xref: /freebsd/sys/dev/neta/if_mvneta.c (revision 0957b409)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47 
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61 
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/ofw/openfirm.h>
72 #include <dev/ofw/ofw_bus.h>
73 #include <dev/ofw/ofw_bus_subr.h>
74 
75 #include <dev/mdio/mdio.h>
76 
77 #include <arm/mv/mvvar.h>
78 
79 #if !defined(__aarch64__)
80 #include <arm/mv/mvreg.h>
81 #include <arm/mv/mvwin.h>
82 #endif
83 
84 #include "if_mvnetareg.h"
85 #include "if_mvnetavar.h"
86 
87 #include "miibus_if.h"
88 #include "mdio_if.h"
89 
90 #ifdef MVNETA_DEBUG
91 #define	STATIC /* nothing */
92 #else
93 #define	STATIC static
94 #endif
95 
96 #define	DASSERT(x) KASSERT((x), (#x))
97 
98 #define	A3700_TCLK_250MHZ		250000000
99 
100 /* Device Register Initialization */
101 STATIC int mvneta_initreg(struct ifnet *);
102 
103 /* Descriptor Ring Control for each of queues */
104 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
105 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
106 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
107 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
108 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
109 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
110 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
111 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
112 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 STATIC int mvneta_dma_create(struct mvneta_softc *);
114 
115 /* Rx/Tx Queue Control */
116 STATIC int mvneta_rx_queue_init(struct ifnet *, int);
117 STATIC int mvneta_tx_queue_init(struct ifnet *, int);
118 STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
119 STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
120 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
121 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
122 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
123 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
124 
125 /* Interrupt Handlers */
126 STATIC void mvneta_disable_intr(struct mvneta_softc *);
127 STATIC void mvneta_enable_intr(struct mvneta_softc *);
128 STATIC void mvneta_rxtxth_intr(void *);
129 STATIC int mvneta_misc_intr(struct mvneta_softc *);
130 STATIC void mvneta_tick(void *);
131 /* struct ifnet and mii callbacks*/
132 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
133 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
134 #ifdef MVNETA_MULTIQUEUE
135 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
136 #else /* !MVNETA_MULTIQUEUE */
137 STATIC void mvneta_start(struct ifnet *);
138 #endif
139 STATIC void mvneta_qflush(struct ifnet *);
140 STATIC void mvneta_tx_task(void *, int);
141 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
142 STATIC void mvneta_init(void *);
143 STATIC void mvneta_init_locked(void *);
144 STATIC void mvneta_stop(struct mvneta_softc *);
145 STATIC void mvneta_stop_locked(struct mvneta_softc *);
146 STATIC int mvneta_mediachange(struct ifnet *);
147 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
148 STATIC void mvneta_portup(struct mvneta_softc *);
149 STATIC void mvneta_portdown(struct mvneta_softc *);
150 
151 /* Link State Notify */
152 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
153 STATIC int mvneta_update_media(struct mvneta_softc *, int);
154 STATIC void mvneta_adjust_link(struct mvneta_softc *);
155 STATIC void mvneta_update_eee(struct mvneta_softc *);
156 STATIC void mvneta_update_fc(struct mvneta_softc *);
157 STATIC void mvneta_link_isr(struct mvneta_softc *);
158 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
159 STATIC void mvneta_linkup(struct mvneta_softc *);
160 STATIC void mvneta_linkdown(struct mvneta_softc *);
161 STATIC void mvneta_linkreset(struct mvneta_softc *);
162 
163 /* Tx Subroutines */
164 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
165 STATIC void mvneta_tx_set_csumflag(struct ifnet *,
166     struct mvneta_tx_desc *, struct mbuf *);
167 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
168 STATIC void mvneta_tx_drain(struct mvneta_softc *);
169 
170 /* Rx Subroutines */
171 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
172 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
173 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
174 STATIC void mvneta_rx_set_csumflag(struct ifnet *,
175     struct mvneta_rx_desc *, struct mbuf *);
176 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
177 
178 /* MAC address filter */
179 STATIC void mvneta_filter_setup(struct mvneta_softc *);
180 
181 /* sysctl(9) */
182 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
183 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
184 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
185 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
186 
187 /* MIB */
188 STATIC void mvneta_clear_mib(struct mvneta_softc *);
189 STATIC void mvneta_update_mib(struct mvneta_softc *);
190 
191 /* Switch */
192 STATIC boolean_t mvneta_has_switch(device_t);
193 
194 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
195 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
196 
197 STATIC struct mtx mii_mutex;
198 STATIC int mii_init = 0;
199 
200 /* Device */
201 STATIC int mvneta_detach(device_t);
202 /* MII */
203 STATIC int mvneta_miibus_readreg(device_t, int, int);
204 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
205 
206 /* Clock */
207 STATIC uint32_t mvneta_get_clk(void);
208 
209 static device_method_t mvneta_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_detach,	mvneta_detach),
212 	/* MII interface */
213 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
214 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
215 	/* MDIO interface */
216 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
217 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
218 
219 	/* End */
220 	DEVMETHOD_END
221 };
222 
223 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
224 
225 DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
226 DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
227 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
228 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
229 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
230 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
231 
232 /*
233  * List of MIB register and names
234  */
235 enum mvneta_mib_idx
236 {
237 	MVNETA_MIB_RX_GOOD_OCT_IDX,
238 	MVNETA_MIB_RX_BAD_OCT_IDX,
239 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
240 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
241 	MVNETA_MIB_RX_BAD_FRAME_IDX,
242 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
243 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
244 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
245 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
246 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
247 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
248 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
249 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
250 	MVNETA_MIB_TX_GOOD_OCT_IDX,
251 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
252 	MVNETA_MIB_TX_EXCES_COL_IDX,
253 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
254 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
255 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
256 	MVNETA_MIB_FC_SENT_IDX,
257 	MVNETA_MIB_FC_GOOD_IDX,
258 	MVNETA_MIB_FC_BAD_IDX,
259 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
260 	MVNETA_MIB_PKT_FRAGMENT_IDX,
261 	MVNETA_MIB_PKT_OVERSIZE_IDX,
262 	MVNETA_MIB_PKT_JABBER_IDX,
263 	MVNETA_MIB_MAC_RX_ERR_IDX,
264 	MVNETA_MIB_MAC_CRC_ERR_IDX,
265 	MVNETA_MIB_MAC_COL_IDX,
266 	MVNETA_MIB_MAC_LATE_COL_IDX,
267 };
268 
269 STATIC struct mvneta_mib_def {
270 	uint32_t regnum;
271 	int reg64;
272 	const char *sysctl_name;
273 	const char *desc;
274 } mvneta_mib_list[] = {
275 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
276 	    "rx_good_oct", "Good Octets Rx"},
277 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
278 	    "rx_bad_oct", "Bad  Octets Rx"},
279 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
280 	    "tx_mac_err", "MAC Transmit Error"},
281 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
282 	    "rx_good_frame", "Good Frames Rx"},
283 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
284 	    "rx_bad_frame", "Bad Frames Rx"},
285 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
286 	    "rx_bcast_frame", "Broadcast Frames Rx"},
287 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
288 	    "rx_mcast_frame", "Multicast Frames Rx"},
289 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
290 	    "rx_frame_1_64", "Frame Size    1 -   64"},
291 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
292 	    "rx_frame_65_127", "Frame Size   65 -  127"},
293 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
294 	    "rx_frame_128_255", "Frame Size  128 -  255"},
295 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
296 	    "rx_frame_256_511", "Frame Size  256 -  511"},
297 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
298 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
299 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
300 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
301 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
302 	    "tx_good_oct", "Good Octets Tx"},
303 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
304 	    "tx_good_frame", "Good Frames Tx"},
305 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
306 	    "tx_exces_collision", "Excessive Collision"},
307 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
308 	    "tx_mcast_frame", "Multicast Frames Tx"},
309 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
310 	    "tx_bcast_frame", "Broadcast Frames Tx"},
311 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
312 	    "tx_mac_ctl_err", "Unknown MAC Control"},
313 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
314 	    "fc_tx", "Flow Control Tx"},
315 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
316 	    "fc_rx_good", "Good Flow Control Rx"},
317 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
318 	    "fc_rx_bad", "Bad Flow Control Rx"},
319 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
320 	    "pkt_undersize", "Undersized Packets Rx"},
321 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
322 	    "pkt_fragment", "Fragmented Packets Rx"},
323 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
324 	    "pkt_oversize", "Oversized Packets Rx"},
325 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
326 	    "pkt_jabber", "Jabber Packets Rx"},
327 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
328 	    "mac_rx_err", "MAC Rx Errors"},
329 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
330 	    "mac_crc_err", "MAC CRC Errors"},
331 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
332 	    "mac_collision", "MAC Collision"},
333 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
334 	    "mac_late_collision", "MAC Late Collision"},
335 };
336 
337 static struct resource_spec res_spec[] = {
338 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
339 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
340 	{ -1, 0}
341 };
342 
343 static struct {
344 	driver_intr_t *handler;
345 	char * description;
346 } mvneta_intrs[] = {
347 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
348 };
349 
350 STATIC uint32_t
351 mvneta_get_clk()
352 {
353 #if defined(__aarch64__)
354 	return (A3700_TCLK_250MHZ);
355 #else
356 	return (get_tclk());
357 #endif
358 }
359 
360 static int
361 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
362 {
363 	unsigned int mac_h;
364 	unsigned int mac_l;
365 
366 	mac_l = (addr[4] << 8) | (addr[5]);
367 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
368 	    (addr[2] << 8) | (addr[3] << 0);
369 
370 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
371 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
372 	return (0);
373 }
374 
375 static int
376 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
377 {
378 	uint32_t mac_l, mac_h;
379 
380 #ifdef FDT
381 	if (mvneta_fdt_mac_address(sc, addr) == 0)
382 		return (0);
383 #endif
384 	/*
385 	 * Fall back -- use the currently programmed address.
386 	 */
387 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
388 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
389 	if (mac_l == 0 && mac_h == 0) {
390 		/*
391 		 * Generate pseudo-random MAC.
392 		 * Set lower part to random number | unit number.
393 		 */
394 		mac_l = arc4random() & ~0xff;
395 		mac_l |= device_get_unit(sc->dev) & 0xff;
396 		mac_h = arc4random();
397 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
398 		if (bootverbose) {
399 			device_printf(sc->dev,
400 			    "Could not acquire MAC address. "
401 			    "Using randomized one.\n");
402 		}
403 	}
404 
405 	addr[0] = (mac_h & 0xff000000) >> 24;
406 	addr[1] = (mac_h & 0x00ff0000) >> 16;
407 	addr[2] = (mac_h & 0x0000ff00) >> 8;
408 	addr[3] = (mac_h & 0x000000ff);
409 	addr[4] = (mac_l & 0x0000ff00) >> 8;
410 	addr[5] = (mac_l & 0x000000ff);
411 	return (0);
412 }
413 
414 STATIC boolean_t
415 mvneta_has_switch(device_t self)
416 {
417 	phandle_t node, switch_node, switch_eth, switch_eth_handle;
418 
419 	node = ofw_bus_get_node(self);
420 	switch_node =
421 	    ofw_bus_find_compatible(OF_finddevice("/"), "marvell,dsa");
422 	switch_eth = 0;
423 
424 	OF_getencprop(switch_node, "dsa,ethernet",
425 	    (void*)&switch_eth_handle, sizeof(switch_eth_handle));
426 
427 	if (switch_eth_handle > 0)
428 		switch_eth = OF_node_from_xref(switch_eth_handle);
429 
430 	/* Return true if dsa,ethernet cell points to us */
431 	return (node == switch_eth);
432 }
433 
434 STATIC int
435 mvneta_dma_create(struct mvneta_softc *sc)
436 {
437 	size_t maxsize, maxsegsz;
438 	size_t q;
439 	int error;
440 
441 	/*
442 	 * Create Tx DMA
443 	 */
444 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
445 
446 	error = bus_dma_tag_create(
447 	    bus_get_dma_tag(sc->dev),		/* parent */
448 	    16, 0,                              /* alignment, boundary */
449 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
450 	    BUS_SPACE_MAXADDR,                  /* highaddr */
451 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
452 	    maxsize,				/* maxsize */
453 	    1,					/* nsegments */
454 	    maxsegsz,				/* maxsegsz */
455 	    0,					/* flags */
456 	    NULL, NULL,				/* lockfunc, lockfuncarg */
457 	    &sc->tx_dtag);			/* dmat */
458 	if (error != 0) {
459 		device_printf(sc->dev,
460 		    "Failed to create DMA tag for Tx descriptors.\n");
461 		goto fail;
462 	}
463 	error = bus_dma_tag_create(
464 	    bus_get_dma_tag(sc->dev),		/* parent */
465 	    1, 0,				/* alignment, boundary */
466 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
467 	    BUS_SPACE_MAXADDR,			/* highaddr */
468 	    NULL, NULL,				/* filtfunc, filtfuncarg */
469 	    MVNETA_PACKET_SIZE,			/* maxsize */
470 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
471 	    MVNETA_PACKET_SIZE,			/* maxsegsz */
472 	    BUS_DMA_ALLOCNOW,			/* flags */
473 	    NULL, NULL,				/* lockfunc, lockfuncarg */
474 	    &sc->txmbuf_dtag);
475 	if (error != 0) {
476 		device_printf(sc->dev,
477 		    "Failed to create DMA tag for Tx mbufs.\n");
478 		goto fail;
479 	}
480 
481 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
482 		error = mvneta_ring_alloc_tx_queue(sc, q);
483 		if (error != 0) {
484 			device_printf(sc->dev,
485 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
486 			goto fail;
487 		}
488 	}
489 
490 	/*
491 	 * Create Rx DMA.
