xref: /freebsd/sys/dev/neta/if_mvneta.c (revision c697fb7f)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47 
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61 
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/ofw/openfirm.h>
72 #include <dev/ofw/ofw_bus.h>
73 #include <dev/ofw/ofw_bus_subr.h>
74 
75 #include <dev/mdio/mdio.h>
76 
77 #include <arm/mv/mvvar.h>
78 
79 #if !defined(__aarch64__)
80 #include <arm/mv/mvreg.h>
81 #include <arm/mv/mvwin.h>
82 #endif
83 
84 #include "if_mvnetareg.h"
85 #include "if_mvnetavar.h"
86 
87 #include "miibus_if.h"
88 #include "mdio_if.h"
89 
90 #ifdef MVNETA_DEBUG
91 #define	STATIC /* nothing */
92 #else
93 #define	STATIC static
94 #endif
95 
96 #define	DASSERT(x) KASSERT((x), (#x))
97 
98 #define	A3700_TCLK_250MHZ		250000000
99 
100 /* Device Register Initialization */
101 STATIC int mvneta_initreg(struct ifnet *);
102 
103 /* Descriptor Ring Control for each of queues */
104 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
105 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
106 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
107 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
108 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
109 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
110 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
111 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
112 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 STATIC int mvneta_dma_create(struct mvneta_softc *);
114 
115 /* Rx/Tx Queue Control */
116 STATIC int mvneta_rx_queue_init(struct ifnet *, int);
117 STATIC int mvneta_tx_queue_init(struct ifnet *, int);
118 STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
119 STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
120 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
121 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
122 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
123 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
124 
125 /* Interrupt Handlers */
126 STATIC void mvneta_disable_intr(struct mvneta_softc *);
127 STATIC void mvneta_enable_intr(struct mvneta_softc *);
128 STATIC void mvneta_rxtxth_intr(void *);
129 STATIC int mvneta_misc_intr(struct mvneta_softc *);
130 STATIC void mvneta_tick(void *);
131 /* struct ifnet and mii callbacks*/
132 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
133 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
134 #ifdef MVNETA_MULTIQUEUE
135 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
136 #else /* !MVNETA_MULTIQUEUE */
137 STATIC void mvneta_start(struct ifnet *);
138 #endif
139 STATIC void mvneta_qflush(struct ifnet *);
140 STATIC void mvneta_tx_task(void *, int);
141 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
142 STATIC void mvneta_init(void *);
143 STATIC void mvneta_init_locked(void *);
144 STATIC void mvneta_stop(struct mvneta_softc *);
145 STATIC void mvneta_stop_locked(struct mvneta_softc *);
146 STATIC int mvneta_mediachange(struct ifnet *);
147 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
148 STATIC void mvneta_portup(struct mvneta_softc *);
149 STATIC void mvneta_portdown(struct mvneta_softc *);
150 
151 /* Link State Notify */
152 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
153 STATIC int mvneta_update_media(struct mvneta_softc *, int);
154 STATIC void mvneta_adjust_link(struct mvneta_softc *);
155 STATIC void mvneta_update_eee(struct mvneta_softc *);
156 STATIC void mvneta_update_fc(struct mvneta_softc *);
157 STATIC void mvneta_link_isr(struct mvneta_softc *);
158 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
159 STATIC void mvneta_linkup(struct mvneta_softc *);
160 STATIC void mvneta_linkdown(struct mvneta_softc *);
161 STATIC void mvneta_linkreset(struct mvneta_softc *);
162 
163 /* Tx Subroutines */
164 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
165 STATIC void mvneta_tx_set_csumflag(struct ifnet *,
166     struct mvneta_tx_desc *, struct mbuf *);
167 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
168 STATIC void mvneta_tx_drain(struct mvneta_softc *);
169 
170 /* Rx Subroutines */
171 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
172 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
173 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
174 STATIC void mvneta_rx_set_csumflag(struct ifnet *,
175     struct mvneta_rx_desc *, struct mbuf *);
176 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
177 
178 /* MAC address filter */
179 STATIC void mvneta_filter_setup(struct mvneta_softc *);
180 
181 /* sysctl(9) */
182 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
183 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
184 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
185 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
186 
187 /* MIB */
188 STATIC void mvneta_clear_mib(struct mvneta_softc *);
189 STATIC void mvneta_update_mib(struct mvneta_softc *);
190 
191 /* Switch */
192 STATIC boolean_t mvneta_find_ethernet_prop_switch(phandle_t, phandle_t);
193 STATIC boolean_t mvneta_has_switch(device_t);
194 
195 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
196 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
197 
198 STATIC struct mtx mii_mutex;
199 STATIC int mii_init = 0;
200 
201 /* Device */
202 STATIC int mvneta_detach(device_t);
203 /* MII */
204 STATIC int mvneta_miibus_readreg(device_t, int, int);
205 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
206 
207 /* Clock */
208 STATIC uint32_t mvneta_get_clk(void);
209 
210 static device_method_t mvneta_methods[] = {
211 	/* Device interface */
212 	DEVMETHOD(device_detach,	mvneta_detach),
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
216 	/* MDIO interface */
217 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
218 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
219 
220 	/* End */
221 	DEVMETHOD_END
222 };
223 
224 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
225 
226 DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
227 DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
228 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
229 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
230 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
231 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
232 
233 /*
234  * List of MIB register and names
235  */
236 enum mvneta_mib_idx
237 {
238 	MVNETA_MIB_RX_GOOD_OCT_IDX,
239 	MVNETA_MIB_RX_BAD_OCT_IDX,
240 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
241 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
242 	MVNETA_MIB_RX_BAD_FRAME_IDX,
243 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
244 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
245 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
246 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
247 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
248 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
249 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
250 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
251 	MVNETA_MIB_TX_GOOD_OCT_IDX,
252 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
253 	MVNETA_MIB_TX_EXCES_COL_IDX,
254 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
255 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
256 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
257 	MVNETA_MIB_FC_SENT_IDX,
258 	MVNETA_MIB_FC_GOOD_IDX,
259 	MVNETA_MIB_FC_BAD_IDX,
260 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
261 	MVNETA_MIB_PKT_FRAGMENT_IDX,
262 	MVNETA_MIB_PKT_OVERSIZE_IDX,
263 	MVNETA_MIB_PKT_JABBER_IDX,
264 	MVNETA_MIB_MAC_RX_ERR_IDX,
265 	MVNETA_MIB_MAC_CRC_ERR_IDX,
266 	MVNETA_MIB_MAC_COL_IDX,
267 	MVNETA_MIB_MAC_LATE_COL_IDX,
268 };
269 
270 STATIC struct mvneta_mib_def {
271 	uint32_t regnum;
272 	int reg64;
273 	const char *sysctl_name;
274 	const char *desc;
275 } mvneta_mib_list[] = {
276 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
277 	    "rx_good_oct", "Good Octets Rx"},
