 {
2242 	int i;
2243 
2244 	/*
2245 	 * Setup core handlers and insert the default handler
2246 	 * into all "empty slots".
2247 	 */
2248 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2249 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2250 	}
2251 
2252 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2253 	    mpt_event_reply_handler;
2254 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2255 	    mpt_config_reply_handler;
2256 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2257 	    mpt_handshake_reply_handler;
2258 	return (0);
2259 }
2260 
2261 /*
2262  * Initialize per-instance driver data and perform
2263  * initial controller configuration.
2264  */
2265 static int
2266 mpt_core_attach(struct mpt_softc *mpt)
2267 {
2268         int val, error;
2269 
2270 	LIST_INIT(&mpt->ack_frames);
2271 	/* Put all request buffers on the free list */
2272 	TAILQ_INIT(&mpt->request_pending_list);
2273 	TAILQ_INIT(&mpt->request_free_list);
2274 	TAILQ_INIT(&mpt->request_timeout_list);
2275 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2276 		STAILQ_INIT(&mpt->trt[val].atios);
2277 		STAILQ_INIT(&mpt->trt[val].inots);
2278 	}
2279 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2280 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2281 #ifdef	MPT_TEST_MULTIPATH
2282 	mpt->failure_id = -1;
2283 #endif
2284 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2285 	mpt_sysctl_attach(mpt);
2286 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2287 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2288 
2289 	MPT_LOCK(mpt);
2290 	error = mpt_configure_ioc(mpt, 0, 0);
2291 	MPT_UNLOCK(mpt);
2292 
2293 	return (error);
2294 }
2295 
2296 static int
2297 mpt_core_enable(struct mpt_softc *mpt)
2298 {
2299 
2300 	/*
2301 	 * We enter with the IOC enabled, but async events
2302 	 * not enabled, ports not enabled and interrupts
2303 	 * not enabled.
2304 	 */
2305 	MPT_LOCK(mpt);
2306 
2307 	/*
2308 	 * Enable asynchronous event reporting- all personalities
2309 	 * have attached so that they should be able to now field
2310 	 * async events.
2311 	 */
2312 	mpt_send_event_request(mpt, 1);
2313 
2314 	/*
2315 	 * Catch any pending interrupts
2316 	 *
2317 	 * This seems to be crucial- otherwise
2318 	 * the portenable below times out.
2319 	 */
2320 	mpt_intr(mpt);
2321 
2322 	/*
2323 	 * Enable Interrupts
2324 	 */
2325 	mpt_enable_ints(mpt);
2326 
2327 	/*
2328 	 * Catch any pending interrupts
2329 	 *
2330 	 * This seems to be crucial- otherwise
2331 	 * the portenable below times out.
2332 	 */
2333 	mpt_intr(mpt);
2334 
2335 	/*
2336 	 * Enable the port.