492 	 */
493 	/* Create tag for Rx descripors */
494 	error = bus_dma_tag_create(
495 	    bus_get_dma_tag(sc->dev),		/* parent */
496 	    32, 0,                              /* alignment, boundary */
497 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
498 	    BUS_SPACE_MAXADDR,                  /* highaddr */
499 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
500 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
501 	    1,					/* nsegments */
502 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
503 	    0,					/* flags */
504 	    NULL, NULL,				/* lockfunc, lockfuncarg */
505 	    &sc->rx_dtag);			/* dmat */
506 	if (error != 0) {
507 		device_printf(sc->dev,
508 		    "Failed to create DMA tag for Rx descriptors.\n");
509 		goto fail;
510 	}
511 
512 	/* Create tag for Rx buffers */
513 	error = bus_dma_tag_create(
514 	    bus_get_dma_tag(sc->dev),		/* parent */
515 	    32, 0,				/* alignment, boundary */
516 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
517 	    BUS_SPACE_MAXADDR,			/* highaddr */
518 	    NULL, NULL,				/* filtfunc, filtfuncarg */
519 	    MVNETA_PACKET_SIZE, 1,		/* maxsize, nsegments */
520 	    MVNETA_PACKET_SIZE,			/* maxsegsz */
521 	    0,					/* flags */
522 	    NULL, NULL,				/* lockfunc, lockfuncarg */
523 	    &sc->rxbuf_dtag);			/* dmat */
524 	if (error != 0) {
525 		device_printf(sc->dev,
526 		    "Failed to create DMA tag for Rx buffers.\n");
527 		goto fail;
528 	}
529 
530 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
531 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
532 			device_printf(sc->dev,
533 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
534 			goto fail;
535 		}
536 	}
537 
538 	return (0);
539 fail:
540 	mvneta_detach(sc->dev);
541 
542 	return (error);
543 }
544 
545 /* ARGSUSED */
546 int
547 mvneta_attach(device_t self)
548 {
549 	struct mvneta_softc *sc;
550 	struct ifnet *ifp;
551 	device_t child;
552 	int ifm_target;
553 	int q, error;
554 #if !defined(__aarch64__)
555 	uint32_t reg;
556 #endif
557 
558 	sc = device_get_softc(self);
559 	sc->dev = self;
560 
561 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
562 
563 	error = bus_alloc_resources(self, res_spec, sc->res);
564 	if (error) {
565 		device_printf(self, "could not allocate resources\n");
566 		return (ENXIO);
567 	}
568 
569 	sc->version = MVNETA_READ(sc, MVNETA_PV);
570 	device_printf(self, "version is %x\n", sc->version);
571 	callout_init(&sc->tick_ch, 0);
572 
573 	/*
574 	 * make sure DMA engines are in reset state
575 	 */
576 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
577 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
578 
579 #if !defined(__aarch64__)
580 	/*
581 	 * Disable port snoop for buffers and descriptors
582 	 * to avoid L2 caching of both without DRAM copy.
583 	 * Obtain coherency settings from the first MBUS
584 	 * window attribute.
585 	 */
586 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
587 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
588 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
589 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
590 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
591 	}
592 #endif
593 
594 	/*
595 	 * MAC address
596 	 */
597 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
598 		device_printf(self, "no mac address.\n");
599 		return (ENXIO);
600 	}
601 	mvneta_set_mac_address(sc, sc->enaddr);
602 
603 	mvneta_disable_intr(sc);
604 
605 	/* Allocate network interface */
606 	ifp = sc->ifp = if_alloc(IFT_ETHER);
607 	if (ifp == NULL) {
608 		device_printf(self, "if_alloc() failed\n");
609 		mvneta_detach(self);
610 		return (ENOMEM);
611 	}
612 	if_initname(ifp, device_get_name(self), device_get_unit(self));
613 
614 	/*
615 	 * We can support 802.1Q VLAN-sized frames and jumbo
616 	 * Ethernet frames.
617 	 */
618 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
619 
620 	ifp->if_softc = sc;
621 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
622 #ifdef MVNETA_MULTIQUEUE
623 	ifp->if_transmit = mvneta_transmit;
624 	ifp->if_qflush = mvneta_qflush;
625 #else /* !MVNETA_MULTIQUEUE */
626 	ifp->if_start = mvneta_start;
627 	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
628 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
629 	IFQ_SET_READY(&ifp->if_snd);
630 #endif
631 	ifp->if_init = mvneta_init;
632 	ifp->if_ioctl = mvneta_ioctl;
633 
634 	/*
635 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
636 	 */
637 	ifp->if_capabilities |= IFCAP_HWCSUM;
638 
639 	/*
640 	 * As VLAN hardware tagging is not supported
641 	 * but is necessary to perform VLAN hardware checksums,
642 	 * it is done in the driver
643 	 */
644 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
645 
646 	/*
647 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
648 	 */
649 	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
650 	ifp->if_capenable = ifp->if_capabilities;
651 
652 	/*
653 	 * Disabled option(s):
654 	 * - Support for Large Receive Offload
655 	 */
656 	ifp->if_capabilities |= IFCAP_LRO;
657 
658 	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
659 
660 	/*
661 	 * Device DMA Buffer allocation.
662 	 * Handles resource deallocation in case of failure.
663 	 */
664 	error = mvneta_dma_create(sc);
665 	if (error != 0) {
666 		mvneta_detach(self);
667 		return (error);
668 	}
669 
670 	/* Initialize queues */
671 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
672 		error = mvneta_ring_init_tx_queue(sc, q);
673 		if (error != 0) {
674 			mvneta_detach(self);
675 			return (error);
676 		}
677 	}
678 
679 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
680 		error = mvneta_ring_init_rx_queue(sc, q);
681 		if (error != 0) {
682 			mvneta_detach(self);
683 			return (error);
684 		}
685 	}
686 
687 	ether_ifattach(ifp, sc->enaddr);
688 
689 	/*
690 	 * Enable DMA engines and Initialize Device Registers.
691 	 */
692 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
693 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
694 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
695 	mvneta_sc_lock(sc);
696 	mvneta_filter_setup(sc);
697 	mvneta_sc_unlock(sc);
698 	mvneta_initreg(ifp);
699 
700 	/*
701 	 * Now MAC is working, setup MII.
702 	 */
703 	if (mii_init == 0) {
704 		/*
705 		 * MII bus is shared by all MACs and all PHYs in SoC.
706 		 * serializing the bus access should be safe.
707 		 */
708 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
709 		mii_init = 1;
710 	}
711 
712 	/* Attach PHY(s) */
713 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
714 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
715 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
716 		    MII_OFFSET_ANY, 0);
717 		if (error != 0) {
718 			if (bootverbose) {
719 				device_printf(self,
720 				    "MII attach failed, error: %d\n", error);
721 			}
722 			ether_ifdetach(sc->ifp);
723 			mvneta_detach(self);
724 			return (error);
725 		}
726 		sc->mii = device_get_softc(sc->miibus);
727 		sc->phy_attached = 1;
728 
729 		/* Disable auto-negotiation in MAC - rely on PHY layer */
730 		mvneta_update_autoneg(sc, FALSE);
731 	} else if (sc->use_inband_status == TRUE) {
732 		/* In-band link status */
733 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
734 		    mvneta_mediastatus);
735 
736 		/* Configure media */
737 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
738 		    0, NULL);
739 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
740 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
741 		    0, NULL);
742 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
743 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
744 		    0, NULL);
745 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
746 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
747 
748 		/* Enable auto-negotiation */
749 		mvneta_update_autoneg(sc, TRUE);
750 
751 		mvneta_sc_lock(sc);
752 		if (MVNETA_IS_LINKUP(sc))
753 			mvneta_linkup(sc);
754 		else
755 			mvneta_linkdown(sc);
756 		mvneta_sc_unlock(sc);
757 
758 	} else {
759 		/* Fixed-link, use predefined values */
760 		mvneta_update_autoneg(sc, FALSE);
761 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
762 		    mvneta_mediastatus);
763 
764 		ifm_target = IFM_ETHER;
765 		switch (sc->phy_speed) {
766 		case 2500:
767 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
768 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
769 				device_printf(self,
770 				    "2.5G speed can work only in (Q)SGMII mode\n");
771 				ether_ifdetach(sc->ifp);
772 				mvneta_detach(self);
773 				return (ENXIO);
774 			}
775 			ifm_target |= IFM_2500_T;
776 			break;
777 		case 1000:
778 			ifm_target |= IFM_1000_T;
779 			break;
780 		case 100:
781 			ifm_target |= IFM_100_TX;
782 			break;
783 		case 10:
784 			ifm_target |= IFM_10_T;
785 			break;
786 		default:
787 			ether_ifdetach(sc->ifp);
788 			mvneta_detach(self);
789 			return (ENXIO);
790 		}
791 
792 		if (sc->phy_fdx)
793 			ifm_target |= IFM_FDX;
794 		else
795 			ifm_target |= IFM_HDX;
796 
797 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
798 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
799 		if_link_state_change(sc->ifp, LINK_STATE_UP);
800 
801 		if (mvneta_has_switch(self)) {
802 			child = device_add_child(sc->dev, "mdio", -1);
803 			if (child == NULL) {
804 				ether_ifdetach(sc->ifp);
805 				mvneta_detach(self);
806 				return (ENXIO);
807 			}
808 			bus_generic_attach(sc->dev);
809 			bus_generic_attach(child);
810 		}
811 
812 		/* Configure MAC media */
813 		mvneta_update_media(sc, ifm_target);
814 	}
815 
816 	sysctl_mvneta_init(sc);
817 
818 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
819 
820 	error = bus_setup_intr(self, sc->res[1],
821 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
822 	    &sc->ih_cookie[0]);
823 	if (error) {
824 		device_printf(self, "could not setup %s\n",
825 		    mvneta_intrs[0].description);
826 		ether_ifdetach(sc->ifp);
827 		mvneta_detach(self);
828 		return (error);
829 	}
830 
831 	return (0);
832 }
833 
834 STATIC int
835 mvneta_detach(device_t dev)
836 {
837 	struct mvneta_softc *sc;
838 	int q;
839 
840 	sc = device_get_softc(dev);
841 
842 	mvneta_stop(sc);
843 	/* Detach network interface */
844 	if (sc->ifp)
845 		if_free(sc->ifp);
846 
847 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
848 		mvneta_ring_dealloc_rx_queue(sc, q);
849 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
850 		mvneta_ring_dealloc_tx_queue(sc, q);
851 
852 	if (sc->tx_dtag != NULL)
853 		bus_dma_tag_destroy(sc->tx_dtag);
854 	if (sc->rx_dtag != NULL)
855 		bus_dma_tag_destroy(sc->rx_dtag);
856 	if (sc->txmbuf_dtag != NULL)
857 		bus_dma_tag_destroy(sc->txmbuf_dtag);
858 
859 	bus_release_resources(dev, res_spec, sc->res);
860 	return (0);
861 }
862 
863 /*
864  * MII
865  */
866 STATIC int
867 mvneta_miibus_readreg(device_t dev, int phy, int reg)
868 {
869 	struct mvneta_softc *sc;
870 	struct ifnet *ifp;
871 	uint32_t smi, val;
872 	int i;
873 
874 	sc = device_get_softc(dev);
875 	ifp = sc->ifp;
876 
877 	mtx_lock(&mii_mutex);
878 
879 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
880 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
881 			break;
882 		DELAY(1);
883 	}
884 	if (i == MVNETA_PHY_TIMEOUT) {
885 		if_printf(ifp, "SMI busy timeout\n");
886 		mtx_unlock(&mii_mutex);
887 		return (-1);
888 	}
889 
890 	smi = MVNETA_SMI_PHYAD(phy) |
891 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
892 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
893 
894 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
895 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
896 			break;
897 		DELAY(1);
898 	}
899 
900 	if (i == MVNETA_PHY_TIMEOUT) {
901 		if_printf(ifp, "SMI busy timeout\n");
902 		mtx_unlock(&mii_mutex);
903 		return (-1);
904 	}
905 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
906 		smi = MVNETA_READ(sc, MVNETA_SMI);
907 		if (smi & MVNETA_SMI_READVALID)
908 			break;
909 		DELAY(1);
910 	}
911 
912 	if (i == MVNETA_PHY_TIMEOUT) {
