xref: /freebsd/sys/dev/mpt/mpt.c (revision bdd1243d)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * SPDX-License-Identifier: BSD-2-Clause AND BSD-3-Clause
6  *
7  * Copyright (c) 2000, 2001 by Greg Ansley
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice immediately at the beginning of the file, without modification,
14  *    this list of conditions, and the following disclaimer.
15  * 2. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 /*-
31  * Copyright (c) 2002, 2006 by Matthew Jacob
32  * All rights reserved.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions are
36  * met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
40  *    substantially similar to the "NO WARRANTY" disclaimer below
41  *    ("Disclaimer") and any redistribution must be conditioned upon including
42  *    a substantially similar Disclaimer requirement for further binary
43  *    redistribution.
44  * 3. Neither the names of the above listed copyright holders nor the names
45  *    of any contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
49  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
52  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
58  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  *
60  * Support from Chris Ellsworth in order to make SAS adapters work
61  * is gratefully acknowledged.
62  *
63  *
64  * Support from LSI-Logic has also gone a great deal toward making this a
65  * workable subsystem and is gratefully acknowledged.
66  */
67 /*-
68  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
69  * Copyright (c) 2005, WHEEL Sp. z o.o.
70  * Copyright (c) 2004, 2005 Justin T. Gibbs
71  * All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions are
75  * met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
79  *    substantially similar to the "NO WARRANTY" disclaimer below
80  *    ("Disclaimer") and any redistribution must be conditioned upon including
81  *    a substantially similar Disclaimer requirement for further binary
82  *    redistribution.
83  * 3. Neither the names of the above listed copyright holders nor the names
84  *    of any contributors may be used to endorse or promote products derived
85  *    from this software without specific prior written permission.
86  *
87  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
88  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
91  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
92  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
93  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
94  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
95  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
96  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
97  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include <dev/mpt/mpt.h>
104 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
105 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
106 
107 #include <dev/mpt/mpilib/mpi.h>
108 #include <dev/mpt/mpilib/mpi_ioc.h>
109 #include <dev/mpt/mpilib/mpi_fc.h>
110 #include <dev/mpt/mpilib/mpi_targ.h>
111 
112 #include <sys/sysctl.h>
113 
114 #define MPT_MAX_TRYS 3
115 #define MPT_MAX_WAIT 300000
116 
117 static int maxwait_ack = 0;
118 static int maxwait_int = 0;
119 static int maxwait_state = 0;
120 
121 static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
122 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
123 
124 static mpt_reply_handler_t mpt_default_reply_handler;
125 static mpt_reply_handler_t mpt_config_reply_handler;
126 static mpt_reply_handler_t mpt_handshake_reply_handler;
127 static mpt_reply_handler_t mpt_event_reply_handler;
128 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
129 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
130 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
131 static int mpt_soft_reset(struct mpt_softc *mpt);
132 static void mpt_hard_reset(struct mpt_softc *mpt);
133 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
134 static void mpt_dma_buf_free(struct mpt_softc *mpt);
135 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
136 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
137 
138 /************************* Personality Module Support *************************/
139 /*
140  * We include one extra entry that is guaranteed to be NULL
141  * to simplify our itterator.
142  */
143 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
144 static __inline struct mpt_personality*
145 	mpt_pers_find(struct mpt_softc *, u_int);
146 static __inline struct mpt_personality*
147 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
148 
149 static __inline struct mpt_personality *
150 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
151 {
152 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
153 		("mpt_pers_find: starting position out of range"));
154 
155 	while (start_at < MPT_MAX_PERSONALITIES
156 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
157 		start_at++;
158 	}
159 	return (mpt_personalities[start_at]);
160 }
161 
162 /*
163  * Used infrequently, so no need to optimize like a forward
164  * traversal where we use the MAX+1 is guaranteed to be NULL
165  * trick.
166  */
167 static __inline struct mpt_personality *
168 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
169 {
170 	while (start_at < MPT_MAX_PERSONALITIES
171 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
172 		start_at--;
173 	}
174 	if (start_at < MPT_MAX_PERSONALITIES)
175 		return (mpt_personalities[start_at]);
176 	return (NULL);
177 }
178 
179 #define MPT_PERS_FOREACH(mpt, pers)				\
180 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
181 	     pers != NULL;					\
182 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
183 
184 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
185 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
186 	     pers != NULL;						\
187 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
188 
189 static mpt_load_handler_t      mpt_stdload;
190 static mpt_probe_handler_t     mpt_stdprobe;
191 static mpt_attach_handler_t    mpt_stdattach;
192 static mpt_enable_handler_t    mpt_stdenable;
193 static mpt_ready_handler_t     mpt_stdready;
194 static mpt_event_handler_t     mpt_stdevent;
195 static mpt_reset_handler_t     mpt_stdreset;
196 static mpt_shutdown_handler_t  mpt_stdshutdown;
197 static mpt_detach_handler_t    mpt_stddetach;
198 static mpt_unload_handler_t    mpt_stdunload;
199 static struct mpt_personality mpt_default_personality =
200 {
201 	.load		= mpt_stdload,
202 	.probe		= mpt_stdprobe,
203 	.attach		= mpt_stdattach,
204 	.enable		= mpt_stdenable,
205 	.ready		= mpt_stdready,
206 	.event		= mpt_stdevent,
207 	.reset		= mpt_stdreset,
208 	.shutdown	= mpt_stdshutdown,
209 	.detach		= mpt_stddetach,
210 	.unload		= mpt_stdunload
211 };
212 
213 static mpt_load_handler_t      mpt_core_load;
214 static mpt_attach_handler_t    mpt_core_attach;
215 static mpt_enable_handler_t    mpt_core_enable;
216 static mpt_reset_handler_t     mpt_core_ioc_reset;
217 static mpt_event_handler_t     mpt_core_event;
218 static mpt_shutdown_handler_t  mpt_core_shutdown;
219 static mpt_shutdown_handler_t  mpt_core_detach;
220 static mpt_unload_handler_t    mpt_core_unload;
221 static struct mpt_personality mpt_core_personality =
222 {
223 	.name		= "mpt_core",
224 	.load		= mpt_core_load,
225 //	.attach		= mpt_core_attach,
226 //	.enable		= mpt_core_enable,
227 	.event		= mpt_core_event,
228 	.reset		= mpt_core_ioc_reset,
229 	.shutdown	= mpt_core_shutdown,
230 	.detach		= mpt_core_detach,
231 	.unload		= mpt_core_unload,
232 };
233 
234 /*
235  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
236  * ordering information.  We want the core to always register FIRST.
237  * other modules are set to SI_ORDER_SECOND.
238  */
239 static moduledata_t mpt_core_mod = {
240 	"mpt_core", mpt_modevent, &mpt_core_personality
241 };
242 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
243 MODULE_VERSION(mpt_core, 1);
244 
245 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
246 
247 int
248 mpt_modevent(module_t mod, int type, void *data)
249 {
250 	struct mpt_personality *pers;
251 	int error;
252 
253 	pers = (struct mpt_personality *)data;
254 
255 	error = 0;
256 	switch (type) {
257 	case MOD_LOAD:
258 	{
259 		mpt_load_handler_t **def_handler;
260 		mpt_load_handler_t **pers_handler;
261 		int i;
262 
263 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
264 			if (mpt_personalities[i] == NULL)
265 				break;
266 		}
267 		if (i >= MPT_MAX_PERSONALITIES) {
268 			error = ENOMEM;
269 			break;
270 		}
271 		pers->id = i;
272 		mpt_personalities[i] = pers;
273 
274 		/* Install standard/noop handlers for any NULL entries. */
275 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
276 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
277 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
278 			if (*pers_handler == NULL)
279 				*pers_handler = *def_handler;
280 			pers_handler++;
281 			def_handler++;
282 		}
283 
284 		error = (pers->load(pers));
285 		if (error != 0)
286 			mpt_personalities[i] = NULL;
287 		break;
288 	}
289 	case MOD_SHUTDOWN:
290 		break;
291 	case MOD_QUIESCE:
292 		break;
293 	case MOD_UNLOAD:
294 		error = pers->unload(pers);
295 		mpt_personalities[pers->id] = NULL;
296 		break;
297 	default:
298 		error = EINVAL;
299 		break;
300 	}
301 	return (error);
302 }
303 
304 static int
305 mpt_stdload(struct mpt_personality *pers)
306 {
307 
308 	/* Load is always successful. */
309 	return (0);
310 }
311 
312 static int
313 mpt_stdprobe(struct mpt_softc *mpt)
314 {
315 
316 	/* Probe is always successful. */
317 	return (0);
318 }
319 
320 static int
321 mpt_stdattach(struct mpt_softc *mpt)
322 {
323 
324 	/* Attach is always successful. */
325 	return (0);
326 }
327 
328 static int
329 mpt_stdenable(struct mpt_softc *mpt)
330 {
331 
332 	/* Enable is always successful. */
333 	return (0);
334 }
335 
336 static void
337 mpt_stdready(struct mpt_softc *mpt)
338 {
339 
340 }
341 
342 static int
343 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344 {
345 
346 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347 	/* Event was not for us. */
348 	return (0);
349 }
350 
351 static void
352 mpt_stdreset(struct mpt_softc *mpt, int type)
353 {
354 
355 }
356 
357 static void
358 mpt_stdshutdown(struct mpt_softc *mpt)
359 {
360 
361 }
362 
363 static void
364 mpt_stddetach(struct mpt_softc *mpt)
365 {
366 
367 }
368 
369 static int
370 mpt_stdunload(struct mpt_personality *pers)
371 {
372 
373 	/* Unload is always successful. */
374 	return (0);
375 }
376 
377 /*
378  * Post driver attachment, we may want to perform some global actions.
379  * Here is the hook to do so.
380  */
381 
382 static void
383 mpt_postattach(void *unused)
384 {
385 	struct mpt_softc *mpt;
386 	struct mpt_personality *pers;
387 
388 	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389 		MPT_PERS_FOREACH(mpt, pers)
390 			pers->ready(mpt);
391 	}
392 }
393 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394 
395 /******************************* Bus DMA Support ******************************/
396 void
397 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398 {
399 	struct mpt_map_info *map_info;
400 
401 	map_info = (struct mpt_map_info *)arg;
402 	map_info->error = error;
403 	map_info->phys = segs->ds_addr;
404 }
405 
406 /**************************** Reply/Event Handling ****************************/
407 int
408 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409 		     mpt_handler_t handler, uint32_t *phandler_id)
410 {
411 
412 	switch (type) {
413 	case MPT_HANDLER_REPLY:
414 	{
415 		u_int cbi;
416 		u_int free_cbi;
417 
418 		if (phandler_id == NULL)
419 			return (EINVAL);
420 
421 		free_cbi = MPT_HANDLER_ID_NONE;
422 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423 			/*
424 			 * If the same handler is registered multiple
425 			 * times, don't error out.  Just return the
426 			 * index of the original registration.