278 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
279 	    "rx_bad_oct", "Bad  Octets Rx"},
280 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
281 	    "tx_mac_err", "MAC Transmit Error"},
282 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
283 	    "rx_good_frame", "Good Frames Rx"},
284 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
285 	    "rx_bad_frame", "Bad Frames Rx"},
286 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
287 	    "rx_bcast_frame", "Broadcast Frames Rx"},
288 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
289 	    "rx_mcast_frame", "Multicast Frames Rx"},
290 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
291 	    "rx_frame_1_64", "Frame Size    1 -   64"},
292 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
293 	    "rx_frame_65_127", "Frame Size   65 -  127"},
294 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
295 	    "rx_frame_128_255", "Frame Size  128 -  255"},
296 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
297 	    "rx_frame_256_511", "Frame Size  256 -  511"},
298 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
299 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
300 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
301 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
302 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
303 	    "tx_good_oct", "Good Octets Tx"},
304 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
305 	    "tx_good_frame", "Good Frames Tx"},
306 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
307 	    "tx_exces_collision", "Excessive Collision"},
308 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
309 	    "tx_mcast_frame", "Multicast Frames Tx"},
310 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
311 	    "tx_bcast_frame", "Broadcast Frames Tx"},
312 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
313 	    "tx_mac_ctl_err", "Unknown MAC Control"},
314 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
315 	    "fc_tx", "Flow Control Tx"},
316 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
317 	    "fc_rx_good", "Good Flow Control Rx"},
318 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
319 	    "fc_rx_bad", "Bad Flow Control Rx"},
320 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
321 	    "pkt_undersize", "Undersized Packets Rx"},
322 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
323 	    "pkt_fragment", "Fragmented Packets Rx"},
324 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
325 	    "pkt_oversize", "Oversized Packets Rx"},
326 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
327 	    "pkt_jabber", "Jabber Packets Rx"},
328 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
329 	    "mac_rx_err", "MAC Rx Errors"},
330 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
331 	    "mac_crc_err", "MAC CRC Errors"},
332 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
333 	    "mac_collision", "MAC Collision"},
334 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
335 	    "mac_late_collision", "MAC Late Collision"},
336 };
337 
338 static struct resource_spec res_spec[] = {
339 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
340 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
341 	{ -1, 0}
342 };
343 
344 static struct {
345 	driver_intr_t *handler;
346 	char * description;
347 } mvneta_intrs[] = {
348 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
349 };
350 
351 STATIC uint32_t
352 mvneta_get_clk()
353 {
354 #if defined(__aarch64__)
355 	return (A3700_TCLK_250MHZ);
356 #else
357 	return (get_tclk());
358 #endif
359 }
360 
361 static int
362 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
363 {
364 	unsigned int mac_h;
365 	unsigned int mac_l;
366 
367 	mac_l = (addr[4] << 8) | (addr[5]);
368 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
369 	    (addr[2] << 8) | (addr[3] << 0);
370 
371 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
372 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
373 	return (0);
374 }
375 
376 static int
377 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
378 {
379 	uint32_t mac_l, mac_h;
380 
381 #ifdef FDT
382 	if (mvneta_fdt_mac_address(sc, addr) == 0)
383 		return (0);
384 #endif
385 	/*
386 	 * Fall back -- use the currently programmed address.
387 	 */
388 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
389 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
390 	if (mac_l == 0 && mac_h == 0) {
391 		/*
392 		 * Generate pseudo-random MAC.
393 		 * Set lower part to random number | unit number.
394 		 */
395 		mac_l = arc4random() & ~0xff;
396 		mac_l |= device_get_unit(sc->dev) & 0xff;
397 		mac_h = arc4random();
398 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
399 		if (bootverbose) {
400 			device_printf(sc->dev,
401 			    "Could not acquire MAC address. "
402 			    "Using randomized one.\n");
403 		}
404 	}
405 
406 	addr[0] = (mac_h & 0xff000000) >> 24;
407 	addr[1] = (mac_h & 0x00ff0000) >> 16;
408 	addr[2] = (mac_h & 0x0000ff00) >> 8;
409 	addr[3] = (mac_h & 0x000000ff);
410 	addr[4] = (mac_l & 0x0000ff00) >> 8;
411 	addr[5] = (mac_l & 0x000000ff);
412 	return (0);
413 }
414 
415 STATIC boolean_t
416 mvneta_find_ethernet_prop_switch(phandle_t ethernet, phandle_t node)
417 {
418 	boolean_t ret;
419 	phandle_t child, switch_eth_handle, switch_eth;
420 
421 	for (child = OF_child(node); child != 0; child = OF_peer(child)) {
422 		if (OF_getencprop(child, "ethernet", (void*)&switch_eth_handle,
423 		    sizeof(switch_eth_handle)) > 0) {
424 			if (switch_eth_handle > 0) {
425 				switch_eth = OF_node_from_xref(
426 				    switch_eth_handle);
427 
428 				if (switch_eth == ethernet)
429 					return (true);
430 			}
431 		}
432 
433 		ret = mvneta_find_ethernet_prop_switch(ethernet, child);
434 		if (ret != 0)
435 			return (ret);
436 	}
437 
438 	return (false);
439 }
440 
441 STATIC boolean_t
442 mvneta_has_switch(device_t self)
443 {
444 	phandle_t node;
445 
446 	node = ofw_bus_get_node(self);
447 
448 	return mvneta_find_ethernet_prop_switch(node, OF_finddevice("/"));
449 }
450 
451 STATIC int
452 mvneta_dma_create(struct mvneta_softc *sc)
453 {
454 	size_t maxsize, maxsegsz;
455 	size_t q;
456 	int error;
457 
458 	/*
459 	 * Create Tx DMA
460 	 */
461 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
462 
463 	error = bus_dma_tag_create(
464 	    bus_get_dma_tag(sc->dev),		/* parent */
465 	    16, 0,                              /* alignment, boundary */
466 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
467 	    BUS_SPACE_MAXADDR,                  /* highaddr */
468 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
469 	    maxsize,				/* maxsize */
470 	    1,					/* nsegments */
471 	    maxsegsz,				/* maxsegsz */
472 	    0,					/* flags */
473 	    NULL, NULL,				/* lockfunc, lockfuncarg */
474 	    &sc->tx_dtag);			/* dmat */
475 	if (error != 0) {
476 		device_printf(sc->dev,
477 		    "Failed to create DMA tag for Tx descriptors.\n");
478 		goto fail;
479 	}
480 	error = bus_dma_tag_create(
481 	    bus_get_dma_tag(sc->dev),		/* parent */
482 	    1, 0,				/* alignment, boundary */
483 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
484 	    BUS_SPACE_MAXADDR,			/* highaddr */
485 	    NULL, NULL,				/* filtfunc, filtfuncarg */
486 	    MVNETA_MAX_FRAME,			/* maxsize */
487 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
488 	    MVNETA_MAX_FRAME,			/* maxsegsz */
489 	    BUS_DMA_ALLOCNOW,			/* flags */
490 	    NULL, NULL,				/* lockfunc, lockfuncarg */
491 	    &sc->txmbuf_dtag);
492 	if (error != 0) {
493 		device_printf(sc->dev,
494 		    "Failed to create DMA tag for Tx mbufs.\n");
495 		goto fail;
496 	}
497 
498 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
499 		error = mvneta_ring_alloc_tx_queue(sc, q);
500 		if (error != 0) {
501 			device_printf(sc->dev,
502 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
503 			goto fail;
504 		}
505 	}
506 
507 	/*
508 	 * Create Rx DMA.
