xref: /freebsd/sys/dev/neta/if_mvneta.c (revision 681ce946)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47 
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61 
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/mdio/mdio.h>
72 
73 #include <arm/mv/mvvar.h>
74 
75 #if !defined(__aarch64__)
76 #include <arm/mv/mvreg.h>
77 #include <arm/mv/mvwin.h>
78 #endif
79 
80 #include "if_mvnetareg.h"
81 #include "if_mvnetavar.h"
82 
83 #include "miibus_if.h"
84 #include "mdio_if.h"
85 
86 #ifdef MVNETA_DEBUG
87 #define	STATIC /* nothing */
88 #else
89 #define	STATIC static
90 #endif
91 
92 #define	DASSERT(x) KASSERT((x), (#x))
93 
94 #define	A3700_TCLK_250MHZ		250000000
95 
96 /* Device Register Initialization */
97 STATIC int mvneta_initreg(struct ifnet *);
98 
99 /* Descriptor Ring Control for each of queues */
100 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
101 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
102 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
103 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
104 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
105 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
106 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
107 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
108 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109 STATIC int mvneta_dma_create(struct mvneta_softc *);
110 
111 /* Rx/Tx Queue Control */
112 STATIC int mvneta_rx_queue_init(struct ifnet *, int);
113 STATIC int mvneta_tx_queue_init(struct ifnet *, int);
114 STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
115 STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
116 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
117 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
118 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
119 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
120 
121 /* Interrupt Handlers */
122 STATIC void mvneta_disable_intr(struct mvneta_softc *);
123 STATIC void mvneta_enable_intr(struct mvneta_softc *);
124 STATIC void mvneta_rxtxth_intr(void *);
125 STATIC int mvneta_misc_intr(struct mvneta_softc *);
126 STATIC void mvneta_tick(void *);
127 /* struct ifnet and mii callbacks*/
128 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
129 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
130 #ifdef MVNETA_MULTIQUEUE
131 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
132 #else /* !MVNETA_MULTIQUEUE */
133 STATIC void mvneta_start(struct ifnet *);
134 #endif
135 STATIC void mvneta_qflush(struct ifnet *);
136 STATIC void mvneta_tx_task(void *, int);
137 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
138 STATIC void mvneta_init(void *);
139 STATIC void mvneta_init_locked(void *);
140 STATIC void mvneta_stop(struct mvneta_softc *);
141 STATIC void mvneta_stop_locked(struct mvneta_softc *);
142 STATIC int mvneta_mediachange(struct ifnet *);
143 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
144 STATIC void mvneta_portup(struct mvneta_softc *);
145 STATIC void mvneta_portdown(struct mvneta_softc *);
146 
147 /* Link State Notify */
148 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
149 STATIC int mvneta_update_media(struct mvneta_softc *, int);
150 STATIC void mvneta_adjust_link(struct mvneta_softc *);
151 STATIC void mvneta_update_eee(struct mvneta_softc *);
152 STATIC void mvneta_update_fc(struct mvneta_softc *);
153 STATIC void mvneta_link_isr(struct mvneta_softc *);
154 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
155 STATIC void mvneta_linkup(struct mvneta_softc *);
156 STATIC void mvneta_linkdown(struct mvneta_softc *);
157 STATIC void mvneta_linkreset(struct mvneta_softc *);
158 
159 /* Tx Subroutines */
160 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
161 STATIC void mvneta_tx_set_csumflag(struct ifnet *,
162     struct mvneta_tx_desc *, struct mbuf *);
163 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
164 STATIC void mvneta_tx_drain(struct mvneta_softc *);
165 
166 /* Rx Subroutines */
167 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
168 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
169 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
170 STATIC void mvneta_rx_set_csumflag(struct ifnet *,
171     struct mvneta_rx_desc *, struct mbuf *);
172 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
173 
174 /* MAC address filter */
175 STATIC void mvneta_filter_setup(struct mvneta_softc *);
176 
177 /* sysctl(9) */
178 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
179 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
180 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
181 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
182 
183 /* MIB */
184 STATIC void mvneta_clear_mib(struct mvneta_softc *);
185 STATIC uint64_t mvneta_read_mib(struct mvneta_softc *, int);
186 STATIC void mvneta_update_mib(struct mvneta_softc *);
187 
188 /* Switch */
189 STATIC boolean_t mvneta_has_switch(device_t);
190 
191 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
192 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
193 
194 STATIC struct mtx mii_mutex;
195 STATIC int mii_init = 0;
196 
197 /* Device */
198 STATIC int mvneta_detach(device_t);
199 /* MII */
200 STATIC int mvneta_miibus_readreg(device_t, int, int);
201 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
202 
203 /* Clock */
204 STATIC uint32_t mvneta_get_clk(void);
205 
206 static device_method_t mvneta_methods[] = {
207 	/* Device interface */
208 	DEVMETHOD(device_detach,	mvneta_detach),
209 	/* MII interface */
210 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
211 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
212 	/* MDIO interface */
213 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
214 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
215 
216 	/* End */
217 	DEVMETHOD_END
218 };
219 
220 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
221 
222 DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
223 DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
224 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
225 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
226 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
227 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
228 
229 /*
230  * List of MIB register and names
231  */
232 enum mvneta_mib_idx
233 {
234 	MVNETA_MIB_RX_GOOD_OCT_IDX,
235 	MVNETA_MIB_RX_BAD_OCT_IDX,
236 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
237 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
238 	MVNETA_MIB_RX_BAD_FRAME_IDX,
239 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
240 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
241 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
242 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
243 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
244 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
245 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
246 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
247 	MVNETA_MIB_TX_GOOD_OCT_IDX,
248 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
249 	MVNETA_MIB_TX_EXCES_COL_IDX,
250 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
251 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
252 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
253 	MVNETA_MIB_FC_SENT_IDX,
254 	MVNETA_MIB_FC_GOOD_IDX,
255 	MVNETA_MIB_FC_BAD_IDX,
256 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
257 	MVNETA_MIB_PKT_FRAGMENT_IDX,
258 	MVNETA_MIB_PKT_OVERSIZE_IDX,
259 	MVNETA_MIB_PKT_JABBER_IDX,
260 	MVNETA_MIB_MAC_RX_ERR_IDX,
261 	MVNETA_MIB_MAC_CRC_ERR_IDX,
262 	MVNETA_MIB_MAC_COL_IDX,
263 	MVNETA_MIB_MAC_LATE_COL_IDX,
264 };
265 
266 STATIC struct mvneta_mib_def {
267 	uint32_t regnum;
268 	int reg64;
269 	const char *sysctl_name;
270 	const char *desc;
271 } mvneta_mib_list[] = {
272 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
273 	    "rx_good_oct", "Good Octets Rx"},
274 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
275 	    "rx_bad_oct", "Bad  Octets Rx"},
276 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
277 	    "tx_mac_err", "MAC Transmit Error"},
278 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
279 	    "rx_good_frame", "Good Frames Rx"},
280 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
281 	    "rx_bad_frame", "Bad Frames Rx"},
282 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
283 	    "rx_bcast_frame", "Broadcast Frames Rx"},
284 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
285 	    "rx_mcast_frame", "Multicast Frames Rx"},
286 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
287 	    "rx_frame_1_64", "Frame Size    1 -   64"},
288 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
289 	    "rx_frame_65_127", "Frame Size   65 -  127"},
290 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
291 	    "rx_frame_128_255", "Frame Size  128 -  255"},
292 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
293 	    "rx_frame_256_511", "Frame Size  256 -  511"},
294 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
295 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
296 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
297 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
298 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
299 	    "tx_good_oct", "Good Octets Tx"},
300 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
301 	    "tx_good_frame", "Good Frames Tx"},
302 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
303 	    "tx_exces_collision", "Excessive Collision"},
304 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
305 	    "tx_mcast_frame", "Multicast Frames Tx"},
306 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
307 	    "tx_bcast_frame", "Broadcast Frames Tx"},
308 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
309 	    "tx_mac_ctl_err", "Unknown MAC Control"},
310 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
311 	    "fc_tx", "Flow Control Tx"},
312 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
313 	    "fc_rx_good", "Good Flow Control Rx"},
314 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
315 	    "fc_rx_bad", "Bad Flow Control Rx"},
316 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
317 	    "pkt_undersize", "Undersized Packets Rx"},
318 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
319 	    "pkt_fragment", "Fragmented Packets Rx"},
320 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
321 	    "pkt_oversize", "Oversized Packets Rx"},
322 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
323 	    "pkt_jabber", "Jabber Packets Rx"},
324 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
325 	    "mac_rx_err", "MAC Rx Errors"},
326 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
327 	    "mac_crc_err", "MAC CRC Errors"},
328 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
329 	    "mac_collision", "MAC Collision"},
330 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
331 	    "mac_late_collision", "MAC Late Collision"},
332 };
333 
334 static struct resource_spec res_spec[] = {
335 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
336 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
337 	{ -1, 0}
338 };
339 
340 static struct {
341 	driver_intr_t *handler;
342 	char * description;
343 } mvneta_intrs[] = {
344 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
345 };
346 
347 STATIC uint32_t
348 mvneta_get_clk()
349 {
350 #if defined(__aarch64__)
351 	return (A3700_TCLK_250MHZ);
352 #else
353 	return (get_tclk());
354 #endif
355 }
356 
357 static int
358 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
359 {
360 	unsigned int mac_h;
361 	unsigned int mac_l;
362 
363 	mac_l = (addr[4] << 8) | (addr[5]);
364 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
365 	    (addr[2] << 8) | (addr[3] << 0);
366 
367 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
368 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
369 	return (0);
370 }
371 
372 static int
373 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
374 {
375 	uint32_t mac_l, mac_h;
376 
377 #ifdef FDT
378 	if (mvneta_fdt_mac_address(sc, addr) == 0)
379 		return (0);
380 #endif
381 	/*
382 	 * Fall back -- use the currently programmed address.
383 	 */
384 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
385 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
386 	if (mac_l == 0 && mac_h == 0) {
387 		/*
388 		 * Generate pseudo-random MAC.
389 		 * Set lower part to random number | unit number.
390 		 */
391 		mac_l = arc4random() & ~0xff;
392 		mac_l |= device_get_unit(sc->dev) & 0xff;
393 		mac_h = arc4random();
394 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
395 		if (bootverbose) {
396 			device_printf(sc->dev,
397 			    "Could not acquire MAC address. "
398 			    "Using randomized one.\n");
399 		}
400 	}
401 
402 	addr[0] = (mac_h & 0xff000000) >> 24;
403 	addr[1] = (mac_h & 0x00ff0000) >> 16;
404 	addr[2] = (mac_h & 0x0000ff00) >> 8;
405 	addr[3] = (mac_h & 0x000000ff);
406 	addr[4] = (mac_l & 0x0000ff00) >> 8;
407 	addr[5] = (mac_l & 0x000000ff);
408 	return (0);
409 }
410 
411 STATIC boolean_t
412 mvneta_has_switch(device_t self)
413 {
414 #ifdef FDT
415 	return (mvneta_has_switch_fdt(self));
416 #endif
417 
418 	return (false);
419 }
420 
421 STATIC int
422 mvneta_dma_create(struct mvneta_softc *sc)
423 {
424 	size_t maxsize, maxsegsz;
425 	size_t q;
426 	int error;
427 
428 	/*
429 	 * Create Tx DMA
430 	 */
431 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
432 
433 	error = bus_dma_tag_create(
434 	    bus_get_dma_tag(sc->dev),		/* parent */
435 	    16, 0,                              /* alignment, boundary */
436 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
437 	    BUS_SPACE_MAXADDR,                  /* highaddr */
438 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
439 	    maxsize,				/* maxsize */
440 	    1,					/* nsegments */
441 	    maxsegsz,				/* maxsegsz */
442 	    0,					/* flags */
443 	    NULL, NULL,				/* lockfunc, lockfuncarg */
444 	    &sc->tx_dtag);			/* dmat */
445 	if (error != 0) {
446 		device_printf(sc->dev,
447 		    "Failed to create DMA tag for Tx descriptors.\n");
448 		goto fail;
449 	}
450 	error = bus_dma_tag_create(
451 	    bus_get_dma_tag(sc->dev),		/* parent */
452 	    1, 0,				/* alignment, boundary */
453 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
454 	    BUS_SPACE_MAXADDR,			/* highaddr */
455 	    NULL, NULL,				/* filtfunc, filtfuncarg */
456 	    MVNETA_MAX_FRAME,			/* maxsize */
457 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
458 	    MVNETA_MAX_FRAME,			/* maxsegsz */
459 	    BUS_DMA_ALLOCNOW,			/* flags */
460 	    NULL, NULL,				/* lockfunc, lockfuncarg */
461 	    &sc->txmbuf_dtag);
462 	if (error != 0) {
463 		device_printf(sc->dev,
464 		    "Failed to create DMA tag for Tx mbufs.\n");
465 		goto fail;
466 	}
467 
468 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
469 		error = mvneta_ring_alloc_tx_queue(sc, q);
470 		if (error != 0) {
471 			device_printf(sc->dev,
472 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
473 			goto fail;
474 		}
475 	}
476 
477 	/*
478 	 * Create Rx DMA.
