xref: /freebsd/sys/dev/msk/if_msk.c (revision 81ad6265)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * SPDX-License-Identifier: BSD-4-Clause AND BSD-3-Clause
50  *
51  * Copyright (c) 1997, 1998, 1999, 2000
52  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
53  *
54  * Redistribution and use in source and binary forms, with or without
55  * modification, are permitted provided that the following conditions
56  * are met:
57  * 1. Redistributions of source code must retain the above copyright
58  *    notice, this list of conditions and the following disclaimer.
59  * 2. Redistributions in binary form must reproduce the above copyright
60  *    notice, this list of conditions and the following disclaimer in the
61  *    documentation and/or other materials provided with the distribution.
62  * 3. All advertising materials mentioning features or use of this software
63  *    must display the following acknowledgement:
64  *	This product includes software developed by Bill Paul.
65  * 4. Neither the name of the author nor the names of any co-contributors
66  *    may be used to endorse or promote products derived from this software
67  *    without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
70  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
71  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
72  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
79  * THE POSSIBILITY OF SUCH DAMAGE.
80  */
81 /*-
82  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
83  *
84  * Permission to use, copy, modify, and distribute this software for any
85  * purpose with or without fee is hereby granted, provided that the above
86  * copyright notice and this permission notice appear in all copies.
87  *
88  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
89  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
90  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
91  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
92  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
93  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
94  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
95  */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/bus.h>
109 #include <sys/endian.h>
110 #include <sys/mbuf.h>
111 #include <sys/malloc.h>
112 #include <sys/kernel.h>
113 #include <sys/module.h>
114 #include <sys/socket.h>
115 #include <sys/sockio.h>
116 #include <sys/queue.h>
117 #include <sys/sysctl.h>
118 
119 #include <net/bpf.h>
120 #include <net/ethernet.h>
121 #include <net/if.h>
122 #include <net/if_var.h>
123 #include <net/if_arp.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_types.h>
127 #include <net/if_vlan_var.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/tcp.h>
133 #include <netinet/udp.h>
134 
135 #include <machine/bus.h>
136 #include <machine/in_cksum.h>
137 #include <machine/resource.h>
138 #include <sys/rman.h>
139 
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 
143 #include <dev/pci/pcireg.h>
144 #include <dev/pci/pcivar.h>
145 
146 #include <dev/msk/if_mskreg.h>
147 
148 MODULE_DEPEND(msk, pci, 1, 1, 1);
149 MODULE_DEPEND(msk, ether, 1, 1, 1);
150 MODULE_DEPEND(msk, miibus, 1, 1, 1);
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 /* Tunables. */
156 static int msi_disable = 0;
157 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
158 static int legacy_intr = 0;
159 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
160 static int jumbo_disable = 0;
161 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
162 
163 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
164 
165 /*
166  * Devices supported by this driver.
167  */
168 static const struct msk_product {
169 	uint16_t	msk_vendorid;
170 	uint16_t	msk_deviceid;
171 	const char	*msk_name;
172 } msk_products[] = {
173 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
174 	    "SK-9Sxx Gigabit Ethernet" },
175 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
176 	    "SK-9Exx Gigabit Ethernet"},
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
178 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
180 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
182 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
184 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
186 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
188 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
190 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
192 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
194 	    "Marvell Yukon 88E8035 Fast Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
196 	    "Marvell Yukon 88E8036 Fast Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
198 	    "Marvell Yukon 88E8038 Fast Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
200 	    "Marvell Yukon 88E8039 Fast Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
202 	    "Marvell Yukon 88E8040 Fast Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
204 	    "Marvell Yukon 88E8040T Fast Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
206 	    "Marvell Yukon 88E8042 Fast Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
208 	    "Marvell Yukon 88E8048 Fast Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
210 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
211 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
212 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
213 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
214 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
215 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
216 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
217 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
218 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
219 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
220 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
221 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
222 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
223 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
224 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
225 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
226 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
227 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
228 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
229 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
230 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
231 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
232 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
233 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
234 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
235 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
236 	    "D-Link 550SX Gigabit Ethernet" },
237 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
238 	    "D-Link 560SX Gigabit Ethernet" },
239 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
240 	    "D-Link 560T Gigabit Ethernet" }
241 };
242 
243 static const char *model_name[] = {
244 	"Yukon XL",
245         "Yukon EC Ultra",
246         "Yukon EX",
247         "Yukon EC",
248         "Yukon FE",
249         "Yukon FE+",
250         "Yukon Supreme",
251         "Yukon Ultra 2",
252         "Yukon Unknown",
253         "Yukon Optima",
254 };
255 
256 static int mskc_probe(device_t);
257 static int mskc_attach(device_t);
258 static int mskc_detach(device_t);
259 static int mskc_shutdown(device_t);
260 static int mskc_setup_rambuffer(struct msk_softc *);
261 static int mskc_suspend(device_t);
262 static int mskc_resume(device_t);
263 static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t);
264 static void mskc_reset(struct msk_softc *);
265 
266 static int msk_probe(device_t);
267 static int msk_attach(device_t);
268 static int msk_detach(device_t);
269 
270 static void msk_tick(void *);
271 static void msk_intr(void *);
272 static void msk_intr_phy(struct msk_if_softc *);
273 static void msk_intr_gmac(struct msk_if_softc *);
274 static __inline void msk_rxput(struct msk_if_softc *);
275 static int msk_handle_events(struct msk_softc *);
276 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
277 static void msk_intr_hwerr(struct msk_softc *);
278 #ifndef __NO_STRICT_ALIGNMENT
279 static __inline void msk_fixup_rx(struct mbuf *);
280 #endif
281 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
282 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
283 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
284 static void msk_txeof(struct msk_if_softc *, int);
285 static int msk_encap(struct msk_if_softc *, struct mbuf **);
286 static void msk_start(if_t);
287 static void msk_start_locked(if_t);
288 static int msk_ioctl(if_t, u_long, caddr_t);
289 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
290 static void msk_set_rambuffer(struct msk_if_softc *);
291 static void msk_set_tx_stfwd(struct msk_if_softc *);
292 static void msk_init(void *);
293 static void msk_init_locked(struct msk_if_softc *);
294 static void msk_stop(struct msk_if_softc *);
295 static void msk_watchdog(struct msk_if_softc *);
296 static int msk_mediachange(if_t);
297 static void msk_mediastatus(if_t, struct ifmediareq *);
298 static void msk_phy_power(struct msk_softc *, int);
299 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
300 static int msk_status_dma_alloc(struct msk_softc *);
301 static void msk_status_dma_free(struct msk_softc *);
302 static int msk_txrx_dma_alloc(struct msk_if_softc *);
303 static int msk_rx_dma_jalloc(struct msk_if_softc *);
304 static void msk_txrx_dma_free(struct msk_if_softc *);
305 static void msk_rx_dma_jfree(struct msk_if_softc *);
306 static int msk_rx_fill(struct msk_if_softc *, int);
307 static int msk_init_rx_ring(struct msk_if_softc *);
308 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
309 static void msk_init_tx_ring(struct msk_if_softc *);
310 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
311 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
312 static int msk_newbuf(struct msk_if_softc *, int);
313 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
314 
315 static int msk_phy_readreg(struct msk_if_softc *, int, int);
316 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
317 static int msk_miibus_readreg(device_t, int, int);
318 static int msk_miibus_writereg(device_t, int, int, int);
319 static void msk_miibus_statchg(device_t);
320 
321 static void msk_rxfilter(struct msk_if_softc *);
322 static void msk_setvlan(struct msk_if_softc *, if_t);
323 
324 static void msk_stats_clear(struct msk_if_softc *);
325 static void msk_stats_update(struct msk_if_softc *);
326 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
327 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
328 static void msk_sysctl_node(struct msk_if_softc *);
329 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
330 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
331 
332 static device_method_t mskc_methods[] = {
333 	/* Device interface */
334 	DEVMETHOD(device_probe,		mskc_probe),
335 	DEVMETHOD(device_attach,	mskc_attach),
336 	DEVMETHOD(device_detach,	mskc_detach),
337 	DEVMETHOD(device_suspend,	mskc_suspend),
338 	DEVMETHOD(device_resume,	mskc_resume),
339 	DEVMETHOD(device_shutdown,	mskc_shutdown),
340 
341 	DEVMETHOD(bus_get_dma_tag,	mskc_get_dma_tag),
342 
343 	DEVMETHOD_END
344 };
345 
346 static driver_t mskc_driver = {
347 	"mskc",
348 	mskc_methods,
349 	sizeof(struct msk_softc)
350 };
351 
352 static device_method_t msk_methods[] = {
353 	/* Device interface */
354 	DEVMETHOD(device_probe,		msk_probe),
355 	DEVMETHOD(device_attach,	msk_attach),
356 	DEVMETHOD(device_detach,	msk_detach),
357 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
358 
359 	/* MII interface */
360 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
361 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
362 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
363 
364 	DEVMETHOD_END
365 };
366 
367 static driver_t msk_driver = {
368 	"msk",
369 	msk_methods,
370 	sizeof(struct msk_if_softc)
371 };
372 
373 DRIVER_MODULE(mskc, pci, mskc_driver, NULL, NULL);
374 DRIVER_MODULE(msk, mskc, msk_driver, NULL, NULL);
375 DRIVER_MODULE(miibus, msk, miibus_driver, NULL, NULL);
376 
377 static struct resource_spec msk_res_spec_io[] = {
378 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
379 	{ -1,			0,		0 }
380 };
381 
382 static struct resource_spec msk_res_spec_mem[] = {
383 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
384 	{ -1,			0,		0 }
385 };
386 
387 static struct resource_spec msk_irq_spec_legacy[] = {
388 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
389 	{ -1,			0,		0 }
390 };
391 
392 static struct resource_spec msk_irq_spec_msi[] = {
393 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
394 	{ -1,			0,		0 }
395 };
396 
397 static int
398 msk_miibus_readreg(device_t dev, int phy, int reg)
399 {
400 	struct msk_if_softc *sc_if;
401 
402 	sc_if = device_get_softc(dev);
403 
404 	return (msk_phy_readreg(sc_if, phy, reg));
405 }
406 
407 static int
408 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
409 {
410 	struct msk_softc *sc;
411 	int i, val;
412 
413 	sc = sc_if->msk_softc;
414 
415         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
416 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
417 
418 	for (i = 0; i < MSK_TIMEOUT; i++) {
419 		DELAY(1);
420 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
421 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
422 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
423 			break;
424 		}
425 	}
426 
427 	if (i == MSK_TIMEOUT) {
428 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
429 		val = 0;
430 	}
431 
432 	return (val);
433 }
434 
435 static int
436 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
437 {
438 	struct msk_if_softc *sc_if;
439 
440 	sc_if = device_get_softc(dev);
441 
442 	return (msk_phy_writereg(sc_if, phy, reg, val));
443 }
444 
445 static int
446 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
447 {
448 	struct msk_softc *sc;
449 	int i;
450 
451 	sc = sc_if->msk_softc;
452 
453 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
454         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
455 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
456 	for (i = 0; i < MSK_TIMEOUT; i++) {
457 		DELAY(1);
458 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
459 		    GM_SMI_CT_BUSY) == 0)
460 			break;
461 	}
462 	if (i == MSK_TIMEOUT)
463 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
464 
465 	return (0);
466 }
467 
468 static void
469 msk_miibus_statchg(device_t dev)
470 {
471 	struct msk_softc *sc;
472 	struct msk_if_softc *sc_if;
473 	struct mii_data *mii;
474 	if_t ifp;
475 	uint32_t gmac;
476 
477 	sc_if = device_get_softc(dev);
478 	sc = sc_if->msk_softc;
479 
480 	MSK_IF_LOCK_ASSERT(sc_if);
481 
482 	mii = device_get_softc(sc_if->msk_miibus);
483 	ifp = sc_if->msk_ifp;
484 	if (mii == NULL || ifp == NULL ||
485 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
486 		return;
487 
488 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
489 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
490 	    (IFM_AVALID | IFM_ACTIVE)) {
491 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
492 		case IFM_10_T:
493 		case IFM_100_TX:
494 			sc_if->msk_flags |= MSK_FLAG_LINK;
495 			break;
496 		case IFM_1000_T:
497 		case IFM_1000_SX:
498 		case IFM_1000_LX:
499 		case IFM_1000_CX:
500 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
501 				sc_if->msk_flags |= MSK_FLAG_LINK;
502 			break;
503 		default:
504 			break;
505 		}
506 	}
507 
508 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
509 		/* Enable Tx FIFO Underrun. */
510 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
511 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
512 		/*
513 		 * Because mii(4) notify msk(4) that it detected link status
514 		 * change, there is no need to enable automatic
515 		 * speed/flow-control/duplex updates.
516 		 */
517 		gmac = GM_GPCR_AU_ALL_DIS;
518 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
519 		case IFM_1000_SX:
520 		case IFM_1000_T:
521 			gmac |= GM_GPCR_SPEED_1000;
522 			break;
523 		case IFM_100_TX:
524 			gmac |= GM_GPCR_SPEED_100;
525 			break;
526 		case IFM_10_T:
527 			break;
528 		}
529 
530 		if ((IFM_OPTIONS(mii->mii_media_active) &
531 		    IFM_ETH_RXPAUSE) == 0)
532 			gmac |= GM_GPCR_FC_RX_DIS;
533 		if ((IFM_OPTIONS(mii->mii_media_active) &
534 		     IFM_ETH_TXPAUSE) == 0)
535 			gmac |= GM_GPCR_FC_TX_DIS;
536 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
537 			gmac |= GM_GPCR_DUP_FULL;
538 		else
539 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
540 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
541 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
542 		/* Read again to ensure writing. */
543 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
544 		gmac = GMC_PAUSE_OFF;
545 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
546 			if ((IFM_OPTIONS(mii->mii_media_active) &
547 			    IFM_ETH_RXPAUSE) != 0)
548 				gmac = GMC_PAUSE_ON;
549 		}
550 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
551 
552 		/* Enable PHY interrupt for FIFO underrun/overflow. */
553 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
554 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
555 	} else {
556 		/*
557 		 * Link state changed to down.
558 		 * Disable PHY interrupts.
559 		 */
560 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
561 		/* Disable Rx/Tx MAC. */
562 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
563 		if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) {
564 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
565 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
566 			/* Read again to ensure writing. */
567 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
568 		}
569 	}
570 }
571 
572 static u_int
573 msk_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
574 {
575 	uint32_t *mchash = arg;
576 	uint32_t crc;
577 
578 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
579 	/* Just want the 6 least significant bits. */
580 	crc &= 0x3f;
581 	/* Set the corresponding bit in the hash table. */
582 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
583 
584 	return (1);
585 }
586 
587 static void
588 msk_rxfilter(struct msk_if_softc *sc_if)
589 {
590 	struct msk_softc *sc;
591 	if_t ifp;
592 	uint32_t mchash[2];
593 	uint16_t mode;
594 
595 	sc = sc_if->msk_softc;
596 
597 	MSK_IF_LOCK_ASSERT(sc_if);
598 
599 	ifp = sc_if->msk_ifp;
600 
601 	bzero(mchash, sizeof(mchash));
602 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
603 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
604 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
605 	else if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
606 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
607 		mchash[0] = 0xffff;
608 		mchash[1] = 0xffff;
609 	} else {
610 		mode |= GM_RXCR_UCF_ENA;
611 		if_foreach_llmaddr(ifp, msk_hash_maddr, mchash);
612 		if (mchash[0] != 0 || mchash[1] != 0)
613 			mode |= GM_RXCR_MCF_ENA;
614 	}
615 
616 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
617 	    mchash[0] & 0xffff);
618 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
619 	    (mchash[0] >> 16) & 0xffff);
620 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
621 	    mchash[1] & 0xffff);
622 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
623 	    (mchash[1] >> 16) & 0xffff);
624 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
625 }
626 
627 static void
628 msk_setvlan(struct msk_if_softc *sc_if, if_t ifp)
629 {
630 	struct msk_softc *sc;
631 
632 	sc = sc_if->msk_softc;
633 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
634 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
635 		    RX_VLAN_STRIP_ON);
636 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
637 		    TX_VLAN_TAG_ON);
638 	} else {
639 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
640 		    RX_VLAN_STRIP_OFF);
641 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
642 		    TX_VLAN_TAG_OFF);
643 	}
644 }
645 
646 static int
647 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
648 {
649 	uint16_t idx;
650 	int i;
651 
652 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
653 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
654 		/* Wait until controller executes OP_TCPSTART command. */
655 		for (i = 100; i > 0; i--) {
656 			DELAY(100);
657 			idx = CSR_READ_2(sc_if->msk_softc,
658 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
659 			    PREF_UNIT_GET_IDX_REG));
660 			if (idx != 0)
661 				break;
662 		}
663 		if (i == 0) {
664 			device_printf(sc_if->msk_if_dev,
665 			    "prefetch unit stuck?\n");
666 			return (ETIMEDOUT);
667 		}
668 		/*
669 		 * Fill consumed LE with free buffer. This can be done
670 		 * in Rx handler but we don't want to add special code
671 		 * in fast handler.
