xref: /freebsd/sys/dev/neta/if_mvneta.c (revision 148a8da8)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47 
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61 
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/ofw/openfirm.h>
72 #include <dev/ofw/ofw_bus.h>
73 #include <dev/ofw/ofw_bus_subr.h>
74 
75 #include <dev/mdio/mdio.h>
76 
77 #include <arm/mv/mvvar.h>
78 
79 #if !defined(__aarch64__)
80 #include <arm/mv/mvreg.h>
81 #include <arm/mv/mvwin.h>
82 #endif
83 
84 #include "if_mvnetareg.h"
85 #include "if_mvnetavar.h"
86 
87 #include "miibus_if.h"
88 #include "mdio_if.h"
89 
90 #ifdef MVNETA_DEBUG
91 #define	STATIC /* nothing */
92 #else
93 #define	STATIC static
94 #endif
95 
96 #define	DASSERT(x) KASSERT((x), (#x))
97 
98 #define	A3700_TCLK_250MHZ		250000000
99 
100 /* Device Register Initialization */
101 STATIC int mvneta_initreg(struct ifnet *);
102 
103 /* Descriptor Ring Control for each of queues */
104 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
105 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
106 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
107 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
108 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
109 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
110 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
111 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
112 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 STATIC int mvneta_dma_create(struct mvneta_softc *);
114 
115 /* Rx/Tx Queue Control */
116 STATIC int mvneta_rx_queue_init(struct ifnet *, int);
117 STATIC int mvneta_tx_queue_init(struct ifnet *, int);
118 STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
119 STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
120 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
121 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
122 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
123 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
124 
125 /* Interrupt Handlers */
126 STATIC void mvneta_disable_intr(struct mvneta_softc *);
127 STATIC void mvneta_enable_intr(struct mvneta_softc *);
128 STATIC void mvneta_rxtxth_intr(void *);
129 STATIC int mvneta_misc_intr(struct mvneta_softc *);
130 STATIC void mvneta_tick(void *);
131 /* struct ifnet and mii callbacks*/
132 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
133 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
134 #ifdef MVNETA_MULTIQUEUE
135 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
136 #else /* !MVNETA_MULTIQUEUE */
137 STATIC void mvneta_start(struct ifnet *);
138 #endif
139 STATIC void mvneta_qflush(struct ifnet *);
140 STATIC void mvneta_tx_task(void *, int);
141 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
142 STATIC void mvneta_init(void *);
143 STATIC void mvneta_init_locked(void *);
144 STATIC void mvneta_stop(struct mvneta_softc *);
145 STATIC void mvneta_stop_locked(struct mvneta_softc *);
146 STATIC int mvneta_mediachange(struct ifnet *);
147 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
148 STATIC void mvneta_portup(struct mvneta_softc *);
149 STATIC void mvneta_portdown(struct mvneta_softc *);
150 
151 /* Link State Notify */
152 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
153 STATIC int mvneta_update_media(struct mvneta_softc *, int);
154 STATIC void mvneta_adjust_link(struct mvneta_softc *);
155 STATIC void mvneta_update_eee(struct mvneta_softc *);
156 STATIC void mvneta_update_fc(struct mvneta_softc *);
157 STATIC void mvneta_link_isr(struct mvneta_softc *);
158 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
159 STATIC void mvneta_linkup(struct mvneta_softc *);
160 STATIC void mvneta_linkdown(struct mvneta_softc *);
161 STATIC void mvneta_linkreset(struct mvneta_softc *);
162 
163 /* Tx Subroutines */
164 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
165 STATIC void mvneta_tx_set_csumflag(struct ifnet *,
166     struct mvneta_tx_desc *, struct mbuf *);
167 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
168 STATIC void mvneta_tx_drain(struct mvneta_softc *);
169 
170 /* Rx Subroutines */
171 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
172 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
173 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
174 STATIC void mvneta_rx_set_csumflag(struct ifnet *,
175     struct mvneta_rx_desc *, struct mbuf *);
176 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
177 
178 /* MAC address filter */
179 STATIC void mvneta_filter_setup(struct mvneta_softc *);
180 
181 /* sysctl(9) */
182 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
183 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
184 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
185 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
186 
187 /* MIB */
188 STATIC void mvneta_clear_mib(struct mvneta_softc *);
189 STATIC void mvneta_update_mib(struct mvneta_softc *);
190 
191 /* Switch */
192 STATIC boolean_t mvneta_find_ethernet_prop_switch(phandle_t, phandle_t);
193 STATIC boolean_t mvneta_has_switch(device_t);
194 
195 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
196 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
197 
198 STATIC struct mtx mii_mutex;
199 STATIC int mii_init = 0;
200 
201 /* Device */
202 STATIC int mvneta_detach(device_t);
203 /* MII */
204 STATIC int mvneta_miibus_readreg(device_t, int, int);
205 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
206 
207 /* Clock */
208 STATIC uint32_t mvneta_get_clk(void);
209 
210 static device_method_t mvneta_methods[] = {
211 	/* Device interface */
212 	DEVMETHOD(device_detach,	mvneta_detach),
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
216 	/* MDIO interface */
217 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
218 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
219 
220 	/* End */
221 	DEVMETHOD_END
222 };
223 
224 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
225 
226 DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
227 DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
228 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
229 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
230 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
231 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
232 
233 /*
234  * List of MIB register and names
235  */
236 enum mvneta_mib_idx
237 {
238 	MVNETA_MIB_RX_GOOD_OCT_IDX,
239 	MVNETA_MIB_RX_BAD_OCT_IDX,
240 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
241 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
242 	MVNETA_MIB_RX_BAD_FRAME_IDX,
243 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
244 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
245 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
246 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
247 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
248 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
249 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
250 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
251 	MVNETA_MIB_TX_GOOD_OCT_IDX,
252 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
253 	MVNETA_MIB_TX_EXCES_COL_IDX,
254 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
255 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
256 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
257 	MVNETA_MIB_FC_SENT_IDX,
258 	MVNETA_MIB_FC_GOOD_IDX,
259 	MVNETA_MIB_FC_BAD_IDX,
260 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
261 	MVNETA_MIB_PKT_FRAGMENT_IDX,
262 	MVNETA_MIB_PKT_OVERSIZE_IDX,
263 	MVNETA_MIB_PKT_JABBER_IDX,
264 	MVNETA_MIB_MAC_RX_ERR_IDX,
265 	MVNETA_MIB_MAC_CRC_ERR_IDX,
266 	MVNETA_MIB_MAC_COL_IDX,
267 	MVNETA_MIB_MAC_LATE_COL_IDX,
268 };
269 
270 STATIC struct mvneta_mib_def {
271 	uint32_t regnum;
272 	int reg64;
273 	const char *sysctl_name;
274 	const char *desc;
275 } mvneta_mib_list[] = {
276 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
277 	    "rx_good_oct", "Good Octets Rx"},
278 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
279 	    "rx_bad_oct", "Bad  Octets Rx"},
280 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
281 	    "tx_mac_err", "MAC Transmit Error"},
282 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
283 	    "rx_good_frame", "Good Frames Rx"},
284 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
285 	    "rx_bad_frame", "Bad Frames Rx"},
286 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
287 	    "rx_bcast_frame", "Broadcast Frames Rx"},
288 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
289 	    "rx_mcast_frame", "Multicast Frames Rx"},
290 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
291 	    "rx_frame_1_64", "Frame Size    1 -   64"},
292 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
293 	    "rx_frame_65_127", "Frame Size   65 -  127"},
294 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
295 	    "rx_frame_128_255", "Frame Size  128 -  255"},
296 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
297 	    "rx_frame_256_511", "Frame Size  256 -  511"},
298 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
299 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
300 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
301 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
302 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
303 	    "tx_good_oct", "Good Octets Tx"},
304 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
305 	    "tx_good_frame", "Good Frames Tx"},
306 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
307 	    "tx_exces_collision", "Excessive Collision"},
308 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
309 	    "tx_mcast_frame", "Multicast Frames Tx"},
310 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
311 	    "tx_bcast_frame", "Broadcast Frames Tx"},
312 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
313 	    "tx_mac_ctl_err", "Unknown MAC Control"},
314 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
315 	    "fc_tx", "Flow Control Tx"},
316 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
317 	    "fc_rx_good", "Good Flow Control Rx"},
318 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
319 	    "fc_rx_bad", "Bad Flow Control Rx"},
320 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
321 	    "pkt_undersize", "Undersized Packets Rx"},
322 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
323 	    "pkt_fragment", "Fragmented Packets Rx"},
324 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
325 	    "pkt_oversize", "Oversized Packets Rx"},
326 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
327 	    "pkt_jabber", "Jabber Packets Rx"},
328 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
329 	    "mac_rx_err", "MAC Rx Errors"},
330 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
331 	    "mac_crc_err", "MAC CRC Errors"},
332 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
333 	    "mac_collision", "MAC Collision"},
334 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
335 	    "mac_late_collision", "MAC Late Collision"},
336 };
337 
338 static struct resource_spec res_spec[] = {
339 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
340 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
341 	{ -1, 0}
342 };
343 
344 static struct {
345 	driver_intr_t *handler;
346 	char * description;
347 } mvneta_intrs[] = {
348 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
349 };
350 
351 STATIC uint32_t
352 mvneta_get_clk()
353 {
354 #if defined(__aarch64__)
355 	return (A3700_TCLK_250MHZ);
356 #else
357 	return (get_tclk());
358 #endif
359 }
360 
361 static int
362 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
363 {
364 	unsigned int mac_h;
365 	unsigned int mac_l;
366 
367 	mac_l = (addr[4] << 8) | (addr[5]);
368 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
369 	    (addr[2] << 8) | (addr[3] << 0);
370 
371 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
372 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
373 	return (0);
374 }
375 
376 static int
377 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
378 {
379 	uint32_t mac_l, mac_h;
380 
381 #ifdef FDT
382 	if (mvneta_fdt_mac_address(sc, addr) == 0)
383 		return (0);
384 #endif
385 	/*
386 	 * Fall back -- use the currently programmed address.
387 	 */
388 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
389 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
390 	if (mac_l == 0 && mac_h == 0) {
391 		/*
392 		 * Generate pseudo-random MAC.
393 		 * Set lower part to random number | unit number.
394 		 */
395 		mac_l = arc4random() & ~0xff;
396 		mac_l |= device_get_unit(sc->dev) & 0xff;
397 		mac_h = arc4random();
398 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
399 		if (bootverbose) {
400 			device_printf(sc->dev,
401 			    "Could not acquire MAC address. "
402 			    "Using randomized one.\n");
403 		}
404 	}
405 
406 	addr[0] = (mac_h & 0xff000000) >> 24;
407 	addr[1] = (mac_h & 0x00ff0000) >> 16;
408 	addr[2] = (mac_h & 0x0000ff00) >> 8;
409 	addr[3] = (mac_h & 0x000000ff);
410 	addr[4] = (mac_l & 0x0000ff00) >> 8;
411 	addr[5] = (mac_l & 0x000000ff);
412 	return (0);
413 }
414 
415 STATIC boolean_t
416 mvneta_find_ethernet_prop_switch(phandle_t ethernet, phandle_t node)
417 {
418 	boolean_t ret;
419 	phandle_t child, switch_eth_handle, switch_eth;
420 
421 	for (child = OF_child(node); child != 0; child = OF_peer(child)) {
422 		if (OF_getencprop(child, "ethernet", (void*)&switch_eth_handle,
423 		    sizeof(switch_eth_handle)) > 0) {
424 			if (switch_eth_handle > 0) {
425 				switch_eth = OF_node_from_xref(
426 				    switch_eth_handle);
427 
428 				if (switch_eth == ethernet)
429 					return (true);
430 			}
431 		}
432 
433 		ret = mvneta_find_ethernet_prop_switch(ethernet, child);
434 		if (ret != 0)
435 			return (ret);
436 	}
437 
438 	return (false);
439 }
440 
441 STATIC boolean_t
442 mvneta_has_switch(device_t self)
443 {
444 	phandle_t node;
445 
446 	node = ofw_bus_get_node(self);
447 
448 	return mvneta_find_ethernet_prop_switch(node, OF_finddevice("/"));
449 }
450 
451 STATIC int
452 mvneta_dma_create(struct mvneta_softc *sc)
453 {
454 	size_t maxsize, maxsegsz;
455 	size_t q;
456 	int error;
457 
458 	/*
459 	 * Create Tx DMA
460 	 */
461 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
462 
463 	error = bus_dma_tag_create(
464 	    bus_get_dma_tag(sc->dev),		/* parent */
465 	    16, 0,                              /* alignment, boundary */
466 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
467 	    BUS_SPACE_MAXADDR,                  /* highaddr */
468 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
469 	    maxsize,				/* maxsize */
470 	    1,					/* nsegments */
471 	    maxsegsz,				/* maxsegsz */
472 	    0,					/* flags */
473 	    NULL, NULL,				/* lockfunc, lockfuncarg */
474 	    &sc->tx_dtag);			/* dmat */
475 	if (error != 0) {
476 		device_printf(sc->dev,
477 		    "Failed to create DMA tag for Tx descriptors.\n");
478 		goto fail;
479 	}
480 	error = bus_dma_tag_create(
481 	    bus_get_dma_tag(sc->dev),		/* parent */
482 	    1, 0,				/* alignment, boundary */
483 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
484 	    BUS_SPACE_MAXADDR,			/* highaddr */
485 	    NULL, NULL,				/* filtfunc, filtfuncarg */
486 	    MVNETA_PACKET_SIZE,			/* maxsize */
487 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
488 	    MVNETA_PACKET_SIZE,			/* maxsegsz */
489 	    BUS_DMA_ALLOCNOW,			/* flags */
490 	    NULL, NULL,				/* lockfunc, lockfuncarg */
491 	    &sc->txmbuf_dtag);
492 	if (error != 0) {
493 		device_printf(sc->dev,
494 		    "Failed to create DMA tag for Tx mbufs.\n");
495 		goto fail;
496 	}
497 
498 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
499 		error = mvneta_ring_alloc_tx_queue(sc, q);
500 		if (error != 0) {
501 			device_printf(sc->dev,
502 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
503 			goto fail;
504 		}
505 	}
506 
507 	/*
508 	 * Create Rx DMA.