479 	 */
480 	/* Create tag for Rx descripors */
481 	error = bus_dma_tag_create(
482 	    bus_get_dma_tag(sc->dev),		/* parent */
483 	    32, 0,                              /* alignment, boundary */
484 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
485 	    BUS_SPACE_MAXADDR,                  /* highaddr */
486 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
487 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
488 	    1,					/* nsegments */
489 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
490 	    0,					/* flags */
491 	    NULL, NULL,				/* lockfunc, lockfuncarg */
492 	    &sc->rx_dtag);			/* dmat */
493 	if (error != 0) {
494 		device_printf(sc->dev,
495 		    "Failed to create DMA tag for Rx descriptors.\n");
496 		goto fail;
497 	}
498 
499 	/* Create tag for Rx buffers */
500 	error = bus_dma_tag_create(
501 	    bus_get_dma_tag(sc->dev),		/* parent */
502 	    32, 0,				/* alignment, boundary */
503 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
504 	    BUS_SPACE_MAXADDR,			/* highaddr */
505 	    NULL, NULL,				/* filtfunc, filtfuncarg */
506 	    MVNETA_MAX_FRAME, 1,		/* maxsize, nsegments */
507 	    MVNETA_MAX_FRAME,			/* maxsegsz */
508 	    0,					/* flags */
509 	    NULL, NULL,				/* lockfunc, lockfuncarg */
510 	    &sc->rxbuf_dtag);			/* dmat */
511 	if (error != 0) {
512 		device_printf(sc->dev,
513 		    "Failed to create DMA tag for Rx buffers.\n");
514 		goto fail;
515 	}
516 
517 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
518 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
519 			device_printf(sc->dev,
520 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
521 			goto fail;
522 		}
523 	}
524 
525 	return (0);
526 fail:
527 	mvneta_detach(sc->dev);
528 
529 	return (error);
530 }
531 
532 /* ARGSUSED */
533 int
534 mvneta_attach(device_t self)
535 {
536 	struct mvneta_softc *sc;
537 	struct ifnet *ifp;
538 	device_t child;
539 	int ifm_target;
540 	int q, error;
541 #if !defined(__aarch64__)
542 	uint32_t reg;
543 #endif
544 
545 	sc = device_get_softc(self);
546 	sc->dev = self;
547 
548 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
549 
550 	error = bus_alloc_resources(self, res_spec, sc->res);
551 	if (error) {
552 		device_printf(self, "could not allocate resources\n");
553 		return (ENXIO);
554 	}
555 
556 	sc->version = MVNETA_READ(sc, MVNETA_PV);
557 	device_printf(self, "version is %x\n", sc->version);
558 	callout_init(&sc->tick_ch, 0);
559 
560 	/*
561 	 * make sure DMA engines are in reset state
562 	 */
563 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
564 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
565 
566 #if !defined(__aarch64__)
567 	/*
568 	 * Disable port snoop for buffers and descriptors
569 	 * to avoid L2 caching of both without DRAM copy.
570 	 * Obtain coherency settings from the first MBUS
571 	 * window attribute.
572 	 */
573 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
574 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
575 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
576 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
577 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
578 	}
579 #endif
580 
581 	error = bus_setup_intr(self, sc->res[1],
582 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
583 	    &sc->ih_cookie[0]);
584 	if (error) {
585 		device_printf(self, "could not setup %s\n",
586 		    mvneta_intrs[0].description);
587 		mvneta_detach(self);
588 		return (error);
589 	}
590 
591 	/*
592 	 * MAC address
593 	 */
594 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
595 		device_printf(self, "no mac address.\n");
596 		return (ENXIO);
597 	}
598 	mvneta_set_mac_address(sc, sc->enaddr);
599 
600 	mvneta_disable_intr(sc);
601 
602 	/* Allocate network interface */
603 	ifp = sc->ifp = if_alloc(IFT_ETHER);
604 	if (ifp == NULL) {
605 		device_printf(self, "if_alloc() failed\n");
606 		mvneta_detach(self);
607 		return (ENOMEM);
608 	}
609 	if_initname(ifp, device_get_name(self), device_get_unit(self));
610 
611 	/*
612 	 * We can support 802.1Q VLAN-sized frames and jumbo
613 	 * Ethernet frames.
614 	 */
615 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
616 
617 	ifp->if_softc = sc;
618 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
619 #ifdef MVNETA_MULTIQUEUE
620 	ifp->if_transmit = mvneta_transmit;
621 	ifp->if_qflush = mvneta_qflush;
622 #else /* !MVNETA_MULTIQUEUE */
623 	ifp->if_start = mvneta_start;
624 	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
625 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
626 	IFQ_SET_READY(&ifp->if_snd);
627 #endif
628 	ifp->if_init = mvneta_init;
629 	ifp->if_ioctl = mvneta_ioctl;
630 
631 	/*
632 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
633 	 */
634 	ifp->if_capabilities |= IFCAP_HWCSUM;
635 
636 	/*
637 	 * As VLAN hardware tagging is not supported
638 	 * but is necessary to perform VLAN hardware checksums,
639 	 * it is done in the driver
640 	 */
641 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
642 
643 	/*
644 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
645 	 */
646 	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
647 	ifp->if_capenable = ifp->if_capabilities;
648 
649 	/*
650 	 * Disabled option(s):
651 	 * - Support for Large Receive Offload
652 	 */
653 	ifp->if_capabilities |= IFCAP_LRO;
654 
655 	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
656 
657 	sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
658 
659 	/*
660 	 * Device DMA Buffer allocation.
661 	 * Handles resource deallocation in case of failure.
662 	 */
663 	error = mvneta_dma_create(sc);
664 	if (error != 0) {
665 		mvneta_detach(self);
666 		return (error);
667 	}
668 
669 	/* Initialize queues */
670 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
671 		error = mvneta_ring_init_tx_queue(sc, q);
672 		if (error != 0) {
673 			mvneta_detach(self);
674 			return (error);
675 		}
676 	}
677 
678 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
679 		error = mvneta_ring_init_rx_queue(sc, q);
680 		if (error != 0) {
681 			mvneta_detach(self);
682 			return (error);
683 		}
684 	}
685 
686 	/*
687 	 * Enable DMA engines and Initialize Device Registers.
688 	 */
689 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
690 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
691 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
692 	mvneta_sc_lock(sc);
693 	mvneta_filter_setup(sc);
694 	mvneta_sc_unlock(sc);
695 	mvneta_initreg(ifp);
696 
697 	/*
698 	 * Now MAC is working, setup MII.
699 	 */
700 	if (mii_init == 0) {
701 		/*
702 		 * MII bus is shared by all MACs and all PHYs in SoC.
703 		 * serializing the bus access should be safe.
704 		 */
705 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
706 		mii_init = 1;
707 	}
708 
709 	/* Attach PHY(s) */
710 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
711 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
712 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
713 		    MII_OFFSET_ANY, 0);
714 		if (error != 0) {
715 			if (bootverbose) {
716 				device_printf(self,
717 				    "MII attach failed, error: %d\n", error);
718 			}
719 			ether_ifdetach(sc->ifp);
720 			mvneta_detach(self);
721 			return (error);
722 		}
723 		sc->mii = device_get_softc(sc->miibus);
724 		sc->phy_attached = 1;
725 
726 		/* Disable auto-negotiation in MAC - rely on PHY layer */
727 		mvneta_update_autoneg(sc, FALSE);
728 	} else if (sc->use_inband_status == TRUE) {
729 		/* In-band link status */
730 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
731 		    mvneta_mediastatus);
732 
733 		/* Configure media */
734 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
735 		    0, NULL);
736 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
737 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
738 		    0, NULL);
739 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
740 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
741 		    0, NULL);
742 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
743 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
744 
745 		/* Enable auto-negotiation */
746 		mvneta_update_autoneg(sc, TRUE);
747 
748 		mvneta_sc_lock(sc);
749 		if (MVNETA_IS_LINKUP(sc))
750 			mvneta_linkup(sc);
751 		else
752 			mvneta_linkdown(sc);
753 		mvneta_sc_unlock(sc);
754 
755 	} else {
756 		/* Fixed-link, use predefined values */
757 		mvneta_update_autoneg(sc, FALSE);
758 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
759 		    mvneta_mediastatus);
760 
761 		ifm_target = IFM_ETHER;
762 		switch (sc->phy_speed) {
763 		case 2500:
764 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
765 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
766 				device_printf(self,
767 				    "2.5G speed can work only in (Q)SGMII mode\n");
768 				ether_ifdetach(sc->ifp);
769 				mvneta_detach(self);
770 				return (ENXIO);
771 			}
772 			ifm_target |= IFM_2500_T;
773 			break;
774 		case 1000:
775 			ifm_target |= IFM_1000_T;
776 			break;
777 		case 100:
778 			ifm_target |= IFM_100_TX;
779 			break;
780 		case 10:
781 			ifm_target |= IFM_10_T;
782 			break;
783 		default:
784 			ether_ifdetach(sc->ifp);
785 			mvneta_detach(self);
786 			return (ENXIO);
787 		}
788 
789 		if (sc->phy_fdx)
790 			ifm_target |= IFM_FDX;
791 		else
792 			ifm_target |= IFM_HDX;
793 
794 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
795 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
796 		if_link_state_change(sc->ifp, LINK_STATE_UP);
797 
798 		if (mvneta_has_switch(self)) {
799 			if (bootverbose)
800 				device_printf(self, "This device is attached to a switch\n");
801 			child = device_add_child(sc->dev, "mdio", -1);
802 			if (child == NULL) {
803 				ether_ifdetach(sc->ifp);
804 				mvneta_detach(self);
805 				return (ENXIO);
806 			}
807 			bus_generic_attach(sc->dev);
808 			bus_generic_attach(child);
809 		}
810 
811 		/* Configure MAC media */
812 		mvneta_update_media(sc, ifm_target);
813 	}
814 
815 	ether_ifattach(ifp, sc->enaddr);
816 
817 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
818 
819 	sysctl_mvneta_init(sc);
820 
821 	return (0);
822 }
823 
824 STATIC int
825 mvneta_detach(device_t dev)
826 {
827 	struct mvneta_softc *sc;
828 	struct ifnet *ifp;
829 	int q;
830 
831 	sc = device_get_softc(dev);
832 	ifp = sc->ifp;
833 
834 	if (device_is_attached(dev)) {
835 		mvneta_stop(sc);
836 		callout_drain(&sc->tick_ch);
837 		ether_ifdetach(sc->ifp);
838 	}
839 
840 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
841 		mvneta_ring_dealloc_rx_queue(sc, q);
842 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
843 		mvneta_ring_dealloc_tx_queue(sc, q);
844 
845 	device_delete_children(dev);
846 
847 	if (sc->ih_cookie[0] != NULL)
848 		bus_teardown_intr(dev, sc->res[1], sc->ih_cookie[0]);
849 
850 	if (sc->tx_dtag != NULL)
851 		bus_dma_tag_destroy(sc->tx_dtag);
852 	if (sc->rx_dtag != NULL)
853 		bus_dma_tag_destroy(sc->rx_dtag);
854 	if (sc->txmbuf_dtag != NULL)
855 		bus_dma_tag_destroy(sc->txmbuf_dtag);
856 	if (sc->rxbuf_dtag != NULL)
857 		bus_dma_tag_destroy(sc->rxbuf_dtag);
858 
859 	bus_release_resources(dev, res_spec, sc->res);
860 
861 	if (sc->ifp)
862 		if_free(sc->ifp);
863 
864 	if (mtx_initialized(&sc->mtx))
865 		mtx_destroy(&sc->mtx);
866 
867 	return (0);
868 }
869 
870 /*
871  * MII
872  */
873 STATIC int
874 mvneta_miibus_readreg(device_t dev, int phy, int reg)
875 {
876 	struct mvneta_softc *sc;
877 	struct ifnet *ifp;
878 	uint32_t smi, val;
879 	int i;
880 
881 	sc = device_get_softc(dev);
882 	ifp = sc->ifp;
883 
884 	mtx_lock(&mii_mutex);
885 
886 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
887 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
888 			break;
889 		DELAY(1);
890 	}
891 	if (i == MVNETA_PHY_TIMEOUT) {
892 		if_printf(ifp, "SMI busy timeout\n");
893 		mtx_unlock(&mii_mutex);
894 		return (-1);
895 	}
896 
897 	smi = MVNETA_SMI_PHYAD(phy) |
898 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
899 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
900 
901 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
902 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
903 			break;
904 		DELAY(1);
905 	}
906 
907 	if (i == MVNETA_PHY_TIMEOUT) {
908 		if_printf(ifp, "SMI busy timeout\n");
909 		mtx_unlock(&mii_mutex);
910 		return (-1);
911 	}
912 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
913 		smi = MVNETA_READ(sc, MVNETA_SMI);
914 		if (smi & MVNETA_SMI_READVALID)
915 			break;
916 		DELAY(1);
917 	}
918 
919 	if (i == MVNETA_PHY_TIMEOUT) {
920 		if_printf(ifp, "SMI busy timeout\n");
921 		mtx_unlock(&mii_mutex);
922 		return (-1);
923 	}
924 
925 	mtx_unlock(&mii_mutex);
926 
927 #ifdef MVNETA_KTR
928 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
929 	    MVNETA_PHY_TIMEOUT);
930 #endif
931 
932 	val = smi & MVNETA_SMI_DATA_MASK;
933 
934 #ifdef MVNETA_KTR
935 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
936 	    reg, val);
937 #endif
938 	return (val);
939 }
940 
941 STATIC int
942 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
943 {
944 	struct mvneta_softc *sc;
945 	struct ifnet *ifp;
946 	uint32_t smi;
947 	int i;
948 
949 	sc = device_get_softc(dev);
950 	ifp = sc->ifp;
951 #ifdef MVNETA_KTR
952 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
953 	    phy, reg, val);
954 #endif
955 
956 	mtx_lock(&mii_mutex);
957 
958 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
959 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
960 			break;
961 		DELAY(1);
962 	}
963 	if (i == MVNETA_PHY_TIMEOUT) {
964 		if_printf(ifp, "SMI busy timeout\n");
965 		mtx_unlock(&mii_mutex);
966 		return (0);
967 	}
968 
969 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
970 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
971 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
972 
973 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
974 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
975 			break;
976 		DELAY(1);