427 			 */
428 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429 				*phandler_id = MPT_CBI_TO_HID(cbi);
430 				return (0);
431 			}
432 
433 			/*
434 			 * Fill from the front in the hope that
435 			 * all registered handlers consume only a
436 			 * single cache line.
437 			 *
438 			 * We don't break on the first empty slot so
439 			 * that the full table is checked to see if
440 			 * this handler was previously registered.
441 			 */
442 			if (free_cbi == MPT_HANDLER_ID_NONE &&
443 			    (mpt_reply_handlers[cbi]
444 			  == mpt_default_reply_handler))
445 				free_cbi = cbi;
446 		}
447 		if (free_cbi == MPT_HANDLER_ID_NONE) {
448 			return (ENOMEM);
449 		}
450 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
451 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
452 		break;
453 	}
454 	default:
455 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456 		return (EINVAL);
457 	}
458 	return (0);
459 }
460 
461 int
462 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463 		       mpt_handler_t handler, uint32_t handler_id)
464 {
465 
466 	switch (type) {
467 	case MPT_HANDLER_REPLY:
468 	{
469 		u_int cbi;
470 
471 		cbi = MPT_CBI(handler_id);
472 		if (cbi >= MPT_NUM_REPLY_HANDLERS
473 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
474 			return (ENOENT);
475 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476 		break;
477 	}
478 	default:
479 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480 		return (EINVAL);
481 	}
482 	return (0);
483 }
484 
485 static int
486 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488 {
489 
490 	mpt_prt(mpt,
491 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492 	    req, req->serno, reply_desc, reply_frame);
493 
494 	if (reply_frame != NULL)
495 		mpt_dump_reply_frame(mpt, reply_frame);
496 
497 	mpt_prt(mpt, "Reply Frame Ignored\n");
498 
499 	return (/*free_reply*/TRUE);
500 }
501 
502 static int
503 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505 {
506 
507 	if (req != NULL) {
508 		if (reply_frame != NULL) {
509 			MSG_CONFIG *cfgp;
510 			MSG_CONFIG_REPLY *reply;
511 
512 			cfgp = (MSG_CONFIG *)req->req_vbuf;
513 			reply = (MSG_CONFIG_REPLY *)reply_frame;
514 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
515 			bcopy(&reply->Header, &cfgp->Header,
516 			      sizeof(cfgp->Header));
517 			cfgp->ExtPageLength = reply->ExtPageLength;
518 			cfgp->ExtPageType = reply->ExtPageType;
519 		}
520 		req->state &= ~REQ_STATE_QUEUED;
521 		req->state |= REQ_STATE_DONE;
522 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524 			wakeup(req);
525 		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526 			/*
527 			 * Whew- we can free this request (late completion)
528 			 */
529 			mpt_free_request(mpt, req);
530 		}
531 	}
532 
533 	return (TRUE);
534 }
535 
536 static int
537 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539 {
540 
541 	/* Nothing to be done. */
542 	return (TRUE);
543 }
544 
545 static int
546 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548 {
549 	int free_reply;
550 
551 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553 
554 	free_reply = TRUE;
555 	switch (reply_frame->Function) {
556 	case MPI_FUNCTION_EVENT_NOTIFICATION:
557 	{
558 		MSG_EVENT_NOTIFY_REPLY *msg;
559 		struct mpt_personality *pers;
560 		u_int handled;
561 
562 		handled = 0;
563 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564 		msg->EventDataLength = le16toh(msg->EventDataLength);
565 		msg->IOCStatus = le16toh(msg->IOCStatus);
566 		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567 		msg->Event = le32toh(msg->Event);
568 		MPT_PERS_FOREACH(mpt, pers)
569 			handled += pers->event(mpt, req, msg);
570 
571 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
572 			mpt_lprt(mpt, MPT_PRT_INFO,
573 				"No Handlers For Any Event Notify Frames. "
574 				"Event %#x (ACK %sequired).\n",
575 				msg->Event, msg->AckRequired? "r" : "not r");
576 		} else if (handled == 0) {
577 			mpt_lprt(mpt,
578 				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579 				"Unhandled Event Notify Frame. Event %#x "
580 				"(ACK %sequired).\n",
581 				msg->Event, msg->AckRequired? "r" : "not r");
582 		}
583 
584 		if (msg->AckRequired) {
585 			request_t *ack_req;
586 			uint32_t context;
587 
588 			context = req->index | MPT_REPLY_HANDLER_EVENTS;
589 			ack_req = mpt_get_request(mpt, FALSE);
590 			if (ack_req == NULL) {
591 				struct mpt_evtf_record *evtf;
592 
593 				evtf = (struct mpt_evtf_record *)reply_frame;
594 				evtf->context = context;
595 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596 				free_reply = FALSE;
597 				break;
598 			}
599 			mpt_send_event_ack(mpt, ack_req, msg, context);
600 			/*
601 			 * Don't check for CONTINUATION_REPLY here
602 			 */
603 			return (free_reply);
604 		}
605 		break;
606 	}
607 	case MPI_FUNCTION_PORT_ENABLE:
608 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609 		break;
610 	case MPI_FUNCTION_EVENT_ACK:
611 		break;
612 	default:
613 		mpt_prt(mpt, "unknown event function: %x\n",
614 			reply_frame->Function);
615 		break;
616 	}
617 
618 	/*
619 	 * I'm not sure that this continuation stuff works as it should.
620 	 *
621 	 * I've had FC async events occur that free the frame up because
622 	 * the continuation bit isn't set, and then additional async events
623 	 * then occur using the same context. As you might imagine, this
624 	 * leads to Very Bad Thing.
625 	 *
626 	 *  Let's just be safe for now and not free them up until we figure
627 	 * out what's actually happening here.
628 	 */
629 #if	0
630 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632 		mpt_free_request(mpt, req);
633 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634 		    reply_frame->Function, req, req->serno);
635 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636 			MSG_EVENT_NOTIFY_REPLY *msg =
637 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639 			    msg->Event, msg->AckRequired);
640 		}
641 	} else {
642 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643 		    reply_frame->Function, req, req->serno);
644 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645 			MSG_EVENT_NOTIFY_REPLY *msg =
646 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648 			    msg->Event, msg->AckRequired);
649 		}
650 		mpt_prtc(mpt, "\n");
651 	}
652 #endif
653 	return (free_reply);
654 }
655 
656 /*
657  * Process an asynchronous event from the IOC.
658  */
659 static int
660 mpt_core_event(struct mpt_softc *mpt, request_t *req,
661 	       MSG_EVENT_NOTIFY_REPLY *msg)
662 {
663 
664 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665                  msg->Event & 0xFF);
666 	switch(msg->Event & 0xFF) {
667 	case MPI_EVENT_NONE:
668 		break;
669 	case MPI_EVENT_LOG_DATA:
670 	{
671 		int i;
672 
673 		/* Some error occurred that LSI wants logged */
674 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675 			msg->IOCLogInfo);
676 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
677 		for (i = 0; i < msg->EventDataLength; i++)
678 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
679 		mpt_prtc(mpt, "\n");
680 		break;
681 	}
682 	case MPI_EVENT_EVENT_CHANGE:
683 		/*
684 		 * This is just an acknowledgement
685 		 * of our mpt_send_event_request.
686 		 */
687 		break;
688 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689 		break;
690 	default:
691 		return (0);
692 		break;
693 	}
694 	return (1);
695 }
696 
697 static void
698 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700 {
701 	MSG_EVENT_ACK *ackp;
702 
703 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704 	memset(ackp, 0, sizeof (*ackp));
705 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
706 	ackp->Event = htole32(msg->Event);
707 	ackp->EventContext = htole32(msg->EventContext);
708 	ackp->MsgContext = htole32(context);
709 	mpt_check_doorbell(mpt);
710 	mpt_send_cmd(mpt, ack_req);
711 }
712 
713 /***************************** Interrupt Handling *****************************/
714 void
715 mpt_intr(void *arg)
716 {
717 	struct mpt_softc *mpt;
718 	uint32_t reply_desc;
719 	int ntrips = 0;
720 
721 	mpt = (struct mpt_softc *)arg;
722 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723 	MPT_LOCK_ASSERT(mpt);
724 
725 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726 		request_t	  *req;
727 		MSG_DEFAULT_REPLY *reply_frame;
728 		uint32_t	   reply_baddr;
729 		uint32_t           ctxt_idx;
730 		u_int		   cb_index;
731 		u_int		   req_index;
732 		u_int		   offset;
733 		int		   free_rf;
734 
735 		req = NULL;
736 		reply_frame = NULL;
737 		reply_baddr = 0;
738 		offset = 0;
739 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740 			/*
741 			 * Ensure that the reply frame is coherent.
742 			 */
743 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
744 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745 			bus_dmamap_sync_range(mpt->reply_dmat,
746 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747 			    BUS_DMASYNC_POSTREAD);
748 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
749 			ctxt_idx = le32toh(reply_frame->MsgContext);
750 		} else {
751 			uint32_t type;
752 
753 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754 			ctxt_idx = reply_desc;
755 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756 				    reply_desc);
757 
758 			switch (type) {
759 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761 				break;
762 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763 				ctxt_idx = GET_IO_INDEX(reply_desc);
764 				if (mpt->tgt_cmd_ptrs == NULL) {
765 					mpt_prt(mpt,
766 					    "mpt_intr: no target cmd ptrs\n");
767 					reply_desc = MPT_REPLY_EMPTY;
768 					break;
769 				}
770 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771 					mpt_prt(mpt,
772 					    "mpt_intr: bad tgt cmd ctxt %u\n",
773 					    ctxt_idx);
774 					reply_desc = MPT_REPLY_EMPTY;
775 					ntrips = 1000;
776 					break;
777 				}
778 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
779 				if (req == NULL) {
780 					mpt_prt(mpt, "no request backpointer "
781 					    "at index %u", ctxt_idx);
782 					reply_desc = MPT_REPLY_EMPTY;
783 					ntrips = 1000;
784 					break;
785 				}
786 				/*
787 				 * Reformulate ctxt_idx to be just as if
788 				 * it were another type of context reply
789 				 * so the code below will find the request
790 				 * via indexing into the pool.