509 	 */
510 	/* Create tag for Rx descripors */
511 	error = bus_dma_tag_create(
512 	    bus_get_dma_tag(sc->dev),		/* parent */
513 	    32, 0,                              /* alignment, boundary */
514 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
515 	    BUS_SPACE_MAXADDR,                  /* highaddr */
516 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
517 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
518 	    1,					/* nsegments */
519 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
520 	    0,					/* flags */
521 	    NULL, NULL,				/* lockfunc, lockfuncarg */
522 	    &sc->rx_dtag);			/* dmat */
523 	if (error != 0) {
524 		device_printf(sc->dev,
525 		    "Failed to create DMA tag for Rx descriptors.\n");
526 		goto fail;
527 	}
528 
529 	/* Create tag for Rx buffers */
530 	error = bus_dma_tag_create(
531 	    bus_get_dma_tag(sc->dev),		/* parent */
532 	    32, 0,				/* alignment, boundary */
533 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
534 	    BUS_SPACE_MAXADDR,			/* highaddr */
535 	    NULL, NULL,				/* filtfunc, filtfuncarg */
536 	    MVNETA_PACKET_SIZE, 1,		/* maxsize, nsegments */
537 	    MVNETA_PACKET_SIZE,			/* maxsegsz */
538 	    0,					/* flags */
539 	    NULL, NULL,				/* lockfunc, lockfuncarg */
540 	    &sc->rxbuf_dtag);			/* dmat */
541 	if (error != 0) {
542 		device_printf(sc->dev,
543 		    "Failed to create DMA tag for Rx buffers.\n");
544 		goto fail;
545 	}
546 
547 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
548 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
549 			device_printf(sc->dev,
550 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
551 			goto fail;
552 		}
553 	}
554 
555 	return (0);
556 fail:
557 	mvneta_detach(sc->dev);
558 
559 	return (error);
560 }
561 
562 /* ARGSUSED */
563 int
564 mvneta_attach(device_t self)
565 {
566 	struct mvneta_softc *sc;
567 	struct ifnet *ifp;
568 	device_t child;
569 	int ifm_target;
570 	int q, error;
571 #if !defined(__aarch64__)
572 	uint32_t reg;
573 #endif
574 
575 	sc = device_get_softc(self);
576 	sc->dev = self;
577 
578 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
579 
580 	error = bus_alloc_resources(self, res_spec, sc->res);
581 	if (error) {
582 		device_printf(self, "could not allocate resources\n");
583 		return (ENXIO);
584 	}
585 
586 	sc->version = MVNETA_READ(sc, MVNETA_PV);
587 	device_printf(self, "version is %x\n", sc->version);
588 	callout_init(&sc->tick_ch, 0);
589 
590 	/*
591 	 * make sure DMA engines are in reset state
592 	 */
593 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
594 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
595 
596 #if !defined(__aarch64__)
597 	/*
598 	 * Disable port snoop for buffers and descriptors
599 	 * to avoid L2 caching of both without DRAM copy.
600 	 * Obtain coherency settings from the first MBUS
601 	 * window attribute.
602 	 */
603 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
604 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
605 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
606 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
607 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
608 	}
609 #endif
610 
611 	/*
612 	 * MAC address
613 	 */
614 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
615 		device_printf(self, "no mac address.\n");
616 		return (ENXIO);
617 	}
618 	mvneta_set_mac_address(sc, sc->enaddr);
619 
620 	mvneta_disable_intr(sc);
621 
622 	/* Allocate network interface */
623 	ifp = sc->ifp = if_alloc(IFT_ETHER);
624 	if (ifp == NULL) {
625 		device_printf(self, "if_alloc() failed\n");
626 		mvneta_detach(self);
627 		return (ENOMEM);
628 	}
629 	if_initname(ifp, device_get_name(self), device_get_unit(self));
630 
631 	/*
632 	 * We can support 802.1Q VLAN-sized frames and jumbo
633 	 * Ethernet frames.
634 	 */
635 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
636 
637 	ifp->if_softc = sc;
638 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
639 #ifdef MVNETA_MULTIQUEUE
640 	ifp->if_transmit = mvneta_transmit;
641 	ifp->if_qflush = mvneta_qflush;
642 #else /* !MVNETA_MULTIQUEUE */
643 	ifp->if_start = mvneta_start;
644 	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
645 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
646 	IFQ_SET_READY(&ifp->if_snd);
647 #endif
648 	ifp->if_init = mvneta_init;
649 	ifp->if_ioctl = mvneta_ioctl;
650 
651 	/*
652 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
653 	 */
654 	ifp->if_capabilities |= IFCAP_HWCSUM;
655 
656 	/*
657 	 * As VLAN hardware tagging is not supported
658 	 * but is necessary to perform VLAN hardware checksums,
659 	 * it is done in the driver
660 	 */
661 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
662 
663 	/*
664 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
665 	 */
666 	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
667 	ifp->if_capenable = ifp->if_capabilities;
668 
669 	/*
670 	 * Disabled option(s):
671 	 * - Support for Large Receive Offload
672 	 */
673 	ifp->if_capabilities |= IFCAP_LRO;
674 
675 	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
676 
677 	/*
678 	 * Device DMA Buffer allocation.
679 	 * Handles resource deallocation in case of failure.
680 	 */
681 	error = mvneta_dma_create(sc);
682 	if (error != 0) {
683 		mvneta_detach(self);
684 		return (error);
685 	}
686 
687 	/* Initialize queues */
688 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
689 		error = mvneta_ring_init_tx_queue(sc, q);
690 		if (error != 0) {
691 			mvneta_detach(self);
692 			return (error);
693 		}
694 	}
695 
696 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
697 		error = mvneta_ring_init_rx_queue(sc, q);
698 		if (error != 0) {
699 			mvneta_detach(self);
700 			return (error);
701 		}
702 	}
703 
704 	ether_ifattach(ifp, sc->enaddr);
705 
706 	/*
707 	 * Enable DMA engines and Initialize Device Registers.
708 	 */
709 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
710 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
711 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
712 	mvneta_sc_lock(sc);
713 	mvneta_filter_setup(sc);
714 	mvneta_sc_unlock(sc);
715 	mvneta_initreg(ifp);
716 
717 	/*
718 	 * Now MAC is working, setup MII.
719 	 */
720 	if (mii_init == 0) {
721 		/*
722 		 * MII bus is shared by all MACs and all PHYs in SoC.
723 		 * serializing the bus access should be safe.
724 		 */
725 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
726 		mii_init = 1;
727 	}
728 
729 	/* Attach PHY(s) */
730 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
731 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
732 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
733 		    MII_OFFSET_ANY, 0);
734 		if (error != 0) {
735 			if (bootverbose) {
736 				device_printf(self,
737 				    "MII attach failed, error: %d\n", error);
738 			}
739 			ether_ifdetach(sc->ifp);
740 			mvneta_detach(self);
741 			return (error);
742 		}
743 		sc->mii = device_get_softc(sc->miibus);
744 		sc->phy_attached = 1;
745 
746 		/* Disable auto-negotiation in MAC - rely on PHY layer */
747 		mvneta_update_autoneg(sc, FALSE);
748 	} else if (sc->use_inband_status == TRUE) {
749 		/* In-band link status */
750 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
751 		    mvneta_mediastatus);
752 
753 		/* Configure media */
754 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
755 		    0, NULL);
756 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
757 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
758 		    0, NULL);
759 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
760 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
761 		    0, NULL);
762 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
763 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
764 
765 		/* Enable auto-negotiation */
766 		mvneta_update_autoneg(sc, TRUE);
767 
768 		mvneta_sc_lock(sc);
769 		if (MVNETA_IS_LINKUP(sc))
770 			mvneta_linkup(sc);
771 		else
772 			mvneta_linkdown(sc);
773 		mvneta_sc_unlock(sc);
774 
775 	} else {
776 		/* Fixed-link, use predefined values */
777 		mvneta_update_autoneg(sc, FALSE);
778 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
779 		    mvneta_mediastatus);
780 
781 		ifm_target = IFM_ETHER;
782 		switch (sc->phy_speed) {
783 		case 2500:
784 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
785 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
786 				device_printf(self,
787 				    "2.5G speed can work only in (Q)SGMII mode\n");
788 				ether_ifdetach(sc->ifp);
789 				mvneta_detach(self);
790 				return (ENXIO);
791 			}
792 			ifm_target |= IFM_2500_T;
793 			break;
794 		case 1000:
795 			ifm_target |= IFM_1000_T;
796 			break;
797 		case 100:
798 			ifm_target |= IFM_100_TX;
799 			break;
800 		case 10:
801 			ifm_target |= IFM_10_T;
802 			break;
803 		default:
804 			ether_ifdetach(sc->ifp);
805 			mvneta_detach(self);
806 			return (ENXIO);
807 		}
808 
809 		if (sc->phy_fdx)
810 			ifm_target |= IFM_FDX;
811 		else
812 			ifm_target |= IFM_HDX;
813 
814 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
815 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
816 		if_link_state_change(sc->ifp, LINK_STATE_UP);
817 
818 		if (mvneta_has_switch(self)) {
819 			if (bootverbose)
820 				device_printf(self, "This device is attached to a switch\n");
821 			child = device_add_child(sc->dev, "mdio", -1);
822 			if (child == NULL) {
823 				ether_ifdetach(sc->ifp);
824 				mvneta_detach(self);
825 				return (ENXIO);
826 			}
827 			bus_generic_attach(sc->dev);
828 			bus_generic_attach(child);
829 		}
830 
831 		/* Configure MAC media */
832 		mvneta_update_media(sc, ifm_target);
833 	}
834 
835 	sysctl_mvneta_init(sc);
836 
837 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
838 
839 	error = bus_setup_intr(self, sc->res[1],
840 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
841 	    &sc->ih_cookie[0]);
842 	if (error) {
843 		device_printf(self, "could not setup %s\n",
844 		    mvneta_intrs[0].description);
845 		ether_ifdetach(sc->ifp);
846 		mvneta_detach(self);
847 		return (error);
848 	}
849 
850 	return (0);
851 }
852 
853 STATIC int
854 mvneta_detach(device_t dev)
855 {
856 	struct mvneta_softc *sc;
857 	int q;
858 
859 	sc = device_get_softc(dev);
860 
861 	mvneta_stop(sc);
862 	/* Detach network interface */
863 	if (sc->ifp)
864 		if_free(sc->ifp);
865 
866 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
867 		mvneta_ring_dealloc_rx_queue(sc, q);
868 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
869 		mvneta_ring_dealloc_tx_queue(sc, q);
870 
871 	if (sc->tx_dtag != NULL)
872 		bus_dma_tag_destroy(sc->tx_dtag);
873 	if (sc->rx_dtag != NULL)
874 		bus_dma_tag_destroy(sc->rx_dtag);
875 	if (sc->txmbuf_dtag != NULL)
876 		bus_dma_tag_destroy(sc->txmbuf_dtag);
877 
878 	bus_release_resources(dev, res_spec, sc->res);
879 	return (0);
880 }
881 
882 /*
883  * MII
884  */
885 STATIC int
886 mvneta_miibus_readreg(device_t dev, int phy, int reg)
887 {
888 	struct mvneta_softc *sc;
889 	struct ifnet *ifp;
890 	uint32_t smi, val;
891 	int i;
892 
893 	sc = device_get_softc(dev);
894 	ifp = sc->ifp;
895 
896 	mtx_lock(&mii_mutex);
897 
898 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
899 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
900 			break;
901 		DELAY(1);
902 	}
903 	if (i == MVNETA_PHY_TIMEOUT) {
904 		if_printf(ifp, "SMI busy timeout\n");
905 		mtx_unlock(&mii_mutex);
906 		return (-1);
907 	}
908 
909 	smi = MVNETA_SMI_PHYAD(phy) |
910 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
911 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
912 
913 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
914 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
915 			break;
916 		DELAY(1);
917 	}
918 
919 	if (i == MVNETA_PHY_TIMEOUT) {
920 		if_printf(ifp, "SMI busy timeout\n");
921 		mtx_unlock(&mii_mutex);
922 		return (-1);
923 	}
924 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
925 		smi = MVNETA_READ(sc, MVNETA_SMI);
926 		if (smi & MVNETA_SMI_READVALID)
927 			break;
928 		DELAY(1);
929 	}
930 