509 	 */
510 	/* Create tag for Rx descripors */
511 	error = bus_dma_tag_create(
512 	    bus_get_dma_tag(sc->dev),		/* parent */
513 	    32, 0,                              /* alignment, boundary */
514 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
515 	    BUS_SPACE_MAXADDR,                  /* highaddr */
516 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
517 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
518 	    1,					/* nsegments */
519 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
520 	    0,					/* flags */
521 	    NULL, NULL,				/* lockfunc, lockfuncarg */
522 	    &sc->rx_dtag);			/* dmat */
523 	if (error != 0) {
524 		device_printf(sc->dev,
525 		    "Failed to create DMA tag for Rx descriptors.\n");
526 		goto fail;
527 	}
528 
529 	/* Create tag for Rx buffers */
530 	error = bus_dma_tag_create(
531 	    bus_get_dma_tag(sc->dev),		/* parent */
532 	    32, 0,				/* alignment, boundary */
533 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
534 	    BUS_SPACE_MAXADDR,			/* highaddr */
535 	    NULL, NULL,				/* filtfunc, filtfuncarg */
536 	    MVNETA_MAX_FRAME, 1,		/* maxsize, nsegments */
537 	    MVNETA_MAX_FRAME,			/* maxsegsz */
538 	    0,					/* flags */
539 	    NULL, NULL,				/* lockfunc, lockfuncarg */
540 	    &sc->rxbuf_dtag);			/* dmat */
541 	if (error != 0) {
542 		device_printf(sc->dev,
543 		    "Failed to create DMA tag for Rx buffers.\n");
544 		goto fail;
545 	}
546 
547 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
548 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
549 			device_printf(sc->dev,
550 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
551 			goto fail;
552 		}
553 	}
554 
555 	return (0);
556 fail:
557 	mvneta_detach(sc->dev);
558 
559 	return (error);
560 }
561 
562 /* ARGSUSED */
563 int
564 mvneta_attach(device_t self)
565 {
566 	struct mvneta_softc *sc;
567 	struct ifnet *ifp;
568 	device_t child;
569 	int ifm_target;
570 	int q, error;
571 #if !defined(__aarch64__)
572 	uint32_t reg;
573 #endif
574 
575 	sc = device_get_softc(self);
576 	sc->dev = self;
577 
578 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
579 
580 	error = bus_alloc_resources(self, res_spec, sc->res);
581 	if (error) {
582 		device_printf(self, "could not allocate resources\n");
583 		return (ENXIO);
584 	}
585 
586 	sc->version = MVNETA_READ(sc, MVNETA_PV);
587 	device_printf(self, "version is %x\n", sc->version);
588 	callout_init(&sc->tick_ch, 0);
589 
590 	/*
591 	 * make sure DMA engines are in reset state
592 	 */
593 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
594 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
595 
596 #if !defined(__aarch64__)
597 	/*
598 	 * Disable port snoop for buffers and descriptors
599 	 * to avoid L2 caching of both without DRAM copy.
600 	 * Obtain coherency settings from the first MBUS
601 	 * window attribute.
602 	 */
603 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
604 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
605 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
606 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
607 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
608 	}
609 #endif
610 
611 	/*
612 	 * MAC address
613 	 */
614 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
615 		device_printf(self, "no mac address.\n");
616 		return (ENXIO);
617 	}
618 	mvneta_set_mac_address(sc, sc->enaddr);
619 
620 	mvneta_disable_intr(sc);
621 
622 	/* Allocate network interface */
623 	ifp = sc->ifp = if_alloc(IFT_ETHER);
624 	if (ifp == NULL) {
625 		device_printf(self, "if_alloc() failed\n");
626 		mvneta_detach(self);
627 		return (ENOMEM);
628 	}
629 	if_initname(ifp, device_get_name(self), device_get_unit(self));
630 
631 	/*
632 	 * We can support 802.1Q VLAN-sized frames and jumbo
633 	 * Ethernet frames.
634 	 */
635 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
636 
637 	ifp->if_softc = sc;
638 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
639 #ifdef MVNETA_MULTIQUEUE
640 	ifp->if_transmit = mvneta_transmit;
641 	ifp->if_qflush = mvneta_qflush;
642 #else /* !MVNETA_MULTIQUEUE */
643 	ifp->if_start = mvneta_start;
644 	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
645 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
646 	IFQ_SET_READY(&ifp->if_snd);
647 #endif
648 	ifp->if_init = mvneta_init;
649 	ifp->if_ioctl = mvneta_ioctl;
650 
651 	/*
652 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
653 	 */
654 	ifp->if_capabilities |= IFCAP_HWCSUM;
655 
656 	/*
657 	 * As VLAN hardware tagging is not supported
658 	 * but is necessary to perform VLAN hardware checksums,
659 	 * it is done in the driver
660 	 */
661 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
662 
663 	/*
664 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
665 	 */
666 	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
667 	ifp->if_capenable = ifp->if_capabilities;
668 
669 	/*
670 	 * Disabled option(s):
671 	 * - Support for Large Receive Offload
672 	 */
673 	ifp->if_capabilities |= IFCAP_LRO;
674 
675 	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
676 
677 	sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
678 
679 	/*
680 	 * Device DMA Buffer allocation.
681 	 * Handles resource deallocation in case of failure.
682 	 */
683 	error = mvneta_dma_create(sc);
684 	if (error != 0) {
685 		mvneta_detach(self);
686 		return (error);
687 	}
688 
689 	/* Initialize queues */
690 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
691 		error = mvneta_ring_init_tx_queue(sc, q);
692 		if (error != 0) {
693 			mvneta_detach(self);
694 			return (error);
695 		}
696 	}
697 
698 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
699 		error = mvneta_ring_init_rx_queue(sc, q);
700 		if (error != 0) {
701 			mvneta_detach(self);
702 			return (error);
703 		}
704 	}
705 
706 	ether_ifattach(ifp, sc->enaddr);
707 
708 	/*
709 	 * Enable DMA engines and Initialize Device Registers.
