xref: /freebsd/sys/dev/mrsas/mrsas_cam.c (revision 3d273176)
1 /*
2  * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4  * Support: freebsdraid@avagotech.com
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are
8  * met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice,
11  * this list of conditions and the following disclaimer. 2. Redistributions
12  * in binary form must reproduce the above copyright notice, this list of
13  * conditions and the following disclaimer in the documentation and/or other
14  * materials provided with the distribution. 3. Neither the name of the
15  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16  * promote products derived from this software without specific prior written
17  * permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "dev/mrsas/mrsas.h"
37 
38 #include <cam/cam.h>
39 #include <cam/cam_ccb.h>
40 #include <cam/cam_sim.h>
41 #include <cam/cam_xpt_sim.h>
42 #include <cam/cam_debug.h>
43 #include <cam/cam_periph.h>
44 #include <cam/cam_xpt_periph.h>
45 
46 #include <cam/scsi/scsi_all.h>
47 #include <cam/scsi/scsi_message.h>
48 #include <sys/taskqueue.h>
49 #include <sys/kernel.h>
50 
51 #include <sys/time.h>			/* XXX for pcpu.h */
52 #include <sys/pcpu.h>			/* XXX for PCPU_GET */
53 
54 #define	smp_processor_id()  PCPU_GET(cpuid)
55 
56 /*
57  * Function prototypes
58  */
59 int	mrsas_cam_attach(struct mrsas_softc *sc);
60 int	mrsas_find_io_type(struct cam_sim *sim, union ccb *ccb);
61 int	mrsas_bus_scan(struct mrsas_softc *sc);
62 int	mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim);
63 int
64 mrsas_map_request(struct mrsas_softc *sc,
65     struct mrsas_mpt_cmd *cmd, union ccb *ccb);
66 int
67 mrsas_build_ldio_rw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
68     union ccb *ccb);
69 int
70 mrsas_build_ldio_nonrw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
71     union ccb *ccb);
72 int
73 mrsas_build_syspdio(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
74     union ccb *ccb, struct cam_sim *sim, u_int8_t fp_possible);
75 int
76 mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
77     union ccb *ccb, u_int32_t device_id,
78     MRSAS_RAID_SCSI_IO_REQUEST * io_request);
79 void	mrsas_xpt_freeze(struct mrsas_softc *sc);
80 void	mrsas_xpt_release(struct mrsas_softc *sc);
81 void	mrsas_cam_detach(struct mrsas_softc *sc);
82 void	mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd);
83 void	mrsas_unmap_request(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd);
84 void	mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd);
85 void
86 mrsas_fire_cmd(struct mrsas_softc *sc, u_int32_t req_desc_lo,
87     u_int32_t req_desc_hi);
88 void
89 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
90     u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
91     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
92     u_int32_t ld_block_size);
93 static void mrsas_freeze_simq(struct mrsas_mpt_cmd *cmd, struct cam_sim *sim);
94 static void mrsas_cam_poll(struct cam_sim *sim);
95 static void mrsas_action(struct cam_sim *sim, union ccb *ccb);
96 static void mrsas_scsiio_timeout(void *data);
97 static int mrsas_track_scsiio(struct mrsas_softc *sc, target_id_t id, u_int32_t bus_id);
98 static void mrsas_tm_response_code(struct mrsas_softc *sc,
99     MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply);
100 static int mrsas_issue_tm(struct mrsas_softc *sc,
101     MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc);
102 static void
103 mrsas_data_load_cb(void *arg, bus_dma_segment_t *segs,
104     int nseg, int error);
105 static int32_t
106 mrsas_startio(struct mrsas_softc *sc, struct cam_sim *sim,
107     union ccb *ccb);
108 
109 static boolean_t mrsas_is_prp_possible(struct mrsas_mpt_cmd *cmd,
110 	bus_dma_segment_t *segs, int nsegs);
111 static void mrsas_build_ieee_sgl(struct mrsas_mpt_cmd *cmd,
112 	bus_dma_segment_t *segs, int nseg);
113 static void mrsas_build_prp_nvme(struct mrsas_mpt_cmd *cmd,
114 	bus_dma_segment_t *segs, int nseg);
115 
116 struct mrsas_mpt_cmd *mrsas_get_mpt_cmd(struct mrsas_softc *sc);
117 MRSAS_REQUEST_DESCRIPTOR_UNION *
118 	mrsas_get_request_desc(struct mrsas_softc *sc, u_int16_t index);
119 
120 extern int mrsas_reset_targets(struct mrsas_softc *sc);
121 extern u_int16_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
122 extern u_int32_t
123 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
124 extern void mrsas_isr(void *arg);
125 extern void mrsas_aen_handler(struct mrsas_softc *sc);
126 extern u_int8_t
127 MR_BuildRaidContext(struct mrsas_softc *sc,
128     struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context,
129     MR_DRV_RAID_MAP_ALL * map);
130 extern u_int16_t
131 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
132     MR_DRV_RAID_MAP_ALL * map);
133 extern u_int16_t
134 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
135     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
136 extern int mrsas_complete_cmd(struct mrsas_softc *sc, u_int32_t MSIxIndex);
137 extern MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
138 extern void mrsas_disable_intr(struct mrsas_softc *sc);
139 extern void mrsas_enable_intr(struct mrsas_softc *sc);
140 void mrsas_prepare_secondRaid1_IO(struct mrsas_softc *sc,
141     struct mrsas_mpt_cmd *cmd);
142 
143 /*
144  * mrsas_cam_attach:	Main entry to CAM subsystem
145  * input:				Adapter instance soft state
146  *
147  * This function is called from mrsas_attach() during initialization to perform
148  * SIM allocations and XPT bus registration.  If the kernel version is 7.4 or
149  * earlier, it would also initiate a bus scan.
150  */
151 int
152 mrsas_cam_attach(struct mrsas_softc *sc)
153 {
154 	struct cam_devq *devq;
155 	int mrsas_cam_depth;
156 
157 	mrsas_cam_depth = sc->max_scsi_cmds;
158 
159 	if ((devq = cam_simq_alloc(mrsas_cam_depth)) == NULL) {
160 		device_printf(sc->mrsas_dev, "Cannot allocate SIM queue\n");
161 		return (ENOMEM);
162 	}
163 	/*
164 	 * Create SIM for bus 0 and register, also create path
165 	 */
166 	sc->sim_0 = cam_sim_alloc(mrsas_action, mrsas_cam_poll, "mrsas", sc,
167 	    device_get_unit(sc->mrsas_dev), &sc->sim_lock, mrsas_cam_depth,
168 	    mrsas_cam_depth, devq);
169 	if (sc->sim_0 == NULL) {
170 		cam_simq_free(devq);
171 		device_printf(sc->mrsas_dev, "Cannot register SIM\n");
172 		return (ENXIO);
173 	}
174 	/* Initialize taskqueue for Event Handling */
175 	TASK_INIT(&sc->ev_task, 0, (void *)mrsas_aen_handler, sc);
176 	sc->ev_tq = taskqueue_create("mrsas_taskq", M_NOWAIT | M_ZERO,
177 	    taskqueue_thread_enqueue, &sc->ev_tq);
178 
179 	/* Run the task queue with lowest priority */
180 	taskqueue_start_threads(&sc->ev_tq, 1, 255, "%s taskq",
181 	    device_get_nameunit(sc->mrsas_dev));
182 	mtx_lock(&sc->sim_lock);
183 	if (xpt_bus_register(sc->sim_0, sc->mrsas_dev, 0) != CAM_SUCCESS) {
184 		cam_sim_free(sc->sim_0, TRUE);	/* passing true frees the devq */
185 		mtx_unlock(&sc->sim_lock);
186 		return (ENXIO);
187 	}
188 	if (xpt_create_path(&sc->path_0, NULL, cam_sim_path(sc->sim_0),
189 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
190 		xpt_bus_deregister(cam_sim_path(sc->sim_0));
191 		cam_sim_free(sc->sim_0, TRUE);	/* passing true will free the
192 						 * devq */
193 		mtx_unlock(&sc->sim_lock);
194 		return (ENXIO);
195 	}
196 	mtx_unlock(&sc->sim_lock);
197 
198 	/*
199 	 * Create SIM for bus 1 and register, also create path
200 	 */
201 	sc->sim_1 = cam_sim_alloc(mrsas_action, mrsas_cam_poll, "mrsas", sc,
202 	    device_get_unit(sc->mrsas_dev), &sc->sim_lock, mrsas_cam_depth,
203 	    mrsas_cam_depth, devq);
204 	if (sc->sim_1 == NULL) {
205 		cam_simq_free(devq);
206 		device_printf(sc->mrsas_dev, "Cannot register SIM\n");
207 		return (ENXIO);
208 	}
209 	mtx_lock(&sc->sim_lock);
210 	if (xpt_bus_register(sc->sim_1, sc->mrsas_dev, 1) != CAM_SUCCESS) {
211 		cam_sim_free(sc->sim_1, TRUE);	/* passing true frees the devq */
212 		mtx_unlock(&sc->sim_lock);
213 		return (ENXIO);
214 	}
215 	if (xpt_create_path(&sc->path_1, NULL, cam_sim_path(sc->sim_1),
216 	    CAM_TARGET_WILDCARD,
217 	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
218 		xpt_bus_deregister(cam_sim_path(sc->sim_1));
219 		cam_sim_free(sc->sim_1, TRUE);
220 		mtx_unlock(&sc->sim_lock);
221 		return (ENXIO);
222 	}
223 	mtx_unlock(&sc->sim_lock);
224 
225 #if (__FreeBSD_version <= 704000)
226 	if (mrsas_bus_scan(sc)) {
227 		device_printf(sc->mrsas_dev, "Error in bus scan.\n");
228 		return (1);
229 	}
230 #endif
231 	return (0);
232 }
233 
234 /*
235  * mrsas_cam_detach:	De-allocates and teardown CAM
236  * input:				Adapter instance soft state
237  *
238  * De-registers and frees the paths and SIMs.
239  */
240 void
241 mrsas_cam_detach(struct mrsas_softc *sc)
242 {
243 	if (sc->ev_tq != NULL)
244 		taskqueue_free(sc->ev_tq);
245 	mtx_lock(&sc->sim_lock);
246 	if (sc->path_0)
247 		xpt_free_path(sc->path_0);
248 	if (sc->sim_0) {
249 		xpt_bus_deregister(cam_sim_path(sc->sim_0));
250 		cam_sim_free(sc->sim_0, FALSE);
251 	}
252 	if (sc->path_1)
253 		xpt_free_path(sc->path_1);
254 	if (sc->sim_1) {
255 		xpt_bus_deregister(cam_sim_path(sc->sim_1));
256 		cam_sim_free(sc->sim_1, TRUE);
257 	}
258 	mtx_unlock(&sc->sim_lock);
259 }
260 
261 /*
262  * mrsas_action:	SIM callback entry point
263  * input:			pointer to SIM pointer to CAM Control Block
264  *
265  * This function processes CAM subsystem requests. The type of request is stored
266  * in ccb->ccb_h.func_code.  The preprocessor #ifdef is necessary because
267  * ccb->cpi.maxio is not supported for FreeBSD version 7.4 or earlier.