931 	if (i == MVNETA_PHY_TIMEOUT) {
932 		if_printf(ifp, "SMI busy timeout\n");
933 		mtx_unlock(&mii_mutex);
934 		return (-1);
935 	}
936 
937 	mtx_unlock(&mii_mutex);
938 
939 #ifdef MVNETA_KTR
940 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
941 	    MVNETA_PHY_TIMEOUT);
942 #endif
943 
944 	val = smi & MVNETA_SMI_DATA_MASK;
945 
946 #ifdef MVNETA_KTR
947 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
948 	    reg, val);
949 #endif
950 	return (val);
951 }
952 
953 STATIC int
954 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
955 {
956 	struct mvneta_softc *sc;
957 	struct ifnet *ifp;
958 	uint32_t smi;
959 	int i;
960 
961 	sc = device_get_softc(dev);
962 	ifp = sc->ifp;
963 #ifdef MVNETA_KTR
964 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
965 	    phy, reg, val);
966 #endif
967 
968 	mtx_lock(&mii_mutex);
969 
970 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
971 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
972 			break;
973 		DELAY(1);
974 	}
975 	if (i == MVNETA_PHY_TIMEOUT) {
976 		if_printf(ifp, "SMI busy timeout\n");
977 		mtx_unlock(&mii_mutex);
978 		return (0);
979 	}
980 
981 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
982 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
983 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
984 
985 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
986 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
987 			break;
988 		DELAY(1);
989 	}
990 
991 	mtx_unlock(&mii_mutex);
992 
993 	if (i == MVNETA_PHY_TIMEOUT)
994 		if_printf(ifp, "phy write timed out\n");
995 
996 	return (0);
997 }
998 
999 STATIC void
1000 mvneta_portup(struct mvneta_softc *sc)
1001 {
1002 	int q;
1003 
1004 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1005 		mvneta_rx_lockq(sc, q);
1006 		mvneta_rx_queue_enable(sc->ifp, q);
1007 		mvneta_rx_unlockq(sc, q);
1008 	}
1009 
1010 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1011 		mvneta_tx_lockq(sc, q);
1012 		mvneta_tx_queue_enable(sc->ifp, q);
1013 		mvneta_tx_unlockq(sc, q);
1014 	}
1015 
1016 }
1017 
1018 STATIC void
1019 mvneta_portdown(struct mvneta_softc *sc)
1020 {
1021 	struct mvneta_rx_ring *rx;
1022 	struct mvneta_tx_ring *tx;
1023 	int q, cnt;
1024 	uint32_t reg;
1025 
1026 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1027 		rx = MVNETA_RX_RING(sc, q);
1028 		mvneta_rx_lockq(sc, q);
1029 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1030 		mvneta_rx_unlockq(sc, q);
1031 	}
1032 
1033 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1034 		tx = MVNETA_TX_RING(sc, q);
1035 		mvneta_tx_lockq(sc, q);
1036 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1037 		mvneta_tx_unlockq(sc, q);
1038 	}
1039 
1040 	/* Wait for all Rx activity to terminate. */
1041 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1042 	reg = MVNETA_RQC_DIS(reg);
1043 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1044 	cnt = 0;
1045 	do {
1046 		if (cnt >= RX_DISABLE_TIMEOUT) {
1047 			if_printf(sc->ifp,
1048 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1049 			break;
1050 		}
1051 		cnt++;
1052 		reg = MVNETA_READ(sc, MVNETA_RQC);
1053 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1054 
1055 	/* Wait for all Tx activity to terminate. */
1056 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1057 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1058 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1059 
1060 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1061 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1062 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1063 
1064 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1065 	reg = MVNETA_TQC_DIS(reg);
1066 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1067 	cnt = 0;
1068 	do {
1069 		if (cnt >= TX_DISABLE_TIMEOUT) {
1070 			if_printf(sc->ifp,
1071 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1072 			break;
1073 		}
1074 		cnt++;
1075 		reg = MVNETA_READ(sc, MVNETA_TQC);
1076 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1077 
1078 	/* Wait for all Tx FIFO is empty */
1079 	cnt = 0;
1080 	do {
1081 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1082 			if_printf(sc->ifp,
1083 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1084 			break;
1085 		}
1086 		cnt++;
1087 		reg = MVNETA_READ(sc, MVNETA_PS0);
1088 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1089 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1090 }
1091 
1092 /*
1093  * Device Register Initialization
1094  *  reset device registers to device driver default value.
1095  *  the device is not enabled here.
1096  */
1097 STATIC int
1098 mvneta_initreg(struct ifnet *ifp)
1099 {
1100 	struct mvneta_softc *sc;
1101 	int q, i;
1102 	uint32_t reg;
1103 
1104 	sc = ifp->if_softc;
1105 #ifdef MVNETA_KTR
1106 	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
1107 #endif
1108 
1109 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1110 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1111 	/* Enable mbus retry. */
1112 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1113 
1114 	/* Init TX/RX Queue Registers */
1115 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1116 		mvneta_rx_lockq(sc, q);
1117 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1118 			device_printf(sc->dev,
1119 			    "initialization failed: cannot initialize queue\n");
1120 			mvneta_rx_unlockq(sc, q);
1121 			return (ENOBUFS);
1122 		}
1123 		mvneta_rx_unlockq(sc, q);
1124 	}
1125 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1126 		mvneta_tx_lockq(sc, q);
1127 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1128 			device_printf(sc->dev,
1129 			    "initialization failed: cannot initialize queue\n");
1130 			mvneta_tx_unlockq(sc, q);
1131 			return (ENOBUFS);
1132 		}
1133 		mvneta_tx_unlockq(sc, q);
1134 	}
1135 
1136 	/*
1137 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1138 	 * In case the port uses SMI-controlled PHY, poll its status with
1139 	 * mii_tick() and update MAC settings accordingly.
1140 	 */
1141 	reg = MVNETA_READ(sc, MVNETA_EUC);
1142 	reg &= ~MVNETA_EUC_POLLING;
1143 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1144 
1145 	/* EEE: Low Power Idle */
1146 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1147 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1148 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1149 
1150 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1151 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1152 
1153 	reg = MVNETA_LPIC2_MUSTSET;
1154 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1155 
1156 	/* Port MAC Control set 0 */
1157 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1158 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1159 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(MVNETA_MAX_FRAME);
1160 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1161 
1162 	/* Port MAC Control set 2 */
1163 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1164 	switch (sc->phy_mode) {
1165 	case MVNETA_PHY_QSGMII:
1166 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1167 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1168 		break;
1169 	case MVNETA_PHY_SGMII:
1170 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1171 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1172 		break;
1173 	case MVNETA_PHY_RGMII:
1174 	case MVNETA_PHY_RGMII_ID:
1175 		reg |= MVNETA_PMACC2_RGMIIEN;
1176 		break;
1177 	}
1178 	reg |= MVNETA_PMACC2_MUSTSET;
1179 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1180 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1181 
1182 	/* Port Configuration Extended: enable Tx CRC generation */
1183 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1184 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1185 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1186 
1187 	/* clear MIB counter registers(clear by read) */
1188 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
1189 		if (mvneta_mib_list[i].reg64)
1190 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
1191 		else
1192 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
1193 	}
1194 	MVNETA_READ(sc, MVNETA_PDFC);
1195 	MVNETA_READ(sc, MVNETA_POFC);
1196 
1197 	/* Set SDC register except IPGINT bits */
1198 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1199 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1200 	reg |= MVNETA_SDC_BLMR;
1201 	reg |= MVNETA_SDC_BLMT;
1202 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1203 
1204 	return (0);
1205 }
1206 
1207 STATIC void
1208 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1209 {
1210 
1211 	if (error != 0)
1212 		return;
1213 	*(bus_addr_t *)arg = segs->ds_addr;
1214 }
1215 
1216 STATIC int
1217 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1218 {
1219 	struct mvneta_rx_ring *rx;
1220 	struct mvneta_buf *rxbuf;
1221 	bus_dmamap_t dmap;
1222 	int i, error;
1223 
1224 	if (q >= MVNETA_RX_QNUM_MAX)
1225 		return (EINVAL);
1226 
1227 	rx = MVNETA_RX_RING(sc, q);
1228 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1229 	/* Allocate DMA memory for Rx descriptors */
1230 	error = bus_dmamem_alloc(sc->rx_dtag,
1231 	    (void**)&(rx->desc),
1232 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1233 	    &rx->desc_map);
1234 	if (error != 0 || rx->desc == NULL)
1235 		goto fail;
1236 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1237 	    rx->desc,
1238 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1239 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1240 	if (error != 0)
1241 		goto fail;
1242 
1243 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1244 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1245 		if (error != 0) {
1246 			device_printf(sc->dev,
1247 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1248 			goto fail;
1249 		}
1250 		rxbuf = &rx->rxbuf[i];
1251 		rxbuf->dmap = dmap;
1252 		rxbuf->m = NULL;
1253 	}
1254 
1255 	return (0);
1256 fail:
1257 	mvneta_ring_dealloc_rx_queue(sc, q);
1258 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1259 	return (error);
1260 }
1261 
1262 STATIC int
1263 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1264 {
1265 	struct mvneta_tx_ring *tx;
1266 	int error;
1267 
1268 	if (q >= MVNETA_TX_QNUM_MAX)
1269 		return (EINVAL);
1270 	tx = MVNETA_TX_RING(sc, q);
1271 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1272 	error = bus_dmamem_alloc(sc->tx_dtag,
1273 	    (void**)&(tx->desc),
1274 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1275 	    &tx->desc_map);
1276 	if (error != 0 || tx->desc == NULL)
1277 		goto fail;
1278 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1279 	    tx->desc,
1280 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1281 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1282 	if (error != 0)
1283 		goto fail;
1284 
1285 #ifdef MVNETA_MULTIQUEUE
1286 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1287 	    &tx->ring_mtx);
1288 	if (tx->br == NULL) {
1289 		device_printf(sc->dev,
1290 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1291 		error = ENOMEM;
1292 		goto fail;
1293 	}
1294 #endif
1295 
1296 	return (0);
1297 fail:
1298 	mvneta_ring_dealloc_tx_queue(sc, q);
1299 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1300 	return (error);
1301 }
1302 
1303 STATIC void
1304 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1305 {
1306 	struct mvneta_tx_ring *tx;
1307 	struct mvneta_buf *txbuf;
1308 	void *kva;
1309 	int error;
1310 	int i;
1311 
1312 	if (q >= MVNETA_TX_QNUM_MAX)
1313 		return;
1314 	tx = MVNETA_TX_RING(sc, q);
1315 
1316 	if (tx->taskq != NULL) {
1317 		/* Remove task */
1318 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1319 			taskqueue_drain(tx->taskq, &tx->task);
1320 	}
1321 #ifdef MVNETA_MULTIQUEUE
1322 	if (tx->br != NULL)
1323 		drbr_free(tx->br, M_DEVBUF);
1324 #endif
1325 
1326 	if (sc->txmbuf_dtag != NULL) {
1327 		if (mtx_name(&tx->ring_mtx) != NULL) {
1328 			/*
1329 			 * It is assumed that maps are being loaded after mutex
1330 			 * is initialized. Therefore we can skip unloading maps
1331 			 * when mutex is empty.