672 		 */
673 		if (jumbo > 0) {
674 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
675 				return (ENOBUFS);
676 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
677 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
678 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
679 		} else {
680 			if (msk_newbuf(sc_if, 0) != 0)
681 				return (ENOBUFS);
682 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
683 			    sc_if->msk_cdata.msk_rx_ring_map,
684 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
685 		}
686 		sc_if->msk_cdata.msk_rx_prod = 0;
687 		CSR_WRITE_2(sc_if->msk_softc,
688 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
689 		    sc_if->msk_cdata.msk_rx_prod);
690 	}
691 	return (0);
692 }
693 
694 static int
695 msk_init_rx_ring(struct msk_if_softc *sc_if)
696 {
697 	struct msk_ring_data *rd;
698 	struct msk_rxdesc *rxd;
699 	int i, nbuf, prod;
700 
701 	MSK_IF_LOCK_ASSERT(sc_if);
702 
703 	sc_if->msk_cdata.msk_rx_cons = 0;
704 	sc_if->msk_cdata.msk_rx_prod = 0;
705 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
706 
707 	rd = &sc_if->msk_rdata;
708 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
709 	for (i = prod = 0; i < MSK_RX_RING_CNT; i++) {
710 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
711 		rxd->rx_m = NULL;
712 		rxd->rx_le = &rd->msk_rx_ring[prod];
713 		MSK_INC(prod, MSK_RX_RING_CNT);
714 	}
715 	nbuf = MSK_RX_BUF_CNT;
716 	prod = 0;
717 	/* Have controller know how to compute Rx checksum. */
718 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
719 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
720 #ifdef MSK_64BIT_DMA
721 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
722 		rxd->rx_m = NULL;
723 		rxd->rx_le = &rd->msk_rx_ring[prod];
724 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
725 		    ETHER_HDR_LEN);
726 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
727 		MSK_INC(prod, MSK_RX_RING_CNT);
728 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
729 #endif
730 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
731 		rxd->rx_m = NULL;
732 		rxd->rx_le = &rd->msk_rx_ring[prod];
733 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
734 		    ETHER_HDR_LEN);
735 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
736 		MSK_INC(prod, MSK_RX_RING_CNT);
737 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
738 		nbuf--;
739 	}
740 	for (i = 0; i < nbuf; i++) {
741 		if (msk_newbuf(sc_if, prod) != 0)
742 			return (ENOBUFS);
743 		MSK_RX_INC(prod, MSK_RX_RING_CNT);
744 	}
745 
746 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
747 	    sc_if->msk_cdata.msk_rx_ring_map,
748 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
749 
750 	/* Update prefetch unit. */
751 	sc_if->msk_cdata.msk_rx_prod = prod;
752 	CSR_WRITE_2(sc_if->msk_softc,
753 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
754 	    (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) %
755 	    MSK_RX_RING_CNT);
756 	if (msk_rx_fill(sc_if, 0) != 0)
757 		return (ENOBUFS);
758 	return (0);
759 }
760 
761 static int
762 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
763 {
764 	struct msk_ring_data *rd;
765 	struct msk_rxdesc *rxd;
766 	int i, nbuf, prod;
767 
768 	MSK_IF_LOCK_ASSERT(sc_if);
769 
770 	sc_if->msk_cdata.msk_rx_cons = 0;
771 	sc_if->msk_cdata.msk_rx_prod = 0;
772 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
773 
774 	rd = &sc_if->msk_rdata;
775 	bzero(rd->msk_jumbo_rx_ring,
776 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
777 	for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
778 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
779 		rxd->rx_m = NULL;
780 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
781 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
782 	}
783 	nbuf = MSK_RX_BUF_CNT;
784 	prod = 0;
785 	/* Have controller know how to compute Rx checksum. */
786 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
787 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
788 #ifdef MSK_64BIT_DMA
789 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
790 		rxd->rx_m = NULL;
791 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
792 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
793 		    ETHER_HDR_LEN);
794 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
795 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
796 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
797 #endif
798 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
799 		rxd->rx_m = NULL;
800 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
801 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
802 		    ETHER_HDR_LEN);
803 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
804 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
805 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
806 		nbuf--;
807 	}
808 	for (i = 0; i < nbuf; i++) {
809 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
810 			return (ENOBUFS);
811 		MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT);
812 	}
813 
814 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
815 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
816 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
817 
818 	/* Update prefetch unit. */
819 	sc_if->msk_cdata.msk_rx_prod = prod;
820 	CSR_WRITE_2(sc_if->msk_softc,
821 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
822 	    (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) %
823 	    MSK_JUMBO_RX_RING_CNT);
824 	if (msk_rx_fill(sc_if, 1) != 0)
825 		return (ENOBUFS);
826 	return (0);
827 }
828 
829 static void
830 msk_init_tx_ring(struct msk_if_softc *sc_if)
831 {
832 	struct msk_ring_data *rd;
833 	struct msk_txdesc *txd;
834 	int i;
835 
836 	sc_if->msk_cdata.msk_tso_mtu = 0;
837 	sc_if->msk_cdata.msk_last_csum = 0;
838 	sc_if->msk_cdata.msk_tx_prod = 0;
839 	sc_if->msk_cdata.msk_tx_cons = 0;
840 	sc_if->msk_cdata.msk_tx_cnt = 0;
841 	sc_if->msk_cdata.msk_tx_high_addr = 0;
842 
843 	rd = &sc_if->msk_rdata;
844 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
845 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
846 		txd = &sc_if->msk_cdata.msk_txdesc[i];
847 		txd->tx_m = NULL;
848 		txd->tx_le = &rd->msk_tx_ring[i];
849 	}
850 
851 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
852 	    sc_if->msk_cdata.msk_tx_ring_map,
853 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
854 }
855 
856 static __inline void
857 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
858 {
859 	struct msk_rx_desc *rx_le;
860 	struct msk_rxdesc *rxd;
861 	struct mbuf *m;
862 
863 #ifdef MSK_64BIT_DMA
864 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
865 	rx_le = rxd->rx_le;
866 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
867 	MSK_INC(idx, MSK_RX_RING_CNT);
868 #endif
869 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
870 	m = rxd->rx_m;
871 	rx_le = rxd->rx_le;
872 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
873 }
874 
875 static __inline void
876 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
877 {
878 	struct msk_rx_desc *rx_le;
879 	struct msk_rxdesc *rxd;
880 	struct mbuf *m;
881 
882 #ifdef MSK_64BIT_DMA
883 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
884 	rx_le = rxd->rx_le;
885 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
886 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
887 #endif
888 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
889 	m = rxd->rx_m;
890 	rx_le = rxd->rx_le;
891 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
892 }
893 
894 static int
895 msk_newbuf(struct msk_if_softc *sc_if, int idx)
896 {
897 	struct msk_rx_desc *rx_le;
898 	struct msk_rxdesc *rxd;
899 	struct mbuf *m;
900 	bus_dma_segment_t segs[1];
901 	bus_dmamap_t map;
902 	int nsegs;
903 
904 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
905 	if (m == NULL)
906 		return (ENOBUFS);
907 
908 	m->m_len = m->m_pkthdr.len = MCLBYTES;
909 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
910 		m_adj(m, ETHER_ALIGN);
911 #ifndef __NO_STRICT_ALIGNMENT
912 	else
913 		m_adj(m, MSK_RX_BUF_ALIGN);
914 #endif
915 
916 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
917 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
918 	    BUS_DMA_NOWAIT) != 0) {
919 		m_freem(m);
920 		return (ENOBUFS);
921 	}
922 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
923 
924 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
925 #ifdef MSK_64BIT_DMA
926 	rx_le = rxd->rx_le;
927 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
928 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
929 	MSK_INC(idx, MSK_RX_RING_CNT);
930 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
931 #endif
932 	if (rxd->rx_m != NULL) {
933 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
934 		    BUS_DMASYNC_POSTREAD);
935 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
936 		rxd->rx_m = NULL;
937 	}
938 	map = rxd->rx_dmamap;
939 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
940 	sc_if->msk_cdata.msk_rx_sparemap = map;
941 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
942 	    BUS_DMASYNC_PREREAD);
943 	rxd->rx_m = m;
944 	rx_le = rxd->rx_le;
945 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
946 	rx_le->msk_control =
947 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
948 
949 	return (0);
950 }
951 
952 static int
953 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
954 {
955 	struct msk_rx_desc *rx_le;
956 	struct msk_rxdesc *rxd;
957 	struct mbuf *m;
958 	bus_dma_segment_t segs[1];
959 	bus_dmamap_t map;
960 	int nsegs;
961 
962 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
963 	if (m == NULL)
964 		return (ENOBUFS);
965 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
966 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
967 		m_adj(m, ETHER_ALIGN);
968 #ifndef __NO_STRICT_ALIGNMENT
969 	else
970 		m_adj(m, MSK_RX_BUF_ALIGN);
971 #endif
972 
973 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
974 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
975 	    BUS_DMA_NOWAIT) != 0) {
976 		m_freem(m);
977 		return (ENOBUFS);
978 	}
979 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
980 
981 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
982 #ifdef MSK_64BIT_DMA
983 	rx_le = rxd->rx_le;
984 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
985 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
986 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
987 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
988 #endif
989 	if (rxd->rx_m != NULL) {
990 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
991 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
992 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
993 		    rxd->rx_dmamap);
994 		rxd->rx_m = NULL;
995 	}
996 	map = rxd->rx_dmamap;
997 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
998 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
999 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
1000 	    BUS_DMASYNC_PREREAD);
1001 	rxd->rx_m = m;
1002 	rx_le = rxd->rx_le;
1003 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
1004 	rx_le->msk_control =
1005 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
1006 
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Set media options.
1012  */
1013 static int
1014 msk_mediachange(if_t ifp)
1015 {
1016 	struct msk_if_softc *sc_if;
1017 	struct mii_data	*mii;
1018 	int error;
1019 
1020 	sc_if = if_getsoftc(ifp);
1021 
1022 	MSK_IF_LOCK(sc_if);
1023 	mii = device_get_softc(sc_if->msk_miibus);
1024 	error = mii_mediachg(mii);
1025 	MSK_IF_UNLOCK(sc_if);
1026 
1027 	return (error);
1028 }
1029 
1030 /*
1031  * Report current media status.
1032  */
1033 static void
1034 msk_mediastatus(if_t ifp, struct ifmediareq *ifmr)
1035 {
1036 	struct msk_if_softc *sc_if;
1037 	struct mii_data	*mii;
1038 
1039 	sc_if = if_getsoftc(ifp);
1040 	MSK_IF_LOCK(sc_if);
1041 	if ((if_getflags(ifp) & IFF_UP) == 0) {
1042 		MSK_IF_UNLOCK(sc_if);
1043 		return;
1044 	}
1045 	mii = device_get_softc(sc_if->msk_miibus);
1046 
1047 	mii_pollstat(mii);
1048 	ifmr->ifm_active = mii->mii_media_active;
1049 	ifmr->ifm_status = mii->mii_media_status;
1050 	MSK_IF_UNLOCK(sc_if);
1051 }
1052 
1053 static int
1054 msk_ioctl(if_t ifp, u_long command, caddr_t data)
1055 {
1056 	struct msk_if_softc *sc_if;
1057 	struct ifreq *ifr;
1058 	struct mii_data	*mii;
1059 	int error, mask, reinit;
1060 
1061 	sc_if = if_getsoftc(ifp);
1062 	ifr = (struct ifreq *)data;
1063 	error = 0;
1064 
1065 	switch(command) {
1066 	case SIOCSIFMTU:
1067 		MSK_IF_LOCK(sc_if);
1068 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1069 			error = EINVAL;
1070 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1071 			if (ifr->ifr_mtu > ETHERMTU) {
1072 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1073 					error = EINVAL;
1074 					MSK_IF_UNLOCK(sc_if);
1075 					break;
1076 				}
1077 				if ((sc_if->msk_flags &
1078 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1079 					if_sethwassistbits(ifp, 0,
1080 					    MSK_CSUM_FEATURES | CSUM_TSO);
1081 					if_setcapenablebit(ifp, 0,
1082 					    IFCAP_TSO4 | IFCAP_TXCSUM);
1083 					VLAN_CAPABILITIES(ifp);
1084 				}
1085 			}
1086 			if_setmtu(ifp, ifr->ifr_mtu);
1087 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1088 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1089 				msk_init_locked(sc_if);
1090 			}
1091 		}
1092 		MSK_IF_UNLOCK(sc_if);
1093 		break;
1094 	case SIOCSIFFLAGS:
1095 		MSK_IF_LOCK(sc_if);
1096 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1097 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1098 			    ((if_getflags(ifp) ^ sc_if->msk_if_flags) &
1099 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1100 				msk_rxfilter(sc_if);
1101 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1102 				msk_init_locked(sc_if);
1103 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1104 			msk_stop(sc_if);
1105 		sc_if->msk_if_flags = if_getflags(ifp);
1106 		MSK_IF_UNLOCK(sc_if);
1107 		break;
1108 	case SIOCADDMULTI:
1109 	case SIOCDELMULTI:
1110 		MSK_IF_LOCK(sc_if);
1111 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1112 			msk_rxfilter(sc_if);
1113 		MSK_IF_UNLOCK(sc_if);
1114 		break;
1115 	case SIOCGIFMEDIA:
1116 	case SIOCSIFMEDIA:
1117 		mii = device_get_softc(sc_if->msk_miibus);
1118 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1119 		break;
1120 	case SIOCSIFCAP:
1121 		reinit = 0;
1122 		MSK_IF_LOCK(sc_if);
1123 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1124 		if ((mask & IFCAP_TXCSUM) != 0 &&
1125 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
1126 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1127 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
1128 				if_sethwassistbits(ifp, MSK_CSUM_FEATURES, 0);
1129 			else
1130 				if_sethwassistbits(ifp, 0, MSK_CSUM_FEATURES);
1131 		}
1132 		if ((mask & IFCAP_RXCSUM) != 0 &&
1133 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
1134 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1135 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1136 				reinit = 1;
1137 		}
1138 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1139 		    (IFCAP_VLAN_HWCSUM & if_getcapabilities(ifp)) != 0)
1140 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1141 		if ((mask & IFCAP_TSO4) != 0 &&
1142 		    (IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
1143 			if_togglecapenable(ifp, IFCAP_TSO4);
1144 			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
1145 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1146 			else
1147 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1148 		}
1149 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1150 		    (IFCAP_VLAN_HWTSO & if_getcapabilities(ifp)) != 0)
1151 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1152 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1153 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
1154 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1155 			if ((IFCAP_VLAN_HWTAGGING & if_getcapenable(ifp)) == 0)
1156 				if_setcapenablebit(ifp, 0,
1157 				    IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1158 			msk_setvlan(sc_if, ifp);
1159 		}
1160 		if (if_getmtu(ifp) > ETHERMTU &&
1161 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1162 			if_sethwassistbits(ifp, 0, (MSK_CSUM_FEATURES | CSUM_TSO));
1163 			if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_TXCSUM));
1164 		}
1165 		VLAN_CAPABILITIES(ifp);
1166 		if (reinit > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1167 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1168 			msk_init_locked(sc_if);
1169 		}
1170 		MSK_IF_UNLOCK(sc_if);
1171 		break;
1172 	default:
1173 		error = ether_ioctl(ifp, command, data);
1174 		break;
1175 	}
1176 
1177 	return (error);
1178 }
1179 
1180 static int
1181 mskc_probe(device_t dev)
1182 {
1183 	const struct msk_product *mp;
1184 	uint16_t vendor, devid;
1185 	int i;
1186 
1187 	vendor = pci_get_vendor(dev);
1188 	devid = pci_get_device(dev);
1189 	mp = msk_products;
1190 	for (i = 0; i < nitems(msk_products); i++, mp++) {
1191 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1192 			device_set_desc(dev, mp->msk_name);
1193 			return (BUS_PROBE_DEFAULT);
1194 		}
1195 	}
1196 
1197 	return (ENXIO);
1198 }
1199 
1200 static int
1201 mskc_setup_rambuffer(struct msk_softc *sc)
1202 {
1203 	int next;
1204 	int i;
1205 
1206 	/* Get adapter SRAM size. */
1207 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1208 	if (bootverbose)
1209 		device_printf(sc->msk_dev,
1210 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1211 	if (sc->msk_ramsize == 0)
1212 		return (0);
1213 
1214 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1215 	/*
1216 	 * Give receiver 2/3 of memory and round down to the multiple
1217 	 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1218 	 * of 1024.