268  */
269 static void
270 mrsas_action(struct cam_sim *sim, union ccb *ccb)
271 {
272 	struct mrsas_softc *sc = (struct mrsas_softc *)cam_sim_softc(sim);
273 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
274 	u_int32_t device_id;
275 
276 	/*
277      * Check if the system going down
278      * or the adapter is in unrecoverable critical error
279      */
280     if (sc->remove_in_progress ||
281         (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)) {
282         ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
283         xpt_done(ccb);
284         return;
285     }
286 
287 	switch (ccb->ccb_h.func_code) {
288 	case XPT_SCSI_IO:
289 		{
290 			device_id = ccb_h->target_id;
291 
292 			/*
293 			 * bus 0 is LD, bus 1 is for system-PD
294 			 */
295 			if (cam_sim_bus(sim) == 1 &&
296 			    sc->pd_list[device_id].driveState != MR_PD_STATE_SYSTEM) {
297 				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
298 				xpt_done(ccb);
299 			} else {
300 				if (mrsas_startio(sc, sim, ccb)) {
301 					ccb->ccb_h.status |= CAM_REQ_INVALID;
302 					xpt_done(ccb);
303 				}
304 			}
305 			break;
306 		}
307 	case XPT_ABORT:
308 		{
309 			ccb->ccb_h.status = CAM_UA_ABORT;
310 			xpt_done(ccb);
311 			break;
312 		}
313 	case XPT_RESET_BUS:
314 		{
315 			xpt_done(ccb);
316 			break;
317 		}
318 	case XPT_GET_TRAN_SETTINGS:
319 		{
320 			ccb->cts.protocol = PROTO_SCSI;
321 			ccb->cts.protocol_version = SCSI_REV_2;
322 			ccb->cts.transport = XPORT_SPI;
323 			ccb->cts.transport_version = 2;
324 			ccb->cts.xport_specific.spi.valid = CTS_SPI_VALID_DISC;
325 			ccb->cts.xport_specific.spi.flags = CTS_SPI_FLAGS_DISC_ENB;
326 			ccb->cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
327 			ccb->cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
328 			ccb->ccb_h.status = CAM_REQ_CMP;
329 			xpt_done(ccb);
330 			break;
331 		}
332 	case XPT_SET_TRAN_SETTINGS:
333 		{
334 			ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
335 			xpt_done(ccb);
336 			break;
337 		}
338 	case XPT_CALC_GEOMETRY:
339 		{
340 			cam_calc_geometry(&ccb->ccg, 1);
341 			xpt_done(ccb);
342 			break;
343 		}
344 	case XPT_PATH_INQ:
345 		{
346 			ccb->cpi.version_num = 1;
347 			ccb->cpi.hba_inquiry = 0;
348 			ccb->cpi.target_sprt = 0;
349 #if (__FreeBSD_version >= 902001)
350 			ccb->cpi.hba_misc = PIM_UNMAPPED;
351 #else
352 			ccb->cpi.hba_misc = 0;
353 #endif
354 			ccb->cpi.hba_eng_cnt = 0;
355 			ccb->cpi.max_lun = MRSAS_SCSI_MAX_LUNS;
356 			ccb->cpi.unit_number = cam_sim_unit(sim);
357 			ccb->cpi.bus_id = cam_sim_bus(sim);
358 			ccb->cpi.initiator_id = MRSAS_SCSI_INITIATOR_ID;
359 			ccb->cpi.base_transfer_speed = 150000;
360 			strlcpy(ccb->cpi.sim_vid, "FreeBSD", SIM_IDLEN);
361 			strlcpy(ccb->cpi.hba_vid, "AVAGO", HBA_IDLEN);
362 			strlcpy(ccb->cpi.dev_name, cam_sim_name(sim), DEV_IDLEN);
363 			ccb->cpi.transport = XPORT_SPI;
364 			ccb->cpi.transport_version = 2;
365 			ccb->cpi.protocol = PROTO_SCSI;
366 			ccb->cpi.protocol_version = SCSI_REV_2;
367 			if (ccb->cpi.bus_id == 0)
368 				ccb->cpi.max_target = MRSAS_MAX_PD - 1;
369 			else
370 				ccb->cpi.max_target = MRSAS_MAX_LD_IDS - 1;
371 #if (__FreeBSD_version > 704000)
372 			ccb->cpi.maxio = sc->max_num_sge * MRSAS_PAGE_SIZE;
373 #endif
374 			ccb->ccb_h.status = CAM_REQ_CMP;
375 			xpt_done(ccb);
376 			break;
377 		}
378 	default:
379 		{
380 			ccb->ccb_h.status = CAM_REQ_INVALID;
381 			xpt_done(ccb);
382 			break;
383 		}
384 	}
385 }
386 
387 /*
388  * mrsas_scsiio_timeout:	Callback function for IO timed out
389  * input:					mpt command context
390  *
391  * This function will execute after timeout value provided by ccb header from
392  * CAM layer, if timer expires. Driver will run timer for all DCDM and LDIO
393  * coming from CAM layer. This function is callback function for IO timeout
394  * and it runs in no-sleep context. Set do_timedout_reset in Adapter context
395  * so that it will execute OCR/Kill adpter from ocr_thread context.
396  */
397 static void
398 mrsas_scsiio_timeout(void *data)
399 {
400 	struct mrsas_mpt_cmd *cmd;
401 	struct mrsas_softc *sc;
402 	u_int32_t target_id;
403 
404 	if (!data)
405 		return;
406 
407 	cmd = (struct mrsas_mpt_cmd *)data;
408 	sc = cmd->sc;
409 
410 	if (cmd->ccb_ptr == NULL) {
411 		printf("command timeout with NULL ccb\n");
412 		return;
413 	}
414 
415 	/*
416 	 * Below callout is dummy entry so that it will be cancelled from
417 	 * mrsas_cmd_done(). Now Controller will go to OCR/Kill Adapter based
418 	 * on OCR enable/disable property of Controller from ocr_thread
419 	 * context.
420 	 */
421 #if (__FreeBSD_version >= 1000510)
422 	callout_reset_sbt(&cmd->cm_callout, SBT_1S * 180, 0,
423 	    mrsas_scsiio_timeout, cmd, 0);
424 #else
425 	callout_reset(&cmd->cm_callout, (180000 * hz) / 1000,
426 	    mrsas_scsiio_timeout, cmd);
427 #endif
428 
429 	if (cmd->ccb_ptr->cpi.bus_id == 0)
430 		target_id = cmd->ccb_ptr->ccb_h.target_id;
431 	else
432 		target_id = (cmd->ccb_ptr->ccb_h.target_id + (MRSAS_MAX_PD - 1));
433 
434 	/* Save the cmd to be processed for TM, if it is not there in the array */
435 	if (sc->target_reset_pool[target_id] == NULL) {
436 		sc->target_reset_pool[target_id] = cmd;
437 		mrsas_atomic_inc(&sc->target_reset_outstanding);
438 	}
439 
440 	return;
441 }
442 
443 /*
444  * mrsas_startio:	SCSI IO entry point
445  * input:			Adapter instance soft state
446  * 					pointer to CAM Control Block
447  *
448  * This function is the SCSI IO entry point and it initiates IO processing. It
449  * copies the IO and depending if the IO is read/write or inquiry, it would
450  * call mrsas_build_ldio() or mrsas_build_dcdb(), respectively.  It returns 0
451  * if the command is sent to firmware successfully, otherwise it returns 1.
452  */
453 static int32_t
454 mrsas_startio(struct mrsas_softc *sc, struct cam_sim *sim,
455     union ccb *ccb)
456 {
457 	struct mrsas_mpt_cmd *cmd, *r1_cmd = NULL;
458 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
459 	struct ccb_scsiio *csio = &(ccb->csio);
460 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
461 	u_int8_t cmd_type;
462 
463 	if ((csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE &&
464 		(!sc->fw_sync_cache_support)) {
465 		ccb->ccb_h.status = CAM_REQ_CMP;
466 		xpt_done(ccb);
467 		return (0);
468 	}
469 	ccb_h->status |= CAM_SIM_QUEUED;
470 	cmd = mrsas_get_mpt_cmd(sc);
471 
472 	if (!cmd) {
473 		ccb_h->status |= CAM_REQUEUE_REQ;
474 		xpt_done(ccb);
475 		return (0);
476 	}
477 
478 	if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
479 		if (ccb_h->flags & CAM_DIR_IN)
480 			cmd->flags |= MRSAS_DIR_IN;
481 		if (ccb_h->flags & CAM_DIR_OUT)
482 			cmd->flags |= MRSAS_DIR_OUT;
483 	} else
484 		cmd->flags = MRSAS_DIR_NONE;	/* no data */
485 
486 /* For FreeBSD 9.2 and higher */
487 #if (__FreeBSD_version >= 902001)
488 	/*
489 	 * XXX We don't yet support physical addresses here.