2337 	 */
2338 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2339 		mpt_prt(mpt, "failed to enable port 0\n");
2340 		MPT_UNLOCK(mpt);
2341 		return (ENXIO);
2342 	}
2343 	MPT_UNLOCK(mpt);
2344 	return (0);
2345 }
2346 
2347 static void
2348 mpt_core_shutdown(struct mpt_softc *mpt)
2349 {
2350 
2351 	mpt_disable_ints(mpt);
2352 }
2353 
2354 static void
2355 mpt_core_detach(struct mpt_softc *mpt)
2356 {
2357 	int val;
2358 
2359 	/*
2360 	 * XXX: FREE MEMORY
2361 	 */
2362 	mpt_disable_ints(mpt);
2363 
2364 	/* Make sure no request has pending timeouts. */
2365 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2366 		request_t *req = &mpt->request_pool[val];
2367 		mpt_callout_drain(mpt, &req->callout);
2368 	}
2369 
2370 	mpt_dma_buf_free(mpt);
2371 }
2372 
2373 static int
2374 mpt_core_unload(struct mpt_personality *pers)
2375 {
2376 
2377 	/* Unload is always successful. */
2378 	return (0);
2379 }
2380 
2381 #define FW_UPLOAD_REQ_SIZE				\
2382 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2383        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2384 
2385 static int
2386 mpt_upload_fw(struct mpt_softc *mpt)
2387 {
2388 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2389 	MSG_FW_UPLOAD_REPLY fw_reply;
2390 	MSG_FW_UPLOAD *fw_req;
2391 	FW_UPLOAD_TCSGE *tsge;
2392 	SGE_SIMPLE32 *sge;
2393 	uint32_t flags;
2394 	int error;
2395 
2396 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2397 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2398 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2399 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2400 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2401 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2402 	tsge->DetailsLength = 12;
2403 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2404 	tsge->ImageSize = htole32(mpt->fw_image_size);
2405 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2406 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2407 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2408 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2409 	flags <<= MPI_SGE_FLAGS_SHIFT;
2410 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2411 	sge->Address = htole32(mpt->fw_phys);
2412 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2413 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2414 	if (error)
2415 		return(error);
2416 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2417 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2418 	return (error);
2419 }
2420 
2421 static void
2422 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2423 	       uint32_t *data, bus_size_t len)
2424 {
2425 	uint32_t *data_end;
2426 
2427 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2428 	if (mpt->is_sas) {
2429 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2430 	}
2431 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2432 	while (data != data_end) {
2433 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2434 		data++;
2435 	}
2436 	if (mpt->is_sas) {
2437 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2438 	}
2439 }
2440 
2441 static int
2442 mpt_download_fw(struct mpt_softc *mpt)
2443 {
2444 	MpiFwHeader_t *fw_hdr;
2445 	int error;
2446 	uint32_t ext_offset;
2447 	uint32_t data;
2448 
2449 	if (mpt->pci_pio_reg == NULL) {
2450 		mpt_prt(mpt, "No PIO resource!\n");
2451 		return (ENXIO);
2452 	}
2453 
2454 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2455 		mpt->fw_image_size);
2456 
2457 	error = mpt_enable_diag_mode(mpt);
2458 	if (error != 0) {
2459 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2460 		return (EIO);
2461 	}
2462 
2463 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2464 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2465 
2466 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2467 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2468 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2469 		       fw_hdr->ImageSize);
2470 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2471 
2472 	ext_offset = fw_hdr->NextImageHeaderOffset;
2473 	while (ext_offset != 0) {
2474 		MpiExtImageHeader_t *ext;
2475 
2476 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2477 		ext_offset = ext->NextImageHeaderOffset;
2478 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2479 		    BUS_DMASYNC_PREWRITE);
2480 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2481 			       ext->ImageSize);
2482 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2483 		    BUS_DMASYNC_POSTWRITE);
2484 	}
2485 
2486 	if (mpt->is_sas) {
2487 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2488 	}
2489 	/* Setup the address to jump to on reset. */
2490 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2491 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2492 
2493 	/*
2494 	 * The controller sets the "flash bad" status after attempting
2495 	 * to auto-boot from flash.  Clear the status so that the controller
2496 	 * will continue the boot process with our newly installed firmware.
2497 	 */
2498 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2499 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2500 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2501 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2502 
2503 	if (mpt->is_sas) {
2504 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2505 	}
2506 
2507 	/*
2508 	 * Re-enable the processor and clear the boot halt flag.