791 				 */
792 				ctxt_idx =
793 				    req->index | mpt->scsi_tgt_handler_id;
794 				req = NULL;
795 				break;
796 			case MPI_CONTEXT_REPLY_TYPE_LAN:
797 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798 				    reply_desc);
799 				reply_desc = MPT_REPLY_EMPTY;
800 				break;
801 			default:
802 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803 				reply_desc = MPT_REPLY_EMPTY;
804 				break;
805 			}
806 			if (reply_desc == MPT_REPLY_EMPTY) {
807 				if (ntrips++ > 1000) {
808 					break;
809 				}
810 				continue;
811 			}
812 		}
813 
814 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
817 			req = &mpt->request_pool[req_index];
818 		} else {
819 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820 			    " 0x%x)\n", req_index, reply_desc);
821 		}
822 
823 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
826 		    reply_desc, reply_frame);
827 
828 		if (reply_frame != NULL && free_rf) {
829 			bus_dmamap_sync_range(mpt->reply_dmat,
830 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831 			    BUS_DMASYNC_PREREAD);
832 			mpt_free_reply(mpt, reply_baddr);
833 		}
834 
835 		/*
836 		 * If we got ourselves disabled, don't get stuck in a loop
837 		 */
838 		if (mpt->disabled) {
839 			mpt_disable_ints(mpt);
840 			break;
841 		}
842 		if (ntrips++ > 1000) {
843 			break;
844 		}
845 	}
846 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847 }
848 
849 /******************************* Error Recovery *******************************/
850 void
851 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852 			    u_int iocstatus)
853 {
854 	MSG_DEFAULT_REPLY  ioc_status_frame;
855 	request_t	  *req;
856 
857 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859 	ioc_status_frame.IOCStatus = iocstatus;
860 	while((req = TAILQ_FIRST(chain)) != NULL) {
861 		MSG_REQUEST_HEADER *msg_hdr;
862 		u_int		    cb_index;
863 
864 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867 		ioc_status_frame.Function = msg_hdr->Function;
868 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871 		    &ioc_status_frame);
872 		if (mpt_req_on_pending_list(mpt, req) != 0)
873 			TAILQ_REMOVE(chain, req, links);
874 	}
875 }
876 
877 /********************************* Diagnostics ********************************/
878 /*
879  * Perform a diagnostic dump of a reply frame.
880  */
881 void
882 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883 {
884 
885 	mpt_prt(mpt, "Address Reply:\n");
886 	mpt_print_reply(reply_frame);
887 }
888 
889 /******************************* Doorbell Access ******************************/
890 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892 
893 static __inline uint32_t
894 mpt_rd_db(struct mpt_softc *mpt)
895 {
896 
897 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898 }
899 
900 static __inline uint32_t
901 mpt_rd_intr(struct mpt_softc *mpt)
902 {
903 
904 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905 }
906 
907 /* Busy wait for a door bell to be read by IOC */
908 static int
909 mpt_wait_db_ack(struct mpt_softc *mpt)
910 {
911 	int i;
912 
913 	for (i=0; i < MPT_MAX_WAIT; i++) {
914 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916 			return (MPT_OK);
917 		}
918 		DELAY(200);
919 	}
920 	return (MPT_FAIL);
921 }
922 
923 /* Busy wait for a door bell interrupt */
924 static int
925 mpt_wait_db_int(struct mpt_softc *mpt)
926 {
927 	int i;
928 
929 	for (i = 0; i < MPT_MAX_WAIT; i++) {
930 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931 			maxwait_int = i > maxwait_int ? i : maxwait_int;
932 			return MPT_OK;
933 		}
934 		DELAY(100);
935 	}
936 	return (MPT_FAIL);
937 }
938 
939 /* Wait for IOC to transition to a give state */
940 void
941 mpt_check_doorbell(struct mpt_softc *mpt)
942 {
943 	uint32_t db = mpt_rd_db(mpt);
944 
945 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946 		mpt_prt(mpt, "Device not running\n");
947 		mpt_print_db(db);
948 	}
949 }
950 
951 /* Wait for IOC to transition to a give state */
952 static int
953 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954 {
955 	int i;
956 
957 	for (i = 0; i < MPT_MAX_WAIT; i++) {
958 		uint32_t db = mpt_rd_db(mpt);
959 		if (MPT_STATE(db) == state) {
960 			maxwait_state = i > maxwait_state ? i : maxwait_state;
961 			return (MPT_OK);
962 		}
963 		DELAY(100);
964 	}
965 	return (MPT_FAIL);
966 }
967 
968 /************************* Initialization/Configuration ************************/
969 static int mpt_download_fw(struct mpt_softc *mpt);
970 
971 /* Issue the reset COMMAND to the IOC */
972 static int
973 mpt_soft_reset(struct mpt_softc *mpt)
974 {
975 
976 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
977 
978 	/* Have to use hard reset if we are not in Running state */
979 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
980 		mpt_prt(mpt, "soft reset failed: device not running\n");
981 		return (MPT_FAIL);
982 	}
983 
984 	/* If door bell is in use we don't have a chance of getting
985 	 * a word in since the IOC probably crashed in message
986 	 * processing. So don't waste our time.
987 	 */
988 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
989 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
990 		return (MPT_FAIL);
991 	}
992 
993 	/* Send the reset request to the IOC */
994 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
995 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
996 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
997 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
998 		return (MPT_FAIL);
999 	}
1000 
1001 	/* Wait for the IOC to reload and come out of reset state */
1002 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1003 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1004 		return (MPT_FAIL);
1005 	}
1006 
1007 	return MPT_OK;
1008 }
1009 
1010 static int
1011 mpt_enable_diag_mode(struct mpt_softc *mpt)
1012 {
1013 	int try;
1014 
1015 	try = 20;
1016 	while (--try) {
1017 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1018 			break;
1019 
1020 		/* Enable diagnostic registers */
1021 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1022 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1023 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1024 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1025 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1026 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1027 
1028 		DELAY(100000);
1029 	}
1030 	if (try == 0)
1031 		return (EIO);
1032 	return (0);
1033 }
1034 
1035 static void
1036 mpt_disable_diag_mode(struct mpt_softc *mpt)
1037 {
1038 
1039 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1040 }
1041 
1042 /* This is a magic diagnostic reset that resets all the ARM
1043  * processors in the chip.
1044  */
1045 static void
1046 mpt_hard_reset(struct mpt_softc *mpt)
1047 {
1048 	int error;
1049 	int wait;
1050 	uint32_t diagreg;
1051 
1052 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1053 
1054 	if (mpt->is_1078) {
1055 		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1056 		DELAY(1000);
1057 		return;
1058 	}
1059 
1060 	error = mpt_enable_diag_mode(mpt);
1061 	if (error) {
1062 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1063 		mpt_prt(mpt, "Trying to reset anyway.\n");
1064 	}
1065 
1066 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1067 
1068 	/*
1069 	 * This appears to be a workaround required for some
1070 	 * firmware or hardware revs.
1071 	 */
1072 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1073 	DELAY(1000);
1074 
1075 	/* Diag. port is now active so we can now hit the reset bit */
1076 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1077 
1078         /*
1079          * Ensure that the reset has finished.  We delay 1ms
1080          * prior to reading the register to make sure the chip
1081          * has sufficiently completed its reset to handle register
1082          * accesses.
1083          */
1084 	wait = 5000;
1085 	do {
1086 		DELAY(1000);
1087 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1088 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1089 
1090 	if (wait == 0) {
1091 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1092 			"Trying to initialize anyway.\n");
1093 	}
1094 
1095 	/*
1096 	 * If we have firmware to download, it must be loaded before
1097 	 * the controller will become operational.  Do so now.
1098 	 */
1099 	if (mpt->fw_image != NULL) {
1100 		error = mpt_download_fw(mpt);
1101 
1102 		if (error) {
1103 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1104 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Reseting the controller should have disabled write
1110 	 * access to the diagnostic registers, but disable
1111 	 * manually to be sure.
1112 	 */
1113 	mpt_disable_diag_mode(mpt);
1114 }
1115 
1116 static void
1117 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1118 {
1119 
1120 	/*
1121 	 * Complete all pending requests with a status
1122 	 * appropriate for an IOC reset.
1123 	 */
1124 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1125 				   MPI_IOCSTATUS_INVALID_STATE);
1126 }
1127 
1128 /*
1129  * Reset the IOC when needed. Try software command first then if needed
1130  * poke at the magic diagnostic reset. Note that a hard reset resets
1131  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1132  * fouls up the PCI configuration registers.
1133  */
1134 int
1135 mpt_reset(struct mpt_softc *mpt, int reinit)
1136 {
1137 	struct	mpt_personality *pers;
1138 	int	ret;
1139 	int	retry_cnt = 0;
1140 
1141 	/*
1142 	 * Try a soft reset. If that fails, get out the big hammer.
1143 	 */
1144  again:
1145 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1146 		int	cnt;
1147 		for (cnt = 0; cnt < 5; cnt++) {
1148 			/* Failed; do a hard reset */
1149 			mpt_hard_reset(mpt);
1150 
1151 			/*
1152 			 * Wait for the IOC to reload
1153 			 * and come out of reset state
1154 			 */
1155 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1156 			if (ret == MPT_OK) {
1157 				break;
1158 			}
1159 			/*
1160 			 * Okay- try to check again...
1161 			 */
1162 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1163 			if (ret == MPT_OK) {
1164 				break;
1165 			}
1166 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1167 			    retry_cnt, cnt);
1168 		}
1169 	}
1170 
1171 	if (retry_cnt == 0) {
1172 		/*
1173 		 * Invoke reset handlers.  We bump the reset count so
1174 		 * that mpt_wait_req() understands that regardless of
1175 		 * the specified wait condition, it should stop its wait.
1176 		 */
1177 		mpt->reset_cnt++;
1178 		MPT_PERS_FOREACH(mpt, pers)
1179 			pers->reset(mpt, ret);
1180 	}
1181 
1182 	if (reinit) {
1183 		ret = mpt_enable_ioc(mpt, 1);
1184 		if (ret == MPT_OK) {
1185 			mpt_enable_ints(mpt);
1186 		}
1187 	}
1188 	if (ret != MPT_OK && retry_cnt++ < 2) {
1189 		goto again;
1190 	}
1191 	return ret;
1192 }
1193 
1194 /* Return a command buffer to the free queue */
1195 void
1196 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1197 {
1198 	request_t *nxt;
1199 	struct mpt_evtf_record *record;
1200 	uint32_t offset, reply_baddr;
1201 
1202 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1203 		panic("mpt_free_request: bad req ptr");
1204 	}
1205 	if ((nxt = req->chain) != NULL) {
1206 		req->chain = NULL;
1207 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1208 	}
1209 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1210 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1211 	MPT_LOCK_ASSERT(mpt);
1212 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1213 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1214 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1215 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1216 	    ("mpt_free_request: req %p:%u func %x on pending list",
1217 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1218 #ifdef	INVARIANTS
1219 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1220 #endif
1221 
1222 	req->ccb = NULL;
1223 	if (LIST_EMPTY(&mpt->ack_frames)) {
1224 		/*
1225 		 * Insert free ones at the tail
1226 		 */
1227 		req->serno = 0;
1228 		req->state = REQ_STATE_FREE;
1229 #ifdef	INVARIANTS
1230 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1231 #endif
1232 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1233 		if (mpt->getreqwaiter != 0) {
1234 			mpt->getreqwaiter = 0;
1235 			wakeup(&mpt->request_free_list);
1236 		}
1237 		return;
1238 	}
1239 
1240 	/*
1241 	 * Process an ack frame deferred due to resource shortage.