490 	 */
491 	switch ((ccb->ccb_h.flags & CAM_DATA_MASK)) {
492 	case CAM_DATA_PADDR:
493 	case CAM_DATA_SG_PADDR:
494 		device_printf(sc->mrsas_dev, "%s: physical addresses not supported\n",
495 		    __func__);
496 		mrsas_release_mpt_cmd(cmd);
497 		ccb_h->status = CAM_REQ_INVALID;
498 		ccb_h->status &= ~CAM_SIM_QUEUED;
499 		goto done;
500 	case CAM_DATA_SG:
501 		device_printf(sc->mrsas_dev, "%s: scatter gather is not supported\n",
502 		    __func__);
503 		mrsas_release_mpt_cmd(cmd);
504 		ccb_h->status = CAM_REQ_INVALID;
505 		goto done;
506 	case CAM_DATA_VADDR:
507 		if (csio->dxfer_len > (sc->max_num_sge * MRSAS_PAGE_SIZE)) {
508 			mrsas_release_mpt_cmd(cmd);
509 			ccb_h->status = CAM_REQ_TOO_BIG;
510 			goto done;
511 		}
512 		cmd->length = csio->dxfer_len;
513 		if (cmd->length)
514 			cmd->data = csio->data_ptr;
515 		break;
516 	case CAM_DATA_BIO:
517 		if (csio->dxfer_len > (sc->max_num_sge * MRSAS_PAGE_SIZE)) {
518 			mrsas_release_mpt_cmd(cmd);
519 			ccb_h->status = CAM_REQ_TOO_BIG;
520 			goto done;
521 		}
522 		cmd->length = csio->dxfer_len;
523 		if (cmd->length)
524 			cmd->data = csio->data_ptr;
525 		break;
526 	default:
527 		ccb->ccb_h.status = CAM_REQ_INVALID;
528 		goto done;
529 	}
530 #else
531 	if (!(ccb_h->flags & CAM_DATA_PHYS)) {	/* Virtual data address */
532 		if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
533 			if (csio->dxfer_len > (sc->max_num_sge * MRSAS_PAGE_SIZE)) {
534 				mrsas_release_mpt_cmd(cmd);
535 				ccb_h->status = CAM_REQ_TOO_BIG;
536 				goto done;
537 			}
538 			cmd->length = csio->dxfer_len;
539 			if (cmd->length)
540 				cmd->data = csio->data_ptr;
541 		} else {
542 			mrsas_release_mpt_cmd(cmd);
543 			ccb_h->status = CAM_REQ_INVALID;
544 			goto done;
545 		}
546 	} else {			/* Data addresses are physical. */
547 		mrsas_release_mpt_cmd(cmd);
548 		ccb_h->status = CAM_REQ_INVALID;
549 		ccb_h->status &= ~CAM_SIM_QUEUED;
550 		goto done;
551 	}
552 #endif
553 	/* save ccb ptr */
554 	cmd->ccb_ptr = ccb;
555 
556 	req_desc = mrsas_get_request_desc(sc, (cmd->index) - 1);
557 	if (!req_desc) {
558 		device_printf(sc->mrsas_dev, "Cannot get request_descriptor.\n");
559 		return (FAIL);
560 	}
561 	memset(req_desc, 0, sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION));
562 	cmd->request_desc = req_desc;
563 
564 	if (ccb_h->flags & CAM_CDB_POINTER)
565 		bcopy(csio->cdb_io.cdb_ptr, cmd->io_request->CDB.CDB32, csio->cdb_len);
566 	else
567 		bcopy(csio->cdb_io.cdb_bytes, cmd->io_request->CDB.CDB32, csio->cdb_len);
568 	mtx_lock(&sc->raidmap_lock);
569 
570 	/* Check for IO type READ-WRITE targeted for Logical Volume */
571 	cmd_type = mrsas_find_io_type(sim, ccb);
572 	switch (cmd_type) {
573 	case READ_WRITE_LDIO:
574 		/* Build READ-WRITE IO for Logical Volume  */
575 		if (mrsas_build_ldio_rw(sc, cmd, ccb)) {
576 			device_printf(sc->mrsas_dev, "Build RW LDIO failed.\n");
577 			mtx_unlock(&sc->raidmap_lock);
578 			mrsas_release_mpt_cmd(cmd);
579 			return (1);
580 		}
581 		break;
582 	case NON_READ_WRITE_LDIO:
583 		/* Build NON READ-WRITE IO for Logical Volume  */
584 		if (mrsas_build_ldio_nonrw(sc, cmd, ccb)) {
585 			device_printf(sc->mrsas_dev, "Build NON-RW LDIO failed.\n");
586 			mtx_unlock(&sc->raidmap_lock);
587 			mrsas_release_mpt_cmd(cmd);
588 			return (1);
589 		}
590 		break;
591 	case READ_WRITE_SYSPDIO:
592 	case NON_READ_WRITE_SYSPDIO:
593 		if (sc->secure_jbod_support &&
594 		    (cmd_type == NON_READ_WRITE_SYSPDIO)) {
595 			/* Build NON-RW IO for JBOD */
596 			if (mrsas_build_syspdio(sc, cmd, ccb, sim, 0)) {
597 				device_printf(sc->mrsas_dev,
598 				    "Build SYSPDIO failed.\n");
599 				mtx_unlock(&sc->raidmap_lock);
600 				mrsas_release_mpt_cmd(cmd);
601 				return (1);
602 			}
603 		} else {
604 			/* Build RW IO for JBOD */
605 			if (mrsas_build_syspdio(sc, cmd, ccb, sim, 1)) {
606 				device_printf(sc->mrsas_dev,
607 				    "Build SYSPDIO failed.\n");
608 				mtx_unlock(&sc->raidmap_lock);
609 				mrsas_release_mpt_cmd(cmd);
610 				return (1);
611 			}
612 		}
613 	}
614 	mtx_unlock(&sc->raidmap_lock);
615 
616 	if (cmd->flags == MRSAS_DIR_IN)	/* from device */
617 		cmd->io_request->Control |= MPI2_SCSIIO_CONTROL_READ;
618 	else if (cmd->flags == MRSAS_DIR_OUT)	/* to device */
619 		cmd->io_request->Control |= MPI2_SCSIIO_CONTROL_WRITE;
620 
621 	cmd->io_request->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
622 	cmd->io_request->SGLOffset0 = offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL) / 4;
623 	cmd->io_request->SenseBufferLowAddress = cmd->sense_phys_addr;
624 	cmd->io_request->SenseBufferLength = MRSAS_SCSI_SENSE_BUFFERSIZE;
625 
626 	req_desc = cmd->request_desc;
627 	req_desc->SCSIIO.SMID = cmd->index;
628 
629 	/*
630 	 * Start timer for IO timeout. Default timeout value is 90 second.
631 	 */
632 	cmd->callout_owner = true;
633 #if (__FreeBSD_version >= 1000510)
634 	callout_reset_sbt(&cmd->cm_callout, SBT_1S * 180, 0,
635 	    mrsas_scsiio_timeout, cmd, 0);
636 #else
637 	callout_reset(&cmd->cm_callout, (180000 * hz) / 1000,
638 	    mrsas_scsiio_timeout, cmd);
639 #endif
640 
641 	if (mrsas_atomic_inc_return(&sc->fw_outstanding) > sc->io_cmds_highwater)
642 		sc->io_cmds_highwater++;
643 
644 	/*
645 	 *  if it is raid 1/10 fp write capable.
646 	 *  try to get second command from pool and construct it.
647 	 *  From FW, it has confirmed that lba values of two PDs corresponds to
648 	 *  single R1/10 LD are always same
649 	 *
650 	 */
651 	/*
652 	 * driver side count always should be less than max_fw_cmds to get
653 	 * new command
654 	 */
655 	if (cmd->r1_alt_dev_handle != MR_DEVHANDLE_INVALID) {
656 		mrsas_atomic_inc(&sc->fw_outstanding);
657 		mrsas_prepare_secondRaid1_IO(sc, cmd);
658 		mrsas_fire_cmd(sc, req_desc->addr.u.low,
659 			req_desc->addr.u.high);
660 		r1_cmd = cmd->peer_cmd;
661 		mrsas_fire_cmd(sc, r1_cmd->request_desc->addr.u.low,
662 				r1_cmd->request_desc->addr.u.high);
663 	} else {
664 		mrsas_fire_cmd(sc, req_desc->addr.u.low,
665 			req_desc->addr.u.high);
666 	}
667 
668 	return (0);
669 
670 done:
671 	xpt_done(ccb);
672 	return (0);
673 }
674 
675 /*
676  * mrsas_find_io_type:	Determines if IO is read/write or inquiry
677  * input:			pointer to CAM Control Block
678  *
679  * This function determines if the IO is read/write or inquiry.  It returns a 1
680  * if the IO is read/write and 0 if it is inquiry.
681  */
682 int
683 mrsas_find_io_type(struct cam_sim *sim, union ccb *ccb)
684 {
685 	struct ccb_scsiio *csio = &(ccb->csio);
686 
687 	switch (csio->cdb_io.cdb_bytes[0]) {
688 	case READ_10:
689 	case WRITE_10:
690 	case READ_12:
691 	case WRITE_12:
692 	case READ_6:
693 	case WRITE_6:
694 	case READ_16:
695 	case WRITE_16:
696 		return (cam_sim_bus(sim) ?
697 		    READ_WRITE_SYSPDIO : READ_WRITE_LDIO);
698 	default:
699 		return (cam_sim_bus(sim) ?
700 		    NON_READ_WRITE_SYSPDIO : NON_READ_WRITE_LDIO);
701 	}
702 }
703 
704 /*
705  * mrsas_get_mpt_cmd:	Get a cmd from free command pool
706  * input:				Adapter instance soft state
707  *
708  * This function removes an MPT command from the command free list and
709  * initializes it.
710  */
711 struct mrsas_mpt_cmd *
712 mrsas_get_mpt_cmd(struct mrsas_softc *sc)
713 {
714 	struct mrsas_mpt_cmd *cmd = NULL;
715 
716 	mtx_lock(&sc->mpt_cmd_pool_lock);
717 	if (!TAILQ_EMPTY(&sc->mrsas_mpt_cmd_list_head)) {
718 		cmd = TAILQ_FIRST(&sc->mrsas_mpt_cmd_list_head);
719 		TAILQ_REMOVE(&sc->mrsas_mpt_cmd_list_head, cmd, next);
720 	} else {
721 		goto out;
722 	}
723 
724 	memset((uint8_t *)cmd->io_request, 0, MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE);
725 	cmd->data = NULL;
726 	cmd->length = 0;
727 	cmd->flags = 0;
728 	cmd->error_code = 0;
729 	cmd->load_balance = 0;
730 	cmd->ccb_ptr = NULL;
731 out:
732 	mtx_unlock(&sc->mpt_cmd_pool_lock);
733 	return cmd;
734 }
735 
736 /*
737  * mrsas_release_mpt_cmd:	Return a cmd to free command pool
738  * input:					Command packet for return to free command pool
739  *
740  * This function returns an MPT command to the free command list.
741  */
742 void
743 mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd)
744 {
745 	struct mrsas_softc *sc = cmd->sc;
746 
747 	mtx_lock(&sc->mpt_cmd_pool_lock);
748 	cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
749 	cmd->sync_cmd_idx = (u_int32_t)MRSAS_ULONG_MAX;
750 	cmd->peer_cmd = NULL;
751 	cmd->cmd_completed = 0;
752 	memset((uint8_t *)cmd->io_request, 0,
753 		sizeof(MRSAS_RAID_SCSI_IO_REQUEST));
754 	TAILQ_INSERT_HEAD(&(sc->mrsas_mpt_cmd_list_head), cmd, next);
755 	mtx_unlock(&sc->mpt_cmd_pool_lock);
756 
757 	return;
758 }
759 
760 /*
761  * mrsas_get_request_desc:	Get request descriptor from array
762  * input:					Adapter instance soft state
763  * 							SMID index
764  *
765  * This function returns a pointer to the request descriptor.
766  */
767 MRSAS_REQUEST_DESCRIPTOR_UNION *
768 mrsas_get_request_desc(struct mrsas_softc *sc, u_int16_t index)
769 {
770 	u_int8_t *p;
771 
772 	KASSERT(index < sc->max_fw_cmds, ("req_desc is out of range"));
773 	p = sc->req_desc + sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION) * index;
774 
775 	return (MRSAS_REQUEST_DESCRIPTOR_UNION *) p;
776 }
777 
778 
779 
780 
781 /* mrsas_prepare_secondRaid1_IO
782  * It prepares the raid 1 second IO
783  */
784 void
785 mrsas_prepare_secondRaid1_IO(struct mrsas_softc *sc,
786     struct mrsas_mpt_cmd *cmd)
787 {
788 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc, *req_desc2 = NULL;
789 	struct mrsas_mpt_cmd *r1_cmd;
790 
791 	r1_cmd = cmd->peer_cmd;
792 	req_desc = cmd->request_desc;
793 
794 	/*
795 	 * copy the io request frame as well as 8 SGEs data for r1
796 	 * command
797 	 */
798 	memcpy(r1_cmd->io_request, cmd->io_request,
799 	    (sizeof(MRSAS_RAID_SCSI_IO_REQUEST)));
800 	memcpy(&r1_cmd->io_request->SGL, &cmd->io_request->SGL,
801 	    (sc->max_sge_in_main_msg * sizeof(MPI2_SGE_IO_UNION)));
802 
803 	/* sense buffer is different for r1 command */
804 	r1_cmd->io_request->SenseBufferLowAddress = r1_cmd->sense_phys_addr;
805 	r1_cmd->ccb_ptr = cmd->ccb_ptr;
806 
807 	req_desc2 = mrsas_get_request_desc(sc, r1_cmd->index - 1);
808 	req_desc2->addr.Words = 0;
809 	r1_cmd->request_desc = req_desc2;
810 	req_desc2->SCSIIO.SMID = r1_cmd->index;
811 	req_desc2->SCSIIO.RequestFlags = req_desc->SCSIIO.RequestFlags;
812 	r1_cmd->request_desc->SCSIIO.DevHandle = cmd->r1_alt_dev_handle;
813 	r1_cmd->r1_alt_dev_handle =  cmd->io_request->DevHandle;
814 	r1_cmd->io_request->DevHandle = cmd->r1_alt_dev_handle;
815 	cmd->io_request->RaidContext.raid_context_g35.smid.peerSMID =
816 	    r1_cmd->index;
817 	r1_cmd->io_request->RaidContext.raid_context_g35.smid.peerSMID =
818 		cmd->index;
819 	/*
820 	 * MSIxIndex of both commands request descriptors
821 	 * should be same
822 	 */
823 	r1_cmd->request_desc->SCSIIO.MSIxIndex = cmd->request_desc->SCSIIO.MSIxIndex;
824 	/* span arm is different for r1 cmd */
825 	r1_cmd->io_request->RaidContext.raid_context_g35.spanArm =
826 	    cmd->io_request->RaidContext.raid_context_g35.spanArm + 1;
827 
828 }
829 
830 
831 /*
832  * mrsas_build_ldio_rw:	Builds an LDIO command
833  * input:				Adapter instance soft state
834  * 						Pointer to command packet
835  * 						Pointer to CCB
836  *
837  * This function builds the LDIO command packet.  It returns 0 if the command is
838  * built successfully, otherwise it returns a 1.