1219 	 */
1220 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1221 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1222 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1223 		sc->msk_rxqstart[i] = next;
1224 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1225 		next = sc->msk_rxqend[i] + 1;
1226 		sc->msk_txqstart[i] = next;
1227 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1228 		next = sc->msk_txqend[i] + 1;
1229 		if (bootverbose) {
1230 			device_printf(sc->msk_dev,
1231 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1232 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1233 			    sc->msk_rxqend[i]);
1234 			device_printf(sc->msk_dev,
1235 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1236 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1237 			    sc->msk_txqend[i]);
1238 		}
1239 	}
1240 
1241 	return (0);
1242 }
1243 
1244 static void
1245 msk_phy_power(struct msk_softc *sc, int mode)
1246 {
1247 	uint32_t our, val;
1248 	int i;
1249 
1250 	switch (mode) {
1251 	case MSK_PHY_POWERUP:
1252 		/* Switch power to VCC (WA for VAUX problem). */
1253 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1254 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1255 		/* Disable Core Clock Division, set Clock Select to 0. */
1256 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1257 
1258 		val = 0;
1259 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1260 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1261 			/* Enable bits are inverted. */
1262 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1263 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1264 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1265 		}
1266 		/*
1267 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1268 		 */
1269 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1270 
1271 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1272 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1273 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1274 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1275 				/* Deassert Low Power for 1st PHY. */
1276 				our |= PCI_Y2_PHY1_COMA;
1277 				if (sc->msk_num_port > 1)
1278 					our |= PCI_Y2_PHY2_COMA;
1279 			}
1280 		}
1281 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1282 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1283 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1284 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1285 			val &= (PCI_FORCE_ASPM_REQUEST |
1286 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1287 			    PCI_ASPM_CLKRUN_REQUEST);
1288 			/* Set all bits to 0 except bits 15..12. */
1289 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1290 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1291 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1292 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1293 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1294 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1295 			/*
1296 			 * Disable status race, workaround for
1297 			 * Yukon EC Ultra & Yukon EX.
1298 			 */
1299 			val = CSR_READ_4(sc, B2_GP_IO);
1300 			val |= GLB_GPIO_STAT_RACE_DIS;
1301 			CSR_WRITE_4(sc, B2_GP_IO, val);
1302 			CSR_READ_4(sc, B2_GP_IO);
1303 		}
1304 		/* Release PHY from PowerDown/COMA mode. */
1305 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1306 
1307 		for (i = 0; i < sc->msk_num_port; i++) {
1308 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1309 			    GMLC_RST_SET);
1310 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1311 			    GMLC_RST_CLR);
1312 		}
1313 		break;
1314 	case MSK_PHY_POWERDOWN:
1315 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1316 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1317 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1318 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1319 			val &= ~PCI_Y2_PHY1_COMA;
1320 			if (sc->msk_num_port > 1)
1321 				val &= ~PCI_Y2_PHY2_COMA;
1322 		}
1323 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1324 
1325 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1326 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1327 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1328 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1329 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1330 			/* Enable bits are inverted. */
1331 			val = 0;
1332 		}
1333 		/*
1334 		 * Disable PCI & Core Clock, disable clock gating for
1335 		 * both Links.
1336 		 */
1337 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1338 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1339 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1340 		break;
1341 	default:
1342 		break;
1343 	}
1344 }
1345 
1346 static void
1347 mskc_reset(struct msk_softc *sc)
1348 {
1349 	bus_addr_t addr;
1350 	uint16_t status;
1351 	uint32_t val;
1352 	int i, initram;
1353 
1354 	/* Disable ASF. */
1355 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1356 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1357 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1358 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1359 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1360 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1361 			/* Clear AHB bridge & microcontroller reset. */
1362 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1363 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1364 			/* Clear ASF microcontroller state. */
1365 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1366 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1367 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1368 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1369 		} else
1370 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1371 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1372 		/*
1373 		 * Since we disabled ASF, S/W reset is required for
1374 		 * Power Management.
1375 		 */
1376 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1377 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1378 	}
1379 
1380 	/* Clear all error bits in the PCI status register. */
1381 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1382 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1383 
1384 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1385 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1386 	    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1387 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1388 
1389 	switch (sc->msk_bustype) {
1390 	case MSK_PEX_BUS:
1391 		/* Clear all PEX errors. */
1392 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1393 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1394 		if ((val & PEX_RX_OV) != 0) {
1395 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1396 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1397 		}
1398 		break;
1399 	case MSK_PCI_BUS:
1400 	case MSK_PCIX_BUS:
1401 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1402 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1403 		if (val == 0)
1404 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1405 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1406 			/* Set Cache Line Size opt. */
1407 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1408 			val |= PCI_CLS_OPT;
1409 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1410 		}
1411 		break;
1412 	}
1413 	/* Set PHY power state. */
1414 	msk_phy_power(sc, MSK_PHY_POWERUP);
1415 
1416 	/* Reset GPHY/GMAC Control */
1417 	for (i = 0; i < sc->msk_num_port; i++) {
1418 		/* GPHY Control reset. */
1419 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1420 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1421 		/* GMAC Control reset. */
1422 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1423 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1424 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1425 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1426 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
1427 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1428 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1429 			    GMC_BYP_RETR_ON);
1430 	}
1431 
1432 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1433 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1434 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1435 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1436 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1437 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1438 	}
1439 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1440 
1441 	/* LED On. */
1442 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1443 
1444 	/* Clear TWSI IRQ. */
1445 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1446 
1447 	/* Turn off hardware timer. */
1448 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1449 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1450 
1451 	/* Turn off descriptor polling. */
1452 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1453 
1454 	/* Turn off time stamps. */
1455 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1456 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1457 
1458 	initram = 0;
1459 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1460 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1461 	    sc->msk_hw_id == CHIP_ID_YUKON_FE)
1462 		initram++;
1463 
1464 	/* Configure timeout values. */
1465 	for (i = 0; initram > 0 && i < sc->msk_num_port; i++) {
1466 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1467 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1468 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1469 		    MSK_RI_TO_53);
1470 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1471 		    MSK_RI_TO_53);
1472 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1473 		    MSK_RI_TO_53);
1474 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1475 		    MSK_RI_TO_53);
1476 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1477 		    MSK_RI_TO_53);
1478 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1479 		    MSK_RI_TO_53);
1480 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1481 		    MSK_RI_TO_53);
1482 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1483 		    MSK_RI_TO_53);
1484 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1485 		    MSK_RI_TO_53);
1486 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1487 		    MSK_RI_TO_53);
1488 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1489 		    MSK_RI_TO_53);
1490 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1491 		    MSK_RI_TO_53);
1492 	}
1493 
1494 	/* Disable all interrupts. */
1495 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1496 	CSR_READ_4(sc, B0_HWE_IMSK);
1497 	CSR_WRITE_4(sc, B0_IMSK, 0);
1498 	CSR_READ_4(sc, B0_IMSK);
1499 
1500         /*
1501          * On dual port PCI-X card, there is an problem where status
1502          * can be received out of order due to split transactions.
1503          */
1504 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1505 		uint16_t pcix_cmd;
1506 
1507 		pcix_cmd = pci_read_config(sc->msk_dev,
1508 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1509 		/* Clear Max Outstanding Split Transactions. */
1510 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1511 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1512 		pci_write_config(sc->msk_dev,
1513 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1514 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1515         }
1516 	if (sc->msk_expcap != 0) {
1517 		/* Change Max. Read Request Size to 2048 bytes. */
1518 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1519 			pci_set_max_read_req(sc->msk_dev, 2048);
1520 	}
1521 
1522 	/* Clear status list. */
1523 	bzero(sc->msk_stat_ring,
1524 	    sizeof(struct msk_stat_desc) * sc->msk_stat_count);
1525 	sc->msk_stat_cons = 0;
1526 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1527 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1528 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1529 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1530 	/* Set the status list base address. */
1531 	addr = sc->msk_stat_ring_paddr;
1532 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1533 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1534 	/* Set the status list last index. */
1535 	CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1);
1536 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1537 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1538 		/* WA for dev. #4.3 */
1539 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1540 		/* WA for dev. #4.18 */
1541 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1542 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1543 	} else {
1544 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1545 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1546 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1547 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1548 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1549 		else
1550 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1551 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1552 	}
1553 	/*
1554 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1555 	 */
1556 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1557 
1558 	/* Enable status unit. */
1559 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1560 
1561 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1562 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1563 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1564 }
1565 
1566 static int
1567 msk_probe(device_t dev)
1568 {
1569 	struct msk_softc *sc;
1570 	char desc[100];
1571 
1572 	sc = device_get_softc(device_get_parent(dev));
1573 	/*
1574 	 * Not much to do here. We always know there will be
1575 	 * at least one GMAC present, and if there are two,
1576 	 * mskc_attach() will create a second device instance
1577 	 * for us.
1578 	 */
1579 	snprintf(desc, sizeof(desc),
1580 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1581 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1582 	    sc->msk_hw_rev);
1583 	device_set_desc_copy(dev, desc);
1584 
1585 	return (BUS_PROBE_DEFAULT);
1586 }
1587 
1588 static int
1589 msk_attach(device_t dev)
1590 {
1591 	struct msk_softc *sc;
1592 	struct msk_if_softc *sc_if;
1593 	if_t ifp;
1594 	struct msk_mii_data *mmd;
1595 	int i, port, error;
1596 	uint8_t eaddr[6];
1597 
1598 	if (dev == NULL)
1599 		return (EINVAL);
1600 
1601 	error = 0;
1602 	sc_if = device_get_softc(dev);
1603 	sc = device_get_softc(device_get_parent(dev));
1604 	mmd = device_get_ivars(dev);
1605 	port = mmd->port;
1606 
1607 	sc_if->msk_if_dev = dev;
1608 	sc_if->msk_port = port;
1609 	sc_if->msk_softc = sc;
1610 	sc_if->msk_flags = sc->msk_pflags;
1611 	sc->msk_if[port] = sc_if;
1612 	/* Setup Tx/Rx queue register offsets. */
1613 	if (port == MSK_PORT_A) {
1614 		sc_if->msk_txq = Q_XA1;
1615 		sc_if->msk_txsq = Q_XS1;
1616 		sc_if->msk_rxq = Q_R1;
1617 	} else {
1618 		sc_if->msk_txq = Q_XA2;
1619 		sc_if->msk_txsq = Q_XS2;
1620 		sc_if->msk_rxq = Q_R2;
1621 	}
1622 
1623 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1624 	msk_sysctl_node(sc_if);
1625 
1626 	if ((error = msk_txrx_dma_alloc(sc_if)) != 0)
1627 		goto fail;
1628 	msk_rx_dma_jalloc(sc_if);
1629 
1630 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1631 	if (ifp == NULL) {
1632 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1633 		error = ENOSPC;
1634 		goto fail;
1635 	}
1636 	if_setsoftc(ifp, sc_if);
1637 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1638 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1639 	if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_TSO4);
1640 	/*
1641 	 * Enable Rx checksum offloading if controller supports
1642 	 * new descriptor formant and controller is not Yukon XL.
1643 	 */
1644 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1645 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1646 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
1647 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1648 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1649 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
1650 	if_sethwassist(ifp, MSK_CSUM_FEATURES | CSUM_TSO);
1651 	if_setcapenable(ifp, if_getcapabilities(ifp));
1652 	if_setioctlfn(ifp, msk_ioctl);
1653 	if_setstartfn(ifp, msk_start);
1654 	if_setinitfn(ifp, msk_init);
1655 	if_setsendqlen(ifp, MSK_TX_RING_CNT - 1);
1656 	if_setsendqready(ifp);
1657 	/*
1658 	 * Get station address for this interface. Note that
1659 	 * dual port cards actually come with three station
1660 	 * addresses: one for each port, plus an extra. The
1661 	 * extra one is used by the SysKonnect driver software
1662 	 * as a 'virtual' station address for when both ports
1663 	 * are operating in failover mode. Currently we don't
1664 	 * use this extra address.
1665 	 */
1666 	MSK_IF_LOCK(sc_if);
1667 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1668 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1669 
1670 	/*
1671 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1672 	 */
1673 	MSK_IF_UNLOCK(sc_if);
1674 	ether_ifattach(ifp, eaddr);
1675 	MSK_IF_LOCK(sc_if);
1676 
1677 	/* VLAN capability setup */
1678 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1679 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1680 		/*
1681 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1682 		 * computes checksum for short frames. For VLAN tagged frames
1683 		 * this workaround does not work so disable checksum offload
1684 		 * for VLAN interface.
1685 		 */
1686 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO, 0);
1687 		/*
1688 		 * Enable Rx checksum offloading for VLAN tagged frames
1689 		 * if controller support new descriptor format.
1690 		 */
1691 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1692 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1693 			if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
1694 	}
1695 	if_setcapenable(ifp, if_getcapabilities(ifp));
1696 	/*
1697 	 * Disable RX checksum offloading on controllers that don't use
1698 	 * new descriptor format but give chance to enable it.
1699 	 */
1700 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1701 		if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
1702 
1703 	/*
1704 	 * Tell the upper layer(s) we support long frames.
1705 	 * Must appear after the call to ether_ifattach() because
1706 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1707 	 */
1708         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1709 
1710 	/*
1711 	 * Do miibus setup.
1712 	 */
1713 	MSK_IF_UNLOCK(sc_if);
1714 	error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1715 	    msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1716 	    mmd->mii_flags);
1717 	if (error != 0) {
1718 		device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1719 		ether_ifdetach(ifp);
1720 		error = ENXIO;
1721 		goto fail;
1722 	}
1723 
1724 fail:
1725 	if (error != 0) {
1726 		/* Access should be ok even though lock has been dropped */
1727 		sc->msk_if[port] = NULL;
1728 		msk_detach(dev);
1729 	}
1730 
1731 	return (error);
1732 }
1733 
1734 /*
1735  * Attach the interface. Allocate softc structures, do ifmedia
1736  * setup and ethernet/BPF attach.
1737  */
1738 static int
1739 mskc_attach(device_t dev)
1740 {
1741 	struct msk_softc *sc;
1742 	struct msk_mii_data *mmd;
1743 	int error, msic, msir, reg;
1744 
1745 	sc = device_get_softc(dev);
1746 	sc->msk_dev = dev;
1747 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1748 	    MTX_DEF);
1749 
1750 	/*
1751 	 * Map control/status registers.
1752 	 */
1753 	pci_enable_busmaster(dev);
1754 
1755 	/* Allocate I/O resource */
1756 #ifdef MSK_USEIOSPACE
1757 	sc->msk_res_spec = msk_res_spec_io;
1758 #else
1759 	sc->msk_res_spec = msk_res_spec_mem;
1760 #endif
1761 	sc->msk_irq_spec = msk_irq_spec_legacy;
1762 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1763 	if (error) {
1764 		if (sc->msk_res_spec == msk_res_spec_mem)
1765 			sc->msk_res_spec = msk_res_spec_io;
1766 		else
1767 			sc->msk_res_spec = msk_res_spec_mem;
1768 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1769 		if (error) {
1770 			device_printf(dev, "couldn't allocate %s resources\n",
1771 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1772 			    "I/O");
1773 			mtx_destroy(&sc->msk_mtx);
1774 			return (ENXIO);
1775 		}
1776 	}
1777 
1778 	/* Enable all clocks before accessing any registers. */
1779 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1780 
1781 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1782 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1783 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1784 	/* Bail out if chip is not recognized. */
1785 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1786 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1787 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1788 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1789 		    sc->msk_hw_id, sc->msk_hw_rev);
1790 		mtx_destroy(&sc->msk_mtx);
1791 		return (ENXIO);
1792 	}
1793 
1794 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1795 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1796 	    OID_AUTO, "process_limit",
1797 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1798 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1799 	    "max number of Rx events to process");
1800 
1801 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1802 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1803 	    "process_limit", &sc->msk_process_limit);
1804 	if (error == 0) {
1805 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1806 		    sc->msk_process_limit > MSK_PROC_MAX) {
1807 			device_printf(dev, "process_limit value out of range; "
1808 			    "using default: %d\n", MSK_PROC_DEFAULT);
1809 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1810 		}
1811 	}
1812 
1813 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1814 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1815 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1816 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1817 	    "Maximum number of time to delay interrupts");
1818 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1819 	    "int_holdoff", &sc->msk_int_holdoff);
1820 
1821 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1822 	/* Check number of MACs. */
1823 	sc->msk_num_port = 1;
1824 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1825 	    CFG_DUAL_MAC_MSK) {
1826 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1827 			sc->msk_num_port++;
1828 	}
1829 
1830 	/* Check bus type. */
1831 	if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1832 		sc->msk_bustype = MSK_PEX_BUS;
1833 		sc->msk_expcap = reg;
1834 	} else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1835 		sc->msk_bustype = MSK_PCIX_BUS;
1836 		sc->msk_pcixcap = reg;
1837 	} else
1838 		sc->msk_bustype = MSK_PCI_BUS;
1839 
1840 	switch (sc->msk_hw_id) {
1841 	case CHIP_ID_YUKON_EC:
1842 		sc->msk_clock = 125;	/* 125 MHz */
1843 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1844 		break;
1845 	case CHIP_ID_YUKON_EC_U:
1846 		sc->msk_clock = 125;	/* 125 MHz */
1847 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1848 		break;
1849 	case CHIP_ID_YUKON_EX:
1850 		sc->msk_clock = 125;	/* 125 MHz */
1851 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1852 		    MSK_FLAG_AUTOTX_CSUM;
1853 		/*
1854 		 * Yukon Extreme seems to have silicon bug for
1855 		 * automatic Tx checksum calculation capability.