710 	 */
711 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
712 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
713 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
714 	mvneta_sc_lock(sc);
715 	mvneta_filter_setup(sc);
716 	mvneta_sc_unlock(sc);
717 	mvneta_initreg(ifp);
718 
719 	/*
720 	 * Now MAC is working, setup MII.
721 	 */
722 	if (mii_init == 0) {
723 		/*
724 		 * MII bus is shared by all MACs and all PHYs in SoC.
725 		 * serializing the bus access should be safe.
726 		 */
727 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
728 		mii_init = 1;
729 	}
730 
731 	/* Attach PHY(s) */
732 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
733 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
734 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
735 		    MII_OFFSET_ANY, 0);
736 		if (error != 0) {
737 			if (bootverbose) {
738 				device_printf(self,
739 				    "MII attach failed, error: %d\n", error);
740 			}
741 			ether_ifdetach(sc->ifp);
742 			mvneta_detach(self);
743 			return (error);
744 		}
745 		sc->mii = device_get_softc(sc->miibus);
746 		sc->phy_attached = 1;
747 
748 		/* Disable auto-negotiation in MAC - rely on PHY layer */
749 		mvneta_update_autoneg(sc, FALSE);
750 	} else if (sc->use_inband_status == TRUE) {
751 		/* In-band link status */
752 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
753 		    mvneta_mediastatus);
754 
755 		/* Configure media */
756 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
757 		    0, NULL);
758 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
759 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
760 		    0, NULL);
761 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
762 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
763 		    0, NULL);
764 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
765 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
766 
767 		/* Enable auto-negotiation */
768 		mvneta_update_autoneg(sc, TRUE);
769 
770 		mvneta_sc_lock(sc);
771 		if (MVNETA_IS_LINKUP(sc))
772 			mvneta_linkup(sc);
773 		else
774 			mvneta_linkdown(sc);
775 		mvneta_sc_unlock(sc);
776 
777 	} else {
778 		/* Fixed-link, use predefined values */
779 		mvneta_update_autoneg(sc, FALSE);
780 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
781 		    mvneta_mediastatus);
782 
783 		ifm_target = IFM_ETHER;
784 		switch (sc->phy_speed) {
785 		case 2500:
786 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
787 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
788 				device_printf(self,
789 				    "2.5G speed can work only in (Q)SGMII mode\n");
790 				ether_ifdetach(sc->ifp);
791 				mvneta_detach(self);
792 				return (ENXIO);
793 			}
794 			ifm_target |= IFM_2500_T;
795 			break;
796 		case 1000:
797 			ifm_target |= IFM_1000_T;
798 			break;
799 		case 100:
800 			ifm_target |= IFM_100_TX;
801 			break;
802 		case 10:
803 			ifm_target |= IFM_10_T;
804 			break;
805 		default:
806 			ether_ifdetach(sc->ifp);
807 			mvneta_detach(self);
808 			return (ENXIO);
809 		}
810 
811 		if (sc->phy_fdx)
812 			ifm_target |= IFM_FDX;
813 		else
814 			ifm_target |= IFM_HDX;
815 
816 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
817 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
818 		if_link_state_change(sc->ifp, LINK_STATE_UP);
819 
820 		if (mvneta_has_switch(self)) {
821 			if (bootverbose)
822 				device_printf(self, "This device is attached to a switch\n");
823 			child = device_add_child(sc->dev, "mdio", -1);
824 			if (child == NULL) {
825 				ether_ifdetach(sc->ifp);
826 				mvneta_detach(self);
827 				return (ENXIO);
828 			}
829 			bus_generic_attach(sc->dev);
830 			bus_generic_attach(child);
831 		}
832 
833 		/* Configure MAC media */
834 		mvneta_update_media(sc, ifm_target);
835 	}
836 
837 	sysctl_mvneta_init(sc);
838 
839 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
840 
841 	error = bus_setup_intr(self, sc->res[1],
842 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
843 	    &sc->ih_cookie[0]);
844 	if (error) {
845 		device_printf(self, "could not setup %s\n",
846 		    mvneta_intrs[0].description);
847 		ether_ifdetach(sc->ifp);
848 		mvneta_detach(self);
849 		return (error);
850 	}
851 
852 	return (0);
853 }
854 
855 STATIC int
856 mvneta_detach(device_t dev)
857 {
858 	struct mvneta_softc *sc;
859 	int q;
860 
861 	sc = device_get_softc(dev);
862 
863 	mvneta_stop(sc);
864 	/* Detach network interface */
865 	if (sc->ifp)
866 		if_free(sc->ifp);
867 
868 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
869 		mvneta_ring_dealloc_rx_queue(sc, q);
870 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
871 		mvneta_ring_dealloc_tx_queue(sc, q);
872 
873 	if (sc->tx_dtag != NULL)
874 		bus_dma_tag_destroy(sc->tx_dtag);
875 	if (sc->rx_dtag != NULL)
876 		bus_dma_tag_destroy(sc->rx_dtag);
877 	if (sc->txmbuf_dtag != NULL)
878 		bus_dma_tag_destroy(sc->txmbuf_dtag);
879 	if (sc->rxbuf_dtag != NULL)
880 		bus_dma_tag_destroy(sc->rxbuf_dtag);
881 
882 	bus_release_resources(dev, res_spec, sc->res);
883 	return (0);
884 }
885 
886 /*
887  * MII
888  */
889 STATIC int
890 mvneta_miibus_readreg(device_t dev, int phy, int reg)
891 {
892 	struct mvneta_softc *sc;
893 	struct ifnet *ifp;
894 	uint32_t smi, val;
895 	int i;
896 
897 	sc = device_get_softc(dev);
898 	ifp = sc->ifp;
899 
900 	mtx_lock(&mii_mutex);
901 
902 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
903 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
904 			break;
905 		DELAY(1);
906 	}
907 	if (i == MVNETA_PHY_TIMEOUT) {
908 		if_printf(ifp, "SMI busy timeout\n");
909 		mtx_unlock(&mii_mutex);
910 		return (-1);
911 	}
912 
913 	smi = MVNETA_SMI_PHYAD(phy) |
914 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
915 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
916 
917 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
918 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
919 			break;
920 		DELAY(1);
921 	}
922 
923 	if (i == MVNETA_PHY_TIMEOUT) {
924 		if_printf(ifp, "SMI busy timeout\n");
925 		mtx_unlock(&mii_mutex);
926 		return (-1);
927 	}
928 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