1332 			 */
1333 			mvneta_tx_lockq(sc, q);
1334 			mvneta_ring_flush_tx_queue(sc, q);
1335 			mvneta_tx_unlockq(sc, q);
1336 		}
1337 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1338 			txbuf = &tx->txbuf[i];
1339 			if (txbuf->dmap != NULL) {
1340 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1341 				    txbuf->dmap);
1342 				if (error != 0) {
1343 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1344 					    __func__, q, i);
1345 				}
1346 			}
1347 		}
1348 	}
1349 
1350 	if (tx->desc_pa != 0)
1351 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1352 
1353 	kva = (void *)tx->desc;
1354 	if (kva != NULL)
1355 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1356 
1357 	if (mtx_name(&tx->ring_mtx) != NULL)
1358 		mtx_destroy(&tx->ring_mtx);
1359 
1360 	memset(tx, 0, sizeof(*tx));
1361 }
1362 
1363 STATIC void
1364 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1365 {
1366 	struct mvneta_rx_ring *rx;
1367 	struct lro_ctrl	*lro;
1368 	void *kva;
1369 
1370 	if (q >= MVNETA_RX_QNUM_MAX)
1371 		return;
1372 
1373 	rx = MVNETA_RX_RING(sc, q);
1374 
1375 	mvneta_ring_flush_rx_queue(sc, q);
1376 
1377 	if (rx->desc_pa != 0)
1378 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1379 
1380 	kva = (void *)rx->desc;
1381 	if (kva != NULL)
1382 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1383 
1384 	lro = &rx->lro;
1385 	tcp_lro_free(lro);
1386 
1387 	if (mtx_name(&rx->ring_mtx) != NULL)
1388 		mtx_destroy(&rx->ring_mtx);
1389 
1390 	memset(rx, 0, sizeof(*rx));
1391 }
1392 
1393 STATIC int
1394 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1395 {
1396 	struct mvneta_rx_ring *rx;
1397 	struct lro_ctrl	*lro;
1398 	int error;
1399 
1400 	if (q >= MVNETA_RX_QNUM_MAX)
1401 		return (0);
1402 
1403 	rx = MVNETA_RX_RING(sc, q);
1404 	rx->dma = rx->cpu = 0;
1405 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1406 	rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */
1407 
1408 	/* Initialize LRO */
1409 	rx->lro_enabled = FALSE;
1410 	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
1411 		lro = &rx->lro;
1412 		error = tcp_lro_init(lro);
1413 		if (error != 0)
1414 			device_printf(sc->dev, "LRO Initialization failed!\n");
1415 		else {
1416 			rx->lro_enabled = TRUE;
1417 			lro->ifp = sc->ifp;
1418 		}
1419 	}
1420 
1421 	return (0);
1422 }
1423 
1424 STATIC int
1425 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1426 {
1427 	struct mvneta_tx_ring *tx;
1428 	struct mvneta_buf *txbuf;
1429 	int i, error;
1430 
1431 	if (q >= MVNETA_TX_QNUM_MAX)
1432 		return (0);
1433 
1434 	tx = MVNETA_TX_RING(sc, q);
1435 
1436 	/* Tx handle */
1437 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1438 		txbuf = &tx->txbuf[i];
1439 		txbuf->m = NULL;
1440 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1441 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1442 		    &txbuf->dmap);
1443 		if (error != 0) {
1444 			device_printf(sc->dev,
1445 			    "can't create dma map (tx ring %d)\n", i);
1446 			return (error);
1447 		}
1448 	}
1449 	tx->dma = tx->cpu = 0;
1450 	tx->used = 0;
1451 	tx->drv_error = 0;
1452 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1453 	tx->queue_hung = FALSE;
1454 
1455 	tx->ifp = sc->ifp;
1456 	tx->qidx = q;
1457 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1458 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1459 	    taskqueue_thread_enqueue, &tx->taskq);
1460 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1461 	    device_get_nameunit(sc->dev), q);
1462 
1463 	return (0);
1464 }
1465 
1466 STATIC void
1467 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1468 {
1469 	struct mvneta_tx_ring *tx;
1470 	struct mvneta_buf *txbuf;
1471 	int i;
1472 
1473 	tx = MVNETA_TX_RING(sc, q);
1474 	KASSERT_TX_MTX(sc, q);
1475 
1476 	/* Tx handle */
1477 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1478 		txbuf = &tx->txbuf[i];
1479 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1480 		if (txbuf->m != NULL) {
1481 			m_freem(txbuf->m);
1482 			txbuf->m = NULL;
1483 		}
1484 	}
1485 	tx->dma = tx->cpu = 0;
1486 	tx->used = 0;
1487 }
1488 
1489 STATIC void
1490 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1491 {
1492 	struct mvneta_rx_ring *rx;
1493 	struct mvneta_buf *rxbuf;
1494 	int i;
1495 
1496 	rx = MVNETA_RX_RING(sc, q);
1497 	KASSERT_RX_MTX(sc, q);
1498 
1499 	/* Rx handle */
1500 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1501 		rxbuf = &rx->rxbuf[i];
1502 		mvneta_rx_buf_free(sc, rxbuf);
1503 	}
1504 	rx->dma = rx->cpu = 0;
1505 }
1506 
1507 /*
1508  * Rx/Tx Queue Control
1509  */
1510 STATIC int
1511 mvneta_rx_queue_init(struct ifnet *ifp, int q)
1512 {
1513 	struct mvneta_softc *sc;
1514 	struct mvneta_rx_ring *rx;
1515 	uint32_t reg;
1516 
1517 	sc = ifp->if_softc;
1518 	KASSERT_RX_MTX(sc, q);
1519 	rx =  MVNETA_RX_RING(sc, q);
1520 	DASSERT(rx->desc_pa != 0);
1521 
1522 	/* descriptor address */
1523 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1524 
1525 	/* Rx buffer size and descriptor ring size */
1526 	reg  = MVNETA_PRXDQS_BUFFERSIZE(MVNETA_PACKET_SIZE >> 3);
1527 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1528 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1529 #ifdef MVNETA_KTR
1530 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
1531 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1532 #endif
1533 	/* Rx packet offset address */
1534 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1535 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1536 #ifdef MVNETA_KTR
1537 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
1538 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1539 #endif
1540 
1541 	/* if DMA is not working, register is not updated */
1542 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1543 	return (0);
1544 }
1545 
1546 STATIC int
1547 mvneta_tx_queue_init(struct ifnet *ifp, int q)
1548 {
1549 	struct mvneta_softc *sc;
1550 	struct mvneta_tx_ring *tx;
1551 	uint32_t reg;
1552 
1553 	sc = ifp->if_softc;
1554 	KASSERT_TX_MTX(sc, q);
1555 	tx = MVNETA_TX_RING(sc, q);
1556 	DASSERT(tx->desc_pa != 0);
1557 
1558 	/* descriptor address */
1559 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1560 
1561 	/* descriptor ring size */
1562 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1563 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1564 
1565 	/* if DMA is not working, register is not updated */
1566 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1567 	return (0);
1568 }
1569 
1570 STATIC int
1571 mvneta_rx_queue_enable(struct ifnet *ifp, int q)
1572 {
1573 	struct mvneta_softc *sc;
1574 	struct mvneta_rx_ring *rx;
1575 	uint32_t reg;
1576 
1577 	sc = ifp->if_softc;
1578 	rx = MVNETA_RX_RING(sc, q);
1579 	KASSERT_RX_MTX(sc, q);
1580 
1581 	/* Set Rx interrupt threshold */
1582 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1583 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1584 
1585 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1586 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1587 
1588 	/* Unmask RXTX_TH Intr. */
1589 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1590 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1591 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1592 
1593 	/* Enable Rx queue */
1594 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1595 	reg |= MVNETA_RQC_ENQ(q);
1596 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1597 
1598 	rx->queue_status = MVNETA_QUEUE_WORKING;
1599 	return (0);
1600 }
1601 
1602 STATIC int
1603 mvneta_tx_queue_enable(struct ifnet *ifp, int q)
1604 {
1605 	struct mvneta_softc *sc;
1606 	struct mvneta_tx_ring *tx;
1607 
1608 	sc = ifp->if_softc;
1609 	tx = MVNETA_TX_RING(sc, q);
1610 	KASSERT_TX_MTX(sc, q);
1611 
1612 	/* Enable Tx queue */
1613 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1614 
1615 	tx->queue_status = MVNETA_QUEUE_IDLE;
1616 	tx->queue_hung = FALSE;
1617 	return (0);
1618 }
1619 
1620 STATIC __inline void
1621 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1622 {
1623 
1624 	DASSERT(q >= 0);
1625 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1626 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1627 }
1628 
1629 STATIC __inline void
1630 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1631 {
1632 
1633 	DASSERT(q >= 0);
1634 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1635 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1636 }
1637 
1638 STATIC __inline int __unused
1639 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1640 {
1641 
1642 	DASSERT(q >= 0);
1643 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1644 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1645 }
1646 
1647 STATIC __inline void
1648 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1649 {
1650 
1651 	DASSERT(q >= 0);
1652 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1653 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1654 }
1655 
1656 STATIC __inline void
1657 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1658 {
1659 
1660 	DASSERT(q >= 0);
1661 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1662 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1663 }
1664 
1665 /*
1666  * Interrupt Handlers
1667  */
1668 STATIC void
1669 mvneta_disable_intr(struct mvneta_softc *sc)
1670 {
1671 
1672 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1673 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1674 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1675 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1676 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1677 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1678 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1679 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1680 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1681 }
1682 
1683 STATIC void
1684 mvneta_enable_intr(struct mvneta_softc *sc)
1685 {
1686 	uint32_t reg;
1687 
1688 	/* Enable Summary Bit to check all interrupt cause. */
1689 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1690 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1691 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1692 
1693 	if (sc->use_inband_status) {
1694 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1695 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1696 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1697 	}
1698 
1699 	/* Enable All Queue Interrupt */
1700 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1701 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1702 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1703 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1704 }
1705 
1706 STATIC void
1707 mvneta_rxtxth_intr(void *arg)
1708 {
1709 	struct mvneta_softc *sc;
1710 	struct ifnet *ifp;
1711 	uint32_t ic, queues;
1712 
1713 	sc = arg;
1714 	ifp = sc->ifp;
1715 #ifdef MVNETA_KTR
1716 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
1717 #endif
1718 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1719 	if (ic == 0)
1720 		return;
1721 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1722 
1723 	/* Ack maintance interrupt first */
1724 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1725 	    sc->use_inband_status)) {
1726 		mvneta_sc_lock(sc);
1727 		mvneta_misc_intr(sc);
1728 		mvneta_sc_unlock(sc);
1729 	}
1730 	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
1731 		return;
1732 	/* RxTxTH interrupt */
1733 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1734 	if (__predict_true(queues)) {
1735 #ifdef MVNETA_KTR
1736 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
1737 #endif
1738 		/* At the moment the driver support only one RX queue. */
1739 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1740 		mvneta_rx(sc, 0, 0);
1741 	}
1742 }
1743 
1744 STATIC int
1745 mvneta_misc_intr(struct mvneta_softc *sc)
1746 {
1747 	uint32_t ic;
1748 	int claimed = 0;
1749 
1750 #ifdef MVNETA_KTR
1751 	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
1752 #endif
1753 	KASSERT_SC_MTX(sc);
1754 
1755 	for (;;) {
1756 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1757 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1758 		if (ic == 0)
1759 			break;
1760 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1761 		claimed = 1;
1762 
1763 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1764 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1765 			mvneta_link_isr(sc);
1766 	}
1767 	return (claimed);
1768 }
1769 
1770 STATIC void
1771 mvneta_tick(void *arg)
1772 {
1773 	struct mvneta_softc *sc;
1774 	struct mvneta_tx_ring *tx;
1775 	struct mvneta_rx_ring *rx;
1776 	int q;
1777 	uint32_t fc_prev, fc_curr;
1778 
1779 	sc = arg;
1780 
1781 	/*
1782 	 * This is done before mib update to get the right stats
1783 	 * for this tick.
1784 	 */
1785 	mvneta_tx_drain(sc);
1786 
1787 	/* Extract previous flow-control frame received counter. */
1788 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1789 	/* Read mib registers (clear by read). */
1790 	mvneta_update_mib(sc);
1791 	/* Extract current flow-control frame received counter. */
1792 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1793 
1794 
1795 	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
1796 		mvneta_sc_lock(sc);
1797 		mii_tick(sc->mii);
1798 
1799 		/* Adjust MAC settings */
1800 		mvneta_adjust_link(sc);
1801 		mvneta_sc_unlock(sc);
1802 	}
1803 
1804 	/*
1805 	 * We were unable to refill the rx queue and left the rx func, leaving
1806 	 * the ring without mbuf and no way to call the refill func.
1807 	 */
1808 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1809 		rx = MVNETA_RX_RING(sc, q);
1810 		if (rx->needs_refill == TRUE) {
1811 			mvneta_rx_lockq(sc, q);
1812 			mvneta_rx_queue_refill(sc, q);
1813 			mvneta_rx_unlockq(sc, q);
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * Watchdog:
1819 	 * - check if queue is mark as hung.
1820 	 * - ignore hung status if we received some pause frame
1821 	 *   as hardware may have paused packet transmit.
1822 	 */
1823 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1824 		/*
1825 		 * We should take queue lock, but as we only read
1826 		 * queue status we can do it without lock, we may
1827 		 * only missdetect queue status for one tick.