1856 		 */
1857 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1858 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1859 		/*
1860 		 * Yukon Extreme A0 could not use store-and-forward
1861 		 * for jumbo frames, so disable Tx checksum
1862 		 * offloading for jumbo frames.
1863 		 */
1864 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1865 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1866 		break;
1867 	case CHIP_ID_YUKON_FE:
1868 		sc->msk_clock = 100;	/* 100 MHz */
1869 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1870 		break;
1871 	case CHIP_ID_YUKON_FE_P:
1872 		sc->msk_clock = 50;	/* 50 MHz */
1873 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1874 		    MSK_FLAG_AUTOTX_CSUM;
1875 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1876 			/*
1877 			 * XXX
1878 			 * FE+ A0 has status LE writeback bug so msk(4)
1879 			 * does not rely on status word of received frame
1880 			 * in msk_rxeof() which in turn disables all
1881 			 * hardware assistance bits reported by the status
1882 			 * word as well as validity of the received frame.
1883 			 * Just pass received frames to upper stack with
1884 			 * minimal test and let upper stack handle them.
1885 			 */
1886 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1887 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1888 		}
1889 		break;
1890 	case CHIP_ID_YUKON_XL:
1891 		sc->msk_clock = 156;	/* 156 MHz */
1892 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1893 		break;
1894 	case CHIP_ID_YUKON_SUPR:
1895 		sc->msk_clock = 125;	/* 125 MHz */
1896 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1897 		    MSK_FLAG_AUTOTX_CSUM;
1898 		break;
1899 	case CHIP_ID_YUKON_UL_2:
1900 		sc->msk_clock = 125;	/* 125 MHz */
1901 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1902 		break;
1903 	case CHIP_ID_YUKON_OPT:
1904 		sc->msk_clock = 125;	/* 125 MHz */
1905 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1906 		break;
1907 	default:
1908 		sc->msk_clock = 156;	/* 156 MHz */
1909 		break;
1910 	}
1911 
1912 	/* Allocate IRQ resources. */
1913 	msic = pci_msi_count(dev);
1914 	if (bootverbose)
1915 		device_printf(dev, "MSI count : %d\n", msic);
1916 	if (legacy_intr != 0)
1917 		msi_disable = 1;
1918 	if (msi_disable == 0 && msic > 0) {
1919 		msir = 1;
1920 		if (pci_alloc_msi(dev, &msir) == 0) {
1921 			if (msir == 1) {
1922 				sc->msk_pflags |= MSK_FLAG_MSI;
1923 				sc->msk_irq_spec = msk_irq_spec_msi;
1924 			} else
1925 				pci_release_msi(dev);
1926 		}
1927 	}
1928 
1929 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1930 	if (error) {
1931 		device_printf(dev, "couldn't allocate IRQ resources\n");
1932 		goto fail;
1933 	}
1934 
1935 	if ((error = msk_status_dma_alloc(sc)) != 0)
1936 		goto fail;
1937 
1938 	/* Set base interrupt mask. */
1939 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1940 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1941 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1942 
1943 	/* Reset the adapter. */
1944 	mskc_reset(sc);
1945 
1946 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1947 		goto fail;
1948 
1949 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1950 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1951 		device_printf(dev, "failed to add child for PORT_A\n");
1952 		error = ENXIO;
1953 		goto fail;
1954 	}
1955 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1956 	mmd->port = MSK_PORT_A;
1957 	mmd->pmd = sc->msk_pmd;
1958 	mmd->mii_flags |= MIIF_DOPAUSE;
1959 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1960 		mmd->mii_flags |= MIIF_HAVEFIBER;
1961 	if (sc->msk_pmd == 'P')
1962 		mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1963 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1964 
1965 	if (sc->msk_num_port > 1) {
1966 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1967 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1968 			device_printf(dev, "failed to add child for PORT_B\n");
1969 			error = ENXIO;
1970 			goto fail;
1971 		}
1972 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK |
1973 		    M_ZERO);
1974 		mmd->port = MSK_PORT_B;
1975 		mmd->pmd = sc->msk_pmd;
1976 		if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1977 			mmd->mii_flags |= MIIF_HAVEFIBER;
1978 		if (sc->msk_pmd == 'P')
1979 			mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1980 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1981 	}
1982 
1983 	error = bus_generic_attach(dev);
1984 	if (error) {
1985 		device_printf(dev, "failed to attach port(s)\n");
1986 		goto fail;
1987 	}
1988 
1989 	/* Hook interrupt last to avoid having to lock softc. */
1990 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1991 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1992 	if (error != 0) {
1993 		device_printf(dev, "couldn't set up interrupt handler\n");
1994 		goto fail;
1995 	}
1996 fail:
1997 	if (error != 0)
1998 		mskc_detach(dev);
1999 
2000 	return (error);
2001 }
2002 
2003 /*
2004  * Shutdown hardware and free up resources. This can be called any
2005  * time after the mutex has been initialized. It is called in both
2006  * the error case in attach and the normal detach case so it needs
2007  * to be careful about only freeing resources that have actually been
2008  * allocated.
2009  */
2010 static int
2011 msk_detach(device_t dev)
2012 {
2013 	struct msk_softc *sc;
2014 	struct msk_if_softc *sc_if;
2015 	if_t ifp;
2016 
2017 	sc_if = device_get_softc(dev);
2018 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
2019 	    ("msk mutex not initialized in msk_detach"));
2020 	MSK_IF_LOCK(sc_if);
2021 
2022 	ifp = sc_if->msk_ifp;
2023 	if (device_is_attached(dev)) {
2024 		/* XXX */
2025 		sc_if->msk_flags |= MSK_FLAG_DETACH;
2026 		msk_stop(sc_if);
2027 		/* Can't hold locks while calling detach. */
2028 		MSK_IF_UNLOCK(sc_if);
2029 		callout_drain(&sc_if->msk_tick_ch);
2030 		if (ifp)
2031 			ether_ifdetach(ifp);
2032 		MSK_IF_LOCK(sc_if);
2033 	}
2034 
2035 	/*
2036 	 * We're generally called from mskc_detach() which is using
2037 	 * device_delete_child() to get to here. It's already trashed
2038 	 * miibus for us, so don't do it here or we'll panic.
2039 	 *
2040 	 * if (sc_if->msk_miibus != NULL) {
2041 	 * 	device_delete_child(dev, sc_if->msk_miibus);
2042 	 * 	sc_if->msk_miibus = NULL;
2043 	 * }
2044 	 */
2045 
2046 	msk_rx_dma_jfree(sc_if);
2047 	msk_txrx_dma_free(sc_if);
2048 	bus_generic_detach(dev);
2049 
2050 	sc = sc_if->msk_softc;
2051 	sc->msk_if[sc_if->msk_port] = NULL;
2052 	MSK_IF_UNLOCK(sc_if);
2053 	if (ifp)
2054 		if_free(ifp);
2055 
2056 	return (0);
2057 }
2058 
2059 static int
2060 mskc_detach(device_t dev)
2061 {
2062 	struct msk_softc *sc;
2063 
2064 	sc = device_get_softc(dev);
2065 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2066 
2067 	if (device_is_alive(dev)) {
2068 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2069 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2070 			    M_DEVBUF);
2071 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2072 		}
2073 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2074 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2075 			    M_DEVBUF);
2076 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2077 		}
2078 		bus_generic_detach(dev);
2079 	}
2080 
2081 	/* Disable all interrupts. */
2082 	CSR_WRITE_4(sc, B0_IMSK, 0);
2083 	CSR_READ_4(sc, B0_IMSK);
2084 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2085 	CSR_READ_4(sc, B0_HWE_IMSK);
2086 
2087 	/* LED Off. */
2088 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2089 
2090 	/* Put hardware reset. */
2091 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2092 
2093 	msk_status_dma_free(sc);
2094 
2095 	if (sc->msk_intrhand) {
2096 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2097 		sc->msk_intrhand = NULL;
2098 	}
2099 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2100 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2101 		pci_release_msi(dev);
2102 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2103 	mtx_destroy(&sc->msk_mtx);
2104 
2105 	return (0);
2106 }
2107 
2108 static bus_dma_tag_t
2109 mskc_get_dma_tag(device_t bus, device_t child __unused)
2110 {
2111 
2112 	return (bus_get_dma_tag(bus));
2113 }
2114 
2115 struct msk_dmamap_arg {
2116 	bus_addr_t	msk_busaddr;
2117 };
2118 
2119 static void
2120 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2121 {
2122 	struct msk_dmamap_arg *ctx;
2123 
2124 	if (error != 0)
2125 		return;
2126 	ctx = arg;
2127 	ctx->msk_busaddr = segs[0].ds_addr;
2128 }
2129 
2130 /* Create status DMA region. */
2131 static int
2132 msk_status_dma_alloc(struct msk_softc *sc)
2133 {
2134 	struct msk_dmamap_arg ctx;
2135 	bus_size_t stat_sz;
2136 	int count, error;
2137 
2138 	/*
2139 	 * It seems controller requires number of status LE entries
2140 	 * is power of 2 and the maximum number of status LE entries
2141 	 * is 4096.  For dual-port controllers, the number of status
2142 	 * LE entries should be large enough to hold both port's
2143 	 * status updates.
2144 	 */
2145 	count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT;
2146 	count = imin(4096, roundup2(count, 1024));
2147 	sc->msk_stat_count = count;
2148 	stat_sz = count * sizeof(struct msk_stat_desc);
2149 	error = bus_dma_tag_create(
2150 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2151 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2152 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2153 		    BUS_SPACE_MAXADDR,		/* highaddr */
2154 		    NULL, NULL,			/* filter, filterarg */
2155 		    stat_sz,			/* maxsize */
2156 		    1,				/* nsegments */
2157 		    stat_sz,			/* maxsegsize */
2158 		    0,				/* flags */
2159 		    NULL, NULL,			/* lockfunc, lockarg */
2160 		    &sc->msk_stat_tag);
2161 	if (error != 0) {
2162 		device_printf(sc->msk_dev,
2163 		    "failed to create status DMA tag\n");
2164 		return (error);
2165 	}
2166 
2167 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2168 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2169 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2170 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2171 	if (error != 0) {
2172 		device_printf(sc->msk_dev,
2173 		    "failed to allocate DMA'able memory for status ring\n");
2174 		return (error);
2175 	}
2176 
2177 	ctx.msk_busaddr = 0;
2178 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
2179 	    sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2180 	if (error != 0) {
2181 		device_printf(sc->msk_dev,
2182 		    "failed to load DMA'able memory for status ring\n");
2183 		return (error);
2184 	}
2185 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2186 
2187 	return (0);
2188 }
2189 
2190 static void
2191 msk_status_dma_free(struct msk_softc *sc)
2192 {
2193 
2194 	/* Destroy status block. */
2195 	if (sc->msk_stat_tag) {
2196 		if (sc->msk_stat_ring_paddr) {
2197 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2198 			sc->msk_stat_ring_paddr = 0;
2199 		}
2200 		if (sc->msk_stat_ring) {
2201 			bus_dmamem_free(sc->msk_stat_tag,
2202 			    sc->msk_stat_ring, sc->msk_stat_map);
2203 			sc->msk_stat_ring = NULL;
2204 		}
2205 		bus_dma_tag_destroy(sc->msk_stat_tag);
2206 		sc->msk_stat_tag = NULL;
2207 	}
2208 }
2209 
2210 static int
2211 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2212 {
2213 	struct msk_dmamap_arg ctx;
2214 	struct msk_txdesc *txd;
2215 	struct msk_rxdesc *rxd;
2216 	bus_size_t rxalign;
2217 	int error, i;
2218 
2219 	/* Create parent DMA tag. */
2220 	error = bus_dma_tag_create(
2221 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2222 		    1, 0,			/* alignment, boundary */
2223 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2224 		    BUS_SPACE_MAXADDR,		/* highaddr */
2225 		    NULL, NULL,			/* filter, filterarg */
2226 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2227 		    0,				/* nsegments */
2228 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2229 		    0,				/* flags */
2230 		    NULL, NULL,			/* lockfunc, lockarg */
2231 		    &sc_if->msk_cdata.msk_parent_tag);
2232 	if (error != 0) {
2233 		device_printf(sc_if->msk_if_dev,
2234 		    "failed to create parent DMA tag\n");
2235 		goto fail;
2236 	}
2237 	/* Create tag for Tx ring. */
2238 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2239 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2240 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2241 		    BUS_SPACE_MAXADDR,		/* highaddr */
2242 		    NULL, NULL,			/* filter, filterarg */
2243 		    MSK_TX_RING_SZ,		/* maxsize */
2244 		    1,				/* nsegments */
2245 		    MSK_TX_RING_SZ,		/* maxsegsize */
2246 		    0,				/* flags */
2247 		    NULL, NULL,			/* lockfunc, lockarg */
2248 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2249 	if (error != 0) {
2250 		device_printf(sc_if->msk_if_dev,
2251 		    "failed to create Tx ring DMA tag\n");
2252 		goto fail;
2253 	}
2254 
2255 	/* Create tag for Rx ring. */
2256 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2257 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2258 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2259 		    BUS_SPACE_MAXADDR,		/* highaddr */
2260 		    NULL, NULL,			/* filter, filterarg */
2261 		    MSK_RX_RING_SZ,		/* maxsize */
2262 		    1,				/* nsegments */
2263 		    MSK_RX_RING_SZ,		/* maxsegsize */
2264 		    0,				/* flags */
2265 		    NULL, NULL,			/* lockfunc, lockarg */
2266 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2267 	if (error != 0) {
2268 		device_printf(sc_if->msk_if_dev,
2269 		    "failed to create Rx ring DMA tag\n");
2270 		goto fail;
2271 	}
2272 
2273 	/* Create tag for Tx buffers. */
2274 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2275 		    1, 0,			/* alignment, boundary */
2276 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2277 		    BUS_SPACE_MAXADDR,		/* highaddr */
2278 		    NULL, NULL,			/* filter, filterarg */
2279 		    MSK_TSO_MAXSIZE,		/* maxsize */
2280 		    MSK_MAXTXSEGS,		/* nsegments */
2281 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2282 		    0,				/* flags */
2283 		    NULL, NULL,			/* lockfunc, lockarg */
2284 		    &sc_if->msk_cdata.msk_tx_tag);
2285 	if (error != 0) {
2286 		device_printf(sc_if->msk_if_dev,
2287 		    "failed to create Tx DMA tag\n");
2288 		goto fail;
2289 	}
2290 
2291 	rxalign = 1;
2292 	/*
2293 	 * Workaround hardware hang which seems to happen when Rx buffer
2294 	 * is not aligned on multiple of FIFO word(8 bytes).