929 		smi = MVNETA_READ(sc, MVNETA_SMI);
930 		if (smi & MVNETA_SMI_READVALID)
931 			break;
932 		DELAY(1);
933 	}
934 
935 	if (i == MVNETA_PHY_TIMEOUT) {
936 		if_printf(ifp, "SMI busy timeout\n");
937 		mtx_unlock(&mii_mutex);
938 		return (-1);
939 	}
940 
941 	mtx_unlock(&mii_mutex);
942 
943 #ifdef MVNETA_KTR
944 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
945 	    MVNETA_PHY_TIMEOUT);
946 #endif
947 
948 	val = smi & MVNETA_SMI_DATA_MASK;
949 
950 #ifdef MVNETA_KTR
951 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
952 	    reg, val);
953 #endif
954 	return (val);
955 }
956 
957 STATIC int
958 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
959 {
960 	struct mvneta_softc *sc;
961 	struct ifnet *ifp;
962 	uint32_t smi;
963 	int i;
964 
965 	sc = device_get_softc(dev);
966 	ifp = sc->ifp;
967 #ifdef MVNETA_KTR
968 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
969 	    phy, reg, val);
970 #endif
971 
972 	mtx_lock(&mii_mutex);
973 
974 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
975 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
976 			break;
977 		DELAY(1);
978 	}
979 	if (i == MVNETA_PHY_TIMEOUT) {
980 		if_printf(ifp, "SMI busy timeout\n");
981 		mtx_unlock(&mii_mutex);
982 		return (0);
983 	}
984 
985 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
986 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
987 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
988 
989 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
990 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
991 			break;
992 		DELAY(1);
993 	}
994 
995 	mtx_unlock(&mii_mutex);
996 
997 	if (i == MVNETA_PHY_TIMEOUT)
998 		if_printf(ifp, "phy write timed out\n");
999 
1000 	return (0);
1001 }
1002 
1003 STATIC void
1004 mvneta_portup(struct mvneta_softc *sc)
1005 {
1006 	int q;
1007 
1008 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1009 		mvneta_rx_lockq(sc, q);
1010 		mvneta_rx_queue_enable(sc->ifp, q);
1011 		mvneta_rx_unlockq(sc, q);
1012 	}
1013 
1014 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1015 		mvneta_tx_lockq(sc, q);
1016 		mvneta_tx_queue_enable(sc->ifp, q);
1017 		mvneta_tx_unlockq(sc, q);
1018 	}
1019 
1020 }
1021 
1022 STATIC void
1023 mvneta_portdown(struct mvneta_softc *sc)
1024 {
1025 	struct mvneta_rx_ring *rx;
1026 	struct mvneta_tx_ring *tx;
1027 	int q, cnt;
1028 	uint32_t reg;
1029 
1030 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1031 		rx = MVNETA_RX_RING(sc, q);
1032 		mvneta_rx_lockq(sc, q);
1033 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1034 		mvneta_rx_unlockq(sc, q);
1035 	}
1036 
1037 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1038 		tx = MVNETA_TX_RING(sc, q);
1039 		mvneta_tx_lockq(sc, q);
1040 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1041 		mvneta_tx_unlockq(sc, q);
1042 	}
1043 
1044 	/* Wait for all Rx activity to terminate. */
1045 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1046 	reg = MVNETA_RQC_DIS(reg);
1047 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1048 	cnt = 0;
1049 	do {
1050 		if (cnt >= RX_DISABLE_TIMEOUT) {
1051 			if_printf(sc->ifp,
1052 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1053 			break;
1054 		}
1055 		cnt++;
1056 		reg = MVNETA_READ(sc, MVNETA_RQC);
1057 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1058 
1059 	/* Wait for all Tx activity to terminate. */
1060 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1061 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1062 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1063 
1064 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1065 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1066 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1067 
1068 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1069 	reg = MVNETA_TQC_DIS(reg);
1070 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1071 	cnt = 0;
1072 	do {
1073 		if (cnt >= TX_DISABLE_TIMEOUT) {
1074 			if_printf(sc->ifp,
1075 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1076 			break;
1077 		}
1078 		cnt++;
1079 		reg = MVNETA_READ(sc, MVNETA_TQC);
1080 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1081 
1082 	/* Wait for all Tx FIFO is empty */
1083 	cnt = 0;
1084 	do {
1085 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1086 			if_printf(sc->ifp,
1087 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1088 			break;
1089 		}
1090 		cnt++;
1091 		reg = MVNETA_READ(sc, MVNETA_PS0);
1092 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1093 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1094 }
1095 
1096 /*
1097  * Device Register Initialization
1098  *  reset device registers to device driver default value.
1099  *  the device is not enabled here.
1100  */
1101 STATIC int
1102 mvneta_initreg(struct ifnet *ifp)
1103 {
1104 	struct mvneta_softc *sc;
1105 	int q, i;
1106 	uint32_t reg;
1107 
1108 	sc = ifp->if_softc;
1109 #ifdef MVNETA_KTR
1110 	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
1111 #endif
1112 
1113 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1114 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1115 	/* Enable mbus retry. */
1116 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1117 
1118 	/* Init TX/RX Queue Registers */
1119 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1120 		mvneta_rx_lockq(sc, q);
1121 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1122 			device_printf(sc->dev,
1123 			    "initialization failed: cannot initialize queue\n");
1124 			mvneta_rx_unlockq(sc, q);
1125 			return (ENOBUFS);
1126 		}
1127 		mvneta_rx_unlockq(sc, q);
1128 	}
1129 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1130 		mvneta_tx_lockq(sc, q);
1131 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1132 			device_printf(sc->dev,
1133 			    "initialization failed: cannot initialize queue\n");
1134 			mvneta_tx_unlockq(sc, q);
1135 			return (ENOBUFS);
1136 		}
1137 		mvneta_tx_unlockq(sc, q);
1138 	}
1139 
1140 	/*
1141 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1142 	 * In case the port uses SMI-controlled PHY, poll its status with
1143 	 * mii_tick() and update MAC settings accordingly.