1828 		 */
1829 		tx = MVNETA_TX_RING(sc, q);
1830 
1831 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1832 			goto timeout;
1833 	}
1834 
1835 	callout_schedule(&sc->tick_ch, hz);
1836 	return;
1837 
1838 timeout:
1839 	if_printf(sc->ifp, "watchdog timeout\n");
1840 
1841 	mvneta_sc_lock(sc);
1842 	sc->counter_watchdog++;
1843 	sc->counter_watchdog_mib++;
1844 	/* Trigger reinitialize sequence. */
1845 	mvneta_stop_locked(sc);
1846 	mvneta_init_locked(sc);
1847 	mvneta_sc_unlock(sc);
1848 }
1849 
1850 STATIC void
1851 mvneta_qflush(struct ifnet *ifp)
1852 {
1853 #ifdef MVNETA_MULTIQUEUE
1854 	struct mvneta_softc *sc;
1855 	struct mvneta_tx_ring *tx;
1856 	struct mbuf *m;
1857 	size_t q;
1858 
1859 	sc = ifp->if_softc;
1860 
1861 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1862 		tx = MVNETA_TX_RING(sc, q);
1863 		mvneta_tx_lockq(sc, q);
1864 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1865 			m_freem(m);
1866 		mvneta_tx_unlockq(sc, q);
1867 	}
1868 #endif
1869 	if_qflush(ifp);
1870 }
1871 
1872 STATIC void
1873 mvneta_tx_task(void *arg, int pending)
1874 {
1875 	struct mvneta_softc *sc;
1876 	struct mvneta_tx_ring *tx;
1877 	struct ifnet *ifp;
1878 	int error;
1879 
1880 	tx = arg;
1881 	ifp = tx->ifp;
1882 	sc = ifp->if_softc;
1883 
1884 	mvneta_tx_lockq(sc, tx->qidx);
1885 	error = mvneta_xmit_locked(sc, tx->qidx);
1886 	mvneta_tx_unlockq(sc, tx->qidx);
1887 
1888 	/* Try again */
1889 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1890 		pause("mvneta_tx_task_sleep", 1);
1891 		taskqueue_enqueue(tx->taskq, &tx->task);
1892 	}
1893 }
1894 
1895 STATIC int
1896 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1897 {
1898 	struct mvneta_tx_ring *tx;
1899 	struct ifnet *ifp;
1900 	int error;
1901 
1902 	KASSERT_TX_MTX(sc, q);
1903 	tx = MVNETA_TX_RING(sc, q);
1904 	error = 0;
1905 
1906 	ifp = sc->ifp;
1907 
1908 	/* Dont enqueue packet if the queue is disabled. */
1909 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1910 		m_freem(*m);
1911 		*m = NULL;
1912 		return (ENETDOWN);
1913 	}
1914 
1915 	/* Reclaim mbuf if above threshold. */
1916 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1917 		mvneta_tx_queue_complete(sc, q);
1918 
1919 	/* Do not call transmit path if queue is already too full. */
1920 	if (__predict_false(tx->used >
1921 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1922 		return (ENOBUFS);
1923 
1924 	error = mvneta_tx_queue(sc, m, q);
1925 	if (__predict_false(error != 0))
1926 		return (error);
1927 
1928 	/* Send a copy of the frame to the BPF listener */
1929 	ETHER_BPF_MTAP(ifp, *m);
1930 
1931 	/* Set watchdog on */
1932 	tx->watchdog_time = ticks;
1933 	tx->queue_status = MVNETA_QUEUE_WORKING;
1934 
1935 	return (error);
1936 }
1937 
1938 #ifdef MVNETA_MULTIQUEUE
1939 STATIC int
1940 mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
1941 {
1942 	struct mvneta_softc *sc;
1943 	struct mvneta_tx_ring *tx;
1944 	int error;
1945 	int q;
1946 
1947 	sc = ifp->if_softc;
1948 
1949 	/* Use default queue if there is no flow id as thread can migrate. */
1950 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1951 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1952 	else
1953 		q = 0;
1954 
1955 	tx = MVNETA_TX_RING(sc, q);
1956 
1957 	/* If buf_ring is full start transmit immediatly. */
1958 	if (buf_ring_full(tx->br)) {
1959 		mvneta_tx_lockq(sc, q);
1960 		mvneta_xmit_locked(sc, q);
1961 		mvneta_tx_unlockq(sc, q);
1962 	}
1963 
1964 	/*
1965 	 * If the buf_ring is empty we will not reorder packets.
1966 	 * If the lock is available transmit without using buf_ring.
1967 	 */
1968 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1969 		error = mvneta_xmitfast_locked(sc, q, &m);
1970 		mvneta_tx_unlockq(sc, q);
1971 		if (__predict_true(error == 0))
1972 			return (0);
1973 
1974 		/* Transmit can fail in fastpath. */
1975 		if (__predict_false(m == NULL))
1976 			return (error);
1977 	}
1978 
1979 	/* Enqueue then schedule taskqueue. */
1980 	error = drbr_enqueue(ifp, tx->br, m);
1981 	if (__predict_false(error != 0))
1982 		return (error);
1983 
1984 	taskqueue_enqueue(tx->taskq, &tx->task);
1985 	return (0);
1986 }
1987 
1988 STATIC int
1989 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1990 {
1991 	struct ifnet *ifp;
1992 	struct mvneta_tx_ring *tx;
1993 	struct mbuf *m;
1994 	int error;
1995 
1996 	KASSERT_TX_MTX(sc, q);
1997 	ifp = sc->ifp;
1998 	tx = MVNETA_TX_RING(sc, q);
1999 	error = 0;
2000 
2001 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
2002 		error = mvneta_xmitfast_locked(sc, q, &m);
2003 		if (__predict_false(error != 0)) {
2004 			if (m != NULL)
2005 				drbr_putback(ifp, tx->br, m);
2006 			else
2007 				drbr_advance(ifp, tx->br);
2008 			break;
2009 		}
2010 		drbr_advance(ifp, tx->br);
2011 	}
2012 
2013 	return (error);
2014 }
2015 #else /* !MVNETA_MULTIQUEUE */
2016 STATIC void
2017 mvneta_start(struct ifnet *ifp)
2018 {
2019 	struct mvneta_softc *sc;
2020 	struct mvneta_tx_ring *tx;
2021 	int error;
2022 
2023 	sc = ifp->if_softc;
2024 	tx = MVNETA_TX_RING(sc, 0);
2025 
2026 	mvneta_tx_lockq(sc, 0);
2027 	error = mvneta_xmit_locked(sc, 0);
2028 	mvneta_tx_unlockq(sc, 0);
2029 	/* Handle retransmit in the background taskq. */
2030 	if (__predict_false(error != 0 && error != ENETDOWN))
2031 		taskqueue_enqueue(tx->taskq, &tx->task);
2032 }
2033 
2034 STATIC int
2035 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2036 {
2037 	struct ifnet *ifp;
2038 	struct mvneta_tx_ring *tx;
2039 	struct mbuf *m;
2040 	int error;
2041 
2042 	KASSERT_TX_MTX(sc, q);
2043 	ifp = sc->ifp;
2044 	tx = MVNETA_TX_RING(sc, 0);
2045 	error = 0;
2046 
2047 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
2048 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2049 		if (m == NULL)
2050 			break;
2051 
2052 		error = mvneta_xmitfast_locked(sc, q, &m);
2053 		if (__predict_false(error != 0)) {
2054 			if (m != NULL)
2055 				IFQ_DRV_PREPEND(&ifp->if_snd, m);
2056 			break;
2057 		}
2058 	}
2059 
2060 	return (error);
2061 }
2062 #endif
2063 
2064 STATIC int
2065 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2066 {
2067 	struct mvneta_softc *sc;
2068 	struct mvneta_rx_ring *rx;
2069 	struct ifreq *ifr;
2070 	int error, mask;
2071 	uint32_t flags;
2072 	int q;
2073 
2074 	error = 0;
2075 	sc = ifp->if_softc;
2076 	ifr = (struct ifreq *)data;
2077 	switch (cmd) {
2078 	case SIOCSIFFLAGS:
2079 		mvneta_sc_lock(sc);
2080 		if (ifp->if_flags & IFF_UP) {
2081 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2082 				flags = ifp->if_flags ^ sc->mvneta_if_flags;
2083 
2084 				if (flags != 0)
2085 					sc->mvneta_if_flags = ifp->if_flags;
2086 
2087 				if ((flags & IFF_PROMISC) != 0)
2088 					mvneta_filter_setup(sc);
2089 			} else {
2090 				mvneta_init_locked(sc);
2091 				sc->mvneta_if_flags = ifp->if_flags;
2092 				if (sc->phy_attached)
2093 					mii_mediachg(sc->mii);
2094 				mvneta_sc_unlock(sc);
2095 				break;
2096 			}
2097 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2098 			mvneta_stop_locked(sc);
2099 
2100 		sc->mvneta_if_flags = ifp->if_flags;
2101 		mvneta_sc_unlock(sc);
2102 		break;
2103 	case SIOCSIFCAP:
2104 		if (ifp->if_mtu > MVNETA_MAX_CSUM_MTU &&
2105 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2106 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2107 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2108 		if (mask & IFCAP_HWCSUM) {
2109 			ifp->if_capenable &= ~IFCAP_HWCSUM;
2110 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
2111 			if (ifp->if_capenable & IFCAP_TXCSUM)
2112 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2113 				    CSUM_UDP;
2114 			else
2115 				ifp->if_hwassist = 0;
2116 		}
2117 		if (mask & IFCAP_LRO) {
2118 			mvneta_sc_lock(sc);
2119 			ifp->if_capenable ^= IFCAP_LRO;
2120 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2121 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2122 					rx = MVNETA_RX_RING(sc, q);
2123 					rx->lro_enabled = !rx->lro_enabled;
2124 				}
2125 			}
2126 			mvneta_sc_unlock(sc);
2127 		}
2128 		VLAN_CAPABILITIES(ifp);
2129 		break;
2130 	case SIOCSIFMEDIA:
2131 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2132 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2133 		    (ifr->ifr_media & IFM_FDX) == 0) {
2134 			device_printf(sc->dev,
2135 			    "%s half-duplex unsupported\n",
2136 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2137 			    "1000Base-T" :
2138 			    "2500Base-T");
2139 			error = EINVAL;
2140 			break;
2141 		}
2142 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2143 	case SIOCGIFXMEDIA:
2144 		if (!sc->phy_attached)
2145 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2146 			    cmd);
2147 		else
2148 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2149 			    cmd);
2150 		break;
2151 	case SIOCSIFMTU:
2152 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2153 		    MVNETA_ETHER_SIZE) {
2154 			error = EINVAL;
2155 		} else {
2156 			ifp->if_mtu = ifr->ifr_mtu;
2157 			mvneta_sc_lock(sc);
2158 			if (ifp->if_mtu > MVNETA_MAX_CSUM_MTU) {
2159 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2160 				ifp->if_hwassist = 0;
2161 			} else {
2162 				ifp->if_capenable |= IFCAP_TXCSUM;
2163 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2164 					CSUM_UDP;
2165 			}
2166 
2167 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2168 				/* Trigger reinitialize sequence */
2169 				mvneta_stop_locked(sc);
2170 				mvneta_init_locked(sc);
2171 			}
2172 			mvneta_sc_unlock(sc);
2173                 }
2174                 break;
2175 
2176 	default:
2177 		error = ether_ioctl(ifp, cmd, data);
2178 		break;
2179 	}
2180 
2181 	return (error);
2182 }
2183 
2184 STATIC void
2185 mvneta_init_locked(void *arg)
2186 {
2187 	struct mvneta_softc *sc;
2188 	struct ifnet *ifp;
2189 	uint32_t reg;
2190 	int q, cpu;
2191 
2192 	sc = arg;
2193 	ifp = sc->ifp;
2194 
2195 	if (!device_is_attached(sc->dev) ||
2196 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2197 		return;
2198 
2199 	mvneta_disable_intr(sc);
2200 	callout_stop(&sc->tick_ch);
2201 
2202 	/* Get the latest mac address */
2203 	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
2204 	mvneta_set_mac_address(sc, sc->enaddr);
2205 	mvneta_filter_setup(sc);
2206 
2207 	/* Start DMA Engine */
2208 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2209 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2210 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2211 
2212 	/* Enable port */
2213 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2214 	reg |= MVNETA_PMACC0_PORTEN;
2215 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2216 
2217 	/* Allow access to each TXQ/RXQ from both CPU's */
2218 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2219 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2220 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2221 
2222 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2223 		mvneta_rx_lockq(sc, q);
2224 		mvneta_rx_queue_refill(sc, q);
2225 		mvneta_rx_unlockq(sc, q);
2226 	}
2227 
2228 	if (!sc->phy_attached)
2229 		mvneta_linkup(sc);
2230 
2231 	/* Enable interrupt */
2232 	mvneta_enable_intr(sc);
2233 
2234 	/* Set Counter */
2235 	callout_schedule(&sc->tick_ch, hz);
2236 
2237 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2238 }
2239 
2240 STATIC void
2241 mvneta_init(void *arg)
2242 {
2243 	struct mvneta_softc *sc;
2244 
2245 	sc = arg;
2246 	mvneta_sc_lock(sc);
2247 	mvneta_init_locked(sc);
2248 	if (sc->phy_attached)
2249 		mii_mediachg(sc->mii);
2250 	mvneta_sc_unlock(sc);
2251 }
2252 
2253 /* ARGSUSED */
2254 STATIC void
2255 mvneta_stop_locked(struct mvneta_softc *sc)