1242 	 */
1243 	record = LIST_FIRST(&mpt->ack_frames);
1244 	LIST_REMOVE(record, links);
1245 	req->state = REQ_STATE_ALLOCATED;
1246 	mpt_assign_serno(mpt, req);
1247 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1248 	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1249 	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1250 	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1251 	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1252 	mpt_free_reply(mpt, reply_baddr);
1253 }
1254 
1255 /* Get a command buffer from the free queue */
1256 request_t *
1257 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1258 {
1259 	request_t *req;
1260 
1261 retry:
1262 	MPT_LOCK_ASSERT(mpt);
1263 	req = TAILQ_FIRST(&mpt->request_free_list);
1264 	if (req != NULL) {
1265 		KASSERT(req == &mpt->request_pool[req->index],
1266 		    ("mpt_get_request: corrupted request free list"));
1267 		KASSERT(req->state == REQ_STATE_FREE,
1268 		    ("req %p:%u not free on free list %x index %d function %x",
1269 		    req, req->serno, req->state, req->index,
1270 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1271 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1272 		req->state = REQ_STATE_ALLOCATED;
1273 		req->chain = NULL;
1274 		mpt_assign_serno(mpt, req);
1275 	} else if (sleep_ok != 0) {
1276 		mpt->getreqwaiter = 1;
1277 		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1278 		goto retry;
1279 	}
1280 	return (req);
1281 }
1282 
1283 /* Pass the command to the IOC */
1284 void
1285 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1286 {
1287 
1288 	if (mpt->verbose > MPT_PRT_DEBUG2) {
1289 		mpt_dump_request(mpt, req);
1290 	}
1291 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1292 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1293 	req->state |= REQ_STATE_QUEUED;
1294 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1295 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1296 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1297 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1298 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1299 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1300 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1301 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1302 }
1303 
1304 /*
1305  * Wait for a request to complete.
1306  *
1307  * Inputs:
1308  *	mpt		softc of controller executing request
1309  *	req		request to wait for
1310  *	sleep_ok	nonzero implies may sleep in this context
1311  *	time_ms		timeout in ms.  0 implies no timeout.
1312  *
1313  * Return Values:
1314  *	0		Request completed
1315  *	non-0		Timeout fired before request completion.
1316  */
1317 int
1318 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1319 	     mpt_req_state_t state, mpt_req_state_t mask,
1320 	     int sleep_ok, int time_ms)
1321 {
1322 	int   timeout;
1323 	u_int saved_cnt;
1324 	sbintime_t sbt;
1325 
1326 	/*
1327 	 * time_ms is in ms, 0 indicates infinite wait.
1328 	 * Convert to sbintime_t or 500us units depending on
1329 	 * our sleep mode.
1330 	 */
1331 	if (sleep_ok != 0) {
1332 		sbt = SBT_1MS * time_ms;
1333 		/* Set timeout as well so final timeout check works. */
1334 		timeout = time_ms;
1335 	} else {
1336 		sbt = 0; /* Squelch bogus gcc warning. */
1337 		timeout = time_ms * 2;
1338 	}
1339 	req->state |= REQ_STATE_NEED_WAKEUP;
1340 	mask &= ~REQ_STATE_NEED_WAKEUP;
1341 	saved_cnt = mpt->reset_cnt;
1342 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1343 		if (sleep_ok != 0) {
1344 			if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) ==
1345 			    EWOULDBLOCK) {
1346 				timeout = 0;
1347 				break;
1348 			}
1349 		} else {
1350 			if (time_ms != 0 && --timeout == 0) {
1351 				break;
1352 			}
1353 			DELAY(500);
1354 			mpt_intr(mpt);
1355 		}
1356 	}
1357 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1358 	if (mpt->reset_cnt != saved_cnt) {
1359 		return (EIO);
1360 	}
1361 	if (time_ms && timeout <= 0) {
1362 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1363 		req->state |= REQ_STATE_TIMEDOUT;
1364 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1365 		return (ETIMEDOUT);
1366 	}
1367 	return (0);
1368 }
1369 
1370 /*
1371  * Send a command to the IOC via the handshake register.
1372  *
1373  * Only done at initialization time and for certain unusual
1374  * commands such as device/bus reset as specified by LSI.
1375  */
1376 int
1377 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1378 {
1379 	int i;
1380 	uint32_t data, *data32;
1381 
1382 	/* Check condition of the IOC */
1383 	data = mpt_rd_db(mpt);
1384 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1385 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1386 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1387 	 || MPT_DB_IS_IN_USE(data)) {
1388 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1389 		mpt_print_db(data);
1390 		return (EBUSY);
1391 	}
1392 
1393 	/* We move things in 32 bit chunks */
1394 	len = (len + 3) >> 2;
1395 	data32 = cmd;
1396 
1397 	/* Clear any left over pending doorbell interrupts */
1398 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1399 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1400 
1401 	/*
1402 	 * Tell the handshake reg. we are going to send a command
1403          * and how long it is going to be.
1404 	 */
1405 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1406 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1407 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1408 
1409 	/* Wait for the chip to notice */
1410 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1411 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1412 		return (ETIMEDOUT);
1413 	}
1414 
1415 	/* Clear the interrupt */
1416 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1417 
1418 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1419 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1420 		return (ETIMEDOUT);
1421 	}
1422 
1423 	/* Send the command */
1424 	for (i = 0; i < len; i++) {
1425 		mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++);
1426 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1427 			mpt_prt(mpt,
1428 			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1429 			return (ETIMEDOUT);
1430 		}
1431 	}
1432 	return MPT_OK;
1433 }
1434 
1435 /* Get the response from the handshake register */
1436 int
1437 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1438 {
1439 	int left, reply_left;
1440 	u_int16_t *data16;
1441 	uint32_t data;
1442 	MSG_DEFAULT_REPLY *hdr;
1443 
1444 	/* We move things out in 16 bit chunks */
1445 	reply_len >>= 1;
1446 	data16 = (u_int16_t *)reply;
1447 
1448 	hdr = (MSG_DEFAULT_REPLY *)reply;
1449 
1450 	/* Get first word */
1451 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1452 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1453 		return ETIMEDOUT;
1454 	}
1455 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1456 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1457 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1458 
1459 	/* Get second word */
1460 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1461 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1462 		return ETIMEDOUT;
1463 	}
1464 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1465 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1466 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1467 
1468 	/*
1469 	 * With the second word, we can now look at the length.
1470 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1471 	 */
1472 	if ((reply_len >> 1) != hdr->MsgLength &&
1473 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1474 		mpt_prt(mpt, "reply length does not match message length: "
1475 			"got %x; expected %zx for function %x\n",
1476 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1477 	}
1478 
1479 	/* Get rest of the reply; but don't overflow the provided buffer */
1480 	left = (hdr->MsgLength << 1) - 2;
1481 	reply_left =  reply_len - 2;
1482 	while (left--) {
1483 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1484 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1485 			return ETIMEDOUT;
1486 		}
1487 		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1488 		if (reply_left-- > 0)
1489 			*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1490 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1491 	}
1492 
1493 	/* One more wait & clear at the end */
1494 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1495 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1496 		return ETIMEDOUT;
1497 	}
1498 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1499 
1500 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1501 		if (mpt->verbose >= MPT_PRT_TRACE)
1502 			mpt_print_reply(hdr);
1503 		return (MPT_FAIL | hdr->IOCStatus);
1504 	}
1505 
1506 	return (0);
1507 }
1508 
1509 static int
1510 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1511 {
1512 	MSG_IOC_FACTS f_req;
1513 	int error;
1514 
1515 	memset(&f_req, 0, sizeof f_req);
1516 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1517 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1518 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1519 	if (error) {
1520 		return(error);
1521 	}
1522 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1523 	return (error);
1524 }
1525 
1526 static int
1527 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1528 {
1529 	MSG_PORT_FACTS f_req;
1530 	int error;
1531 
1532 	memset(&f_req, 0, sizeof f_req);
1533 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1534 	f_req.PortNumber = port;
1535 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1536 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1537 	if (error) {
1538 		return(error);
1539 	}
1540 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1541 	return (error);
1542 }
1543 
1544 /*
1545  * Send the initialization request. This is where we specify how many
1546  * SCSI buses and how many devices per bus we wish to emulate.
1547  * This is also the command that specifies the max size of the reply
1548  * frames from the IOC that we will be allocating.
1549  */
1550 static int
1551 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1552 {
1553 	int error = 0;
1554 	MSG_IOC_INIT init;
1555 	MSG_IOC_INIT_REPLY reply;
1556 
1557 	memset(&init, 0, sizeof init);
1558 	init.WhoInit = who;
1559 	init.Function = MPI_FUNCTION_IOC_INIT;
1560 	init.MaxDevices = 0;	/* at least 256 devices per bus */
1561 	init.MaxBuses = 16;	/* at least 16 buses */
1562 
1563 	init.MsgVersion = htole16(MPI_VERSION);
1564 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1565 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1566 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1567 
1568 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1569 		return(error);
1570 	}
1571 
1572 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1573 	return (error);
1574 }
1575 
1576 /*
1577  * Utiltity routine to read configuration headers and pages
1578  */
1579 int
1580 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1581 		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1582 {
1583 	MSG_CONFIG *cfgp;
1584 	SGE_SIMPLE32 *se;
1585 
1586 	cfgp = req->req_vbuf;
1587 	memset(cfgp, 0, sizeof *cfgp);
1588 	cfgp->Action = params->Action;
1589 	cfgp->Function = MPI_FUNCTION_CONFIG;
1590 	cfgp->Header.PageVersion = params->PageVersion;
1591 	cfgp->Header.PageNumber = params->PageNumber;
1592 	cfgp->PageAddress = htole32(params->PageAddress);
1593 	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1594 	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1595 		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1596 		cfgp->Header.PageLength = 0;
1597 		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1598 		cfgp->ExtPageType = params->ExtPageType;
1599 	} else {
1600 		cfgp->Header.PageType = params->PageType;
1601 		cfgp->Header.PageLength = params->PageLength;
1602 	}
1603 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1604 	se->Address = htole32(addr);
1605 	MPI_pSGE_SET_LENGTH(se, len);
1606 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1607 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1608 	    MPI_SGE_FLAGS_END_OF_LIST |
1609 	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1610 	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1611 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1612 	se->FlagsLength = htole32(se->FlagsLength);
1613 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1614 
1615 	mpt_check_doorbell(mpt);
1616 	mpt_send_cmd(mpt, req);
1617 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1618 			     sleep_ok, timeout_ms));
1619 }
1620 
1621 int
1622 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1623 		       uint32_t PageAddress, int ExtPageType,
1624 		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1625 		       int sleep_ok, int timeout_ms)
1626 {
1627 	request_t  *req;
1628 	cfgparms_t params;
1629 	MSG_CONFIG_REPLY *cfgp;
1630 	int	    error;
1631 
1632 	req = mpt_get_request(mpt, sleep_ok);
1633 	if (req == NULL) {
1634 		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1635 		return (ENOMEM);
1636 	}
1637 
1638 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1639 	params.PageVersion = PageVersion;
1640 	params.PageLength = 0;
1641 	params.PageNumber = PageNumber;
1642 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1643 	params.PageAddress = PageAddress;
1644 	params.ExtPageType = ExtPageType;
1645 	params.ExtPageLength = 0;
1646 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1647 				  sleep_ok, timeout_ms);
1648 	if (error != 0) {
1649 		/*
1650 		 * Leave the request. Without resetting the chip, it's
1651 		 * still owned by it and we'll just get into trouble
1652 		 * freeing it now. Mark it as abandoned so that if it
1653 		 * shows up later it can be freed.