977 	}
978 
979 	mtx_unlock(&mii_mutex);
980 
981 	if (i == MVNETA_PHY_TIMEOUT)
982 		if_printf(ifp, "phy write timed out\n");
983 
984 	return (0);
985 }
986 
987 STATIC void
988 mvneta_portup(struct mvneta_softc *sc)
989 {
990 	int q;
991 
992 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
993 		mvneta_rx_lockq(sc, q);
994 		mvneta_rx_queue_enable(sc->ifp, q);
995 		mvneta_rx_unlockq(sc, q);
996 	}
997 
998 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
999 		mvneta_tx_lockq(sc, q);
1000 		mvneta_tx_queue_enable(sc->ifp, q);
1001 		mvneta_tx_unlockq(sc, q);
1002 	}
1003 
1004 }
1005 
1006 STATIC void
1007 mvneta_portdown(struct mvneta_softc *sc)
1008 {
1009 	struct mvneta_rx_ring *rx;
1010 	struct mvneta_tx_ring *tx;
1011 	int q, cnt;
1012 	uint32_t reg;
1013 
1014 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1015 		rx = MVNETA_RX_RING(sc, q);
1016 		mvneta_rx_lockq(sc, q);
1017 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1018 		mvneta_rx_unlockq(sc, q);
1019 	}
1020 
1021 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1022 		tx = MVNETA_TX_RING(sc, q);
1023 		mvneta_tx_lockq(sc, q);
1024 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1025 		mvneta_tx_unlockq(sc, q);
1026 	}
1027 
1028 	/* Wait for all Rx activity to terminate. */
1029 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1030 	reg = MVNETA_RQC_DIS(reg);
1031 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1032 	cnt = 0;
1033 	do {
1034 		if (cnt >= RX_DISABLE_TIMEOUT) {
1035 			if_printf(sc->ifp,
1036 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1037 			break;
1038 		}
1039 		cnt++;
1040 		reg = MVNETA_READ(sc, MVNETA_RQC);
1041 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1042 
1043 	/* Wait for all Tx activity to terminate. */
1044 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1045 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1046 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1047 
1048 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1049 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1050 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1051 
1052 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1053 	reg = MVNETA_TQC_DIS(reg);
1054 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1055 	cnt = 0;
1056 	do {
1057 		if (cnt >= TX_DISABLE_TIMEOUT) {
1058 			if_printf(sc->ifp,
1059 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1060 			break;
1061 		}
1062 		cnt++;
1063 		reg = MVNETA_READ(sc, MVNETA_TQC);
1064 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1065 
1066 	/* Wait for all Tx FIFO is empty */
1067 	cnt = 0;
1068 	do {
1069 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1070 			if_printf(sc->ifp,
1071 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1072 			break;
1073 		}
1074 		cnt++;
1075 		reg = MVNETA_READ(sc, MVNETA_PS0);
1076 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1077 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1078 }
1079 
1080 /*
1081  * Device Register Initialization
1082  *  reset device registers to device driver default value.
1083  *  the device is not enabled here.
1084  */
1085 STATIC int
1086 mvneta_initreg(struct ifnet *ifp)
1087 {
1088 	struct mvneta_softc *sc;
1089 	int q;
1090 	uint32_t reg;
1091 
1092 	sc = ifp->if_softc;
1093 #ifdef MVNETA_KTR
1094 	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
1095 #endif
1096 
1097 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1098 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1099 	/* Enable mbus retry. */
1100 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1101 
1102 	/* Init TX/RX Queue Registers */
1103 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1104 		mvneta_rx_lockq(sc, q);
1105 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1106 			device_printf(sc->dev,
1107 			    "initialization failed: cannot initialize queue\n");
1108 			mvneta_rx_unlockq(sc, q);
1109 			return (ENOBUFS);
1110 		}
1111 		mvneta_rx_unlockq(sc, q);
1112 	}
1113 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1114 		mvneta_tx_lockq(sc, q);
1115 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1116 			device_printf(sc->dev,
1117 			    "initialization failed: cannot initialize queue\n");
1118 			mvneta_tx_unlockq(sc, q);
1119 			return (ENOBUFS);
1120 		}
1121 		mvneta_tx_unlockq(sc, q);
1122 	}
1123 
1124 	/*
1125 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1126 	 * In case the port uses SMI-controlled PHY, poll its status with
1127 	 * mii_tick() and update MAC settings accordingly.
1128 	 */
1129 	reg = MVNETA_READ(sc, MVNETA_EUC);
1130 	reg &= ~MVNETA_EUC_POLLING;
1131 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1132 
1133 	/* EEE: Low Power Idle */
1134 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1135 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1136 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1137 
1138 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1139 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1140 
1141 	reg = MVNETA_LPIC2_MUSTSET;
1142 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1143 
1144 	/* Port MAC Control set 0 */
1145 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1146 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1147 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
1148 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1149 
1150 	/* Port MAC Control set 2 */
1151 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1152 	switch (sc->phy_mode) {
1153 	case MVNETA_PHY_QSGMII:
1154 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1155 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1156 		break;
1157 	case MVNETA_PHY_SGMII:
1158 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1159 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1160 		break;
1161 	case MVNETA_PHY_RGMII:
1162 	case MVNETA_PHY_RGMII_ID:
1163 		reg |= MVNETA_PMACC2_RGMIIEN;
1164 		break;
1165 	}
1166 	reg |= MVNETA_PMACC2_MUSTSET;
1167 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1168 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1169 
1170 	/* Port Configuration Extended: enable Tx CRC generation */
1171 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1172 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1173 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1174 
1175 	/* clear MIB counter registers(clear by read) */
1176 	mvneta_sc_lock(sc);
1177 	mvneta_clear_mib(sc);
1178 	mvneta_sc_unlock(sc);
1179 
1180 	/* Set SDC register except IPGINT bits */
1181 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1182 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1183 	reg |= MVNETA_SDC_BLMR;
1184 	reg |= MVNETA_SDC_BLMT;
1185 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1186 
1187 	return (0);
1188 }
1189 
1190 STATIC void
1191 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1192 {
1193 
1194 	if (error != 0)
1195 		return;
1196 	*(bus_addr_t *)arg = segs->ds_addr;
1197 }
1198 
1199 STATIC int
1200 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1201 {
1202 	struct mvneta_rx_ring *rx;
1203 	struct mvneta_buf *rxbuf;
1204 	bus_dmamap_t dmap;
1205 	int i, error;
1206 
1207 	if (q >= MVNETA_RX_QNUM_MAX)
1208 		return (EINVAL);
1209 
1210 	rx = MVNETA_RX_RING(sc, q);
1211 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1212 	/* Allocate DMA memory for Rx descriptors */
1213 	error = bus_dmamem_alloc(sc->rx_dtag,
1214 	    (void**)&(rx->desc),
1215 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1216 	    &rx->desc_map);
1217 	if (error != 0 || rx->desc == NULL)
1218 		goto fail;
1219 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1220 	    rx->desc,
1221 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1222 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1223 	if (error != 0)
1224 		goto fail;
1225 
1226 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1227 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1228 		if (error != 0) {
1229 			device_printf(sc->dev,
1230 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1231 			goto fail;
1232 		}
1233 		rxbuf = &rx->rxbuf[i];
1234 		rxbuf->dmap = dmap;
1235 		rxbuf->m = NULL;
1236 	}
1237 
1238 	return (0);
1239 fail:
1240 	mvneta_rx_lockq(sc, q);
1241 	mvneta_ring_flush_rx_queue(sc, q);
1242 	mvneta_rx_unlockq(sc, q);
1243 	mvneta_ring_dealloc_rx_queue(sc, q);
1244 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1245 	return (error);
1246 }
1247 
1248 STATIC int
1249 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1250 {
1251 	struct mvneta_tx_ring *tx;
1252 	int error;
1253 
1254 	if (q >= MVNETA_TX_QNUM_MAX)
1255 		return (EINVAL);
1256 	tx = MVNETA_TX_RING(sc, q);
1257 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1258 	error = bus_dmamem_alloc(sc->tx_dtag,
1259 	    (void**)&(tx->desc),
1260 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1261 	    &tx->desc_map);
1262 	if (error != 0 || tx->desc == NULL)
1263 		goto fail;
1264 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1265 	    tx->desc,
1266 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1267 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1268 	if (error != 0)
1269 		goto fail;
1270 
1271 #ifdef MVNETA_MULTIQUEUE
1272 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1273 	    &tx->ring_mtx);
1274 	if (tx->br == NULL) {
1275 		device_printf(sc->dev,
1276 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1277 		error = ENOMEM;
1278 		goto fail;
1279 	}
1280 #endif
1281 
1282 	return (0);
1283 fail:
1284 	mvneta_tx_lockq(sc, q);
1285 	mvneta_ring_flush_tx_queue(sc, q);
1286 	mvneta_tx_unlockq(sc, q);
1287 	mvneta_ring_dealloc_tx_queue(sc, q);
1288 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1289 	return (error);
1290 }
1291 
1292 STATIC void
1293 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1294 {
1295 	struct mvneta_tx_ring *tx;
1296 	struct mvneta_buf *txbuf;
1297 	void *kva;
1298 	int error;
1299 	int i;
1300 
1301 	if (q >= MVNETA_TX_QNUM_MAX)
1302 		return;
1303 	tx = MVNETA_TX_RING(sc, q);
1304 
1305 	if (tx->taskq != NULL) {
1306 		/* Remove task */
1307 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1308 			taskqueue_drain(tx->taskq, &tx->task);
1309 	}
1310 #ifdef MVNETA_MULTIQUEUE
1311 	if (tx->br != NULL)
1312 		drbr_free(tx->br, M_DEVBUF);
1313 #endif
1314 
1315 	if (sc->txmbuf_dtag != NULL) {
1316 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1317 			txbuf = &tx->txbuf[i];
1318 			if (txbuf->dmap != NULL) {
1319 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1320 				    txbuf->dmap);
1321 				if (error != 0) {
1322 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1323 					    __func__, q, i);
1324 				}
1325 			}
1326 		}
1327 	}
1328 
1329 	if (tx->desc_pa != 0)
1330 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1331 
1332 	kva = (void *)tx->desc;
1333 	if (kva != NULL)
1334 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1335 
1336 	if (mtx_name(&tx->ring_mtx) != NULL)
1337 		mtx_destroy(&tx->ring_mtx);
1338 
1339 	memset(tx, 0, sizeof(*tx));
1340 }
1341 
1342 STATIC void
1343 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1344 {
1345 	struct mvneta_rx_ring *rx;
1346 	struct lro_ctrl	*lro;
1347 	void *kva;
1348 
1349 	if (q >= MVNETA_RX_QNUM_MAX)
1350 		return;
1351 
1352 	rx = MVNETA_RX_RING(sc, q);
1353 
1354 	if (rx->desc_pa != 0)
1355 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1356 
1357 	kva = (void *)rx->desc;
1358 	if (kva != NULL)
1359 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1360 
1361 	lro = &rx->lro;
1362 	tcp_lro_free(lro);
1363 
1364 	if (mtx_name(&rx->ring_mtx) != NULL)
1365 		mtx_destroy(&rx->ring_mtx);
1366 
1367 	memset(rx, 0, sizeof(*rx));
1368 }
1369 
1370 STATIC int
1371 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1372 {
1373 	struct mvneta_rx_ring *rx;
1374 	struct lro_ctrl	*lro;
1375 	int error;
1376 
1377 	if (q >= MVNETA_RX_QNUM_MAX)
1378 		return (0);
1379 
1380 	rx = MVNETA_RX_RING(sc, q);
1381 	rx->dma = rx->cpu = 0;
1382 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1383 	rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */
1384 
1385 	/* Initialize LRO */
1386 	rx->lro_enabled = FALSE;
1387 	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
1388 		lro = &rx->lro;
1389 		error = tcp_lro_init(lro);
1390 		if (error != 0)
1391 			device_printf(sc->dev, "LRO Initialization failed!\n");
1392 		else {
1393 			rx->lro_enabled = TRUE;
1394 			lro->ifp = sc->ifp;
1395 		}
1396 	}
1397 
1398 	return (0);
1399 }
1400 
1401 STATIC int
1402 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1403 {
1404 	struct mvneta_tx_ring *tx;
1405 	struct mvneta_buf *txbuf;
1406 	int i, error;
1407 
1408 	if (q >= MVNETA_TX_QNUM_MAX)
1409 		return (0);
1410 
1411 	tx = MVNETA_TX_RING(sc, q);
1412 
1413 	/* Tx handle */
1414 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1415 		txbuf = &tx->txbuf[i];
1416 		txbuf->m = NULL;
1417 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1418 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1419 		    &txbuf->dmap);
1420 		if (error != 0) {
1421 			device_printf(sc->dev,
1422 			    "can't create dma map (tx ring %d)\n", i);
1423 			return (error);
1424 		}
1425 	}
1426 	tx->dma = tx->cpu = 0;
1427 	tx->used = 0;
1428 	tx->drv_error = 0;
1429 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1430 	tx->queue_hung = FALSE;
1431 
1432 	tx->ifp = sc->ifp;
1433 	tx->qidx = q;
1434 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1435 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1436 	    taskqueue_thread_enqueue, &tx->taskq);
1437 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1438 	    device_get_nameunit(sc->dev), q);
1439 
1440 	return (0);
1441 }
1442 
1443 STATIC void
1444 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1445 {
1446 	struct mvneta_tx_ring *tx;
1447 	struct mvneta_buf *txbuf;
1448 	int i;
1449 
1450 	tx = MVNETA_TX_RING(sc, q);
1451 	KASSERT_TX_MTX(sc, q);
1452 