839  */
840 int
841 mrsas_build_ldio_rw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
842     union ccb *ccb)
843 {
844 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
845 	struct ccb_scsiio *csio = &(ccb->csio);
846 	u_int32_t device_id;
847 	MRSAS_RAID_SCSI_IO_REQUEST *io_request;
848 
849 	device_id = ccb_h->target_id;
850 
851 	io_request = cmd->io_request;
852 	io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id;
853 	io_request->RaidContext.raid_context.status = 0;
854 	io_request->RaidContext.raid_context.exStatus = 0;
855 
856 	/* just the cdb len, other flags zero, and ORed-in later for FP */
857 	io_request->IoFlags = csio->cdb_len;
858 
859 	if (mrsas_setup_io(sc, cmd, ccb, device_id, io_request) != SUCCESS)
860 		device_printf(sc->mrsas_dev, "Build ldio or fpio error\n");
861 
862 	io_request->DataLength = cmd->length;
863 
864 	if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
865 		if (cmd->sge_count > sc->max_num_sge) {
866 			device_printf(sc->mrsas_dev, "Error: sge_count (0x%x) exceeds"
867 			    "max (0x%x) allowed\n", cmd->sge_count, sc->max_num_sge);
868 			return (FAIL);
869 		}
870 		if (sc->is_ventura)
871 			io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
872 		else {
873 			/*
874 			 * numSGE store lower 8 bit of sge_count. numSGEExt store
875 			 * higher 8 bit of sge_count
876 			 */
877 			io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
878 			io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
879 		}
880 
881 	} else {
882 		device_printf(sc->mrsas_dev, "Data map/load failed.\n");
883 		return (FAIL);
884 	}
885 	return (0);
886 }
887 
888 /* stream detection on read and and write IOs */
889 static void
890 mrsas_stream_detect(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
891     struct IO_REQUEST_INFO *io_info)
892 {
893 	u_int32_t device_id = io_info->ldTgtId;
894 	LD_STREAM_DETECT *current_ld_SD = sc->streamDetectByLD[device_id];
895 	u_int32_t *track_stream = &current_ld_SD->mruBitMap;
896 	u_int32_t streamNum, shiftedValues, unshiftedValues;
897 	u_int32_t indexValueMask, shiftedValuesMask;
898 	int i;
899 	boolean_t isReadAhead = false;
900 	STREAM_DETECT *current_SD;
901 
902 	/* find possible stream */
903 	for (i = 0; i < MAX_STREAMS_TRACKED; ++i) {
904 		streamNum = (*track_stream >> (i * BITS_PER_INDEX_STREAM)) &
905 				STREAM_MASK;
906 		current_SD = &current_ld_SD->streamTrack[streamNum];
907 		/*
908 		 * if we found a stream, update the raid context and
909 		 * also update the mruBitMap
910 		 */
911 		if (current_SD->nextSeqLBA &&
912 		    io_info->ldStartBlock >= current_SD->nextSeqLBA &&
913 		    (io_info->ldStartBlock <= (current_SD->nextSeqLBA+32)) &&
914 		    (current_SD->isRead == io_info->isRead)) {
915 			if (io_info->ldStartBlock != current_SD->nextSeqLBA &&
916 			    (!io_info->isRead || !isReadAhead)) {
917 				/*
918 				 * Once the API availible we need to change this.
919 				 * At this point we are not allowing any gap
920 				 */
921 				continue;
922 			}
923 			cmd->io_request->RaidContext.raid_context_g35.streamDetected = TRUE;
924 			current_SD->nextSeqLBA = io_info->ldStartBlock + io_info->numBlocks;
925 			/*
926 			 * update the mruBitMap LRU
927 			 */
928 			shiftedValuesMask = (1 << i * BITS_PER_INDEX_STREAM) - 1 ;
929 			shiftedValues = ((*track_stream & shiftedValuesMask) <<
930 			    BITS_PER_INDEX_STREAM);
931 			indexValueMask = STREAM_MASK << i * BITS_PER_INDEX_STREAM;
932 			unshiftedValues = (*track_stream) &
933 			    (~(shiftedValuesMask | indexValueMask));
934 			*track_stream =
935 			    (unshiftedValues | shiftedValues | streamNum);
936 			return;
937 		}
938 	}
939 	/*
940 	 * if we did not find any stream, create a new one from the least recently used
941 	 */
942 	streamNum = (*track_stream >>
943 	    ((MAX_STREAMS_TRACKED - 1) * BITS_PER_INDEX_STREAM)) & STREAM_MASK;
944 	current_SD = &current_ld_SD->streamTrack[streamNum];
945 	current_SD->isRead = io_info->isRead;
946 	current_SD->nextSeqLBA = io_info->ldStartBlock + io_info->numBlocks;
947 	*track_stream = (((*track_stream & ZERO_LAST_STREAM) << 4) | streamNum);
948 	return;
949 }
950 
951 
952 /*
953  * mrsas_setup_io:	Set up data including Fast Path I/O
954  * input:			Adapter instance soft state
955  * 					Pointer to command packet
956  * 					Pointer to CCB
957  *
958  * This function builds the DCDB inquiry command.  It returns 0 if the command
959  * is built successfully, otherwise it returns a 1.
960  */
961 int
962 mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
963     union ccb *ccb, u_int32_t device_id,
964     MRSAS_RAID_SCSI_IO_REQUEST * io_request)
965 {
966 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
967 	struct ccb_scsiio *csio = &(ccb->csio);
968 	struct IO_REQUEST_INFO io_info;
969 	MR_DRV_RAID_MAP_ALL *map_ptr;
970 	struct mrsas_mpt_cmd *r1_cmd = NULL;
971 
972 	MR_LD_RAID *raid;
973 	u_int8_t fp_possible;
974 	u_int32_t start_lba_hi, start_lba_lo, ld_block_size, ld;
975 	u_int32_t datalength = 0;
976 
977 	io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id;
978 
979 	start_lba_lo = 0;
980 	start_lba_hi = 0;
981 	fp_possible = 0;
982 
983 	/*
984 	 * READ_6 (0x08) or WRITE_6 (0x0A) cdb
985 	 */
986 	if (csio->cdb_len == 6) {
987 		datalength = (u_int32_t)csio->cdb_io.cdb_bytes[4];
988 		start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[1] << 16) |
989 		    ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 8) |
990 		    (u_int32_t)csio->cdb_io.cdb_bytes[3];
991 		start_lba_lo &= 0x1FFFFF;
992 	}
993 	/*
994 	 * READ_10 (0x28) or WRITE_6 (0x2A) cdb
995 	 */
996 	else if (csio->cdb_len == 10) {
997 		datalength = (u_int32_t)csio->cdb_io.cdb_bytes[8] |
998 		    ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 8);
999 		start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
1000 		    ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
1001 		    (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
1002 		    ((u_int32_t)csio->cdb_io.cdb_bytes[5]);
1003 	}
1004 	/*
1005 	 * READ_12 (0xA8) or WRITE_12 (0xAA) cdb
1006 	 */
1007 	else if (csio->cdb_len == 12) {
1008 		datalength = (u_int32_t)csio->cdb_io.cdb_bytes[6] << 24 |
1009 		    ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) |
1010 		    ((u_int32_t)csio->cdb_io.cdb_bytes[8] << 8) |
1011 		    ((u_int32_t)csio->cdb_io.cdb_bytes[9]);
1012 		start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
1013 		    ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
1014 		    (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
1015 		    ((u_int32_t)csio->cdb_io.cdb_bytes[5]);
1016 	}
1017 	/*
1018 	 * READ_16 (0x88) or WRITE_16 (0xx8A) cdb
1019 	 */
1020 	else if (csio->cdb_len == 16) {
1021 		datalength = (u_int32_t)csio->cdb_io.cdb_bytes[10] << 24 |
1022 		    ((u_int32_t)csio->cdb_io.cdb_bytes[11] << 16) |
1023 		    ((u_int32_t)csio->cdb_io.cdb_bytes[12] << 8) |
1024 		    ((u_int32_t)csio->cdb_io.cdb_bytes[13]);
1025 		start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[6] << 24) |
1026 		    ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) |
1027 		    (u_int32_t)csio->cdb_io.cdb_bytes[8] << 8 |
1028 		    ((u_int32_t)csio->cdb_io.cdb_bytes[9]);
1029 		start_lba_hi = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
1030 		    ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
1031 		    (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
1032 		    ((u_int32_t)csio->cdb_io.cdb_bytes[5]);
1033 	}
1034 	memset(&io_info, 0, sizeof(struct IO_REQUEST_INFO));
1035 	io_info.ldStartBlock = ((u_int64_t)start_lba_hi << 32) | start_lba_lo;
1036 	io_info.numBlocks = datalength;
1037 	io_info.ldTgtId = device_id;
1038 	io_info.r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
1039 
1040 	io_request->DataLength = cmd->length;
1041 
1042 	switch (ccb_h->flags & CAM_DIR_MASK) {
1043 	case CAM_DIR_IN:
1044 		io_info.isRead = 1;
1045 		break;
1046 	case CAM_DIR_OUT:
1047 		io_info.isRead = 0;
1048 		break;
1049 	case CAM_DIR_NONE:
1050 	default:
1051 		mrsas_dprint(sc, MRSAS_TRACE, "From %s : DMA Flag is %d \n", __func__, ccb_h->flags & CAM_DIR_MASK);
1052 		break;
1053 	}
1054 
1055 	map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
1056 	ld_block_size = MR_LdBlockSizeGet(device_id, map_ptr);
1057 
1058 	ld = MR_TargetIdToLdGet(device_id, map_ptr);
1059 	if ((ld >= MAX_LOGICAL_DRIVES_EXT) || (!sc->fast_path_io)) {
1060 		io_request->RaidContext.raid_context.regLockFlags = 0;
1061 		fp_possible = 0;
1062 	} else {
1063 		if (MR_BuildRaidContext(sc, &io_info, &io_request->RaidContext.raid_context, map_ptr))
1064 			fp_possible = io_info.fpOkForIo;
1065 	}
1066 
1067 	raid = MR_LdRaidGet(ld, map_ptr);
1068 	/* Store the TM capability value in cmd */
1069 	cmd->tmCapable = raid->capability.tmCapable;
1070 
1071 	cmd->request_desc->SCSIIO.MSIxIndex =
1072 	    sc->msix_vectors ? smp_processor_id() % sc->msix_vectors : 0;
1073 
1074 	if (sc->is_ventura) {
1075 		if (sc->streamDetectByLD) {
1076 			mtx_lock(&sc->stream_lock);
1077 			mrsas_stream_detect(sc, cmd, &io_info);
1078 			mtx_unlock(&sc->stream_lock);
1079 			/* In ventura if stream detected for a read and
1080 			 * it is read ahead capable make this IO as LDIO */
1081 			if (io_request->RaidContext.raid_context_g35.streamDetected &&
1082 					io_info.isRead && io_info.raCapable)
1083 				fp_possible = FALSE;
1084 		}
1085 
1086 		/* Set raid 1/10 fast path write capable bit in io_info.