1654 		 */
1655 		mpt_prt(mpt, "read_extcfg_header timed out\n");
1656 		return (ETIMEDOUT);
1657 	}
1658 
1659         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1660 	case MPI_IOCSTATUS_SUCCESS:
1661 		cfgp = req->req_vbuf;
1662 		rslt->PageVersion = cfgp->Header.PageVersion;
1663 		rslt->PageNumber = cfgp->Header.PageNumber;
1664 		rslt->PageType = cfgp->Header.PageType;
1665 		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1666 		rslt->ExtPageType = cfgp->ExtPageType;
1667 		error = 0;
1668 		break;
1669 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1670 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1671 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1672 		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1673 		error = EINVAL;
1674 		break;
1675 	default:
1676 		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1677 			req->IOCStatus);
1678 		error = EIO;
1679 		break;
1680 	}
1681 	mpt_free_request(mpt, req);
1682 	return (error);
1683 }
1684 
1685 int
1686 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1687 		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1688 		     int sleep_ok, int timeout_ms)
1689 {
1690 	request_t    *req;
1691 	cfgparms_t    params;
1692 	int	      error;
1693 
1694 	req = mpt_get_request(mpt, sleep_ok);
1695 	if (req == NULL) {
1696 		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1697 		return (-1);
1698 	}
1699 
1700 	params.Action = Action;
1701 	params.PageVersion = hdr->PageVersion;
1702 	params.PageLength = 0;
1703 	params.PageNumber = hdr->PageNumber;
1704 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1705 	params.PageAddress = PageAddress;
1706 	params.ExtPageType = hdr->ExtPageType;
1707 	params.ExtPageLength = hdr->ExtPageLength;
1708 	error = mpt_issue_cfg_req(mpt, req, &params,
1709 				  req->req_pbuf + MPT_RQSL(mpt),
1710 				  len, sleep_ok, timeout_ms);
1711 	if (error != 0) {
1712 		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1713 		return (-1);
1714 	}
1715 
1716 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1717 		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1718 			req->IOCStatus);
1719 		mpt_free_request(mpt, req);
1720 		return (-1);
1721 	}
1722 	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1723 	mpt_free_request(mpt, req);
1724 	return (0);
1725 }
1726 
1727 int
1728 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1729 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1730 		    int sleep_ok, int timeout_ms)
1731 {
1732 	request_t  *req;
1733 	cfgparms_t params;
1734 	MSG_CONFIG *cfgp;
1735 	int	    error;
1736 
1737 	req = mpt_get_request(mpt, sleep_ok);
1738 	if (req == NULL) {
1739 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1740 		return (ENOMEM);
1741 	}
1742 
1743 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1744 	params.PageVersion = 0;
1745 	params.PageLength = 0;
1746 	params.PageNumber = PageNumber;
1747 	params.PageType = PageType;
1748 	params.PageAddress = PageAddress;
1749 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1750 				  sleep_ok, timeout_ms);
1751 	if (error != 0) {
1752 		/*
1753 		 * Leave the request. Without resetting the chip, it's
1754 		 * still owned by it and we'll just get into trouble
1755 		 * freeing it now. Mark it as abandoned so that if it
1756 		 * shows up later it can be freed.
1757 		 */
1758 		mpt_prt(mpt, "read_cfg_header timed out\n");
1759 		return (ETIMEDOUT);
1760 	}
1761 
1762         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1763 	case MPI_IOCSTATUS_SUCCESS:
1764 		cfgp = req->req_vbuf;
1765 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1766 		error = 0;
1767 		break;
1768 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1769 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1770 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1771 		    PageType, PageNumber, PageAddress);
1772 		error = EINVAL;
1773 		break;
1774 	default:
1775 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1776 			req->IOCStatus);
1777 		error = EIO;
1778 		break;
1779 	}
1780 	mpt_free_request(mpt, req);
1781 	return (error);
1782 }
1783 
1784 int
1785 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1786 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1787 		  int timeout_ms)
1788 {
1789 	request_t    *req;
1790 	cfgparms_t    params;
1791 	int	      error;
1792 
1793 	req = mpt_get_request(mpt, sleep_ok);
1794 	if (req == NULL) {
1795 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1796 		return (-1);
1797 	}
1798 
1799 	params.Action = Action;
1800 	params.PageVersion = hdr->PageVersion;
1801 	params.PageLength = hdr->PageLength;
1802 	params.PageNumber = hdr->PageNumber;
1803 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1804 	params.PageAddress = PageAddress;
1805 	error = mpt_issue_cfg_req(mpt, req, &params,
1806 				  req->req_pbuf + MPT_RQSL(mpt),
1807 				  len, sleep_ok, timeout_ms);
1808 	if (error != 0) {
1809 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1810 		return (-1);
1811 	}
1812 
1813 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1814 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1815 			req->IOCStatus);
1816 		mpt_free_request(mpt, req);
1817 		return (-1);
1818 	}
1819 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1820 	mpt_free_request(mpt, req);
1821 	return (0);
1822 }
1823 
1824 int
1825 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1826 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1827 		   int timeout_ms)
1828 {
1829 	request_t    *req;
1830 	cfgparms_t    params;
1831 	u_int	      hdr_attr;
1832 	int	      error;
1833 
1834 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1835 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1836 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1837 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1838 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1839 		return (-1);
1840 	}
1841 
1842 #if	0
1843 	/*
1844 	 * We shouldn't mask off other bits here.
1845 	 */
1846 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1847 #endif
1848 
1849 	req = mpt_get_request(mpt, sleep_ok);
1850 	if (req == NULL)
1851 		return (-1);
1852 
1853 	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1854 
1855 	/*
1856 	 * There isn't any point in restoring stripped out attributes
1857 	 * if you then mask them going down to issue the request.
1858 	 */
1859 
1860 	params.Action = Action;
1861 	params.PageVersion = hdr->PageVersion;
1862 	params.PageLength = hdr->PageLength;
1863 	params.PageNumber = hdr->PageNumber;
1864 	params.PageAddress = PageAddress;
1865 #if	0
1866 	/* Restore stripped out attributes */
1867 	hdr->PageType |= hdr_attr;
1868 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1869 #else
1870 	params.PageType = hdr->PageType;
1871 #endif
1872 	error = mpt_issue_cfg_req(mpt, req, &params,
1873 				  req->req_pbuf + MPT_RQSL(mpt),
1874 				  len, sleep_ok, timeout_ms);
1875 	if (error != 0) {
1876 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1877 		return (-1);
1878 	}
1879 
1880         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1881 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1882 			req->IOCStatus);
1883 		mpt_free_request(mpt, req);
1884 		return (-1);
1885 	}
1886 	mpt_free_request(mpt, req);
1887 	return (0);
1888 }
1889 
1890 /*
1891  * Read IOC configuration information
1892  */
1893 static int
1894 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1895 {
1896 	CONFIG_PAGE_HEADER hdr;
1897 	struct mpt_raid_volume *mpt_raid;
1898 	int rv;
1899 	int i;
1900 	size_t len;
1901 
1902 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1903 		2, 0, &hdr, FALSE, 5000);
1904 	/*
1905 	 * If it's an invalid page, so what? Not a supported function....
1906 	 */
1907 	if (rv == EINVAL) {
1908 		return (0);
1909 	}
1910 	if (rv) {
1911 		return (rv);
1912 	}
1913 
1914 	mpt_lprt(mpt, MPT_PRT_DEBUG,
1915 	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1916 	    hdr.PageVersion, hdr.PageLength << 2,
1917 	    hdr.PageNumber, hdr.PageType);
1918 
1919 	len = hdr.PageLength * sizeof(uint32_t);
1920 	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1921 	if (mpt->ioc_page2 == NULL) {
1922 		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1923 		mpt_raid_free_mem(mpt);
1924 		return (ENOMEM);
1925 	}
1926 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1927 	rv = mpt_read_cur_cfg_page(mpt, 0,
1928 	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1929 	if (rv) {
1930 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1931 		mpt_raid_free_mem(mpt);
1932 		return (EIO);
1933 	}
1934 	mpt2host_config_page_ioc2(mpt->ioc_page2);
1935 
1936 	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1937 		uint32_t mask;
1938 
1939 		mpt_prt(mpt, "Capabilities: (");
1940 		for (mask = 1; mask != 0; mask <<= 1) {
1941 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1942 				continue;
1943 			}
1944 			switch (mask) {
1945 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1946 				mpt_prtc(mpt, " RAID-0");
1947 				break;
1948 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1949 				mpt_prtc(mpt, " RAID-1E");
1950 				break;
1951 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1952 				mpt_prtc(mpt, " RAID-1");
1953 				break;
1954 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1955 				mpt_prtc(mpt, " SES");
1956 				break;
1957 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1958 				mpt_prtc(mpt, " SAFTE");
1959 				break;
1960 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1961 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1962 			default:
1963 				break;
1964 			}
1965 		}
1966 		mpt_prtc(mpt, " )\n");
1967 		if ((mpt->ioc_page2->CapabilitiesFlags
1968 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1969 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1970 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1971 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1972 				mpt->ioc_page2->NumActiveVolumes,
1973 				mpt->ioc_page2->NumActiveVolumes != 1
1974 			      ? "s " : " ",
1975 				mpt->ioc_page2->MaxVolumes);
1976 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1977 				mpt->ioc_page2->NumActivePhysDisks,
1978 				mpt->ioc_page2->NumActivePhysDisks != 1
1979 			      ? "s " : " ",
1980 				mpt->ioc_page2->MaxPhysDisks);
1981 		}
1982 	}
1983 
1984 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1985 	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1986 	if (mpt->raid_volumes == NULL) {
1987 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1988 		mpt_raid_free_mem(mpt);
1989 		return (ENOMEM);
1990 	}
1991 
1992 	/*
1993 	 * Copy critical data out of ioc_page2 so that we can
1994 	 * safely refresh the page without windows of unreliable
1995 	 * data.