2509 	 */
2510 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2511 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2512 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2513 
2514 	mpt_disable_diag_mode(mpt);
2515 	return (0);
2516 }
2517 
2518 static int
2519 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2520 {
2521 	struct mpt_map_info mi;
2522 	uint8_t *vptr;
2523 	uint32_t pptr, end;
2524 	int i, error;
2525 
2526 	/* Create a child tag for data buffers */
2527 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2528 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2529 	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2530 	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2531 	    &mpt->buffer_dmat) != 0) {
2532 		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2533 		return (1);
2534 	}
2535 
2536 	/* Create a child tag for request buffers */
2537 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2538 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2539 	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2540 	    &mpt->request_dmat) != 0) {
2541 		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2542 		return (1);
2543 	}
2544 
2545 	/* Allocate some DMA accessible memory for requests */
2546 	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2547 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2548 		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2549 		    MPT_REQ_MEM_SIZE(mpt));
2550 		return (1);
2551 	}
2552 
2553 	mi.mpt = mpt;
2554 	mi.error = 0;
2555 
2556 	/* Load and lock it into "bus space" */
2557 	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2558 	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2559 
2560 	if (mi.error) {
2561 		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2562 		    mi.error);
2563 		return (1);
2564 	}
2565 	mpt->request_phys = mi.phys;
2566 
2567 	/*
2568 	 * Now create per-request dma maps
2569 	 */
2570 	i = 0;
2571 	pptr =  mpt->request_phys;
2572 	vptr =  mpt->request;
2573 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2574 	while(pptr < end) {
2575 		request_t *req = &mpt->request_pool[i];
2576 		req->index = i++;
2577 
2578 		/* Store location of Request Data */
2579 		req->req_pbuf = pptr;
2580 		req->req_vbuf = vptr;
2581 
2582 		pptr += MPT_REQUEST_AREA;
2583 		vptr += MPT_REQUEST_AREA;
2584 
2585 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2586 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2587 
2588 		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2589 		if (error) {
2590 			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2591 			    error);
2592 			return (1);
2593 		}
2594 	}
2595 
2596 	return (0);
2597 }
2598 
2599 static void
2600 mpt_dma_buf_free(struct mpt_softc *mpt)
2601 {
2602 	int i;
2603 
2604 	if (mpt->request_dmat == 0) {
2605 		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2606 		return;
2607 	}
2608 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2609 		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2610 	}
2611 	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2612 	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2613 	bus_dma_tag_destroy(mpt->request_dmat);
2614 	mpt->request_dmat = 0;
2615 	bus_dma_tag_destroy(mpt->buffer_dmat);
2616 }
2617 
2618 /*
2619  * Allocate/Initialize data structures for the controller.  Called
2620  * once at instance startup.
2621  */
2622 static int
2623 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2624 {
2625 	PTR_MSG_PORT_FACTS_REPLY pfp;
2626 	int error, port, val;
2627 	size_t len;
2628 
2629 	if (tn == MPT_MAX_TRYS) {
2630 		return (-1);
2631 	}
2632 
2633 	/*
2634 	 * No need to reset if the IOC is already in the READY state.
2635 	 *
2636 	 * Force reset if initialization failed previously.
2637 	 * Note that a hard_reset of the second channel of a '929
2638 	 * will stop operation of the first channel.  Hopefully, if the
2639 	 * first channel is ok, the second will not require a hard
2640 	 * reset.
2641 	 */
2642 	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2643 		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2644 			return (mpt_configure_ioc(mpt, tn++, 1));
2645 		}
2646 		needreset = 0;
2647 	}
2648 
2649 	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2650 		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2651 		return (mpt_configure_ioc(mpt, tn++, 1));
2652 	}
2653 	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2654 
2655 	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2656 	    mpt->ioc_facts.MsgVersion >> 8,
2657 	    mpt->ioc_facts.MsgVersion & 0xFF,
2658 	    mpt->ioc_facts.HeaderVersion >> 8,
2659 	    mpt->ioc_facts.HeaderVersion & 0xFF);
2660 
2661 	/*
2662 	 * Now that we know request frame size, we can calculate
2663 	 * the actual (reasonable) segment limit for read/write I/O.
2664 	 *
2665 	 * This limit is constrained by:
2666 	 *
2667 	 *  + The size of each area we allocate per command (and how
2668 	 *    many chain segments we can fit into it).