1087 		 * Note - reset peer_cmd and r1_alt_dev_handle if fp_possible
1088 		 * disabled after this point. Try not to add more check for
1089 		 * fp_possible toggle after this.
1090 		 */
1091 		if (fp_possible &&
1092 				(io_info.r1_alt_dev_handle != MR_DEVHANDLE_INVALID) &&
1093 				(raid->level == 1) && !io_info.isRead) {
1094 			r1_cmd = mrsas_get_mpt_cmd(sc);
1095 			if (!r1_cmd) {
1096 				fp_possible = FALSE;
1097 				printf("Avago debug fp disable from %s %d \n",
1098 					__func__, __LINE__);
1099 			} else {
1100 				cmd->peer_cmd = r1_cmd;
1101 				r1_cmd->peer_cmd = cmd;
1102 			}
1103 		}
1104 	}
1105 
1106 	if (fp_possible) {
1107 		mrsas_set_pd_lba(io_request, csio->cdb_len, &io_info, ccb, map_ptr,
1108 		    start_lba_lo, ld_block_size);
1109 		io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1110 		cmd->request_desc->SCSIIO.RequestFlags =
1111 		    (MPI2_REQ_DESCRIPT_FLAGS_FP_IO <<
1112 		    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1113 		if (sc->mrsas_gen3_ctrl) {
1114 			if (io_request->RaidContext.raid_context.regLockFlags == REGION_TYPE_UNUSED)
1115 				cmd->request_desc->SCSIIO.RequestFlags =
1116 				    (MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK <<
1117 				    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1118 			io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
1119 			io_request->RaidContext.raid_context.nseg = 0x1;
1120 			io_request->IoFlags |= MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH;
1121 			io_request->RaidContext.raid_context.regLockFlags |=
1122 			    (MR_RL_FLAGS_GRANT_DESTINATION_CUDA |
1123 			    MR_RL_FLAGS_SEQ_NUM_ENABLE);
1124 		} else if (sc->is_ventura) {
1125 			io_request->RaidContext.raid_context_g35.Type = MPI2_TYPE_CUDA;
1126 			io_request->RaidContext.raid_context_g35.nseg = 0x1;
1127 			io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
1128 			io_request->IoFlags |= MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH;
1129 			if (io_request->RaidContext.raid_context_g35.routingFlags.bits.sld) {
1130 					io_request->RaidContext.raid_context_g35.RAIDFlags =
1131 					(MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS
1132 					<< MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT);
1133 			}
1134 		}
1135 		if ((sc->load_balance_info[device_id].loadBalanceFlag) &&
1136 		    (io_info.isRead)) {
1137 			io_info.devHandle =
1138 			    mrsas_get_updated_dev_handle(sc,
1139 			    &sc->load_balance_info[device_id], &io_info);
1140 			cmd->load_balance = MRSAS_LOAD_BALANCE_FLAG;
1141 			cmd->pd_r1_lb = io_info.pd_after_lb;
1142 			if (sc->is_ventura)
1143 				io_request->RaidContext.raid_context_g35.spanArm = io_info.span_arm;
1144 			else
1145 				io_request->RaidContext.raid_context.spanArm = io_info.span_arm;
1146 		} else
1147 			cmd->load_balance = 0;
1148 
1149 		if (sc->is_ventura)
1150 				cmd->r1_alt_dev_handle = io_info.r1_alt_dev_handle;
1151 		else
1152 				cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
1153 
1154 		cmd->request_desc->SCSIIO.DevHandle = io_info.devHandle;
1155 		io_request->DevHandle = io_info.devHandle;
1156 		cmd->pdInterface = io_info.pdInterface;
1157 	} else {
1158 		/* Not FP IO */
1159 		io_request->RaidContext.raid_context.timeoutValue = map_ptr->raidMap.fpPdIoTimeoutSec;
1160 		cmd->request_desc->SCSIIO.RequestFlags =
1161 		    (MRSAS_REQ_DESCRIPT_FLAGS_LD_IO <<
1162 		    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1163 		if (sc->mrsas_gen3_ctrl) {
1164 			if (io_request->RaidContext.raid_context.regLockFlags == REGION_TYPE_UNUSED)
1165 				cmd->request_desc->SCSIIO.RequestFlags =
1166 				    (MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK <<
1167 				    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1168 			io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
1169 			io_request->RaidContext.raid_context.regLockFlags |=
1170 			    (MR_RL_FLAGS_GRANT_DESTINATION_CPU0 |
1171 			    MR_RL_FLAGS_SEQ_NUM_ENABLE);
1172 			io_request->RaidContext.raid_context.nseg = 0x1;
1173 		} else if (sc->is_ventura) {
1174 			io_request->RaidContext.raid_context_g35.Type = MPI2_TYPE_CUDA;
1175 			io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
1176 			io_request->RaidContext.raid_context_g35.nseg = 0x1;
1177 		}
1178 		io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
1179 		io_request->DevHandle = device_id;
1180 	}
1181 	return (0);
1182 }
1183 
1184 /*
1185  * mrsas_build_ldio_nonrw:	Builds an LDIO command
1186  * input:				Adapter instance soft state
1187  * 						Pointer to command packet
1188  * 						Pointer to CCB
1189  *
1190  * This function builds the LDIO command packet.  It returns 0 if the command is
1191  * built successfully, otherwise it returns a 1.
1192  */
1193 int
1194 mrsas_build_ldio_nonrw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
1195     union ccb *ccb)
1196 {
1197 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1198 	u_int32_t device_id, ld;
1199 	MR_DRV_RAID_MAP_ALL *map_ptr;
1200 	MR_LD_RAID *raid;
1201 	RAID_CONTEXT *pRAID_Context;
1202 	MRSAS_RAID_SCSI_IO_REQUEST *io_request;
1203 
1204 	io_request = cmd->io_request;
1205 	device_id = ccb_h->target_id;
1206 
1207 	map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
1208 	ld = MR_TargetIdToLdGet(device_id, map_ptr);
1209 	raid = MR_LdRaidGet(ld, map_ptr);
1210 	/* get RAID_Context pointer */
1211 	pRAID_Context = &io_request->RaidContext.raid_context;
1212 	/* Store the TM capability value in cmd */
1213 	cmd->tmCapable = raid->capability.tmCapable;
1214 
1215 	/* FW path for LD Non-RW (SCSI management commands) */
1216 	io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
1217 	io_request->DevHandle = device_id;
1218 	cmd->request_desc->SCSIIO.RequestFlags =
1219 	    (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
1220 	    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1221 
1222 	io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id;
1223 	io_request->LUN[1] = ccb_h->target_lun & 0xF;
1224 	io_request->DataLength = cmd->length;
1225 
1226 	if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
1227 		if (cmd->sge_count > sc->max_num_sge) {
1228 			device_printf(sc->mrsas_dev, "Error: sge_count (0x%x) exceeds"
1229 			    "max (0x%x) allowed\n", cmd->sge_count, sc->max_num_sge);
1230 			return (1);
1231 		}
1232 		if (sc->is_ventura)
1233 			io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
1234 		else {
1235 			/*
1236 			 * numSGE store lower 8 bit of sge_count. numSGEExt store
1237 			 * higher 8 bit of sge_count
1238 			 */
1239 			io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
1240 			io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
1241 		}
1242 	} else {
1243 		device_printf(sc->mrsas_dev, "Data map/load failed.\n");
1244 		return (1);
1245 	}
1246 	return (0);
1247 }
1248 
1249 /*
1250  * mrsas_build_syspdio:	Builds an DCDB command
1251  * input:				Adapter instance soft state
1252  * 						Pointer to command packet
1253  * 						Pointer to CCB
1254  *
1255  * This function builds the DCDB inquiry command.  It returns 0 if the command
1256  * is built successfully, otherwise it returns a 1.
1257  */
1258 int
1259 mrsas_build_syspdio(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
1260     union ccb *ccb, struct cam_sim *sim, u_int8_t fp_possible)
1261 {
1262 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1263 	u_int32_t device_id;
1264 	MR_DRV_RAID_MAP_ALL *local_map_ptr;
1265 	MRSAS_RAID_SCSI_IO_REQUEST *io_request;
1266 	RAID_CONTEXT *pRAID_Context;
1267 	struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync;
1268 
1269 	io_request = cmd->io_request;
1270 	/* get RAID_Context pointer */
1271 	pRAID_Context = &io_request->RaidContext.raid_context;
1272 	device_id = ccb_h->target_id;
1273 	local_map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
1274 	io_request->RaidContext.raid_context.RAIDFlags = MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD
1275 	    << MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT;
1276 	io_request->RaidContext.raid_context.regLockFlags = 0;
1277 	io_request->RaidContext.raid_context.regLockRowLBA = 0;
1278 	io_request->RaidContext.raid_context.regLockLength = 0;
1279 
1280 	cmd->pdInterface = sc->target_list[device_id].interface_type;
1281 
1282 	/* If FW supports PD sequence number */
1283 	if (sc->use_seqnum_jbod_fp &&
1284 	    sc->pd_list[device_id].driveType == 0x00) {
1285 		//printf("Using Drv seq num\n");
1286 		pd_sync = (void *)sc->jbodmap_mem[(sc->pd_seq_map_id - 1) & 1];
1287 		cmd->tmCapable = pd_sync->seq[device_id].capability.tmCapable;
1288 		/* More than 256 PD/JBOD support for Ventura */
1289 		if (sc->support_morethan256jbod)
1290 			io_request->RaidContext.raid_context.VirtualDiskTgtId =
1291 				pd_sync->seq[device_id].pdTargetId;
1292 		else
1293 			io_request->RaidContext.raid_context.VirtualDiskTgtId =
1294 				device_id + 255;
1295 		io_request->RaidContext.raid_context.configSeqNum = pd_sync->seq[device_id].seqNum;
1296 		io_request->DevHandle = pd_sync->seq[device_id].devHandle;
1297 		if (sc->is_ventura)
1298 			io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
1299 		else
1300 			io_request->RaidContext.raid_context.regLockFlags |=
1301 			    (MR_RL_FLAGS_SEQ_NUM_ENABLE | MR_RL_FLAGS_GRANT_DESTINATION_CUDA);
1302 		/* raid_context.Type = MPI2_TYPE_CUDA is valid only,
1303 		 * if FW support Jbod Sequence number
1304 		 */
1305 		io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
1306 		io_request->RaidContext.raid_context.nseg = 0x1;
1307 	} else if (sc->fast_path_io) {
1308 		//printf("Using LD RAID map\n");
1309 		io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id;
1310 		io_request->RaidContext.raid_context.configSeqNum = 0;
1311 		local_map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
1312 		io_request->DevHandle =
1313 		    local_map_ptr->raidMap.devHndlInfo[device_id].curDevHdl;
1314 	} else {
1315 		//printf("Using FW PATH\n");
1316 		/* Want to send all IO via FW path */
1317 		io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id;