2295 	 */
2296 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2297 		rxalign = MSK_RX_BUF_ALIGN;
2298 	/* Create tag for Rx buffers. */
2299 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2300 		    rxalign, 0,			/* alignment, boundary */
2301 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2302 		    BUS_SPACE_MAXADDR,		/* highaddr */
2303 		    NULL, NULL,			/* filter, filterarg */
2304 		    MCLBYTES,			/* maxsize */
2305 		    1,				/* nsegments */
2306 		    MCLBYTES,			/* maxsegsize */
2307 		    0,				/* flags */
2308 		    NULL, NULL,			/* lockfunc, lockarg */
2309 		    &sc_if->msk_cdata.msk_rx_tag);
2310 	if (error != 0) {
2311 		device_printf(sc_if->msk_if_dev,
2312 		    "failed to create Rx DMA tag\n");
2313 		goto fail;
2314 	}
2315 
2316 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2317 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2318 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2319 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2320 	if (error != 0) {
2321 		device_printf(sc_if->msk_if_dev,
2322 		    "failed to allocate DMA'able memory for Tx ring\n");
2323 		goto fail;
2324 	}
2325 
2326 	ctx.msk_busaddr = 0;
2327 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2328 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2329 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2330 	if (error != 0) {
2331 		device_printf(sc_if->msk_if_dev,
2332 		    "failed to load DMA'able memory for Tx ring\n");
2333 		goto fail;
2334 	}
2335 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2336 
2337 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2338 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2339 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2340 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2341 	if (error != 0) {
2342 		device_printf(sc_if->msk_if_dev,
2343 		    "failed to allocate DMA'able memory for Rx ring\n");
2344 		goto fail;
2345 	}
2346 
2347 	ctx.msk_busaddr = 0;
2348 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2349 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2350 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2351 	if (error != 0) {
2352 		device_printf(sc_if->msk_if_dev,
2353 		    "failed to load DMA'able memory for Rx ring\n");
2354 		goto fail;
2355 	}
2356 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2357 
2358 	/* Create DMA maps for Tx buffers. */
2359 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2360 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2361 		txd->tx_m = NULL;
2362 		txd->tx_dmamap = NULL;
2363 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2364 		    &txd->tx_dmamap);
2365 		if (error != 0) {
2366 			device_printf(sc_if->msk_if_dev,
2367 			    "failed to create Tx dmamap\n");
2368 			goto fail;
2369 		}
2370 	}
2371 	/* Create DMA maps for Rx buffers. */
2372 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2373 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2374 		device_printf(sc_if->msk_if_dev,
2375 		    "failed to create spare Rx dmamap\n");
2376 		goto fail;
2377 	}
2378 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2379 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2380 		rxd->rx_m = NULL;
2381 		rxd->rx_dmamap = NULL;
2382 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2383 		    &rxd->rx_dmamap);
2384 		if (error != 0) {
2385 			device_printf(sc_if->msk_if_dev,
2386 			    "failed to create Rx dmamap\n");
2387 			goto fail;
2388 		}
2389 	}
2390 
2391 fail:
2392 	return (error);
2393 }
2394 
2395 static int
2396 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2397 {
2398 	struct msk_dmamap_arg ctx;
2399 	struct msk_rxdesc *jrxd;
2400 	bus_size_t rxalign;
2401 	int error, i;
2402 
2403 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2404 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2405 		device_printf(sc_if->msk_if_dev,
2406 		    "disabling jumbo frame support\n");
2407 		return (0);
2408 	}
2409 	/* Create tag for jumbo Rx ring. */
2410 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2411 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2412 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2413 		    BUS_SPACE_MAXADDR,		/* highaddr */
2414 		    NULL, NULL,			/* filter, filterarg */
2415 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2416 		    1,				/* nsegments */
2417 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2418 		    0,				/* flags */
2419 		    NULL, NULL,			/* lockfunc, lockarg */
2420 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2421 	if (error != 0) {
2422 		device_printf(sc_if->msk_if_dev,
2423 		    "failed to create jumbo Rx ring DMA tag\n");
2424 		goto jumbo_fail;
2425 	}
2426 
2427 	rxalign = 1;
2428 	/*
2429 	 * Workaround hardware hang which seems to happen when Rx buffer
2430 	 * is not aligned on multiple of FIFO word(8 bytes).
2431 	 */
2432 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2433 		rxalign = MSK_RX_BUF_ALIGN;
2434 	/* Create tag for jumbo Rx buffers. */
2435 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2436 		    rxalign, 0,			/* alignment, boundary */
2437 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2438 		    BUS_SPACE_MAXADDR,		/* highaddr */
2439 		    NULL, NULL,			/* filter, filterarg */
2440 		    MJUM9BYTES,			/* maxsize */
2441 		    1,				/* nsegments */
2442 		    MJUM9BYTES,			/* maxsegsize */
2443 		    0,				/* flags */
2444 		    NULL, NULL,			/* lockfunc, lockarg */
2445 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2446 	if (error != 0) {
2447 		device_printf(sc_if->msk_if_dev,
2448 		    "failed to create jumbo Rx DMA tag\n");
2449 		goto jumbo_fail;
2450 	}
2451 
2452 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2453 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2454 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2455 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2456 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2457 	if (error != 0) {
2458 		device_printf(sc_if->msk_if_dev,
2459 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2460 		goto jumbo_fail;
2461 	}
2462 
2463 	ctx.msk_busaddr = 0;
2464 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2465 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2466 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2467 	    msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2468 	if (error != 0) {
2469 		device_printf(sc_if->msk_if_dev,
2470 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2471 		goto jumbo_fail;
2472 	}
2473 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2474 
2475 	/* Create DMA maps for jumbo Rx buffers. */
2476 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2477 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2478 		device_printf(sc_if->msk_if_dev,
2479 		    "failed to create spare jumbo Rx dmamap\n");
2480 		goto jumbo_fail;
2481 	}
2482 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2483 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2484 		jrxd->rx_m = NULL;
2485 		jrxd->rx_dmamap = NULL;
2486 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2487 		    &jrxd->rx_dmamap);
2488 		if (error != 0) {
2489 			device_printf(sc_if->msk_if_dev,
2490 			    "failed to create jumbo Rx dmamap\n");
2491 			goto jumbo_fail;
2492 		}
2493 	}
2494 
2495 	return (0);
2496 
2497 jumbo_fail:
2498 	msk_rx_dma_jfree(sc_if);
2499 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2500 	    "due to resource shortage\n");
2501 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2502 	return (error);
2503 }
2504 
2505 static void
2506 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2507 {
2508 	struct msk_txdesc *txd;
2509 	struct msk_rxdesc *rxd;
2510 	int i;
2511 
2512 	/* Tx ring. */
2513 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2514 		if (sc_if->msk_rdata.msk_tx_ring_paddr)
2515 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2516 			    sc_if->msk_cdata.msk_tx_ring_map);
2517 		if (sc_if->msk_rdata.msk_tx_ring)
2518 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2519 			    sc_if->msk_rdata.msk_tx_ring,
2520 			    sc_if->msk_cdata.msk_tx_ring_map);
2521 		sc_if->msk_rdata.msk_tx_ring = NULL;
2522 		sc_if->msk_rdata.msk_tx_ring_paddr = 0;
2523 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2524 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2525 	}
2526 	/* Rx ring. */
2527 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2528 		if (sc_if->msk_rdata.msk_rx_ring_paddr)
2529 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2530 			    sc_if->msk_cdata.msk_rx_ring_map);
2531 		if (sc_if->msk_rdata.msk_rx_ring)
2532 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2533 			    sc_if->msk_rdata.msk_rx_ring,
2534 			    sc_if->msk_cdata.msk_rx_ring_map);
2535 		sc_if->msk_rdata.msk_rx_ring = NULL;
2536 		sc_if->msk_rdata.msk_rx_ring_paddr = 0;
2537 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2538 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2539 	}
2540 	/* Tx buffers. */
2541 	if (sc_if->msk_cdata.msk_tx_tag) {
2542 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2543 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2544 			if (txd->tx_dmamap) {
2545 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2546 				    txd->tx_dmamap);
2547 				txd->tx_dmamap = NULL;
2548 			}
2549 		}
2550 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2551 		sc_if->msk_cdata.msk_tx_tag = NULL;
2552 	}
2553 	/* Rx buffers. */
2554 	if (sc_if->msk_cdata.msk_rx_tag) {
2555 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2556 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2557 			if (rxd->rx_dmamap) {
2558 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2559 				    rxd->rx_dmamap);
2560 				rxd->rx_dmamap = NULL;
2561 			}
2562 		}
2563 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2564 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2565 			    sc_if->msk_cdata.msk_rx_sparemap);
2566 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2567 		}
2568 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2569 		sc_if->msk_cdata.msk_rx_tag = NULL;
2570 	}
2571 	if (sc_if->msk_cdata.msk_parent_tag) {
2572 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2573 		sc_if->msk_cdata.msk_parent_tag = NULL;
2574 	}
2575 }
2576 
2577 static void
2578 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2579 {
2580 	struct msk_rxdesc *jrxd;
2581 	int i;
2582 
2583 	/* Jumbo Rx ring. */
2584 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2585 		if (sc_if->msk_rdata.msk_jumbo_rx_ring_paddr)
2586 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2587 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2588 		if (sc_if->msk_rdata.msk_jumbo_rx_ring)
2589 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2590 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2591 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2592 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2593 		sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = 0;
2594 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2595 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2596 	}
2597 	/* Jumbo Rx buffers. */
2598 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2599 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2600 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2601 			if (jrxd->rx_dmamap) {
2602 				bus_dmamap_destroy(
2603 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2604 				    jrxd->rx_dmamap);
2605 				jrxd->rx_dmamap = NULL;
2606 			}
2607 		}
2608 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2609 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2610 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2611 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2612 		}
2613 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2614 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2615 	}
2616 }
2617 
2618 static int
2619 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2620 {
2621 	struct msk_txdesc *txd, *txd_last;
2622 	struct msk_tx_desc *tx_le;
2623 	struct mbuf *m;
2624 	bus_dmamap_t map;
2625 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2626 	uint32_t control, csum, prod, si;
2627 	uint16_t offset, tcp_offset, tso_mtu;
2628 	int error, i, nseg, tso;
2629 
2630 	MSK_IF_LOCK_ASSERT(sc_if);
2631 
2632 	tcp_offset = offset = 0;
2633 	m = *m_head;
2634 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2635 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2636 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2637 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2638 		/*
2639 		 * Since mbuf has no protocol specific structure information
2640 		 * in it we have to inspect protocol information here to
2641 		 * setup TSO and checksum offload. I don't know why Marvell
2642 		 * made a such decision in chip design because other GigE
2643 		 * hardwares normally takes care of all these chores in
2644 		 * hardware. However, TSO performance of Yukon II is very
2645 		 * good such that it's worth to implement it.
2646 		 */
2647 		struct ether_header *eh;
2648 		struct ip *ip;
2649 		struct tcphdr *tcp;
2650 
2651 		if (M_WRITABLE(m) == 0) {
2652 			/* Get a writable copy. */
2653 			m = m_dup(*m_head, M_NOWAIT);
2654 			m_freem(*m_head);
2655 			if (m == NULL) {
2656 				*m_head = NULL;
2657 				return (ENOBUFS);
2658 			}
2659 			*m_head = m;
2660 		}
2661 
2662 		offset = sizeof(struct ether_header);
2663 		m = m_pullup(m, offset);
2664 		if (m == NULL) {
2665 			*m_head = NULL;
2666 			return (ENOBUFS);
2667 		}
2668 		eh = mtod(m, struct ether_header *);
2669 		/* Check if hardware VLAN insertion is off. */
2670 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2671 			offset = sizeof(struct ether_vlan_header);
2672 			m = m_pullup(m, offset);
2673 			if (m == NULL) {
2674 				*m_head = NULL;
2675 				return (ENOBUFS);
2676 			}
2677 		}
2678 		m = m_pullup(m, offset + sizeof(struct ip));
2679 		if (m == NULL) {
2680 			*m_head = NULL;
2681 			return (ENOBUFS);
2682 		}
2683 		ip = (struct ip *)(mtod(m, char *) + offset);
2684 		offset += (ip->ip_hl << 2);
2685 		tcp_offset = offset;
2686 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2687 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2688 			if (m == NULL) {
2689 				*m_head = NULL;
2690 				return (ENOBUFS);
2691 			}
2692 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2693 			offset += (tcp->th_off << 2);
2694 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2695 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2696 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2697 			/*
2698 			 * It seems that Yukon II has Tx checksum offload bug
2699 			 * for small TCP packets that's less than 60 bytes in
2700 			 * size (e.g. TCP window probe packet, pure ACK packet).
2701 			 * Common work around like padding with zeros to make
2702 			 * the frame minimum ethernet frame size didn't work at
2703 			 * all.
2704 			 * Instead of disabling checksum offload completely we
2705 			 * resort to S/W checksum routine when we encounter
2706 			 * short TCP frames.
2707 			 * Short UDP packets appear to be handled correctly by
2708 			 * Yukon II. Also I assume this bug does not happen on
2709 			 * controllers that use newer descriptor format or
2710 			 * automatic Tx checksum calculation.
2711 			 */
2712 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2713 			if (m == NULL) {
2714 				*m_head = NULL;
2715 				return (ENOBUFS);
2716 			}
2717 			*(uint16_t *)(m->m_data + offset +
2718 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2719 			    m->m_pkthdr.len, offset);
2720 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2721 		}
2722 		*m_head = m;
2723 	}
2724 
2725 	prod = sc_if->msk_cdata.msk_tx_prod;
2726 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2727 	txd_last = txd;
2728 	map = txd->tx_dmamap;
2729 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2730 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2731 	if (error == EFBIG) {
2732 		m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS);
2733 		if (m == NULL) {
2734 			m_freem(*m_head);
2735 			*m_head = NULL;
2736 			return (ENOBUFS);
2737 		}
2738 		*m_head = m;
2739 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2740 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2741 		if (error != 0) {
2742 			m_freem(*m_head);
2743 			*m_head = NULL;
2744 			return (error);
2745 		}
2746 	} else if (error != 0)
2747 		return (error);
2748 	if (nseg == 0) {
2749 		m_freem(*m_head);
2750 		*m_head = NULL;
2751 		return (EIO);
2752 	}
2753 
2754 	/* Check number of available descriptors. */
2755 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2756 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2757 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2758 		return (ENOBUFS);
2759 	}
2760 
2761 	control = 0;
2762 	tso = 0;
2763 	tx_le = NULL;
2764 
2765 	/* Check TSO support. */
2766 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2767 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2768 			tso_mtu = m->m_pkthdr.tso_segsz;
2769 		else
2770 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2771 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2772 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2773 			tx_le->msk_addr = htole32(tso_mtu);
2774 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2775 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2776 			else
2777 				tx_le->msk_control =
2778 				    htole32(OP_LRGLEN | HW_OWNER);
2779 			sc_if->msk_cdata.msk_tx_cnt++;
2780 			MSK_INC(prod, MSK_TX_RING_CNT);
2781 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2782 		}
2783 		tso++;
2784 	}
2785 	/* Check if we have a VLAN tag to insert. */
2786 	if ((m->m_flags & M_VLANTAG) != 0) {
2787 		if (tx_le == NULL) {
2788 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2789 			tx_le->msk_addr = htole32(0);
2790 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2791 			    htons(m->m_pkthdr.ether_vtag));
2792 			sc_if->msk_cdata.msk_tx_cnt++;
2793 			MSK_INC(prod, MSK_TX_RING_CNT);
2794 		} else {
2795 			tx_le->msk_control |= htole32(OP_VLAN |
2796 			    htons(m->m_pkthdr.ether_vtag));
2797 		}
2798 		control |= INS_VLAN;
2799 	}
2800 	/* Check if we have to handle checksum offload. */
2801 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2802 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2803 			control |= CALSUM;
2804 		else {
2805 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2806 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2807 				control |= UDPTCP;
2808 			/* Checksum write position. */
2809 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2810 			/* Checksum start position. */
2811 			csum |= (uint32_t)tcp_offset << 16;
2812 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2813 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2814 				tx_le->msk_addr = htole32(csum);
2815 				tx_le->msk_control = htole32(1 << 16 |
2816 				    (OP_TCPLISW | HW_OWNER));
2817 				sc_if->msk_cdata.msk_tx_cnt++;
2818 				MSK_INC(prod, MSK_TX_RING_CNT);
2819 				sc_if->msk_cdata.msk_last_csum = csum;
2820 			}
2821 		}
2822 	}
2823 
2824 #ifdef MSK_64BIT_DMA
2825 	if (MSK_ADDR_HI(txsegs[0].ds_addr) !=
2826 	    sc_if->msk_cdata.msk_tx_high_addr) {
2827 		sc_if->msk_cdata.msk_tx_high_addr =
2828 		    MSK_ADDR_HI(txsegs[0].ds_addr);
2829 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2830 		tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr));
2831 		tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2832 		sc_if->msk_cdata.msk_tx_cnt++;
2833 		MSK_INC(prod, MSK_TX_RING_CNT);
2834 	}
2835 #endif
2836 	si = prod;
2837 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2838 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2839 	if (tso == 0)
2840 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2841 		    OP_PACKET);
2842 	else
2843 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2844 		    OP_LARGESEND);
2845 	sc_if->msk_cdata.msk_tx_cnt++;
2846 	MSK_INC(prod, MSK_TX_RING_CNT);
2847 
2848 	for (i = 1; i < nseg; i++) {
2849 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2850 #ifdef MSK_64BIT_DMA
2851 		if (MSK_ADDR_HI(txsegs[i].ds_addr) !=
2852 		    sc_if->msk_cdata.msk_tx_high_addr) {
2853 			sc_if->msk_cdata.msk_tx_high_addr =
2854 			    MSK_ADDR_HI(txsegs[i].ds_addr);
2855 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2856 			tx_le->msk_addr =
2857 			    htole32(MSK_ADDR_HI(txsegs[i].ds_addr));
2858 			tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2859 			sc_if->msk_cdata.msk_tx_cnt++;
2860 			MSK_INC(prod, MSK_TX_RING_CNT);
2861 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2862 		}
2863 #endif
2864 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2865 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2866 		    OP_BUFFER | HW_OWNER);
2867 		sc_if->msk_cdata.msk_tx_cnt++;
2868 		MSK_INC(prod, MSK_TX_RING_CNT);
2869 	}
2870 	/* Update producer index. */
2871 	sc_if->msk_cdata.msk_tx_prod = prod;
2872 
2873 	/* Set EOP on the last descriptor. */
2874 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2875 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2876 	tx_le->msk_control |= htole32(EOP);
2877 
2878 	/* Turn the first descriptor ownership to hardware. */
2879 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2880 	tx_le->msk_control |= htole32(HW_OWNER);
2881 
2882 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2883 	map = txd_last->tx_dmamap;
2884 	txd_last->tx_dmamap = txd->tx_dmamap;
2885 	txd->tx_dmamap = map;
2886 	txd->tx_m = m;
2887 
2888 	/* Sync descriptors. */
2889 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2890 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2891 	    sc_if->msk_cdata.msk_tx_ring_map,
2892 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2893 
2894 	return (0);
2895 }
2896 
2897 static void
2898 msk_start(if_t ifp)
2899 {
2900 	struct msk_if_softc *sc_if;
2901 
2902 	sc_if = if_getsoftc(ifp);
2903 	MSK_IF_LOCK(sc_if);
2904 	msk_start_locked(ifp);
2905 	MSK_IF_UNLOCK(sc_if);
2906 }
2907 
2908 static void
2909 msk_start_locked(if_t ifp)
2910 {
2911 	struct msk_if_softc *sc_if;
2912 	struct mbuf *m_head;
2913 	int enq;
2914 
2915 	sc_if = if_getsoftc(ifp);
2916 	MSK_IF_LOCK_ASSERT(sc_if);
2917 
2918 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2919 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2920 		return;
2921 
2922 	for (enq = 0; !if_sendq_empty(ifp) &&
2923 	    sc_if->msk_cdata.msk_tx_cnt <
2924 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2925 		m_head = if_dequeue(ifp);
2926 		if (m_head == NULL)
2927 			break;
2928 		/*
2929 		 * Pack the data into the transmit ring. If we
2930 		 * don't have room, set the OACTIVE flag and wait
2931 		 * for the NIC to drain the ring.