1996 	 */
1997 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
1998 
1999 	len = sizeof(*mpt->raid_volumes->config_page) +
2000 	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2001 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2002 		mpt_raid = &mpt->raid_volumes[i];
2003 		mpt_raid->config_page =
2004 		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2005 		if (mpt_raid->config_page == NULL) {
2006 			mpt_prt(mpt, "Could not allocate RAID page data\n");
2007 			mpt_raid_free_mem(mpt);
2008 			return (ENOMEM);
2009 		}
2010 	}
2011 	mpt->raid_page0_len = len;
2012 
2013 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2014 	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2015 	if (mpt->raid_disks == NULL) {
2016 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2017 		mpt_raid_free_mem(mpt);
2018 		return (ENOMEM);
2019 	}
2020 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2021 
2022 	/*
2023 	 * Load page 3.
2024 	 */
2025 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2026 	    3, 0, &hdr, FALSE, 5000);
2027 	if (rv) {
2028 		mpt_raid_free_mem(mpt);
2029 		return (EIO);
2030 	}
2031 
2032 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2033 	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2034 
2035 	len = hdr.PageLength * sizeof(uint32_t);
2036 	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2037 	if (mpt->ioc_page3 == NULL) {
2038 		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2039 		mpt_raid_free_mem(mpt);
2040 		return (ENOMEM);
2041 	}
2042 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2043 	rv = mpt_read_cur_cfg_page(mpt, 0,
2044 	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2045 	if (rv) {
2046 		mpt_raid_free_mem(mpt);
2047 		return (EIO);
2048 	}
2049 	mpt2host_config_page_ioc3(mpt->ioc_page3);
2050 	mpt_raid_wakeup(mpt);
2051 	return (0);
2052 }
2053 
2054 /*
2055  * Enable IOC port
2056  */
2057 static int
2058 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2059 {
2060 	request_t	*req;
2061 	MSG_PORT_ENABLE *enable_req;
2062 	int		 error;
2063 
2064 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2065 	if (req == NULL)
2066 		return (-1);
2067 
2068 	enable_req = req->req_vbuf;
2069 	memset(enable_req, 0,  MPT_RQSL(mpt));
2070 
2071 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2072 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2073 	enable_req->PortNumber = port;
2074 
2075 	mpt_check_doorbell(mpt);
2076 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2077 
2078 	mpt_send_cmd(mpt, req);
2079 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2080 	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2081 	if (error != 0) {
2082 		mpt_prt(mpt, "port %d enable timed out\n", port);
2083 		return (-1);
2084 	}
2085 	mpt_free_request(mpt, req);
2086 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2087 	return (0);
2088 }
2089 
2090 /*
2091  * Enable/Disable asynchronous event reporting.
2092  */
2093 static int
2094 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2095 {
2096 	request_t *req;
2097 	MSG_EVENT_NOTIFY *enable_req;
2098 
2099 	req = mpt_get_request(mpt, FALSE);
2100 	if (req == NULL) {
2101 		return (ENOMEM);
2102 	}
2103 	enable_req = req->req_vbuf;
2104 	memset(enable_req, 0, sizeof *enable_req);
2105 
2106 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2107 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2108 	enable_req->Switch     = onoff;
2109 
2110 	mpt_check_doorbell(mpt);
2111 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2112 	    onoff ? "en" : "dis");
2113 	/*
2114 	 * Send the command off, but don't wait for it.
2115 	 */
2116 	mpt_send_cmd(mpt, req);
2117 	return (0);
2118 }
2119 
2120 /*
2121  * Un-mask the interrupts on the chip.
2122  */
2123 void
2124 mpt_enable_ints(struct mpt_softc *mpt)
2125 {
2126 
2127 	/* Unmask every thing except door bell int */
2128 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2129 }
2130 
2131 /*
2132  * Mask the interrupts on the chip.
2133  */
2134 void
2135 mpt_disable_ints(struct mpt_softc *mpt)
2136 {
2137 
2138 	/* Mask all interrupts */
2139 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2140 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2141 }
2142 
2143 static void
2144 mpt_sysctl_attach(struct mpt_softc *mpt)
2145 {
2146 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2147 	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2148 
2149 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2150 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2151 		       "Debugging/Verbose level");
2152 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2153 		       "role", CTLFLAG_RD, &mpt->role, 0,
2154 		       "HBA role");
2155 #ifdef	MPT_TEST_MULTIPATH
2156 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2157 		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2158 		       "Next Target to Fail");
2159 #endif
2160 }
2161 
2162 int
2163 mpt_attach(struct mpt_softc *mpt)
2164 {
2165 	struct mpt_personality *pers;
2166 	int i;
2167 	int error;
2168 
2169 	mpt_core_attach(mpt);
2170 	mpt_core_enable(mpt);
2171 
2172 	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2173 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2174 		pers = mpt_personalities[i];
2175 		if (pers == NULL) {
2176 			continue;
2177 		}
2178 		if (pers->probe(mpt) == 0) {
2179 			error = pers->attach(mpt);
2180 			if (error != 0) {
2181 				mpt_detach(mpt);
2182 				return (error);
2183 			}
2184 			mpt->mpt_pers_mask |= (0x1 << pers->id);
2185 			pers->use_count++;
2186 		}
2187 	}
2188 
2189 	/*
2190 	 * Now that we've attached everything, do the enable function
2191 	 * for all of the personalities. This allows the personalities
2192 	 * to do setups that are appropriate for them prior to enabling
2193 	 * any ports.
2194 	 */
2195 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2196 		pers = mpt_personalities[i];
2197 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2198 			error = pers->enable(mpt);
2199 			if (error != 0) {
2200 				mpt_prt(mpt, "personality %s attached but would"
2201 				    " not enable (%d)\n", pers->name, error);
2202 				mpt_detach(mpt);
2203 				return (error);
2204 			}
2205 		}
2206 	}
2207 	return (0);
2208 }
2209 
2210 int
2211 mpt_shutdown(struct mpt_softc *mpt)
2212 {
2213 	struct mpt_personality *pers;
2214 
2215 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2216 		pers->shutdown(mpt);
2217 	}
2218 	return (0);
2219 }
2220 
2221 int
2222 mpt_detach(struct mpt_softc *mpt)
2223 {
2224 	struct mpt_personality *pers;
2225 
2226 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2227 		pers->detach(mpt);
2228 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2229 		pers->use_count--;
2230 	}
2231 	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2232 	return (0);
2233 }
2234 
2235 static int
2236 mpt_core_load(struct mpt_personality *pers)
2237 {
2238 	int i;
2239 
2240 	/*
2241 	 * Setup core handlers and insert the default handler
2242 	 * into all "empty slots".
2243 	 */
2244 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2245 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2246 	}
2247 
2248 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2249 	    mpt_event_reply_handler;
2250 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2251 	    mpt_config_reply_handler;
2252 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2253 	    mpt_handshake_reply_handler;
2254 	return (0);
2255 }
2256 
2257 /*
2258  * Initialize per-instance driver data and perform
2259  * initial controller configuration.
2260  */
2261 static int
2262 mpt_core_attach(struct mpt_softc *mpt)
2263 {
2264         int val, error;
2265 
2266 	LIST_INIT(&mpt->ack_frames);
2267 	/* Put all request buffers on the free list */
2268 	TAILQ_INIT(&mpt->request_pending_list);
2269 	TAILQ_INIT(&mpt->request_free_list);
2270 	TAILQ_INIT(&mpt->request_timeout_list);
2271 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2272 		STAILQ_INIT(&mpt->trt[val].atios);
2273 		STAILQ_INIT(&mpt->trt[val].inots);
2274 	}
2275 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2276 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2277 #ifdef	MPT_TEST_MULTIPATH
2278 	mpt->failure_id = -1;
2279 #endif
2280 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2281 	mpt_sysctl_attach(mpt);
2282 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2283 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2284 
2285 	MPT_LOCK(mpt);
2286 	error = mpt_configure_ioc(mpt, 0, 0);
2287 	MPT_UNLOCK(mpt);
2288 
2289 	return (error);
2290 }
2291 
2292 static int
2293 mpt_core_enable(struct mpt_softc *mpt)
2294 {
2295 
2296 	/*
2297 	 * We enter with the IOC enabled, but async events
2298 	 * not enabled, ports not enabled and interrupts
2299 	 * not enabled.
2300 	 */
2301 	MPT_LOCK(mpt);
2302 
2303 	/*
2304 	 * Enable asynchronous event reporting- all personalities
2305 	 * have attached so that they should be able to now field
2306 	 * async events.
2307 	 */
2308 	mpt_send_event_request(mpt, 1);
2309 
2310 	/*
2311 	 * Catch any pending interrupts
2312 	 *
2313 	 * This seems to be crucial- otherwise
2314 	 * the portenable below times out.
2315 	 */
2316 	mpt_intr(mpt);
2317 
2318 	/*
2319 	 * Enable Interrupts
2320 	 */
2321 	mpt_enable_ints(mpt);
2322 
2323 	/*
2324 	 * Catch any pending interrupts
2325 	 *
2326 	 * This seems to be crucial- otherwise
2327 	 * the portenable below times out.
2328 	 */
2329 	mpt_intr(mpt);
2330 
2331 	/*
2332 	 * Enable the port.
