xref: /freebsd/sys/dev/msk/if_msk.c (revision b00ab754)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * SPDX-License-Identifier: BSD-4-Clause AND BSD-3-Clause
50  *
51  * Copyright (c) 1997, 1998, 1999, 2000
52  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
53  *
54  * Redistribution and use in source and binary forms, with or without
55  * modification, are permitted provided that the following conditions
56  * are met:
57  * 1. Redistributions of source code must retain the above copyright
58  *    notice, this list of conditions and the following disclaimer.
59  * 2. Redistributions in binary form must reproduce the above copyright
60  *    notice, this list of conditions and the following disclaimer in the
61  *    documentation and/or other materials provided with the distribution.
62  * 3. All advertising materials mentioning features or use of this software
63  *    must display the following acknowledgement:
64  *	This product includes software developed by Bill Paul.
65  * 4. Neither the name of the author nor the names of any co-contributors
66  *    may be used to endorse or promote products derived from this software
67  *    without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
70  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
71  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
72  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
79  * THE POSSIBILITY OF SUCH DAMAGE.
80  */
81 /*-
82  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
83  *
84  * Permission to use, copy, modify, and distribute this software for any
85  * purpose with or without fee is hereby granted, provided that the above
86  * copyright notice and this permission notice appear in all copies.
87  *
88  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
89  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
90  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
91  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
92  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
93  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
94  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
95  */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/bus.h>
109 #include <sys/endian.h>
110 #include <sys/mbuf.h>
111 #include <sys/malloc.h>
112 #include <sys/kernel.h>
113 #include <sys/module.h>
114 #include <sys/socket.h>
115 #include <sys/sockio.h>
116 #include <sys/queue.h>
117 #include <sys/sysctl.h>
118 
119 #include <net/bpf.h>
120 #include <net/ethernet.h>
121 #include <net/if.h>
122 #include <net/if_var.h>
123 #include <net/if_arp.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_types.h>
127 #include <net/if_vlan_var.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/tcp.h>
133 #include <netinet/udp.h>
134 
135 #include <machine/bus.h>
136 #include <machine/in_cksum.h>
137 #include <machine/resource.h>
138 #include <sys/rman.h>
139 
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 
143 #include <dev/pci/pcireg.h>
144 #include <dev/pci/pcivar.h>
145 
146 #include <dev/msk/if_mskreg.h>
147 
148 MODULE_DEPEND(msk, pci, 1, 1, 1);
149 MODULE_DEPEND(msk, ether, 1, 1, 1);
150 MODULE_DEPEND(msk, miibus, 1, 1, 1);
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 /* Tunables. */
156 static int msi_disable = 0;
157 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
158 static int legacy_intr = 0;
159 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
160 static int jumbo_disable = 0;
161 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
162 
163 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
164 
165 /*
166  * Devices supported by this driver.
167  */
168 static const struct msk_product {
169 	uint16_t	msk_vendorid;
170 	uint16_t	msk_deviceid;
171 	const char	*msk_name;
172 } msk_products[] = {
173 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
174 	    "SK-9Sxx Gigabit Ethernet" },
175 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
176 	    "SK-9Exx Gigabit Ethernet"},
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
178 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
180 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
182 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
184 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
186 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
188 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
190 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
192 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
194 	    "Marvell Yukon 88E8035 Fast Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
196 	    "Marvell Yukon 88E8036 Fast Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
198 	    "Marvell Yukon 88E8038 Fast Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
200 	    "Marvell Yukon 88E8039 Fast Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
202 	    "Marvell Yukon 88E8040 Fast Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
204 	    "Marvell Yukon 88E8040T Fast Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
206 	    "Marvell Yukon 88E8042 Fast Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
208 	    "Marvell Yukon 88E8048 Fast Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
210 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
211 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
212 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
213 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
214 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
215 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
216 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
217 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
218 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
219 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
220 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
221 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
222 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
223 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
224 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
225 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
226 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
227 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
228 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
229 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
230 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
231 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
232 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
233 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
234 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
235 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
236 	    "D-Link 550SX Gigabit Ethernet" },
237 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
238 	    "D-Link 560SX Gigabit Ethernet" },
239 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
240 	    "D-Link 560T Gigabit Ethernet" }
241 };
242 
243 static const char *model_name[] = {
244 	"Yukon XL",
245         "Yukon EC Ultra",
246         "Yukon EX",
247         "Yukon EC",
248         "Yukon FE",
249         "Yukon FE+",
250         "Yukon Supreme",
251         "Yukon Ultra 2",
252         "Yukon Unknown",
253         "Yukon Optima",
254 };
255 
256 static int mskc_probe(device_t);
257 static int mskc_attach(device_t);
258 static int mskc_detach(device_t);
259 static int mskc_shutdown(device_t);
260 static int mskc_setup_rambuffer(struct msk_softc *);
261 static int mskc_suspend(device_t);
262 static int mskc_resume(device_t);
263 static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t);
264 static void mskc_reset(struct msk_softc *);
265 
266 static int msk_probe(device_t);
267 static int msk_attach(device_t);
268 static int msk_detach(device_t);
269 
270 static void msk_tick(void *);
271 static void msk_intr(void *);
272 static void msk_intr_phy(struct msk_if_softc *);
273 static void msk_intr_gmac(struct msk_if_softc *);
274 static __inline void msk_rxput(struct msk_if_softc *);
275 static int msk_handle_events(struct msk_softc *);
276 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
277 static void msk_intr_hwerr(struct msk_softc *);
278 #ifndef __NO_STRICT_ALIGNMENT
279 static __inline void msk_fixup_rx(struct mbuf *);
280 #endif
281 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
282 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
283 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
284 static void msk_txeof(struct msk_if_softc *, int);
285 static int msk_encap(struct msk_if_softc *, struct mbuf **);
286 static void msk_start(struct ifnet *);
287 static void msk_start_locked(struct ifnet *);
288 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
289 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
290 static void msk_set_rambuffer(struct msk_if_softc *);
291 static void msk_set_tx_stfwd(struct msk_if_softc *);
292 static void msk_init(void *);
293 static void msk_init_locked(struct msk_if_softc *);
294 static void msk_stop(struct msk_if_softc *);
295 static void msk_watchdog(struct msk_if_softc *);
296 static int msk_mediachange(struct ifnet *);
297 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
298 static void msk_phy_power(struct msk_softc *, int);
299 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
300 static int msk_status_dma_alloc(struct msk_softc *);
301 static void msk_status_dma_free(struct msk_softc *);
302 static int msk_txrx_dma_alloc(struct msk_if_softc *);
303 static int msk_rx_dma_jalloc(struct msk_if_softc *);
304 static void msk_txrx_dma_free(struct msk_if_softc *);
305 static void msk_rx_dma_jfree(struct msk_if_softc *);
306 static int msk_rx_fill(struct msk_if_softc *, int);
307 static int msk_init_rx_ring(struct msk_if_softc *);
308 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
309 static void msk_init_tx_ring(struct msk_if_softc *);
310 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
311 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
312 static int msk_newbuf(struct msk_if_softc *, int);
313 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
314 
315 static int msk_phy_readreg(struct msk_if_softc *, int, int);
316 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
317 static int msk_miibus_readreg(device_t, int, int);
318 static int msk_miibus_writereg(device_t, int, int, int);
319 static void msk_miibus_statchg(device_t);
320 
321 static void msk_rxfilter(struct msk_if_softc *);
322 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
323 
324 static void msk_stats_clear(struct msk_if_softc *);
325 static void msk_stats_update(struct msk_if_softc *);
326 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
327 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
328 static void msk_sysctl_node(struct msk_if_softc *);
329 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
330 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
331 
332 static device_method_t mskc_methods[] = {
333 	/* Device interface */
334 	DEVMETHOD(device_probe,		mskc_probe),
335 	DEVMETHOD(device_attach,	mskc_attach),
336 	DEVMETHOD(device_detach,	mskc_detach),
337 	DEVMETHOD(device_suspend,	mskc_suspend),
338 	DEVMETHOD(device_resume,	mskc_resume),
339 	DEVMETHOD(device_shutdown,	mskc_shutdown),
340 
341 	DEVMETHOD(bus_get_dma_tag,	mskc_get_dma_tag),
342 
343 	DEVMETHOD_END
344 };
345 
346 static driver_t mskc_driver = {
347 	"mskc",
348 	mskc_methods,
349 	sizeof(struct msk_softc)
350 };
351 
352 static devclass_t mskc_devclass;
353 
354 static device_method_t msk_methods[] = {
355 	/* Device interface */
356 	DEVMETHOD(device_probe,		msk_probe),
357 	DEVMETHOD(device_attach,	msk_attach),
358 	DEVMETHOD(device_detach,	msk_detach),
359 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
360 
361 	/* MII interface */
362 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
363 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
364 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
365 
366 	DEVMETHOD_END
367 };
368 
369 static driver_t msk_driver = {
370 	"msk",
371 	msk_methods,
372 	sizeof(struct msk_if_softc)
373 };
374 
375 static devclass_t msk_devclass;
376 
377 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, NULL, NULL);
378 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, NULL, NULL);
379 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL);
380 
381 static struct resource_spec msk_res_spec_io[] = {
382 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
383 	{ -1,			0,		0 }
384 };
385 
386 static struct resource_spec msk_res_spec_mem[] = {
387 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
388 	{ -1,			0,		0 }
389 };
390 
391 static struct resource_spec msk_irq_spec_legacy[] = {
392 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
393 	{ -1,			0,		0 }
394 };
395 
396 static struct resource_spec msk_irq_spec_msi[] = {
397 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
398 	{ -1,			0,		0 }
399 };
400 
401 static int
402 msk_miibus_readreg(device_t dev, int phy, int reg)
403 {
404 	struct msk_if_softc *sc_if;
405 
406 	sc_if = device_get_softc(dev);
407 
408 	return (msk_phy_readreg(sc_if, phy, reg));
409 }
410 
411 static int
412 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
413 {
414 	struct msk_softc *sc;
415 	int i, val;
416 
417 	sc = sc_if->msk_softc;
418 
419         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
420 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
421 
422 	for (i = 0; i < MSK_TIMEOUT; i++) {
423 		DELAY(1);
424 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
425 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
426 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
427 			break;
428 		}
429 	}
430 
431 	if (i == MSK_TIMEOUT) {
432 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
433 		val = 0;
434 	}
435 
436 	return (val);
437 }
438 
439 static int
440 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
441 {
442 	struct msk_if_softc *sc_if;
443 
444 	sc_if = device_get_softc(dev);
445 
446 	return (msk_phy_writereg(sc_if, phy, reg, val));
447 }
448 
449 static int
450 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
451 {
452 	struct msk_softc *sc;
453 	int i;
454 
455 	sc = sc_if->msk_softc;
456 
457 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
458         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
459 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
460 	for (i = 0; i < MSK_TIMEOUT; i++) {
461 		DELAY(1);
462 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
463 		    GM_SMI_CT_BUSY) == 0)
464 			break;
465 	}
466 	if (i == MSK_TIMEOUT)
467 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
468 
469 	return (0);
470 }
471 
472 static void
473 msk_miibus_statchg(device_t dev)
474 {
475 	struct msk_softc *sc;
476 	struct msk_if_softc *sc_if;
477 	struct mii_data *mii;
478 	struct ifnet *ifp;
479 	uint32_t gmac;
480 
481 	sc_if = device_get_softc(dev);
482 	sc = sc_if->msk_softc;
483 
484 	MSK_IF_LOCK_ASSERT(sc_if);
485 
486 	mii = device_get_softc(sc_if->msk_miibus);
487 	ifp = sc_if->msk_ifp;
488 	if (mii == NULL || ifp == NULL ||
489 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
490 		return;
491 
492 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
493 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
494 	    (IFM_AVALID | IFM_ACTIVE)) {
495 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
496 		case IFM_10_T:
497 		case IFM_100_TX:
498 			sc_if->msk_flags |= MSK_FLAG_LINK;
499 			break;
500 		case IFM_1000_T:
501 		case IFM_1000_SX:
502 		case IFM_1000_LX:
503 		case IFM_1000_CX:
504 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
505 				sc_if->msk_flags |= MSK_FLAG_LINK;
506 			break;
507 		default:
508 			break;
509 		}
510 	}
511 
512 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
513 		/* Enable Tx FIFO Underrun. */
514 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
515 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
516 		/*
517 		 * Because mii(4) notify msk(4) that it detected link status
518 		 * change, there is no need to enable automatic
519 		 * speed/flow-control/duplex updates.
520 		 */
521 		gmac = GM_GPCR_AU_ALL_DIS;
522 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
523 		case IFM_1000_SX:
524 		case IFM_1000_T:
525 			gmac |= GM_GPCR_SPEED_1000;
526 			break;
527 		case IFM_100_TX:
528 			gmac |= GM_GPCR_SPEED_100;
529 			break;
530 		case IFM_10_T:
531 			break;
532 		}
533 
534 		if ((IFM_OPTIONS(mii->mii_media_active) &
535 		    IFM_ETH_RXPAUSE) == 0)
536 			gmac |= GM_GPCR_FC_RX_DIS;
537 		if ((IFM_OPTIONS(mii->mii_media_active) &
538 		     IFM_ETH_TXPAUSE) == 0)
539 			gmac |= GM_GPCR_FC_TX_DIS;
540 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
541 			gmac |= GM_GPCR_DUP_FULL;
542 		else
543 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
544 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
545 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
546 		/* Read again to ensure writing. */
547 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
548 		gmac = GMC_PAUSE_OFF;
549 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
550 			if ((IFM_OPTIONS(mii->mii_media_active) &
551 			    IFM_ETH_RXPAUSE) != 0)
552 				gmac = GMC_PAUSE_ON;
553 		}
554 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
555 
556 		/* Enable PHY interrupt for FIFO underrun/overflow. */
557 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
558 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
559 	} else {
560 		/*
561 		 * Link state changed to down.
562 		 * Disable PHY interrupts.
563 		 */
564 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
565 		/* Disable Rx/Tx MAC. */
566 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
567 		if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) {
568 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
569 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
570 			/* Read again to ensure writing. */
571 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
572 		}
573 	}
574 }
575 
576 static void
577 msk_rxfilter(struct msk_if_softc *sc_if)
578 {
579 	struct msk_softc *sc;
580 	struct ifnet *ifp;
581 	struct ifmultiaddr *ifma;
582 	uint32_t mchash[2];
583 	uint32_t crc;
584 	uint16_t mode;
585 
586 	sc = sc_if->msk_softc;
587 
588 	MSK_IF_LOCK_ASSERT(sc_if);
589 
590 	ifp = sc_if->msk_ifp;
591 
592 	bzero(mchash, sizeof(mchash));
593 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
594 	if ((ifp->if_flags & IFF_PROMISC) != 0)
595 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
596 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
597 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
598 		mchash[0] = 0xffff;
599 		mchash[1] = 0xffff;
600 	} else {
601 		mode |= GM_RXCR_UCF_ENA;
602 		if_maddr_rlock(ifp);
603 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
604 			if (ifma->ifma_addr->sa_family != AF_LINK)
605 				continue;
606 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
607 			    ifma->ifma_addr), ETHER_ADDR_LEN);
608 			/* Just want the 6 least significant bits. */
609 			crc &= 0x3f;
610 			/* Set the corresponding bit in the hash table. */
611 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
612 		}
613 		if_maddr_runlock(ifp);
614 		if (mchash[0] != 0 || mchash[1] != 0)
615 			mode |= GM_RXCR_MCF_ENA;
616 	}
617 
618 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
619 	    mchash[0] & 0xffff);
620 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
621 	    (mchash[0] >> 16) & 0xffff);
622 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
623 	    mchash[1] & 0xffff);
624 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
625 	    (mchash[1] >> 16) & 0xffff);
626 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
627 }
628 
629 static void
630 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
631 {
632 	struct msk_softc *sc;
633 
634 	sc = sc_if->msk_softc;
635 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
636 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
637 		    RX_VLAN_STRIP_ON);
638 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
639 		    TX_VLAN_TAG_ON);
640 	} else {
641 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
642 		    RX_VLAN_STRIP_OFF);
643 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
644 		    TX_VLAN_TAG_OFF);
645 	}
646 }
647 
648 static int
649 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
650 {
651 	uint16_t idx;
652 	int i;
653 
654 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
655 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
656 		/* Wait until controller executes OP_TCPSTART command. */
657 		for (i = 100; i > 0; i--) {
658 			DELAY(100);
659 			idx = CSR_READ_2(sc_if->msk_softc,
660 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
661 			    PREF_UNIT_GET_IDX_REG));
662 			if (idx != 0)
663 				break;
664 		}
665 		if (i == 0) {
666 			device_printf(sc_if->msk_if_dev,
667 			    "prefetch unit stuck?\n");
668 			return (ETIMEDOUT);
669 		}
670 		/*
671 		 * Fill consumed LE with free buffer. This can be done
672 		 * in Rx handler but we don't want to add special code
673 		 * in fast handler.