2669 	 *  + The total number of areas we've set up.
2670 	 *  + The actual chain depth the card will allow.
2671 	 *
2672 	 * The first area's segment count is limited by the I/O request
2673 	 * at the head of it. We cannot allocate realistically more
2674 	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2675 	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2676 	 *
2677 	 */
2678 	/* total number of request areas we (can) allocate */
2679 	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2680 
2681 	/* converted to the number of chain areas possible */
2682 	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2683 
2684 	/* limited by the number of chain areas the card will support */
2685 	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2686 		mpt_lprt(mpt, MPT_PRT_INFO,
2687 		    "chain depth limited to %u (from %u)\n",
2688 		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2689 		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2690 	}
2691 
2692 	/* converted to the number of simple sges in chain segments. */
2693 	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2694 
2695 	/*
2696 	 * Use this as the basis for reporting the maximum I/O size to CAM.
2697 	 */
2698 	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2699 
2700 	/* XXX Lame Locking! */
2701 	MPT_UNLOCK(mpt);
2702 	error = mpt_dma_buf_alloc(mpt);
2703 	MPT_LOCK(mpt);
2704 
2705 	if (error != 0) {
2706 		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2707 		return (EIO);
2708 	}
2709 
2710 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2711 		request_t *req = &mpt->request_pool[val];
2712 		req->state = REQ_STATE_ALLOCATED;
2713 		mpt_callout_init(mpt, &req->callout);
2714 		mpt_free_request(mpt, req);
2715 	}
2716 
2717 	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2718 		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2719 		 mpt->max_cam_seg_cnt);
2720 
2721 	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2722 	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2723 	mpt_lprt(mpt, MPT_PRT_INFO,
2724 	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2725 	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2726 	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2727 	    mpt->ioc_facts.RequestFrameSize << 2,
2728 	    mpt->ioc_facts.MaxChainDepth);
2729 	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2730 	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2731 	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2732 
2733 	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2734 	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2735 	if (mpt->port_facts == NULL) {
2736 		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2737 		return (ENOMEM);
2738 	}
2739 
2740 
2741 	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2742 	    (mpt->fw_uploaded == 0)) {
2743 		struct mpt_map_info mi;
2744 
2745 		/*
2746 		 * In some configurations, the IOC's firmware is
2747 		 * stored in a shared piece of system NVRAM that
2748 		 * is only accessible via the BIOS.  In this
2749 		 * case, the firmware keeps a copy of firmware in
2750 		 * RAM until the OS driver retrieves it.  Once
2751 		 * retrieved, we are responsible for re-downloading
2752 		 * the firmware after any hard-reset.
2753 		 */
2754 		MPT_UNLOCK(mpt);
2755 		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2756 		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2757 		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2758 		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2759 		    &mpt->fw_dmat);
2760 		if (error != 0) {
2761 			mpt_prt(mpt, "cannot create firmware dma tag\n");
2762 			MPT_LOCK(mpt);
2763 			return (ENOMEM);
2764 		}
2765 		error = bus_dmamem_alloc(mpt->fw_dmat,
2766 		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2767 		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2768 		if (error != 0) {
2769 			mpt_prt(mpt, "cannot allocate firmware memory\n");
2770 			bus_dma_tag_destroy(mpt->fw_dmat);
2771 			MPT_LOCK(mpt);
2772 			return (ENOMEM);
2773 		}
2774 		mi.mpt = mpt;
2775 		mi.error = 0;