2256 {
2257 	struct ifnet *ifp;
2258 	struct mvneta_rx_ring *rx;
2259 	struct mvneta_tx_ring *tx;
2260 	uint32_t reg;
2261 	int q;
2262 
2263 	ifp = sc->ifp;
2264 	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2265 		return;
2266 
2267 	mvneta_disable_intr(sc);
2268 
2269 	callout_stop(&sc->tick_ch);
2270 
2271 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2272 
2273 	/* Link down */
2274 	if (sc->linkup == TRUE)
2275 		mvneta_linkdown(sc);
2276 
2277 	/* Reset the MAC Port Enable bit */
2278 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2279 	reg &= ~MVNETA_PMACC0_PORTEN;
2280 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2281 
2282 	/* Disable each of queue */
2283 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2284 		rx = MVNETA_RX_RING(sc, q);
2285 
2286 		mvneta_rx_lockq(sc, q);
2287 		mvneta_ring_flush_rx_queue(sc, q);
2288 		mvneta_rx_unlockq(sc, q);
2289 	}
2290 
2291 	/*
2292 	 * Hold Reset state of DMA Engine
2293 	 * (must write 0x0 to restart it)
2294 	 */
2295 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2296 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2297 
2298 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2299 		tx = MVNETA_TX_RING(sc, q);
2300 
2301 		mvneta_tx_lockq(sc, q);
2302 		mvneta_ring_flush_tx_queue(sc, q);
2303 		mvneta_tx_unlockq(sc, q);
2304 	}
2305 }
2306 
2307 STATIC void
2308 mvneta_stop(struct mvneta_softc *sc)
2309 {
2310 
2311 	mvneta_sc_lock(sc);
2312 	mvneta_stop_locked(sc);
2313 	mvneta_sc_unlock(sc);
2314 }
2315 
2316 STATIC int
2317 mvneta_mediachange(struct ifnet *ifp)
2318 {
2319 	struct mvneta_softc *sc;
2320 
2321 	sc = ifp->if_softc;
2322 
2323 	if (!sc->phy_attached && !sc->use_inband_status) {
2324 		/* We shouldn't be here */
2325 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2326 		return (0);
2327 	}
2328 
2329 	if (sc->use_inband_status) {
2330 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2331 		return (0);
2332 	}
2333 
2334 	mvneta_sc_lock(sc);
2335 
2336 	/* Update PHY */
2337 	mii_mediachg(sc->mii);
2338 
2339 	mvneta_sc_unlock(sc);
2340 
2341 	return (0);
2342 }
2343 
2344 STATIC void
2345 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2346 {
2347 	uint32_t psr;
2348 
2349 	psr = MVNETA_READ(sc, MVNETA_PSR);
2350 
2351 	/* Speed */
2352 	if (psr & MVNETA_PSR_GMIISPEED)
2353 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2354 	else if (psr & MVNETA_PSR_MIISPEED)
2355 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2356 	else if (psr & MVNETA_PSR_LINKUP)
2357 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2358 
2359 	/* Duplex */
2360 	if (psr & MVNETA_PSR_FULLDX)
2361 		ifmr->ifm_active |= IFM_FDX;
2362 
2363 	/* Link */
2364 	ifmr->ifm_status = IFM_AVALID;
2365 	if (psr & MVNETA_PSR_LINKUP)
2366 		ifmr->ifm_status |= IFM_ACTIVE;
2367 }
2368 
2369 STATIC void
2370 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2371 {
2372 	struct mvneta_softc *sc;
2373 	struct mii_data *mii;
2374 
2375 	sc = ifp->if_softc;
2376 
2377 	if (!sc->phy_attached && !sc->use_inband_status) {
2378 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2379 		return;
2380 	}
2381 
2382 	mvneta_sc_lock(sc);
2383 
2384 	if (sc->use_inband_status) {
2385 		mvneta_get_media(sc, ifmr);
2386 		mvneta_sc_unlock(sc);
2387 		return;
2388 	}
2389 
2390 	mii = sc->mii;
2391 	mii_pollstat(mii);
2392 
2393 	ifmr->ifm_active = mii->mii_media_active;
2394 	ifmr->ifm_status = mii->mii_media_status;
2395 
2396 	mvneta_sc_unlock(sc);
2397 }
2398 
2399 /*
2400  * Link State Notify
2401  */
2402 STATIC void
2403 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2404 {
2405 	int reg;
2406 
2407 	if (enable) {
2408 		reg = MVNETA_READ(sc, MVNETA_PANC);
2409 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2410 		    MVNETA_PANC_ANFCEN);
2411 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2412 		    MVNETA_PANC_INBANDANEN;
2413 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2414 
2415 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2416 		reg |= MVNETA_PMACC2_INBANDANMODE;
2417 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2418 
2419 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2420 		reg |= MVNETA_PSOMSCD_ENABLE;
2421 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2422 	} else {
2423 		reg = MVNETA_READ(sc, MVNETA_PANC);
2424 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2425 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2426 		    MVNETA_PANC_INBANDANEN);
2427 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2428 
2429 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2430 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2431 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2432 
2433 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2434 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2435 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2436 	}
2437 }
2438 
2439 STATIC int
2440 mvneta_update_media(struct mvneta_softc *sc, int media)
2441 {
2442 	int reg, err;
2443 	boolean_t running;
2444 
2445 	err = 0;
2446 
2447 	mvneta_sc_lock(sc);
2448 
2449 	mvneta_linkreset(sc);
2450 
2451 	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2452 	if (running)
2453 		mvneta_stop_locked(sc);
2454 
2455 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2456 
2457 	if (sc->use_inband_status)
2458 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2459 
2460 	mvneta_update_eee(sc);
2461 	mvneta_update_fc(sc);
2462 
2463 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2464 		reg = MVNETA_READ(sc, MVNETA_PANC);
2465 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2466 		    MVNETA_PANC_SETMIISPEED |
2467 		    MVNETA_PANC_SETFULLDX);
2468 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2469 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2470 			if ((media & IFM_FDX) == 0) {
2471 				device_printf(sc->dev,
2472 				    "%s half-duplex unsupported\n",
2473 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2474 				    "1000Base-T" :
2475 				    "2500Base-T");
2476 				err = EINVAL;
2477 				goto out;
2478 			}
2479 			reg |= MVNETA_PANC_SETGMIISPEED;
2480 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2481 			reg |= MVNETA_PANC_SETMIISPEED;
2482 
2483 		if (media & IFM_FDX)
2484 			reg |= MVNETA_PANC_SETFULLDX;
2485 
2486 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2487 	}
2488 out:
2489 	if (running)
2490 		mvneta_init_locked(sc);
2491 	mvneta_sc_unlock(sc);
2492 	return (err);
2493 }
2494 
2495 STATIC void
2496 mvneta_adjust_link(struct mvneta_softc *sc)
2497 {
2498 	boolean_t phy_linkup;
2499 	int reg;
2500 
2501 	/* Update eee/fc */
2502 	mvneta_update_eee(sc);
2503 	mvneta_update_fc(sc);
2504 
2505 	/* Check for link change */
2506 	phy_linkup = (sc->mii->mii_media_status &
2507 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2508 
2509 	if (sc->linkup != phy_linkup)
2510 		mvneta_linkupdate(sc, phy_linkup);
2511 
2512 	/* Don't update media on disabled link */
2513 	if (!phy_linkup)
2514 		return;
2515 
2516 	/* Check for media type change */
2517 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2518 		sc->mvneta_media = sc->mii->mii_media_active;
2519 
2520 		reg = MVNETA_READ(sc, MVNETA_PANC);
2521 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2522 		    MVNETA_PANC_SETMIISPEED |
2523 		    MVNETA_PANC_SETFULLDX);
2524 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2525 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2526 			reg |= MVNETA_PANC_SETGMIISPEED;
2527 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2528 			reg |= MVNETA_PANC_SETMIISPEED;
2529 
2530 		if (sc->mvneta_media & IFM_FDX)
2531 			reg |= MVNETA_PANC_SETFULLDX;
2532 
2533 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2534 	}
2535 }
2536 
2537 STATIC void
2538 mvneta_link_isr(struct mvneta_softc *sc)
2539 {
2540 	int linkup;
2541 
2542 	KASSERT_SC_MTX(sc);
2543 
2544 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2545 	if (sc->linkup == linkup)
2546 		return;
2547 
2548 	if (linkup == TRUE)
2549 		mvneta_linkup(sc);
2550 	else
2551 		mvneta_linkdown(sc);
2552 
2553 #ifdef DEBUG
2554 	log(LOG_DEBUG,
2555 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2556 #endif
2557 }
2558 
2559 STATIC void
2560 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2561 {
2562 
2563 	KASSERT_SC_MTX(sc);
2564 
2565 	if (linkup == TRUE)
2566 		mvneta_linkup(sc);
2567 	else
2568 		mvneta_linkdown(sc);
2569 
2570 #ifdef DEBUG
2571 	log(LOG_DEBUG,
2572 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2573 #endif
2574 }
2575 
2576 STATIC void
2577 mvneta_update_eee(struct mvneta_softc *sc)
2578 {
2579 	uint32_t reg;
2580 
2581 	KASSERT_SC_MTX(sc);
2582 
2583 	/* set EEE parameters */
2584 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2585 	if (sc->cf_lpi)
2586 		reg |= MVNETA_LPIC1_LPIRE;
2587 	else
2588 		reg &= ~MVNETA_LPIC1_LPIRE;
2589 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2590 }
2591 
2592 STATIC void
2593 mvneta_update_fc(struct mvneta_softc *sc)
2594 {
2595 	uint32_t reg;
2596 
2597 	KASSERT_SC_MTX(sc);
2598 
2599 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2600 	if (sc->cf_fc) {
2601 		/* Flow control negotiation */
2602 		reg |= MVNETA_PANC_PAUSEADV;
2603 		reg |= MVNETA_PANC_ANFCEN;
2604 	} else {
2605 		/* Disable flow control negotiation */
2606 		reg &= ~MVNETA_PANC_PAUSEADV;
2607 		reg &= ~MVNETA_PANC_ANFCEN;
2608 	}
2609 
2610 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2611 }
2612 
2613 STATIC void
2614 mvneta_linkup(struct mvneta_softc *sc)
2615 {
2616 	uint32_t reg;
2617 
2618 	KASSERT_SC_MTX(sc);
2619 
2620 	if (!sc->use_inband_status) {
2621 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2622 		reg |= MVNETA_PANC_FORCELINKPASS;
2623 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2624 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2625 	}
2626 
2627 	mvneta_qflush(sc->ifp);
2628 	mvneta_portup(sc);
2629 	sc->linkup = TRUE;
2630 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2631 }
2632 
2633 STATIC void
2634 mvneta_linkdown(struct mvneta_softc *sc)
2635 {
2636 	uint32_t reg;
2637 
2638 	KASSERT_SC_MTX(sc);
2639 
2640 	if (!sc->use_inband_status) {
2641 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2642 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2643 		reg |= MVNETA_PANC_FORCELINKFAIL;
2644 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2645 	}
2646 
2647 	mvneta_portdown(sc);
2648 	mvneta_qflush(sc->ifp);
2649 	sc->linkup = FALSE;
2650 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2651 }
2652 
2653 STATIC void
2654 mvneta_linkreset(struct mvneta_softc *sc)
2655 {
2656 	struct mii_softc *mii;
2657 
2658 	if (sc->phy_attached) {
2659 		/* Force reset PHY */
2660 		mii = LIST_FIRST(&sc->mii->mii_phys);
2661 		if (mii)
2662 			mii_phy_reset(mii);
2663 	}
2664 }
2665 
2666 /*
2667  * Tx Subroutines
2668  */
2669 STATIC int
2670 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2671 {
2672 	struct ifnet *ifp;
2673 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2674 	struct mbuf *mtmp, *mbuf;
2675 	struct mvneta_tx_ring *tx;
2676 	struct mvneta_buf *txbuf;
2677 	struct mvneta_tx_desc *t;
2678 	uint32_t ptxsu;
2679 	int start, used, error, i, txnsegs;
2680 
2681 	mbuf = *mbufp;
2682 	tx = MVNETA_TX_RING(sc, q);
2683 	DASSERT(tx->used >= 0);
2684 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2685 	t = NULL;
2686 	ifp = sc->ifp;
2687 
2688 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2689 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2690 		if (mbuf == NULL) {
2691 			tx->drv_error++;
2692 			*mbufp = NULL;
2693 			return (ENOBUFS);
2694 		}