2333 	 */
2334 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2335 		mpt_prt(mpt, "failed to enable port 0\n");
2336 		MPT_UNLOCK(mpt);
2337 		return (ENXIO);
2338 	}
2339 	MPT_UNLOCK(mpt);
2340 	return (0);
2341 }
2342 
2343 static void
2344 mpt_core_shutdown(struct mpt_softc *mpt)
2345 {
2346 
2347 	mpt_disable_ints(mpt);
2348 }
2349 
2350 static void
2351 mpt_core_detach(struct mpt_softc *mpt)
2352 {
2353 	int val;
2354 
2355 	/*
2356 	 * XXX: FREE MEMORY
2357 	 */
2358 	mpt_disable_ints(mpt);
2359 
2360 	/* Make sure no request has pending timeouts. */
2361 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2362 		request_t *req = &mpt->request_pool[val];
2363 		mpt_callout_drain(mpt, &req->callout);
2364 	}
2365 
2366 	mpt_dma_buf_free(mpt);
2367 }
2368 
2369 static int
2370 mpt_core_unload(struct mpt_personality *pers)
2371 {
2372 
2373 	/* Unload is always successful. */
2374 	return (0);
2375 }
2376 
2377 #define FW_UPLOAD_REQ_SIZE				\
2378 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2379        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2380 
2381 static int
2382 mpt_upload_fw(struct mpt_softc *mpt)
2383 {
2384 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2385 	MSG_FW_UPLOAD_REPLY fw_reply;
2386 	MSG_FW_UPLOAD *fw_req;
2387 	FW_UPLOAD_TCSGE *tsge;
2388 	SGE_SIMPLE32 *sge;
2389 	uint32_t flags;
2390 	int error;
2391 
2392 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2393 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2394 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2395 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2396 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2397 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2398 	tsge->DetailsLength = 12;
2399 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2400 	tsge->ImageSize = htole32(mpt->fw_image_size);
2401 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2402 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2403 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2404 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2405 	flags <<= MPI_SGE_FLAGS_SHIFT;
2406 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2407 	sge->Address = htole32(mpt->fw_phys);
2408 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2409 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2410 	if (error)
2411 		return(error);
2412 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2413 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2414 	return (error);
2415 }
2416 
2417 static void
2418 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2419 	       uint32_t *data, bus_size_t len)
2420 {
2421 	uint32_t *data_end;
2422 
2423 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2424 	if (mpt->is_sas) {
2425 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2426 	}
2427 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2428 	while (data != data_end) {
2429 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2430 		data++;
2431 	}
2432 	if (mpt->is_sas) {
2433 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2434 	}
2435 }
2436 
2437 static int
2438 mpt_download_fw(struct mpt_softc *mpt)
2439 {
2440 	MpiFwHeader_t *fw_hdr;
2441 	int error;
2442 	uint32_t ext_offset;
2443 	uint32_t data;
2444 
2445 	if (mpt->pci_pio_reg == NULL) {
2446 		mpt_prt(mpt, "No PIO resource!\n");
2447 		return (ENXIO);
2448 	}
2449 
2450 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2451 		mpt->fw_image_size);
2452 
2453 	error = mpt_enable_diag_mode(mpt);
2454 	if (error != 0) {
2455 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2456 		return (EIO);
2457 	}
2458 
2459 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2460 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2461 
2462 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2463 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2464 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2465 		       fw_hdr->ImageSize);
2466 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2467 
2468 	ext_offset = fw_hdr->NextImageHeaderOffset;
2469 	while (ext_offset != 0) {
2470 		MpiExtImageHeader_t *ext;
2471 
2472 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2473 		ext_offset = ext->NextImageHeaderOffset;
2474 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2475 		    BUS_DMASYNC_PREWRITE);
2476 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2477 			       ext->ImageSize);
2478 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2479 		    BUS_DMASYNC_POSTWRITE);
2480 	}
2481 
2482 	if (mpt->is_sas) {
2483 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2484 	}
2485 	/* Setup the address to jump to on reset. */
2486 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2487 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2488 
2489 	/*
2490 	 * The controller sets the "flash bad" status after attempting
2491 	 * to auto-boot from flash.  Clear the status so that the controller
2492 	 * will continue the boot process with our newly installed firmware.
2493 	 */
2494 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2495 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2496 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2497 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2498 
2499 	if (mpt->is_sas) {
2500 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2501 	}
2502 
2503 	/*
2504 	 * Re-enable the processor and clear the boot halt flag.
2505 	 */
2506 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2507 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2508 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2509 
2510 	mpt_disable_diag_mode(mpt);
2511 	return (0);
2512 }
2513 
2514 static int
2515 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2516 {
2517 	struct mpt_map_info mi;
2518 	uint8_t *vptr;
2519 	uint32_t pptr, end;
2520 	int i, error;
2521 
2522 	/* Create a child tag for data buffers */
2523 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2524 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2525 	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2526 	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2527 	    &mpt->buffer_dmat) != 0) {
2528 		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2529 		return (1);
2530 	}
2531 
2532 	/* Create a child tag for request buffers */
2533 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2534 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2535 	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2536 	    &mpt->request_dmat) != 0) {
2537 		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2538 		return (1);
2539 	}
2540 
2541 	/* Allocate some DMA accessible memory for requests */
2542 	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2543 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2544 		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2545 		    MPT_REQ_MEM_SIZE(mpt));
2546 		return (1);
2547 	}
2548 
2549 	mi.mpt = mpt;
2550 	mi.error = 0;
2551 
2552 	/* Load and lock it into "bus space" */
2553 	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2554 	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2555 
2556 	if (mi.error) {
2557 		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2558 		    mi.error);
2559 		return (1);
2560 	}
2561 	mpt->request_phys = mi.phys;
2562 
2563 	/*
2564 	 * Now create per-request dma maps
2565 	 */
2566 	i = 0;
2567 	pptr =  mpt->request_phys;
2568 	vptr =  mpt->request;
2569 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2570 	while(pptr < end) {
2571 		request_t *req = &mpt->request_pool[i];
2572 		req->index = i++;
2573 
2574 		/* Store location of Request Data */
2575 		req->req_pbuf = pptr;
2576 		req->req_vbuf = vptr;
2577 
2578 		pptr += MPT_REQUEST_AREA;
2579 		vptr += MPT_REQUEST_AREA;
2580 
2581 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2582 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2583 
2584 		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2585 		if (error) {
2586 			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2587 			    error);
2588 			return (1);
2589 		}
2590 	}
2591 
2592 	return (0);
2593 }
2594 
2595 static void
2596 mpt_dma_buf_free(struct mpt_softc *mpt)
2597 {
2598 	int i;
2599 
2600 	if (mpt->request_dmat == 0) {
2601 		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2602 		return;
2603 	}
2604 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2605 		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2606 	}
2607 	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2608 	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2609 	bus_dma_tag_destroy(mpt->request_dmat);
2610 	mpt->request_dmat = 0;
2611 	bus_dma_tag_destroy(mpt->buffer_dmat);
2612 }
2613 
2614 /*
2615  * Allocate/Initialize data structures for the controller.  Called
2616  * once at instance startup.
2617  */
2618 static int
2619 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2620 {
2621 	PTR_MSG_PORT_FACTS_REPLY pfp;
2622 	int error, port, val;
2623 	size_t len;
2624 
2625 	if (tn == MPT_MAX_TRYS) {
2626 		return (-1);
2627 	}
2628 
2629 	/*
2630 	 * No need to reset if the IOC is already in the READY state.
2631 	 *
2632 	 * Force reset if initialization failed previously.
2633 	 * Note that a hard_reset of the second channel of a '929
2634 	 * will stop operation of the first channel.  Hopefully, if the
2635 	 * first channel is ok, the second will not require a hard
2636 	 * reset.
2637 	 */
2638 	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2639 		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2640 			return (mpt_configure_ioc(mpt, tn++, 1));
2641 		}
2642 		needreset = 0;
2643 	}
2644 
2645 	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2646 		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2647 		return (mpt_configure_ioc(mpt, tn++, 1));
2648 	}
2649 	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2650 
2651 	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2652 	    mpt->ioc_facts.MsgVersion >> 8,
2653 	    mpt->ioc_facts.MsgVersion & 0xFF,
2654 	    mpt->ioc_facts.HeaderVersion >> 8,
2655 	    mpt->ioc_facts.HeaderVersion & 0xFF);
2656 
2657 	/*
2658 	 * Now that we know request frame size, we can calculate
2659 	 * the actual (reasonable) segment limit for read/write I/O.
2660 	 *
2661 	 * This limit is constrained by:
2662 	 *
2663 	 *  + The size of each area we allocate per command (and how
2664 	 *    many chain segments we can fit into it).
2665 	 *  + The total number of areas we've set up.
2666 	 *  + The actual chain depth the card will allow.
2667 	 *
2668 	 * The first area's segment count is limited by the I/O request
2669 	 * at the head of it. We cannot allocate realistically more
2670 	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2671 	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2672 	 *
2673 	 */
2674 	/* total number of request areas we (can) allocate */
2675 	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2676 
2677 	/* converted to the number of chain areas possible */
2678 	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2679 
2680 	/* limited by the number of chain areas the card will support */
2681 	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2682 		mpt_lprt(mpt, MPT_PRT_INFO,
2683 		    "chain depth limited to %u (from %u)\n",
2684 		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2685 		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2686 	}
2687 
2688 	/* converted to the number of simple sges in chain segments. */
2689 	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2690 
2691 	/*
2692 	 * Use this as the basis for reporting the maximum I/O size to CAM.
2693 	 */
2694 	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, btoc(maxphys) + 1);
2695 
2696 	/* XXX Lame Locking! */
2697 	MPT_UNLOCK(mpt);
2698 	error = mpt_dma_buf_alloc(mpt);
2699 	MPT_LOCK(mpt);
2700 
2701 	if (error != 0) {
2702 		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2703 		return (EIO);
2704 	}
2705 
2706 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2707 		request_t *req = &mpt->request_pool[val];
2708 		req->state = REQ_STATE_ALLOCATED;
2709 		mpt_callout_init(mpt, &req->callout);
2710 		mpt_free_request(mpt, req);
2711 	}
2712 
2713 	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2714 		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2715 		 mpt->max_cam_seg_cnt);
2716 
2717 	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2718 	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2719 	mpt_lprt(mpt, MPT_PRT_INFO,
2720 	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2721 	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2722 	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2723 	    mpt->ioc_facts.RequestFrameSize << 2,
2724 	    mpt->ioc_facts.MaxChainDepth);
2725 	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2726 	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2727 	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2728 
2729 	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2730 	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2731 	if (mpt->port_facts == NULL) {
2732 		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2733 		return (ENOMEM);
2734 	}
2735 
2736 	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2737 	    (mpt->fw_uploaded == 0)) {
2738 		struct mpt_map_info mi;
2739 
2740 		/*
2741 		 * In some configurations, the IOC's firmware is
2742 		 * stored in a shared piece of system NVRAM that
2743 		 * is only accessible via the BIOS.  In this
2744 		 * case, the firmware keeps a copy of firmware in
2745 		 * RAM until the OS driver retrieves it.  Once
2746 		 * retrieved, we are responsible for re-downloading
2747 		 * the firmware after any hard-reset.