2776 		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2777 		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2778 		mpt->fw_phys = mi.phys;
2779 
2780 		MPT_LOCK(mpt);
2781 		error = mpt_upload_fw(mpt);
2782 		if (error != 0) {
2783 			mpt_prt(mpt, "firmware upload failed.\n");
2784 			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2785 			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2786 			    mpt->fw_dmap);
2787 			bus_dma_tag_destroy(mpt->fw_dmat);
2788 			mpt->fw_image = NULL;
2789 			return (EIO);
2790 		}
2791 		mpt->fw_uploaded = 1;
2792 	}
2793 
2794 	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2795 		pfp = &mpt->port_facts[port];
2796 		error = mpt_get_portfacts(mpt, 0, pfp);
2797 		if (error != MPT_OK) {
2798 			mpt_prt(mpt,
2799 			    "mpt_get_portfacts on port %d failed\n", port);
2800 			free(mpt->port_facts, M_DEVBUF);
2801 			mpt->port_facts = NULL;
2802 			return (mpt_configure_ioc(mpt, tn++, 1));
2803 		}
2804 		mpt2host_portfacts_reply(pfp);
2805 
2806 		if (port > 0) {
2807 			error = MPT_PRT_INFO;
2808 		} else {
2809 			error = MPT_PRT_DEBUG;
2810 		}
2811 		mpt_lprt(mpt, error,
2812 		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2813 		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2814 		    pfp->MaxDevices);
2815 
2816 	}
2817 
2818 	/*
2819 	 * XXX: Not yet supporting more than port 0
2820 	 */
2821 	pfp = &mpt->port_facts[0];
2822 	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2823 		mpt->is_fc = 1;
2824 		mpt->is_sas = 0;
2825 		mpt->is_spi = 0;
2826 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2827 		mpt->is_fc = 0;
2828 		mpt->is_sas = 1;
2829 		mpt->is_spi = 0;
2830 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2831 		mpt->is_fc = 0;
2832 		mpt->is_sas = 0;
2833 		mpt->is_spi = 1;
2834 		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2835 			mpt->mpt_ini_id = pfp->PortSCSIID;
2836 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2837 		mpt_prt(mpt, "iSCSI not supported yet\n");
2838 		return (ENXIO);
2839 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2840 		mpt_prt(mpt, "Inactive Port\n");
2841 		return (ENXIO);
2842 	} else {
2843 		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2844 		return (ENXIO);
2845 	}
2846 
2847 	/*
2848 	 * Set our role with what this port supports.
2849 	 *
2850 	 * Note this might be changed later in different modules
2851 	 * if this is different from what is wanted.
2852 	 */
2853 	mpt->role = MPT_ROLE_NONE;
2854 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2855 		mpt->role |= MPT_ROLE_INITIATOR;
2856 	}
2857 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2858 		mpt->role |= MPT_ROLE_TARGET;
2859 	}
2860 
2861 	/*
2862 	 * Enable the IOC
2863 	 */
2864 	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2865 		mpt_prt(mpt, "unable to initialize IOC\n");
2866 		return (ENXIO);
2867 	}
2868 
2869 	/*
2870 	 * Read IOC configuration information.
2871 	 *
2872 	 * We need this to determine whether or not we have certain
2873 	 * settings for Integrated Mirroring (e.g.).
2874 	 */
2875 	mpt_read_config_info_ioc(mpt);
2876 
2877 	return (0);
2878 }
2879 
2880 static int
2881 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2882 {
2883 	uint32_t pptr;
2884 	int val;
2885 
2886 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2887 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2888 		return (EIO);
2889 	}
2890 
2891 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2892 
2893 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2894 		mpt_prt(mpt, "IOC failed to go to run state\n");
2895 		return (ENXIO);
2896 	}
2897 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2898 
2899 	/*
2900 	 * Give it reply buffers
2901 	 *
2902 	 * Do *not* exceed global credits.
2903 	 */
2904 	for (val = 0, pptr = mpt->reply_phys;
2905 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2906 	     pptr += MPT_REPLY_SIZE) {
2907 		mpt_free_reply(mpt, pptr);
2908 		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2909 			break;
2910 	}
2911 
2912 
2913 	/*
2914 	 * Enable the port if asked. This is only done if we're resetting
2915 	 * the IOC after initial startup.