913 		if_printf(ifp, "SMI busy timeout\n");
914 		mtx_unlock(&mii_mutex);
915 		return (-1);
916 	}
917 
918 	mtx_unlock(&mii_mutex);
919 
920 #ifdef MVNETA_KTR
921 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
922 	    MVNETA_PHY_TIMEOUT);
923 #endif
924 
925 	val = smi & MVNETA_SMI_DATA_MASK;
926 
927 #ifdef MVNETA_KTR
928 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
929 	    reg, val);
930 #endif
931 	return (val);
932 }
933 
934 STATIC int
935 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
936 {
937 	struct mvneta_softc *sc;
938 	struct ifnet *ifp;
939 	uint32_t smi;
940 	int i;
941 
942 	sc = device_get_softc(dev);
943 	ifp = sc->ifp;
944 #ifdef MVNETA_KTR
945 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
946 	    phy, reg, val);
947 #endif
948 
949 	mtx_lock(&mii_mutex);
950 
951 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
952 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
953 			break;
954 		DELAY(1);
955 	}
956 	if (i == MVNETA_PHY_TIMEOUT) {
957 		if_printf(ifp, "SMI busy timeout\n");
958 		mtx_unlock(&mii_mutex);
959 		return (0);
960 	}
961 
962 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
963 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
964 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
965 
966 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
967 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
968 			break;
969 		DELAY(1);
970 	}
971 
972 	mtx_unlock(&mii_mutex);
973 
974 	if (i == MVNETA_PHY_TIMEOUT)
975 		if_printf(ifp, "phy write timed out\n");
976 
977 	return (0);
978 }
979 
980 STATIC void
981 mvneta_portup(struct mvneta_softc *sc)
982 {
983 	int q;
984 
985 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
986 		mvneta_rx_lockq(sc, q);
987 		mvneta_rx_queue_enable(sc->ifp, q);
988 		mvneta_rx_unlockq(sc, q);
989 	}
990 
991 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
992 		mvneta_tx_lockq(sc, q);
993 		mvneta_tx_queue_enable(sc->ifp, q);
994 		mvneta_tx_unlockq(sc, q);
995 	}
996 
997 }
998 
999 STATIC void
1000 mvneta_portdown(struct mvneta_softc *sc)
1001 {
1002 	struct mvneta_rx_ring *rx;
1003 	struct mvneta_tx_ring *tx;
1004 	int q, cnt;
1005 	uint32_t reg;
1006 
1007 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1008 		rx = MVNETA_RX_RING(sc, q);
1009 		mvneta_rx_lockq(sc, q);
1010 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1011 		mvneta_rx_unlockq(sc, q);
1012 	}
1013 
1014 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1015 		tx = MVNETA_TX_RING(sc, q);
1016 		mvneta_tx_lockq(sc, q);
1017 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1018 		mvneta_tx_unlockq(sc, q);
1019 	}
1020 
1021 	/* Wait for all Rx activity to terminate. */
1022 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1023 	reg = MVNETA_RQC_DIS(reg);
1024 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1025 	cnt = 0;
1026 	do {
1027 		if (cnt >= RX_DISABLE_TIMEOUT) {
1028 			if_printf(sc->ifp,
1029 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1030 			break;
1031 		}
1032 		cnt++;
1033 		reg = MVNETA_READ(sc, MVNETA_RQC);
1034 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1035 
1036 	/* Wait for all Tx activity to terminate. */
1037 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1038 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1039 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1040 
1041 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1042 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1043 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1044 
1045 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1046 	reg = MVNETA_TQC_DIS(reg);
1047 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1048 	cnt = 0;
1049 	do {
1050 		if (cnt >= TX_DISABLE_TIMEOUT) {
1051 			if_printf(sc->ifp,
1052 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1053 			break;
1054 		}
1055 		cnt++;
1056 		reg = MVNETA_READ(sc, MVNETA_TQC);
1057 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1058 
1059 	/* Wait for all Tx FIFO is empty */
1060 	cnt = 0;
1061 	do {
1062 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1063 			if_printf(sc->ifp,
1064 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1065 			break;
1066 		}
1067 		cnt++;
1068 		reg = MVNETA_READ(sc, MVNETA_PS0);
1069 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1070 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1071 }
1072 
1073 /*
1074  * Device Register Initialization
1075  *  reset device registers to device driver default value.
1076  *  the device is not enabled here.
1077  */
1078 STATIC int
1079 mvneta_initreg(struct ifnet *ifp)
1080 {
1081 	struct mvneta_softc *sc;
1082 	int q, i;
1083 	uint32_t reg;
1084 
1085 	sc = ifp->if_softc;
1086 #ifdef MVNETA_KTR
1087 	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
1088 #endif
1089 
1090 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1091 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1092 	/* Enable mbus retry. */
1093 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1094 
1095 	/* Init TX/RX Queue Registers */
1096 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1097 		mvneta_rx_lockq(sc, q);
1098 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1099 			device_printf(sc->dev,
1100 			    "initialization failed: cannot initialize queue\n");
1101 			mvneta_rx_unlockq(sc, q);
1102 			return (ENOBUFS);
1103 		}
1104 		mvneta_rx_unlockq(sc, q);
1105 	}
1106 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1107 		mvneta_tx_lockq(sc, q);
1108 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1109 			device_printf(sc->dev,
1110 			    "initialization failed: cannot initialize queue\n");
1111 			mvneta_tx_unlockq(sc, q);
1112 			return (ENOBUFS);
1113 		}
1114 		mvneta_tx_unlockq(sc, q);
1115 	}
1116 
1117 	/*
1118 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1119 	 * In case the port uses SMI-controlled PHY, poll its status with
1120 	 * mii_tick() and update MAC settings accordingly.
1121 	 */
1122 	reg = MVNETA_READ(sc, MVNETA_EUC);
1123 	reg &= ~MVNETA_EUC_POLLING;
1124 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1125 
1126 	/* EEE: Low Power Idle */
1127 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1128 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1129 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1130 
1131 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1132 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1133 
1134 	reg = MVNETA_LPIC2_MUSTSET;
1135 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1136 
1137 	/* Port MAC Control set 0 */
1138 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1139 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1140 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(MVNETA_MAX_FRAME);
1141 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1142 
1143 	/* Port MAC Control set 2 */
1144 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1145 	switch (sc->phy_mode) {
1146 	case MVNETA_PHY_QSGMII:
1147 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1148 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1149 		break;
1150 	case MVNETA_PHY_SGMII:
1151 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1152 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1153 		break;
1154 	case MVNETA_PHY_RGMII:
1155 	case MVNETA_PHY_RGMII_ID:
1156 		reg |= MVNETA_PMACC2_RGMIIEN;
1157 		break;
1158 	}
1159 	reg |= MVNETA_PMACC2_MUSTSET;
1160 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1161 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1162 
1163 	/* Port Configuration Extended: enable Tx CRC generation */
1164 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1165 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1166 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1167 
1168 	/* clear MIB counter registers(clear by read) */
1169 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
1170 		if (mvneta_mib_list[i].reg64)
1171 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
1172 		else
1173 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
1174 	}
1175 	MVNETA_READ(sc, MVNETA_PDFC);
1176 	MVNETA_READ(sc, MVNETA_POFC);
1177 
1178 	/* Set SDC register except IPGINT bits */
1179 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1180 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1181 	reg |= MVNETA_SDC_BLMR;
1182 	reg |= MVNETA_SDC_BLMT;
1183 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1184 
1185 	return (0);
1186 }
1187 
1188 STATIC void
1189 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1190 {
1191 
1192 	if (error != 0)
1193 		return;
1194 	*(bus_addr_t *)arg = segs->ds_addr;
1195 }
1196 
1197 STATIC int
1198 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1199 {
1200 	struct mvneta_rx_ring *rx;
1201 	struct mvneta_buf *rxbuf;
1202 	bus_dmamap_t dmap;
1203 	int i, error;
1204 
1205 	if (q >= MVNETA_RX_QNUM_MAX)
1206 		return (EINVAL);
1207 
1208 	rx = MVNETA_RX_RING(sc, q);
1209 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1210 	/* Allocate DMA memory for Rx descriptors */
1211 	error = bus_dmamem_alloc(sc->rx_dtag,
1212 	    (void**)&(rx->desc),
1213 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1214 	    &rx->desc_map);
1215 	if (error != 0 || rx->desc == NULL)
1216 		goto fail;
1217 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1218 	    rx->desc,
1219 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1220 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1221 	if (error != 0)
1222 		goto fail;
1223 
1224 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1225 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1226 		if (error != 0) {
1227 			device_printf(sc->dev,
1228 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1229 			goto fail;
1230 		}
1231 		rxbuf = &rx->rxbuf[i];
1232 		rxbuf->dmap = dmap;
1233 		rxbuf->m = NULL;
1234 	}
1235 
1236 	return (0);
1237 fail:
1238 	mvneta_ring_dealloc_rx_queue(sc, q);
1239 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1240 	return (error);
1241 }
1242 
1243 STATIC int
1244 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1245 {
1246 	struct mvneta_tx_ring *tx;
1247 	int error;
1248 
1249 	if (q >= MVNETA_TX_QNUM_MAX)
1250 		return (EINVAL);
1251 	tx = MVNETA_TX_RING(sc, q);
1252 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1253 	error = bus_dmamem_alloc(sc->tx_dtag,
1254 	    (void**)&(tx->desc),
1255 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1256 	    &tx->desc_map);
1257 	if (error != 0 || tx->desc == NULL)
1258 		goto fail;
1259 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1260 	    tx->desc,
1261 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1262 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1263 	if (error != 0)
1264 		goto fail;
1265 
1266 #ifdef MVNETA_MULTIQUEUE
1267 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1268 	    &tx->ring_mtx);
1269 	if (tx->br == NULL) {
1270 		device_printf(sc->dev,
1271 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1272 		error = ENOMEM;
1273 		goto fail;
1274 	}
1275 #endif
1276 
1277 	return (0);
1278 fail:
1279 	mvneta_ring_dealloc_tx_queue(sc, q);
1280 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1281 	return (error);
1282 }
1283 
1284 STATIC void
1285 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1286 {
1287 	struct mvneta_tx_ring *tx;
1288 	struct mvneta_buf *txbuf;
1289 	void *kva;
1290 	int error;
1291 	int i;
1292 
1293 	if (q >= MVNETA_TX_QNUM_MAX)
1294 		return;
1295 	tx = MVNETA_TX_RING(sc, q);
1296 
1297 	if (tx->taskq != NULL) {
1298 		/* Remove task */
1299 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1300 			taskqueue_drain(tx->taskq, &tx->task);
1301 	}
1302 #ifdef MVNETA_MULTIQUEUE
1303 	if (tx->br != NULL)
1304 		drbr_free(tx->br, M_DEVBUF);
1305 #endif
1306 
1307 	if (sc->txmbuf_dtag != NULL) {
1308 		if (mtx_name(&tx->ring_mtx) != NULL) {
1309 			/*
1310 			 * It is assumed that maps are being loaded after mutex
1311 			 * is initialized. Therefore we can skip unloading maps
1312 			 * when mutex is empty.