1144 	 */
1145 	reg = MVNETA_READ(sc, MVNETA_EUC);
1146 	reg &= ~MVNETA_EUC_POLLING;
1147 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1148 
1149 	/* EEE: Low Power Idle */
1150 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1151 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1152 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1153 
1154 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1155 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1156 
1157 	reg = MVNETA_LPIC2_MUSTSET;
1158 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1159 
1160 	/* Port MAC Control set 0 */
1161 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1162 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1163 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
1164 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1165 
1166 	/* Port MAC Control set 2 */
1167 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1168 	switch (sc->phy_mode) {
1169 	case MVNETA_PHY_QSGMII:
1170 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1171 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1172 		break;
1173 	case MVNETA_PHY_SGMII:
1174 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1175 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1176 		break;
1177 	case MVNETA_PHY_RGMII:
1178 	case MVNETA_PHY_RGMII_ID:
1179 		reg |= MVNETA_PMACC2_RGMIIEN;
1180 		break;
1181 	}
1182 	reg |= MVNETA_PMACC2_MUSTSET;
1183 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1184 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1185 
1186 	/* Port Configuration Extended: enable Tx CRC generation */
1187 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1188 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1189 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1190 
1191 	/* clear MIB counter registers(clear by read) */
1192 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
1193 		if (mvneta_mib_list[i].reg64)
1194 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
1195 		else
1196 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
1197 	}
1198 	MVNETA_READ(sc, MVNETA_PDFC);
1199 	MVNETA_READ(sc, MVNETA_POFC);
1200 
1201 	/* Set SDC register except IPGINT bits */
1202 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1203 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1204 	reg |= MVNETA_SDC_BLMR;
1205 	reg |= MVNETA_SDC_BLMT;
1206 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1207 
1208 	return (0);
1209 }
1210 
1211 STATIC void
1212 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1213 {
1214 
1215 	if (error != 0)
1216 		return;
1217 	*(bus_addr_t *)arg = segs->ds_addr;
1218 }
1219 
1220 STATIC int
1221 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1222 {
1223 	struct mvneta_rx_ring *rx;
1224 	struct mvneta_buf *rxbuf;
1225 	bus_dmamap_t dmap;
1226 	int i, error;
1227 
1228 	if (q >= MVNETA_RX_QNUM_MAX)
1229 		return (EINVAL);
1230 
1231 	rx = MVNETA_RX_RING(sc, q);
1232 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1233 	/* Allocate DMA memory for Rx descriptors */
1234 	error = bus_dmamem_alloc(sc->rx_dtag,
1235 	    (void**)&(rx->desc),
1236 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1237 	    &rx->desc_map);
1238 	if (error != 0 || rx->desc == NULL)
1239 		goto fail;
1240 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1241 	    rx->desc,
1242 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1243 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1244 	if (error != 0)
1245 		goto fail;
1246 
1247 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1248 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1249 		if (error != 0) {
1250 			device_printf(sc->dev,
1251 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1252 			goto fail;
1253 		}
1254 		rxbuf = &rx->rxbuf[i];
1255 		rxbuf->dmap = dmap;
1256 		rxbuf->m = NULL;
1257 	}
1258 
1259 	return (0);
1260 fail:
1261 	mvneta_ring_dealloc_rx_queue(sc, q);
1262 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1263 	return (error);
1264 }
1265 
1266 STATIC int
1267 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1268 {
1269 	struct mvneta_tx_ring *tx;
1270 	int error;
1271 
1272 	if (q >= MVNETA_TX_QNUM_MAX)
1273 		return (EINVAL);
1274 	tx = MVNETA_TX_RING(sc, q);
1275 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1276 	error = bus_dmamem_alloc(sc->tx_dtag,
1277 	    (void**)&(tx->desc),
1278 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1279 	    &tx->desc_map);
1280 	if (error != 0 || tx->desc == NULL)
1281 		goto fail;
1282 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1283 	    tx->desc,
1284 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1285 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1286 	if (error != 0)
1287 		goto fail;
1288 
1289 #ifdef MVNETA_MULTIQUEUE
1290 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1291 	    &tx->ring_mtx);
1292 	if (tx->br == NULL) {
1293 		device_printf(sc->dev,
1294 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1295 		error = ENOMEM;
1296 		goto fail;
1297 	}
1298 #endif
1299 
1300 	return (0);
1301 fail:
1302 	mvneta_ring_dealloc_tx_queue(sc, q);
1303 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1304 	return (error);
1305 }
1306 
1307 STATIC void
1308 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1309 {
1310 	struct mvneta_tx_ring *tx;
1311 	struct mvneta_buf *txbuf;
1312 	void *kva;
1313 	int error;
1314 	int i;
1315 
1316 	if (q >= MVNETA_TX_QNUM_MAX)
1317 		return;
1318 	tx = MVNETA_TX_RING(sc, q);
1319 
1320 	if (tx->taskq != NULL) {
1321 		/* Remove task */
1322 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1323 			taskqueue_drain(tx->taskq, &tx->task);
1324 	}
1325 #ifdef MVNETA_MULTIQUEUE
1326 	if (tx->br != NULL)
1327 		drbr_free(tx->br, M_DEVBUF);
1328 #endif
1329 
1330 	if (sc->txmbuf_dtag != NULL) {
1331 		if (mtx_name(&tx->ring_mtx) != NULL) {
1332 			/*
1333 			 * It is assumed that maps are being loaded after mutex
1334 			 * is initialized. Therefore we can skip unloading maps
1335 			 * when mutex is empty.
1336 			 */
1337 			mvneta_tx_lockq(sc, q);
1338 			mvneta_ring_flush_tx_queue(sc, q);
1339 			mvneta_tx_unlockq(sc, q);
1340 		}
1341 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1342 			txbuf = &tx->txbuf[i];
1343 			if (txbuf->dmap != NULL) {
1344 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1345 				    txbuf->dmap);
1346 				if (error != 0) {
1347 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1348 					    __func__, q, i);
1349 				}
1350 			}
1351 		}
1352 	}
1353 
1354 	if (tx->desc_pa != 0)
1355 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1356 
1357 	kva = (void *)tx->desc;
1358 	if (kva != NULL)
1359 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1360 
1361 	if (mtx_name(&tx->ring_mtx) != NULL)
1362 		mtx_destroy(&tx->ring_mtx);
1363 
1364 	memset(tx, 0, sizeof(*tx));
1365 }
1366 
1367 STATIC void
1368 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1369 {
1370 	struct mvneta_rx_ring *rx;
1371 	struct lro_ctrl	*lro;
1372 	void *kva;
1373 
1374 	if (q >= MVNETA_RX_QNUM_MAX)
1375 		return;
1376 
1377 	rx = MVNETA_RX_RING(sc, q);
1378 
1379 	mvneta_ring_flush_rx_queue(sc, q);
1380 
1381 	if (rx->desc_pa != 0)
1382 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1383 
1384 	kva = (void *)rx->desc;