674 		 */
675 		if (jumbo > 0) {
676 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
677 				return (ENOBUFS);
678 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
679 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
680 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
681 		} else {
682 			if (msk_newbuf(sc_if, 0) != 0)
683 				return (ENOBUFS);
684 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
685 			    sc_if->msk_cdata.msk_rx_ring_map,
686 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
687 		}
688 		sc_if->msk_cdata.msk_rx_prod = 0;
689 		CSR_WRITE_2(sc_if->msk_softc,
690 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
691 		    sc_if->msk_cdata.msk_rx_prod);
692 	}
693 	return (0);
694 }
695 
696 static int
697 msk_init_rx_ring(struct msk_if_softc *sc_if)
698 {
699 	struct msk_ring_data *rd;
700 	struct msk_rxdesc *rxd;
701 	int i, nbuf, prod;
702 
703 	MSK_IF_LOCK_ASSERT(sc_if);
704 
705 	sc_if->msk_cdata.msk_rx_cons = 0;
706 	sc_if->msk_cdata.msk_rx_prod = 0;
707 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
708 
709 	rd = &sc_if->msk_rdata;
710 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
711 	for (i = prod = 0; i < MSK_RX_RING_CNT; i++) {
712 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
713 		rxd->rx_m = NULL;
714 		rxd->rx_le = &rd->msk_rx_ring[prod];
715 		MSK_INC(prod, MSK_RX_RING_CNT);
716 	}
717 	nbuf = MSK_RX_BUF_CNT;
718 	prod = 0;
719 	/* Have controller know how to compute Rx checksum. */
720 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
721 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
722 #ifdef MSK_64BIT_DMA
723 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
724 		rxd->rx_m = NULL;
725 		rxd->rx_le = &rd->msk_rx_ring[prod];
726 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
727 		    ETHER_HDR_LEN);
728 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
729 		MSK_INC(prod, MSK_RX_RING_CNT);
730 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
731 #endif
732 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
733 		rxd->rx_m = NULL;
734 		rxd->rx_le = &rd->msk_rx_ring[prod];
735 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
736 		    ETHER_HDR_LEN);
737 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
738 		MSK_INC(prod, MSK_RX_RING_CNT);
739 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
740 		nbuf--;
741 	}
742 	for (i = 0; i < nbuf; i++) {
743 		if (msk_newbuf(sc_if, prod) != 0)
744 			return (ENOBUFS);
745 		MSK_RX_INC(prod, MSK_RX_RING_CNT);
746 	}
747 
748 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
749 	    sc_if->msk_cdata.msk_rx_ring_map,
750 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
751 
752 	/* Update prefetch unit. */
753 	sc_if->msk_cdata.msk_rx_prod = prod;
754 	CSR_WRITE_2(sc_if->msk_softc,
755 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
756 	    (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) %
757 	    MSK_RX_RING_CNT);
758 	if (msk_rx_fill(sc_if, 0) != 0)
759 		return (ENOBUFS);
760 	return (0);
761 }
762 
763 static int
764 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
765 {
766 	struct msk_ring_data *rd;
767 	struct msk_rxdesc *rxd;
768 	int i, nbuf, prod;
769 
770 	MSK_IF_LOCK_ASSERT(sc_if);
771 
772 	sc_if->msk_cdata.msk_rx_cons = 0;
773 	sc_if->msk_cdata.msk_rx_prod = 0;
774 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
775 
776 	rd = &sc_if->msk_rdata;
777 	bzero(rd->msk_jumbo_rx_ring,
778 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
779 	for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
780 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
781 		rxd->rx_m = NULL;
782 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
783 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
784 	}
785 	nbuf = MSK_RX_BUF_CNT;
786 	prod = 0;
787 	/* Have controller know how to compute Rx checksum. */
788 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
789 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
790 #ifdef MSK_64BIT_DMA
791 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
792 		rxd->rx_m = NULL;
793 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
794 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
795 		    ETHER_HDR_LEN);
796 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
797 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
798 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
799 #endif
800 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
801 		rxd->rx_m = NULL;
802 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
803 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
804 		    ETHER_HDR_LEN);
805 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
806 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
807 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
808 		nbuf--;
809 	}
810 	for (i = 0; i < nbuf; i++) {
811 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
812 			return (ENOBUFS);
813 		MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT);
814 	}
815 
816 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
817 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
818 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
819 
820 	/* Update prefetch unit. */
821 	sc_if->msk_cdata.msk_rx_prod = prod;
822 	CSR_WRITE_2(sc_if->msk_softc,
823 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
824 	    (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) %
825 	    MSK_JUMBO_RX_RING_CNT);
826 	if (msk_rx_fill(sc_if, 1) != 0)
827 		return (ENOBUFS);
828 	return (0);
829 }
830 
831 static void
832 msk_init_tx_ring(struct msk_if_softc *sc_if)
833 {
834 	struct msk_ring_data *rd;
835 	struct msk_txdesc *txd;
836 	int i;
837 
838 	sc_if->msk_cdata.msk_tso_mtu = 0;
839 	sc_if->msk_cdata.msk_last_csum = 0;
840 	sc_if->msk_cdata.msk_tx_prod = 0;
841 	sc_if->msk_cdata.msk_tx_cons = 0;
842 	sc_if->msk_cdata.msk_tx_cnt = 0;
843 	sc_if->msk_cdata.msk_tx_high_addr = 0;
844 
845 	rd = &sc_if->msk_rdata;
846 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
847 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
848 		txd = &sc_if->msk_cdata.msk_txdesc[i];
849 		txd->tx_m = NULL;
850 		txd->tx_le = &rd->msk_tx_ring[i];
851 	}
852 
853 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
854 	    sc_if->msk_cdata.msk_tx_ring_map,
855 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
856 }
857 
858 static __inline void
859 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
860 {
861 	struct msk_rx_desc *rx_le;
862 	struct msk_rxdesc *rxd;
863 	struct mbuf *m;
864 
865 #ifdef MSK_64BIT_DMA
866 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
867 	rx_le = rxd->rx_le;
868 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
869 	MSK_INC(idx, MSK_RX_RING_CNT);
870 #endif
871 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
872 	m = rxd->rx_m;
873 	rx_le = rxd->rx_le;
874 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
875 }
876 
877 static __inline void
878 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
879 {
880 	struct msk_rx_desc *rx_le;
881 	struct msk_rxdesc *rxd;
882 	struct mbuf *m;
883 
884 #ifdef MSK_64BIT_DMA
885 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
886 	rx_le = rxd->rx_le;
887 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
888 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
889 #endif
890 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
891 	m = rxd->rx_m;
892 	rx_le = rxd->rx_le;
893 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
894 }
895 
896 static int
897 msk_newbuf(struct msk_if_softc *sc_if, int idx)
898 {
899 	struct msk_rx_desc *rx_le;
900 	struct msk_rxdesc *rxd;
901 	struct mbuf *m;
902 	bus_dma_segment_t segs[1];
903 	bus_dmamap_t map;
904 	int nsegs;
905 
906 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
907 	if (m == NULL)
908 		return (ENOBUFS);
909 
910 	m->m_len = m->m_pkthdr.len = MCLBYTES;
911 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
912 		m_adj(m, ETHER_ALIGN);
913 #ifndef __NO_STRICT_ALIGNMENT
914 	else
915 		m_adj(m, MSK_RX_BUF_ALIGN);
916 #endif
917 
918 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
919 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
920 	    BUS_DMA_NOWAIT) != 0) {
921 		m_freem(m);
922 		return (ENOBUFS);
923 	}
924 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
925 
926 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
927 #ifdef MSK_64BIT_DMA
928 	rx_le = rxd->rx_le;
929 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
930 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
931 	MSK_INC(idx, MSK_RX_RING_CNT);
932 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
933 #endif
934 	if (rxd->rx_m != NULL) {
935 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
936 		    BUS_DMASYNC_POSTREAD);
937 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
938 		rxd->rx_m = NULL;
939 	}
940 	map = rxd->rx_dmamap;
941 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
942 	sc_if->msk_cdata.msk_rx_sparemap = map;
943 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
944 	    BUS_DMASYNC_PREREAD);
945 	rxd->rx_m = m;
946 	rx_le = rxd->rx_le;
947 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
948 	rx_le->msk_control =
949 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
950 
951 	return (0);
952 }
953 
954 static int
955 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
956 {
957 	struct msk_rx_desc *rx_le;
958 	struct msk_rxdesc *rxd;
959 	struct mbuf *m;
960 	bus_dma_segment_t segs[1];
961 	bus_dmamap_t map;
962 	int nsegs;
963 
964 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
965 	if (m == NULL)
966 		return (ENOBUFS);
967 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
968 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
969 		m_adj(m, ETHER_ALIGN);
970 #ifndef __NO_STRICT_ALIGNMENT
971 	else
972 		m_adj(m, MSK_RX_BUF_ALIGN);
973 #endif
974 
975 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
976 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
977 	    BUS_DMA_NOWAIT) != 0) {
978 		m_freem(m);
979 		return (ENOBUFS);
980 	}
981 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
982 
983 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
984 #ifdef MSK_64BIT_DMA
985 	rx_le = rxd->rx_le;
986 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
987 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
988 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
989 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
990 #endif
991 	if (rxd->rx_m != NULL) {
992 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
993 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
994 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
995 		    rxd->rx_dmamap);
996 		rxd->rx_m = NULL;
997 	}
998 	map = rxd->rx_dmamap;
999 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
1000 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
1001 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
1002 	    BUS_DMASYNC_PREREAD);
1003 	rxd->rx_m = m;
1004 	rx_le = rxd->rx_le;
1005 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
1006 	rx_le->msk_control =
1007 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
1008 
1009 	return (0);
1010 }
1011 
1012 /*
1013  * Set media options.
1014  */
1015 static int
1016 msk_mediachange(struct ifnet *ifp)
1017 {
1018 	struct msk_if_softc *sc_if;
1019 	struct mii_data	*mii;
1020 	int error;
1021 
1022 	sc_if = ifp->if_softc;
1023 
1024 	MSK_IF_LOCK(sc_if);
1025 	mii = device_get_softc(sc_if->msk_miibus);
1026 	error = mii_mediachg(mii);
1027 	MSK_IF_UNLOCK(sc_if);
1028 
1029 	return (error);
1030 }
1031 
1032 /*
1033  * Report current media status.
1034  */
1035 static void
1036 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1037 {
1038 	struct msk_if_softc *sc_if;
1039 	struct mii_data	*mii;
1040 
1041 	sc_if = ifp->if_softc;
1042 	MSK_IF_LOCK(sc_if);
1043 	if ((ifp->if_flags & IFF_UP) == 0) {
1044 		MSK_IF_UNLOCK(sc_if);
1045 		return;
1046 	}
1047 	mii = device_get_softc(sc_if->msk_miibus);
1048 
1049 	mii_pollstat(mii);
1050 	ifmr->ifm_active = mii->mii_media_active;
1051 	ifmr->ifm_status = mii->mii_media_status;
1052 	MSK_IF_UNLOCK(sc_if);
1053 }
1054 
1055 static int
1056 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1057 {
1058 	struct msk_if_softc *sc_if;
1059 	struct ifreq *ifr;
1060 	struct mii_data	*mii;
1061 	int error, mask, reinit;
1062 
1063 	sc_if = ifp->if_softc;
1064 	ifr = (struct ifreq *)data;
1065 	error = 0;
1066 
1067 	switch(command) {
1068 	case SIOCSIFMTU:
1069 		MSK_IF_LOCK(sc_if);
1070 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1071 			error = EINVAL;
1072 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1073 			if (ifr->ifr_mtu > ETHERMTU) {
1074 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1075 					error = EINVAL;
1076 					MSK_IF_UNLOCK(sc_if);
1077 					break;
1078 				}
1079 				if ((sc_if->msk_flags &
1080 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1081 					ifp->if_hwassist &=
1082 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
1083 					ifp->if_capenable &=
1084 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1085 					VLAN_CAPABILITIES(ifp);
1086 				}
1087 			}
1088 			ifp->if_mtu = ifr->ifr_mtu;
1089 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1090 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1091 				msk_init_locked(sc_if);
1092 			}
1093 		}
1094 		MSK_IF_UNLOCK(sc_if);
1095 		break;
1096 	case SIOCSIFFLAGS:
1097 		MSK_IF_LOCK(sc_if);
1098 		if ((ifp->if_flags & IFF_UP) != 0) {
1099 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1100 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
1101 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1102 				msk_rxfilter(sc_if);
1103 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1104 				msk_init_locked(sc_if);
1105 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1106 			msk_stop(sc_if);
1107 		sc_if->msk_if_flags = ifp->if_flags;
1108 		MSK_IF_UNLOCK(sc_if);
1109 		break;
1110 	case SIOCADDMULTI:
1111 	case SIOCDELMULTI:
1112 		MSK_IF_LOCK(sc_if);
1113 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1114 			msk_rxfilter(sc_if);
1115 		MSK_IF_UNLOCK(sc_if);
1116 		break;
1117 	case SIOCGIFMEDIA:
1118 	case SIOCSIFMEDIA:
1119 		mii = device_get_softc(sc_if->msk_miibus);
1120 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1121 		break;
1122 	case SIOCSIFCAP:
1123 		reinit = 0;
1124 		MSK_IF_LOCK(sc_if);
1125 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1126 		if ((mask & IFCAP_TXCSUM) != 0 &&
1127 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1128 			ifp->if_capenable ^= IFCAP_TXCSUM;
1129 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1130 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1131 			else
1132 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1133 		}
1134 		if ((mask & IFCAP_RXCSUM) != 0 &&
1135 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1136 			ifp->if_capenable ^= IFCAP_RXCSUM;
1137 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1138 				reinit = 1;
1139 		}
1140 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1141 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1142 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1143 		if ((mask & IFCAP_TSO4) != 0 &&
1144 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1145 			ifp->if_capenable ^= IFCAP_TSO4;
1146 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1147 				ifp->if_hwassist |= CSUM_TSO;
1148 			else
1149 				ifp->if_hwassist &= ~CSUM_TSO;
1150 		}
1151 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1152 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1153 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1154 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1155 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1156 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1157 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1158 				ifp->if_capenable &=
1159 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1160 			msk_setvlan(sc_if, ifp);
1161 		}
1162 		if (ifp->if_mtu > ETHERMTU &&
1163 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1164 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1165 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1166 		}
1167 		VLAN_CAPABILITIES(ifp);
1168 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1169 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1170 			msk_init_locked(sc_if);
1171 		}
1172 		MSK_IF_UNLOCK(sc_if);
1173 		break;
1174 	default:
1175 		error = ether_ioctl(ifp, command, data);
1176 		break;
1177 	}
1178 
1179 	return (error);
1180 }
1181 
1182 static int
1183 mskc_probe(device_t dev)
1184 {
1185 	const struct msk_product *mp;
1186 	uint16_t vendor, devid;
1187 	int i;
1188 
1189 	vendor = pci_get_vendor(dev);
1190 	devid = pci_get_device(dev);
1191 	mp = msk_products;
1192 	for (i = 0; i < nitems(msk_products); i++, mp++) {
1193 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1194 			device_set_desc(dev, mp->msk_name);
1195 			return (BUS_PROBE_DEFAULT);
1196 		}
1197 	}
1198 
1199 	return (ENXIO);
1200 }
1201 
1202 static int
1203 mskc_setup_rambuffer(struct msk_softc *sc)
1204 {
1205 	int next;
1206 	int i;
1207 
1208 	/* Get adapter SRAM size. */
1209 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1210 	if (bootverbose)
1211 		device_printf(sc->msk_dev,
1212 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1213 	if (sc->msk_ramsize == 0)
1214 		return (0);
1215 
1216 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1217 	/*
1218 	 * Give receiver 2/3 of memory and round down to the multiple
1219 	 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1220 	 * of 1024.