1313 			 */
1314 			mvneta_tx_lockq(sc, q);
1315 			mvneta_ring_flush_tx_queue(sc, q);
1316 			mvneta_tx_unlockq(sc, q);
1317 		}
1318 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1319 			txbuf = &tx->txbuf[i];
1320 			if (txbuf->dmap != NULL) {
1321 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1322 				    txbuf->dmap);
1323 				if (error != 0) {
1324 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1325 					    __func__, q, i);
1326 				}
1327 			}
1328 		}
1329 	}
1330 
1331 	if (tx->desc_pa != 0)
1332 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1333 
1334 	kva = (void *)tx->desc;
1335 	if (kva != NULL)
1336 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1337 
1338 	if (mtx_name(&tx->ring_mtx) != NULL)
1339 		mtx_destroy(&tx->ring_mtx);
1340 
1341 	memset(tx, 0, sizeof(*tx));
1342 }
1343 
1344 STATIC void
1345 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1346 {
1347 	struct mvneta_rx_ring *rx;
1348 	struct lro_ctrl	*lro;
1349 	void *kva;
1350 
1351 	if (q >= MVNETA_RX_QNUM_MAX)
1352 		return;
1353 
1354 	rx = MVNETA_RX_RING(sc, q);
1355 
1356 	mvneta_ring_flush_rx_queue(sc, q);
1357 
1358 	if (rx->desc_pa != 0)
1359 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1360 
1361 	kva = (void *)rx->desc;
1362 	if (kva != NULL)
1363 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1364 
1365 	lro = &rx->lro;
1366 	tcp_lro_free(lro);
1367 
1368 	if (mtx_name(&rx->ring_mtx) != NULL)
1369 		mtx_destroy(&rx->ring_mtx);
1370 
1371 	memset(rx, 0, sizeof(*rx));
1372 }
1373 
1374 STATIC int
1375 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1376 {
1377 	struct mvneta_rx_ring *rx;
1378 	struct lro_ctrl	*lro;
1379 	int error;
1380 
1381 	if (q >= MVNETA_RX_QNUM_MAX)
1382 		return (0);
1383 
1384 	rx = MVNETA_RX_RING(sc, q);
1385 	rx->dma = rx->cpu = 0;
1386 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1387 	rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */
1388 
1389 	/* Initialize LRO */
1390 	rx->lro_enabled = FALSE;
1391 	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
1392 		lro = &rx->lro;
1393 		error = tcp_lro_init(lro);
1394 		if (error != 0)
1395 			device_printf(sc->dev, "LRO Initialization failed!\n");
1396 		else {
1397 			rx->lro_enabled = TRUE;
1398 			lro->ifp = sc->ifp;
1399 		}
1400 	}
1401 
1402 	return (0);
1403 }
1404 
1405 STATIC int
1406 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1407 {
1408 	struct mvneta_tx_ring *tx;
1409 	struct mvneta_buf *txbuf;
1410 	int i, error;
1411 
1412 	if (q >= MVNETA_TX_QNUM_MAX)
1413 		return (0);
1414 
1415 	tx = MVNETA_TX_RING(sc, q);
1416 
1417 	/* Tx handle */
1418 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1419 		txbuf = &tx->txbuf[i];
1420 		txbuf->m = NULL;
1421 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1422 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1423 		    &txbuf->dmap);
1424 		if (error != 0) {
1425 			device_printf(sc->dev,
1426 			    "can't create dma map (tx ring %d)\n", i);
1427 			return (error);
1428 		}
1429 	}
1430 	tx->dma = tx->cpu = 0;
1431 	tx->used = 0;
1432 	tx->drv_error = 0;
1433 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1434 	tx->queue_hung = FALSE;
1435 
1436 	tx->ifp = sc->ifp;
1437 	tx->qidx = q;
1438 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1439 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1440 	    taskqueue_thread_enqueue, &tx->taskq);
1441 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1442 	    device_get_nameunit(sc->dev), q);
1443 
1444 	return (0);
1445 }
1446 
1447 STATIC void
1448 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1449 {
1450 	struct mvneta_tx_ring *tx;
1451 	struct mvneta_buf *txbuf;
1452 	int i;
1453 
1454 	tx = MVNETA_TX_RING(sc, q);
1455 	KASSERT_TX_MTX(sc, q);
1456 
1457 	/* Tx handle */
1458 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1459 		txbuf = &tx->txbuf[i];
1460 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1461 		if (txbuf->m != NULL) {
1462 			m_freem(txbuf->m);
1463 			txbuf->m = NULL;
1464 		}
1465 	}
1466 	tx->dma = tx->cpu = 0;
1467 	tx->used = 0;
1468 }
1469 
1470 STATIC void
1471 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1472 {
1473 	struct mvneta_rx_ring *rx;
1474 	struct mvneta_buf *rxbuf;
1475 	int i;
1476 
1477 	rx = MVNETA_RX_RING(sc, q);
1478 	KASSERT_RX_MTX(sc, q);
1479 
1480 	/* Rx handle */
1481 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1482 		rxbuf = &rx->rxbuf[i];
1483 		mvneta_rx_buf_free(sc, rxbuf);
1484 	}
1485 	rx->dma = rx->cpu = 0;
1486 }
1487 
1488 /*
1489  * Rx/Tx Queue Control
1490  */
1491 STATIC int
1492 mvneta_rx_queue_init(struct ifnet *ifp, int q)
1493 {
1494 	struct mvneta_softc *sc;
1495 	struct mvneta_rx_ring *rx;
1496 	uint32_t reg;
1497 
1498 	sc = ifp->if_softc;
1499 	KASSERT_RX_MTX(sc, q);
1500 	rx =  MVNETA_RX_RING(sc, q);
1501 	DASSERT(rx->desc_pa != 0);
1502 
1503 	/* descriptor address */
1504 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1505 
1506 	/* Rx buffer size and descriptor ring size */
1507 	reg  = MVNETA_PRXDQS_BUFFERSIZE(MVNETA_PACKET_SIZE >> 3);
1508 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1509 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1510 #ifdef MVNETA_KTR
1511 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
1512 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1513 #endif
1514 	/* Rx packet offset address */
1515 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1516 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1517 #ifdef MVNETA_KTR
1518 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
1519 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1520 #endif
1521 
1522 	/* if DMA is not working, register is not updated */
1523 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1524 	return (0);
1525 }
1526 
1527 STATIC int
1528 mvneta_tx_queue_init(struct ifnet *ifp, int q)
1529 {
1530 	struct mvneta_softc *sc;
1531 	struct mvneta_tx_ring *tx;
1532 	uint32_t reg;
1533 
1534 	sc = ifp->if_softc;
1535 	KASSERT_TX_MTX(sc, q);
1536 	tx = MVNETA_TX_RING(sc, q);
1537 	DASSERT(tx->desc_pa != 0);
1538 
1539 	/* descriptor address */
1540 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1541 
1542 	/* descriptor ring size */
1543 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1544 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1545 
1546 	/* if DMA is not working, register is not updated */
1547 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1548 	return (0);
1549 }
1550 
1551 STATIC int
1552 mvneta_rx_queue_enable(struct ifnet *ifp, int q)
1553 {
1554 	struct mvneta_softc *sc;
1555 	struct mvneta_rx_ring *rx;
1556 	uint32_t reg;
1557 
1558 	sc = ifp->if_softc;
1559 	rx = MVNETA_RX_RING(sc, q);
1560 	KASSERT_RX_MTX(sc, q);
1561 
1562 	/* Set Rx interrupt threshold */
1563 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1564 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1565 
1566 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1567 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1568 
1569 	/* Unmask RXTX_TH Intr. */
1570 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1571 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1572 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1573 
1574 	/* Enable Rx queue */
1575 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1576 	reg |= MVNETA_RQC_ENQ(q);
1577 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1578 
1579 	rx->queue_status = MVNETA_QUEUE_WORKING;
1580 	return (0);
1581 }
1582 
1583 STATIC int
1584 mvneta_tx_queue_enable(struct ifnet *ifp, int q)
1585 {
1586 	struct mvneta_softc *sc;
1587 	struct mvneta_tx_ring *tx;
1588 
1589 	sc = ifp->if_softc;
1590 	tx = MVNETA_TX_RING(sc, q);
1591 	KASSERT_TX_MTX(sc, q);
1592 
1593 	/* Enable Tx queue */
1594 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1595 
1596 	tx->queue_status = MVNETA_QUEUE_IDLE;
1597 	tx->queue_hung = FALSE;
1598 	return (0);
1599 }
1600 
1601 STATIC __inline void
1602 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1603 {
1604 
1605 	DASSERT(q >= 0);
1606 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1607 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1608 }
1609 
1610 STATIC __inline void
1611 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1612 {
1613 
1614 	DASSERT(q >= 0);
1615 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1616 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1617 }
1618 
1619 STATIC __inline int __unused
1620 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1621 {
1622 
1623 	DASSERT(q >= 0);
1624 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1625 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1626 }
1627 
1628 STATIC __inline void
1629 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1630 {
1631 
1632 	DASSERT(q >= 0);
1633 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1634 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1635 }
1636 
1637 STATIC __inline void
1638 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1639 {
1640 
1641 	DASSERT(q >= 0);
1642 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1643 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1644 }
1645 
1646 /*
1647  * Interrupt Handlers
1648  */
1649 STATIC void
1650 mvneta_disable_intr(struct mvneta_softc *sc)
1651 {
1652 
1653 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1654 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1655 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1656 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1657 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1658 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1659 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1660 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1661 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1662 }
1663 
1664 STATIC void
1665 mvneta_enable_intr(struct mvneta_softc *sc)
1666 {
1667 	uint32_t reg;
1668 
1669 	/* Enable Summary Bit to check all interrupt cause. */
1670 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1671 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1672 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1673 
1674 	if (sc->use_inband_status) {
1675 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1676 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1677 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1678 	}
1679 
1680 	/* Enable All Queue Interrupt */
1681 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1682 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1683 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1684 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1685 }
1686 
1687 STATIC void
1688 mvneta_rxtxth_intr(void *arg)
1689 {
1690 	struct mvneta_softc *sc;
1691 	struct ifnet *ifp;
1692 	uint32_t ic, queues;
1693 
1694 	sc = arg;
1695 	ifp = sc->ifp;
1696 #ifdef MVNETA_KTR
1697 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
1698 #endif
1699 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1700 	if (ic == 0)
1701 		return;
1702 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1703 
1704 	/* Ack maintance interrupt first */
1705 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1706 	    sc->use_inband_status)) {
1707 		mvneta_sc_lock(sc);
1708 		mvneta_misc_intr(sc);
1709 		mvneta_sc_unlock(sc);
1710 	}
1711 	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
1712 		return;
1713 	/* RxTxTH interrupt */
1714 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1715 	if (__predict_true(queues)) {
1716 #ifdef MVNETA_KTR
1717 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
1718 #endif
1719 		/* At the moment the driver support only one RX queue. */
1720 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1721 		mvneta_rx(sc, 0, 0);
1722 	}
1723 }
1724 
1725 STATIC int
1726 mvneta_misc_intr(struct mvneta_softc *sc)
1727 {
1728 	uint32_t ic;
1729 	int claimed = 0;
1730 
1731 #ifdef MVNETA_KTR
1732 	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
1733 #endif
1734 	KASSERT_SC_MTX(sc);
1735 
1736 	for (;;) {
1737 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1738 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1739 		if (ic == 0)
1740 			break;
1741 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1742 		claimed = 1;
1743 
1744 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1745 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1746 			mvneta_link_isr(sc);
1747 	}
1748 	return (claimed);
1749 }
1750 
1751 STATIC void
1752 mvneta_tick(void *arg)
1753 {
1754 	struct mvneta_softc *sc;
1755 	struct mvneta_tx_ring *tx;
1756 	struct mvneta_rx_ring *rx;
1757 	int q;
1758 	uint32_t fc_prev, fc_curr;
1759 
1760 	sc = arg;
1761 
1762 	/*
1763 	 * This is done before mib update to get the right stats
1764 	 * for this tick.
1765 	 */
1766 	mvneta_tx_drain(sc);
1767 
1768 	/* Extract previous flow-control frame received counter. */
1769 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1770 	/* Read mib registers (clear by read). */
1771 	mvneta_update_mib(sc);
1772 	/* Extract current flow-control frame received counter. */
1773 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1774 
1775 
1776 	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
1777 		mvneta_sc_lock(sc);
1778 		mii_tick(sc->mii);
1779 
1780 		/* Adjust MAC settings */
1781 		mvneta_adjust_link(sc);
1782 		mvneta_sc_unlock(sc);
1783 	}
1784 
1785 	/*
1786 	 * We were unable to refill the rx queue and left the rx func, leaving
1787 	 * the ring without mbuf and no way to call the refill func.
1788 	 */
1789 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1790 		rx = MVNETA_RX_RING(sc, q);
1791 		if (rx->needs_refill == TRUE) {
1792 			mvneta_rx_lockq(sc, q);
1793 			mvneta_rx_queue_refill(sc, q);
1794 			mvneta_rx_unlockq(sc, q);
1795 		}
1796 	}
1797 
1798 	/*
1799 	 * Watchdog:
1800 	 * - check if queue is mark as hung.
1801 	 * - ignore hung status if we received some pause frame
1802 	 *   as hardware may have paused packet transmit.
1803 	 */
1804 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1805 		/*
1806 		 * We should take queue lock, but as we only read
1807 		 * queue status we can do it without lock, we may
1808 		 * only missdetect queue status for one tick.