2932 		 */
2933 		if (msk_encap(sc_if, &m_head) != 0) {
2934 			if (m_head == NULL)
2935 				break;
2936 			if_sendq_prepend(ifp, m_head);
2937 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2938 			break;
2939 		}
2940 
2941 		enq++;
2942 		/*
2943 		 * If there's a BPF listener, bounce a copy of this frame
2944 		 * to him.
2945 		 */
2946 		ETHER_BPF_MTAP(ifp, m_head);
2947 	}
2948 
2949 	if (enq > 0) {
2950 		/* Transmit */
2951 		CSR_WRITE_2(sc_if->msk_softc,
2952 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2953 		    sc_if->msk_cdata.msk_tx_prod);
2954 
2955 		/* Set a timeout in case the chip goes out to lunch. */
2956 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2957 	}
2958 }
2959 
2960 static void
2961 msk_watchdog(struct msk_if_softc *sc_if)
2962 {
2963 	if_t ifp;
2964 
2965 	MSK_IF_LOCK_ASSERT(sc_if);
2966 
2967 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2968 		return;
2969 	ifp = sc_if->msk_ifp;
2970 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2971 		if (bootverbose)
2972 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2973 			   "(missed link)\n");
2974 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2975 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2976 		msk_init_locked(sc_if);
2977 		return;
2978 	}
2979 
2980 	if_printf(ifp, "watchdog timeout\n");
2981 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2982 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2983 	msk_init_locked(sc_if);
2984 	if (!if_sendq_empty(ifp))
2985 		msk_start_locked(ifp);
2986 }
2987 
2988 static int
2989 mskc_shutdown(device_t dev)
2990 {
2991 	struct msk_softc *sc;
2992 	int i;
2993 
2994 	sc = device_get_softc(dev);
2995 	MSK_LOCK(sc);
2996 	for (i = 0; i < sc->msk_num_port; i++) {
2997 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2998 		    ((if_getdrvflags(sc->msk_if[i]->msk_ifp) &
2999 		    IFF_DRV_RUNNING) != 0))
3000 			msk_stop(sc->msk_if[i]);
3001 	}
3002 	MSK_UNLOCK(sc);
3003 
3004 	/* Put hardware reset. */
3005 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3006 	return (0);
3007 }
3008 
3009 static int
3010 mskc_suspend(device_t dev)
3011 {
3012 	struct msk_softc *sc;
3013 	int i;
3014 
3015 	sc = device_get_softc(dev);
3016 
3017 	MSK_LOCK(sc);
3018 
3019 	for (i = 0; i < sc->msk_num_port; i++) {
3020 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3021 		    ((if_getdrvflags(sc->msk_if[i]->msk_ifp) &
3022 		    IFF_DRV_RUNNING) != 0))
3023 			msk_stop(sc->msk_if[i]);
3024 	}
3025 
3026 	/* Disable all interrupts. */
3027 	CSR_WRITE_4(sc, B0_IMSK, 0);
3028 	CSR_READ_4(sc, B0_IMSK);
3029 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3030 	CSR_READ_4(sc, B0_HWE_IMSK);
3031 
3032 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3033 
3034 	/* Put hardware reset. */
3035 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3036 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
3037 
3038 	MSK_UNLOCK(sc);
3039 
3040 	return (0);
3041 }
3042 
3043 static int
3044 mskc_resume(device_t dev)
3045 {
3046 	struct msk_softc *sc;
3047 	int i;
3048 
3049 	sc = device_get_softc(dev);
3050 
3051 	MSK_LOCK(sc);
3052 
3053 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
3054 	mskc_reset(sc);
3055 	for (i = 0; i < sc->msk_num_port; i++) {
3056 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3057 		    ((if_getflags(sc->msk_if[i]->msk_ifp) & IFF_UP) != 0)) {
3058 			if_setdrvflagbits(sc->msk_if[i]->msk_ifp, 0,
3059 			    IFF_DRV_RUNNING);
3060 			msk_init_locked(sc->msk_if[i]);
3061 		}
3062 	}
3063 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
3064 
3065 	MSK_UNLOCK(sc);
3066 
3067 	return (0);
3068 }
3069 
3070 #ifndef __NO_STRICT_ALIGNMENT
3071 static __inline void
3072 msk_fixup_rx(struct mbuf *m)
3073 {
3074         int i;
3075         uint16_t *src, *dst;
3076 
3077 	src = mtod(m, uint16_t *);
3078 	dst = src - 3;
3079 
3080 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
3081 		*dst++ = *src++;
3082 
3083 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
3084 }
3085 #endif
3086 
3087 static __inline void
3088 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3089 {
3090 	struct ether_header *eh;
3091 	struct ip *ip;
3092 	struct udphdr *uh;
3093 	int32_t hlen, len, pktlen, temp32;
3094 	uint16_t csum, *opts;
3095 
3096 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3097 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3098 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3099 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3100 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3101 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3102 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3103 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3104 				    CSUM_PSEUDO_HDR;
3105 				m->m_pkthdr.csum_data = 0xffff;
3106 			}
3107 		}
3108 		return;
3109 	}
3110 	/*
3111 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3112 	 * to have various Rx checksum offloading bugs. These
3113 	 * controllers can be configured to compute simple checksum
3114 	 * at two different positions. So we can compute IP and TCP/UDP
3115 	 * checksum at the same time. We intentionally have controller
3116 	 * compute TCP/UDP checksum twice by specifying the same
3117 	 * checksum start position and compare the result. If the value
3118 	 * is different it would indicate the hardware logic was wrong.
3119 	 */
3120 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3121 		if (bootverbose)
3122 			device_printf(sc_if->msk_if_dev,
3123 			    "Rx checksum value mismatch!\n");
3124 		return;
3125 	}
3126 	pktlen = m->m_pkthdr.len;
3127 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3128 		return;
3129 	eh = mtod(m, struct ether_header *);
3130 	if (eh->ether_type != htons(ETHERTYPE_IP))
3131 		return;
3132 	ip = (struct ip *)(eh + 1);
3133 	if (ip->ip_v != IPVERSION)
3134 		return;
3135 
3136 	hlen = ip->ip_hl << 2;
3137 	pktlen -= sizeof(struct ether_header);
3138 	if (hlen < sizeof(struct ip))
3139 		return;
3140 	if (ntohs(ip->ip_len) < hlen)
3141 		return;
3142 	if (ntohs(ip->ip_len) != pktlen)
3143 		return;
3144 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3145 		return;	/* can't handle fragmented packet. */
3146 
3147 	switch (ip->ip_p) {
3148 	case IPPROTO_TCP:
3149 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3150 			return;
3151 		break;
3152 	case IPPROTO_UDP:
3153 		if (pktlen < (hlen + sizeof(struct udphdr)))
3154 			return;
3155 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3156 		if (uh->uh_sum == 0)
3157 			return; /* no checksum */
3158 		break;
3159 	default:
3160 		return;
3161 	}
3162 	csum = bswap16(sc_if->msk_csum & 0xFFFF);
3163 	/* Checksum fixup for IP options. */
3164 	len = hlen - sizeof(struct ip);
3165 	if (len > 0) {
3166 		opts = (uint16_t *)(ip + 1);
3167 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3168 			temp32 = csum - *opts;
3169 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3170 			csum = temp32 & 65535;
3171 		}
3172 	}
3173 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3174 	m->m_pkthdr.csum_data = csum;
3175 }
3176 
3177 static void
3178 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3179     int len)
3180 {
3181 	struct mbuf *m;
3182 	if_t ifp;
3183 	struct msk_rxdesc *rxd;
3184 	int cons, rxlen;
3185 
3186 	ifp = sc_if->msk_ifp;
3187 
3188 	MSK_IF_LOCK_ASSERT(sc_if);
3189 
3190 	cons = sc_if->msk_cdata.msk_rx_cons;
3191 	do {
3192 		rxlen = status >> 16;
3193 		if ((status & GMR_FS_VLAN) != 0 &&
3194 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3195 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3196 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3197 			/*
3198 			 * For controllers that returns bogus status code
3199 			 * just do minimal check and let upper stack
3200 			 * handle this frame.
3201 			 */
3202 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3203 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3204 				msk_discard_rxbuf(sc_if, cons);
3205 				break;
3206 			}
3207 		} else if (len > sc_if->msk_framesize ||
3208 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3209 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3210 			/* Don't count flow-control packet as errors. */
3211 			if ((status & GMR_FS_GOOD_FC) == 0)
3212 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3213 			msk_discard_rxbuf(sc_if, cons);
3214 			break;
3215 		}
3216 #ifdef MSK_64BIT_DMA
3217 		rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) %
3218 		    MSK_RX_RING_CNT];
3219 #else
3220 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3221 #endif
3222 		m = rxd->rx_m;
3223 		if (msk_newbuf(sc_if, cons) != 0) {
3224 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3225 			/* Reuse old buffer. */
3226 			msk_discard_rxbuf(sc_if, cons);
3227 			break;
3228 		}
3229 		m->m_pkthdr.rcvif = ifp;
3230 		m->m_pkthdr.len = m->m_len = len;
3231 #ifndef __NO_STRICT_ALIGNMENT
3232 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3233 			msk_fixup_rx(m);
3234 #endif
3235 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3236 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3237 			msk_rxcsum(sc_if, control, m);
3238 		/* Check for VLAN tagged packets. */
3239 		if ((status & GMR_FS_VLAN) != 0 &&
3240 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
3241 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3242 			m->m_flags |= M_VLANTAG;
3243 		}
3244 		MSK_IF_UNLOCK(sc_if);
3245 		if_input(ifp, m);
3246 		MSK_IF_LOCK(sc_if);
3247 	} while (0);
3248 
3249 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3250 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3251 }
3252 
3253 static void
3254 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3255     int len)
3256 {
3257 	struct mbuf *m;
3258 	if_t ifp;
3259 	struct msk_rxdesc *jrxd;
3260 	int cons, rxlen;
3261 
3262 	ifp = sc_if->msk_ifp;
3263 
3264 	MSK_IF_LOCK_ASSERT(sc_if);
3265 
3266 	cons = sc_if->msk_cdata.msk_rx_cons;
3267 	do {
3268 		rxlen = status >> 16;
3269 		if ((status & GMR_FS_VLAN) != 0 &&
3270 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3271 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3272 		if (len > sc_if->msk_framesize ||
3273 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3274 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3275 			/* Don't count flow-control packet as errors. */
3276 			if ((status & GMR_FS_GOOD_FC) == 0)
3277 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3278 			msk_discard_jumbo_rxbuf(sc_if, cons);
3279 			break;
3280 		}
3281 #ifdef MSK_64BIT_DMA
3282 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) %
3283 		    MSK_JUMBO_RX_RING_CNT];
3284 #else
3285 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3286 #endif
3287 		m = jrxd->rx_m;
3288 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3289 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3290 			/* Reuse old buffer. */
3291 			msk_discard_jumbo_rxbuf(sc_if, cons);
3292 			break;
3293 		}
3294 		m->m_pkthdr.rcvif = ifp;
3295 		m->m_pkthdr.len = m->m_len = len;
3296 #ifndef __NO_STRICT_ALIGNMENT
3297 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3298 			msk_fixup_rx(m);
3299 #endif
3300 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3301 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3302 			msk_rxcsum(sc_if, control, m);
3303 		/* Check for VLAN tagged packets. */
3304 		if ((status & GMR_FS_VLAN) != 0 &&
3305 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
3306 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3307 			m->m_flags |= M_VLANTAG;
3308 		}
3309 		MSK_IF_UNLOCK(sc_if);
3310 		if_input(ifp, m);
3311 		MSK_IF_LOCK(sc_if);
3312 	} while (0);
3313 
3314 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3315 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3316 }
3317 
3318 static void
3319 msk_txeof(struct msk_if_softc *sc_if, int idx)
3320 {
3321 	struct msk_txdesc *txd;
3322 	struct msk_tx_desc *cur_tx;
3323 	if_t ifp;
3324 	uint32_t control;
3325 	int cons, prog;
3326 
3327 	MSK_IF_LOCK_ASSERT(sc_if);
3328 
3329 	ifp = sc_if->msk_ifp;
3330 
3331 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3332 	    sc_if->msk_cdata.msk_tx_ring_map,
3333 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3334 	/*
3335 	 * Go through our tx ring and free mbufs for those
3336 	 * frames that have been sent.
3337 	 */
3338 	cons = sc_if->msk_cdata.msk_tx_cons;
3339 	prog = 0;
3340 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3341 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3342 			break;
3343 		prog++;
3344 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3345 		control = le32toh(cur_tx->msk_control);
3346 		sc_if->msk_cdata.msk_tx_cnt--;
3347 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3348 		if ((control & EOP) == 0)
3349 			continue;
3350 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3351 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3352 		    BUS_DMASYNC_POSTWRITE);
3353 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3354 
3355 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3356 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3357 		    __func__));
3358 		m_freem(txd->tx_m);
3359 		txd->tx_m = NULL;
3360 	}
3361 
3362 	if (prog > 0) {
3363 		sc_if->msk_cdata.msk_tx_cons = cons;
3364 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3365 			sc_if->msk_watchdog_timer = 0;
3366 		/* No need to sync LEs as we didn't update LEs. */
3367 	}
3368 }
3369 
3370 static void
3371 msk_tick(void *xsc_if)
3372 {
3373 	struct epoch_tracker et;
3374 	struct msk_if_softc *sc_if;
3375 	struct mii_data *mii;
3376 
3377 	sc_if = xsc_if;
3378 
3379 	MSK_IF_LOCK_ASSERT(sc_if);
3380 
3381 	mii = device_get_softc(sc_if->msk_miibus);
3382 
3383 	mii_tick(mii);
3384 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3385 		msk_miibus_statchg(sc_if->msk_if_dev);
3386 	NET_EPOCH_ENTER(et);
3387 	msk_handle_events(sc_if->msk_softc);
3388 	NET_EPOCH_EXIT(et);
3389 	msk_watchdog(sc_if);
3390 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3391 }
3392 
3393 static void
3394 msk_intr_phy(struct msk_if_softc *sc_if)
3395 {
3396 	uint16_t status;
3397 
3398 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3399 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3400 	/* Handle FIFO Underrun/Overflow? */
3401 	if ((status & PHY_M_IS_FIFO_ERROR))
3402 		device_printf(sc_if->msk_if_dev,
3403 		    "PHY FIFO underrun/overflow.\n");
3404 }
3405 
3406 static void
3407 msk_intr_gmac(struct msk_if_softc *sc_if)
3408 {
3409 	struct msk_softc *sc;
3410 	uint8_t status;
3411 
3412 	sc = sc_if->msk_softc;
3413 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3414 
3415 	/* GMAC Rx FIFO overrun. */
3416 	if ((status & GM_IS_RX_FF_OR) != 0)
3417 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3418 		    GMF_CLI_RX_FO);
3419 	/* GMAC Tx FIFO underrun. */
3420 	if ((status & GM_IS_TX_FF_UR) != 0) {
3421 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3422 		    GMF_CLI_TX_FU);
3423 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3424 		/*
3425 		 * XXX
3426 		 * In case of Tx underrun, we may need to flush/reset
3427 		 * Tx MAC but that would also require resynchronization
3428 		 * with status LEs. Reinitializing status LEs would
3429 		 * affect other port in dual MAC configuration so it
3430 		 * should be avoided as possible as we can.
3431 		 * Due to lack of documentation it's all vague guess but
3432 		 * it needs more investigation.