1221 	 */
1222 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1223 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1224 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1225 		sc->msk_rxqstart[i] = next;
1226 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1227 		next = sc->msk_rxqend[i] + 1;
1228 		sc->msk_txqstart[i] = next;
1229 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1230 		next = sc->msk_txqend[i] + 1;
1231 		if (bootverbose) {
1232 			device_printf(sc->msk_dev,
1233 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1234 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1235 			    sc->msk_rxqend[i]);
1236 			device_printf(sc->msk_dev,
1237 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1238 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1239 			    sc->msk_txqend[i]);
1240 		}
1241 	}
1242 
1243 	return (0);
1244 }
1245 
1246 static void
1247 msk_phy_power(struct msk_softc *sc, int mode)
1248 {
1249 	uint32_t our, val;
1250 	int i;
1251 
1252 	switch (mode) {
1253 	case MSK_PHY_POWERUP:
1254 		/* Switch power to VCC (WA for VAUX problem). */
1255 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1256 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1257 		/* Disable Core Clock Division, set Clock Select to 0. */
1258 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1259 
1260 		val = 0;
1261 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1262 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1263 			/* Enable bits are inverted. */
1264 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1265 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1266 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1267 		}
1268 		/*
1269 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1270 		 */
1271 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1272 
1273 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1274 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1275 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1276 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1277 				/* Deassert Low Power for 1st PHY. */
1278 				our |= PCI_Y2_PHY1_COMA;
1279 				if (sc->msk_num_port > 1)
1280 					our |= PCI_Y2_PHY2_COMA;
1281 			}
1282 		}
1283 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1284 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1285 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1286 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1287 			val &= (PCI_FORCE_ASPM_REQUEST |
1288 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1289 			    PCI_ASPM_CLKRUN_REQUEST);
1290 			/* Set all bits to 0 except bits 15..12. */
1291 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1292 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1293 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1294 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1295 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1296 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1297 			/*
1298 			 * Disable status race, workaround for
1299 			 * Yukon EC Ultra & Yukon EX.
1300 			 */
1301 			val = CSR_READ_4(sc, B2_GP_IO);
1302 			val |= GLB_GPIO_STAT_RACE_DIS;
1303 			CSR_WRITE_4(sc, B2_GP_IO, val);
1304 			CSR_READ_4(sc, B2_GP_IO);
1305 		}
1306 		/* Release PHY from PowerDown/COMA mode. */
1307 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1308 
1309 		for (i = 0; i < sc->msk_num_port; i++) {
1310 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1311 			    GMLC_RST_SET);
1312 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1313 			    GMLC_RST_CLR);
1314 		}
1315 		break;
1316 	case MSK_PHY_POWERDOWN:
1317 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1318 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1319 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1320 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1321 			val &= ~PCI_Y2_PHY1_COMA;
1322 			if (sc->msk_num_port > 1)
1323 				val &= ~PCI_Y2_PHY2_COMA;
1324 		}
1325 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1326 
1327 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1328 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1329 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1330 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1331 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1332 			/* Enable bits are inverted. */
1333 			val = 0;
1334 		}
1335 		/*
1336 		 * Disable PCI & Core Clock, disable clock gating for
1337 		 * both Links.
1338 		 */
1339 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1340 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1341 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1342 		break;
1343 	default:
1344 		break;
1345 	}
1346 }
1347 
1348 static void
1349 mskc_reset(struct msk_softc *sc)
1350 {
1351 	bus_addr_t addr;
1352 	uint16_t status;
1353 	uint32_t val;
1354 	int i, initram;
1355 
1356 	/* Disable ASF. */
1357 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1358 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1359 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1360 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1361 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1362 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1363 			/* Clear AHB bridge & microcontroller reset. */
1364 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1365 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1366 			/* Clear ASF microcontroller state. */
1367 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1368 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1369 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1370 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1371 		} else
1372 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1373 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1374 		/*
1375 		 * Since we disabled ASF, S/W reset is required for
1376 		 * Power Management.
1377 		 */
1378 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1379 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1380 	}
1381 
1382 	/* Clear all error bits in the PCI status register. */
1383 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1384 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1385 
1386 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1387 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1388 	    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1389 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1390 
1391 	switch (sc->msk_bustype) {
1392 	case MSK_PEX_BUS:
1393 		/* Clear all PEX errors. */
1394 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1395 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1396 		if ((val & PEX_RX_OV) != 0) {
1397 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1398 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1399 		}
1400 		break;
1401 	case MSK_PCI_BUS:
1402 	case MSK_PCIX_BUS:
1403 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1404 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1405 		if (val == 0)
1406 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1407 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1408 			/* Set Cache Line Size opt. */
1409 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1410 			val |= PCI_CLS_OPT;
1411 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1412 		}
1413 		break;
1414 	}
1415 	/* Set PHY power state. */
1416 	msk_phy_power(sc, MSK_PHY_POWERUP);
1417 
1418 	/* Reset GPHY/GMAC Control */
1419 	for (i = 0; i < sc->msk_num_port; i++) {
1420 		/* GPHY Control reset. */
1421 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1422 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1423 		/* GMAC Control reset. */
1424 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1425 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1426 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1427 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1428 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
1429 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1430 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1431 			    GMC_BYP_RETR_ON);
1432 	}
1433 
1434 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1435 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1436 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1437 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1438 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1439 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1440 	}
1441 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1442 
1443 	/* LED On. */
1444 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1445 
1446 	/* Clear TWSI IRQ. */
1447 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1448 
1449 	/* Turn off hardware timer. */
1450 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1451 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1452 
1453 	/* Turn off descriptor polling. */
1454 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1455 
1456 	/* Turn off time stamps. */
1457 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1458 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1459 
1460 	initram = 0;
1461 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1462 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1463 	    sc->msk_hw_id == CHIP_ID_YUKON_FE)
1464 		initram++;
1465 
1466 	/* Configure timeout values. */
1467 	for (i = 0; initram > 0 && i < sc->msk_num_port; i++) {
1468 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1469 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1470 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1471 		    MSK_RI_TO_53);
1472 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1473 		    MSK_RI_TO_53);
1474 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1475 		    MSK_RI_TO_53);
1476 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1477 		    MSK_RI_TO_53);
1478 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1479 		    MSK_RI_TO_53);
1480 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1481 		    MSK_RI_TO_53);
1482 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1483 		    MSK_RI_TO_53);
1484 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1485 		    MSK_RI_TO_53);
1486 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1487 		    MSK_RI_TO_53);
1488 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1489 		    MSK_RI_TO_53);
1490 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1491 		    MSK_RI_TO_53);
1492 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1493 		    MSK_RI_TO_53);
1494 	}
1495 
1496 	/* Disable all interrupts. */
1497 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1498 	CSR_READ_4(sc, B0_HWE_IMSK);
1499 	CSR_WRITE_4(sc, B0_IMSK, 0);
1500 	CSR_READ_4(sc, B0_IMSK);
1501 
1502         /*
1503          * On dual port PCI-X card, there is an problem where status
1504          * can be received out of order due to split transactions.
1505          */
1506 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1507 		uint16_t pcix_cmd;
1508 
1509 		pcix_cmd = pci_read_config(sc->msk_dev,
1510 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1511 		/* Clear Max Outstanding Split Transactions. */
1512 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1513 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1514 		pci_write_config(sc->msk_dev,
1515 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1516 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1517         }
1518 	if (sc->msk_expcap != 0) {
1519 		/* Change Max. Read Request Size to 2048 bytes. */
1520 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1521 			pci_set_max_read_req(sc->msk_dev, 2048);
1522 	}
1523 
1524 	/* Clear status list. */
1525 	bzero(sc->msk_stat_ring,
1526 	    sizeof(struct msk_stat_desc) * sc->msk_stat_count);
1527 	sc->msk_stat_cons = 0;
1528 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1529 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1530 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1531 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1532 	/* Set the status list base address. */
1533 	addr = sc->msk_stat_ring_paddr;
1534 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1535 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1536 	/* Set the status list last index. */
1537 	CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1);
1538 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1539 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1540 		/* WA for dev. #4.3 */
1541 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1542 		/* WA for dev. #4.18 */
1543 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1544 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1545 	} else {
1546 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1547 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1548 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1549 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1550 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1551 		else
1552 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1553 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1554 	}
1555 	/*
1556 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1557 	 */
1558 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1559 
1560 	/* Enable status unit. */
1561 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1562 
1563 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1564 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1565 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1566 }
1567 
1568 static int
1569 msk_probe(device_t dev)
1570 {
1571 	struct msk_softc *sc;
1572 	char desc[100];
1573 
1574 	sc = device_get_softc(device_get_parent(dev));
1575 	/*
1576 	 * Not much to do here. We always know there will be
1577 	 * at least one GMAC present, and if there are two,
1578 	 * mskc_attach() will create a second device instance
1579 	 * for us.
1580 	 */
1581 	snprintf(desc, sizeof(desc),
1582 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1583 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1584 	    sc->msk_hw_rev);
1585 	device_set_desc_copy(dev, desc);
1586 
1587 	return (BUS_PROBE_DEFAULT);
1588 }
1589 
1590 static int
1591 msk_attach(device_t dev)
1592 {
1593 	struct msk_softc *sc;
1594 	struct msk_if_softc *sc_if;
1595 	struct ifnet *ifp;
1596 	struct msk_mii_data *mmd;
1597 	int i, port, error;
1598 	uint8_t eaddr[6];
1599 
1600 	if (dev == NULL)
1601 		return (EINVAL);
1602 
1603 	error = 0;
1604 	sc_if = device_get_softc(dev);
1605 	sc = device_get_softc(device_get_parent(dev));
1606 	mmd = device_get_ivars(dev);
1607 	port = mmd->port;
1608 
1609 	sc_if->msk_if_dev = dev;
1610 	sc_if->msk_port = port;
1611 	sc_if->msk_softc = sc;
1612 	sc_if->msk_flags = sc->msk_pflags;
1613 	sc->msk_if[port] = sc_if;
1614 	/* Setup Tx/Rx queue register offsets. */
1615 	if (port == MSK_PORT_A) {
1616 		sc_if->msk_txq = Q_XA1;
1617 		sc_if->msk_txsq = Q_XS1;
1618 		sc_if->msk_rxq = Q_R1;
1619 	} else {
1620 		sc_if->msk_txq = Q_XA2;
1621 		sc_if->msk_txsq = Q_XS2;
1622 		sc_if->msk_rxq = Q_R2;
1623 	}
1624 
1625 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1626 	msk_sysctl_node(sc_if);
1627 
1628 	if ((error = msk_txrx_dma_alloc(sc_if)) != 0)
1629 		goto fail;
1630 	msk_rx_dma_jalloc(sc_if);
1631 
1632 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1633 	if (ifp == NULL) {
1634 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1635 		error = ENOSPC;
1636 		goto fail;
1637 	}
1638 	ifp->if_softc = sc_if;
1639 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1640 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1641 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1642 	/*
1643 	 * Enable Rx checksum offloading if controller supports
1644 	 * new descriptor formant and controller is not Yukon XL.
1645 	 */
1646 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1647 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1648 		ifp->if_capabilities |= IFCAP_RXCSUM;
1649 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1650 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1651 		ifp->if_capabilities |= IFCAP_RXCSUM;
1652 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1653 	ifp->if_capenable = ifp->if_capabilities;
1654 	ifp->if_ioctl = msk_ioctl;
1655 	ifp->if_start = msk_start;
1656 	ifp->if_init = msk_init;
1657 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1658 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1659 	IFQ_SET_READY(&ifp->if_snd);
1660 	/*
1661 	 * Get station address for this interface. Note that
1662 	 * dual port cards actually come with three station
1663 	 * addresses: one for each port, plus an extra. The
1664 	 * extra one is used by the SysKonnect driver software
1665 	 * as a 'virtual' station address for when both ports
1666 	 * are operating in failover mode. Currently we don't
1667 	 * use this extra address.
1668 	 */
1669 	MSK_IF_LOCK(sc_if);
1670 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1671 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1672 
1673 	/*
1674 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1675 	 */
1676 	MSK_IF_UNLOCK(sc_if);
1677 	ether_ifattach(ifp, eaddr);
1678 	MSK_IF_LOCK(sc_if);
1679 
1680 	/* VLAN capability setup */
1681 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1682 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1683 		/*
1684 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1685 		 * computes checksum for short frames. For VLAN tagged frames
1686 		 * this workaround does not work so disable checksum offload
1687 		 * for VLAN interface.
1688 		 */
1689 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1690 		/*
1691 		 * Enable Rx checksum offloading for VLAN tagged frames
1692 		 * if controller support new descriptor format.
1693 		 */
1694 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1695 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1696 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1697 	}
1698 	ifp->if_capenable = ifp->if_capabilities;
1699 	/*
1700 	 * Disable RX checksum offloading on controllers that don't use
1701 	 * new descriptor format but give chance to enable it.
1702 	 */
1703 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1704 		ifp->if_capenable &= ~IFCAP_RXCSUM;
1705 
1706 	/*
1707 	 * Tell the upper layer(s) we support long frames.
1708 	 * Must appear after the call to ether_ifattach() because
1709 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1710 	 */
1711         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1712 
1713 	/*
1714 	 * Do miibus setup.
1715 	 */
1716 	MSK_IF_UNLOCK(sc_if);
1717 	error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1718 	    msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1719 	    mmd->mii_flags);
1720 	if (error != 0) {
1721 		device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1722 		ether_ifdetach(ifp);
1723 		error = ENXIO;
1724 		goto fail;
1725 	}
1726 
1727 fail:
1728 	if (error != 0) {
1729 		/* Access should be ok even though lock has been dropped */
1730 		sc->msk_if[port] = NULL;
1731 		msk_detach(dev);
1732 	}
1733 
1734 	return (error);
1735 }
1736 
1737 /*
1738  * Attach the interface. Allocate softc structures, do ifmedia
1739  * setup and ethernet/BPF attach.
1740  */
1741 static int
1742 mskc_attach(device_t dev)
1743 {
1744 	struct msk_softc *sc;
1745 	struct msk_mii_data *mmd;
1746 	int error, msic, msir, reg;
1747 
1748 	sc = device_get_softc(dev);
1749 	sc->msk_dev = dev;
1750 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1751 	    MTX_DEF);
1752 
1753 	/*
1754 	 * Map control/status registers.
1755 	 */
1756 	pci_enable_busmaster(dev);
1757 
1758 	/* Allocate I/O resource */
1759 #ifdef MSK_USEIOSPACE
1760 	sc->msk_res_spec = msk_res_spec_io;
1761 #else
1762 	sc->msk_res_spec = msk_res_spec_mem;
1763 #endif
1764 	sc->msk_irq_spec = msk_irq_spec_legacy;
1765 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1766 	if (error) {
1767 		if (sc->msk_res_spec == msk_res_spec_mem)
1768 			sc->msk_res_spec = msk_res_spec_io;
1769 		else
1770 			sc->msk_res_spec = msk_res_spec_mem;
1771 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1772 		if (error) {
1773 			device_printf(dev, "couldn't allocate %s resources\n",
1774 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1775 			    "I/O");
1776 			mtx_destroy(&sc->msk_mtx);
1777 			return (ENXIO);
1778 		}
1779 	}
1780 
1781 	/* Enable all clocks before accessing any registers. */
1782 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1783 
1784 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1785 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1786 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1787 	/* Bail out if chip is not recognized. */
1788 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1789 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1790 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1791 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1792 		    sc->msk_hw_id, sc->msk_hw_rev);
1793 		mtx_destroy(&sc->msk_mtx);
1794 		return (ENXIO);
1795 	}
1796 
1797 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1798 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1799 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1800 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1801 	    "max number of Rx events to process");
1802 
1803 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1804 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1805 	    "process_limit", &sc->msk_process_limit);
1806 	if (error == 0) {
1807 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1808 		    sc->msk_process_limit > MSK_PROC_MAX) {
1809 			device_printf(dev, "process_limit value out of range; "
1810 			    "using default: %d\n", MSK_PROC_DEFAULT);
1811 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1812 		}
1813 	}
1814 
1815 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1816 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1817 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1818 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1819 	    "Maximum number of time to delay interrupts");
1820 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1821 	    "int_holdoff", &sc->msk_int_holdoff);
1822 
1823 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1824 	/* Check number of MACs. */
1825 	sc->msk_num_port = 1;
1826 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1827 	    CFG_DUAL_MAC_MSK) {
1828 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1829 			sc->msk_num_port++;
1830 	}
1831 
1832 	/* Check bus type. */
1833 	if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1834 		sc->msk_bustype = MSK_PEX_BUS;
1835 		sc->msk_expcap = reg;
1836 	} else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1837 		sc->msk_bustype = MSK_PCIX_BUS;
1838 		sc->msk_pcixcap = reg;
1839 	} else
1840 		sc->msk_bustype = MSK_PCI_BUS;
1841 
1842 	switch (sc->msk_hw_id) {
1843 	case CHIP_ID_YUKON_EC:
1844 		sc->msk_clock = 125;	/* 125 MHz */
1845 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1846 		break;
1847 	case CHIP_ID_YUKON_EC_U:
1848 		sc->msk_clock = 125;	/* 125 MHz */
1849 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1850 		break;
1851 	case CHIP_ID_YUKON_EX:
1852 		sc->msk_clock = 125;	/* 125 MHz */
1853 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1854 		    MSK_FLAG_AUTOTX_CSUM;
1855 		/*
1856 		 * Yukon Extreme seems to have silicon bug for
1857 		 * automatic Tx checksum calculation capability.