2695 		mbuf->m_flags &= ~M_VLANTAG;
2696 		*mbufp = mbuf;
2697 	}
2698 
2699 	if (__predict_false(mbuf->m_next != NULL &&
2700 	    (mbuf->m_pkthdr.csum_flags &
2701 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2702 		if (M_WRITABLE(mbuf) == 0) {
2703 			mtmp = m_dup(mbuf, M_NOWAIT);
2704 			m_freem(mbuf);
2705 			if (mtmp == NULL) {
2706 				tx->drv_error++;
2707 				*mbufp = NULL;
2708 				return (ENOBUFS);
2709 			}
2710 			*mbufp = mbuf = mtmp;
2711 		}
2712 	}
2713 
2714 	/* load mbuf using dmamap of 1st descriptor */
2715 	txbuf = &tx->txbuf[tx->cpu];
2716 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2717 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2718 	    BUS_DMA_NOWAIT);
2719 	if (__predict_false(error != 0)) {
2720 #ifdef MVNETA_KTR
2721 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
2722 #endif
2723 		/* This is the only recoverable error (except EFBIG). */
2724 		if (error != ENOMEM) {
2725 			tx->drv_error++;
2726 			m_freem(mbuf);
2727 			*mbufp = NULL;
2728 			return (ENOBUFS);
2729 		}
2730 		return (error);
2731 	}
2732 
2733 	if (__predict_false(txnsegs <= 0
2734 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2735 		/* we have no enough descriptors or mbuf is broken */
2736 #ifdef MVNETA_KTR
2737 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2738 		    ifp->if_xname, q, txnsegs);
2739 #endif
2740 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2741 		return (ENOBUFS);
2742 	}
2743 	DASSERT(txbuf->m == NULL);
2744 
2745 	/* remember mbuf using 1st descriptor */
2746 	txbuf->m = mbuf;
2747 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2748 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2749 
2750 	/* load to tx descriptors */
2751 	start = tx->cpu;
2752 	used = 0;
2753 	for (i = 0; i < txnsegs; i++) {
2754 		t = &tx->desc[tx->cpu];
2755 		t->command = 0;
2756 		t->l4ichk = 0;
2757 		t->flags = 0;
2758 		if (__predict_true(i == 0)) {
2759 			/* 1st descriptor */
2760 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2761 			t->command |= MVNETA_TX_CMD_F;
2762 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2763 		}
2764 		t->bufptr_pa = txsegs[i].ds_addr;
2765 		t->bytecnt = txsegs[i].ds_len;
2766 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2767 
2768 		tx->used++;
2769 		used++;
2770 	}
2771 	/* t is last descriptor here */
2772 	DASSERT(t != NULL);
2773 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2774 
2775 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2776 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2777 
2778 	while (__predict_false(used > 255)) {
2779 		ptxsu = MVNETA_PTXSU_NOWD(255);
2780 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2781 		used -= 255;
2782 	}
2783 	if (__predict_true(used > 0)) {
2784 		ptxsu = MVNETA_PTXSU_NOWD(used);
2785 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2786 	}
2787 	return (0);
2788 }
2789 
2790 STATIC void
2791 mvneta_tx_set_csumflag(struct ifnet *ifp,
2792     struct mvneta_tx_desc *t, struct mbuf *m)
2793 {
2794 	struct ether_header *eh;
2795 	int csum_flags;
2796 	uint32_t iphl, ipoff;
2797 	struct ip *ip;
2798 
2799 	iphl = ipoff = 0;
2800 	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
2801 	eh = mtod(m, struct ether_header *);
2802 	switch (ntohs(eh->ether_type)) {
2803 	case ETHERTYPE_IP:
2804 		ipoff = ETHER_HDR_LEN;
2805 		break;
2806 	case ETHERTYPE_IPV6:
2807 		return;
2808 	case ETHERTYPE_VLAN:
2809 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2810 		break;
2811 	}
2812 
2813 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2814 		ip = (struct ip *)(m->m_data + ipoff);
2815 		iphl = ip->ip_hl<<2;
2816 		t->command |= MVNETA_TX_CMD_L3_IP4;
2817 	} else {
2818 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2819 		return;
2820 	}
2821 
2822 
2823 	/* L3 */
2824 	if (csum_flags & CSUM_IP) {
2825 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2826 	}
2827 
2828 	/* L4 */
2829 	if (csum_flags & CSUM_IP_TCP) {
2830 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2831 		t->command |= MVNETA_TX_CMD_L4_TCP;
2832 	} else if (csum_flags & CSUM_IP_UDP) {
2833 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2834 		t->command |= MVNETA_TX_CMD_L4_UDP;
2835 	} else
2836 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2837 
2838 	t->l4ichk = 0;
2839 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2840 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2841 }
2842 
2843 STATIC void
2844 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2845 {
2846 	struct mvneta_tx_ring *tx;
2847 	struct mvneta_buf *txbuf;
2848 	struct mvneta_tx_desc *t;
2849 	uint32_t ptxs, ptxsu, ndesc;
2850 	int i;
2851 
2852 	KASSERT_TX_MTX(sc, q);
2853 
2854 	tx = MVNETA_TX_RING(sc, q);
2855 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2856 		return;
2857 
2858 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2859 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2860 
2861 	if (__predict_false(ndesc == 0)) {
2862 		if (tx->used == 0)
2863 			tx->queue_status = MVNETA_QUEUE_IDLE;
2864 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2865 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2866 			tx->queue_hung = TRUE;
2867 		return;
2868 	}
2869 
2870 #ifdef MVNETA_KTR
2871 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2872 	    sc->ifp->if_xname, q, ndesc);
2873 #endif
2874 
2875 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2876 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2877 
2878 	for (i = 0; i < ndesc; i++) {
2879 		t = &tx->desc[tx->dma];
2880 #ifdef MVNETA_KTR
2881 		if (t->flags & MVNETA_TX_F_ES)
2882 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2883 			    sc->ifp->if_xname, q, tx->dma);
2884 #endif
2885 		txbuf = &tx->txbuf[tx->dma];
2886 		if (__predict_true(txbuf->m != NULL)) {
2887 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2888 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2889 			m_freem(txbuf->m);
2890 			txbuf->m = NULL;
2891 		}
2892 		else
2893 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2894 		tx->dma = tx_counter_adv(tx->dma, 1);
2895 		tx->used--;
2896 	}
2897 	DASSERT(tx->used >= 0);
2898 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2899 	while (__predict_false(ndesc > 255)) {
2900 		ptxsu = MVNETA_PTXSU_NORB(255);
2901 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2902 		ndesc -= 255;
2903 	}
2904 	if (__predict_true(ndesc > 0)) {
2905 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2906 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2907 	}
2908 #ifdef MVNETA_KTR
2909 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2910 	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
2911 #endif
2912 
2913 	tx->watchdog_time = ticks;
2914 
2915 	if (tx->used == 0)
2916 		tx->queue_status = MVNETA_QUEUE_IDLE;
2917 }
2918 
2919 /*
2920  * Do a final TX complete when TX is idle.
2921  */
2922 STATIC void
2923 mvneta_tx_drain(struct mvneta_softc *sc)
2924 {
2925 	struct mvneta_tx_ring *tx;
2926 	int q;
2927 
2928 	/*
2929 	 * Handle trailing mbuf on TX queue.
2930 	 * Check is done lockess to avoid TX path contention.
2931 	 */
2932 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2933 		tx = MVNETA_TX_RING(sc, q);
2934 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2935 		    tx->used > 0) {
2936 			mvneta_tx_lockq(sc, q);
2937 			mvneta_tx_queue_complete(sc, q);
2938 			mvneta_tx_unlockq(sc, q);
2939 		}
2940 	}
2941 }
2942 
2943 /*
2944  * Rx Subroutines
2945  */
2946 STATIC int
2947 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2948 {
2949 	uint32_t prxs, npkt;
2950 	int more;
2951 
2952 	more = 0;
2953 	mvneta_rx_lockq(sc, q);
2954 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2955 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2956 	if (__predict_false(npkt == 0))
2957 		goto out;
2958 
2959 	if (count > 0 && npkt > count) {
2960 		more = 1;
2961 		npkt = count;
2962 	}
2963 	mvneta_rx_queue(sc, q, npkt);
2964 out:
2965 	mvneta_rx_unlockq(sc, q);
2966 	return more;
2967 }
2968 
2969 /*
2970  * Helper routine for updating PRXSU register of a given queue.
2971  * Handles number of processed descriptors bigger than maximum acceptable value.
2972  */
2973 STATIC __inline void
2974 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2975 {
2976 	uint32_t prxsu;
2977 
2978 	while (__predict_false(processed > 255)) {
2979 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2980 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2981 		processed -= 255;
2982 	}
2983 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
2984 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2985 }
2986 
2987 static __inline void
2988 mvneta_prefetch(void *p)
2989 {
2990 
2991 	__builtin_prefetch(p);
2992 }
2993 
2994 STATIC void
2995 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
2996 {
2997 	struct ifnet *ifp;
2998 	struct mvneta_rx_ring *rx;
2999 	struct mvneta_rx_desc *r;
3000 	struct mvneta_buf *rxbuf;
3001 	struct mbuf *m;
3002 	struct lro_ctrl *lro;
3003 	struct lro_entry *queued;
3004 	void *pktbuf;
3005 	int i, pktlen, processed, ndma;
3006 
3007 	KASSERT_RX_MTX(sc, q);
3008 
3009 	ifp = sc->ifp;
3010 	rx = MVNETA_RX_RING(sc, q);
3011 	processed = 0;
3012 
3013 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3014 		return;
3015 
3016 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3017 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3018 
3019 	for (i = 0; i < npkt; i++) {
3020 		/* Prefetch next desc, rxbuf. */
3021 		ndma = rx_counter_adv(rx->dma, 1);
3022 		mvneta_prefetch(&rx->desc[ndma]);
3023 		mvneta_prefetch(&rx->rxbuf[ndma]);
3024 
3025 		/* get descriptor and packet */
3026 		r = &rx->desc[rx->dma];
3027 		rxbuf = &rx->rxbuf[rx->dma];
3028 		m = rxbuf->m;
3029 		rxbuf->m = NULL;
3030 		DASSERT(m != NULL);
3031 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3032 		    BUS_DMASYNC_POSTREAD);
3033 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3034 		/* Prefetch mbuf header. */
3035 		mvneta_prefetch(m);
3036 
3037 		processed++;
3038 		/* Drop desc with error status or not in a single buffer. */
3039 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3040 		    (MVNETA_RX_F|MVNETA_RX_L));
3041 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3042 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3043 		    (MVNETA_RX_F|MVNETA_RX_L)))
3044 			goto rx_error;
3045 
3046 		/*
3047 		 * [ OFF | MH | PKT | CRC ]
3048 		 * bytecnt cover MH, PKT, CRC
3049 		 */
3050 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3051 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3052                     MVNETA_HWHEADER_SIZE;
3053 
3054 		/* Prefetch mbuf data. */
3055 		mvneta_prefetch(pktbuf);
3056 
3057 		/* Write value to mbuf (avoid read). */
3058 		m->m_data = pktbuf;
3059 		m->m_len = m->m_pkthdr.len = pktlen;
3060 		m->m_pkthdr.rcvif = ifp;
3061 		mvneta_rx_set_csumflag(ifp, r, m);
3062 
3063 		/* Increase rx_dma before releasing the lock. */
3064 		rx->dma = ndma;
3065 
3066 		if (__predict_false(rx->lro_enabled &&
3067 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3068 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3069 		    (m->m_pkthdr.csum_flags &
3070 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3071 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3072 			if (rx->lro.lro_cnt != 0) {
3073 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3074 					goto rx_done;
3075 			}
3076 		}
3077 
3078 		mvneta_rx_unlockq(sc, q);
3079 		(*ifp->if_input)(ifp, m);
3080 		mvneta_rx_lockq(sc, q);
3081 		/*
3082 		 * Check whether this queue has been disabled in the
3083 		 * meantime. If yes, then clear LRO and exit.