1453 	/* Tx handle */
1454 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1455 		txbuf = &tx->txbuf[i];
1456 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1457 		if (txbuf->m != NULL) {
1458 			m_freem(txbuf->m);
1459 			txbuf->m = NULL;
1460 		}
1461 	}
1462 	tx->dma = tx->cpu = 0;
1463 	tx->used = 0;
1464 }
1465 
1466 STATIC void
1467 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1468 {
1469 	struct mvneta_rx_ring *rx;
1470 	struct mvneta_buf *rxbuf;
1471 	int i;
1472 
1473 	rx = MVNETA_RX_RING(sc, q);
1474 	KASSERT_RX_MTX(sc, q);
1475 
1476 	/* Rx handle */
1477 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1478 		rxbuf = &rx->rxbuf[i];
1479 		mvneta_rx_buf_free(sc, rxbuf);
1480 	}
1481 	rx->dma = rx->cpu = 0;
1482 }
1483 
1484 /*
1485  * Rx/Tx Queue Control
1486  */
1487 STATIC int
1488 mvneta_rx_queue_init(struct ifnet *ifp, int q)
1489 {
1490 	struct mvneta_softc *sc;
1491 	struct mvneta_rx_ring *rx;
1492 	uint32_t reg;
1493 
1494 	sc = ifp->if_softc;
1495 	KASSERT_RX_MTX(sc, q);
1496 	rx =  MVNETA_RX_RING(sc, q);
1497 	DASSERT(rx->desc_pa != 0);
1498 
1499 	/* descriptor address */
1500 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1501 
1502 	/* Rx buffer size and descriptor ring size */
1503 	reg  = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
1504 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1505 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1506 #ifdef MVNETA_KTR
1507 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
1508 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1509 #endif
1510 	/* Rx packet offset address */
1511 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1512 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1513 #ifdef MVNETA_KTR
1514 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
1515 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1516 #endif
1517 
1518 	/* if DMA is not working, register is not updated */
1519 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1520 	return (0);
1521 }
1522 
1523 STATIC int
1524 mvneta_tx_queue_init(struct ifnet *ifp, int q)
1525 {
1526 	struct mvneta_softc *sc;
1527 	struct mvneta_tx_ring *tx;
1528 	uint32_t reg;
1529 
1530 	sc = ifp->if_softc;
1531 	KASSERT_TX_MTX(sc, q);
1532 	tx = MVNETA_TX_RING(sc, q);
1533 	DASSERT(tx->desc_pa != 0);
1534 
1535 	/* descriptor address */
1536 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1537 
1538 	/* descriptor ring size */
1539 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1540 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1541 
1542 	/* if DMA is not working, register is not updated */
1543 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1544 	return (0);
1545 }
1546 
1547 STATIC int
1548 mvneta_rx_queue_enable(struct ifnet *ifp, int q)
1549 {
1550 	struct mvneta_softc *sc;
1551 	struct mvneta_rx_ring *rx;
1552 	uint32_t reg;
1553 
1554 	sc = ifp->if_softc;
1555 	rx = MVNETA_RX_RING(sc, q);
1556 	KASSERT_RX_MTX(sc, q);
1557 
1558 	/* Set Rx interrupt threshold */
1559 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1560 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1561 
1562 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1563 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1564 
1565 	/* Unmask RXTX_TH Intr. */
1566 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1567 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1568 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1569 
1570 	/* Enable Rx queue */
1571 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1572 	reg |= MVNETA_RQC_ENQ(q);
1573 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1574 
1575 	rx->queue_status = MVNETA_QUEUE_WORKING;
1576 	return (0);
1577 }
1578 
1579 STATIC int
1580 mvneta_tx_queue_enable(struct ifnet *ifp, int q)
1581 {
1582 	struct mvneta_softc *sc;
1583 	struct mvneta_tx_ring *tx;
1584 
1585 	sc = ifp->if_softc;
1586 	tx = MVNETA_TX_RING(sc, q);
1587 	KASSERT_TX_MTX(sc, q);
1588 
1589 	/* Enable Tx queue */
1590 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1591 
1592 	tx->queue_status = MVNETA_QUEUE_IDLE;
1593 	tx->queue_hung = FALSE;
1594 	return (0);
1595 }
1596 
1597 STATIC __inline void
1598 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1599 {
1600 
1601 	DASSERT(q >= 0);
1602 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1603 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1604 }
1605 
1606 STATIC __inline void
1607 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1608 {
1609 
1610 	DASSERT(q >= 0);
1611 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1612 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1613 }
1614 
1615 STATIC __inline int __unused
1616 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1617 {
1618 
1619 	DASSERT(q >= 0);
1620 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1621 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1622 }
1623 
1624 STATIC __inline void
1625 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1626 {
1627 
1628 	DASSERT(q >= 0);
1629 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1630 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1631 }
1632 
1633 STATIC __inline void
1634 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1635 {
1636 
1637 	DASSERT(q >= 0);
1638 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1639 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1640 }
1641 
1642 /*
1643  * Interrupt Handlers
1644  */
1645 STATIC void
1646 mvneta_disable_intr(struct mvneta_softc *sc)
1647 {
1648 
1649 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1650 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1651 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1652 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1653 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1654 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1655 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1656 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1657 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1658 }
1659 
1660 STATIC void
1661 mvneta_enable_intr(struct mvneta_softc *sc)
1662 {
1663 	uint32_t reg;
1664 
1665 	/* Enable Summary Bit to check all interrupt cause. */
1666 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1667 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1668 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1669 
1670 	if (sc->use_inband_status) {
1671 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1672 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1673 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1674 	}
1675 
1676 	/* Enable All Queue Interrupt */
1677 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1678 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1679 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1680 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1681 }
1682 
1683 STATIC void
1684 mvneta_rxtxth_intr(void *arg)
1685 {
1686 	struct mvneta_softc *sc;
1687 	struct ifnet *ifp;
1688 	uint32_t ic, queues;
1689 
1690 	sc = arg;
1691 	ifp = sc->ifp;
1692 #ifdef MVNETA_KTR
1693 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
1694 #endif
1695 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1696 	if (ic == 0)
1697 		return;
1698 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1699 
1700 	/* Ack maintance interrupt first */
1701 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1702 	    sc->use_inband_status)) {
1703 		mvneta_sc_lock(sc);
1704 		mvneta_misc_intr(sc);
1705 		mvneta_sc_unlock(sc);
1706 	}
1707 	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
1708 		return;
1709 	/* RxTxTH interrupt */
1710 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1711 	if (__predict_true(queues)) {
1712 #ifdef MVNETA_KTR
1713 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
1714 #endif
1715 		/* At the moment the driver support only one RX queue. */
1716 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1717 		mvneta_rx(sc, 0, 0);
1718 	}
1719 }
1720 
1721 STATIC int
1722 mvneta_misc_intr(struct mvneta_softc *sc)
1723 {
1724 	uint32_t ic;
1725 	int claimed = 0;
1726 
1727 #ifdef MVNETA_KTR
1728 	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
1729 #endif
1730 	KASSERT_SC_MTX(sc);
1731 
1732 	for (;;) {
1733 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1734 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1735 		if (ic == 0)
1736 			break;
1737 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1738 		claimed = 1;
1739 
1740 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1741 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1742 			mvneta_link_isr(sc);
1743 	}
1744 	return (claimed);
1745 }
1746 
1747 STATIC void
1748 mvneta_tick(void *arg)
1749 {
1750 	struct mvneta_softc *sc;
1751 	struct mvneta_tx_ring *tx;
1752 	struct mvneta_rx_ring *rx;
1753 	int q;
1754 	uint32_t fc_prev, fc_curr;
1755 
1756 	sc = arg;
1757 
1758 	/*
1759 	 * This is done before mib update to get the right stats
1760 	 * for this tick.
1761 	 */
1762 	mvneta_tx_drain(sc);
1763 
1764 	/* Extract previous flow-control frame received counter. */
1765 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1766 	/* Read mib registers (clear by read). */
1767 	mvneta_update_mib(sc);
1768 	/* Extract current flow-control frame received counter. */
1769 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1770 
1771 
1772 	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
1773 		mvneta_sc_lock(sc);
1774 		mii_tick(sc->mii);
1775 
1776 		/* Adjust MAC settings */
1777 		mvneta_adjust_link(sc);
1778 		mvneta_sc_unlock(sc);
1779 	}
1780 
1781 	/*
1782 	 * We were unable to refill the rx queue and left the rx func, leaving
1783 	 * the ring without mbuf and no way to call the refill func.
1784 	 */
1785 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1786 		rx = MVNETA_RX_RING(sc, q);
1787 		if (rx->needs_refill == TRUE) {
1788 			mvneta_rx_lockq(sc, q);
1789 			mvneta_rx_queue_refill(sc, q);
1790 			mvneta_rx_unlockq(sc, q);
1791 		}
1792 	}
1793 
1794 	/*
1795 	 * Watchdog:
1796 	 * - check if queue is mark as hung.
1797 	 * - ignore hung status if we received some pause frame
1798 	 *   as hardware may have paused packet transmit.
1799 	 */
1800 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1801 		/*
1802 		 * We should take queue lock, but as we only read
1803 		 * queue status we can do it without lock, we may
1804 		 * only missdetect queue status for one tick.
1805 		 */
1806 		tx = MVNETA_TX_RING(sc, q);
1807 
1808 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1809 			goto timeout;
1810 	}
1811 
1812 	callout_schedule(&sc->tick_ch, hz);
1813 	return;
1814 
1815 timeout:
1816 	if_printf(sc->ifp, "watchdog timeout\n");
1817 
1818 	mvneta_sc_lock(sc);
1819 	sc->counter_watchdog++;
1820 	sc->counter_watchdog_mib++;
1821 	/* Trigger reinitialize sequence. */
1822 	mvneta_stop_locked(sc);
1823 	mvneta_init_locked(sc);
1824 	mvneta_sc_unlock(sc);
1825 }
1826 
1827 STATIC void
1828 mvneta_qflush(struct ifnet *ifp)
1829 {
1830 #ifdef MVNETA_MULTIQUEUE
1831 	struct mvneta_softc *sc;
1832 	struct mvneta_tx_ring *tx;
1833 	struct mbuf *m;
1834 	size_t q;
1835 
1836 	sc = ifp->if_softc;
1837 
1838 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1839 		tx = MVNETA_TX_RING(sc, q);
1840 		mvneta_tx_lockq(sc, q);
1841 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1842 			m_freem(m);
1843 		mvneta_tx_unlockq(sc, q);
1844 	}
1845 #endif
1846 	if_qflush(ifp);
1847 }
1848 
1849 STATIC void
1850 mvneta_tx_task(void *arg, int pending)
1851 {
1852 	struct mvneta_softc *sc;
1853 	struct mvneta_tx_ring *tx;
1854 	struct ifnet *ifp;
1855 	int error;
1856 
1857 	tx = arg;
1858 	ifp = tx->ifp;
1859 	sc = ifp->if_softc;
1860 
1861 	mvneta_tx_lockq(sc, tx->qidx);
1862 	error = mvneta_xmit_locked(sc, tx->qidx);
1863 	mvneta_tx_unlockq(sc, tx->qidx);
1864 
1865 	/* Try again */
1866 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1867 		pause("mvneta_tx_task_sleep", 1);
1868 		taskqueue_enqueue(tx->taskq, &tx->task);
1869 	}
1870 }
1871 
1872 STATIC int
1873 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1874 {
1875 	struct mvneta_tx_ring *tx;
1876 	struct ifnet *ifp;
1877 	int error;
1878 
1879 	KASSERT_TX_MTX(sc, q);
1880 	tx = MVNETA_TX_RING(sc, q);
1881 	error = 0;
1882 
1883 	ifp = sc->ifp;
1884 
1885 	/* Dont enqueue packet if the queue is disabled. */
1886 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1887 		m_freem(*m);
1888 		*m = NULL;
1889 		return (ENETDOWN);
1890 	}
1891 
1892 	/* Reclaim mbuf if above threshold. */
1893 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1894 		mvneta_tx_queue_complete(sc, q);
1895 
1896 	/* Do not call transmit path if queue is already too full. */
1897 	if (__predict_false(tx->used >
1898 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1899 		return (ENOBUFS);
1900 
1901 	error = mvneta_tx_queue(sc, m, q);
1902 	if (__predict_false(error != 0))
1903 		return (error);
1904 
1905 	/* Send a copy of the frame to the BPF listener */
1906 	ETHER_BPF_MTAP(ifp, *m);
1907 
1908 	/* Set watchdog on */
1909 	tx->watchdog_time = ticks;
1910 	tx->queue_status = MVNETA_QUEUE_WORKING;
1911 
1912 	return (error);
1913 }
1914 
1915 #ifdef MVNETA_MULTIQUEUE
1916 STATIC int
1917 mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
1918 {
1919 	struct mvneta_softc *sc;
1920 	struct mvneta_tx_ring *tx;
1921 	int error;
1922 	int q;
1923 
1924 	sc = ifp->if_softc;
1925 
1926 	/* Use default queue if there is no flow id as thread can migrate. */
1927 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1928 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1929 	else
1930 		q = 0;
1931 
1932 	tx = MVNETA_TX_RING(sc, q);
1933 
1934 	/* If buf_ring is full start transmit immediatly. */
1935 	if (buf_ring_full(tx->br)) {
1936 		mvneta_tx_lockq(sc, q);
1937 		mvneta_xmit_locked(sc, q);
1938 		mvneta_tx_unlockq(sc, q);
1939 	}
1940 
1941 	/*
1942 	 * If the buf_ring is empty we will not reorder packets.