1318 		io_request->RaidContext.raid_context.configSeqNum = 0;
1319 		io_request->DevHandle = MR_DEVHANDLE_INVALID;
1320 	}
1321 
1322 	cmd->request_desc->SCSIIO.DevHandle = io_request->DevHandle;
1323 	cmd->request_desc->SCSIIO.MSIxIndex =
1324 	    sc->msix_vectors ? smp_processor_id() % sc->msix_vectors : 0;
1325 
1326 	if (!fp_possible) {
1327 		/* system pd firmware path */
1328 		io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
1329 		cmd->request_desc->SCSIIO.RequestFlags =
1330 		    (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
1331 		    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1332 		io_request->RaidContext.raid_context.timeoutValue =
1333 		    local_map_ptr->raidMap.fpPdIoTimeoutSec;
1334 		io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id;
1335 	} else {
1336 		/* system pd fast path */
1337 		io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1338 		io_request->RaidContext.raid_context.timeoutValue = local_map_ptr->raidMap.fpPdIoTimeoutSec;
1339 
1340 		/*
1341 		 * NOTE - For system pd RW cmds only IoFlags will be FAST_PATH
1342 		 * Because the NON RW cmds will now go via FW Queue
1343 		 * and not the Exception queue
1344 		 */
1345 		if (sc->mrsas_gen3_ctrl || sc->is_ventura)
1346 			io_request->IoFlags |= MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH;
1347 
1348 		cmd->request_desc->SCSIIO.RequestFlags =
1349 		    (MPI2_REQ_DESCRIPT_FLAGS_FP_IO <<
1350 		    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1351 	}
1352 
1353 	io_request->LUN[1] = ccb_h->target_lun & 0xF;
1354 	io_request->DataLength = cmd->length;
1355 
1356 	if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
1357 		if (cmd->sge_count > sc->max_num_sge) {
1358 			device_printf(sc->mrsas_dev, "Error: sge_count (0x%x) exceeds"
1359 			    "max (0x%x) allowed\n", cmd->sge_count, sc->max_num_sge);
1360 			return (1);
1361 		}
1362 		if (sc->is_ventura)
1363 			io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
1364 		else {
1365 			/*
1366 			 * numSGE store lower 8 bit of sge_count. numSGEExt store
1367 			 * higher 8 bit of sge_count
1368 			 */
1369 			io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
1370 			io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
1371 		}
1372 	} else {
1373 		device_printf(sc->mrsas_dev, "Data map/load failed.\n");
1374 		return (1);
1375 	}
1376 	return (0);
1377 }
1378 
1379 /*
1380  * mrsas_is_prp_possible:	This function will tell whether PRPs should be built or not
1381  * sc:						Adapter instance soft state
1382  * cmd:						MPT command frame pointer
1383  * nsesg:					Number of OS SGEs
1384  *
1385  * This function will check whether IO is qualified to build PRPs
1386  * return:				true: if PRP should be built
1387  *						false: if IEEE SGLs should be built
1388  */
1389 static boolean_t mrsas_is_prp_possible(struct mrsas_mpt_cmd *cmd,
1390 	bus_dma_segment_t *segs, int nsegs)
1391 {
1392 	struct mrsas_softc *sc = cmd->sc;
1393 	int i;
1394 	u_int32_t data_length = 0;
1395 	bool build_prp = false;
1396 	u_int32_t mr_nvme_pg_size;
1397 
1398 	mr_nvme_pg_size = max(sc->nvme_page_size, MR_DEFAULT_NVME_PAGE_SIZE);
1399 	data_length = cmd->length;
1400 
1401 	if (data_length > (mr_nvme_pg_size * 5))
1402 		build_prp = true;
1403 	else if ((data_length > (mr_nvme_pg_size * 4)) &&
1404 		(data_length <= (mr_nvme_pg_size * 5)))  {
1405 		/* check if 1st SG entry size is < residual beyond 4 pages */
1406 		if ((segs[0].ds_len) < (data_length - (mr_nvme_pg_size * 4)))
1407 			build_prp = true;
1408 	}
1409 
1410 	/*check for SGE holes here*/
1411 	for (i = 0; i < nsegs; i++) {
1412 		/* check for mid SGEs */
1413 		if ((i != 0) && (i != (nsegs - 1))) {
1414 				if ((segs[i].ds_addr % mr_nvme_pg_size) ||
1415 					(segs[i].ds_len % mr_nvme_pg_size)) {
1416 					build_prp = false;
1417 					mrsas_atomic_inc(&sc->sge_holes);
1418 					break;
1419 				}
1420 		}
1421 
1422 		/* check for first SGE*/
1423 		if ((nsegs > 1) && (i == 0)) {
1424 				if ((segs[i].ds_addr + segs[i].ds_len) % mr_nvme_pg_size) {
1425 					build_prp = false;
1426 					mrsas_atomic_inc(&sc->sge_holes);
1427 					break;
1428 				}
1429 		}
1430 
1431 		/* check for Last SGE*/
1432 		if ((nsegs > 1) && (i == (nsegs - 1))) {
1433 				if (segs[i].ds_addr % mr_nvme_pg_size) {
1434 					build_prp = false;
1435 					mrsas_atomic_inc(&sc->sge_holes);
1436 					break;
1437 				}
1438 		}
1439 
1440 	}
1441 
1442 	return build_prp;
1443 }
1444 
1445 /*
1446  * mrsas_map_request:	Map and load data
1447  * input:				Adapter instance soft state
1448  * 						Pointer to command packet
1449  *
1450  * For data from OS, map and load the data buffer into bus space.  The SG list
1451  * is built in the callback.  If the  bus dmamap load is not successful,
1452  * cmd->error_code will contain the  error code and a 1 is returned.
1453  */
1454 int
1455 mrsas_map_request(struct mrsas_softc *sc,
1456     struct mrsas_mpt_cmd *cmd, union ccb *ccb)
1457 {
1458 	u_int32_t retcode = 0;
1459 	struct cam_sim *sim;
1460 
1461 	sim = xpt_path_sim(cmd->ccb_ptr->ccb_h.path);
1462 
1463 	if (cmd->data != NULL) {
1464 		/* Map data buffer into bus space */
1465 		mtx_lock(&sc->io_lock);
1466 #if (__FreeBSD_version >= 902001)
1467 		retcode = bus_dmamap_load_ccb(sc->data_tag, cmd->data_dmamap, ccb,
1468 		    mrsas_data_load_cb, cmd, 0);
1469 #else
1470 		retcode = bus_dmamap_load(sc->data_tag, cmd->data_dmamap, cmd->data,
1471 		    cmd->length, mrsas_data_load_cb, cmd, BUS_DMA_NOWAIT);
1472 #endif
1473 		mtx_unlock(&sc->io_lock);
1474 		if (retcode)
1475 			device_printf(sc->mrsas_dev, "bus_dmamap_load(): retcode = %d\n", retcode);
1476 		if (retcode == EINPROGRESS) {
1477 			device_printf(sc->mrsas_dev, "request load in progress\n");
1478 			mrsas_freeze_simq(cmd, sim);
1479 		}
1480 	}
1481 	if (cmd->error_code)
1482 		return (1);
1483 	return (retcode);
1484 }
1485 
1486 /*
1487  * mrsas_unmap_request:	Unmap and unload data
1488  * input:				Adapter instance soft state
1489  * 						Pointer to command packet
1490  *
1491  * This function unmaps and unloads data from OS.
1492  */
1493 void
1494 mrsas_unmap_request(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd)
1495 {
1496 	if (cmd->data != NULL) {
1497 		if (cmd->flags & MRSAS_DIR_IN)
1498 			bus_dmamap_sync(sc->data_tag, cmd->data_dmamap, BUS_DMASYNC_POSTREAD);
1499 		if (cmd->flags & MRSAS_DIR_OUT)
1500 			bus_dmamap_sync(sc->data_tag, cmd->data_dmamap, BUS_DMASYNC_POSTWRITE);
1501 		mtx_lock(&sc->io_lock);
1502 		bus_dmamap_unload(sc->data_tag, cmd->data_dmamap);
1503 		mtx_unlock(&sc->io_lock);
1504 	}
1505 }
1506 
1507 /**
1508  * mrsas_build_ieee_sgl -	Prepare IEEE SGLs
1509  * @sc:						Adapter soft state
1510  * @segs:					OS SGEs pointers
1511  * @nseg:					Number of OS SGEs
1512  * @cmd:					Fusion command frame
1513  * return:					void
1514  */
1515 static void mrsas_build_ieee_sgl(struct mrsas_mpt_cmd *cmd, bus_dma_segment_t *segs, int nseg)
1516 {
1517 	struct mrsas_softc *sc = cmd->sc;
1518 	MRSAS_RAID_SCSI_IO_REQUEST *io_request;
1519 	pMpi25IeeeSgeChain64_t sgl_ptr;
1520 	int i = 0, sg_processed = 0;
1521 
1522 	io_request = cmd->io_request;
1523 	sgl_ptr = (pMpi25IeeeSgeChain64_t)&io_request->SGL;
1524 
1525 	if (sc->mrsas_gen3_ctrl || sc->is_ventura) {
1526 		pMpi25IeeeSgeChain64_t sgl_ptr_end = sgl_ptr;
1527 
1528 		sgl_ptr_end += sc->max_sge_in_main_msg - 1;
1529 		sgl_ptr_end->Flags = 0;
1530 	}
1531 	if (nseg != 0) {
1532 		for (i = 0; i < nseg; i++) {
1533 			sgl_ptr->Address = segs[i].ds_addr;
1534 			sgl_ptr->Length = segs[i].ds_len;
1535 			sgl_ptr->Flags = 0;
1536 			if (sc->mrsas_gen3_ctrl || sc->is_ventura) {
1537 				if (i == nseg - 1)
1538 					sgl_ptr->Flags = IEEE_SGE_FLAGS_END_OF_LIST;
1539 			}
1540 			sgl_ptr++;
1541 			sg_processed = i + 1;
1542 			if ((sg_processed == (sc->max_sge_in_main_msg - 1)) &&
1543 				(nseg > sc->max_sge_in_main_msg)) {
1544 				pMpi25IeeeSgeChain64_t sg_chain;
1545 
1546 				if (sc->mrsas_gen3_ctrl || sc->is_ventura) {
1547 					if ((cmd->io_request->IoFlags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH)
1548 						!= MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH)
1549 						cmd->io_request->ChainOffset = sc->chain_offset_io_request;
1550 					else
1551 						cmd->io_request->ChainOffset = 0;
1552 				} else
1553 					cmd->io_request->ChainOffset = sc->chain_offset_io_request;
1554 				sg_chain = sgl_ptr;
1555 				if (sc->mrsas_gen3_ctrl || sc->is_ventura)
1556 					sg_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT;
1557 				else
1558 					sg_chain->Flags = (IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
1559 				sg_chain->Length = (sizeof(MPI2_SGE_IO_UNION) * (nseg - sg_processed));
1560 				sg_chain->Address = cmd->chain_frame_phys_addr;
1561 				sgl_ptr = (pMpi25IeeeSgeChain64_t)cmd->chain_frame;
1562 			}
1563 		}
1564 	}
1565 }
1566 
1567 /**
1568  * mrsas_build_prp_nvme - Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1569  * @sc:						Adapter soft state
1570  * @segs:					OS SGEs pointers
1571  * @nseg:					Number of OS SGEs
1572  * @cmd:					Fusion command frame
1573  * return:					void
1574  */
1575 static void mrsas_build_prp_nvme(struct mrsas_mpt_cmd *cmd, bus_dma_segment_t *segs, int nseg)
1576 {
1577 	struct mrsas_softc *sc = cmd->sc;
1578 	int sge_len, offset, num_prp_in_chain = 0;
1579 	pMpi25IeeeSgeChain64_t main_chain_element, ptr_first_sgl, sgl_ptr;
1580 	u_int64_t *ptr_sgl, *ptr_sgl_phys;
1581 	u_int64_t sge_addr;
1582 	u_int32_t page_mask, page_mask_result, i = 0;
1583 	u_int32_t first_prp_len;
1584 	int data_len = cmd->length;
1585 	u_int32_t mr_nvme_pg_size = max(sc->nvme_page_size,
1586 					MR_DEFAULT_NVME_PAGE_SIZE);
1587 
1588 	sgl_ptr = (pMpi25IeeeSgeChain64_t) &cmd->io_request->SGL;
1589 	/*
1590 	 * NVMe has a very convoluted PRP format.  One PRP is required
1591 	 * for each page or partial page.  We need to split up OS SG
1592 	 * entries if they are longer than one page or cross a page
1593 	 * boundary.  We also have to insert a PRP list pointer entry as
1594 	 * the last entry in each physical page of the PRP list.