3433 		 */
3434 	}
3435 }
3436 
3437 static void
3438 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3439 {
3440 	struct msk_softc *sc;
3441 
3442 	sc = sc_if->msk_softc;
3443 	if ((status & Y2_IS_PAR_RD1) != 0) {
3444 		device_printf(sc_if->msk_if_dev,
3445 		    "RAM buffer read parity error\n");
3446 		/* Clear IRQ. */
3447 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3448 		    RI_CLR_RD_PERR);
3449 	}
3450 	if ((status & Y2_IS_PAR_WR1) != 0) {
3451 		device_printf(sc_if->msk_if_dev,
3452 		    "RAM buffer write parity error\n");
3453 		/* Clear IRQ. */
3454 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3455 		    RI_CLR_WR_PERR);
3456 	}
3457 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3458 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3459 		/* Clear IRQ. */
3460 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3461 		    GMF_CLI_TX_PE);
3462 	}
3463 	if ((status & Y2_IS_PAR_RX1) != 0) {
3464 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3465 		/* Clear IRQ. */
3466 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3467 	}
3468 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3469 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3470 		/* Clear IRQ. */
3471 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3472 	}
3473 }
3474 
3475 static void
3476 msk_intr_hwerr(struct msk_softc *sc)
3477 {
3478 	uint32_t status;
3479 	uint32_t tlphead[4];
3480 
3481 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3482 	/* Time Stamp timer overflow. */
3483 	if ((status & Y2_IS_TIST_OV) != 0)
3484 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3485 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3486 		/*
3487 		 * PCI Express Error occurred which is not described in PEX
3488 		 * spec.
3489 		 * This error is also mapped either to Master Abort(
3490 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3491 		 * can only be cleared there.
3492                  */
3493 		device_printf(sc->msk_dev,
3494 		    "PCI Express protocol violation error\n");
3495 	}
3496 
3497 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3498 		uint16_t v16;
3499 
3500 		if ((status & Y2_IS_MST_ERR) != 0)
3501 			device_printf(sc->msk_dev,
3502 			    "unexpected IRQ Status error\n");
3503 		else
3504 			device_printf(sc->msk_dev,
3505 			    "unexpected IRQ Master error\n");
3506 		/* Reset all bits in the PCI status register. */
3507 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3508 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3509 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3510 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3511 		    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3512 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3513 	}
3514 
3515 	/* Check for PCI Express Uncorrectable Error. */
3516 	if ((status & Y2_IS_PCI_EXP) != 0) {
3517 		uint32_t v32;
3518 
3519 		/*
3520 		 * On PCI Express bus bridges are called root complexes (RC).
3521 		 * PCI Express errors are recognized by the root complex too,
3522 		 * which requests the system to handle the problem. After
3523 		 * error occurrence it may be that no access to the adapter
3524 		 * may be performed any longer.
3525 		 */
3526 
3527 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3528 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3529 			/* Ignore unsupported request error. */
3530 			device_printf(sc->msk_dev,
3531 			    "Uncorrectable PCI Express error\n");
3532 		}
3533 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3534 			int i;
3535 
3536 			/* Get TLP header form Log Registers. */
3537 			for (i = 0; i < 4; i++)
3538 				tlphead[i] = CSR_PCI_READ_4(sc,
3539 				    PEX_HEADER_LOG + i * 4);
3540 			/* Check for vendor defined broadcast message. */
3541 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3542 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3543 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3544 				    sc->msk_intrhwemask);
3545 				CSR_READ_4(sc, B0_HWE_IMSK);
3546 			}
3547 		}
3548 		/* Clear the interrupt. */
3549 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3550 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3551 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3552 	}
3553 
3554 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3555 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3556 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3557 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3558 }
3559 
3560 static __inline void
3561 msk_rxput(struct msk_if_softc *sc_if)
3562 {
3563 	struct msk_softc *sc;
3564 
3565 	sc = sc_if->msk_softc;
3566 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3567 		bus_dmamap_sync(
3568 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3569 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3570 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3571 	else
3572 		bus_dmamap_sync(
3573 		    sc_if->msk_cdata.msk_rx_ring_tag,
3574 		    sc_if->msk_cdata.msk_rx_ring_map,
3575 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3576 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3577 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3578 }
3579 
3580 static int
3581 msk_handle_events(struct msk_softc *sc)
3582 {
3583 	struct msk_if_softc *sc_if;
3584 	int rxput[2];
3585 	struct msk_stat_desc *sd;
3586 	uint32_t control, status;
3587 	int cons, len, port, rxprog;
3588 
3589 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3590 		return (0);
3591 
3592 	/* Sync status LEs. */
3593 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3594 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3595 
3596 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3597 	rxprog = 0;
3598 	cons = sc->msk_stat_cons;
3599 	for (;;) {
3600 		sd = &sc->msk_stat_ring[cons];
3601 		control = le32toh(sd->msk_control);
3602 		if ((control & HW_OWNER) == 0)
3603 			break;
3604 		control &= ~HW_OWNER;
3605 		sd->msk_control = htole32(control);
3606 		status = le32toh(sd->msk_status);
3607 		len = control & STLE_LEN_MASK;
3608 		port = (control >> 16) & 0x01;
3609 		sc_if = sc->msk_if[port];
3610 		if (sc_if == NULL) {
3611 			device_printf(sc->msk_dev, "invalid port opcode "
3612 			    "0x%08x\n", control & STLE_OP_MASK);
3613 			continue;
3614 		}
3615 
3616 		switch (control & STLE_OP_MASK) {
3617 		case OP_RXVLAN:
3618 			sc_if->msk_vtag = ntohs(len);
3619 			break;
3620 		case OP_RXCHKSVLAN:
3621 			sc_if->msk_vtag = ntohs(len);
3622 			/* FALLTHROUGH */
3623 		case OP_RXCHKS:
3624 			sc_if->msk_csum = status;
3625 			break;
3626 		case OP_RXSTAT:
3627 			if (!(if_getdrvflags(sc_if->msk_ifp) & IFF_DRV_RUNNING))
3628 				break;
3629 			if (sc_if->msk_framesize >
3630 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3631 				msk_jumbo_rxeof(sc_if, status, control, len);
3632 			else
3633 				msk_rxeof(sc_if, status, control, len);
3634 			rxprog++;
3635 			/*
3636 			 * Because there is no way to sync single Rx LE
3637 			 * put the DMA sync operation off until the end of
3638 			 * event processing.
3639 			 */
3640 			rxput[port]++;
3641 			/* Update prefetch unit if we've passed water mark. */
3642 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3643 				msk_rxput(sc_if);
3644 				rxput[port] = 0;
3645 			}
3646 			break;
3647 		case OP_TXINDEXLE:
3648 			if (sc->msk_if[MSK_PORT_A] != NULL)
3649 				msk_txeof(sc->msk_if[MSK_PORT_A],
3650 				    status & STLE_TXA1_MSKL);
3651 			if (sc->msk_if[MSK_PORT_B] != NULL)
3652 				msk_txeof(sc->msk_if[MSK_PORT_B],
3653 				    ((status & STLE_TXA2_MSKL) >>
3654 				    STLE_TXA2_SHIFTL) |
3655 				    ((len & STLE_TXA2_MSKH) <<
3656 				    STLE_TXA2_SHIFTH));
3657 			break;
3658 		default:
3659 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3660 			    control & STLE_OP_MASK);
3661 			break;
3662 		}
3663 		MSK_INC(cons, sc->msk_stat_count);
3664 		if (rxprog > sc->msk_process_limit)
3665 			break;
3666 	}
3667 
3668 	sc->msk_stat_cons = cons;
3669 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3670 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3671 
3672 	if (rxput[MSK_PORT_A] > 0)
3673 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3674 	if (rxput[MSK_PORT_B] > 0)
3675 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3676 
3677 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3678 }
3679 
3680 static void
3681 msk_intr(void *xsc)
3682 {
3683 	struct msk_softc *sc;
3684 	struct msk_if_softc *sc_if0, *sc_if1;
3685 	if_t ifp0, ifp1;
3686 	uint32_t status;
3687 	int domore;
3688 
3689 	sc = xsc;
3690 	MSK_LOCK(sc);
3691 
3692 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3693 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3694 	if (status == 0 || status == 0xffffffff ||
3695 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3696 	    (status & sc->msk_intrmask) == 0) {
3697 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3698 		MSK_UNLOCK(sc);
3699 		return;
3700 	}
3701 
3702 	sc_if0 = sc->msk_if[MSK_PORT_A];
3703 	sc_if1 = sc->msk_if[MSK_PORT_B];
3704 	ifp0 = ifp1 = NULL;
3705 	if (sc_if0 != NULL)
3706 		ifp0 = sc_if0->msk_ifp;
3707 	if (sc_if1 != NULL)
3708 		ifp1 = sc_if1->msk_ifp;
3709 
3710 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3711 		msk_intr_phy(sc_if0);
3712 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3713 		msk_intr_phy(sc_if1);
3714 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3715 		msk_intr_gmac(sc_if0);
3716 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3717 		msk_intr_gmac(sc_if1);
3718 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3719 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3720 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3721 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3722 		CSR_READ_4(sc, B0_IMSK);
3723 	}
3724         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3725 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3726 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3727 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3728 		CSR_READ_4(sc, B0_IMSK);
3729 	}
3730 	if ((status & Y2_IS_HW_ERR) != 0)
3731 		msk_intr_hwerr(sc);
3732 
3733 	domore = msk_handle_events(sc);
3734 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3735 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3736 
3737 	/* Reenable interrupts. */
3738 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3739 
3740 	if (ifp0 != NULL && (if_getdrvflags(ifp0) & IFF_DRV_RUNNING) != 0 &&
3741 	    !if_sendq_empty(ifp0))
3742 		msk_start_locked(ifp0);
3743 	if (ifp1 != NULL && (if_getdrvflags(ifp1) & IFF_DRV_RUNNING) != 0 &&
3744 	    !if_sendq_empty(ifp1))
3745 		msk_start_locked(ifp1);
3746 
3747 	MSK_UNLOCK(sc);
3748 }
3749 
3750 static void
3751 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3752 {
3753 	struct msk_softc *sc;
3754 	if_t ifp;
3755 
3756 	ifp = sc_if->msk_ifp;
3757 	sc = sc_if->msk_softc;
3758 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3759 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3760 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3761 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3762 		    TX_STFW_ENA);
3763 	} else {
3764 		if (if_getmtu(ifp) > ETHERMTU) {
3765 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3766 			CSR_WRITE_4(sc,
3767 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3768 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3769 			/* Disable Store & Forward mode for Tx. */
3770 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3771 			    TX_STFW_DIS);
3772 		} else {
3773 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3774 			    TX_STFW_ENA);
3775 		}
3776 	}
3777 }
3778 
3779 static void
3780 msk_init(void *xsc)
3781 {
3782 	struct msk_if_softc *sc_if = xsc;
3783 
3784 	MSK_IF_LOCK(sc_if);
3785 	msk_init_locked(sc_if);
3786 	MSK_IF_UNLOCK(sc_if);
3787 }
3788 
3789 static void
3790 msk_init_locked(struct msk_if_softc *sc_if)
3791 {
3792 	struct msk_softc *sc;
3793 	if_t ifp;
3794 	struct mii_data	 *mii;
3795 	uint8_t *eaddr;
3796 	uint16_t gmac;
3797 	uint32_t reg;
3798 	int error;
3799 
3800 	MSK_IF_LOCK_ASSERT(sc_if);
3801 
3802 	ifp = sc_if->msk_ifp;
3803 	sc = sc_if->msk_softc;
3804 	mii = device_get_softc(sc_if->msk_miibus);
3805 
3806 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3807 		return;
3808 
3809 	error = 0;
3810 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3811 	msk_stop(sc_if);
3812 
3813 	if (if_getmtu(ifp) < ETHERMTU)
3814 		sc_if->msk_framesize = ETHERMTU;
3815 	else
3816 		sc_if->msk_framesize = if_getmtu(ifp);
3817 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3818 	if (if_getmtu(ifp) > ETHERMTU &&
3819 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3820 		if_sethwassistbits(ifp, 0, (MSK_CSUM_FEATURES | CSUM_TSO));
3821 		if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_TXCSUM));
3822 	}
3823 
3824 	/* GMAC Control reset. */
3825 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3826 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3827 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3828 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3829 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
3830 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3831 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3832 		    GMC_BYP_RETR_ON);
3833 
3834 	/*
3835 	 * Initialize GMAC first such that speed/duplex/flow-control
3836 	 * parameters are renegotiated when interface is brought up.
3837 	 */
3838 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3839 
3840 	/* Dummy read the Interrupt Source Register. */
3841 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3842 
3843 	/* Clear MIB stats. */
3844 	msk_stats_clear(sc_if);
3845 
3846 	/* Disable FCS. */
3847 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3848 
3849 	/* Setup Transmit Control Register. */
3850 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3851 
3852 	/* Setup Transmit Flow Control Register. */
3853 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3854 
3855 	/* Setup Transmit Parameter Register. */
3856 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3857 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3858 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3859 
3860 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3861 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3862 
3863 	if (if_getmtu(ifp) > ETHERMTU)
3864 		gmac |= GM_SMOD_JUMBO_ENA;
3865 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3866 
3867 	/* Set station address. */
3868 	eaddr = if_getlladdr(ifp);
3869 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3870 	    eaddr[0] | (eaddr[1] << 8));
3871 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3872 	    eaddr[2] | (eaddr[3] << 8));
3873 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3874 	    eaddr[4] | (eaddr[5] << 8));
3875 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3876 	    eaddr[0] | (eaddr[1] << 8));
3877 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3878 	    eaddr[2] | (eaddr[3] << 8));
3879 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3880 	    eaddr[4] | (eaddr[5] << 8));
3881 
3882 	/* Disable interrupts for counter overflows. */
3883 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3884 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3885 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3886 
3887 	/* Configure Rx MAC FIFO. */
3888 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3889 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3890 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3891 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3892 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3893 		reg |= GMF_RX_OVER_ON;
3894 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3895 
3896 	/* Set receive filter. */
3897 	msk_rxfilter(sc_if);
3898 
3899 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3900 		/* Clear flush mask - HW bug. */
3901 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3902 	} else {
3903 		/* Flush Rx MAC FIFO on any flow control or error. */
3904 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3905 		    GMR_FS_ANY_ERR);
3906 	}
3907 
3908 	/*
3909 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3910 	 * due to hardware hang on receipt of pause frames.
3911 	 */
3912 	reg = RX_GMF_FL_THR_DEF + 1;
3913 	/* Another magic for Yukon FE+ - From Linux. */
3914 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3915 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3916 		reg = 0x178;
3917 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3918 
3919 	/* Configure Tx MAC FIFO. */
3920 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3921 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3922 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3923 
3924 	/* Configure hardware VLAN tag insertion/stripping. */
3925 	msk_setvlan(sc_if, ifp);
3926 
3927 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3928 		/* Set Rx Pause threshold. */
3929 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3930 		    MSK_ECU_LLPP);
3931 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3932 		    MSK_ECU_ULPP);
3933 		/* Configure store-and-forward for Tx. */
3934 		msk_set_tx_stfwd(sc_if);
3935 	}
3936 
3937 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3938 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3939 		/* Disable dynamic watermark - from Linux. */
3940 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3941 		reg &= ~0x03;
3942 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3943 	}
3944 
3945 	/*
3946 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3947 	 * arbiter as we don't use Sync Tx queue.
3948 	 */
3949 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3950 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3951 	/* Enable the RAM Interface Arbiter. */
3952 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3953 
3954 	/* Setup RAM buffer. */
3955 	msk_set_rambuffer(sc_if);
3956 
3957 	/* Disable Tx sync Queue. */
3958 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3959 
3960 	/* Setup Tx Queue Bus Memory Interface. */
3961 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3962 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3963 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3964 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3965 	switch (sc->msk_hw_id) {
3966 	case CHIP_ID_YUKON_EC_U:
3967 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3968 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3969 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3970 			    MSK_ECU_TXFF_LEV);
3971 		}
3972 		break;
3973 	case CHIP_ID_YUKON_EX:
3974 		/*
3975 		 * Yukon Extreme seems to have silicon bug for
3976 		 * automatic Tx checksum calculation capability.