2916 	 */
2917 	if (portenable) {
2918 		/*
2919 		 * Enable asynchronous event reporting
2920 		 */
2921 		mpt_send_event_request(mpt, 1);
2922 
2923 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2924 			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2925 			return (ENXIO);
2926 		}
2927 	}
2928 	return (MPT_OK);
2929 }
2930 
2931 /*
2932  * Endian Conversion Functions- only used on Big Endian machines
2933  */
2934 #if	_BYTE_ORDER == _BIG_ENDIAN
2935 void
2936 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2937 {
2938 
2939 	MPT_2_HOST32(sge, FlagsLength);
2940 	MPT_2_HOST32(sge, u.Address64.Low);
2941 	MPT_2_HOST32(sge, u.Address64.High);
2942 }
2943 
2944 void
2945 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2946 {
2947 
2948 	MPT_2_HOST16(rp, MsgVersion);
2949 	MPT_2_HOST16(rp, HeaderVersion);
2950 	MPT_2_HOST32(rp, MsgContext);
2951 	MPT_2_HOST16(rp, IOCExceptions);
2952 	MPT_2_HOST16(rp, IOCStatus);
2953 	MPT_2_HOST32(rp, IOCLogInfo);
2954 	MPT_2_HOST16(rp, ReplyQueueDepth);
2955 	MPT_2_HOST16(rp, RequestFrameSize);
2956 	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2957 	MPT_2_HOST16(rp, ProductID);
2958 	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2959 	MPT_2_HOST16(rp, GlobalCredits);
2960 	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2961 	MPT_2_HOST16(rp, CurReplyFrameSize);
2962 	MPT_2_HOST32(rp, FWImageSize);
2963 	MPT_2_HOST32(rp, IOCCapabilities);
2964 	MPT_2_HOST32(rp, FWVersion.Word);
2965 	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2966 	MPT_2_HOST16(rp, Reserved2);
2967 	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2968 	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2969 }
2970 
2971 void
2972 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2973 {
2974 
2975 	MPT_2_HOST16(pfp, Reserved);
2976 	MPT_2_HOST16(pfp, Reserved1);
2977 	MPT_2_HOST32(pfp, MsgContext);
2978 	MPT_2_HOST16(pfp, Reserved2);
2979 	MPT_2_HOST16(pfp, IOCStatus);
2980 	MPT_2_HOST32(pfp, IOCLogInfo);
2981 	MPT_2_HOST16(pfp, MaxDevices);
2982 	MPT_2_HOST16(pfp, PortSCSIID);
2983 	MPT_2_HOST16(pfp, ProtocolFlags);
2984 	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2985 	MPT_2_HOST16(pfp, MaxPersistentIDs);
2986 	MPT_2_HOST16(pfp, MaxLanBuckets);
2987 	MPT_2_HOST16(pfp, Reserved4);
2988 	MPT_2_HOST32(pfp, Reserved5);
2989 }
2990 
2991 void
2992 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2993 {
2994 	int i;
2995 
2996 	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2997 	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2998 		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2999 	}
3000 }
3001 
3002 void
3003 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
3004 {
3005 
3006 	MPT_2_HOST16(ioc3, Reserved2);
3007 }
3008 
3009 void
3010 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3011 {
3012 
3013 	MPT_2_HOST32(sp0, Capabilities);
3014 	MPT_2_HOST32(sp0, PhysicalInterface);
3015 }
3016 
3017 void
3018 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3019 {
3020 
3021 	MPT_2_HOST32(sp1, Configuration);
3022 	MPT_2_HOST32(sp1, OnBusTimerValue);
3023 	MPT_2_HOST16(sp1, IDConfig);
3024 }
3025 
3026 void
3027 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3028 {
3029 
3030 	HOST_2_MPT32(sp1, Configuration);
3031 	HOST_2_MPT32(sp1, OnBusTimerValue);
3032 	HOST_2_MPT16(sp1, IDConfig);
3033 }
3034 
3035 void
3036 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3037 {
3038 	int i;
3039 
3040 	MPT_2_HOST32(sp2, PortFlags);