1943 	 * If the lock is available transmit without using buf_ring.
1944 	 */
1945 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1946 		error = mvneta_xmitfast_locked(sc, q, &m);
1947 		mvneta_tx_unlockq(sc, q);
1948 		if (__predict_true(error == 0))
1949 			return (0);
1950 
1951 		/* Transmit can fail in fastpath. */
1952 		if (__predict_false(m == NULL))
1953 			return (error);
1954 	}
1955 
1956 	/* Enqueue then schedule taskqueue. */
1957 	error = drbr_enqueue(ifp, tx->br, m);
1958 	if (__predict_false(error != 0))
1959 		return (error);
1960 
1961 	taskqueue_enqueue(tx->taskq, &tx->task);
1962 	return (0);
1963 }
1964 
1965 STATIC int
1966 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1967 {
1968 	struct ifnet *ifp;
1969 	struct mvneta_tx_ring *tx;
1970 	struct mbuf *m;
1971 	int error;
1972 
1973 	KASSERT_TX_MTX(sc, q);
1974 	ifp = sc->ifp;
1975 	tx = MVNETA_TX_RING(sc, q);
1976 	error = 0;
1977 
1978 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
1979 		error = mvneta_xmitfast_locked(sc, q, &m);
1980 		if (__predict_false(error != 0)) {
1981 			if (m != NULL)
1982 				drbr_putback(ifp, tx->br, m);
1983 			else
1984 				drbr_advance(ifp, tx->br);
1985 			break;
1986 		}
1987 		drbr_advance(ifp, tx->br);
1988 	}
1989 
1990 	return (error);
1991 }
1992 #else /* !MVNETA_MULTIQUEUE */
1993 STATIC void
1994 mvneta_start(struct ifnet *ifp)
1995 {
1996 	struct mvneta_softc *sc;
1997 	struct mvneta_tx_ring *tx;
1998 	int error;
1999 
2000 	sc = ifp->if_softc;
2001 	tx = MVNETA_TX_RING(sc, 0);
2002 
2003 	mvneta_tx_lockq(sc, 0);
2004 	error = mvneta_xmit_locked(sc, 0);
2005 	mvneta_tx_unlockq(sc, 0);
2006 	/* Handle retransmit in the background taskq. */
2007 	if (__predict_false(error != 0 && error != ENETDOWN))
2008 		taskqueue_enqueue(tx->taskq, &tx->task);
2009 }
2010 
2011 STATIC int
2012 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2013 {
2014 	struct ifnet *ifp;
2015 	struct mvneta_tx_ring *tx;
2016 	struct mbuf *m;
2017 	int error;
2018 
2019 	KASSERT_TX_MTX(sc, q);
2020 	ifp = sc->ifp;
2021 	tx = MVNETA_TX_RING(sc, 0);
2022 	error = 0;
2023 
2024 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
2025 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2026 		if (m == NULL)
2027 			break;
2028 
2029 		error = mvneta_xmitfast_locked(sc, q, &m);
2030 		if (__predict_false(error != 0)) {
2031 			if (m != NULL)
2032 				IFQ_DRV_PREPEND(&ifp->if_snd, m);
2033 			break;
2034 		}
2035 	}
2036 
2037 	return (error);
2038 }
2039 #endif
2040 
2041 STATIC int
2042 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2043 {
2044 	struct mvneta_softc *sc;
2045 	struct mvneta_rx_ring *rx;
2046 	struct ifreq *ifr;
2047 	int error, mask;
2048 	uint32_t flags;
2049 	int q;
2050 
2051 	error = 0;
2052 	sc = ifp->if_softc;
2053 	ifr = (struct ifreq *)data;
2054 	switch (cmd) {
2055 	case SIOCSIFFLAGS:
2056 		mvneta_sc_lock(sc);
2057 		if (ifp->if_flags & IFF_UP) {
2058 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2059 				flags = ifp->if_flags ^ sc->mvneta_if_flags;
2060 
2061 				if (flags != 0)
2062 					sc->mvneta_if_flags = ifp->if_flags;
2063 
2064 				if ((flags & IFF_PROMISC) != 0)
2065 					mvneta_filter_setup(sc);
2066 			} else {
2067 				mvneta_init_locked(sc);
2068 				sc->mvneta_if_flags = ifp->if_flags;
2069 				if (sc->phy_attached)
2070 					mii_mediachg(sc->mii);
2071 				mvneta_sc_unlock(sc);
2072 				break;
2073 			}
2074 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2075 			mvneta_stop_locked(sc);
2076 
2077 		sc->mvneta_if_flags = ifp->if_flags;
2078 		mvneta_sc_unlock(sc);
2079 		break;
2080 	case SIOCSIFCAP:
2081 		if (ifp->if_mtu > sc->tx_csum_limit &&
2082 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2083 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2084 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2085 		if (mask & IFCAP_HWCSUM) {
2086 			ifp->if_capenable &= ~IFCAP_HWCSUM;
2087 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
2088 			if (ifp->if_capenable & IFCAP_TXCSUM)
2089 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2090 				    CSUM_UDP;
2091 			else
2092 				ifp->if_hwassist = 0;
2093 		}
2094 		if (mask & IFCAP_LRO) {
2095 			mvneta_sc_lock(sc);
2096 			ifp->if_capenable ^= IFCAP_LRO;
2097 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2098 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2099 					rx = MVNETA_RX_RING(sc, q);
2100 					rx->lro_enabled = !rx->lro_enabled;
2101 				}
2102 			}
2103 			mvneta_sc_unlock(sc);
2104 		}
2105 		VLAN_CAPABILITIES(ifp);
2106 		break;
2107 	case SIOCSIFMEDIA:
2108 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2109 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2110 		    (ifr->ifr_media & IFM_FDX) == 0) {
2111 			device_printf(sc->dev,
2112 			    "%s half-duplex unsupported\n",
2113 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2114 			    "1000Base-T" :
2115 			    "2500Base-T");
2116 			error = EINVAL;
2117 			break;
2118 		}
2119 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2120 	case SIOCGIFXMEDIA:
2121 		if (!sc->phy_attached)
2122 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2123 			    cmd);
2124 		else
2125 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2126 			    cmd);
2127 		break;
2128 	case SIOCSIFMTU:
2129 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2130 		    MVNETA_ETHER_SIZE) {
2131 			error = EINVAL;
2132 		} else {
2133 			ifp->if_mtu = ifr->ifr_mtu;
2134 			mvneta_sc_lock(sc);
2135 			if (ifp->if_mtu + MVNETA_ETHER_SIZE <= MCLBYTES) {
2136 				sc->rx_frame_size = MCLBYTES;
2137 			} else {
2138 				sc->rx_frame_size = MJUM9BYTES;
2139 			}
2140 			if (ifp->if_mtu > sc->tx_csum_limit) {
2141 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2142 				ifp->if_hwassist = 0;
2143 			} else {
2144 				ifp->if_capenable |= IFCAP_TXCSUM;
2145 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2146 					CSUM_UDP;
2147 			}
2148 			/*
2149 			 * Reinitialize RX queues.
2150 			 * We need to update RX descriptor size.
2151 			 */
2152 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2153 				mvneta_stop_locked(sc);
2154 
2155 			for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2156 				mvneta_rx_lockq(sc, q);
2157 				if (mvneta_rx_queue_init(ifp, q) != 0) {
2158 					device_printf(sc->dev,
2159 					    "initialization failed:"
2160 					    " cannot initialize queue\n");
2161 					mvneta_rx_unlockq(sc, q);
2162 					error = ENOBUFS;
2163 					break;
2164 				}
2165 				mvneta_rx_unlockq(sc, q);
2166 			}
2167 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2168 				mvneta_init_locked(sc);
2169 
2170 			mvneta_sc_unlock(sc);
2171                 }
2172                 break;
2173 
2174 	default:
2175 		error = ether_ioctl(ifp, cmd, data);
2176 		break;
2177 	}
2178 
2179 	return (error);
2180 }
2181 
2182 STATIC void
2183 mvneta_init_locked(void *arg)
2184 {
2185 	struct mvneta_softc *sc;
2186 	struct ifnet *ifp;
2187 	uint32_t reg;
2188 	int q, cpu;
2189 
2190 	sc = arg;
2191 	ifp = sc->ifp;
2192 
2193 	if (!device_is_attached(sc->dev) ||
2194 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2195 		return;
2196 
2197 	mvneta_disable_intr(sc);
2198 	callout_stop(&sc->tick_ch);
2199 
2200 	/* Get the latest mac address */
2201 	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
2202 	mvneta_set_mac_address(sc, sc->enaddr);
2203 	mvneta_filter_setup(sc);
2204 
2205 	/* Start DMA Engine */
2206 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2207 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2208 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2209 
2210 	/* Enable port */
2211 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2212 	reg |= MVNETA_PMACC0_PORTEN;
2213 	reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
2214 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
2215 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2216 
2217 	/* Allow access to each TXQ/RXQ from both CPU's */
2218 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2219 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2220 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2221 
2222 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2223 		mvneta_rx_lockq(sc, q);
2224 		mvneta_rx_queue_refill(sc, q);
2225 		mvneta_rx_unlockq(sc, q);
2226 	}
2227 
2228 	if (!sc->phy_attached)
2229 		mvneta_linkup(sc);
2230 
2231 	/* Enable interrupt */
2232 	mvneta_enable_intr(sc);
2233 
2234 	/* Set Counter */
2235 	callout_schedule(&sc->tick_ch, hz);
2236 
2237 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2238 }
2239 
2240 STATIC void
2241 mvneta_init(void *arg)
2242 {
2243 	struct mvneta_softc *sc;
2244 
2245 	sc = arg;
2246 	mvneta_sc_lock(sc);
2247 	mvneta_init_locked(sc);
2248 	if (sc->phy_attached)
2249 		mii_mediachg(sc->mii);
2250 	mvneta_sc_unlock(sc);
2251 }
2252 
2253 /* ARGSUSED */
2254 STATIC void
2255 mvneta_stop_locked(struct mvneta_softc *sc)
2256 {
2257 	struct ifnet *ifp;
2258 	struct mvneta_rx_ring *rx;
2259 	struct mvneta_tx_ring *tx;
2260 	uint32_t reg;
2261 	int q;
2262 
2263 	ifp = sc->ifp;
2264 	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2265 		return;
2266 
2267 	mvneta_disable_intr(sc);
2268 
2269 	callout_stop(&sc->tick_ch);
2270 
2271 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2272 
2273 	/* Link down */
2274 	if (sc->linkup == TRUE)
2275 		mvneta_linkdown(sc);
2276 
2277 	/* Reset the MAC Port Enable bit */
2278 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2279 	reg &= ~MVNETA_PMACC0_PORTEN;
2280 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2281 
2282 	/* Disable each of queue */
2283 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2284 		rx = MVNETA_RX_RING(sc, q);
2285 
2286 		mvneta_rx_lockq(sc, q);
2287 		mvneta_ring_flush_rx_queue(sc, q);
2288 		mvneta_rx_unlockq(sc, q);
2289 	}
2290 
2291 	/*
2292 	 * Hold Reset state of DMA Engine
2293 	 * (must write 0x0 to restart it)
2294 	 */
2295 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2296 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2297 
2298 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2299 		tx = MVNETA_TX_RING(sc, q);
2300 
2301 		mvneta_tx_lockq(sc, q);
2302 		mvneta_ring_flush_tx_queue(sc, q);
2303 		mvneta_tx_unlockq(sc, q);
2304 	}
2305 }
2306 
2307 STATIC void
2308 mvneta_stop(struct mvneta_softc *sc)
2309 {
2310 
2311 	mvneta_sc_lock(sc);
2312 	mvneta_stop_locked(sc);
2313 	mvneta_sc_unlock(sc);
2314 }
2315 
2316 STATIC int
2317 mvneta_mediachange(struct ifnet *ifp)
2318 {
2319 	struct mvneta_softc *sc;
2320 
2321 	sc = ifp->if_softc;
2322 
2323 	if (!sc->phy_attached && !sc->use_inband_status) {
2324 		/* We shouldn't be here */
2325 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2326 		return (0);
2327 	}
2328 
2329 	if (sc->use_inband_status) {