1809 		 */
1810 		tx = MVNETA_TX_RING(sc, q);
1811 
1812 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1813 			goto timeout;
1814 	}
1815 
1816 	callout_schedule(&sc->tick_ch, hz);
1817 	return;
1818 
1819 timeout:
1820 	if_printf(sc->ifp, "watchdog timeout\n");
1821 
1822 	mvneta_sc_lock(sc);
1823 	sc->counter_watchdog++;
1824 	sc->counter_watchdog_mib++;
1825 	/* Trigger reinitialize sequence. */
1826 	mvneta_stop_locked(sc);
1827 	mvneta_init_locked(sc);
1828 	mvneta_sc_unlock(sc);
1829 }
1830 
1831 STATIC void
1832 mvneta_qflush(struct ifnet *ifp)
1833 {
1834 #ifdef MVNETA_MULTIQUEUE
1835 	struct mvneta_softc *sc;
1836 	struct mvneta_tx_ring *tx;
1837 	struct mbuf *m;
1838 	size_t q;
1839 
1840 	sc = ifp->if_softc;
1841 
1842 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1843 		tx = MVNETA_TX_RING(sc, q);
1844 		mvneta_tx_lockq(sc, q);
1845 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1846 			m_freem(m);
1847 		mvneta_tx_unlockq(sc, q);
1848 	}
1849 #endif
1850 	if_qflush(ifp);
1851 }
1852 
1853 STATIC void
1854 mvneta_tx_task(void *arg, int pending)
1855 {
1856 	struct mvneta_softc *sc;
1857 	struct mvneta_tx_ring *tx;
1858 	struct ifnet *ifp;
1859 	int error;
1860 
1861 	tx = arg;
1862 	ifp = tx->ifp;
1863 	sc = ifp->if_softc;
1864 
1865 	mvneta_tx_lockq(sc, tx->qidx);
1866 	error = mvneta_xmit_locked(sc, tx->qidx);
1867 	mvneta_tx_unlockq(sc, tx->qidx);
1868 
1869 	/* Try again */
1870 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1871 		pause("mvneta_tx_task_sleep", 1);
1872 		taskqueue_enqueue(tx->taskq, &tx->task);
1873 	}
1874 }
1875 
1876 STATIC int
1877 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1878 {
1879 	struct mvneta_tx_ring *tx;
1880 	struct ifnet *ifp;
1881 	int error;
1882 
1883 	KASSERT_TX_MTX(sc, q);
1884 	tx = MVNETA_TX_RING(sc, q);
1885 	error = 0;
1886 
1887 	ifp = sc->ifp;
1888 
1889 	/* Dont enqueue packet if the queue is disabled. */
1890 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1891 		m_freem(*m);
1892 		*m = NULL;
1893 		return (ENETDOWN);
1894 	}
1895 
1896 	/* Reclaim mbuf if above threshold. */
1897 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1898 		mvneta_tx_queue_complete(sc, q);
1899 
1900 	/* Do not call transmit path if queue is already too full. */
1901 	if (__predict_false(tx->used >
1902 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1903 		return (ENOBUFS);
1904 
1905 	error = mvneta_tx_queue(sc, m, q);
1906 	if (__predict_false(error != 0))
1907 		return (error);
1908 
1909 	/* Send a copy of the frame to the BPF listener */
1910 	ETHER_BPF_MTAP(ifp, *m);
1911 
1912 	/* Set watchdog on */
1913 	tx->watchdog_time = ticks;
1914 	tx->queue_status = MVNETA_QUEUE_WORKING;
1915 
1916 	return (error);
1917 }
1918 
1919 #ifdef MVNETA_MULTIQUEUE
1920 STATIC int
1921 mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
1922 {
1923 	struct mvneta_softc *sc;
1924 	struct mvneta_tx_ring *tx;
1925 	int error;
1926 	int q;
1927 
1928 	sc = ifp->if_softc;
1929 
1930 	/* Use default queue if there is no flow id as thread can migrate. */
1931 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1932 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1933 	else
1934 		q = 0;
1935 
1936 	tx = MVNETA_TX_RING(sc, q);
1937 
1938 	/* If buf_ring is full start transmit immediatly. */
1939 	if (buf_ring_full(tx->br)) {
1940 		mvneta_tx_lockq(sc, q);
1941 		mvneta_xmit_locked(sc, q);
1942 		mvneta_tx_unlockq(sc, q);
1943 	}
1944 
1945 	/*
1946 	 * If the buf_ring is empty we will not reorder packets.
1947 	 * If the lock is available transmit without using buf_ring.
1948 	 */
1949 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1950 		error = mvneta_xmitfast_locked(sc, q, &m);
1951 		mvneta_tx_unlockq(sc, q);
1952 		if (__predict_true(error == 0))
1953 			return (0);
1954 
1955 		/* Transmit can fail in fastpath. */
1956 		if (__predict_false(m == NULL))
1957 			return (error);
1958 	}
1959 
1960 	/* Enqueue then schedule taskqueue. */
1961 	error = drbr_enqueue(ifp, tx->br, m);
1962 	if (__predict_false(error != 0))
1963 		return (error);
1964 
1965 	taskqueue_enqueue(tx->taskq, &tx->task);
1966 	return (0);
1967 }
1968 
1969 STATIC int
1970 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1971 {
1972 	struct ifnet *ifp;
1973 	struct mvneta_tx_ring *tx;
1974 	struct mbuf *m;
1975 	int error;
1976 
1977 	KASSERT_TX_MTX(sc, q);
1978 	ifp = sc->ifp;
1979 	tx = MVNETA_TX_RING(sc, q);
1980 	error = 0;
1981 
1982 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
1983 		error = mvneta_xmitfast_locked(sc, q, &m);
1984 		if (__predict_false(error != 0)) {
1985 			if (m != NULL)
1986 				drbr_putback(ifp, tx->br, m);
1987 			else
1988 				drbr_advance(ifp, tx->br);
1989 			break;
1990 		}
1991 		drbr_advance(ifp, tx->br);
1992 	}
1993 
1994 	return (error);
1995 }
1996 #else /* !MVNETA_MULTIQUEUE */
1997 STATIC void
1998 mvneta_start(struct ifnet *ifp)
1999 {
2000 	struct mvneta_softc *sc;
2001 	struct mvneta_tx_ring *tx;
2002 	int error;
2003 
2004 	sc = ifp->if_softc;
2005 	tx = MVNETA_TX_RING(sc, 0);
2006 
2007 	mvneta_tx_lockq(sc, 0);
2008 	error = mvneta_xmit_locked(sc, 0);
2009 	mvneta_tx_unlockq(sc, 0);
2010 	/* Handle retransmit in the background taskq. */
2011 	if (__predict_false(error != 0 && error != ENETDOWN))
2012 		taskqueue_enqueue(tx->taskq, &tx->task);
2013 }
2014 
2015 STATIC int
2016 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2017 {
2018 	struct ifnet *ifp;
2019 	struct mvneta_tx_ring *tx;
2020 	struct mbuf *m;
2021 	int error;
2022 
2023 	KASSERT_TX_MTX(sc, q);
2024 	ifp = sc->ifp;
2025 	tx = MVNETA_TX_RING(sc, 0);
2026 	error = 0;
2027 
2028 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
2029 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2030 		if (m == NULL)
2031 			break;
2032 
2033 		error = mvneta_xmitfast_locked(sc, q, &m);
2034 		if (__predict_false(error != 0)) {
2035 			if (m != NULL)
2036 				IFQ_DRV_PREPEND(&ifp->if_snd, m);
2037 			break;
2038 		}
2039 	}
2040 
2041 	return (error);
2042 }
2043 #endif
2044 
2045 STATIC int
2046 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2047 {
2048 	struct mvneta_softc *sc;
2049 	struct mvneta_rx_ring *rx;
2050 	struct ifreq *ifr;
2051 	int error, mask;
2052 	uint32_t flags;
2053 	int q;
2054 
2055 	error = 0;
2056 	sc = ifp->if_softc;
2057 	ifr = (struct ifreq *)data;
2058 	switch (cmd) {
2059 	case SIOCSIFFLAGS:
2060 		mvneta_sc_lock(sc);
2061 		if (ifp->if_flags & IFF_UP) {
2062 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2063 				flags = ifp->if_flags ^ sc->mvneta_if_flags;
2064 
2065 				if (flags != 0)
2066 					sc->mvneta_if_flags = ifp->if_flags;
2067 
2068 				if ((flags & IFF_PROMISC) != 0)
2069 					mvneta_filter_setup(sc);
2070 			} else {
2071 				mvneta_init_locked(sc);
2072 				sc->mvneta_if_flags = ifp->if_flags;
2073 				if (sc->phy_attached)
2074 					mii_mediachg(sc->mii);
2075 				mvneta_sc_unlock(sc);
2076 				break;
2077 			}
2078 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2079 			mvneta_stop_locked(sc);
2080 
2081 		sc->mvneta_if_flags = ifp->if_flags;
2082 		mvneta_sc_unlock(sc);
2083 		break;
2084 	case SIOCSIFCAP:
2085 		if (ifp->if_mtu > MVNETA_MAX_CSUM_MTU &&
2086 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2087 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2088 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2089 		if (mask & IFCAP_HWCSUM) {
2090 			ifp->if_capenable &= ~IFCAP_HWCSUM;
2091 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
2092 			if (ifp->if_capenable & IFCAP_TXCSUM)
2093 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2094 				    CSUM_UDP;
2095 			else
2096 				ifp->if_hwassist = 0;
2097 		}
2098 		if (mask & IFCAP_LRO) {
2099 			mvneta_sc_lock(sc);
2100 			ifp->if_capenable ^= IFCAP_LRO;
2101 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2102 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2103 					rx = MVNETA_RX_RING(sc, q);
2104 					rx->lro_enabled = !rx->lro_enabled;
2105 				}
2106 			}
2107 			mvneta_sc_unlock(sc);
2108 		}
2109 		VLAN_CAPABILITIES(ifp);
2110 		break;
2111 	case SIOCSIFMEDIA:
2112 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2113 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2114 		    (ifr->ifr_media & IFM_FDX) == 0) {
2115 			device_printf(sc->dev,
2116 			    "%s half-duplex unsupported\n",
2117 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2118 			    "1000Base-T" :
2119 			    "2500Base-T");
2120 			error = EINVAL;
2121 			break;
2122 		}
2123 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2124 	case SIOCGIFXMEDIA:
2125 		if (!sc->phy_attached)
2126 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2127 			    cmd);
2128 		else
2129 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2130 			    cmd);
2131 		break;
2132 	case SIOCSIFMTU:
2133 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2134 		    MVNETA_ETHER_SIZE) {
2135 			error = EINVAL;
2136 		} else {
2137 			ifp->if_mtu = ifr->ifr_mtu;
2138 			mvneta_sc_lock(sc);
2139 			if (ifp->if_mtu > MVNETA_MAX_CSUM_MTU) {
2140 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2141 				ifp->if_hwassist = 0;
2142 			} else {
2143 				ifp->if_capenable |= IFCAP_TXCSUM;
2144 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2145 					CSUM_UDP;
2146 			}
2147 
2148 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2149 				/* Trigger reinitialize sequence */
2150 				mvneta_stop_locked(sc);
2151 				mvneta_init_locked(sc);
2152 			}
2153 			mvneta_sc_unlock(sc);
2154                 }
2155                 break;
2156 
2157 	default:
2158 		error = ether_ioctl(ifp, cmd, data);
2159 		break;
2160 	}
2161 
2162 	return (error);
2163 }
2164 
2165 STATIC void
2166 mvneta_init_locked(void *arg)
2167 {
2168 	struct mvneta_softc *sc;
2169 	struct ifnet *ifp;
2170 	uint32_t reg;
2171 	int q, cpu;
2172 
2173 	sc = arg;
2174 	ifp = sc->ifp;
2175 
2176 	if (!device_is_attached(sc->dev) ||
2177 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2178 		return;
2179 
2180 	mvneta_disable_intr(sc);
2181 	callout_stop(&sc->tick_ch);
2182 
2183 	/* Get the latest mac address */
2184 	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
2185 	mvneta_set_mac_address(sc, sc->enaddr);
2186 	mvneta_filter_setup(sc);
2187 
2188 	/* Start DMA Engine */
2189 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2190 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2191 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2192 
2193 	/* Enable port */
2194 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2195 	reg |= MVNETA_PMACC0_PORTEN;
2196 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2197 
2198 	/* Allow access to each TXQ/RXQ from both CPU's */
2199 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2200 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2201 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2202 
2203 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2204 		mvneta_rx_lockq(sc, q);
2205 		mvneta_rx_queue_refill(sc, q);
2206 		mvneta_rx_unlockq(sc, q);
2207 	}
2208 
2209 	if (!sc->phy_attached)
2210 		mvneta_linkup(sc);
2211 
2212 	/* Enable interrupt */
2213 	mvneta_enable_intr(sc);
2214 
2215 	/* Set Counter */
2216 	callout_schedule(&sc->tick_ch, hz);
2217 
2218 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2219 }
2220 
2221 STATIC void
2222 mvneta_init(void *arg)
2223 {
2224 	struct mvneta_softc *sc;
2225 
2226 	sc = arg;
2227 	mvneta_sc_lock(sc);
2228 	mvneta_init_locked(sc);
2229 	if (sc->phy_attached)
2230 		mii_mediachg(sc->mii);
2231 	mvneta_sc_unlock(sc);
2232 }
2233 
2234 /* ARGSUSED */
2235 STATIC void
2236 mvneta_stop_locked(struct mvneta_softc *sc)