2748 		 */
2749 		MPT_UNLOCK(mpt);
2750 		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2751 		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2752 		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2753 		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2754 		    &mpt->fw_dmat);
2755 		if (error != 0) {
2756 			mpt_prt(mpt, "cannot create firmware dma tag\n");
2757 			MPT_LOCK(mpt);
2758 			return (ENOMEM);
2759 		}
2760 		error = bus_dmamem_alloc(mpt->fw_dmat,
2761 		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2762 		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2763 		if (error != 0) {
2764 			mpt_prt(mpt, "cannot allocate firmware memory\n");
2765 			bus_dma_tag_destroy(mpt->fw_dmat);
2766 			MPT_LOCK(mpt);
2767 			return (ENOMEM);
2768 		}
2769 		mi.mpt = mpt;
2770 		mi.error = 0;
2771 		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2772 		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2773 		mpt->fw_phys = mi.phys;
2774 
2775 		MPT_LOCK(mpt);
2776 		error = mpt_upload_fw(mpt);
2777 		if (error != 0) {
2778 			mpt_prt(mpt, "firmware upload failed.\n");
2779 			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2780 			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2781 			    mpt->fw_dmap);
2782 			bus_dma_tag_destroy(mpt->fw_dmat);
2783 			mpt->fw_image = NULL;
2784 			return (EIO);
2785 		}
2786 		mpt->fw_uploaded = 1;
2787 	}
2788 
2789 	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2790 		pfp = &mpt->port_facts[port];
2791 		error = mpt_get_portfacts(mpt, 0, pfp);
2792 		if (error != MPT_OK) {
2793 			mpt_prt(mpt,
2794 			    "mpt_get_portfacts on port %d failed\n", port);
2795 			free(mpt->port_facts, M_DEVBUF);
2796 			mpt->port_facts = NULL;
2797 			return (mpt_configure_ioc(mpt, tn++, 1));
2798 		}
2799 		mpt2host_portfacts_reply(pfp);
2800 
2801 		if (port > 0) {
2802 			error = MPT_PRT_INFO;
2803 		} else {
2804 			error = MPT_PRT_DEBUG;
2805 		}
2806 		mpt_lprt(mpt, error,
2807 		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2808 		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2809 		    pfp->MaxDevices);
2810 	}
2811 
2812 	/*
2813 	 * XXX: Not yet supporting more than port 0
2814 	 */
2815 	pfp = &mpt->port_facts[0];
2816 	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2817 		mpt->is_fc = 1;
2818 		mpt->is_sas = 0;
2819 		mpt->is_spi = 0;
2820 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2821 		mpt->is_fc = 0;
2822 		mpt->is_sas = 1;
2823 		mpt->is_spi = 0;
2824 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2825 		mpt->is_fc = 0;
2826 		mpt->is_sas = 0;
2827 		mpt->is_spi = 1;
2828 		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2829 			mpt->mpt_ini_id = pfp->PortSCSIID;
2830 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2831 		mpt_prt(mpt, "iSCSI not supported yet\n");
2832 		return (ENXIO);
2833 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2834 		mpt_prt(mpt, "Inactive Port\n");
2835 		return (ENXIO);
2836 	} else {
2837 		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2838 		return (ENXIO);
2839 	}
2840 
2841 	/*
2842 	 * Set our role with what this port supports.
2843 	 *
2844 	 * Note this might be changed later in different modules
2845 	 * if this is different from what is wanted.
2846 	 */
2847 	mpt->role = MPT_ROLE_NONE;
2848 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2849 		mpt->role |= MPT_ROLE_INITIATOR;
2850 	}
2851 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2852 		mpt->role |= MPT_ROLE_TARGET;
2853 	}
2854 
2855 	/*
2856 	 * Enable the IOC
2857 	 */
2858 	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2859 		mpt_prt(mpt, "unable to initialize IOC\n");
2860 		return (ENXIO);
2861 	}
2862 
2863 	/*
2864 	 * Read IOC configuration information.
2865 	 *
2866 	 * We need this to determine whether or not we have certain
2867 	 * settings for Integrated Mirroring (e.g.).
2868 	 */
2869 	mpt_read_config_info_ioc(mpt);
2870 
2871 	return (0);
2872 }
2873 
2874 static int
2875 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2876 {
2877 	uint32_t pptr;
2878 	int val;
2879 
2880 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2881 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2882 		return (EIO);
2883 	}
2884 
2885 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2886 
2887 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2888 		mpt_prt(mpt, "IOC failed to go to run state\n");
2889 		return (ENXIO);
2890 	}
2891 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2892 
2893 	/*
2894 	 * Give it reply buffers
2895 	 *
2896 	 * Do *not* exceed global credits.
2897 	 */
2898 	for (val = 0, pptr = mpt->reply_phys;
2899 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2900 	     pptr += MPT_REPLY_SIZE) {
2901 		mpt_free_reply(mpt, pptr);
2902 		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2903 			break;
2904 	}
2905 
2906 	/*
2907 	 * Enable the port if asked. This is only done if we're resetting
2908 	 * the IOC after initial startup.
2909 	 */
2910 	if (portenable) {
2911 		/*
2912 		 * Enable asynchronous event reporting
2913 		 */
2914 		mpt_send_event_request(mpt, 1);
2915 
2916 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2917 			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2918 			return (ENXIO);
2919 		}
2920 	}
2921 	return (MPT_OK);
2922 }
2923 
2924 /*
2925  * Endian Conversion Functions- only used on Big Endian machines
2926  */
2927 #if	_BYTE_ORDER == _BIG_ENDIAN
2928 void
2929 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2930 {
2931 
2932 	MPT_2_HOST32(sge, FlagsLength);
2933 	MPT_2_HOST32(sge, u.Address64.Low);
2934 	MPT_2_HOST32(sge, u.Address64.High);
2935 }
2936 
2937 void
2938 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2939 {
2940 
2941 	MPT_2_HOST16(rp, MsgVersion);
2942 	MPT_2_HOST16(rp, HeaderVersion);
2943 	MPT_2_HOST32(rp, MsgContext);
2944 	MPT_2_HOST16(rp, IOCExceptions);
2945 	MPT_2_HOST16(rp, IOCStatus);
2946 	MPT_2_HOST32(rp, IOCLogInfo);
2947 	MPT_2_HOST16(rp, ReplyQueueDepth);
2948 	MPT_2_HOST16(rp, RequestFrameSize);
2949 	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2950 	MPT_2_HOST16(rp, ProductID);
2951 	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2952 	MPT_2_HOST16(rp, GlobalCredits);
2953 	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2954 	MPT_2_HOST16(rp, CurReplyFrameSize);
2955 	MPT_2_HOST32(rp, FWImageSize);
2956 	MPT_2_HOST32(rp, IOCCapabilities);
2957 	MPT_2_HOST32(rp, FWVersion.Word);
2958 	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2959 	MPT_2_HOST16(rp, Reserved2);
2960 	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2961 	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2962 }
2963 
2964 void
2965 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2966 {
2967 
2968 	MPT_2_HOST16(pfp, Reserved);
2969 	MPT_2_HOST16(pfp, Reserved1);
2970 	MPT_2_HOST32(pfp, MsgContext);
2971 	MPT_2_HOST16(pfp, Reserved2);
2972 	MPT_2_HOST16(pfp, IOCStatus);
2973 	MPT_2_HOST32(pfp, IOCLogInfo);
2974 	MPT_2_HOST16(pfp, MaxDevices);
2975 	MPT_2_HOST16(pfp, PortSCSIID);
2976 	MPT_2_HOST16(pfp, ProtocolFlags);
2977 	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2978 	MPT_2_HOST16(pfp, MaxPersistentIDs);
2979 	MPT_2_HOST16(pfp, MaxLanBuckets);
2980 	MPT_2_HOST16(pfp, Reserved4);
2981 	MPT_2_HOST32(pfp, Reserved5);
2982 }
2983 
2984 void
2985 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2986 {
2987 	int i;
2988 
2989 	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2990 	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2991 		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2992 	}
2993 }
2994 
2995 void
2996 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2997 {
2998 
2999 	MPT_2_HOST16(ioc3, Reserved2);
3000 }
3001 
3002 void
3003 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3004 {
3005 
3006 	MPT_2_HOST32(sp0, Capabilities);
3007 	MPT_2_HOST32(sp0, PhysicalInterface);
3008 }
3009 
3010 void
3011 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3012 {
3013 
3014 	MPT_2_HOST32(sp1, Configuration);
3015 	MPT_2_HOST32(sp1, OnBusTimerValue);
3016 	MPT_2_HOST16(sp1, IDConfig);
3017 }
3018 
3019 void
3020 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3021 {
3022 
3023 	HOST_2_MPT32(sp1, Configuration);
3024 	HOST_2_MPT32(sp1, OnBusTimerValue);
3025 	HOST_2_MPT16(sp1, IDConfig);
3026 }
3027 
3028 void
3029 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3030 {
3031 	int i;
3032 
3033 	MPT_2_HOST32(sp2, PortFlags);
3034 	MPT_2_HOST32(sp2, PortSettings);
3035 	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3036 	    sizeof(*sp2->DeviceSettings); i++) {
3037 		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3038 	}
3039 }
3040 
3041 void
3042 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3043 {
3044 
3045 	MPT_2_HOST32(sd0, NegotiatedParameters);
3046 	MPT_2_HOST32(sd0, Information);
3047 }
3048 
3049 void
3050 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3051 {
3052 
3053 	MPT_2_HOST32(sd1, RequestedParameters);
3054 	MPT_2_HOST32(sd1, Reserved);
3055 	MPT_2_HOST32(sd1, Configuration);
3056 }
3057 
3058 void
3059 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3060 {
3061 
3062 	HOST_2_MPT32(sd1, RequestedParameters);
3063 	HOST_2_MPT32(sd1, Reserved);
3064 	HOST_2_MPT32(sd1, Configuration);
3065 }
3066 
3067 void
3068 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3069 {
3070 
3071 	MPT_2_HOST32(fp0, Flags);
3072 	MPT_2_HOST32(fp0, PortIdentifier);
3073 	MPT_2_HOST32(fp0, WWNN.Low);
3074 	MPT_2_HOST32(fp0, WWNN.High);
3075 	MPT_2_HOST32(fp0, WWPN.Low);
3076 	MPT_2_HOST32(fp0, WWPN.High);
3077 	MPT_2_HOST32(fp0, SupportedServiceClass);
3078 	MPT_2_HOST32(fp0, SupportedSpeeds);
3079 	MPT_2_HOST32(fp0, CurrentSpeed);
3080 	MPT_2_HOST32(fp0, MaxFrameSize);
3081 	MPT_2_HOST32(fp0, FabricWWNN.Low);
3082 	MPT_2_HOST32(fp0, FabricWWNN.High);
3083 	MPT_2_HOST32(fp0, FabricWWPN.Low);
3084 	MPT_2_HOST32(fp0, FabricWWPN.High);
3085 	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3086 	MPT_2_HOST32(fp0, MaxInitiators);
3087 }
3088 
3089 void
3090 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3091 {
3092 
3093 	MPT_2_HOST32(fp1, Flags);
3094 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3095 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3096 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3097 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3098 }
3099 
3100 void
3101 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3102 {
3103 
3104 	HOST_2_MPT32(fp1, Flags);
3105 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3106 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3107 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3108 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3109 }
3110 
3111 void
3112 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3113 {
3114 	int i;
3115 
3116 	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3117 	MPT_2_HOST16(volp, VolumeSettings.Settings);
3118 	MPT_2_HOST32(volp, MaxLBA);
3119 	MPT_2_HOST32(volp, MaxLBAHigh);
3120 	MPT_2_HOST32(volp, StripeSize);
3121 	MPT_2_HOST32(volp, Reserved2);
3122 	MPT_2_HOST32(volp, Reserved3);
3123 	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3124 		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3125 	}
3126 }
3127 
3128 void
3129 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3130 {
3131 
3132 	MPT_2_HOST32(rpd0, Reserved1);
3133 	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3134 	MPT_2_HOST32(rpd0, MaxLBA);
3135 	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3136 	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3137 	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3138 }
3139 
3140 void
3141 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3142 {
3143 
3144 	MPT_2_HOST16(vi, TotalBlocks.High);
3145 	MPT_2_HOST16(vi, TotalBlocks.Low);
3146 	MPT_2_HOST16(vi, BlocksRemaining.High);
3147 	MPT_2_HOST16(vi, BlocksRemaining.Low);
3148 }
3149 #endif
3150