1595 	 *
1596 	 * NOTE: The first PRP "entry" is actually placed in the first
1597 	 * SGL entry in the main message in IEEE 64 format.  The 2nd
1598 	 * entry in the main message is the chain element, and the rest
1599 	 * of the PRP entries are built in the contiguous PCIe buffer.
1600 	 */
1601 	page_mask = mr_nvme_pg_size - 1;
1602 	ptr_sgl = (u_int64_t *) cmd->chain_frame;
1603 	ptr_sgl_phys = (u_int64_t *) cmd->chain_frame_phys_addr;;
1604 
1605 	/* Build chain frame element which holds all PRPs except first*/
1606 	main_chain_element = (pMpi25IeeeSgeChain64_t)
1607 	    ((u_int8_t *)sgl_ptr + sizeof(MPI25_IEEE_SGE_CHAIN64));
1608 
1609 
1610 	main_chain_element->Address = (u_int64_t) ptr_sgl_phys;
1611 	main_chain_element->NextChainOffset = 0;
1612 	main_chain_element->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1613 					IEEE_SGE_FLAGS_SYSTEM_ADDR |
1614 					MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
1615 
1616 
1617 	/* Build first PRP, SGE need not to be PAGE aligned*/
1618 	ptr_first_sgl = sgl_ptr;
1619 	sge_addr = segs[i].ds_addr;
1620 	sge_len = segs[i].ds_len;
1621 	i++;
1622 
1623 	offset = (u_int32_t) (sge_addr & page_mask);
1624 	first_prp_len = mr_nvme_pg_size - offset;
1625 
1626 	ptr_first_sgl->Address = sge_addr;
1627 	ptr_first_sgl->Length = first_prp_len;
1628 
1629 	data_len -= first_prp_len;
1630 
1631 	if (sge_len > first_prp_len) {
1632 		sge_addr += first_prp_len;
1633 		sge_len -= first_prp_len;
1634 	} else if (sge_len == first_prp_len) {
1635 		sge_addr = segs[i].ds_addr;
1636 		sge_len = segs[i].ds_len;
1637 		i++;
1638 	}
1639 
1640 	for (;;) {
1641 
1642 		offset = (u_int32_t) (sge_addr & page_mask);
1643 
1644 		/* Put PRP pointer due to page boundary*/
1645 		page_mask_result = (uintptr_t)(ptr_sgl + 1) & page_mask;
1646 		if (!page_mask_result) {
1647 			device_printf(sc->mrsas_dev, "BRCM: Put prp pointer as we are at page boundary"
1648 					" ptr_sgl: 0x%p\n", ptr_sgl);
1649 			ptr_sgl_phys++;
1650 			*ptr_sgl = (uintptr_t)ptr_sgl_phys;
1651 			ptr_sgl++;
1652 			num_prp_in_chain++;
1653 		}
1654 
1655 		*ptr_sgl = sge_addr;
1656 		ptr_sgl++;
1657 		ptr_sgl_phys++;
1658 		num_prp_in_chain++;
1659 
1660 
1661 		sge_addr += mr_nvme_pg_size;
1662 		sge_len -= mr_nvme_pg_size;
1663 		data_len -= mr_nvme_pg_size;
1664 
1665 		if (data_len <= 0)
1666 			break;
1667 
1668 		if (sge_len > 0)
1669 			continue;
1670 
1671 		sge_addr = segs[i].ds_addr;
1672 		sge_len = segs[i].ds_len;
1673 		i++;
1674 	}
1675 
1676 	main_chain_element->Length = num_prp_in_chain * sizeof(u_int64_t);
1677 	mrsas_atomic_inc(&sc->prp_count);
1678 
1679 }
1680 
1681 /*
1682  * mrsas_data_load_cb:	Callback entry point to build SGLs
1683  * input:				Pointer to command packet as argument
1684  *						Pointer to segment
1685  *						Number of segments Error
1686  *
1687  * This is the callback function of the bus dma map load.  It builds SG list
1688  */
1689 static void
1690 mrsas_data_load_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1691 {
1692 	struct mrsas_mpt_cmd *cmd = (struct mrsas_mpt_cmd *)arg;
1693 	struct mrsas_softc *sc = cmd->sc;
1694 	boolean_t build_prp = false;
1695 
1696 	if (error) {
1697 		cmd->error_code = error;
1698 		device_printf(sc->mrsas_dev, "mrsas_data_load_cb_prp: error=%d\n", error);
1699 		if (error == EFBIG) {
1700 			cmd->ccb_ptr->ccb_h.status = CAM_REQ_TOO_BIG;
1701 			return;
1702 		}
1703 	}
1704 	if (cmd->flags & MRSAS_DIR_IN)
1705 		bus_dmamap_sync(cmd->sc->data_tag, cmd->data_dmamap,
1706 		    BUS_DMASYNC_PREREAD);
1707 	if (cmd->flags & MRSAS_DIR_OUT)
1708 		bus_dmamap_sync(cmd->sc->data_tag, cmd->data_dmamap,
1709 		    BUS_DMASYNC_PREWRITE);
1710 	if (nseg > sc->max_num_sge) {
1711 		device_printf(sc->mrsas_dev, "SGE count is too large or 0.\n");
1712 		return;
1713 	}
1714 
1715 	/* Check for whether PRPs should be built or IEEE SGLs*/
1716 	if ((cmd->io_request->IoFlags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) &&
1717 			(cmd->pdInterface == NVME_PD))
1718 		build_prp = mrsas_is_prp_possible(cmd, segs, nseg);
1719 
1720 	if (build_prp == true)
1721 		mrsas_build_prp_nvme(cmd, segs, nseg);
1722 	else
1723 		mrsas_build_ieee_sgl(cmd, segs, nseg);
1724 
1725 	cmd->sge_count = nseg;
1726 }
1727 
1728 /*
1729  * mrsas_freeze_simq:	Freeze SIM queue
1730  * input:				Pointer to command packet
1731  * 						Pointer to SIM
1732  *
1733  * This function freezes the sim queue.
1734  */
1735 static void
1736 mrsas_freeze_simq(struct mrsas_mpt_cmd *cmd, struct cam_sim *sim)
1737 {
1738 	union ccb *ccb = (union ccb *)(cmd->ccb_ptr);
1739 
1740 	xpt_freeze_simq(sim, 1);
1741 	ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
1742 	ccb->ccb_h.status |= CAM_REQUEUE_REQ;
1743 }
1744 
1745 void
1746 mrsas_xpt_freeze(struct mrsas_softc *sc)
1747 {
1748 	xpt_freeze_simq(sc->sim_0, 1);
1749 	xpt_freeze_simq(sc->sim_1, 1);
1750 }
1751 
1752 void
1753 mrsas_xpt_release(struct mrsas_softc *sc)
1754 {
1755 	xpt_release_simq(sc->sim_0, 1);
1756 	xpt_release_simq(sc->sim_1, 1);
1757 }
1758 
1759 /*
1760  * mrsas_cmd_done:	Perform remaining command completion
1761  * input:			Adapter instance soft state  Pointer to command packet
1762  *
1763  * This function calls ummap request and releases the MPT command.
1764  */
1765 void
1766 mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd)
1767 {
1768 	mrsas_unmap_request(sc, cmd);
1769 
1770 	mtx_lock(&sc->sim_lock);
1771 	if (cmd->callout_owner) {
1772 		callout_stop(&cmd->cm_callout);
1773 		cmd->callout_owner  = false;
1774 	}
1775 	xpt_done(cmd->ccb_ptr);
1776 	cmd->ccb_ptr = NULL;
1777 	mtx_unlock(&sc->sim_lock);
1778 	mrsas_release_mpt_cmd(cmd);
1779 }
1780 
1781 /*
1782  * mrsas_cam_poll:	Polling entry point
1783  * input:			Pointer to SIM
1784  *
1785  * This is currently a stub function.
1786  */
1787 static void
1788 mrsas_cam_poll(struct cam_sim *sim)
1789 {
1790 	int i;
1791 	struct mrsas_softc *sc = (struct mrsas_softc *)cam_sim_softc(sim);
1792 
1793 	if (sc->msix_vectors != 0){
1794 		for (i=0; i<sc->msix_vectors; i++){
1795 			mrsas_complete_cmd(sc, i);
1796 		}
1797 	} else {
1798 		mrsas_complete_cmd(sc, 0);
1799 	}
1800 }
1801 
1802 /*
1803  * mrsas_bus_scan:	Perform bus scan
1804  * input:			Adapter instance soft state
1805  *
1806  * This mrsas_bus_scan function is needed for FreeBSD 7.x.  Also, it should not
1807  * be called in FreeBSD 8.x and later versions, where the bus scan is
1808  * automatic.
1809  */
1810 int
1811 mrsas_bus_scan(struct mrsas_softc *sc)
1812 {
1813 	union ccb *ccb_0;
1814 	union ccb *ccb_1;
1815 
1816 	if ((ccb_0 = xpt_alloc_ccb()) == NULL) {
1817 		return (ENOMEM);
1818 	}
1819 	if ((ccb_1 = xpt_alloc_ccb()) == NULL) {
1820 		xpt_free_ccb(ccb_0);
1821 		return (ENOMEM);
1822 	}
1823 	mtx_lock(&sc->sim_lock);
1824 	if (xpt_create_path(&ccb_0->ccb_h.path, xpt_periph, cam_sim_path(sc->sim_0),
1825 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
1826 		xpt_free_ccb(ccb_0);
1827 		xpt_free_ccb(ccb_1);
1828 		mtx_unlock(&sc->sim_lock);
1829 		return (EIO);
1830 	}
1831 	if (xpt_create_path(&ccb_1->ccb_h.path, xpt_periph, cam_sim_path(sc->sim_1),
1832 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
1833 		xpt_free_ccb(ccb_0);
1834 		xpt_free_ccb(ccb_1);
1835 		mtx_unlock(&sc->sim_lock);
1836 		return (EIO);
1837 	}
1838 	mtx_unlock(&sc->sim_lock);
1839 	xpt_rescan(ccb_0);
1840 	xpt_rescan(ccb_1);
1841 
1842 	return (0);
1843 }
1844 
1845 /*
1846  * mrsas_bus_scan_sim:	Perform bus scan per SIM
1847  * input:				adapter instance soft state
1848  *
1849  * This function will be called from Event handler on LD creation/deletion,
1850  * JBOD on/off.