3041 	MPT_2_HOST32(sp2, PortSettings);
3042 	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3043 	    sizeof(*sp2->DeviceSettings); i++) {
3044 		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3045 	}
3046 }
3047 
3048 void
3049 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3050 {
3051 
3052 	MPT_2_HOST32(sd0, NegotiatedParameters);
3053 	MPT_2_HOST32(sd0, Information);
3054 }
3055 
3056 void
3057 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3058 {
3059 
3060 	MPT_2_HOST32(sd1, RequestedParameters);
3061 	MPT_2_HOST32(sd1, Reserved);
3062 	MPT_2_HOST32(sd1, Configuration);
3063 }
3064 
3065 void
3066 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3067 {
3068 
3069 	HOST_2_MPT32(sd1, RequestedParameters);
3070 	HOST_2_MPT32(sd1, Reserved);
3071 	HOST_2_MPT32(sd1, Configuration);
3072 }
3073 
3074 void
3075 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3076 {
3077 
3078 	MPT_2_HOST32(fp0, Flags);
3079 	MPT_2_HOST32(fp0, PortIdentifier);
3080 	MPT_2_HOST32(fp0, WWNN.Low);
3081 	MPT_2_HOST32(fp0, WWNN.High);
3082 	MPT_2_HOST32(fp0, WWPN.Low);
3083 	MPT_2_HOST32(fp0, WWPN.High);
3084 	MPT_2_HOST32(fp0, SupportedServiceClass);
3085 	MPT_2_HOST32(fp0, SupportedSpeeds);
3086 	MPT_2_HOST32(fp0, CurrentSpeed);
3087 	MPT_2_HOST32(fp0, MaxFrameSize);
3088 	MPT_2_HOST32(fp0, FabricWWNN.Low);
3089 	MPT_2_HOST32(fp0, FabricWWNN.High);
3090 	MPT_2_HOST32(fp0, FabricWWPN.Low);
3091 	MPT_2_HOST32(fp0, FabricWWPN.High);
3092 	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3093 	MPT_2_HOST32(fp0, MaxInitiators);
3094 }
3095 
3096 void
3097 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3098 {
3099 
3100 	MPT_2_HOST32(fp1, Flags);
3101 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3102 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3103 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3104 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3105 }
3106 
3107 void
3108 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3109 {
3110 
3111 	HOST_2_MPT32(fp1, Flags);
3112 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3113 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3114 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3115 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3116 }
3117 
3118 void
3119 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3120 {
3121 	int i;
3122 
3123 	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3124 	MPT_2_HOST16(volp, VolumeSettings.Settings);
3125 	MPT_2_HOST32(volp, MaxLBA);
3126 	MPT_2_HOST32(volp, MaxLBAHigh);
3127 	MPT_2_HOST32(volp, StripeSize);
3128 	MPT_2_HOST32(volp, Reserved2);
3129 	MPT_2_HOST32(volp, Reserved3);
3130 	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3131 		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3132 	}
3133 }
3134 
3135 void
3136 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3137 {
3138 
3139 	MPT_2_HOST32(rpd0, Reserved1);
3140 	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3141 	MPT_2_HOST32(rpd0, MaxLBA);
3142 	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3143 	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3144 	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3145 }
3146 
3147 void
3148 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3149 {
3150 
3151 	MPT_2_HOST16(vi, TotalBlocks.High);
3152 	MPT_2_HOST16(vi, TotalBlocks.Low);
3153 	MPT_2_HOST16(vi, BlocksRemaining.High);
3154 	MPT_2_HOST16(vi, BlocksRemaining.Low);
3155 }
3156 #endif
3157