3084 		 */
3085 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3086 			goto rx_lro;
3087 rx_done:
3088 		/* Refresh receive ring to avoid stall and minimize jitter. */
3089 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3090 			mvneta_prxsu_update(sc, q, processed);
3091 			mvneta_rx_queue_refill(sc, q);
3092 			processed = 0;
3093 		}
3094 		continue;
3095 rx_error:
3096 		m_freem(m);
3097 		rx->dma = ndma;
3098 		/* Refresh receive ring to avoid stall and minimize jitter. */
3099 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3100 			mvneta_prxsu_update(sc, q, processed);
3101 			mvneta_rx_queue_refill(sc, q);
3102 			processed = 0;
3103 		}
3104 	}
3105 #ifdef MVNETA_KTR
3106 	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
3107 #endif
3108 	/* DMA status update */
3109 	mvneta_prxsu_update(sc, q, processed);
3110 	/* Refill the rest of buffers if there are any to refill */
3111 	mvneta_rx_queue_refill(sc, q);
3112 
3113 rx_lro:
3114 	/*
3115 	 * Flush any outstanding LRO work
3116 	 */
3117 	lro = &rx->lro;
3118 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3119 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3120 		tcp_lro_flush(lro, queued);
3121 	}
3122 }
3123 
3124 STATIC void
3125 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3126 {
3127 
3128 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3129 	/* This will remove all data at once */
3130 	m_freem(rxbuf->m);
3131 }
3132 
3133 STATIC void
3134 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3135 {
3136 	struct mvneta_rx_ring *rx;
3137 	struct mvneta_rx_desc *r;
3138 	struct mvneta_buf *rxbuf;
3139 	bus_dma_segment_t segs;
3140 	struct mbuf *m;
3141 	uint32_t prxs, prxsu, ndesc;
3142 	int npkt, refill, nsegs, error;
3143 
3144 	KASSERT_RX_MTX(sc, q);
3145 
3146 	rx = MVNETA_RX_RING(sc, q);
3147 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3148 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3149 	refill = MVNETA_RX_RING_CNT - ndesc;
3150 #ifdef MVNETA_KTR
3151 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
3152 	    refill);
3153 #endif
3154 	if (__predict_false(refill <= 0))
3155 		return;
3156 
3157 	for (npkt = 0; npkt < refill; npkt++) {
3158 		rxbuf = &rx->rxbuf[rx->cpu];
3159 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3160 		if (__predict_false(m == NULL)) {
3161 			error = ENOBUFS;
3162 			break;
3163 		}
3164 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3165 
3166 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3167 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3168 		if (__predict_false(error != 0 || nsegs != 1)) {
3169 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3170 			m_freem(m);
3171 			break;
3172 		}
3173 
3174 		/* Add the packet to the ring */
3175 		rxbuf->m = m;
3176 		r = &rx->desc[rx->cpu];
3177 		r->bufptr_pa = segs.ds_addr;
3178 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3179 
3180 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3181 	}
3182 	if (npkt == 0) {
3183 		if (refill == MVNETA_RX_RING_CNT)
3184 			rx->needs_refill = TRUE;
3185 		return;
3186 	}
3187 
3188 	rx->needs_refill = FALSE;
3189 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3190 
3191 	while (__predict_false(npkt > 255)) {
3192 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3193 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3194 		npkt -= 255;
3195 	}
3196 	if (__predict_true(npkt > 0)) {
3197 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3198 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3199 	}
3200 }
3201 
3202 STATIC __inline void
3203 mvneta_rx_set_csumflag(struct ifnet *ifp,
3204     struct mvneta_rx_desc *r, struct mbuf *m)
3205 {
3206 	uint32_t csum_flags;
3207 
3208 	csum_flags = 0;
3209 	if (__predict_false((r->status &
3210 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3211 		return; /* not a IP packet */
3212 
3213 	/* L3 */
3214 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3215 	    MVNETA_RX_IP_HEADER_OK))
3216 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3217 
3218 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3219 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3220 		/* L4 */
3221 		switch (r->status & MVNETA_RX_L4_MASK) {
3222 		case MVNETA_RX_L4_TCP:
3223 		case MVNETA_RX_L4_UDP:
3224 			csum_flags |= CSUM_L4_CALC;
3225 			if (__predict_true((r->status &
3226 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3227 				csum_flags |= CSUM_L4_VALID;
3228 				m->m_pkthdr.csum_data = htons(0xffff);
3229 			}
3230 			break;
3231 		case MVNETA_RX_L4_OTH:
3232 		default:
3233 			break;
3234 		}
3235 	}
3236 	m->m_pkthdr.csum_flags = csum_flags;
3237 }
3238 
3239 /*
3240  * MAC address filter
3241  */
3242 STATIC void
3243 mvneta_filter_setup(struct mvneta_softc *sc)
3244 {
3245 	struct ifnet *ifp;
3246 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3247 	uint32_t pxc;
3248 	int i;
3249 
3250 	KASSERT_SC_MTX(sc);
3251 
3252 	memset(dfut, 0, sizeof(dfut));
3253 	memset(dfsmt, 0, sizeof(dfsmt));
3254 	memset(dfomt, 0, sizeof(dfomt));
3255 
3256 	ifp = sc->ifp;
3257 	ifp->if_flags |= IFF_ALLMULTI;
3258 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
3259 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3260 			dfsmt[i] = dfomt[i] =
3261 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3262 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3263 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3264 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3265 		}
3266 	}
3267 
3268 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3269 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3270 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3271 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3272 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3273 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3274 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3275 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3276 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3277 	if (ifp->if_flags & IFF_BROADCAST) {
3278 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3279 	}
3280 	if (ifp->if_flags & IFF_PROMISC) {
3281 		pxc |= MVNETA_PXC_UPM;
3282 	}
3283 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3284 
3285 	/* Set Destination Address Filter Unicast Table */
3286 	if (ifp->if_flags & IFF_PROMISC) {
3287 		/* pass all unicast addresses */
3288 		for (i = 0; i < MVNETA_NDFUT; i++) {
3289 			dfut[i] =
3290 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3291 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3292 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3293 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3294 		}
3295 	} else {
3296 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3297 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3298 	}
3299 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3300 
3301 	/* Set Destination Address Filter Multicast Tables */
3302 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3303 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3304 }
3305 
3306 /*
3307  * sysctl(9)
3308  */
3309 STATIC int
3310 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3311 {
3312 	struct mvneta_sysctl_mib *arg;
3313 	struct mvneta_softc *sc;
3314 	uint64_t val;
3315 
3316 	arg = (struct mvneta_sysctl_mib *)arg1;
3317 	if (arg == NULL)
3318 		return (EINVAL);
3319 
3320 	sc = arg->sc;
3321 	if (sc == NULL)
3322 		return (EINVAL);
3323 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3324 		return (EINVAL);
3325 
3326 	mvneta_sc_lock(sc);
3327 	val = arg->counter;
3328 	mvneta_sc_unlock(sc);
3329 	return sysctl_handle_64(oidp, &val, 0, req);
3330 }
3331 
3332 
3333 STATIC int
3334 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3335 {
3336 	struct mvneta_softc *sc;
3337 	int err, val;
3338 
3339 	val = 0;
3340 	sc = (struct mvneta_softc *)arg1;
3341 	if (sc == NULL)
3342 		return (EINVAL);
3343 
3344 	err = sysctl_handle_int(oidp, &val, 0, req);
3345 	if (err != 0)
3346 		return (err);
3347 
3348 	if (val < 0 || val > 1)
3349 		return (EINVAL);
3350 
3351 	if (val == 1) {
3352 		mvneta_sc_lock(sc);
3353 		mvneta_clear_mib(sc);
3354 		mvneta_sc_unlock(sc);
3355 	}
3356 
3357 	return (0);
3358 }
3359 
3360 STATIC int
3361 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3362 {
3363 	struct mvneta_sysctl_queue *arg;
3364 	struct mvneta_rx_ring *rx;
3365 	struct mvneta_softc *sc;
3366 	uint32_t reg, time_mvtclk;
3367 	int err, time_us;
3368 
3369 	rx = NULL;
3370 	arg = (struct mvneta_sysctl_queue *)arg1;
3371 	if (arg == NULL)
3372 		return (EINVAL);
3373 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3374 		return (EINVAL);
3375 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3376 		return (EINVAL);
3377 
3378 	sc = arg->sc;
3379 	if (sc == NULL)
3380 		return (EINVAL);
3381 
3382 	/* read queue length */
3383 	mvneta_sc_lock(sc);
3384 	mvneta_rx_lockq(sc, arg->queue);
3385 	rx = MVNETA_RX_RING(sc, arg->queue);
3386 	time_mvtclk = rx->queue_th_time;
3387 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk();
3388 	mvneta_rx_unlockq(sc, arg->queue);
3389 	mvneta_sc_unlock(sc);
3390 
3391 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3392 	if (err != 0)
3393 		return (err);
3394 
3395 	mvneta_sc_lock(sc);
3396 	mvneta_rx_lockq(sc, arg->queue);
3397 
3398 	/* update queue length (0[sec] - 1[sec]) */
3399 	if (time_us < 0 || time_us > (1000 * 1000)) {
3400 		mvneta_rx_unlockq(sc, arg->queue);
3401 		mvneta_sc_unlock(sc);
3402 		return (EINVAL);
3403 	}
3404 	time_mvtclk =
3405 	    (uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL);
3406 	rx->queue_th_time = time_mvtclk;
3407 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3408 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3409 	mvneta_rx_unlockq(sc, arg->queue);
3410 	mvneta_sc_unlock(sc);
3411 
3412 	return (0);
3413 }
3414 
3415 STATIC void
3416 sysctl_mvneta_init(struct mvneta_softc *sc)
3417 {
3418 	struct sysctl_ctx_list *ctx;
3419 	struct sysctl_oid_list *children;
3420 	struct sysctl_oid_list *rxchildren;
3421 	struct sysctl_oid_list *qchildren, *mchildren;
3422 	struct sysctl_oid *tree;
3423 	int i, q;
3424 	struct mvneta_sysctl_queue *rxarg;
3425 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3426 	static const char *sysctl_queue_names[] = {
3427 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3428 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3429 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3430 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3431 	};
3432 #undef MVNETA_SYSCTL_NAME
3433 
3434 #ifndef NO_SYSCTL_DESCR
3435 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3436 	static const char *sysctl_queue_descrs[] = {
3437 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3438 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3439 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3440 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3441 	};
3442 #undef MVNETA_SYSCTL_DESCR
3443 #endif
3444 
3445 
3446 	ctx = device_get_sysctl_ctx(sc->dev);
3447 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3448 
3449 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3450 	    CTLFLAG_RD, 0, "NETA RX");
3451 	rxchildren = SYSCTL_CHILDREN(tree);
3452 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3453 	    CTLFLAG_RD, 0, "NETA MIB");
3454 	mchildren = SYSCTL_CHILDREN(tree);
3455 
3456 
3457 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3458 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3459 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3460 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3461 
3462 	/*
3463 	 * MIB access
3464 	 */
3465 	/* dev.mvneta.[unit].mib.<mibs> */
3466 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3467 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3468 
3469 		mib_arg->sc = sc;
3470 		mib_arg->index = i;
3471 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3472 		    mvneta_mib_list[i].sysctl_name,
3473 		    CTLTYPE_U64|CTLFLAG_RD, (void *)mib_arg, 0,
3474 		    sysctl_read_mib, "I", mvneta_mib_list[i].desc);
3475 	}
3476 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3477 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3478 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3479 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3480 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3481 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3482 
3483 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3484 	    CTLTYPE_INT|CTLFLAG_RW, (void *)sc, 0,
3485 	    sysctl_clear_mib, "I", "Reset MIB counters");
3486 
3487 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3488 		rxarg = &sc->sysctl_rx_queue[q];
3489 
3490 		rxarg->sc = sc;
3491 		rxarg->queue = q;
3492 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3493 
3494 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3495 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3496 		    sysctl_queue_names[q], CTLFLAG_RD, 0,
3497 		    sysctl_queue_descrs[q]);
3498 		qchildren = SYSCTL_CHILDREN(tree);
3499 
3500 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3501 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3502 		    CTLTYPE_UINT | CTLFLAG_RW, rxarg, 0,
3503 		    sysctl_set_queue_rxthtime, "I",
3504 		    "interrupt coalescing threshold timer [us]");
3505 	}
3506 }
3507 
3508 /*
3509  * MIB
3510  */
3511 STATIC void
3512 mvneta_clear_mib(struct mvneta_softc *sc)
3513 {
3514 	int i;
3515 
3516 	KASSERT_SC_MTX(sc);
3517 
3518 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3519 		if (mvneta_mib_list[i].reg64)
3520 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
3521 		else
3522 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
3523 		sc->sysctl_mib[i].counter = 0;
3524 	}
3525 	MVNETA_READ(sc, MVNETA_PDFC);
3526 	sc->counter_pdfc = 0;
3527 	MVNETA_READ(sc, MVNETA_POFC);
3528 	sc->counter_pofc = 0;
3529 	sc->counter_watchdog = 0;
3530 }
3531 
3532 STATIC void
3533 mvneta_update_mib(struct mvneta_softc *sc)
3534 {
3535 	struct mvneta_tx_ring *tx;
3536 	int i;
3537 	uint64_t val;
3538 	uint32_t reg;
3539 
3540 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3541 
3542 		if (mvneta_mib_list[i].reg64)
3543 			val = MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
3544 		else
3545 			val = MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
3546 
3547 		if (val == 0)
3548 			continue;
3549 
3550 		sc->sysctl_mib[i].counter += val;
3551 		switch (mvneta_mib_list[i].regnum) {
3552 			case MVNETA_MIB_RX_GOOD_OCT:
3553 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3554 				break;
3555 			case MVNETA_MIB_RX_BAD_FRAME:
3556 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3557 				break;
3558 			case MVNETA_MIB_RX_GOOD_FRAME:
3559 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3560 				break;
3561 			case MVNETA_MIB_RX_MCAST_FRAME:
3562 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3563 				break;
3564 			case MVNETA_MIB_TX_GOOD_OCT:
3565 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3566 				break;
3567 			case MVNETA_MIB_TX_GOOD_FRAME:
3568 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3569 				break;
3570 			case MVNETA_MIB_TX_MCAST_FRAME:
3571 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3572 				break;
3573 			case MVNETA_MIB_MAC_COL:
3574 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3575 				break;
3576 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3577 			case MVNETA_MIB_TX_EXCES_COL:
3578 			case MVNETA_MIB_MAC_LATE_COL:
3579 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3580 				break;
3581 		}
3582 	}
3583 
3584 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3585 	sc->counter_pdfc += reg;
3586 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3587 	reg = MVNETA_READ(sc, MVNETA_POFC);
3588 	sc->counter_pofc += reg;
3589 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3590 
3591 	/* TX watchdog. */
3592 	if (sc->counter_watchdog_mib > 0) {
3593 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3594 		sc->counter_watchdog_mib = 0;
3595 	}
3596 	/*
3597 	 * TX driver errors:
3598 	 * We do not take queue locks to not disrupt TX path.
3599 	 * We may only miss one drv error which will be fixed at
3600 	 * next mib update. We may also clear counter when TX path
3601 	 * is incrementing it but we only do it if counter was not zero
3602 	 * thus we may only loose one error.
3603 	 */
3604 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3605 		tx = MVNETA_TX_RING(sc, i);
3606 
3607 		if (tx->drv_error > 0) {
3608 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3609 			tx->drv_error = 0;
3610 		}
3611 	}
3612 }
3613