2237 {
2238 	struct ifnet *ifp;
2239 	struct mvneta_rx_ring *rx;
2240 	struct mvneta_tx_ring *tx;
2241 	uint32_t reg;
2242 	int q;
2243 
2244 	ifp = sc->ifp;
2245 	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2246 		return;
2247 
2248 	mvneta_disable_intr(sc);
2249 
2250 	callout_stop(&sc->tick_ch);
2251 
2252 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2253 
2254 	/* Link down */
2255 	if (sc->linkup == TRUE)
2256 		mvneta_linkdown(sc);
2257 
2258 	/* Reset the MAC Port Enable bit */
2259 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2260 	reg &= ~MVNETA_PMACC0_PORTEN;
2261 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2262 
2263 	/* Disable each of queue */
2264 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2265 		rx = MVNETA_RX_RING(sc, q);
2266 
2267 		mvneta_rx_lockq(sc, q);
2268 		mvneta_ring_flush_rx_queue(sc, q);
2269 		mvneta_rx_unlockq(sc, q);
2270 	}
2271 
2272 	/*
2273 	 * Hold Reset state of DMA Engine
2274 	 * (must write 0x0 to restart it)
2275 	 */
2276 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2277 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2278 
2279 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2280 		tx = MVNETA_TX_RING(sc, q);
2281 
2282 		mvneta_tx_lockq(sc, q);
2283 		mvneta_ring_flush_tx_queue(sc, q);
2284 		mvneta_tx_unlockq(sc, q);
2285 	}
2286 }
2287 
2288 STATIC void
2289 mvneta_stop(struct mvneta_softc *sc)
2290 {
2291 
2292 	mvneta_sc_lock(sc);
2293 	mvneta_stop_locked(sc);
2294 	mvneta_sc_unlock(sc);
2295 }
2296 
2297 STATIC int
2298 mvneta_mediachange(struct ifnet *ifp)
2299 {
2300 	struct mvneta_softc *sc;
2301 
2302 	sc = ifp->if_softc;
2303 
2304 	if (!sc->phy_attached && !sc->use_inband_status) {
2305 		/* We shouldn't be here */
2306 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2307 		return (0);
2308 	}
2309 
2310 	if (sc->use_inband_status) {
2311 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2312 		return (0);
2313 	}
2314 
2315 	mvneta_sc_lock(sc);
2316 
2317 	/* Update PHY */
2318 	mii_mediachg(sc->mii);
2319 
2320 	mvneta_sc_unlock(sc);
2321 
2322 	return (0);
2323 }
2324 
2325 STATIC void
2326 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2327 {
2328 	uint32_t psr;
2329 
2330 	psr = MVNETA_READ(sc, MVNETA_PSR);
2331 
2332 	/* Speed */
2333 	if (psr & MVNETA_PSR_GMIISPEED)
2334 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2335 	else if (psr & MVNETA_PSR_MIISPEED)
2336 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2337 	else if (psr & MVNETA_PSR_LINKUP)
2338 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2339 
2340 	/* Duplex */
2341 	if (psr & MVNETA_PSR_FULLDX)
2342 		ifmr->ifm_active |= IFM_FDX;
2343 
2344 	/* Link */
2345 	ifmr->ifm_status = IFM_AVALID;
2346 	if (psr & MVNETA_PSR_LINKUP)
2347 		ifmr->ifm_status |= IFM_ACTIVE;
2348 }
2349 
2350 STATIC void
2351 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2352 {
2353 	struct mvneta_softc *sc;
2354 	struct mii_data *mii;
2355 
2356 	sc = ifp->if_softc;
2357 
2358 	if (!sc->phy_attached && !sc->use_inband_status) {
2359 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2360 		return;
2361 	}
2362 
2363 	mvneta_sc_lock(sc);
2364 
2365 	if (sc->use_inband_status) {
2366 		mvneta_get_media(sc, ifmr);
2367 		mvneta_sc_unlock(sc);
2368 		return;
2369 	}
2370 
2371 	mii = sc->mii;
2372 	mii_pollstat(mii);
2373 
2374 	ifmr->ifm_active = mii->mii_media_active;
2375 	ifmr->ifm_status = mii->mii_media_status;
2376 
2377 	mvneta_sc_unlock(sc);
2378 }
2379 
2380 /*
2381  * Link State Notify
2382  */
2383 STATIC void
2384 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2385 {
2386 	int reg;
2387 
2388 	if (enable) {
2389 		reg = MVNETA_READ(sc, MVNETA_PANC);
2390 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2391 		    MVNETA_PANC_ANFCEN);
2392 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2393 		    MVNETA_PANC_INBANDANEN;
2394 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2395 
2396 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2397 		reg |= MVNETA_PMACC2_INBANDANMODE;
2398 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2399 
2400 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2401 		reg |= MVNETA_PSOMSCD_ENABLE;
2402 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2403 	} else {
2404 		reg = MVNETA_READ(sc, MVNETA_PANC);
2405 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2406 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2407 		    MVNETA_PANC_INBANDANEN);
2408 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2409 
2410 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2411 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2412 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2413 
2414 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2415 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2416 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2417 	}
2418 }
2419 
2420 STATIC int
2421 mvneta_update_media(struct mvneta_softc *sc, int media)
2422 {
2423 	int reg, err;
2424 	boolean_t running;
2425 
2426 	err = 0;
2427 
2428 	mvneta_sc_lock(sc);
2429 
2430 	mvneta_linkreset(sc);
2431 
2432 	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2433 	if (running)
2434 		mvneta_stop_locked(sc);
2435 
2436 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2437 
2438 	if (sc->use_inband_status)
2439 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2440 
2441 	mvneta_update_eee(sc);
2442 	mvneta_update_fc(sc);
2443 
2444 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2445 		reg = MVNETA_READ(sc, MVNETA_PANC);
2446 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2447 		    MVNETA_PANC_SETMIISPEED |
2448 		    MVNETA_PANC_SETFULLDX);
2449 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2450 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2451 			if ((media & IFM_FDX) == 0) {
2452 				device_printf(sc->dev,
2453 				    "%s half-duplex unsupported\n",
2454 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2455 				    "1000Base-T" :
2456 				    "2500Base-T");
2457 				err = EINVAL;
2458 				goto out;
2459 			}
2460 			reg |= MVNETA_PANC_SETGMIISPEED;
2461 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2462 			reg |= MVNETA_PANC_SETMIISPEED;
2463 
2464 		if (media & IFM_FDX)
2465 			reg |= MVNETA_PANC_SETFULLDX;
2466 
2467 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2468 	}
2469 out:
2470 	if (running)
2471 		mvneta_init_locked(sc);
2472 	mvneta_sc_unlock(sc);
2473 	return (err);
2474 }
2475 
2476 STATIC void
2477 mvneta_adjust_link(struct mvneta_softc *sc)
2478 {
2479 	boolean_t phy_linkup;
2480 	int reg;
2481 
2482 	/* Update eee/fc */
2483 	mvneta_update_eee(sc);
2484 	mvneta_update_fc(sc);
2485 
2486 	/* Check for link change */
2487 	phy_linkup = (sc->mii->mii_media_status &
2488 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2489 
2490 	if (sc->linkup != phy_linkup)
2491 		mvneta_linkupdate(sc, phy_linkup);
2492 
2493 	/* Don't update media on disabled link */
2494 	if (!phy_linkup)
2495 		return;
2496 
2497 	/* Check for media type change */
2498 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2499 		sc->mvneta_media = sc->mii->mii_media_active;
2500 
2501 		reg = MVNETA_READ(sc, MVNETA_PANC);
2502 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2503 		    MVNETA_PANC_SETMIISPEED |
2504 		    MVNETA_PANC_SETFULLDX);
2505 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2506 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2507 			reg |= MVNETA_PANC_SETGMIISPEED;
2508 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2509 			reg |= MVNETA_PANC_SETMIISPEED;
2510 
2511 		if (sc->mvneta_media & IFM_FDX)
2512 			reg |= MVNETA_PANC_SETFULLDX;
2513 
2514 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2515 	}
2516 }
2517 
2518 STATIC void
2519 mvneta_link_isr(struct mvneta_softc *sc)
2520 {
2521 	int linkup;
2522 
2523 	KASSERT_SC_MTX(sc);
2524 
2525 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2526 	if (sc->linkup == linkup)
2527 		return;
2528 
2529 	if (linkup == TRUE)
2530 		mvneta_linkup(sc);
2531 	else
2532 		mvneta_linkdown(sc);
2533 
2534 #ifdef DEBUG
2535 	log(LOG_DEBUG,
2536 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2537 #endif
2538 }
2539 
2540 STATIC void
2541 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2542 {
2543 
2544 	KASSERT_SC_MTX(sc);
2545 
2546 	if (linkup == TRUE)
2547 		mvneta_linkup(sc);
2548 	else
2549 		mvneta_linkdown(sc);
2550 
2551 #ifdef DEBUG
2552 	log(LOG_DEBUG,
2553 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2554 #endif
2555 }
2556 
2557 STATIC void
2558 mvneta_update_eee(struct mvneta_softc *sc)
2559 {
2560 	uint32_t reg;
2561 
2562 	KASSERT_SC_MTX(sc);
2563 
2564 	/* set EEE parameters */
2565 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2566 	if (sc->cf_lpi)
2567 		reg |= MVNETA_LPIC1_LPIRE;
2568 	else
2569 		reg &= ~MVNETA_LPIC1_LPIRE;
2570 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2571 }
2572 
2573 STATIC void
2574 mvneta_update_fc(struct mvneta_softc *sc)
2575 {
2576 	uint32_t reg;
2577 
2578 	KASSERT_SC_MTX(sc);
2579 
2580 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2581 	if (sc->cf_fc) {
2582 		/* Flow control negotiation */
2583 		reg |= MVNETA_PANC_PAUSEADV;
2584 		reg |= MVNETA_PANC_ANFCEN;
2585 	} else {
2586 		/* Disable flow control negotiation */
2587 		reg &= ~MVNETA_PANC_PAUSEADV;
2588 		reg &= ~MVNETA_PANC_ANFCEN;
2589 	}
2590 
2591 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2592 }
2593 
2594 STATIC void
2595 mvneta_linkup(struct mvneta_softc *sc)
2596 {
2597 	uint32_t reg;
2598 
2599 	KASSERT_SC_MTX(sc);
2600 
2601 	if (!sc->use_inband_status) {
2602 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2603 		reg |= MVNETA_PANC_FORCELINKPASS;
2604 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2605 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2606 	}
2607 
2608 	mvneta_qflush(sc->ifp);
2609 	mvneta_portup(sc);
2610 	sc->linkup = TRUE;
2611 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2612 }
2613 
2614 STATIC void
2615 mvneta_linkdown(struct mvneta_softc *sc)
2616 {
2617 	uint32_t reg;
2618 
2619 	KASSERT_SC_MTX(sc);
2620 
2621 	if (!sc->use_inband_status) {
2622 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2623 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2624 		reg |= MVNETA_PANC_FORCELINKFAIL;
2625 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2626 	}
2627 
2628 	mvneta_portdown(sc);
2629 	mvneta_qflush(sc->ifp);
2630 	sc->linkup = FALSE;
2631 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2632 }
2633 
2634 STATIC void
2635 mvneta_linkreset(struct mvneta_softc *sc)
2636 {
2637 	struct mii_softc *mii;
2638 
2639 	if (sc->phy_attached) {
2640 		/* Force reset PHY */
2641 		mii = LIST_FIRST(&sc->mii->mii_phys);
2642 		if (mii)
2643 			mii_phy_reset(mii);
2644 	}
2645 }
2646 
2647 /*
2648  * Tx Subroutines
2649  */
2650 STATIC int
2651 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2652 {
2653 	struct ifnet *ifp;
2654 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2655 	struct mbuf *mtmp, *mbuf;
2656 	struct mvneta_tx_ring *tx;
2657 	struct mvneta_buf *txbuf;
2658 	struct mvneta_tx_desc *t;
2659 	uint32_t ptxsu;
2660 	int start, used, error, i, txnsegs;
2661 
2662 	mbuf = *mbufp;
2663 	tx = MVNETA_TX_RING(sc, q);
2664 	DASSERT(tx->used >= 0);
2665 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2666 	t = NULL;
2667 	ifp = sc->ifp;
2668 
2669 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2670 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2671 		if (mbuf == NULL) {
2672 			tx->drv_error++;
2673 			*mbufp = NULL;
2674 			return (ENOBUFS);
2675 		}