2330 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2331 		return (0);
2332 	}
2333 
2334 	mvneta_sc_lock(sc);
2335 
2336 	/* Update PHY */
2337 	mii_mediachg(sc->mii);
2338 
2339 	mvneta_sc_unlock(sc);
2340 
2341 	return (0);
2342 }
2343 
2344 STATIC void
2345 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2346 {
2347 	uint32_t psr;
2348 
2349 	psr = MVNETA_READ(sc, MVNETA_PSR);
2350 
2351 	/* Speed */
2352 	if (psr & MVNETA_PSR_GMIISPEED)
2353 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2354 	else if (psr & MVNETA_PSR_MIISPEED)
2355 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2356 	else if (psr & MVNETA_PSR_LINKUP)
2357 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2358 
2359 	/* Duplex */
2360 	if (psr & MVNETA_PSR_FULLDX)
2361 		ifmr->ifm_active |= IFM_FDX;
2362 
2363 	/* Link */
2364 	ifmr->ifm_status = IFM_AVALID;
2365 	if (psr & MVNETA_PSR_LINKUP)
2366 		ifmr->ifm_status |= IFM_ACTIVE;
2367 }
2368 
2369 STATIC void
2370 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2371 {
2372 	struct mvneta_softc *sc;
2373 	struct mii_data *mii;
2374 
2375 	sc = ifp->if_softc;
2376 
2377 	if (!sc->phy_attached && !sc->use_inband_status) {
2378 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2379 		return;
2380 	}
2381 
2382 	mvneta_sc_lock(sc);
2383 
2384 	if (sc->use_inband_status) {
2385 		mvneta_get_media(sc, ifmr);
2386 		mvneta_sc_unlock(sc);
2387 		return;
2388 	}
2389 
2390 	mii = sc->mii;
2391 	mii_pollstat(mii);
2392 
2393 	ifmr->ifm_active = mii->mii_media_active;
2394 	ifmr->ifm_status = mii->mii_media_status;
2395 
2396 	mvneta_sc_unlock(sc);
2397 }
2398 
2399 /*
2400  * Link State Notify
2401  */
2402 STATIC void
2403 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2404 {
2405 	int reg;
2406 
2407 	if (enable) {
2408 		reg = MVNETA_READ(sc, MVNETA_PANC);
2409 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2410 		    MVNETA_PANC_ANFCEN);
2411 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2412 		    MVNETA_PANC_INBANDANEN;
2413 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2414 
2415 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2416 		reg |= MVNETA_PMACC2_INBANDANMODE;
2417 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2418 
2419 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2420 		reg |= MVNETA_PSOMSCD_ENABLE;
2421 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2422 	} else {
2423 		reg = MVNETA_READ(sc, MVNETA_PANC);
2424 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2425 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2426 		    MVNETA_PANC_INBANDANEN);
2427 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2428 
2429 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2430 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2431 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2432 
2433 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2434 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2435 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2436 	}
2437 }
2438 
2439 STATIC int
2440 mvneta_update_media(struct mvneta_softc *sc, int media)
2441 {
2442 	int reg, err;
2443 	boolean_t running;
2444 
2445 	err = 0;
2446 
2447 	mvneta_sc_lock(sc);
2448 
2449 	mvneta_linkreset(sc);
2450 
2451 	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2452 	if (running)
2453 		mvneta_stop_locked(sc);
2454 
2455 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2456 
2457 	if (sc->use_inband_status)
2458 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2459 
2460 	mvneta_update_eee(sc);
2461 	mvneta_update_fc(sc);
2462 
2463 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2464 		reg = MVNETA_READ(sc, MVNETA_PANC);
2465 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2466 		    MVNETA_PANC_SETMIISPEED |
2467 		    MVNETA_PANC_SETFULLDX);
2468 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2469 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2470 			if ((media & IFM_FDX) == 0) {
2471 				device_printf(sc->dev,
2472 				    "%s half-duplex unsupported\n",
2473 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2474 				    "1000Base-T" :
2475 				    "2500Base-T");
2476 				err = EINVAL;
2477 				goto out;
2478 			}
2479 			reg |= MVNETA_PANC_SETGMIISPEED;
2480 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2481 			reg |= MVNETA_PANC_SETMIISPEED;
2482 
2483 		if (media & IFM_FDX)
2484 			reg |= MVNETA_PANC_SETFULLDX;
2485 
2486 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2487 	}
2488 out:
2489 	if (running)
2490 		mvneta_init_locked(sc);
2491 	mvneta_sc_unlock(sc);
2492 	return (err);
2493 }
2494 
2495 STATIC void
2496 mvneta_adjust_link(struct mvneta_softc *sc)
2497 {
2498 	boolean_t phy_linkup;
2499 	int reg;
2500 
2501 	/* Update eee/fc */
2502 	mvneta_update_eee(sc);
2503 	mvneta_update_fc(sc);
2504 
2505 	/* Check for link change */
2506 	phy_linkup = (sc->mii->mii_media_status &
2507 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2508 
2509 	if (sc->linkup != phy_linkup)
2510 		mvneta_linkupdate(sc, phy_linkup);
2511 
2512 	/* Don't update media on disabled link */
2513 	if (!phy_linkup)
2514 		return;
2515 
2516 	/* Check for media type change */
2517 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2518 		sc->mvneta_media = sc->mii->mii_media_active;
2519 
2520 		reg = MVNETA_READ(sc, MVNETA_PANC);
2521 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2522 		    MVNETA_PANC_SETMIISPEED |
2523 		    MVNETA_PANC_SETFULLDX);
2524 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2525 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2526 			reg |= MVNETA_PANC_SETGMIISPEED;
2527 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2528 			reg |= MVNETA_PANC_SETMIISPEED;
2529 
2530 		if (sc->mvneta_media & IFM_FDX)
2531 			reg |= MVNETA_PANC_SETFULLDX;
2532 
2533 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2534 	}
2535 }
2536 
2537 STATIC void
2538 mvneta_link_isr(struct mvneta_softc *sc)
2539 {
2540 	int linkup;
2541 
2542 	KASSERT_SC_MTX(sc);
2543 
2544 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2545 	if (sc->linkup == linkup)
2546 		return;
2547 
2548 	if (linkup == TRUE)
2549 		mvneta_linkup(sc);
2550 	else
2551 		mvneta_linkdown(sc);
2552 
2553 #ifdef DEBUG
2554 	device_printf(sc->dev,
2555 	    "%s: link %s\n", sc->ifp->if_xname, linkup ? "up" : "down");
2556 #endif
2557 }
2558 
2559 STATIC void
2560 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2561 {
2562 
2563 	KASSERT_SC_MTX(sc);
2564 
2565 	if (linkup == TRUE)
2566 		mvneta_linkup(sc);
2567 	else
2568 		mvneta_linkdown(sc);
2569 
2570 #ifdef DEBUG
2571 	device_printf(sc->dev,
2572 	    "%s: link %s\n", sc->ifp->if_xname, linkup ? "up" : "down");
2573 #endif
2574 }
2575 
2576 STATIC void
2577 mvneta_update_eee(struct mvneta_softc *sc)
2578 {
2579 	uint32_t reg;
2580 
2581 	KASSERT_SC_MTX(sc);
2582 
2583 	/* set EEE parameters */
2584 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2585 	if (sc->cf_lpi)
2586 		reg |= MVNETA_LPIC1_LPIRE;
2587 	else
2588 		reg &= ~MVNETA_LPIC1_LPIRE;
2589 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2590 }
2591 
2592 STATIC void
2593 mvneta_update_fc(struct mvneta_softc *sc)
2594 {
2595 	uint32_t reg;
2596 
2597 	KASSERT_SC_MTX(sc);
2598 
2599 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2600 	if (sc->cf_fc) {
2601 		/* Flow control negotiation */
2602 		reg |= MVNETA_PANC_PAUSEADV;
2603 		reg |= MVNETA_PANC_ANFCEN;
2604 	} else {
2605 		/* Disable flow control negotiation */
2606 		reg &= ~MVNETA_PANC_PAUSEADV;
2607 		reg &= ~MVNETA_PANC_ANFCEN;
2608 	}
2609 
2610 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2611 }
2612 
2613 STATIC void
2614 mvneta_linkup(struct mvneta_softc *sc)
2615 {
2616 	uint32_t reg;
2617 
2618 	KASSERT_SC_MTX(sc);
2619 
2620 	if (!sc->use_inband_status) {
2621 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2622 		reg |= MVNETA_PANC_FORCELINKPASS;
2623 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2624 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2625 	}
2626 
2627 	mvneta_qflush(sc->ifp);
2628 	mvneta_portup(sc);
2629 	sc->linkup = TRUE;
2630 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2631 }
2632 
2633 STATIC void
2634 mvneta_linkdown(struct mvneta_softc *sc)
2635 {
2636 	uint32_t reg;
2637 
2638 	KASSERT_SC_MTX(sc);
2639 
2640 	if (!sc->use_inband_status) {
2641 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2642 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2643 		reg |= MVNETA_PANC_FORCELINKFAIL;
2644 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2645 	}
2646 
2647 	mvneta_portdown(sc);
2648 	mvneta_qflush(sc->ifp);
2649 	sc->linkup = FALSE;
2650 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2651 }
2652 
2653 STATIC void
2654 mvneta_linkreset(struct mvneta_softc *sc)
2655 {
2656 	struct mii_softc *mii;
2657 
2658 	if (sc->phy_attached) {
2659 		/* Force reset PHY */
2660 		mii = LIST_FIRST(&sc->mii->mii_phys);
2661 		if (mii)
2662 			mii_phy_reset(mii);
2663 	}
2664 }
2665 
2666 /*
2667  * Tx Subroutines
2668  */
2669 STATIC int
2670 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2671 {
2672 	struct ifnet *ifp;
2673 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2674 	struct mbuf *mtmp, *mbuf;
2675 	struct mvneta_tx_ring *tx;
2676 	struct mvneta_buf *txbuf;
2677 	struct mvneta_tx_desc *t;
2678 	uint32_t ptxsu;
2679 	int start, used, error, i, txnsegs;
2680 
2681 	mbuf = *mbufp;
2682 	tx = MVNETA_TX_RING(sc, q);
2683 	DASSERT(tx->used >= 0);
2684 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2685 	t = NULL;
2686 	ifp = sc->ifp;
2687 
2688 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2689 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2690 		if (mbuf == NULL) {
2691 			tx->drv_error++;
2692 			*mbufp = NULL;
2693 			return (ENOBUFS);
2694 		}
2695 		mbuf->m_flags &= ~M_VLANTAG;
2696 		*mbufp = mbuf;
2697 	}
2698 
2699 	if (__predict_false(mbuf->m_next != NULL &&
2700 	    (mbuf->m_pkthdr.csum_flags &
2701 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2702 		if (M_WRITABLE(mbuf) == 0) {
2703 			mtmp = m_dup(mbuf, M_NOWAIT);
2704 			m_freem(mbuf);
2705 			if (mtmp == NULL) {
2706 				tx->drv_error++;
2707 				*mbufp = NULL;
2708 				return (ENOBUFS);
2709 			}
2710 			*mbufp = mbuf = mtmp;
2711 		}
2712 	}
2713 
2714 	/* load mbuf using dmamap of 1st descriptor */
2715 	txbuf = &tx->txbuf[tx->cpu];
2716 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2717 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2718 	    BUS_DMA_NOWAIT);
2719 	if (__predict_false(error != 0)) {
2720 #ifdef MVNETA_KTR
2721 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
2722 #endif
2723 		/* This is the only recoverable error (except EFBIG). */
2724 		if (error != ENOMEM) {
2725 			tx->drv_error++;
2726 			m_freem(mbuf);
2727 			*mbufp = NULL;
2728 			return (ENOBUFS);