1858 		 */
1859 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1860 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1861 		/*
1862 		 * Yukon Extreme A0 could not use store-and-forward
1863 		 * for jumbo frames, so disable Tx checksum
1864 		 * offloading for jumbo frames.
1865 		 */
1866 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1867 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1868 		break;
1869 	case CHIP_ID_YUKON_FE:
1870 		sc->msk_clock = 100;	/* 100 MHz */
1871 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1872 		break;
1873 	case CHIP_ID_YUKON_FE_P:
1874 		sc->msk_clock = 50;	/* 50 MHz */
1875 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1876 		    MSK_FLAG_AUTOTX_CSUM;
1877 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1878 			/*
1879 			 * XXX
1880 			 * FE+ A0 has status LE writeback bug so msk(4)
1881 			 * does not rely on status word of received frame
1882 			 * in msk_rxeof() which in turn disables all
1883 			 * hardware assistance bits reported by the status
1884 			 * word as well as validity of the received frame.
1885 			 * Just pass received frames to upper stack with
1886 			 * minimal test and let upper stack handle them.
1887 			 */
1888 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1889 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1890 		}
1891 		break;
1892 	case CHIP_ID_YUKON_XL:
1893 		sc->msk_clock = 156;	/* 156 MHz */
1894 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1895 		break;
1896 	case CHIP_ID_YUKON_SUPR:
1897 		sc->msk_clock = 125;	/* 125 MHz */
1898 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1899 		    MSK_FLAG_AUTOTX_CSUM;
1900 		break;
1901 	case CHIP_ID_YUKON_UL_2:
1902 		sc->msk_clock = 125;	/* 125 MHz */
1903 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1904 		break;
1905 	case CHIP_ID_YUKON_OPT:
1906 		sc->msk_clock = 125;	/* 125 MHz */
1907 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1908 		break;
1909 	default:
1910 		sc->msk_clock = 156;	/* 156 MHz */
1911 		break;
1912 	}
1913 
1914 	/* Allocate IRQ resources. */
1915 	msic = pci_msi_count(dev);
1916 	if (bootverbose)
1917 		device_printf(dev, "MSI count : %d\n", msic);
1918 	if (legacy_intr != 0)
1919 		msi_disable = 1;
1920 	if (msi_disable == 0 && msic > 0) {
1921 		msir = 1;
1922 		if (pci_alloc_msi(dev, &msir) == 0) {
1923 			if (msir == 1) {
1924 				sc->msk_pflags |= MSK_FLAG_MSI;
1925 				sc->msk_irq_spec = msk_irq_spec_msi;
1926 			} else
1927 				pci_release_msi(dev);
1928 		}
1929 	}
1930 
1931 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1932 	if (error) {
1933 		device_printf(dev, "couldn't allocate IRQ resources\n");
1934 		goto fail;
1935 	}
1936 
1937 	if ((error = msk_status_dma_alloc(sc)) != 0)
1938 		goto fail;
1939 
1940 	/* Set base interrupt mask. */
1941 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1942 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1943 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1944 
1945 	/* Reset the adapter. */
1946 	mskc_reset(sc);
1947 
1948 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1949 		goto fail;
1950 
1951 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1952 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1953 		device_printf(dev, "failed to add child for PORT_A\n");
1954 		error = ENXIO;
1955 		goto fail;
1956 	}
1957 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1958 	mmd->port = MSK_PORT_A;
1959 	mmd->pmd = sc->msk_pmd;
1960 	mmd->mii_flags |= MIIF_DOPAUSE;
1961 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1962 		mmd->mii_flags |= MIIF_HAVEFIBER;
1963 	if (sc->msk_pmd == 'P')
1964 		mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1965 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1966 
1967 	if (sc->msk_num_port > 1) {
1968 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1969 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1970 			device_printf(dev, "failed to add child for PORT_B\n");
1971 			error = ENXIO;
1972 			goto fail;
1973 		}
1974 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK |
1975 		    M_ZERO);
1976 		mmd->port = MSK_PORT_B;
1977 		mmd->pmd = sc->msk_pmd;
1978 		if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1979 			mmd->mii_flags |= MIIF_HAVEFIBER;
1980 		if (sc->msk_pmd == 'P')
1981 			mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1982 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1983 	}
1984 
1985 	error = bus_generic_attach(dev);
1986 	if (error) {
1987 		device_printf(dev, "failed to attach port(s)\n");
1988 		goto fail;
1989 	}
1990 
1991 	/* Hook interrupt last to avoid having to lock softc. */
1992 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1993 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1994 	if (error != 0) {
1995 		device_printf(dev, "couldn't set up interrupt handler\n");
1996 		goto fail;
1997 	}
1998 fail:
1999 	if (error != 0)
2000 		mskc_detach(dev);
2001 
2002 	return (error);
2003 }
2004 
2005 /*
2006  * Shutdown hardware and free up resources. This can be called any
2007  * time after the mutex has been initialized. It is called in both
2008  * the error case in attach and the normal detach case so it needs
2009  * to be careful about only freeing resources that have actually been
2010  * allocated.
2011  */
2012 static int
2013 msk_detach(device_t dev)
2014 {
2015 	struct msk_softc *sc;
2016 	struct msk_if_softc *sc_if;
2017 	struct ifnet *ifp;
2018 
2019 	sc_if = device_get_softc(dev);
2020 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
2021 	    ("msk mutex not initialized in msk_detach"));
2022 	MSK_IF_LOCK(sc_if);
2023 
2024 	ifp = sc_if->msk_ifp;
2025 	if (device_is_attached(dev)) {
2026 		/* XXX */
2027 		sc_if->msk_flags |= MSK_FLAG_DETACH;
2028 		msk_stop(sc_if);
2029 		/* Can't hold locks while calling detach. */
2030 		MSK_IF_UNLOCK(sc_if);
2031 		callout_drain(&sc_if->msk_tick_ch);
2032 		if (ifp)
2033 			ether_ifdetach(ifp);
2034 		MSK_IF_LOCK(sc_if);
2035 	}
2036 
2037 	/*
2038 	 * We're generally called from mskc_detach() which is using
2039 	 * device_delete_child() to get to here. It's already trashed
2040 	 * miibus for us, so don't do it here or we'll panic.
2041 	 *
2042 	 * if (sc_if->msk_miibus != NULL) {
2043 	 * 	device_delete_child(dev, sc_if->msk_miibus);
2044 	 * 	sc_if->msk_miibus = NULL;
2045 	 * }
2046 	 */
2047 
2048 	msk_rx_dma_jfree(sc_if);
2049 	msk_txrx_dma_free(sc_if);
2050 	bus_generic_detach(dev);
2051 
2052 	sc = sc_if->msk_softc;
2053 	sc->msk_if[sc_if->msk_port] = NULL;
2054 	MSK_IF_UNLOCK(sc_if);
2055 	if (ifp)
2056 		if_free(ifp);
2057 
2058 	return (0);
2059 }
2060 
2061 static int
2062 mskc_detach(device_t dev)
2063 {
2064 	struct msk_softc *sc;
2065 
2066 	sc = device_get_softc(dev);
2067 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2068 
2069 	if (device_is_alive(dev)) {
2070 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2071 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2072 			    M_DEVBUF);
2073 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2074 		}
2075 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2076 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2077 			    M_DEVBUF);
2078 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2079 		}
2080 		bus_generic_detach(dev);
2081 	}
2082 
2083 	/* Disable all interrupts. */
2084 	CSR_WRITE_4(sc, B0_IMSK, 0);
2085 	CSR_READ_4(sc, B0_IMSK);
2086 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2087 	CSR_READ_4(sc, B0_HWE_IMSK);
2088 
2089 	/* LED Off. */
2090 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2091 
2092 	/* Put hardware reset. */
2093 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2094 
2095 	msk_status_dma_free(sc);
2096 
2097 	if (sc->msk_intrhand) {
2098 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2099 		sc->msk_intrhand = NULL;
2100 	}
2101 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2102 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2103 		pci_release_msi(dev);
2104 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2105 	mtx_destroy(&sc->msk_mtx);
2106 
2107 	return (0);
2108 }
2109 
2110 static bus_dma_tag_t
2111 mskc_get_dma_tag(device_t bus, device_t child __unused)
2112 {
2113 
2114 	return (bus_get_dma_tag(bus));
2115 }
2116 
2117 struct msk_dmamap_arg {
2118 	bus_addr_t	msk_busaddr;
2119 };
2120 
2121 static void
2122 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2123 {
2124 	struct msk_dmamap_arg *ctx;
2125 
2126 	if (error != 0)
2127 		return;
2128 	ctx = arg;
2129 	ctx->msk_busaddr = segs[0].ds_addr;
2130 }
2131 
2132 /* Create status DMA region. */
2133 static int
2134 msk_status_dma_alloc(struct msk_softc *sc)
2135 {
2136 	struct msk_dmamap_arg ctx;
2137 	bus_size_t stat_sz;
2138 	int count, error;
2139 
2140 	/*
2141 	 * It seems controller requires number of status LE entries
2142 	 * is power of 2 and the maximum number of status LE entries
2143 	 * is 4096.  For dual-port controllers, the number of status
2144 	 * LE entries should be large enough to hold both port's
2145 	 * status updates.
2146 	 */
2147 	count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT;
2148 	count = imin(4096, roundup2(count, 1024));
2149 	sc->msk_stat_count = count;
2150 	stat_sz = count * sizeof(struct msk_stat_desc);
2151 	error = bus_dma_tag_create(
2152 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2153 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2154 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2155 		    BUS_SPACE_MAXADDR,		/* highaddr */
2156 		    NULL, NULL,			/* filter, filterarg */
2157 		    stat_sz,			/* maxsize */
2158 		    1,				/* nsegments */
2159 		    stat_sz,			/* maxsegsize */
2160 		    0,				/* flags */
2161 		    NULL, NULL,			/* lockfunc, lockarg */
2162 		    &sc->msk_stat_tag);
2163 	if (error != 0) {
2164 		device_printf(sc->msk_dev,
2165 		    "failed to create status DMA tag\n");
2166 		return (error);
2167 	}
2168 
2169 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2170 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2171 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2172 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2173 	if (error != 0) {
2174 		device_printf(sc->msk_dev,
2175 		    "failed to allocate DMA'able memory for status ring\n");
2176 		return (error);
2177 	}
2178 
2179 	ctx.msk_busaddr = 0;
2180 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
2181 	    sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2182 	if (error != 0) {
2183 		device_printf(sc->msk_dev,
2184 		    "failed to load DMA'able memory for status ring\n");
2185 		return (error);
2186 	}
2187 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2188 
2189 	return (0);
2190 }
2191 
2192 static void
2193 msk_status_dma_free(struct msk_softc *sc)
2194 {
2195 
2196 	/* Destroy status block. */
2197 	if (sc->msk_stat_tag) {
2198 		if (sc->msk_stat_ring_paddr) {
2199 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2200 			sc->msk_stat_ring_paddr = 0;
2201 		}
2202 		if (sc->msk_stat_ring) {
2203 			bus_dmamem_free(sc->msk_stat_tag,
2204 			    sc->msk_stat_ring, sc->msk_stat_map);
2205 			sc->msk_stat_ring = NULL;
2206 		}
2207 		bus_dma_tag_destroy(sc->msk_stat_tag);
2208 		sc->msk_stat_tag = NULL;
2209 	}
2210 }
2211 
2212 static int
2213 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2214 {
2215 	struct msk_dmamap_arg ctx;
2216 	struct msk_txdesc *txd;
2217 	struct msk_rxdesc *rxd;
2218 	bus_size_t rxalign;
2219 	int error, i;
2220 
2221 	/* Create parent DMA tag. */
2222 	error = bus_dma_tag_create(
2223 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2224 		    1, 0,			/* alignment, boundary */
2225 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2226 		    BUS_SPACE_MAXADDR,		/* highaddr */
2227 		    NULL, NULL,			/* filter, filterarg */
2228 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2229 		    0,				/* nsegments */
2230 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2231 		    0,				/* flags */
2232 		    NULL, NULL,			/* lockfunc, lockarg */
2233 		    &sc_if->msk_cdata.msk_parent_tag);
2234 	if (error != 0) {
2235 		device_printf(sc_if->msk_if_dev,
2236 		    "failed to create parent DMA tag\n");
2237 		goto fail;
2238 	}
2239 	/* Create tag for Tx ring. */
2240 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2241 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2242 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2243 		    BUS_SPACE_MAXADDR,		/* highaddr */
2244 		    NULL, NULL,			/* filter, filterarg */
2245 		    MSK_TX_RING_SZ,		/* maxsize */
2246 		    1,				/* nsegments */
2247 		    MSK_TX_RING_SZ,		/* maxsegsize */
2248 		    0,				/* flags */
2249 		    NULL, NULL,			/* lockfunc, lockarg */
2250 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2251 	if (error != 0) {
2252 		device_printf(sc_if->msk_if_dev,
2253 		    "failed to create Tx ring DMA tag\n");
2254 		goto fail;
2255 	}
2256 
2257 	/* Create tag for Rx ring. */
2258 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2259 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2260 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2261 		    BUS_SPACE_MAXADDR,		/* highaddr */
2262 		    NULL, NULL,			/* filter, filterarg */
2263 		    MSK_RX_RING_SZ,		/* maxsize */
2264 		    1,				/* nsegments */
2265 		    MSK_RX_RING_SZ,		/* maxsegsize */
2266 		    0,				/* flags */
2267 		    NULL, NULL,			/* lockfunc, lockarg */
2268 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2269 	if (error != 0) {
2270 		device_printf(sc_if->msk_if_dev,
2271 		    "failed to create Rx ring DMA tag\n");
2272 		goto fail;
2273 	}
2274 
2275 	/* Create tag for Tx buffers. */
2276 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2277 		    1, 0,			/* alignment, boundary */
2278 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2279 		    BUS_SPACE_MAXADDR,		/* highaddr */
2280 		    NULL, NULL,			/* filter, filterarg */
2281 		    MSK_TSO_MAXSIZE,		/* maxsize */
2282 		    MSK_MAXTXSEGS,		/* nsegments */
2283 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2284 		    0,				/* flags */
2285 		    NULL, NULL,			/* lockfunc, lockarg */
2286 		    &sc_if->msk_cdata.msk_tx_tag);
2287 	if (error != 0) {
2288 		device_printf(sc_if->msk_if_dev,
2289 		    "failed to create Tx DMA tag\n");
2290 		goto fail;
2291 	}
2292 
2293 	rxalign = 1;
2294 	/*
2295 	 * Workaround hardware hang which seems to happen when Rx buffer
2296 	 * is not aligned on multiple of FIFO word(8 bytes).