3977 		 */
3978 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3979 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3980 			    F_TX_CHK_AUTO_OFF);
3981 		break;
3982 	}
3983 
3984 	/* Setup Rx Queue Bus Memory Interface. */
3985 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3986 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3987 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3988 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3989         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3990 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3991 		/* MAC Rx RAM Read is controlled by hardware. */
3992                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3993 	}
3994 
3995 	msk_set_prefetch(sc, sc_if->msk_txq,
3996 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3997 	msk_init_tx_ring(sc_if);
3998 
3999 	/* Disable Rx checksum offload and RSS hash. */
4000 	reg = BMU_DIS_RX_RSS_HASH;
4001 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
4002 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
4003 		reg |= BMU_ENA_RX_CHKSUM;
4004 	else
4005 		reg |= BMU_DIS_RX_CHKSUM;
4006 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
4007 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
4008 		msk_set_prefetch(sc, sc_if->msk_rxq,
4009 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
4010 		    MSK_JUMBO_RX_RING_CNT - 1);
4011 		error = msk_init_jumbo_rx_ring(sc_if);
4012 	 } else {
4013 		msk_set_prefetch(sc, sc_if->msk_rxq,
4014 		    sc_if->msk_rdata.msk_rx_ring_paddr,
4015 		    MSK_RX_RING_CNT - 1);
4016 		error = msk_init_rx_ring(sc_if);
4017 	}
4018 	if (error != 0) {
4019 		device_printf(sc_if->msk_if_dev,
4020 		    "initialization failed: no memory for Rx buffers\n");
4021 		msk_stop(sc_if);
4022 		return;
4023 	}
4024 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
4025 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
4026 		/* Disable flushing of non-ASF packets. */
4027 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
4028 		    GMF_RX_MACSEC_FLUSH_OFF);
4029 	}
4030 
4031 	/* Configure interrupt handling. */
4032 	if (sc_if->msk_port == MSK_PORT_A) {
4033 		sc->msk_intrmask |= Y2_IS_PORT_A;
4034 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
4035 	} else {
4036 		sc->msk_intrmask |= Y2_IS_PORT_B;
4037 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
4038 	}
4039 	/* Configure IRQ moderation mask. */
4040 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
4041 	if (sc->msk_int_holdoff > 0) {
4042 		/* Configure initial IRQ moderation timer value. */
4043 		CSR_WRITE_4(sc, B2_IRQM_INI,
4044 		    MSK_USECS(sc, sc->msk_int_holdoff));
4045 		CSR_WRITE_4(sc, B2_IRQM_VAL,
4046 		    MSK_USECS(sc, sc->msk_int_holdoff));
4047 		/* Start IRQ moderation. */
4048 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
4049 	}
4050 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4051 	CSR_READ_4(sc, B0_HWE_IMSK);
4052 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4053 	CSR_READ_4(sc, B0_IMSK);
4054 
4055 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
4056 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4057 
4058 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4059 	mii_mediachg(mii);
4060 
4061 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
4062 }
4063 
4064 static void
4065 msk_set_rambuffer(struct msk_if_softc *sc_if)
4066 {
4067 	struct msk_softc *sc;
4068 	int ltpp, utpp;
4069 
4070 	sc = sc_if->msk_softc;
4071 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
4072 		return;
4073 
4074 	/* Setup Rx Queue. */
4075 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
4076 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
4077 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4078 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
4079 	    sc->msk_rxqend[sc_if->msk_port] / 8);
4080 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
4081 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4082 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
4083 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4084 
4085 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4086 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
4087 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4088 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
4089 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4090 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4091 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4092 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4093 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4094 
4095 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4096 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4097 
4098 	/* Setup Tx Queue. */
4099 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4100 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4101 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4102 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4103 	    sc->msk_txqend[sc_if->msk_port] / 8);
4104 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4105 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4106 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4107 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4108 	/* Enable Store & Forward for Tx side. */
4109 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4110 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4111 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4112 }
4113 
4114 static void
4115 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4116     uint32_t count)
4117 {
4118 
4119 	/* Reset the prefetch unit. */
4120 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4121 	    PREF_UNIT_RST_SET);
4122 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4123 	    PREF_UNIT_RST_CLR);
4124 	/* Set LE base address. */
4125 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4126 	    MSK_ADDR_LO(addr));
4127 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4128 	    MSK_ADDR_HI(addr));
4129 	/* Set the list last index. */
4130 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4131 	    count);
4132 	/* Turn on prefetch unit. */
4133 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4134 	    PREF_UNIT_OP_ON);
4135 	/* Dummy read to ensure write. */
4136 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4137 }
4138 
4139 static void
4140 msk_stop(struct msk_if_softc *sc_if)
4141 {
4142 	struct msk_softc *sc;
4143 	struct msk_txdesc *txd;
4144 	struct msk_rxdesc *rxd;
4145 	struct msk_rxdesc *jrxd;
4146 	if_t ifp;
4147 	uint32_t val;
4148 	int i;
4149 
4150 	MSK_IF_LOCK_ASSERT(sc_if);
4151 	sc = sc_if->msk_softc;
4152 	ifp = sc_if->msk_ifp;
4153 
4154 	callout_stop(&sc_if->msk_tick_ch);
4155 	sc_if->msk_watchdog_timer = 0;
4156 
4157 	/* Disable interrupts. */
4158 	if (sc_if->msk_port == MSK_PORT_A) {
4159 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4160 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4161 	} else {
4162 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4163 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4164 	}
4165 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4166 	CSR_READ_4(sc, B0_HWE_IMSK);
4167 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4168 	CSR_READ_4(sc, B0_IMSK);
4169 
4170 	/* Disable Tx/Rx MAC. */
4171 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4172 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4173 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4174 	/* Read again to ensure writing. */
4175 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4176 	/* Update stats and clear counters. */
4177 	msk_stats_update(sc_if);
4178 
4179 	/* Stop Tx BMU. */
4180 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4181 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4182 	for (i = 0; i < MSK_TIMEOUT; i++) {
4183 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4184 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4185 			    BMU_STOP);
4186 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4187 		} else
4188 			break;
4189 		DELAY(1);
4190 	}
4191 	if (i == MSK_TIMEOUT)
4192 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4193 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4194 	    RB_RST_SET | RB_DIS_OP_MD);
4195 
4196 	/* Disable all GMAC interrupt. */
4197 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4198 	/* Disable PHY interrupt. */
4199 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4200 
4201 	/* Disable the RAM Interface Arbiter. */
4202 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4203 
4204 	/* Reset the PCI FIFO of the async Tx queue */
4205 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4206 	    BMU_RST_SET | BMU_FIFO_RST);
4207 
4208 	/* Reset the Tx prefetch units. */
4209 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4210 	    PREF_UNIT_RST_SET);
4211 
4212 	/* Reset the RAM Buffer async Tx queue. */
4213 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4214 
4215 	/* Reset Tx MAC FIFO. */
4216 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4217 	/* Set Pause Off. */
4218 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4219 
4220 	/*
4221 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4222 	 * reach the end of packet and since we can't make sure that we have
4223 	 * incoming data, we must reset the BMU while it is not during a DMA
4224 	 * transfer. Since it is possible that the Rx path is still active,
4225 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4226 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4227 	 * BMU is polled until any DMA in progress is ended and only then it
4228 	 * will be reset.
4229 	 */
4230 
4231 	/* Disable the RAM Buffer receive queue. */
4232 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4233 	for (i = 0; i < MSK_TIMEOUT; i++) {
4234 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4235 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4236 			break;
4237 		DELAY(1);
4238 	}
4239 	if (i == MSK_TIMEOUT)
4240 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4241 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4242 	    BMU_RST_SET | BMU_FIFO_RST);
4243 	/* Reset the Rx prefetch unit. */
4244 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4245 	    PREF_UNIT_RST_SET);
4246 	/* Reset the RAM Buffer receive queue. */
4247 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4248 	/* Reset Rx MAC FIFO. */
4249 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4250 
4251 	/* Free Rx and Tx mbufs still in the queues. */
4252 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4253 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4254 		if (rxd->rx_m != NULL) {
4255 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4256 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4257 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4258 			    rxd->rx_dmamap);
4259 			m_freem(rxd->rx_m);
4260 			rxd->rx_m = NULL;
4261 		}
4262 	}
4263 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4264 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4265 		if (jrxd->rx_m != NULL) {
4266 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4267 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4268 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4269 			    jrxd->rx_dmamap);
4270 			m_freem(jrxd->rx_m);
4271 			jrxd->rx_m = NULL;
4272 		}
4273 	}
4274 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4275 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4276 		if (txd->tx_m != NULL) {
4277 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4278 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4279 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4280 			    txd->tx_dmamap);
4281 			m_freem(txd->tx_m);
4282 			txd->tx_m = NULL;
4283 		}
4284 	}
4285 
4286 	/*
4287 	 * Mark the interface down.
4288 	 */
4289 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
4290 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4291 }
4292 
4293 /*
4294  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4295  * counter clears high 16 bits of the counter such that accessing
4296  * lower 16 bits should be the last operation.
4297  */
4298 #define	MSK_READ_MIB32(x, y)					\
4299 	((((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4300 	(uint32_t)GMAC_READ_2(sc, x, y))
4301 #define	MSK_READ_MIB64(x, y)					\
4302 	((((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4303 	(uint64_t)MSK_READ_MIB32(x, y))
4304 
4305 static void
4306 msk_stats_clear(struct msk_if_softc *sc_if)
4307 {
4308 	struct msk_softc *sc;
4309 	uint16_t gmac;
4310 	int i;
4311 
4312 	MSK_IF_LOCK_ASSERT(sc_if);
4313 
4314 	sc = sc_if->msk_softc;
4315 	/* Set MIB Clear Counter Mode. */
4316 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4317 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4318 	/* Read all MIB Counters with Clear Mode set. */
4319 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4320 		(void)MSK_READ_MIB32(sc_if->msk_port, i);
4321 	/* Clear MIB Clear Counter Mode. */
4322 	gmac &= ~GM_PAR_MIB_CLR;
4323 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4324 }
4325 
4326 static void
4327 msk_stats_update(struct msk_if_softc *sc_if)
4328 {
4329 	struct msk_softc *sc;
4330 	if_t ifp;
4331 	struct msk_hw_stats *stats;
4332 	uint16_t gmac;
4333 
4334 	MSK_IF_LOCK_ASSERT(sc_if);
4335 
4336 	ifp = sc_if->msk_ifp;
4337 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
4338 		return;
4339 	sc = sc_if->msk_softc;
4340 	stats = &sc_if->msk_stats;
4341 	/* Set MIB Clear Counter Mode. */
4342 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4343 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4344 
4345 	/* Rx stats. */
4346 	stats->rx_ucast_frames +=
4347 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4348 	stats->rx_bcast_frames +=
4349 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4350 	stats->rx_pause_frames +=
4351 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4352 	stats->rx_mcast_frames +=
4353 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4354 	stats->rx_crc_errs +=
4355 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4356 	stats->rx_good_octets +=
4357 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4358 	stats->rx_bad_octets +=
4359 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4360 	stats->rx_runts +=
4361 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4362 	stats->rx_runt_errs +=
4363 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4364 	stats->rx_pkts_64 +=
4365 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4366 	stats->rx_pkts_65_127 +=
4367 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4368 	stats->rx_pkts_128_255 +=
4369 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4370 	stats->rx_pkts_256_511 +=
4371 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4372 	stats->rx_pkts_512_1023 +=
4373 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4374 	stats->rx_pkts_1024_1518 +=
4375 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4376 	stats->rx_pkts_1519_max +=
4377 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4378 	stats->rx_pkts_too_long +=
4379 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4380 	stats->rx_pkts_jabbers +=
4381 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4382 	stats->rx_fifo_oflows +=
4383 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4384 
4385 	/* Tx stats. */
4386 	stats->tx_ucast_frames +=
4387 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4388 	stats->tx_bcast_frames +=
4389 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4390 	stats->tx_pause_frames +=
4391 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4392 	stats->tx_mcast_frames +=
4393 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4394 	stats->tx_octets +=
4395 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4396 	stats->tx_pkts_64 +=
4397 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4398 	stats->tx_pkts_65_127 +=
4399 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4400 	stats->tx_pkts_128_255 +=
4401 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4402 	stats->tx_pkts_256_511 +=
4403 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4404 	stats->tx_pkts_512_1023 +=
4405 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4406 	stats->tx_pkts_1024_1518 +=
4407 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4408 	stats->tx_pkts_1519_max +=
4409 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4410 	stats->tx_colls +=
4411 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4412 	stats->tx_late_colls +=
4413 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4414 	stats->tx_excess_colls +=
4415 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4416 	stats->tx_multi_colls +=
4417 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4418 	stats->tx_single_colls +=
4419 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4420 	stats->tx_underflows +=
4421 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4422 	/* Clear MIB Clear Counter Mode. */
4423 	gmac &= ~GM_PAR_MIB_CLR;
4424 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4425 }
4426 
4427 static int
4428 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4429 {
4430 	struct msk_softc *sc;
4431 	struct msk_if_softc *sc_if;
4432 	uint32_t result, *stat;
4433 	int off;
4434 
4435 	sc_if = (struct msk_if_softc *)arg1;
4436 	sc = sc_if->msk_softc;
4437 	off = arg2;
4438 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4439 
4440 	MSK_IF_LOCK(sc_if);
4441 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4442 	result += *stat;
4443 	MSK_IF_UNLOCK(sc_if);
4444 
4445 	return (sysctl_handle_int(oidp, &result, 0, req));
4446 }
4447 
4448 static int
4449 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4450 {
4451 	struct msk_softc *sc;
4452 	struct msk_if_softc *sc_if;
4453 	uint64_t result, *stat;
4454 	int off;
4455 
4456 	sc_if = (struct msk_if_softc *)arg1;
4457 	sc = sc_if->msk_softc;
4458 	off = arg2;
4459 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4460 
4461 	MSK_IF_LOCK(sc_if);
4462 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4463 	result += *stat;
4464 	MSK_IF_UNLOCK(sc_if);
4465 
4466 	return (sysctl_handle_64(oidp, &result, 0, req));
4467 }
4468 
4469 #undef MSK_READ_MIB32
4470 #undef MSK_READ_MIB64
4471 
4472 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4473 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o,				\
4474 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,	 	\
4475 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4476 	    "IU", d)
4477 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4478 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o,				\
4479 	    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,	 	\
4480 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4481 	    "QU", d)
4482 
4483 static void
4484 msk_sysctl_node(struct msk_if_softc *sc_if)
4485 {
4486 	struct sysctl_ctx_list *ctx;
4487 	struct sysctl_oid_list *child, *schild;
4488 	struct sysctl_oid *tree;
4489 
4490 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4491 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4492 
4493 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
4494 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK Statistics");
4495 	schild = SYSCTL_CHILDREN(tree);
4496 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx",
4497 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK RX Statistics");
4498 	child = SYSCTL_CHILDREN(tree);
4499 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4500 	    child, rx_ucast_frames, "Good unicast frames");
4501 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4502 	    child, rx_bcast_frames, "Good broadcast frames");
4503 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4504 	    child, rx_pause_frames, "Pause frames");
4505 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4506 	    child, rx_mcast_frames, "Multicast frames");
4507 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4508 	    child, rx_crc_errs, "CRC errors");
4509 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4510 	    child, rx_good_octets, "Good octets");
4511 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4512 	    child, rx_bad_octets, "Bad octets");
4513 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4514 	    child, rx_pkts_64, "64 bytes frames");
4515 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4516 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4517 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4518 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4519 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4520 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4521 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4522 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4523 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4524 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4525 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4526 	    child, rx_pkts_1519_max, "1519 to max frames");
4527 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4528 	    child, rx_pkts_too_long, "frames too long");
4529 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4530 	    child, rx_pkts_jabbers, "Jabber errors");
4531 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4532 	    child, rx_fifo_oflows, "FIFO overflows");
4533 
4534 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx",
4535 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK TX Statistics");
4536 	child = SYSCTL_CHILDREN(tree);
4537 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4538 	    child, tx_ucast_frames, "Unicast frames");
4539 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4540 	    child, tx_bcast_frames, "Broadcast frames");
4541 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4542 	    child, tx_pause_frames, "Pause frames");
4543 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4544 	    child, tx_mcast_frames, "Multicast frames");
4545 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4546 	    child, tx_octets, "Octets");
4547 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4548 	    child, tx_pkts_64, "64 bytes frames");
4549 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4550 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4551 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4552 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4553 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4554 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4555 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4556 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4557 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4558 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4559 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4560 	    child, tx_pkts_1519_max, "1519 to max frames");
4561 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4562 	    child, tx_colls, "Collisions");
4563 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4564 	    child, tx_late_colls, "Late collisions");
4565 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4566 	    child, tx_excess_colls, "Excessive collisions");
4567 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4568 	    child, tx_multi_colls, "Multiple collisions");
4569 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4570 	    child, tx_single_colls, "Single collisions");
4571 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4572 	    child, tx_underflows, "FIFO underflows");
4573 }
4574 
4575 #undef MSK_SYSCTL_STAT32
4576 #undef MSK_SYSCTL_STAT64
4577 
4578 static int
4579 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4580 {
4581 	int error, value;
4582 
4583 	if (!arg1)
4584 		return (EINVAL);
4585 	value = *(int *)arg1;
4586 	error = sysctl_handle_int(oidp, &value, 0, req);
4587 	if (error || !req->newptr)
4588 		return (error);
4589 	if (value < low || value > high)
4590 		return (EINVAL);
4591 	*(int *)arg1 = value;
4592 
4593 	return (0);
4594 }
4595 
4596 static int
4597 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4598 {
4599 
4600 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4601 	    MSK_PROC_MAX));
4602 }
4603