1385 	if (kva != NULL)
1386 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1387 
1388 	lro = &rx->lro;
1389 	tcp_lro_free(lro);
1390 
1391 	if (mtx_name(&rx->ring_mtx) != NULL)
1392 		mtx_destroy(&rx->ring_mtx);
1393 
1394 	memset(rx, 0, sizeof(*rx));
1395 }
1396 
1397 STATIC int
1398 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1399 {
1400 	struct mvneta_rx_ring *rx;
1401 	struct lro_ctrl	*lro;
1402 	int error;
1403 
1404 	if (q >= MVNETA_RX_QNUM_MAX)
1405 		return (0);
1406 
1407 	rx = MVNETA_RX_RING(sc, q);
1408 	rx->dma = rx->cpu = 0;
1409 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1410 	rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */
1411 
1412 	/* Initialize LRO */
1413 	rx->lro_enabled = FALSE;
1414 	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
1415 		lro = &rx->lro;
1416 		error = tcp_lro_init(lro);
1417 		if (error != 0)
1418 			device_printf(sc->dev, "LRO Initialization failed!\n");
1419 		else {
1420 			rx->lro_enabled = TRUE;
1421 			lro->ifp = sc->ifp;
1422 		}
1423 	}
1424 
1425 	return (0);
1426 }
1427 
1428 STATIC int
1429 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1430 {
1431 	struct mvneta_tx_ring *tx;
1432 	struct mvneta_buf *txbuf;
1433 	int i, error;
1434 
1435 	if (q >= MVNETA_TX_QNUM_MAX)
1436 		return (0);
1437 
1438 	tx = MVNETA_TX_RING(sc, q);
1439 
1440 	/* Tx handle */
1441 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1442 		txbuf = &tx->txbuf[i];
1443 		txbuf->m = NULL;
1444 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1445 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1446 		    &txbuf->dmap);
1447 		if (error != 0) {
1448 			device_printf(sc->dev,
1449 			    "can't create dma map (tx ring %d)\n", i);
1450 			return (error);
1451 		}
1452 	}
1453 	tx->dma = tx->cpu = 0;
1454 	tx->used = 0;
1455 	tx->drv_error = 0;
1456 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1457 	tx->queue_hung = FALSE;
1458 
1459 	tx->ifp = sc->ifp;
1460 	tx->qidx = q;
1461 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1462 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1463 	    taskqueue_thread_enqueue, &tx->taskq);
1464 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1465 	    device_get_nameunit(sc->dev), q);
1466 
1467 	return (0);
1468 }
1469 
1470 STATIC void
1471 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1472 {
1473 	struct mvneta_tx_ring *tx;
1474 	struct mvneta_buf *txbuf;
1475 	int i;
1476 
1477 	tx = MVNETA_TX_RING(sc, q);
1478 	KASSERT_TX_MTX(sc, q);
1479 
1480 	/* Tx handle */
1481 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1482 		txbuf = &tx->txbuf[i];
1483 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1484 		if (txbuf->m != NULL) {
1485 			m_freem(txbuf->m);
1486 			txbuf->m = NULL;
1487 		}
1488 	}
1489 	tx->dma = tx->cpu = 0;
1490 	tx->used = 0;
1491 }
1492 
1493 STATIC void
1494 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1495 {
1496 	struct mvneta_rx_ring *rx;
1497 	struct mvneta_buf *rxbuf;
1498 	int i;
1499 
1500 	rx = MVNETA_RX_RING(sc, q);
1501 	KASSERT_RX_MTX(sc, q);
1502 
1503 	/* Rx handle */
1504 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1505 		rxbuf = &rx->rxbuf[i];
1506 		mvneta_rx_buf_free(sc, rxbuf);
1507 	}
1508 	rx->dma = rx->cpu = 0;
1509 }
1510 
1511 /*
1512  * Rx/Tx Queue Control
1513  */
1514 STATIC int
1515 mvneta_rx_queue_init(struct ifnet *ifp, int q)
1516 {
1517 	struct mvneta_softc *sc;
1518 	struct mvneta_rx_ring *rx;
1519 	uint32_t reg;
1520 
1521 	sc = ifp->if_softc;
1522 	KASSERT_RX_MTX(sc, q);
1523 	rx =  MVNETA_RX_RING(sc, q);
1524 	DASSERT(rx->desc_pa != 0);
1525 
1526 	/* descriptor address */
1527 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1528 
1529 	/* Rx buffer size and descriptor ring size */
1530 	reg  = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
1531 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1532 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1533 #ifdef MVNETA_KTR
1534 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
1535 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1536 #endif
1537 	/* Rx packet offset address */
1538 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1539 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1540 #ifdef MVNETA_KTR
1541 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
1542 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1543 #endif
1544 
1545 	/* if DMA is not working, register is not updated */
1546 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1547 	return (0);
1548 }
1549 
1550 STATIC int
1551 mvneta_tx_queue_init(struct ifnet *ifp, int q)
1552 {
1553 	struct mvneta_softc *sc;
1554 	struct mvneta_tx_ring *tx;
1555 	uint32_t reg;
1556 
1557 	sc = ifp->if_softc;
1558 	KASSERT_TX_MTX(sc, q);
1559 	tx = MVNETA_TX_RING(sc, q);
1560 	DASSERT(tx->desc_pa != 0);
1561 
1562 	/* descriptor address */
1563 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1564 
1565 	/* descriptor ring size */
1566 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1567 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1568 
1569 	/* if DMA is not working, register is not updated */
1570 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1571 	return (0);
1572 }
1573 
1574 STATIC int
1575 mvneta_rx_queue_enable(struct ifnet *ifp, int q)
1576 {
1577 	struct mvneta_softc *sc;
1578 	struct mvneta_rx_ring *rx;
1579 	uint32_t reg;
1580 
1581 	sc = ifp->if_softc;
1582 	rx = MVNETA_RX_RING(sc, q);
1583 	KASSERT_RX_MTX(sc, q);
1584 
1585 	/* Set Rx interrupt threshold */
1586 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1587 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1588 
1589 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1590 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1591 
1592 	/* Unmask RXTX_TH Intr. */
1593 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1594 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1595 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1596 
1597 	/* Enable Rx queue */
1598 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1599 	reg |= MVNETA_RQC_ENQ(q);
1600 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1601 
1602 	rx->queue_status = MVNETA_QUEUE_WORKING;
1603 	return (0);
1604 }
1605 
1606 STATIC int
1607 mvneta_tx_queue_enable(struct ifnet *ifp, int q)
1608 {
1609 	struct mvneta_softc *sc;
1610 	struct mvneta_tx_ring *tx;
1611 
1612 	sc = ifp->if_softc;
1613 	tx = MVNETA_TX_RING(sc, q);
1614 	KASSERT_TX_MTX(sc, q);
1615 
1616 	/* Enable Tx queue */
1617 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1618 
1619 	tx->queue_status = MVNETA_QUEUE_IDLE;
1620 	tx->queue_hung = FALSE;
1621 	return (0);
1622 }
1623 
1624 STATIC __inline void
1625 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1626 {
1627 
1628 	DASSERT(q >= 0);
1629 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1630 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1631 }
1632 
1633 STATIC __inline void
1634 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1635 {
1636 
1637 	DASSERT(q >= 0);
1638 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1639 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1640 }
1641 
1642 STATIC __inline int __unused
1643 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1644 {
1645 
1646 	DASSERT(q >= 0);