2297 	 */
2298 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2299 		rxalign = MSK_RX_BUF_ALIGN;
2300 	/* Create tag for Rx buffers. */
2301 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2302 		    rxalign, 0,			/* alignment, boundary */
2303 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2304 		    BUS_SPACE_MAXADDR,		/* highaddr */
2305 		    NULL, NULL,			/* filter, filterarg */
2306 		    MCLBYTES,			/* maxsize */
2307 		    1,				/* nsegments */
2308 		    MCLBYTES,			/* maxsegsize */
2309 		    0,				/* flags */
2310 		    NULL, NULL,			/* lockfunc, lockarg */
2311 		    &sc_if->msk_cdata.msk_rx_tag);
2312 	if (error != 0) {
2313 		device_printf(sc_if->msk_if_dev,
2314 		    "failed to create Rx DMA tag\n");
2315 		goto fail;
2316 	}
2317 
2318 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2319 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2320 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2321 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2322 	if (error != 0) {
2323 		device_printf(sc_if->msk_if_dev,
2324 		    "failed to allocate DMA'able memory for Tx ring\n");
2325 		goto fail;
2326 	}
2327 
2328 	ctx.msk_busaddr = 0;
2329 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2330 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2331 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2332 	if (error != 0) {
2333 		device_printf(sc_if->msk_if_dev,
2334 		    "failed to load DMA'able memory for Tx ring\n");
2335 		goto fail;
2336 	}
2337 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2338 
2339 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2340 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2341 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2342 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2343 	if (error != 0) {
2344 		device_printf(sc_if->msk_if_dev,
2345 		    "failed to allocate DMA'able memory for Rx ring\n");
2346 		goto fail;
2347 	}
2348 
2349 	ctx.msk_busaddr = 0;
2350 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2351 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2352 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2353 	if (error != 0) {
2354 		device_printf(sc_if->msk_if_dev,
2355 		    "failed to load DMA'able memory for Rx ring\n");
2356 		goto fail;
2357 	}
2358 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2359 
2360 	/* Create DMA maps for Tx buffers. */
2361 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2362 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2363 		txd->tx_m = NULL;
2364 		txd->tx_dmamap = NULL;
2365 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2366 		    &txd->tx_dmamap);
2367 		if (error != 0) {
2368 			device_printf(sc_if->msk_if_dev,
2369 			    "failed to create Tx dmamap\n");
2370 			goto fail;
2371 		}
2372 	}
2373 	/* Create DMA maps for Rx buffers. */
2374 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2375 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2376 		device_printf(sc_if->msk_if_dev,
2377 		    "failed to create spare Rx dmamap\n");
2378 		goto fail;
2379 	}
2380 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2381 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2382 		rxd->rx_m = NULL;
2383 		rxd->rx_dmamap = NULL;
2384 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2385 		    &rxd->rx_dmamap);
2386 		if (error != 0) {
2387 			device_printf(sc_if->msk_if_dev,
2388 			    "failed to create Rx dmamap\n");
2389 			goto fail;
2390 		}
2391 	}
2392 
2393 fail:
2394 	return (error);
2395 }
2396 
2397 static int
2398 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2399 {
2400 	struct msk_dmamap_arg ctx;
2401 	struct msk_rxdesc *jrxd;
2402 	bus_size_t rxalign;
2403 	int error, i;
2404 
2405 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2406 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2407 		device_printf(sc_if->msk_if_dev,
2408 		    "disabling jumbo frame support\n");
2409 		return (0);
2410 	}
2411 	/* Create tag for jumbo Rx ring. */
2412 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2413 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2414 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2415 		    BUS_SPACE_MAXADDR,		/* highaddr */
2416 		    NULL, NULL,			/* filter, filterarg */
2417 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2418 		    1,				/* nsegments */
2419 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2420 		    0,				/* flags */
2421 		    NULL, NULL,			/* lockfunc, lockarg */
2422 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2423 	if (error != 0) {
2424 		device_printf(sc_if->msk_if_dev,
2425 		    "failed to create jumbo Rx ring DMA tag\n");
2426 		goto jumbo_fail;
2427 	}
2428 
2429 	rxalign = 1;
2430 	/*
2431 	 * Workaround hardware hang which seems to happen when Rx buffer
2432 	 * is not aligned on multiple of FIFO word(8 bytes).
2433 	 */
2434 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2435 		rxalign = MSK_RX_BUF_ALIGN;
2436 	/* Create tag for jumbo Rx buffers. */
2437 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2438 		    rxalign, 0,			/* alignment, boundary */
2439 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2440 		    BUS_SPACE_MAXADDR,		/* highaddr */
2441 		    NULL, NULL,			/* filter, filterarg */
2442 		    MJUM9BYTES,			/* maxsize */
2443 		    1,				/* nsegments */
2444 		    MJUM9BYTES,			/* maxsegsize */
2445 		    0,				/* flags */
2446 		    NULL, NULL,			/* lockfunc, lockarg */
2447 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2448 	if (error != 0) {
2449 		device_printf(sc_if->msk_if_dev,
2450 		    "failed to create jumbo Rx DMA tag\n");
2451 		goto jumbo_fail;
2452 	}
2453 
2454 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2455 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2456 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2457 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2458 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2459 	if (error != 0) {
2460 		device_printf(sc_if->msk_if_dev,
2461 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2462 		goto jumbo_fail;
2463 	}
2464 
2465 	ctx.msk_busaddr = 0;
2466 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2467 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2468 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2469 	    msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2470 	if (error != 0) {
2471 		device_printf(sc_if->msk_if_dev,
2472 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2473 		goto jumbo_fail;
2474 	}
2475 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2476 
2477 	/* Create DMA maps for jumbo Rx buffers. */
2478 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2479 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2480 		device_printf(sc_if->msk_if_dev,
2481 		    "failed to create spare jumbo Rx dmamap\n");
2482 		goto jumbo_fail;
2483 	}
2484 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2485 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2486 		jrxd->rx_m = NULL;
2487 		jrxd->rx_dmamap = NULL;
2488 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2489 		    &jrxd->rx_dmamap);
2490 		if (error != 0) {
2491 			device_printf(sc_if->msk_if_dev,
2492 			    "failed to create jumbo Rx dmamap\n");
2493 			goto jumbo_fail;
2494 		}
2495 	}
2496 
2497 	return (0);
2498 
2499 jumbo_fail:
2500 	msk_rx_dma_jfree(sc_if);
2501 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2502 	    "due to resource shortage\n");
2503 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2504 	return (error);
2505 }
2506 
2507 static void
2508 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2509 {
2510 	struct msk_txdesc *txd;
2511 	struct msk_rxdesc *rxd;
2512 	int i;
2513 
2514 	/* Tx ring. */
2515 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2516 		if (sc_if->msk_rdata.msk_tx_ring_paddr)
2517 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2518 			    sc_if->msk_cdata.msk_tx_ring_map);
2519 		if (sc_if->msk_rdata.msk_tx_ring)
2520 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2521 			    sc_if->msk_rdata.msk_tx_ring,
2522 			    sc_if->msk_cdata.msk_tx_ring_map);
2523 		sc_if->msk_rdata.msk_tx_ring = NULL;
2524 		sc_if->msk_rdata.msk_tx_ring_paddr = 0;
2525 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2526 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2527 	}
2528 	/* Rx ring. */
2529 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2530 		if (sc_if->msk_rdata.msk_rx_ring_paddr)
2531 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2532 			    sc_if->msk_cdata.msk_rx_ring_map);
2533 		if (sc_if->msk_rdata.msk_rx_ring)
2534 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2535 			    sc_if->msk_rdata.msk_rx_ring,
2536 			    sc_if->msk_cdata.msk_rx_ring_map);
2537 		sc_if->msk_rdata.msk_rx_ring = NULL;
2538 		sc_if->msk_rdata.msk_rx_ring_paddr = 0;
2539 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2540 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2541 	}
2542 	/* Tx buffers. */
2543 	if (sc_if->msk_cdata.msk_tx_tag) {
2544 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2545 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2546 			if (txd->tx_dmamap) {
2547 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2548 				    txd->tx_dmamap);
2549 				txd->tx_dmamap = NULL;
2550 			}
2551 		}
2552 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2553 		sc_if->msk_cdata.msk_tx_tag = NULL;
2554 	}
2555 	/* Rx buffers. */
2556 	if (sc_if->msk_cdata.msk_rx_tag) {
2557 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2558 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2559 			if (rxd->rx_dmamap) {
2560 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2561 				    rxd->rx_dmamap);
2562 				rxd->rx_dmamap = NULL;
2563 			}
2564 		}
2565 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2566 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2567 			    sc_if->msk_cdata.msk_rx_sparemap);
2568 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2569 		}
2570 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2571 		sc_if->msk_cdata.msk_rx_tag = NULL;
2572 	}
2573 	if (sc_if->msk_cdata.msk_parent_tag) {
2574 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2575 		sc_if->msk_cdata.msk_parent_tag = NULL;
2576 	}
2577 }
2578 
2579 static void
2580 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2581 {
2582 	struct msk_rxdesc *jrxd;
2583 	int i;
2584 
2585 	/* Jumbo Rx ring. */
2586 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2587 		if (sc_if->msk_rdata.msk_jumbo_rx_ring_paddr)
2588 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2589 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2590 		if (sc_if->msk_rdata.msk_jumbo_rx_ring)
2591 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2592 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2593 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2594 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2595 		sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = 0;
2596 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2597 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2598 	}
2599 	/* Jumbo Rx buffers. */
2600 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2601 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2602 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2603 			if (jrxd->rx_dmamap) {
2604 				bus_dmamap_destroy(
2605 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2606 				    jrxd->rx_dmamap);
2607 				jrxd->rx_dmamap = NULL;
2608 			}
2609 		}
2610 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2611 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2612 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2613 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2614 		}
2615 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2616 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2617 	}
2618 }
2619 
2620 static int
2621 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2622 {
2623 	struct msk_txdesc *txd, *txd_last;
2624 	struct msk_tx_desc *tx_le;
2625 	struct mbuf *m;
2626 	bus_dmamap_t map;
2627 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2628 	uint32_t control, csum, prod, si;
2629 	uint16_t offset, tcp_offset, tso_mtu;
2630 	int error, i, nseg, tso;
2631 
2632 	MSK_IF_LOCK_ASSERT(sc_if);
2633 
2634 	tcp_offset = offset = 0;
2635 	m = *m_head;
2636 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2637 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2638 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2639 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2640 		/*
2641 		 * Since mbuf has no protocol specific structure information
2642 		 * in it we have to inspect protocol information here to
2643 		 * setup TSO and checksum offload. I don't know why Marvell
2644 		 * made a such decision in chip design because other GigE
2645 		 * hardwares normally takes care of all these chores in
2646 		 * hardware. However, TSO performance of Yukon II is very
2647 		 * good such that it's worth to implement it.
2648 		 */
2649 		struct ether_header *eh;
2650 		struct ip *ip;
2651 		struct tcphdr *tcp;
2652 
2653 		if (M_WRITABLE(m) == 0) {
2654 			/* Get a writable copy. */
2655 			m = m_dup(*m_head, M_NOWAIT);
2656 			m_freem(*m_head);
2657 			if (m == NULL) {
2658 				*m_head = NULL;
2659 				return (ENOBUFS);
2660 			}
2661 			*m_head = m;
2662 		}
2663 
2664 		offset = sizeof(struct ether_header);
2665 		m = m_pullup(m, offset);
2666 		if (m == NULL) {
2667 			*m_head = NULL;
2668 			return (ENOBUFS);
2669 		}
2670 		eh = mtod(m, struct ether_header *);
2671 		/* Check if hardware VLAN insertion is off. */
2672 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2673 			offset = sizeof(struct ether_vlan_header);
2674 			m = m_pullup(m, offset);
2675 			if (m == NULL) {
2676 				*m_head = NULL;
2677 				return (ENOBUFS);
2678 			}
2679 		}
2680 		m = m_pullup(m, offset + sizeof(struct ip));
2681 		if (m == NULL) {
2682 			*m_head = NULL;
2683 			return (ENOBUFS);
2684 		}
2685 		ip = (struct ip *)(mtod(m, char *) + offset);
2686 		offset += (ip->ip_hl << 2);
2687 		tcp_offset = offset;
2688 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2689 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2690 			if (m == NULL) {
2691 				*m_head = NULL;
2692 				return (ENOBUFS);
2693 			}
2694 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2695 			offset += (tcp->th_off << 2);
2696 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2697 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2698 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2699 			/*
2700 			 * It seems that Yukon II has Tx checksum offload bug
2701 			 * for small TCP packets that's less than 60 bytes in
2702 			 * size (e.g. TCP window probe packet, pure ACK packet).
2703 			 * Common work around like padding with zeros to make
2704 			 * the frame minimum ethernet frame size didn't work at
2705 			 * all.
2706 			 * Instead of disabling checksum offload completely we
2707 			 * resort to S/W checksum routine when we encounter
2708 			 * short TCP frames.
2709 			 * Short UDP packets appear to be handled correctly by
2710 			 * Yukon II. Also I assume this bug does not happen on
2711 			 * controllers that use newer descriptor format or
2712 			 * automatic Tx checksum calculation.
2713 			 */
2714 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2715 			if (m == NULL) {
2716 				*m_head = NULL;
2717 				return (ENOBUFS);
2718 			}
2719 			*(uint16_t *)(m->m_data + offset +
2720 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2721 			    m->m_pkthdr.len, offset);
2722 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2723 		}
2724 		*m_head = m;
2725 	}
2726 
2727 	prod = sc_if->msk_cdata.msk_tx_prod;
2728 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2729 	txd_last = txd;
2730 	map = txd->tx_dmamap;
2731 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2732 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2733 	if (error == EFBIG) {
2734 		m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS);
2735 		if (m == NULL) {
2736 			m_freem(*m_head);
2737 			*m_head = NULL;
2738 			return (ENOBUFS);
2739 		}
2740 		*m_head = m;
2741 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2742 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2743 		if (error != 0) {
2744 			m_freem(*m_head);
2745 			*m_head = NULL;
2746 			return (error);
2747 		}
2748 	} else if (error != 0)
2749 		return (error);
2750 	if (nseg == 0) {
2751 		m_freem(*m_head);
2752 		*m_head = NULL;
2753 		return (EIO);
2754 	}
2755 
2756 	/* Check number of available descriptors. */
2757 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2758 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2759 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2760 		return (ENOBUFS);
2761 	}
2762 
2763 	control = 0;
2764 	tso = 0;
2765 	tx_le = NULL;
2766 
2767 	/* Check TSO support. */
2768 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2769 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2770 			tso_mtu = m->m_pkthdr.tso_segsz;
2771 		else
2772 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2773 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2774 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2775 			tx_le->msk_addr = htole32(tso_mtu);
2776 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2777 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2778 			else
2779 				tx_le->msk_control =
2780 				    htole32(OP_LRGLEN | HW_OWNER);
2781 			sc_if->msk_cdata.msk_tx_cnt++;
2782 			MSK_INC(prod, MSK_TX_RING_CNT);
2783 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2784 		}
2785 		tso++;
2786 	}
2787 	/* Check if we have a VLAN tag to insert. */
2788 	if ((m->m_flags & M_VLANTAG) != 0) {
2789 		if (tx_le == NULL) {
2790 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2791 			tx_le->msk_addr = htole32(0);
2792 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2793 			    htons(m->m_pkthdr.ether_vtag));
2794 			sc_if->msk_cdata.msk_tx_cnt++;
2795 			MSK_INC(prod, MSK_TX_RING_CNT);
2796 		} else {
2797 			tx_le->msk_control |= htole32(OP_VLAN |
2798 			    htons(m->m_pkthdr.ether_vtag));
2799 		}
2800 		control |= INS_VLAN;
2801 	}
2802 	/* Check if we have to handle checksum offload. */
2803 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2804 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2805 			control |= CALSUM;
2806 		else {
2807 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2808 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2809 				control |= UDPTCP;
2810 			/* Checksum write position. */
2811 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2812 			/* Checksum start position. */
2813 			csum |= (uint32_t)tcp_offset << 16;
2814 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2815 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2816 				tx_le->msk_addr = htole32(csum);
2817 				tx_le->msk_control = htole32(1 << 16 |
2818 				    (OP_TCPLISW | HW_OWNER));
2819 				sc_if->msk_cdata.msk_tx_cnt++;
2820 				MSK_INC(prod, MSK_TX_RING_CNT);
2821 				sc_if->msk_cdata.msk_last_csum = csum;
2822 			}
2823 		}
2824 	}
2825 
2826 #ifdef MSK_64BIT_DMA
2827 	if (MSK_ADDR_HI(txsegs[0].ds_addr) !=
2828 	    sc_if->msk_cdata.msk_tx_high_addr) {
2829 		sc_if->msk_cdata.msk_tx_high_addr =
2830 		    MSK_ADDR_HI(txsegs[0].ds_addr);
2831 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2832 		tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr));
2833 		tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2834 		sc_if->msk_cdata.msk_tx_cnt++;
2835 		MSK_INC(prod, MSK_TX_RING_CNT);
2836 	}
2837 #endif
2838 	si = prod;
2839 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2840 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2841 	if (tso == 0)
2842 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2843 		    OP_PACKET);
2844 	else
2845 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2846 		    OP_LARGESEND);
2847 	sc_if->msk_cdata.msk_tx_cnt++;
2848 	MSK_INC(prod, MSK_TX_RING_CNT);
2849 
2850 	for (i = 1; i < nseg; i++) {
2851 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2852 #ifdef MSK_64BIT_DMA
2853 		if (MSK_ADDR_HI(txsegs[i].ds_addr) !=
2854 		    sc_if->msk_cdata.msk_tx_high_addr) {
2855 			sc_if->msk_cdata.msk_tx_high_addr =
2856 			    MSK_ADDR_HI(txsegs[i].ds_addr);
2857 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2858 			tx_le->msk_addr =
2859 			    htole32(MSK_ADDR_HI(txsegs[i].ds_addr));
2860 			tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2861 			sc_if->msk_cdata.msk_tx_cnt++;
2862 			MSK_INC(prod, MSK_TX_RING_CNT);
2863 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2864 		}
2865 #endif
2866 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2867 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2868 		    OP_BUFFER | HW_OWNER);
2869 		sc_if->msk_cdata.msk_tx_cnt++;
2870 		MSK_INC(prod, MSK_TX_RING_CNT);
2871 	}
2872 	/* Update producer index. */
2873 	sc_if->msk_cdata.msk_tx_prod = prod;
2874 
2875 	/* Set EOP on the last descriptor. */
2876 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2877 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2878 	tx_le->msk_control |= htole32(EOP);
2879 
2880 	/* Turn the first descriptor ownership to hardware. */
2881 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2882 	tx_le->msk_control |= htole32(HW_OWNER);
2883 
2884 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2885 	map = txd_last->tx_dmamap;
2886 	txd_last->tx_dmamap = txd->tx_dmamap;
2887 	txd->tx_dmamap = map;
2888 	txd->tx_m = m;
2889 
2890 	/* Sync descriptors. */
2891 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2892 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2893 	    sc_if->msk_cdata.msk_tx_ring_map,
2894 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2895 
2896 	return (0);
2897 }
2898 
2899 static void
2900 msk_start(struct ifnet *ifp)
2901 {
2902 	struct msk_if_softc *sc_if;
2903 
2904 	sc_if = ifp->if_softc;
2905 	MSK_IF_LOCK(sc_if);
2906 	msk_start_locked(ifp);
2907 	MSK_IF_UNLOCK(sc_if);
2908 }
2909 
2910 static void
2911 msk_start_locked(struct ifnet *ifp)
2912 {
2913 	struct msk_if_softc *sc_if;
2914 	struct mbuf *m_head;
2915 	int enq;
2916 
2917 	sc_if = ifp->if_softc;
2918 	MSK_IF_LOCK_ASSERT(sc_if);
2919 
2920 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2921 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2922 		return;
2923 
2924 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2925 	    sc_if->msk_cdata.msk_tx_cnt <
2926 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2927 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2928 		if (m_head == NULL)
2929 			break;
2930 		/*
2931 		 * Pack the data into the transmit ring. If we
2932 		 * don't have room, set the OACTIVE flag and wait
2933 		 * for the NIC to drain the ring.