2676 		mbuf->m_flags &= ~M_VLANTAG;
2677 		*mbufp = mbuf;
2678 	}
2679 
2680 	if (__predict_false(mbuf->m_next != NULL &&
2681 	    (mbuf->m_pkthdr.csum_flags &
2682 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2683 		if (M_WRITABLE(mbuf) == 0) {
2684 			mtmp = m_dup(mbuf, M_NOWAIT);
2685 			m_freem(mbuf);
2686 			if (mtmp == NULL) {
2687 				tx->drv_error++;
2688 				*mbufp = NULL;
2689 				return (ENOBUFS);
2690 			}
2691 			*mbufp = mbuf = mtmp;
2692 		}
2693 	}
2694 
2695 	/* load mbuf using dmamap of 1st descriptor */
2696 	txbuf = &tx->txbuf[tx->cpu];
2697 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2698 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2699 	    BUS_DMA_NOWAIT);
2700 	if (__predict_false(error != 0)) {
2701 #ifdef MVNETA_KTR
2702 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
2703 #endif
2704 		/* This is the only recoverable error (except EFBIG). */
2705 		if (error != ENOMEM) {
2706 			tx->drv_error++;
2707 			m_freem(mbuf);
2708 			*mbufp = NULL;
2709 			return (ENOBUFS);
2710 		}
2711 		return (error);
2712 	}
2713 
2714 	if (__predict_false(txnsegs <= 0
2715 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2716 		/* we have no enough descriptors or mbuf is broken */
2717 #ifdef MVNETA_KTR
2718 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2719 		    ifp->if_xname, q, txnsegs);
2720 #endif
2721 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2722 		return (ENOBUFS);
2723 	}
2724 	DASSERT(txbuf->m == NULL);
2725 
2726 	/* remember mbuf using 1st descriptor */
2727 	txbuf->m = mbuf;
2728 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2729 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2730 
2731 	/* load to tx descriptors */
2732 	start = tx->cpu;
2733 	used = 0;
2734 	for (i = 0; i < txnsegs; i++) {
2735 		t = &tx->desc[tx->cpu];
2736 		t->command = 0;
2737 		t->l4ichk = 0;
2738 		t->flags = 0;
2739 		if (__predict_true(i == 0)) {
2740 			/* 1st descriptor */
2741 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2742 			t->command |= MVNETA_TX_CMD_F;
2743 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2744 		}
2745 		t->bufptr_pa = txsegs[i].ds_addr;
2746 		t->bytecnt = txsegs[i].ds_len;
2747 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2748 
2749 		tx->used++;
2750 		used++;
2751 	}
2752 	/* t is last descriptor here */
2753 	DASSERT(t != NULL);
2754 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2755 
2756 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2757 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2758 
2759 	while (__predict_false(used > 255)) {
2760 		ptxsu = MVNETA_PTXSU_NOWD(255);
2761 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2762 		used -= 255;
2763 	}
2764 	if (__predict_true(used > 0)) {
2765 		ptxsu = MVNETA_PTXSU_NOWD(used);
2766 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2767 	}
2768 	return (0);
2769 }
2770 
2771 STATIC void
2772 mvneta_tx_set_csumflag(struct ifnet *ifp,
2773     struct mvneta_tx_desc *t, struct mbuf *m)
2774 {
2775 	struct ether_header *eh;
2776 	int csum_flags;
2777 	uint32_t iphl, ipoff;
2778 	struct ip *ip;
2779 
2780 	iphl = ipoff = 0;
2781 	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
2782 	eh = mtod(m, struct ether_header *);
2783 	switch (ntohs(eh->ether_type)) {
2784 	case ETHERTYPE_IP:
2785 		ipoff = ETHER_HDR_LEN;
2786 		break;
2787 	case ETHERTYPE_IPV6:
2788 		return;
2789 	case ETHERTYPE_VLAN:
2790 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2791 		break;
2792 	}
2793 
2794 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2795 		ip = (struct ip *)(m->m_data + ipoff);
2796 		iphl = ip->ip_hl<<2;
2797 		t->command |= MVNETA_TX_CMD_L3_IP4;
2798 	} else {
2799 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2800 		return;
2801 	}
2802 
2803 
2804 	/* L3 */
2805 	if (csum_flags & CSUM_IP) {
2806 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2807 	}
2808 
2809 	/* L4 */
2810 	if (csum_flags & CSUM_IP_TCP) {
2811 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2812 		t->command |= MVNETA_TX_CMD_L4_TCP;
2813 	} else if (csum_flags & CSUM_IP_UDP) {
2814 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2815 		t->command |= MVNETA_TX_CMD_L4_UDP;
2816 	} else
2817 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2818 
2819 	t->l4ichk = 0;
2820 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2821 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2822 }
2823 
2824 STATIC void
2825 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2826 {
2827 	struct mvneta_tx_ring *tx;
2828 	struct mvneta_buf *txbuf;
2829 	struct mvneta_tx_desc *t;
2830 	uint32_t ptxs, ptxsu, ndesc;
2831 	int i;
2832 
2833 	KASSERT_TX_MTX(sc, q);
2834 
2835 	tx = MVNETA_TX_RING(sc, q);
2836 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2837 		return;
2838 
2839 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2840 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2841 
2842 	if (__predict_false(ndesc == 0)) {
2843 		if (tx->used == 0)
2844 			tx->queue_status = MVNETA_QUEUE_IDLE;
2845 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2846 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2847 			tx->queue_hung = TRUE;
2848 		return;
2849 	}
2850 
2851 #ifdef MVNETA_KTR
2852 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2853 	    sc->ifp->if_xname, q, ndesc);
2854 #endif
2855 
2856 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2857 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2858 
2859 	for (i = 0; i < ndesc; i++) {
2860 		t = &tx->desc[tx->dma];
2861 #ifdef MVNETA_KTR
2862 		if (t->flags & MVNETA_TX_F_ES)
2863 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2864 			    sc->ifp->if_xname, q, tx->dma);
2865 #endif
2866 		txbuf = &tx->txbuf[tx->dma];
2867 		if (__predict_true(txbuf->m != NULL)) {
2868 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2869 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2870 			m_freem(txbuf->m);
2871 			txbuf->m = NULL;
2872 		}
2873 		else
2874 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2875 		tx->dma = tx_counter_adv(tx->dma, 1);
2876 		tx->used--;
2877 	}
2878 	DASSERT(tx->used >= 0);
2879 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2880 	while (__predict_false(ndesc > 255)) {
2881 		ptxsu = MVNETA_PTXSU_NORB(255);
2882 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2883 		ndesc -= 255;
2884 	}
2885 	if (__predict_true(ndesc > 0)) {
2886 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2887 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2888 	}
2889 #ifdef MVNETA_KTR
2890 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2891 	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
2892 #endif
2893 
2894 	tx->watchdog_time = ticks;
2895 
2896 	if (tx->used == 0)
2897 		tx->queue_status = MVNETA_QUEUE_IDLE;
2898 }
2899 
2900 /*
2901  * Do a final TX complete when TX is idle.
2902  */
2903 STATIC void
2904 mvneta_tx_drain(struct mvneta_softc *sc)
2905 {
2906 	struct mvneta_tx_ring *tx;
2907 	int q;
2908 
2909 	/*
2910 	 * Handle trailing mbuf on TX queue.
2911 	 * Check is done lockess to avoid TX path contention.
2912 	 */
2913 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2914 		tx = MVNETA_TX_RING(sc, q);
2915 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2916 		    tx->used > 0) {
2917 			mvneta_tx_lockq(sc, q);
2918 			mvneta_tx_queue_complete(sc, q);
2919 			mvneta_tx_unlockq(sc, q);
2920 		}
2921 	}
2922 }
2923 
2924 /*
2925  * Rx Subroutines
2926  */
2927 STATIC int
2928 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2929 {
2930 	uint32_t prxs, npkt;
2931 	int more;
2932 
2933 	more = 0;
2934 	mvneta_rx_lockq(sc, q);
2935 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2936 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2937 	if (__predict_false(npkt == 0))
2938 		goto out;
2939 
2940 	if (count > 0 && npkt > count) {
2941 		more = 1;
2942 		npkt = count;
2943 	}
2944 	mvneta_rx_queue(sc, q, npkt);
2945 out:
2946 	mvneta_rx_unlockq(sc, q);
2947 	return more;
2948 }
2949 
2950 /*
2951  * Helper routine for updating PRXSU register of a given queue.
2952  * Handles number of processed descriptors bigger than maximum acceptable value.
2953  */
2954 STATIC __inline void
2955 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2956 {
2957 	uint32_t prxsu;
2958 
2959 	while (__predict_false(processed > 255)) {
2960 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2961 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2962 		processed -= 255;
2963 	}
2964 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
2965 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2966 }
2967 
2968 static __inline void
2969 mvneta_prefetch(void *p)
2970 {
2971 
2972 	__builtin_prefetch(p);
2973 }
2974 
2975 STATIC void
2976 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
2977 {
2978 	struct ifnet *ifp;
2979 	struct mvneta_rx_ring *rx;
2980 	struct mvneta_rx_desc *r;
2981 	struct mvneta_buf *rxbuf;
2982 	struct mbuf *m;
2983 	struct lro_ctrl *lro;
2984 	struct lro_entry *queued;
2985 	void *pktbuf;
2986 	int i, pktlen, processed, ndma;
2987 
2988 	KASSERT_RX_MTX(sc, q);
2989 
2990 	ifp = sc->ifp;
2991 	rx = MVNETA_RX_RING(sc, q);
2992 	processed = 0;
2993 
2994 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
2995 		return;
2996 
2997 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
2998 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2999 
3000 	for (i = 0; i < npkt; i++) {
3001 		/* Prefetch next desc, rxbuf. */
3002 		ndma = rx_counter_adv(rx->dma, 1);
3003 		mvneta_prefetch(&rx->desc[ndma]);
3004 		mvneta_prefetch(&rx->rxbuf[ndma]);
3005 
3006 		/* get descriptor and packet */
3007 		r = &rx->desc[rx->dma];
3008 		rxbuf = &rx->rxbuf[rx->dma];
3009 		m = rxbuf->m;
3010 		rxbuf->m = NULL;
3011 		DASSERT(m != NULL);
3012 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3013 		    BUS_DMASYNC_POSTREAD);
3014 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3015 		/* Prefetch mbuf header. */
3016 		mvneta_prefetch(m);
3017 
3018 		processed++;
3019 		/* Drop desc with error status or not in a single buffer. */
3020 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3021 		    (MVNETA_RX_F|MVNETA_RX_L));
3022 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3023 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3024 		    (MVNETA_RX_F|MVNETA_RX_L)))
3025 			goto rx_error;
3026 
3027 		/*
3028 		 * [ OFF | MH | PKT | CRC ]
3029 		 * bytecnt cover MH, PKT, CRC
3030 		 */
3031 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3032 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3033                     MVNETA_HWHEADER_SIZE;
3034 
3035 		/* Prefetch mbuf data. */
3036 		mvneta_prefetch(pktbuf);
3037 
3038 		/* Write value to mbuf (avoid read). */
3039 		m->m_data = pktbuf;
3040 		m->m_len = m->m_pkthdr.len = pktlen;
3041 		m->m_pkthdr.rcvif = ifp;
3042 		mvneta_rx_set_csumflag(ifp, r, m);
3043 
3044 		/* Increase rx_dma before releasing the lock. */
3045 		rx->dma = ndma;
3046 
3047 		if (__predict_false(rx->lro_enabled &&
3048 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3049 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3050 		    (m->m_pkthdr.csum_flags &
3051 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3052 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3053 			if (rx->lro.lro_cnt != 0) {
3054 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3055 					goto rx_done;
3056 			}
3057 		}
3058 
3059 		mvneta_rx_unlockq(sc, q);
3060 		(*ifp->if_input)(ifp, m);
3061 		mvneta_rx_lockq(sc, q);
3062 		/*
3063 		 * Check whether this queue has been disabled in the
3064 		 * meantime. If yes, then clear LRO and exit.