1851  */
1852 int
1853 mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim)
1854 {
1855 	union ccb *ccb;
1856 
1857 	if ((ccb = xpt_alloc_ccb()) == NULL) {
1858 		return (ENOMEM);
1859 	}
1860 	mtx_lock(&sc->sim_lock);
1861 	if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, cam_sim_path(sim),
1862 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
1863 		xpt_free_ccb(ccb);
1864 		mtx_unlock(&sc->sim_lock);
1865 		return (EIO);
1866 	}
1867 	mtx_unlock(&sc->sim_lock);
1868 	xpt_rescan(ccb);
1869 
1870 	return (0);
1871 }
1872 
1873 /*
1874  * mrsas_track_scsiio:  Track IOs for a given target in the mpt_cmd_list
1875  * input:           Adapter instance soft state
1876  *                  Target ID of target
1877  *                  Bus ID of the target
1878  *
1879  * This function checks for any pending IO in the whole mpt_cmd_list pool
1880  * with the bus_id and target_id passed in arguments. If some IO is found
1881  * that means target reset is not successfully completed.
1882  *
1883  * Returns FAIL if IOs pending to the target device, else return SUCCESS
1884  */
1885 static int
1886 mrsas_track_scsiio(struct mrsas_softc *sc, target_id_t tgt_id, u_int32_t bus_id)
1887 {
1888 	int i;
1889 	struct mrsas_mpt_cmd *mpt_cmd = NULL;
1890 
1891 	for (i = 0 ; i < sc->max_fw_cmds; i++) {
1892 		mpt_cmd = sc->mpt_cmd_list[i];
1893 
1894 	/*
1895 	 * Check if the target_id and bus_id is same as the timeout IO
1896 	 */
1897 	if (mpt_cmd->ccb_ptr) {
1898 		/* bus_id = 1 denotes a VD */
1899 		if (bus_id == 1)
1900 			tgt_id = (mpt_cmd->ccb_ptr->ccb_h.target_id - (MRSAS_MAX_PD - 1));
1901 
1902 			if (mpt_cmd->ccb_ptr->cpi.bus_id == bus_id &&
1903 			    mpt_cmd->ccb_ptr->ccb_h.target_id == tgt_id) {
1904 				device_printf(sc->mrsas_dev,
1905 				    "IO commands pending to target id %d\n", tgt_id);
1906 				return FAIL;
1907 			}
1908 		}
1909 	}
1910 
1911 	return SUCCESS;
1912 }
1913 
1914 #if TM_DEBUG
1915 /*
1916  * mrsas_tm_response_code: Prints TM response code received from FW
1917  * input:           Adapter instance soft state
1918  *                  MPI reply returned from firmware
1919  *
1920  * Returns nothing.
1921  */
1922 static void
1923 mrsas_tm_response_code(struct mrsas_softc *sc,
1924 	MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply)
1925 {
1926 	char *desc;
1927 
1928 	switch (mpi_reply->ResponseCode) {
1929 	case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
1930 		desc = "task management request completed";
1931 		break;
1932 	case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
1933 		desc = "invalid frame";
1934 		break;
1935 	case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
1936 		desc = "task management request not supported";
1937 		break;
1938 	case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
1939 		desc = "task management request failed";
1940 		break;
1941 	case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
1942 		desc = "task management request succeeded";
1943 		break;
1944 	case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
1945 		desc = "invalid lun";
1946 		break;
1947 	case 0xA:
1948 		desc = "overlapped tag attempted";
1949 		break;
1950 	case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
1951 		desc = "task queued, however not sent to target";
1952 		break;
1953 	default:
1954 		desc = "unknown";
1955 		break;
1956 	}
1957 	device_printf(sc->mrsas_dev, "response_code(%01x): %s\n",
1958 	    mpi_reply->ResponseCode, desc);
1959 	device_printf(sc->mrsas_dev,
1960 	    "TerminationCount/DevHandle/Function/TaskType/IOCStat/IOCLoginfo\n"
1961 	    "0x%x/0x%x/0x%x/0x%x/0x%x/0x%x\n",
1962 	    mpi_reply->TerminationCount, mpi_reply->DevHandle,
1963 	    mpi_reply->Function, mpi_reply->TaskType,
1964 	    mpi_reply->IOCStatus, mpi_reply->IOCLogInfo);
1965 }
1966 #endif
1967 
1968 /*
1969  * mrsas_issue_tm:  Fires the TM command to FW and waits for completion
1970  * input:           Adapter instance soft state
1971  *                  reqest descriptor compiled by mrsas_reset_targets
1972  *
1973  * Returns FAIL if TM command TIMEDOUT from FW else SUCCESS.
1974  */
1975 static int
1976 mrsas_issue_tm(struct mrsas_softc *sc,
1977 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc)
1978 {
1979 	int sleep_stat;
1980 
1981 	mrsas_fire_cmd(sc, req_desc->addr.u.low, req_desc->addr.u.high);
1982 	sleep_stat = msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO, "tm_sleep", 50*hz);
1983 
1984 	if (sleep_stat == EWOULDBLOCK) {
1985 		device_printf(sc->mrsas_dev, "tm cmd TIMEDOUT\n");
1986 		return FAIL;
1987 	}
1988 
1989 	return SUCCESS;
1990 }
1991 
1992 /*
1993  * mrsas_reset_targets : Gathers info to fire a target reset command
1994  * input:           Adapter instance soft state
1995  *
1996  * This function compiles data for a target reset command to be fired to the FW
1997  * and then traverse the target_reset_pool to see targets with TIMEDOUT IOs.
1998  *
1999  * Returns SUCCESS or FAIL
2000  */
2001 int mrsas_reset_targets(struct mrsas_softc *sc)
2002 {
2003 	struct mrsas_mpt_cmd *tm_mpt_cmd = NULL;
2004 	struct mrsas_mpt_cmd *tgt_mpt_cmd = NULL;
2005 	MR_TASK_MANAGE_REQUEST *mr_request;
2006 	MPI2_SCSI_TASK_MANAGE_REQUEST *tm_mpi_request;
2007 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
2008 	int retCode = FAIL, count, i, outstanding;
2009 	u_int32_t MSIxIndex, bus_id;
2010 	target_id_t tgt_id;
2011 #if TM_DEBUG
2012 	MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply;
2013 #endif
2014 
2015 	outstanding = mrsas_atomic_read(&sc->fw_outstanding);
2016 
2017 	if (!outstanding) {
2018 		device_printf(sc->mrsas_dev, "NO IOs pending...\n");
2019 		mrsas_atomic_set(&sc->target_reset_outstanding, 0);
2020 		retCode = SUCCESS;
2021 		goto return_status;
2022 	} else if (sc->adprecovery != MRSAS_HBA_OPERATIONAL) {
2023 		device_printf(sc->mrsas_dev, "Controller is not operational\n");
2024 		goto return_status;
2025 	} else {
2026 		/* Some more error checks will be added in future */
2027 	}
2028 
2029 	/* Get an mpt frame and an index to fire the TM cmd */
2030 	tm_mpt_cmd = mrsas_get_mpt_cmd(sc);
2031 	if (!tm_mpt_cmd) {
2032 		retCode = FAIL;
2033 		goto return_status;
2034 	}
2035 
2036 	req_desc = mrsas_get_request_desc(sc, (tm_mpt_cmd->index) - 1);
2037 	if (!req_desc) {
2038 		device_printf(sc->mrsas_dev, "Cannot get request_descriptor for tm.\n");
2039 		retCode = FAIL;
2040 		goto release_mpt;
2041 	}
2042 	memset(req_desc, 0, sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION));
2043 
2044 	req_desc->HighPriority.SMID = tm_mpt_cmd->index;
2045 	req_desc->HighPriority.RequestFlags =
2046 	    (MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY <<
2047 	    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2048 	req_desc->HighPriority.MSIxIndex =  0;
2049 	req_desc->HighPriority.LMID = 0;
2050 	req_desc->HighPriority.Reserved1 = 0;
2051 	tm_mpt_cmd->request_desc = req_desc;
2052 
2053 	mr_request = (MR_TASK_MANAGE_REQUEST *) tm_mpt_cmd->io_request;
2054 	memset(mr_request, 0, sizeof(MR_TASK_MANAGE_REQUEST));
2055 
2056 	tm_mpi_request = (MPI2_SCSI_TASK_MANAGE_REQUEST *) &mr_request->TmRequest;
2057 	tm_mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
2058 	tm_mpi_request->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
2059 	tm_mpi_request->TaskMID = 0; /* smid task */
2060 	tm_mpi_request->LUN[1] = 0;
2061 
2062 	/* Traverse the tm_mpt pool to get valid entries */
2063 	for (i = 0 ; i < MRSAS_MAX_TM_TARGETS; i++) {
2064 		if(!sc->target_reset_pool[i]) {
2065 			continue;
2066 		} else {
2067 			tgt_mpt_cmd = sc->target_reset_pool[i];
2068 		}
2069 
2070 		tgt_id = i;
2071 
2072 		/* See if the target is tm capable or NOT */
2073 		if (!tgt_mpt_cmd->tmCapable) {
2074 			device_printf(sc->mrsas_dev, "Task management NOT SUPPORTED for "
2075 			    "CAM target:%d\n", tgt_id);
2076 
2077 			retCode = FAIL;
2078 			goto release_mpt;
2079 		}
2080 
2081 		tm_mpi_request->DevHandle = tgt_mpt_cmd->io_request->DevHandle;
2082 
2083 		if (i < (MRSAS_MAX_PD - 1)) {
2084 			mr_request->uTmReqReply.tmReqFlags.isTMForPD = 1;
2085 			bus_id = 0;
2086 		} else {
2087 			mr_request->uTmReqReply.tmReqFlags.isTMForLD = 1;
2088 			bus_id = 1;
2089 		}
2090 
2091 		device_printf(sc->mrsas_dev, "TM will be fired for "
2092 		    "CAM target:%d and bus_id %d\n", tgt_id, bus_id);
2093 
2094 		sc->ocr_chan = (void *)&tm_mpt_cmd;
2095 		retCode = mrsas_issue_tm(sc, req_desc);
2096 		if (retCode == FAIL)
2097 			goto release_mpt;
2098 
2099 #if TM_DEBUG
2100 		mpi_reply =
2101 		    (MPI2_SCSI_TASK_MANAGE_REPLY *) &mr_request->uTmReqReply.TMReply;
2102 		mrsas_tm_response_code(sc, mpi_reply);
2103 #endif
2104 		mrsas_atomic_dec(&sc->target_reset_outstanding);
2105 		sc->target_reset_pool[i] = NULL;
2106 
2107 		/* Check for pending cmds in the mpt_cmd_pool with the tgt_id */
2108 		mrsas_disable_intr(sc);
2109 		/* Wait for 1 second to complete parallel ISR calling same
2110 		 * mrsas_complete_cmd()
2111 		 */
2112 		msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO, "mrsas_reset_wakeup",
2113 		   1 * hz);
2114 		count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
2115 		mtx_unlock(&sc->sim_lock);
2116 		for (MSIxIndex = 0; MSIxIndex < count; MSIxIndex++)
2117 		    mrsas_complete_cmd(sc, MSIxIndex);
2118 		mtx_lock(&sc->sim_lock);
2119 		retCode = mrsas_track_scsiio(sc, tgt_id, bus_id);
2120 		mrsas_enable_intr(sc);
2121 
2122 		if (retCode == FAIL)
2123 			goto release_mpt;
2124 	}
2125 
2126 	device_printf(sc->mrsas_dev, "Number of targets outstanding "
2127 	    "after reset: %d\n", mrsas_atomic_read(&sc->target_reset_outstanding));
2128 
2129 release_mpt:
2130 	mrsas_release_mpt_cmd(tm_mpt_cmd);
2131 return_status:
2132 	device_printf(sc->mrsas_dev, "target reset %s!!\n",
2133 		(retCode == SUCCESS) ? "SUCCESS" : "FAIL");
2134 
2135 	return retCode;
2136 }
2137 
2138