2934 		 */
2935 		if (msk_encap(sc_if, &m_head) != 0) {
2936 			if (m_head == NULL)
2937 				break;
2938 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2939 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2940 			break;
2941 		}
2942 
2943 		enq++;
2944 		/*
2945 		 * If there's a BPF listener, bounce a copy of this frame
2946 		 * to him.
2947 		 */
2948 		ETHER_BPF_MTAP(ifp, m_head);
2949 	}
2950 
2951 	if (enq > 0) {
2952 		/* Transmit */
2953 		CSR_WRITE_2(sc_if->msk_softc,
2954 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2955 		    sc_if->msk_cdata.msk_tx_prod);
2956 
2957 		/* Set a timeout in case the chip goes out to lunch. */
2958 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2959 	}
2960 }
2961 
2962 static void
2963 msk_watchdog(struct msk_if_softc *sc_if)
2964 {
2965 	struct ifnet *ifp;
2966 
2967 	MSK_IF_LOCK_ASSERT(sc_if);
2968 
2969 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2970 		return;
2971 	ifp = sc_if->msk_ifp;
2972 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2973 		if (bootverbose)
2974 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2975 			   "(missed link)\n");
2976 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2977 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2978 		msk_init_locked(sc_if);
2979 		return;
2980 	}
2981 
2982 	if_printf(ifp, "watchdog timeout\n");
2983 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2984 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2985 	msk_init_locked(sc_if);
2986 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2987 		msk_start_locked(ifp);
2988 }
2989 
2990 static int
2991 mskc_shutdown(device_t dev)
2992 {
2993 	struct msk_softc *sc;
2994 	int i;
2995 
2996 	sc = device_get_softc(dev);
2997 	MSK_LOCK(sc);
2998 	for (i = 0; i < sc->msk_num_port; i++) {
2999 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3000 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3001 		    IFF_DRV_RUNNING) != 0))
3002 			msk_stop(sc->msk_if[i]);
3003 	}
3004 	MSK_UNLOCK(sc);
3005 
3006 	/* Put hardware reset. */
3007 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3008 	return (0);
3009 }
3010 
3011 static int
3012 mskc_suspend(device_t dev)
3013 {
3014 	struct msk_softc *sc;
3015 	int i;
3016 
3017 	sc = device_get_softc(dev);
3018 
3019 	MSK_LOCK(sc);
3020 
3021 	for (i = 0; i < sc->msk_num_port; i++) {
3022 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3023 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3024 		    IFF_DRV_RUNNING) != 0))
3025 			msk_stop(sc->msk_if[i]);
3026 	}
3027 
3028 	/* Disable all interrupts. */
3029 	CSR_WRITE_4(sc, B0_IMSK, 0);
3030 	CSR_READ_4(sc, B0_IMSK);
3031 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3032 	CSR_READ_4(sc, B0_HWE_IMSK);
3033 
3034 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3035 
3036 	/* Put hardware reset. */
3037 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3038 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
3039 
3040 	MSK_UNLOCK(sc);
3041 
3042 	return (0);
3043 }
3044 
3045 static int
3046 mskc_resume(device_t dev)
3047 {
3048 	struct msk_softc *sc;
3049 	int i;
3050 
3051 	sc = device_get_softc(dev);
3052 
3053 	MSK_LOCK(sc);
3054 
3055 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
3056 	mskc_reset(sc);
3057 	for (i = 0; i < sc->msk_num_port; i++) {
3058 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3059 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
3060 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
3061 			    ~IFF_DRV_RUNNING;
3062 			msk_init_locked(sc->msk_if[i]);
3063 		}
3064 	}
3065 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
3066 
3067 	MSK_UNLOCK(sc);
3068 
3069 	return (0);
3070 }
3071 
3072 #ifndef __NO_STRICT_ALIGNMENT
3073 static __inline void
3074 msk_fixup_rx(struct mbuf *m)
3075 {
3076         int i;
3077         uint16_t *src, *dst;
3078 
3079 	src = mtod(m, uint16_t *);
3080 	dst = src - 3;
3081 
3082 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
3083 		*dst++ = *src++;
3084 
3085 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
3086 }
3087 #endif
3088 
3089 static __inline void
3090 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3091 {
3092 	struct ether_header *eh;
3093 	struct ip *ip;
3094 	struct udphdr *uh;
3095 	int32_t hlen, len, pktlen, temp32;
3096 	uint16_t csum, *opts;
3097 
3098 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3099 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3100 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3101 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3102 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3103 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3104 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3105 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3106 				    CSUM_PSEUDO_HDR;
3107 				m->m_pkthdr.csum_data = 0xffff;
3108 			}
3109 		}
3110 		return;
3111 	}
3112 	/*
3113 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3114 	 * to have various Rx checksum offloading bugs. These
3115 	 * controllers can be configured to compute simple checksum
3116 	 * at two different positions. So we can compute IP and TCP/UDP
3117 	 * checksum at the same time. We intentionally have controller
3118 	 * compute TCP/UDP checksum twice by specifying the same
3119 	 * checksum start position and compare the result. If the value
3120 	 * is different it would indicate the hardware logic was wrong.
3121 	 */
3122 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3123 		if (bootverbose)
3124 			device_printf(sc_if->msk_if_dev,
3125 			    "Rx checksum value mismatch!\n");
3126 		return;
3127 	}
3128 	pktlen = m->m_pkthdr.len;
3129 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3130 		return;
3131 	eh = mtod(m, struct ether_header *);
3132 	if (eh->ether_type != htons(ETHERTYPE_IP))
3133 		return;
3134 	ip = (struct ip *)(eh + 1);
3135 	if (ip->ip_v != IPVERSION)
3136 		return;
3137 
3138 	hlen = ip->ip_hl << 2;
3139 	pktlen -= sizeof(struct ether_header);
3140 	if (hlen < sizeof(struct ip))
3141 		return;
3142 	if (ntohs(ip->ip_len) < hlen)
3143 		return;
3144 	if (ntohs(ip->ip_len) != pktlen)
3145 		return;
3146 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3147 		return;	/* can't handle fragmented packet. */
3148 
3149 	switch (ip->ip_p) {
3150 	case IPPROTO_TCP:
3151 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3152 			return;
3153 		break;
3154 	case IPPROTO_UDP:
3155 		if (pktlen < (hlen + sizeof(struct udphdr)))
3156 			return;
3157 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3158 		if (uh->uh_sum == 0)
3159 			return; /* no checksum */
3160 		break;
3161 	default:
3162 		return;
3163 	}
3164 	csum = bswap16(sc_if->msk_csum & 0xFFFF);
3165 	/* Checksum fixup for IP options. */
3166 	len = hlen - sizeof(struct ip);
3167 	if (len > 0) {
3168 		opts = (uint16_t *)(ip + 1);
3169 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3170 			temp32 = csum - *opts;
3171 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3172 			csum = temp32 & 65535;
3173 		}
3174 	}
3175 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3176 	m->m_pkthdr.csum_data = csum;
3177 }
3178 
3179 static void
3180 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3181     int len)
3182 {
3183 	struct mbuf *m;
3184 	struct ifnet *ifp;
3185 	struct msk_rxdesc *rxd;
3186 	int cons, rxlen;
3187 
3188 	ifp = sc_if->msk_ifp;
3189 
3190 	MSK_IF_LOCK_ASSERT(sc_if);
3191 
3192 	cons = sc_if->msk_cdata.msk_rx_cons;
3193 	do {
3194 		rxlen = status >> 16;
3195 		if ((status & GMR_FS_VLAN) != 0 &&
3196 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3197 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3198 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3199 			/*
3200 			 * For controllers that returns bogus status code
3201 			 * just do minimal check and let upper stack
3202 			 * handle this frame.
3203 			 */
3204 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3205 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3206 				msk_discard_rxbuf(sc_if, cons);
3207 				break;
3208 			}
3209 		} else if (len > sc_if->msk_framesize ||
3210 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3211 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3212 			/* Don't count flow-control packet as errors. */
3213 			if ((status & GMR_FS_GOOD_FC) == 0)
3214 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3215 			msk_discard_rxbuf(sc_if, cons);
3216 			break;
3217 		}
3218 #ifdef MSK_64BIT_DMA
3219 		rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) %
3220 		    MSK_RX_RING_CNT];
3221 #else
3222 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3223 #endif
3224 		m = rxd->rx_m;
3225 		if (msk_newbuf(sc_if, cons) != 0) {
3226 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3227 			/* Reuse old buffer. */
3228 			msk_discard_rxbuf(sc_if, cons);
3229 			break;
3230 		}
3231 		m->m_pkthdr.rcvif = ifp;
3232 		m->m_pkthdr.len = m->m_len = len;
3233 #ifndef __NO_STRICT_ALIGNMENT
3234 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3235 			msk_fixup_rx(m);
3236 #endif
3237 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3238 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3239 			msk_rxcsum(sc_if, control, m);
3240 		/* Check for VLAN tagged packets. */
3241 		if ((status & GMR_FS_VLAN) != 0 &&
3242 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3243 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3244 			m->m_flags |= M_VLANTAG;
3245 		}
3246 		MSK_IF_UNLOCK(sc_if);
3247 		(*ifp->if_input)(ifp, m);
3248 		MSK_IF_LOCK(sc_if);
3249 	} while (0);
3250 
3251 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3252 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3253 }
3254 
3255 static void
3256 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3257     int len)
3258 {
3259 	struct mbuf *m;
3260 	struct ifnet *ifp;
3261 	struct msk_rxdesc *jrxd;
3262 	int cons, rxlen;
3263 
3264 	ifp = sc_if->msk_ifp;
3265 
3266 	MSK_IF_LOCK_ASSERT(sc_if);
3267 
3268 	cons = sc_if->msk_cdata.msk_rx_cons;
3269 	do {
3270 		rxlen = status >> 16;
3271 		if ((status & GMR_FS_VLAN) != 0 &&
3272 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3273 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3274 		if (len > sc_if->msk_framesize ||
3275 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3276 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3277 			/* Don't count flow-control packet as errors. */
3278 			if ((status & GMR_FS_GOOD_FC) == 0)
3279 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3280 			msk_discard_jumbo_rxbuf(sc_if, cons);
3281 			break;
3282 		}
3283 #ifdef MSK_64BIT_DMA
3284 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) %
3285 		    MSK_JUMBO_RX_RING_CNT];
3286 #else
3287 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3288 #endif
3289 		m = jrxd->rx_m;
3290 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3291 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3292 			/* Reuse old buffer. */
3293 			msk_discard_jumbo_rxbuf(sc_if, cons);
3294 			break;
3295 		}
3296 		m->m_pkthdr.rcvif = ifp;
3297 		m->m_pkthdr.len = m->m_len = len;
3298 #ifndef __NO_STRICT_ALIGNMENT
3299 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3300 			msk_fixup_rx(m);
3301 #endif
3302 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3303 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3304 			msk_rxcsum(sc_if, control, m);
3305 		/* Check for VLAN tagged packets. */
3306 		if ((status & GMR_FS_VLAN) != 0 &&
3307 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3308 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3309 			m->m_flags |= M_VLANTAG;
3310 		}
3311 		MSK_IF_UNLOCK(sc_if);
3312 		(*ifp->if_input)(ifp, m);
3313 		MSK_IF_LOCK(sc_if);
3314 	} while (0);
3315 
3316 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3317 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3318 }
3319 
3320 static void
3321 msk_txeof(struct msk_if_softc *sc_if, int idx)
3322 {
3323 	struct msk_txdesc *txd;
3324 	struct msk_tx_desc *cur_tx;
3325 	struct ifnet *ifp;
3326 	uint32_t control;
3327 	int cons, prog;
3328 
3329 	MSK_IF_LOCK_ASSERT(sc_if);
3330 
3331 	ifp = sc_if->msk_ifp;
3332 
3333 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3334 	    sc_if->msk_cdata.msk_tx_ring_map,
3335 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3336 	/*
3337 	 * Go through our tx ring and free mbufs for those
3338 	 * frames that have been sent.
3339 	 */
3340 	cons = sc_if->msk_cdata.msk_tx_cons;
3341 	prog = 0;
3342 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3343 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3344 			break;
3345 		prog++;
3346 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3347 		control = le32toh(cur_tx->msk_control);
3348 		sc_if->msk_cdata.msk_tx_cnt--;
3349 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3350 		if ((control & EOP) == 0)
3351 			continue;
3352 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3353 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3354 		    BUS_DMASYNC_POSTWRITE);
3355 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3356 
3357 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3358 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3359 		    __func__));
3360 		m_freem(txd->tx_m);
3361 		txd->tx_m = NULL;
3362 	}
3363 
3364 	if (prog > 0) {
3365 		sc_if->msk_cdata.msk_tx_cons = cons;
3366 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3367 			sc_if->msk_watchdog_timer = 0;
3368 		/* No need to sync LEs as we didn't update LEs. */
3369 	}
3370 }
3371 
3372 static void
3373 msk_tick(void *xsc_if)
3374 {
3375 	struct msk_if_softc *sc_if;
3376 	struct mii_data *mii;
3377 
3378 	sc_if = xsc_if;
3379 
3380 	MSK_IF_LOCK_ASSERT(sc_if);
3381 
3382 	mii = device_get_softc(sc_if->msk_miibus);
3383 
3384 	mii_tick(mii);
3385 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3386 		msk_miibus_statchg(sc_if->msk_if_dev);
3387 	msk_handle_events(sc_if->msk_softc);
3388 	msk_watchdog(sc_if);
3389 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3390 }
3391 
3392 static void
3393 msk_intr_phy(struct msk_if_softc *sc_if)
3394 {
3395 	uint16_t status;
3396 
3397 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3398 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3399 	/* Handle FIFO Underrun/Overflow? */
3400 	if ((status & PHY_M_IS_FIFO_ERROR))
3401 		device_printf(sc_if->msk_if_dev,
3402 		    "PHY FIFO underrun/overflow.\n");
3403 }
3404 
3405 static void
3406 msk_intr_gmac(struct msk_if_softc *sc_if)
3407 {
3408 	struct msk_softc *sc;
3409 	uint8_t status;
3410 
3411 	sc = sc_if->msk_softc;
3412 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3413 
3414 	/* GMAC Rx FIFO overrun. */
3415 	if ((status & GM_IS_RX_FF_OR) != 0)
3416 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3417 		    GMF_CLI_RX_FO);
3418 	/* GMAC Tx FIFO underrun. */
3419 	if ((status & GM_IS_TX_FF_UR) != 0) {
3420 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3421 		    GMF_CLI_TX_FU);
3422 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3423 		/*
3424 		 * XXX
3425 		 * In case of Tx underrun, we may need to flush/reset
3426 		 * Tx MAC but that would also require resynchronization
3427 		 * with status LEs. Reinitializing status LEs would
3428 		 * affect other port in dual MAC configuration so it
3429 		 * should be avoided as possible as we can.
3430 		 * Due to lack of documentation it's all vague guess but
3431 		 * it needs more investigation.