3065 		 */
3066 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3067 			goto rx_lro;
3068 rx_done:
3069 		/* Refresh receive ring to avoid stall and minimize jitter. */
3070 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3071 			mvneta_prxsu_update(sc, q, processed);
3072 			mvneta_rx_queue_refill(sc, q);
3073 			processed = 0;
3074 		}
3075 		continue;
3076 rx_error:
3077 		m_freem(m);
3078 		rx->dma = ndma;
3079 		/* Refresh receive ring to avoid stall and minimize jitter. */
3080 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3081 			mvneta_prxsu_update(sc, q, processed);
3082 			mvneta_rx_queue_refill(sc, q);
3083 			processed = 0;
3084 		}
3085 	}
3086 #ifdef MVNETA_KTR
3087 	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
3088 #endif
3089 	/* DMA status update */
3090 	mvneta_prxsu_update(sc, q, processed);
3091 	/* Refill the rest of buffers if there are any to refill */
3092 	mvneta_rx_queue_refill(sc, q);
3093 
3094 rx_lro:
3095 	/*
3096 	 * Flush any outstanding LRO work
3097 	 */
3098 	lro = &rx->lro;
3099 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3100 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3101 		tcp_lro_flush(lro, queued);
3102 	}
3103 }
3104 
3105 STATIC void
3106 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3107 {
3108 
3109 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3110 	/* This will remove all data at once */
3111 	m_freem(rxbuf->m);
3112 }
3113 
3114 STATIC void
3115 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3116 {
3117 	struct mvneta_rx_ring *rx;
3118 	struct mvneta_rx_desc *r;
3119 	struct mvneta_buf *rxbuf;
3120 	bus_dma_segment_t segs;
3121 	struct mbuf *m;
3122 	uint32_t prxs, prxsu, ndesc;
3123 	int npkt, refill, nsegs, error;
3124 
3125 	KASSERT_RX_MTX(sc, q);
3126 
3127 	rx = MVNETA_RX_RING(sc, q);
3128 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3129 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3130 	refill = MVNETA_RX_RING_CNT - ndesc;
3131 #ifdef MVNETA_KTR
3132 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
3133 	    refill);
3134 #endif
3135 	if (__predict_false(refill <= 0))
3136 		return;
3137 
3138 	for (npkt = 0; npkt < refill; npkt++) {
3139 		rxbuf = &rx->rxbuf[rx->cpu];
3140 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3141 		if (__predict_false(m == NULL)) {
3142 			error = ENOBUFS;
3143 			break;
3144 		}
3145 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3146 
3147 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3148 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3149 		if (__predict_false(error != 0 || nsegs != 1)) {
3150 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3151 			m_freem(m);
3152 			break;
3153 		}
3154 
3155 		/* Add the packet to the ring */
3156 		rxbuf->m = m;
3157 		r = &rx->desc[rx->cpu];
3158 		r->bufptr_pa = segs.ds_addr;
3159 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3160 
3161 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3162 	}
3163 	if (npkt == 0) {
3164 		if (refill == MVNETA_RX_RING_CNT)
3165 			rx->needs_refill = TRUE;
3166 		return;
3167 	}
3168 
3169 	rx->needs_refill = FALSE;
3170 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3171 
3172 	while (__predict_false(npkt > 255)) {
3173 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3174 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3175 		npkt -= 255;
3176 	}
3177 	if (__predict_true(npkt > 0)) {
3178 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3179 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3180 	}
3181 }
3182 
3183 STATIC __inline void
3184 mvneta_rx_set_csumflag(struct ifnet *ifp,
3185     struct mvneta_rx_desc *r, struct mbuf *m)
3186 {
3187 	uint32_t csum_flags;
3188 
3189 	csum_flags = 0;
3190 	if (__predict_false((r->status &
3191 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3192 		return; /* not a IP packet */
3193 
3194 	/* L3 */
3195 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3196 	    MVNETA_RX_IP_HEADER_OK))
3197 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3198 
3199 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3200 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3201 		/* L4 */
3202 		switch (r->status & MVNETA_RX_L4_MASK) {
3203 		case MVNETA_RX_L4_TCP:
3204 		case MVNETA_RX_L4_UDP:
3205 			csum_flags |= CSUM_L4_CALC;
3206 			if (__predict_true((r->status &
3207 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3208 				csum_flags |= CSUM_L4_VALID;
3209 				m->m_pkthdr.csum_data = htons(0xffff);
3210 			}
3211 			break;
3212 		case MVNETA_RX_L4_OTH:
3213 		default:
3214 			break;
3215 		}
3216 	}
3217 	m->m_pkthdr.csum_flags = csum_flags;
3218 }
3219 
3220 /*
3221  * MAC address filter
3222  */
3223 STATIC void
3224 mvneta_filter_setup(struct mvneta_softc *sc)
3225 {
3226 	struct ifnet *ifp;
3227 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3228 	uint32_t pxc;
3229 	int i;
3230 
3231 	KASSERT_SC_MTX(sc);
3232 
3233 	memset(dfut, 0, sizeof(dfut));
3234 	memset(dfsmt, 0, sizeof(dfsmt));
3235 	memset(dfomt, 0, sizeof(dfomt));
3236 
3237 	ifp = sc->ifp;
3238 	ifp->if_flags |= IFF_ALLMULTI;
3239 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
3240 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3241 			dfsmt[i] = dfomt[i] =
3242 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3243 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3244 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3245 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3246 		}
3247 	}
3248 
3249 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3250 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3251 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3252 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3253 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3254 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3255 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3256 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3257 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3258 	if (ifp->if_flags & IFF_BROADCAST) {
3259 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3260 	}
3261 	if (ifp->if_flags & IFF_PROMISC) {
3262 		pxc |= MVNETA_PXC_UPM;
3263 	}
3264 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3265 
3266 	/* Set Destination Address Filter Unicast Table */
3267 	if (ifp->if_flags & IFF_PROMISC) {
3268 		/* pass all unicast addresses */
3269 		for (i = 0; i < MVNETA_NDFUT; i++) {
3270 			dfut[i] =
3271 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3272 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3273 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3274 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3275 		}
3276 	} else {
3277 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3278 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3279 	}
3280 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3281 
3282 	/* Set Destination Address Filter Multicast Tables */
3283 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3284 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3285 }
3286 
3287 /*
3288  * sysctl(9)
3289  */
3290 STATIC int
3291 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3292 {
3293 	struct mvneta_sysctl_mib *arg;
3294 	struct mvneta_softc *sc;
3295 	uint64_t val;
3296 
3297 	arg = (struct mvneta_sysctl_mib *)arg1;
3298 	if (arg == NULL)
3299 		return (EINVAL);
3300 
3301 	sc = arg->sc;
3302 	if (sc == NULL)
3303 		return (EINVAL);
3304 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3305 		return (EINVAL);
3306 
3307 	mvneta_sc_lock(sc);
3308 	val = arg->counter;
3309 	mvneta_sc_unlock(sc);
3310 	return sysctl_handle_64(oidp, &val, 0, req);
3311 }
3312 
3313 
3314 STATIC int
3315 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3316 {
3317 	struct mvneta_softc *sc;
3318 	int err, val;
3319 
3320 	val = 0;
3321 	sc = (struct mvneta_softc *)arg1;
3322 	if (sc == NULL)
3323 		return (EINVAL);
3324 
3325 	err = sysctl_handle_int(oidp, &val, 0, req);
3326 	if (err != 0)
3327 		return (err);
3328 
3329 	if (val < 0 || val > 1)
3330 		return (EINVAL);
3331 
3332 	if (val == 1) {
3333 		mvneta_sc_lock(sc);
3334 		mvneta_clear_mib(sc);
3335 		mvneta_sc_unlock(sc);
3336 	}
3337 
3338 	return (0);
3339 }
3340 
3341 STATIC int
3342 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3343 {
3344 	struct mvneta_sysctl_queue *arg;
3345 	struct mvneta_rx_ring *rx;
3346 	struct mvneta_softc *sc;
3347 	uint32_t reg, time_mvtclk;
3348 	int err, time_us;
3349 
3350 	rx = NULL;
3351 	arg = (struct mvneta_sysctl_queue *)arg1;
3352 	if (arg == NULL)
3353 		return (EINVAL);
3354 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3355 		return (EINVAL);
3356 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3357 		return (EINVAL);
3358 
3359 	sc = arg->sc;
3360 	if (sc == NULL)
3361 		return (EINVAL);
3362 
3363 	/* read queue length */
3364 	mvneta_sc_lock(sc);
3365 	mvneta_rx_lockq(sc, arg->queue);
3366 	rx = MVNETA_RX_RING(sc, arg->queue);
3367 	time_mvtclk = rx->queue_th_time;
3368 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk();
3369 	mvneta_rx_unlockq(sc, arg->queue);
3370 	mvneta_sc_unlock(sc);
3371 
3372 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3373 	if (err != 0)
3374 		return (err);
3375 
3376 	mvneta_sc_lock(sc);
3377 	mvneta_rx_lockq(sc, arg->queue);
3378 
3379 	/* update queue length (0[sec] - 1[sec]) */
3380 	if (time_us < 0 || time_us > (1000 * 1000)) {
3381 		mvneta_rx_unlockq(sc, arg->queue);
3382 		mvneta_sc_unlock(sc);
3383 		return (EINVAL);
3384 	}
3385 	time_mvtclk =
3386 	    (uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL);
3387 	rx->queue_th_time = time_mvtclk;
3388 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3389 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3390 	mvneta_rx_unlockq(sc, arg->queue);
3391 	mvneta_sc_unlock(sc);
3392 
3393 	return (0);
3394 }
3395 
3396 STATIC void
3397 sysctl_mvneta_init(struct mvneta_softc *sc)
3398 {
3399 	struct sysctl_ctx_list *ctx;
3400 	struct sysctl_oid_list *children;
3401 	struct sysctl_oid_list *rxchildren;
3402 	struct sysctl_oid_list *qchildren, *mchildren;
3403 	struct sysctl_oid *tree;
3404 	int i, q;
3405 	struct mvneta_sysctl_queue *rxarg;
3406 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3407 	static const char *sysctl_queue_names[] = {
3408 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3409 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3410 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3411 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3412 	};
3413 #undef MVNETA_SYSCTL_NAME
3414 
3415 #ifndef NO_SYSCTL_DESCR
3416 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3417 	static const char *sysctl_queue_descrs[] = {
3418 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3419 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3420 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3421 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3422 	};
3423 #undef MVNETA_SYSCTL_DESCR
3424 #endif
3425 
3426 
3427 	ctx = device_get_sysctl_ctx(sc->dev);
3428 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3429 
3430 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3431 	    CTLFLAG_RD, 0, "NETA RX");
3432 	rxchildren = SYSCTL_CHILDREN(tree);
3433 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3434 	    CTLFLAG_RD, 0, "NETA MIB");
3435 	mchildren = SYSCTL_CHILDREN(tree);
3436 
3437 
3438 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3439 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3440 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3441 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3442 
3443 	/*
3444 	 * MIB access
3445 	 */
3446 	/* dev.mvneta.[unit].mib.<mibs> */
3447 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3448 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3449 
3450 		mib_arg->sc = sc;
3451 		mib_arg->index = i;
3452 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3453 		    mvneta_mib_list[i].sysctl_name,
3454 		    CTLTYPE_U64|CTLFLAG_RD, (void *)mib_arg, 0,
3455 		    sysctl_read_mib, "I", mvneta_mib_list[i].desc);
3456 	}
3457 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3458 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3459 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3460 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3461 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3462 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3463 
3464 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3465 	    CTLTYPE_INT|CTLFLAG_RW, (void *)sc, 0,
3466 	    sysctl_clear_mib, "I", "Reset MIB counters");
3467 
3468 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3469 		rxarg = &sc->sysctl_rx_queue[q];
3470 
3471 		rxarg->sc = sc;
3472 		rxarg->queue = q;
3473 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3474 
3475 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3476 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3477 		    sysctl_queue_names[q], CTLFLAG_RD, 0,
3478 		    sysctl_queue_descrs[q]);
3479 		qchildren = SYSCTL_CHILDREN(tree);
3480 
3481 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3482 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3483 		    CTLTYPE_UINT | CTLFLAG_RW, rxarg, 0,
3484 		    sysctl_set_queue_rxthtime, "I",
3485 		    "interrupt coalescing threshold timer [us]");
3486 	}
3487 }
3488 
3489 /*
3490  * MIB
3491  */
3492 STATIC void
3493 mvneta_clear_mib(struct mvneta_softc *sc)
3494 {
3495 	int i;
3496 
3497 	KASSERT_SC_MTX(sc);
3498 
3499 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3500 		if (mvneta_mib_list[i].reg64)
3501 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
3502 		else
3503 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
3504 		sc->sysctl_mib[i].counter = 0;
3505 	}
3506 	MVNETA_READ(sc, MVNETA_PDFC);
3507 	sc->counter_pdfc = 0;
3508 	MVNETA_READ(sc, MVNETA_POFC);
3509 	sc->counter_pofc = 0;
3510 	sc->counter_watchdog = 0;
3511 }
3512 
3513 STATIC void
3514 mvneta_update_mib(struct mvneta_softc *sc)
3515 {
3516 	struct mvneta_tx_ring *tx;
3517 	int i;
3518 	uint64_t val;
3519 	uint32_t reg;
3520 
3521 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3522 
3523 		if (mvneta_mib_list[i].reg64)
3524 			val = MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
3525 		else
3526 			val = MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
3527 
3528 		if (val == 0)
3529 			continue;
3530 
3531 		sc->sysctl_mib[i].counter += val;
3532 		switch (mvneta_mib_list[i].regnum) {
3533 			case MVNETA_MIB_RX_GOOD_OCT:
3534 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3535 				break;
3536 			case MVNETA_MIB_RX_BAD_FRAME:
3537 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3538 				break;
3539 			case MVNETA_MIB_RX_GOOD_FRAME:
3540 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3541 				break;
3542 			case MVNETA_MIB_RX_MCAST_FRAME:
3543 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3544 				break;
3545 			case MVNETA_MIB_TX_GOOD_OCT:
3546 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3547 				break;
3548 			case MVNETA_MIB_TX_GOOD_FRAME:
3549 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3550 				break;
3551 			case MVNETA_MIB_TX_MCAST_FRAME:
3552 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3553 				break;
3554 			case MVNETA_MIB_MAC_COL:
3555 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3556 				break;
3557 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3558 			case MVNETA_MIB_TX_EXCES_COL:
3559 			case MVNETA_MIB_MAC_LATE_COL:
3560 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3561 				break;
3562 		}
3563 	}
3564 
3565 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3566 	sc->counter_pdfc += reg;
3567 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3568 	reg = MVNETA_READ(sc, MVNETA_POFC);
3569 	sc->counter_pofc += reg;
3570 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3571 
3572 	/* TX watchdog. */
3573 	if (sc->counter_watchdog_mib > 0) {
3574 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3575 		sc->counter_watchdog_mib = 0;
3576 	}
3577 	/*
3578 	 * TX driver errors:
3579 	 * We do not take queue locks to not disrupt TX path.
3580 	 * We may only miss one drv error which will be fixed at
3581 	 * next mib update. We may also clear counter when TX path
3582 	 * is incrementing it but we only do it if counter was not zero
3583 	 * thus we may only loose one error.
3584 	 */
3585 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3586 		tx = MVNETA_TX_RING(sc, i);
3587 
3588 		if (tx->drv_error > 0) {
3589 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3590 			tx->drv_error = 0;
3591 		}
3592 	}
3593 }
3594