2729 		}
2730 		return (error);
2731 	}
2732 
2733 	if (__predict_false(txnsegs <= 0
2734 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2735 		/* we have no enough descriptors or mbuf is broken */
2736 #ifdef MVNETA_KTR
2737 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2738 		    ifp->if_xname, q, txnsegs);
2739 #endif
2740 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2741 		return (ENOBUFS);
2742 	}
2743 	DASSERT(txbuf->m == NULL);
2744 
2745 	/* remember mbuf using 1st descriptor */
2746 	txbuf->m = mbuf;
2747 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2748 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2749 
2750 	/* load to tx descriptors */
2751 	start = tx->cpu;
2752 	used = 0;
2753 	for (i = 0; i < txnsegs; i++) {
2754 		t = &tx->desc[tx->cpu];
2755 		t->command = 0;
2756 		t->l4ichk = 0;
2757 		t->flags = 0;
2758 		if (__predict_true(i == 0)) {
2759 			/* 1st descriptor */
2760 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2761 			t->command |= MVNETA_TX_CMD_F;
2762 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2763 		}
2764 		t->bufptr_pa = txsegs[i].ds_addr;
2765 		t->bytecnt = txsegs[i].ds_len;
2766 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2767 
2768 		tx->used++;
2769 		used++;
2770 	}
2771 	/* t is last descriptor here */
2772 	DASSERT(t != NULL);
2773 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2774 
2775 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2776 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2777 
2778 	while (__predict_false(used > 255)) {
2779 		ptxsu = MVNETA_PTXSU_NOWD(255);
2780 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2781 		used -= 255;
2782 	}
2783 	if (__predict_true(used > 0)) {
2784 		ptxsu = MVNETA_PTXSU_NOWD(used);
2785 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2786 	}
2787 	return (0);
2788 }
2789 
2790 STATIC void
2791 mvneta_tx_set_csumflag(struct ifnet *ifp,
2792     struct mvneta_tx_desc *t, struct mbuf *m)
2793 {
2794 	struct ether_header *eh;
2795 	struct ether_vlan_header *evh;
2796 	int csum_flags;
2797 	uint32_t iphl, ipoff;
2798 	struct ip *ip;
2799 
2800 	iphl = ipoff = 0;
2801 	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
2802 	eh = mtod(m, struct ether_header *);
2803 
2804 	switch (ntohs(eh->ether_type)) {
2805 	case ETHERTYPE_IP:
2806 		ipoff = ETHER_HDR_LEN;
2807 		break;
2808 	case ETHERTYPE_VLAN:
2809 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2810 		evh = mtod(m, struct ether_vlan_header *);
2811 		if (ntohs(evh->evl_proto) == ETHERTYPE_VLAN)
2812 			ipoff += ETHER_VLAN_ENCAP_LEN;
2813 		break;
2814 	default:
2815 		csum_flags = 0;
2816 	}
2817 
2818 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2819 		ip = (struct ip *)(m->m_data + ipoff);
2820 		iphl = ip->ip_hl<<2;
2821 		t->command |= MVNETA_TX_CMD_L3_IP4;
2822 	} else {
2823 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2824 		return;
2825 	}
2826 
2827 
2828 	/* L3 */
2829 	if (csum_flags & CSUM_IP) {
2830 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2831 	}
2832 
2833 	/* L4 */
2834 	if (csum_flags & CSUM_IP_TCP) {
2835 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2836 		t->command |= MVNETA_TX_CMD_L4_TCP;
2837 	} else if (csum_flags & CSUM_IP_UDP) {
2838 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2839 		t->command |= MVNETA_TX_CMD_L4_UDP;
2840 	} else
2841 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2842 
2843 	t->l4ichk = 0;
2844 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2845 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2846 }
2847 
2848 STATIC void
2849 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2850 {
2851 	struct mvneta_tx_ring *tx;
2852 	struct mvneta_buf *txbuf;
2853 	struct mvneta_tx_desc *t;
2854 	uint32_t ptxs, ptxsu, ndesc;
2855 	int i;
2856 
2857 	KASSERT_TX_MTX(sc, q);
2858 
2859 	tx = MVNETA_TX_RING(sc, q);
2860 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2861 		return;
2862 
2863 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2864 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2865 
2866 	if (__predict_false(ndesc == 0)) {
2867 		if (tx->used == 0)
2868 			tx->queue_status = MVNETA_QUEUE_IDLE;
2869 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2870 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2871 			tx->queue_hung = TRUE;
2872 		return;
2873 	}
2874 
2875 #ifdef MVNETA_KTR
2876 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2877 	    sc->ifp->if_xname, q, ndesc);
2878 #endif
2879 
2880 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2881 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2882 
2883 	for (i = 0; i < ndesc; i++) {
2884 		t = &tx->desc[tx->dma];
2885 #ifdef MVNETA_KTR
2886 		if (t->flags & MVNETA_TX_F_ES)
2887 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2888 			    sc->ifp->if_xname, q, tx->dma);
2889 #endif
2890 		txbuf = &tx->txbuf[tx->dma];
2891 		if (__predict_true(txbuf->m != NULL)) {
2892 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2893 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2894 			m_freem(txbuf->m);
2895 			txbuf->m = NULL;
2896 		}
2897 		else
2898 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2899 		tx->dma = tx_counter_adv(tx->dma, 1);
2900 		tx->used--;
2901 	}
2902 	DASSERT(tx->used >= 0);
2903 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2904 	while (__predict_false(ndesc > 255)) {
2905 		ptxsu = MVNETA_PTXSU_NORB(255);
2906 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2907 		ndesc -= 255;
2908 	}
2909 	if (__predict_true(ndesc > 0)) {
2910 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2911 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2912 	}
2913 #ifdef MVNETA_KTR
2914 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2915 	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
2916 #endif
2917 
2918 	tx->watchdog_time = ticks;
2919 
2920 	if (tx->used == 0)
2921 		tx->queue_status = MVNETA_QUEUE_IDLE;
2922 }
2923 
2924 /*
2925  * Do a final TX complete when TX is idle.
2926  */
2927 STATIC void
2928 mvneta_tx_drain(struct mvneta_softc *sc)
2929 {
2930 	struct mvneta_tx_ring *tx;
2931 	int q;
2932 
2933 	/*
2934 	 * Handle trailing mbuf on TX queue.
2935 	 * Check is done lockess to avoid TX path contention.
2936 	 */
2937 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2938 		tx = MVNETA_TX_RING(sc, q);
2939 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2940 		    tx->used > 0) {
2941 			mvneta_tx_lockq(sc, q);
2942 			mvneta_tx_queue_complete(sc, q);
2943 			mvneta_tx_unlockq(sc, q);
2944 		}
2945 	}
2946 }
2947 
2948 /*
2949  * Rx Subroutines
2950  */
2951 STATIC int
2952 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2953 {
2954 	uint32_t prxs, npkt;
2955 	int more;
2956 
2957 	more = 0;
2958 	mvneta_rx_lockq(sc, q);
2959 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2960 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2961 	if (__predict_false(npkt == 0))
2962 		goto out;
2963 
2964 	if (count > 0 && npkt > count) {
2965 		more = 1;
2966 		npkt = count;
2967 	}
2968 	mvneta_rx_queue(sc, q, npkt);
2969 out:
2970 	mvneta_rx_unlockq(sc, q);
2971 	return more;
2972 }
2973 
2974 /*
2975  * Helper routine for updating PRXSU register of a given queue.
2976  * Handles number of processed descriptors bigger than maximum acceptable value.
2977  */
2978 STATIC __inline void
2979 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2980 {
2981 	uint32_t prxsu;
2982 
2983 	while (__predict_false(processed > 255)) {
2984 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2985 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2986 		processed -= 255;
2987 	}
2988 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
2989 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2990 }
2991 
2992 static __inline void
2993 mvneta_prefetch(void *p)
2994 {
2995 
2996 	__builtin_prefetch(p);
2997 }
2998 
2999 STATIC void
3000 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
3001 {
3002 	struct ifnet *ifp;
3003 	struct mvneta_rx_ring *rx;
3004 	struct mvneta_rx_desc *r;
3005 	struct mvneta_buf *rxbuf;
3006 	struct mbuf *m;
3007 	struct lro_ctrl *lro;
3008 	struct lro_entry *queued;
3009 	void *pktbuf;
3010 	int i, pktlen, processed, ndma;
3011 
3012 	KASSERT_RX_MTX(sc, q);
3013 
3014 	ifp = sc->ifp;
3015 	rx = MVNETA_RX_RING(sc, q);
3016 	processed = 0;
3017 
3018 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3019 		return;
3020 
3021 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3022 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3023 
3024 	for (i = 0; i < npkt; i++) {
3025 		/* Prefetch next desc, rxbuf. */
3026 		ndma = rx_counter_adv(rx->dma, 1);
3027 		mvneta_prefetch(&rx->desc[ndma]);
3028 		mvneta_prefetch(&rx->rxbuf[ndma]);
3029 
3030 		/* get descriptor and packet */
3031 		r = &rx->desc[rx->dma];
3032 		rxbuf = &rx->rxbuf[rx->dma];
3033 		m = rxbuf->m;
3034 		rxbuf->m = NULL;
3035 		DASSERT(m != NULL);
3036 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3037 		    BUS_DMASYNC_POSTREAD);
3038 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3039 		/* Prefetch mbuf header. */
3040 		mvneta_prefetch(m);
3041 
3042 		processed++;
3043 		/* Drop desc with error status or not in a single buffer. */
3044 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3045 		    (MVNETA_RX_F|MVNETA_RX_L));
3046 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3047 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3048 		    (MVNETA_RX_F|MVNETA_RX_L)))
3049 			goto rx_error;
3050 
3051 		/*
3052 		 * [ OFF | MH | PKT | CRC ]
3053 		 * bytecnt cover MH, PKT, CRC
3054 		 */
3055 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3056 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3057                     MVNETA_HWHEADER_SIZE;
3058 
3059 		/* Prefetch mbuf data. */
3060 		mvneta_prefetch(pktbuf);
3061 
3062 		/* Write value to mbuf (avoid read). */
3063 		m->m_data = pktbuf;
3064 		m->m_len = m->m_pkthdr.len = pktlen;
3065 		m->m_pkthdr.rcvif = ifp;
3066 		mvneta_rx_set_csumflag(ifp, r, m);
3067 
3068 		/* Increase rx_dma before releasing the lock. */
3069 		rx->dma = ndma;
3070 
3071 		if (__predict_false(rx->lro_enabled &&
3072 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3073 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3074 		    (m->m_pkthdr.csum_flags &
3075 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3076 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3077 			if (rx->lro.lro_cnt != 0) {
3078 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3079 					goto rx_done;
3080 			}
3081 		}
3082 
3083 		mvneta_rx_unlockq(sc, q);
3084 		(*ifp->if_input)(ifp, m);
3085 		mvneta_rx_lockq(sc, q);
3086 		/*
3087 		 * Check whether this queue has been disabled in the
3088 		 * meantime. If yes, then clear LRO and exit.