3432 		 */
3433 	}
3434 }
3435 
3436 static void
3437 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3438 {
3439 	struct msk_softc *sc;
3440 
3441 	sc = sc_if->msk_softc;
3442 	if ((status & Y2_IS_PAR_RD1) != 0) {
3443 		device_printf(sc_if->msk_if_dev,
3444 		    "RAM buffer read parity error\n");
3445 		/* Clear IRQ. */
3446 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3447 		    RI_CLR_RD_PERR);
3448 	}
3449 	if ((status & Y2_IS_PAR_WR1) != 0) {
3450 		device_printf(sc_if->msk_if_dev,
3451 		    "RAM buffer write parity error\n");
3452 		/* Clear IRQ. */
3453 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3454 		    RI_CLR_WR_PERR);
3455 	}
3456 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3457 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3458 		/* Clear IRQ. */
3459 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3460 		    GMF_CLI_TX_PE);
3461 	}
3462 	if ((status & Y2_IS_PAR_RX1) != 0) {
3463 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3464 		/* Clear IRQ. */
3465 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3466 	}
3467 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3468 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3469 		/* Clear IRQ. */
3470 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3471 	}
3472 }
3473 
3474 static void
3475 msk_intr_hwerr(struct msk_softc *sc)
3476 {
3477 	uint32_t status;
3478 	uint32_t tlphead[4];
3479 
3480 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3481 	/* Time Stamp timer overflow. */
3482 	if ((status & Y2_IS_TIST_OV) != 0)
3483 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3484 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3485 		/*
3486 		 * PCI Express Error occurred which is not described in PEX
3487 		 * spec.
3488 		 * This error is also mapped either to Master Abort(
3489 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3490 		 * can only be cleared there.
3491                  */
3492 		device_printf(sc->msk_dev,
3493 		    "PCI Express protocol violation error\n");
3494 	}
3495 
3496 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3497 		uint16_t v16;
3498 
3499 		if ((status & Y2_IS_MST_ERR) != 0)
3500 			device_printf(sc->msk_dev,
3501 			    "unexpected IRQ Status error\n");
3502 		else
3503 			device_printf(sc->msk_dev,
3504 			    "unexpected IRQ Master error\n");
3505 		/* Reset all bits in the PCI status register. */
3506 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3507 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3508 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3509 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3510 		    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3511 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3512 	}
3513 
3514 	/* Check for PCI Express Uncorrectable Error. */
3515 	if ((status & Y2_IS_PCI_EXP) != 0) {
3516 		uint32_t v32;
3517 
3518 		/*
3519 		 * On PCI Express bus bridges are called root complexes (RC).
3520 		 * PCI Express errors are recognized by the root complex too,
3521 		 * which requests the system to handle the problem. After
3522 		 * error occurrence it may be that no access to the adapter
3523 		 * may be performed any longer.
3524 		 */
3525 
3526 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3527 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3528 			/* Ignore unsupported request error. */
3529 			device_printf(sc->msk_dev,
3530 			    "Uncorrectable PCI Express error\n");
3531 		}
3532 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3533 			int i;
3534 
3535 			/* Get TLP header form Log Registers. */
3536 			for (i = 0; i < 4; i++)
3537 				tlphead[i] = CSR_PCI_READ_4(sc,
3538 				    PEX_HEADER_LOG + i * 4);
3539 			/* Check for vendor defined broadcast message. */
3540 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3541 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3542 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3543 				    sc->msk_intrhwemask);
3544 				CSR_READ_4(sc, B0_HWE_IMSK);
3545 			}
3546 		}
3547 		/* Clear the interrupt. */
3548 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3549 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3550 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3551 	}
3552 
3553 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3554 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3555 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3556 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3557 }
3558 
3559 static __inline void
3560 msk_rxput(struct msk_if_softc *sc_if)
3561 {
3562 	struct msk_softc *sc;
3563 
3564 	sc = sc_if->msk_softc;
3565 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3566 		bus_dmamap_sync(
3567 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3568 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3569 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3570 	else
3571 		bus_dmamap_sync(
3572 		    sc_if->msk_cdata.msk_rx_ring_tag,
3573 		    sc_if->msk_cdata.msk_rx_ring_map,
3574 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3575 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3576 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3577 }
3578 
3579 static int
3580 msk_handle_events(struct msk_softc *sc)
3581 {
3582 	struct msk_if_softc *sc_if;
3583 	int rxput[2];
3584 	struct msk_stat_desc *sd;
3585 	uint32_t control, status;
3586 	int cons, len, port, rxprog;
3587 
3588 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3589 		return (0);
3590 
3591 	/* Sync status LEs. */
3592 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3593 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3594 
3595 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3596 	rxprog = 0;
3597 	cons = sc->msk_stat_cons;
3598 	for (;;) {
3599 		sd = &sc->msk_stat_ring[cons];
3600 		control = le32toh(sd->msk_control);
3601 		if ((control & HW_OWNER) == 0)
3602 			break;
3603 		control &= ~HW_OWNER;
3604 		sd->msk_control = htole32(control);
3605 		status = le32toh(sd->msk_status);
3606 		len = control & STLE_LEN_MASK;
3607 		port = (control >> 16) & 0x01;
3608 		sc_if = sc->msk_if[port];
3609 		if (sc_if == NULL) {
3610 			device_printf(sc->msk_dev, "invalid port opcode "
3611 			    "0x%08x\n", control & STLE_OP_MASK);
3612 			continue;
3613 		}
3614 
3615 		switch (control & STLE_OP_MASK) {
3616 		case OP_RXVLAN:
3617 			sc_if->msk_vtag = ntohs(len);
3618 			break;
3619 		case OP_RXCHKSVLAN:
3620 			sc_if->msk_vtag = ntohs(len);
3621 			/* FALLTHROUGH */
3622 		case OP_RXCHKS:
3623 			sc_if->msk_csum = status;
3624 			break;
3625 		case OP_RXSTAT:
3626 			if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING))
3627 				break;
3628 			if (sc_if->msk_framesize >
3629 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3630 				msk_jumbo_rxeof(sc_if, status, control, len);
3631 			else
3632 				msk_rxeof(sc_if, status, control, len);
3633 			rxprog++;
3634 			/*
3635 			 * Because there is no way to sync single Rx LE
3636 			 * put the DMA sync operation off until the end of
3637 			 * event processing.
3638 			 */
3639 			rxput[port]++;
3640 			/* Update prefetch unit if we've passed water mark. */
3641 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3642 				msk_rxput(sc_if);
3643 				rxput[port] = 0;
3644 			}
3645 			break;
3646 		case OP_TXINDEXLE:
3647 			if (sc->msk_if[MSK_PORT_A] != NULL)
3648 				msk_txeof(sc->msk_if[MSK_PORT_A],
3649 				    status & STLE_TXA1_MSKL);
3650 			if (sc->msk_if[MSK_PORT_B] != NULL)
3651 				msk_txeof(sc->msk_if[MSK_PORT_B],
3652 				    ((status & STLE_TXA2_MSKL) >>
3653 				    STLE_TXA2_SHIFTL) |
3654 				    ((len & STLE_TXA2_MSKH) <<
3655 				    STLE_TXA2_SHIFTH));
3656 			break;
3657 		default:
3658 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3659 			    control & STLE_OP_MASK);
3660 			break;
3661 		}
3662 		MSK_INC(cons, sc->msk_stat_count);
3663 		if (rxprog > sc->msk_process_limit)
3664 			break;
3665 	}
3666 
3667 	sc->msk_stat_cons = cons;
3668 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3669 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3670 
3671 	if (rxput[MSK_PORT_A] > 0)
3672 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3673 	if (rxput[MSK_PORT_B] > 0)
3674 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3675 
3676 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3677 }
3678 
3679 static void
3680 msk_intr(void *xsc)
3681 {
3682 	struct msk_softc *sc;
3683 	struct msk_if_softc *sc_if0, *sc_if1;
3684 	struct ifnet *ifp0, *ifp1;
3685 	uint32_t status;
3686 	int domore;
3687 
3688 	sc = xsc;
3689 	MSK_LOCK(sc);
3690 
3691 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3692 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3693 	if (status == 0 || status == 0xffffffff ||
3694 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3695 	    (status & sc->msk_intrmask) == 0) {
3696 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3697 		MSK_UNLOCK(sc);
3698 		return;
3699 	}
3700 
3701 	sc_if0 = sc->msk_if[MSK_PORT_A];
3702 	sc_if1 = sc->msk_if[MSK_PORT_B];
3703 	ifp0 = ifp1 = NULL;
3704 	if (sc_if0 != NULL)
3705 		ifp0 = sc_if0->msk_ifp;
3706 	if (sc_if1 != NULL)
3707 		ifp1 = sc_if1->msk_ifp;
3708 
3709 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3710 		msk_intr_phy(sc_if0);
3711 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3712 		msk_intr_phy(sc_if1);
3713 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3714 		msk_intr_gmac(sc_if0);
3715 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3716 		msk_intr_gmac(sc_if1);
3717 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3718 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3719 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3720 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3721 		CSR_READ_4(sc, B0_IMSK);
3722 	}
3723         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3724 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3725 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3726 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3727 		CSR_READ_4(sc, B0_IMSK);
3728 	}
3729 	if ((status & Y2_IS_HW_ERR) != 0)
3730 		msk_intr_hwerr(sc);
3731 
3732 	domore = msk_handle_events(sc);
3733 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3734 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3735 
3736 	/* Reenable interrupts. */
3737 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3738 
3739 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3740 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3741 		msk_start_locked(ifp0);
3742 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3743 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3744 		msk_start_locked(ifp1);
3745 
3746 	MSK_UNLOCK(sc);
3747 }
3748 
3749 static void
3750 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3751 {
3752 	struct msk_softc *sc;
3753 	struct ifnet *ifp;
3754 
3755 	ifp = sc_if->msk_ifp;
3756 	sc = sc_if->msk_softc;
3757 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3758 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3759 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3760 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3761 		    TX_STFW_ENA);
3762 	} else {
3763 		if (ifp->if_mtu > ETHERMTU) {
3764 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3765 			CSR_WRITE_4(sc,
3766 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3767 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3768 			/* Disable Store & Forward mode for Tx. */
3769 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3770 			    TX_STFW_DIS);
3771 		} else {
3772 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3773 			    TX_STFW_ENA);
3774 		}
3775 	}
3776 }
3777 
3778 static void
3779 msk_init(void *xsc)
3780 {
3781 	struct msk_if_softc *sc_if = xsc;
3782 
3783 	MSK_IF_LOCK(sc_if);
3784 	msk_init_locked(sc_if);
3785 	MSK_IF_UNLOCK(sc_if);
3786 }
3787 
3788 static void
3789 msk_init_locked(struct msk_if_softc *sc_if)
3790 {
3791 	struct msk_softc *sc;
3792 	struct ifnet *ifp;
3793 	struct mii_data	 *mii;
3794 	uint8_t *eaddr;
3795 	uint16_t gmac;
3796 	uint32_t reg;
3797 	int error;
3798 
3799 	MSK_IF_LOCK_ASSERT(sc_if);
3800 
3801 	ifp = sc_if->msk_ifp;
3802 	sc = sc_if->msk_softc;
3803 	mii = device_get_softc(sc_if->msk_miibus);
3804 
3805 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3806 		return;
3807 
3808 	error = 0;
3809 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3810 	msk_stop(sc_if);
3811 
3812 	if (ifp->if_mtu < ETHERMTU)
3813 		sc_if->msk_framesize = ETHERMTU;
3814 	else
3815 		sc_if->msk_framesize = ifp->if_mtu;
3816 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3817 	if (ifp->if_mtu > ETHERMTU &&
3818 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3819 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3820 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3821 	}
3822 
3823 	/* GMAC Control reset. */
3824 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3825 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3826 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3827 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3828 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
3829 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3830 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3831 		    GMC_BYP_RETR_ON);
3832 
3833 	/*
3834 	 * Initialize GMAC first such that speed/duplex/flow-control
3835 	 * parameters are renegotiated when interface is brought up.
3836 	 */
3837 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3838 
3839 	/* Dummy read the Interrupt Source Register. */
3840 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3841 
3842 	/* Clear MIB stats. */
3843 	msk_stats_clear(sc_if);
3844 
3845 	/* Disable FCS. */
3846 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3847 
3848 	/* Setup Transmit Control Register. */
3849 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3850 
3851 	/* Setup Transmit Flow Control Register. */
3852 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3853 
3854 	/* Setup Transmit Parameter Register. */
3855 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3856 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3857 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3858 
3859 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3860 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3861 
3862 	if (ifp->if_mtu > ETHERMTU)
3863 		gmac |= GM_SMOD_JUMBO_ENA;
3864 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3865 
3866 	/* Set station address. */
3867 	eaddr = IF_LLADDR(ifp);
3868 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3869 	    eaddr[0] | (eaddr[1] << 8));
3870 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3871 	    eaddr[2] | (eaddr[3] << 8));
3872 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3873 	    eaddr[4] | (eaddr[5] << 8));
3874 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3875 	    eaddr[0] | (eaddr[1] << 8));
3876 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3877 	    eaddr[2] | (eaddr[3] << 8));
3878 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3879 	    eaddr[4] | (eaddr[5] << 8));
3880 
3881 	/* Disable interrupts for counter overflows. */
3882 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3883 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3884 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3885 
3886 	/* Configure Rx MAC FIFO. */
3887 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3888 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3889 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3890 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3891 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3892 		reg |= GMF_RX_OVER_ON;
3893 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3894 
3895 	/* Set receive filter. */
3896 	msk_rxfilter(sc_if);
3897 
3898 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3899 		/* Clear flush mask - HW bug. */
3900 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3901 	} else {
3902 		/* Flush Rx MAC FIFO on any flow control or error. */
3903 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3904 		    GMR_FS_ANY_ERR);
3905 	}
3906 
3907 	/*
3908 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3909 	 * due to hardware hang on receipt of pause frames.
3910 	 */
3911 	reg = RX_GMF_FL_THR_DEF + 1;
3912 	/* Another magic for Yukon FE+ - From Linux. */
3913 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3914 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3915 		reg = 0x178;
3916 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3917 
3918 	/* Configure Tx MAC FIFO. */
3919 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3920 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3921 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3922 
3923 	/* Configure hardware VLAN tag insertion/stripping. */
3924 	msk_setvlan(sc_if, ifp);
3925 
3926 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3927 		/* Set Rx Pause threshold. */
3928 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3929 		    MSK_ECU_LLPP);
3930 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3931 		    MSK_ECU_ULPP);
3932 		/* Configure store-and-forward for Tx. */
3933 		msk_set_tx_stfwd(sc_if);
3934 	}
3935 
3936 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3937 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3938 		/* Disable dynamic watermark - from Linux. */
3939 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3940 		reg &= ~0x03;
3941 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3942 	}
3943 
3944 	/*
3945 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3946 	 * arbiter as we don't use Sync Tx queue.
3947 	 */
3948 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3949 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3950 	/* Enable the RAM Interface Arbiter. */
3951 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3952 
3953 	/* Setup RAM buffer. */
3954 	msk_set_rambuffer(sc_if);
3955 
3956 	/* Disable Tx sync Queue. */
3957 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3958 
3959 	/* Setup Tx Queue Bus Memory Interface. */
3960 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3961 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3962 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3963 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3964 	switch (sc->msk_hw_id) {
3965 	case CHIP_ID_YUKON_EC_U:
3966 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3967 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3968 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3969 			    MSK_ECU_TXFF_LEV);
3970 		}
3971 		break;
3972 	case CHIP_ID_YUKON_EX:
3973 		/*
3974 		 * Yukon Extreme seems to have silicon bug for
3975 		 * automatic Tx checksum calculation capability.