3089 		 */
3090 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3091 			goto rx_lro;
3092 rx_done:
3093 		/* Refresh receive ring to avoid stall and minimize jitter. */
3094 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3095 			mvneta_prxsu_update(sc, q, processed);
3096 			mvneta_rx_queue_refill(sc, q);
3097 			processed = 0;
3098 		}
3099 		continue;
3100 rx_error:
3101 		m_freem(m);
3102 		rx->dma = ndma;
3103 		/* Refresh receive ring to avoid stall and minimize jitter. */
3104 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3105 			mvneta_prxsu_update(sc, q, processed);
3106 			mvneta_rx_queue_refill(sc, q);
3107 			processed = 0;
3108 		}
3109 	}
3110 #ifdef MVNETA_KTR
3111 	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
3112 #endif
3113 	/* DMA status update */
3114 	mvneta_prxsu_update(sc, q, processed);
3115 	/* Refill the rest of buffers if there are any to refill */
3116 	mvneta_rx_queue_refill(sc, q);
3117 
3118 rx_lro:
3119 	/*
3120 	 * Flush any outstanding LRO work
3121 	 */
3122 	lro = &rx->lro;
3123 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3124 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3125 		tcp_lro_flush(lro, queued);
3126 	}
3127 }
3128 
3129 STATIC void
3130 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3131 {
3132 
3133 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3134 	/* This will remove all data at once */
3135 	m_freem(rxbuf->m);
3136 }
3137 
3138 STATIC void
3139 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3140 {
3141 	struct mvneta_rx_ring *rx;
3142 	struct mvneta_rx_desc *r;
3143 	struct mvneta_buf *rxbuf;
3144 	bus_dma_segment_t segs;
3145 	struct mbuf *m;
3146 	uint32_t prxs, prxsu, ndesc;
3147 	int npkt, refill, nsegs, error;
3148 
3149 	KASSERT_RX_MTX(sc, q);
3150 
3151 	rx = MVNETA_RX_RING(sc, q);
3152 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3153 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3154 	refill = MVNETA_RX_RING_CNT - ndesc;
3155 #ifdef MVNETA_KTR
3156 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
3157 	    refill);
3158 #endif
3159 	if (__predict_false(refill <= 0))
3160 		return;
3161 
3162 	for (npkt = 0; npkt < refill; npkt++) {
3163 		rxbuf = &rx->rxbuf[rx->cpu];
3164 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
3165 		if (__predict_false(m == NULL)) {
3166 			error = ENOBUFS;
3167 			break;
3168 		}
3169 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3170 
3171 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3172 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3173 		if (__predict_false(error != 0 || nsegs != 1)) {
3174 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3175 			m_freem(m);
3176 			break;
3177 		}
3178 
3179 		/* Add the packet to the ring */
3180 		rxbuf->m = m;
3181 		r = &rx->desc[rx->cpu];
3182 		r->bufptr_pa = segs.ds_addr;
3183 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3184 
3185 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3186 	}
3187 	if (npkt == 0) {
3188 		if (refill == MVNETA_RX_RING_CNT)
3189 			rx->needs_refill = TRUE;
3190 		return;
3191 	}
3192 
3193 	rx->needs_refill = FALSE;
3194 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3195 
3196 	while (__predict_false(npkt > 255)) {
3197 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3198 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3199 		npkt -= 255;
3200 	}
3201 	if (__predict_true(npkt > 0)) {
3202 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3203 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3204 	}
3205 }
3206 
3207 STATIC __inline void
3208 mvneta_rx_set_csumflag(struct ifnet *ifp,
3209     struct mvneta_rx_desc *r, struct mbuf *m)
3210 {
3211 	uint32_t csum_flags;
3212 
3213 	csum_flags = 0;
3214 	if (__predict_false((r->status &
3215 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3216 		return; /* not a IP packet */
3217 
3218 	/* L3 */
3219 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3220 	    MVNETA_RX_IP_HEADER_OK))
3221 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3222 
3223 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3224 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3225 		/* L4 */
3226 		switch (r->status & MVNETA_RX_L4_MASK) {
3227 		case MVNETA_RX_L4_TCP:
3228 		case MVNETA_RX_L4_UDP:
3229 			csum_flags |= CSUM_L4_CALC;
3230 			if (__predict_true((r->status &
3231 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3232 				csum_flags |= CSUM_L4_VALID;
3233 				m->m_pkthdr.csum_data = htons(0xffff);
3234 			}
3235 			break;
3236 		case MVNETA_RX_L4_OTH:
3237 		default:
3238 			break;
3239 		}
3240 	}
3241 	m->m_pkthdr.csum_flags = csum_flags;
3242 }
3243 
3244 /*
3245  * MAC address filter
3246  */
3247 STATIC void
3248 mvneta_filter_setup(struct mvneta_softc *sc)
3249 {
3250 	struct ifnet *ifp;
3251 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3252 	uint32_t pxc;
3253 	int i;
3254 
3255 	KASSERT_SC_MTX(sc);
3256 
3257 	memset(dfut, 0, sizeof(dfut));
3258 	memset(dfsmt, 0, sizeof(dfsmt));
3259 	memset(dfomt, 0, sizeof(dfomt));
3260 
3261 	ifp = sc->ifp;
3262 	ifp->if_flags |= IFF_ALLMULTI;
3263 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
3264 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3265 			dfsmt[i] = dfomt[i] =
3266 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3267 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3268 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3269 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3270 		}
3271 	}
3272 
3273 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3274 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3275 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3276 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3277 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3278 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3279 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3280 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3281 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3282 	if (ifp->if_flags & IFF_BROADCAST) {
3283 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3284 	}
3285 	if (ifp->if_flags & IFF_PROMISC) {
3286 		pxc |= MVNETA_PXC_UPM;
3287 	}
3288 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3289 
3290 	/* Set Destination Address Filter Unicast Table */
3291 	if (ifp->if_flags & IFF_PROMISC) {
3292 		/* pass all unicast addresses */
3293 		for (i = 0; i < MVNETA_NDFUT; i++) {
3294 			dfut[i] =
3295 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3296 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3297 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3298 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3299 		}
3300 	} else {
3301 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3302 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3303 	}
3304 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3305 
3306 	/* Set Destination Address Filter Multicast Tables */
3307 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3308 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3309 }
3310 
3311 /*
3312  * sysctl(9)
3313  */
3314 STATIC int
3315 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3316 {
3317 	struct mvneta_sysctl_mib *arg;
3318 	struct mvneta_softc *sc;
3319 	uint64_t val;
3320 
3321 	arg = (struct mvneta_sysctl_mib *)arg1;
3322 	if (arg == NULL)
3323 		return (EINVAL);
3324 
3325 	sc = arg->sc;
3326 	if (sc == NULL)
3327 		return (EINVAL);
3328 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3329 		return (EINVAL);
3330 
3331 	mvneta_sc_lock(sc);
3332 	val = arg->counter;
3333 	mvneta_sc_unlock(sc);
3334 	return sysctl_handle_64(oidp, &val, 0, req);
3335 }
3336 
3337 
3338 STATIC int
3339 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3340 {
3341 	struct mvneta_softc *sc;
3342 	int err, val;
3343 
3344 	val = 0;
3345 	sc = (struct mvneta_softc *)arg1;
3346 	if (sc == NULL)
3347 		return (EINVAL);
3348 
3349 	err = sysctl_handle_int(oidp, &val, 0, req);
3350 	if (err != 0)
3351 		return (err);
3352 
3353 	if (val < 0 || val > 1)
3354 		return (EINVAL);
3355 
3356 	if (val == 1) {
3357 		mvneta_sc_lock(sc);
3358 		mvneta_clear_mib(sc);
3359 		mvneta_sc_unlock(sc);
3360 	}
3361 
3362 	return (0);
3363 }
3364 
3365 STATIC int
3366 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3367 {
3368 	struct mvneta_sysctl_queue *arg;
3369 	struct mvneta_rx_ring *rx;
3370 	struct mvneta_softc *sc;
3371 	uint32_t reg, time_mvtclk;
3372 	int err, time_us;
3373 
3374 	rx = NULL;
3375 	arg = (struct mvneta_sysctl_queue *)arg1;
3376 	if (arg == NULL)
3377 		return (EINVAL);
3378 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3379 		return (EINVAL);
3380 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3381 		return (EINVAL);
3382 
3383 	sc = arg->sc;
3384 	if (sc == NULL)
3385 		return (EINVAL);
3386 
3387 	/* read queue length */
3388 	mvneta_sc_lock(sc);
3389 	mvneta_rx_lockq(sc, arg->queue);
3390 	rx = MVNETA_RX_RING(sc, arg->queue);
3391 	time_mvtclk = rx->queue_th_time;
3392 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk();
3393 	mvneta_rx_unlockq(sc, arg->queue);
3394 	mvneta_sc_unlock(sc);
3395 
3396 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3397 	if (err != 0)
3398 		return (err);
3399 
3400 	mvneta_sc_lock(sc);
3401 	mvneta_rx_lockq(sc, arg->queue);
3402 
3403 	/* update queue length (0[sec] - 1[sec]) */
3404 	if (time_us < 0 || time_us > (1000 * 1000)) {
3405 		mvneta_rx_unlockq(sc, arg->queue);
3406 		mvneta_sc_unlock(sc);
3407 		return (EINVAL);
3408 	}
3409 	time_mvtclk =
3410 	    (uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL);
3411 	rx->queue_th_time = time_mvtclk;
3412 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3413 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3414 	mvneta_rx_unlockq(sc, arg->queue);
3415 	mvneta_sc_unlock(sc);
3416 
3417 	return (0);
3418 }
3419 
3420 STATIC void
3421 sysctl_mvneta_init(struct mvneta_softc *sc)
3422 {
3423 	struct sysctl_ctx_list *ctx;
3424 	struct sysctl_oid_list *children;
3425 	struct sysctl_oid_list *rxchildren;
3426 	struct sysctl_oid_list *qchildren, *mchildren;
3427 	struct sysctl_oid *tree;
3428 	int i, q;
3429 	struct mvneta_sysctl_queue *rxarg;
3430 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3431 	static const char *sysctl_queue_names[] = {
3432 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3433 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3434 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3435 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3436 	};
3437 #undef MVNETA_SYSCTL_NAME
3438 
3439 #ifndef NO_SYSCTL_DESCR
3440 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3441 	static const char *sysctl_queue_descrs[] = {
3442 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3443 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3444 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3445 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3446 	};
3447 #undef MVNETA_SYSCTL_DESCR
3448 #endif
3449 
3450 
3451 	ctx = device_get_sysctl_ctx(sc->dev);
3452 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3453 
3454 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3455 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
3456 	rxchildren = SYSCTL_CHILDREN(tree);
3457 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3458 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
3459 	mchildren = SYSCTL_CHILDREN(tree);
3460 
3461 
3462 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3463 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3464 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3465 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3466 
3467 	/*
3468 	 * MIB access
3469 	 */
3470 	/* dev.mvneta.[unit].mib.<mibs> */
3471 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3472 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3473 
3474 		mib_arg->sc = sc;
3475 		mib_arg->index = i;
3476 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3477 		    mvneta_mib_list[i].sysctl_name,
3478 		    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
3479 		    (void *)mib_arg, 0, sysctl_read_mib, "I",
3480 		    mvneta_mib_list[i].desc);
3481 	}
3482 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3483 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3484 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3485 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3486 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3487 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3488 
3489 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3490 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3491 	    (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
3492 
3493 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3494 		rxarg = &sc->sysctl_rx_queue[q];
3495 
3496 		rxarg->sc = sc;
3497 		rxarg->queue = q;
3498 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3499 
3500 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3501 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3502 		    sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3503 		    sysctl_queue_descrs[q]);
3504 		qchildren = SYSCTL_CHILDREN(tree);
3505 
3506 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3507 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3508 		    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
3509 		    sysctl_set_queue_rxthtime, "I",
3510 		    "interrupt coalescing threshold timer [us]");
3511 	}
3512 }
3513 
3514 /*
3515  * MIB
3516  */
3517 STATIC uint64_t
3518 mvneta_read_mib(struct mvneta_softc *sc, int index)
3519 {
3520 	struct mvneta_mib_def *mib;
3521 	uint64_t val;
3522 
3523 	mib = &mvneta_mib_list[index];
3524 	val = MVNETA_READ_MIB(sc, mib->regnum);
3525 	if (mib->reg64)
3526 		val |= (uint64_t)MVNETA_READ_MIB(sc, mib->regnum + 4) << 32;
3527 	return (val);
3528 }
3529 
3530 STATIC void
3531 mvneta_clear_mib(struct mvneta_softc *sc)
3532 {
3533 	int i;
3534 
3535 	KASSERT_SC_MTX(sc);
3536 
3537 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3538 		(void)mvneta_read_mib(sc, i);
3539 		sc->sysctl_mib[i].counter = 0;
3540 	}
3541 	MVNETA_READ(sc, MVNETA_PDFC);
3542 	sc->counter_pdfc = 0;
3543 	MVNETA_READ(sc, MVNETA_POFC);
3544 	sc->counter_pofc = 0;
3545 	sc->counter_watchdog = 0;
3546 }
3547 
3548 STATIC void
3549 mvneta_update_mib(struct mvneta_softc *sc)
3550 {
3551 	struct mvneta_tx_ring *tx;
3552 	int i;
3553 	uint64_t val;
3554 	uint32_t reg;
3555 
3556 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3557 
3558 		val = mvneta_read_mib(sc, i);
3559 		if (val == 0)
3560 			continue;
3561 
3562 		sc->sysctl_mib[i].counter += val;
3563 		switch (mvneta_mib_list[i].regnum) {
3564 			case MVNETA_MIB_RX_GOOD_OCT:
3565 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3566 				break;
3567 			case MVNETA_MIB_RX_BAD_FRAME:
3568 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3569 				break;
3570 			case MVNETA_MIB_RX_GOOD_FRAME:
3571 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3572 				break;
3573 			case MVNETA_MIB_RX_MCAST_FRAME:
3574 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3575 				break;
3576 			case MVNETA_MIB_TX_GOOD_OCT:
3577 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3578 				break;
3579 			case MVNETA_MIB_TX_GOOD_FRAME:
3580 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3581 				break;
3582 			case MVNETA_MIB_TX_MCAST_FRAME:
3583 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3584 				break;
3585 			case MVNETA_MIB_MAC_COL:
3586 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3587 				break;
3588 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3589 			case MVNETA_MIB_TX_EXCES_COL:
3590 			case MVNETA_MIB_MAC_LATE_COL:
3591 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3592 				break;
3593 		}
3594 	}
3595 
3596 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3597 	sc->counter_pdfc += reg;
3598 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3599 	reg = MVNETA_READ(sc, MVNETA_POFC);
3600 	sc->counter_pofc += reg;
3601 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3602 
3603 	/* TX watchdog. */
3604 	if (sc->counter_watchdog_mib > 0) {
3605 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3606 		sc->counter_watchdog_mib = 0;
3607 	}
3608 	/*
3609 	 * TX driver errors:
3610 	 * We do not take queue locks to not disrupt TX path.
3611 	 * We may only miss one drv error which will be fixed at
3612 	 * next mib update. We may also clear counter when TX path
3613 	 * is incrementing it but we only do it if counter was not zero
3614 	 * thus we may only loose one error.
3615 	 */
3616 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3617 		tx = MVNETA_TX_RING(sc, i);
3618 
3619 		if (tx->drv_error > 0) {
3620 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3621 			tx->drv_error = 0;
3622 		}
3623 	}
3624 }
3625