3976 		 */
3977 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3978 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3979 			    F_TX_CHK_AUTO_OFF);
3980 		break;
3981 	}
3982 
3983 	/* Setup Rx Queue Bus Memory Interface. */
3984 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3985 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3986 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3987 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3988         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3989 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3990 		/* MAC Rx RAM Read is controlled by hardware. */
3991                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3992 	}
3993 
3994 	msk_set_prefetch(sc, sc_if->msk_txq,
3995 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3996 	msk_init_tx_ring(sc_if);
3997 
3998 	/* Disable Rx checksum offload and RSS hash. */
3999 	reg = BMU_DIS_RX_RSS_HASH;
4000 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
4001 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0)
4002 		reg |= BMU_ENA_RX_CHKSUM;
4003 	else
4004 		reg |= BMU_DIS_RX_CHKSUM;
4005 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
4006 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
4007 		msk_set_prefetch(sc, sc_if->msk_rxq,
4008 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
4009 		    MSK_JUMBO_RX_RING_CNT - 1);
4010 		error = msk_init_jumbo_rx_ring(sc_if);
4011 	 } else {
4012 		msk_set_prefetch(sc, sc_if->msk_rxq,
4013 		    sc_if->msk_rdata.msk_rx_ring_paddr,
4014 		    MSK_RX_RING_CNT - 1);
4015 		error = msk_init_rx_ring(sc_if);
4016 	}
4017 	if (error != 0) {
4018 		device_printf(sc_if->msk_if_dev,
4019 		    "initialization failed: no memory for Rx buffers\n");
4020 		msk_stop(sc_if);
4021 		return;
4022 	}
4023 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
4024 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
4025 		/* Disable flushing of non-ASF packets. */
4026 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
4027 		    GMF_RX_MACSEC_FLUSH_OFF);
4028 	}
4029 
4030 	/* Configure interrupt handling. */
4031 	if (sc_if->msk_port == MSK_PORT_A) {
4032 		sc->msk_intrmask |= Y2_IS_PORT_A;
4033 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
4034 	} else {
4035 		sc->msk_intrmask |= Y2_IS_PORT_B;
4036 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
4037 	}
4038 	/* Configure IRQ moderation mask. */
4039 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
4040 	if (sc->msk_int_holdoff > 0) {
4041 		/* Configure initial IRQ moderation timer value. */
4042 		CSR_WRITE_4(sc, B2_IRQM_INI,
4043 		    MSK_USECS(sc, sc->msk_int_holdoff));
4044 		CSR_WRITE_4(sc, B2_IRQM_VAL,
4045 		    MSK_USECS(sc, sc->msk_int_holdoff));
4046 		/* Start IRQ moderation. */
4047 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
4048 	}
4049 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4050 	CSR_READ_4(sc, B0_HWE_IMSK);
4051 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4052 	CSR_READ_4(sc, B0_IMSK);
4053 
4054 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4055 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4056 
4057 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4058 	mii_mediachg(mii);
4059 
4060 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
4061 }
4062 
4063 static void
4064 msk_set_rambuffer(struct msk_if_softc *sc_if)
4065 {
4066 	struct msk_softc *sc;
4067 	int ltpp, utpp;
4068 
4069 	sc = sc_if->msk_softc;
4070 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
4071 		return;
4072 
4073 	/* Setup Rx Queue. */
4074 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
4075 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
4076 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4077 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
4078 	    sc->msk_rxqend[sc_if->msk_port] / 8);
4079 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
4080 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4081 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
4082 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4083 
4084 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4085 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
4086 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4087 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
4088 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4089 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4090 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4091 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4092 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4093 
4094 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4095 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4096 
4097 	/* Setup Tx Queue. */
4098 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4099 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4100 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4101 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4102 	    sc->msk_txqend[sc_if->msk_port] / 8);
4103 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4104 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4105 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4106 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4107 	/* Enable Store & Forward for Tx side. */
4108 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4109 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4110 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4111 }
4112 
4113 static void
4114 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4115     uint32_t count)
4116 {
4117 
4118 	/* Reset the prefetch unit. */
4119 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4120 	    PREF_UNIT_RST_SET);
4121 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4122 	    PREF_UNIT_RST_CLR);
4123 	/* Set LE base address. */
4124 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4125 	    MSK_ADDR_LO(addr));
4126 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4127 	    MSK_ADDR_HI(addr));
4128 	/* Set the list last index. */
4129 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4130 	    count);
4131 	/* Turn on prefetch unit. */
4132 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4133 	    PREF_UNIT_OP_ON);
4134 	/* Dummy read to ensure write. */
4135 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4136 }
4137 
4138 static void
4139 msk_stop(struct msk_if_softc *sc_if)
4140 {
4141 	struct msk_softc *sc;
4142 	struct msk_txdesc *txd;
4143 	struct msk_rxdesc *rxd;
4144 	struct msk_rxdesc *jrxd;
4145 	struct ifnet *ifp;
4146 	uint32_t val;
4147 	int i;
4148 
4149 	MSK_IF_LOCK_ASSERT(sc_if);
4150 	sc = sc_if->msk_softc;
4151 	ifp = sc_if->msk_ifp;
4152 
4153 	callout_stop(&sc_if->msk_tick_ch);
4154 	sc_if->msk_watchdog_timer = 0;
4155 
4156 	/* Disable interrupts. */
4157 	if (sc_if->msk_port == MSK_PORT_A) {
4158 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4159 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4160 	} else {
4161 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4162 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4163 	}
4164 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4165 	CSR_READ_4(sc, B0_HWE_IMSK);
4166 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4167 	CSR_READ_4(sc, B0_IMSK);
4168 
4169 	/* Disable Tx/Rx MAC. */
4170 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4171 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4172 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4173 	/* Read again to ensure writing. */
4174 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4175 	/* Update stats and clear counters. */
4176 	msk_stats_update(sc_if);
4177 
4178 	/* Stop Tx BMU. */
4179 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4180 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4181 	for (i = 0; i < MSK_TIMEOUT; i++) {
4182 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4183 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4184 			    BMU_STOP);
4185 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4186 		} else
4187 			break;
4188 		DELAY(1);
4189 	}
4190 	if (i == MSK_TIMEOUT)
4191 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4192 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4193 	    RB_RST_SET | RB_DIS_OP_MD);
4194 
4195 	/* Disable all GMAC interrupt. */
4196 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4197 	/* Disable PHY interrupt. */
4198 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4199 
4200 	/* Disable the RAM Interface Arbiter. */
4201 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4202 
4203 	/* Reset the PCI FIFO of the async Tx queue */
4204 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4205 	    BMU_RST_SET | BMU_FIFO_RST);
4206 
4207 	/* Reset the Tx prefetch units. */
4208 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4209 	    PREF_UNIT_RST_SET);
4210 
4211 	/* Reset the RAM Buffer async Tx queue. */
4212 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4213 
4214 	/* Reset Tx MAC FIFO. */
4215 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4216 	/* Set Pause Off. */
4217 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4218 
4219 	/*
4220 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4221 	 * reach the end of packet and since we can't make sure that we have
4222 	 * incoming data, we must reset the BMU while it is not during a DMA
4223 	 * transfer. Since it is possible that the Rx path is still active,
4224 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4225 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4226 	 * BMU is polled until any DMA in progress is ended and only then it
4227 	 * will be reset.
4228 	 */
4229 
4230 	/* Disable the RAM Buffer receive queue. */
4231 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4232 	for (i = 0; i < MSK_TIMEOUT; i++) {
4233 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4234 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4235 			break;
4236 		DELAY(1);
4237 	}
4238 	if (i == MSK_TIMEOUT)
4239 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4240 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4241 	    BMU_RST_SET | BMU_FIFO_RST);
4242 	/* Reset the Rx prefetch unit. */
4243 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4244 	    PREF_UNIT_RST_SET);
4245 	/* Reset the RAM Buffer receive queue. */
4246 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4247 	/* Reset Rx MAC FIFO. */
4248 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4249 
4250 	/* Free Rx and Tx mbufs still in the queues. */
4251 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4252 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4253 		if (rxd->rx_m != NULL) {
4254 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4255 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4256 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4257 			    rxd->rx_dmamap);
4258 			m_freem(rxd->rx_m);
4259 			rxd->rx_m = NULL;
4260 		}
4261 	}
4262 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4263 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4264 		if (jrxd->rx_m != NULL) {
4265 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4266 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4267 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4268 			    jrxd->rx_dmamap);
4269 			m_freem(jrxd->rx_m);
4270 			jrxd->rx_m = NULL;
4271 		}
4272 	}
4273 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4274 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4275 		if (txd->tx_m != NULL) {
4276 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4277 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4278 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4279 			    txd->tx_dmamap);
4280 			m_freem(txd->tx_m);
4281 			txd->tx_m = NULL;
4282 		}
4283 	}
4284 
4285 	/*
4286 	 * Mark the interface down.
4287 	 */
4288 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4289 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4290 }
4291 
4292 /*
4293  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4294  * counter clears high 16 bits of the counter such that accessing
4295  * lower 16 bits should be the last operation.
4296  */
4297 #define	MSK_READ_MIB32(x, y)					\
4298 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4299 	(uint32_t)GMAC_READ_2(sc, x, y)
4300 #define	MSK_READ_MIB64(x, y)					\
4301 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4302 	(uint64_t)MSK_READ_MIB32(x, y)
4303 
4304 static void
4305 msk_stats_clear(struct msk_if_softc *sc_if)
4306 {
4307 	struct msk_softc *sc;
4308 	uint32_t reg;
4309 	uint16_t gmac;
4310 	int i;
4311 
4312 	MSK_IF_LOCK_ASSERT(sc_if);
4313 
4314 	sc = sc_if->msk_softc;
4315 	/* Set MIB Clear Counter Mode. */
4316 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4317 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4318 	/* Read all MIB Counters with Clear Mode set. */
4319 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4320 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4321 	/* Clear MIB Clear Counter Mode. */
4322 	gmac &= ~GM_PAR_MIB_CLR;
4323 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4324 }
4325 
4326 static void
4327 msk_stats_update(struct msk_if_softc *sc_if)
4328 {
4329 	struct msk_softc *sc;
4330 	struct ifnet *ifp;
4331 	struct msk_hw_stats *stats;
4332 	uint16_t gmac;
4333 	uint32_t reg;
4334 
4335 	MSK_IF_LOCK_ASSERT(sc_if);
4336 
4337 	ifp = sc_if->msk_ifp;
4338 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4339 		return;
4340 	sc = sc_if->msk_softc;
4341 	stats = &sc_if->msk_stats;
4342 	/* Set MIB Clear Counter Mode. */
4343 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4344 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4345 
4346 	/* Rx stats. */
4347 	stats->rx_ucast_frames +=
4348 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4349 	stats->rx_bcast_frames +=
4350 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4351 	stats->rx_pause_frames +=
4352 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4353 	stats->rx_mcast_frames +=
4354 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4355 	stats->rx_crc_errs +=
4356 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4357 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4358 	stats->rx_good_octets +=
4359 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4360 	stats->rx_bad_octets +=
4361 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4362 	stats->rx_runts +=
4363 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4364 	stats->rx_runt_errs +=
4365 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4366 	stats->rx_pkts_64 +=
4367 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4368 	stats->rx_pkts_65_127 +=
4369 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4370 	stats->rx_pkts_128_255 +=
4371 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4372 	stats->rx_pkts_256_511 +=
4373 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4374 	stats->rx_pkts_512_1023 +=
4375 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4376 	stats->rx_pkts_1024_1518 +=
4377 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4378 	stats->rx_pkts_1519_max +=
4379 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4380 	stats->rx_pkts_too_long +=
4381 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4382 	stats->rx_pkts_jabbers +=
4383 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4384 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4385 	stats->rx_fifo_oflows +=
4386 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4387 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4388 
4389 	/* Tx stats. */
4390 	stats->tx_ucast_frames +=
4391 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4392 	stats->tx_bcast_frames +=
4393 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4394 	stats->tx_pause_frames +=
4395 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4396 	stats->tx_mcast_frames +=
4397 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4398 	stats->tx_octets +=
4399 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4400 	stats->tx_pkts_64 +=
4401 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4402 	stats->tx_pkts_65_127 +=
4403 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4404 	stats->tx_pkts_128_255 +=
4405 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4406 	stats->tx_pkts_256_511 +=
4407 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4408 	stats->tx_pkts_512_1023 +=
4409 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4410 	stats->tx_pkts_1024_1518 +=
4411 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4412 	stats->tx_pkts_1519_max +=
4413 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4414 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4415 	stats->tx_colls +=
4416 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4417 	stats->tx_late_colls +=
4418 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4419 	stats->tx_excess_colls +=
4420 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4421 	stats->tx_multi_colls +=
4422 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4423 	stats->tx_single_colls +=
4424 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4425 	stats->tx_underflows +=
4426 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4427 	/* Clear MIB Clear Counter Mode. */
4428 	gmac &= ~GM_PAR_MIB_CLR;
4429 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4430 }
4431 
4432 static int
4433 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4434 {
4435 	struct msk_softc *sc;
4436 	struct msk_if_softc *sc_if;
4437 	uint32_t result, *stat;
4438 	int off;
4439 
4440 	sc_if = (struct msk_if_softc *)arg1;
4441 	sc = sc_if->msk_softc;
4442 	off = arg2;
4443 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4444 
4445 	MSK_IF_LOCK(sc_if);
4446 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4447 	result += *stat;
4448 	MSK_IF_UNLOCK(sc_if);
4449 
4450 	return (sysctl_handle_int(oidp, &result, 0, req));
4451 }
4452 
4453 static int
4454 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4455 {
4456 	struct msk_softc *sc;
4457 	struct msk_if_softc *sc_if;
4458 	uint64_t result, *stat;
4459 	int off;
4460 
4461 	sc_if = (struct msk_if_softc *)arg1;
4462 	sc = sc_if->msk_softc;
4463 	off = arg2;
4464 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4465 
4466 	MSK_IF_LOCK(sc_if);
4467 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4468 	result += *stat;
4469 	MSK_IF_UNLOCK(sc_if);
4470 
4471 	return (sysctl_handle_64(oidp, &result, 0, req));
4472 }
4473 
4474 #undef MSK_READ_MIB32
4475 #undef MSK_READ_MIB64
4476 
4477 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4478 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4479 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4480 	    "IU", d)
4481 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4482 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_U64 | CTLFLAG_RD, 	\
4483 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4484 	    "QU", d)
4485 
4486 static void
4487 msk_sysctl_node(struct msk_if_softc *sc_if)
4488 {
4489 	struct sysctl_ctx_list *ctx;
4490 	struct sysctl_oid_list *child, *schild;
4491 	struct sysctl_oid *tree;
4492 
4493 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4494 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4495 
4496 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4497 	    NULL, "MSK Statistics");
4498 	schild = SYSCTL_CHILDREN(tree);
4499 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4500 	    NULL, "MSK RX Statistics");
4501 	child = SYSCTL_CHILDREN(tree);
4502 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4503 	    child, rx_ucast_frames, "Good unicast frames");
4504 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4505 	    child, rx_bcast_frames, "Good broadcast frames");
4506 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4507 	    child, rx_pause_frames, "Pause frames");
4508 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4509 	    child, rx_mcast_frames, "Multicast frames");
4510 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4511 	    child, rx_crc_errs, "CRC errors");
4512 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4513 	    child, rx_good_octets, "Good octets");
4514 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4515 	    child, rx_bad_octets, "Bad octets");
4516 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4517 	    child, rx_pkts_64, "64 bytes frames");
4518 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4519 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4520 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4521 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4522 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4523 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4524 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4525 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4526 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4527 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4528 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4529 	    child, rx_pkts_1519_max, "1519 to max frames");
4530 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4531 	    child, rx_pkts_too_long, "frames too long");
4532 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4533 	    child, rx_pkts_jabbers, "Jabber errors");
4534 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4535 	    child, rx_fifo_oflows, "FIFO overflows");
4536 
4537 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4538 	    NULL, "MSK TX Statistics");
4539 	child = SYSCTL_CHILDREN(tree);
4540 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4541 	    child, tx_ucast_frames, "Unicast frames");
4542 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4543 	    child, tx_bcast_frames, "Broadcast frames");
4544 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4545 	    child, tx_pause_frames, "Pause frames");
4546 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4547 	    child, tx_mcast_frames, "Multicast frames");
4548 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4549 	    child, tx_octets, "Octets");
4550 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4551 	    child, tx_pkts_64, "64 bytes frames");
4552 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4553 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4554 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4555 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4556 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4557 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4558 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4559 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4560 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4561 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4562 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4563 	    child, tx_pkts_1519_max, "1519 to max frames");
4564 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4565 	    child, tx_colls, "Collisions");
4566 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4567 	    child, tx_late_colls, "Late collisions");
4568 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4569 	    child, tx_excess_colls, "Excessive collisions");
4570 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4571 	    child, tx_multi_colls, "Multiple collisions");
4572 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4573 	    child, tx_single_colls, "Single collisions");
4574 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4575 	    child, tx_underflows, "FIFO underflows");
4576 }
4577 
4578 #undef MSK_SYSCTL_STAT32
4579 #undef MSK_SYSCTL_STAT64
4580 
4581 static int
4582 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4583 {
4584 	int error, value;
4585 
4586 	if (!arg1)
4587 		return (EINVAL);
4588 	value = *(int *)arg1;
4589 	error = sysctl_handle_int(oidp, &value, 0, req);
4590 	if (error || !req->newptr)
4591 		return (error);
4592 	if (value < low || value > high)
4593 		return (EINVAL);
4594 	*(int *)arg1 = value;
4595 
4596 	return (0);
4597 }
4598 
4599 static int
4600 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4601 {
4602 
4603 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4604 	    MSK_PROC_MAX));
4605 }
4606