1647 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1648 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1649 }
1650 
1651 STATIC __inline void
1652 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1653 {
1654 
1655 	DASSERT(q >= 0);
1656 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1657 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1658 }
1659 
1660 STATIC __inline void
1661 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1662 {
1663 
1664 	DASSERT(q >= 0);
1665 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1666 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1667 }
1668 
1669 /*
1670  * Interrupt Handlers
1671  */
1672 STATIC void
1673 mvneta_disable_intr(struct mvneta_softc *sc)
1674 {
1675 
1676 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1677 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1678 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1679 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1680 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1681 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1682 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1683 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1684 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1685 }
1686 
1687 STATIC void
1688 mvneta_enable_intr(struct mvneta_softc *sc)
1689 {
1690 	uint32_t reg;
1691 
1692 	/* Enable Summary Bit to check all interrupt cause. */
1693 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1694 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1695 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1696 
1697 	if (sc->use_inband_status) {
1698 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1699 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1700 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1701 	}
1702 
1703 	/* Enable All Queue Interrupt */
1704 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1705 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1706 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1707 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1708 }
1709 
1710 STATIC void
1711 mvneta_rxtxth_intr(void *arg)
1712 {
1713 	struct mvneta_softc *sc;
1714 	struct ifnet *ifp;
1715 	uint32_t ic, queues;
1716 
1717 	sc = arg;
1718 	ifp = sc->ifp;
1719 #ifdef MVNETA_KTR
1720 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
1721 #endif
1722 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1723 	if (ic == 0)
1724 		return;
1725 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1726 
1727 	/* Ack maintance interrupt first */
1728 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1729 	    sc->use_inband_status)) {
1730 		mvneta_sc_lock(sc);
1731 		mvneta_misc_intr(sc);
1732 		mvneta_sc_unlock(sc);
1733 	}
1734 	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
1735 		return;
1736 	/* RxTxTH interrupt */
1737 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1738 	if (__predict_true(queues)) {
1739 #ifdef MVNETA_KTR
1740 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
1741 #endif
1742 		/* At the moment the driver support only one RX queue. */
1743 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1744 		mvneta_rx(sc, 0, 0);
1745 	}
1746 }
1747 
1748 STATIC int
1749 mvneta_misc_intr(struct mvneta_softc *sc)
1750 {
1751 	uint32_t ic;
1752 	int claimed = 0;
1753 
1754 #ifdef MVNETA_KTR
1755 	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
1756 #endif
1757 	KASSERT_SC_MTX(sc);
1758 
1759 	for (;;) {
1760 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1761 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1762 		if (ic == 0)
1763 			break;
1764 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1765 		claimed = 1;
1766 
1767 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1768 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1769 			mvneta_link_isr(sc);
1770 	}
1771 	return (claimed);
1772 }
1773 
1774 STATIC void
1775 mvneta_tick(void *arg)
1776 {
1777 	struct mvneta_softc *sc;
1778 	struct mvneta_tx_ring *tx;
1779 	struct mvneta_rx_ring *rx;
1780 	int q;
1781 	uint32_t fc_prev, fc_curr;
1782 
1783 	sc = arg;
1784 
1785 	/*
1786 	 * This is done before mib update to get the right stats
1787 	 * for this tick.
1788 	 */
1789 	mvneta_tx_drain(sc);
1790 
1791 	/* Extract previous flow-control frame received counter. */
1792 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1793 	/* Read mib registers (clear by read). */
1794 	mvneta_update_mib(sc);
1795 	/* Extract current flow-control frame received counter. */
1796 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1797 
1798 
1799 	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
1800 		mvneta_sc_lock(sc);
1801 		mii_tick(sc->mii);
1802 
1803 		/* Adjust MAC settings */
1804 		mvneta_adjust_link(sc);
1805 		mvneta_sc_unlock(sc);
1806 	}
1807 
1808 	/*
1809 	 * We were unable to refill the rx queue and left the rx func, leaving
1810 	 * the ring without mbuf and no way to call the refill func.
1811 	 */
1812 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1813 		rx = MVNETA_RX_RING(sc, q);
1814 		if (rx->needs_refill == TRUE) {
1815 			mvneta_rx_lockq(sc, q);
1816 			mvneta_rx_queue_refill(sc, q);
1817 			mvneta_rx_unlockq(sc, q);
1818 		}
1819 	}
1820 
1821 	/*
1822 	 * Watchdog:
1823 	 * - check if queue is mark as hung.
1824 	 * - ignore hung status if we received some pause frame
1825 	 *   as hardware may have paused packet transmit.
1826 	 */
1827 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1828 		/*
1829 		 * We should take queue lock, but as we only read
1830 		 * queue status we can do it without lock, we may
1831 		 * only missdetect queue status for one tick.
1832 		 */
1833 		tx = MVNETA_TX_RING(sc, q);
1834 
1835 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1836 			goto timeout;
1837 	}
1838 
1839 	callout_schedule(&sc->tick_ch, hz);
1840 	return;
1841 
1842 timeout:
1843 	if_printf(sc->ifp, "watchdog timeout\n");
1844 
1845 	mvneta_sc_lock(sc);
1846 	sc->counter_watchdog++;
1847 	sc->counter_watchdog_mib++;
1848 	/* Trigger reinitialize sequence. */
1849 	mvneta_stop_locked(sc);
1850 	mvneta_init_locked(sc);
1851 	mvneta_sc_unlock(sc);
1852 }
1853 
1854 STATIC void
1855 mvneta_qflush(struct ifnet *ifp)
1856 {
1857 #ifdef MVNETA_MULTIQUEUE
1858 	struct mvneta_softc *sc;
1859 	struct mvneta_tx_ring *tx;
1860 	struct mbuf *m;
1861 	size_t q;
1862 
1863 	sc = ifp->if_softc;
1864 
1865 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1866 		tx = MVNETA_TX_RING(sc, q);
1867 		mvneta_tx_lockq(sc, q);
1868 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1869 			m_freem(m);
1870 		mvneta_tx_unlockq(sc, q);
1871 	}
1872 #endif
1873 	if_qflush(ifp);
1874 }
1875 
1876 STATIC void
1877 mvneta_tx_task(void *arg, int pending)
1878 {
1879 	struct mvneta_softc *sc;
1880 	struct mvneta_tx_ring *tx;
1881 	struct ifnet *ifp;
1882 	int error;
1883 
1884 	tx = arg;
1885 	ifp = tx->ifp;
1886 	sc = ifp->if_softc;
1887 
1888 	mvneta_tx_lockq(sc, tx->qidx);
1889 	error = mvneta_xmit_locked(sc, tx->qidx);
1890 	mvneta_tx_unlockq(sc, tx->qidx);
1891 
1892 	/* Try again */
1893 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1894 		pause("mvneta_tx_task_sleep", 1);
1895 		taskqueue_enqueue(tx->taskq, &tx->task);
1896 	}
1897 }
1898 
1899 STATIC int
1900 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1901 {
1902 	struct mvneta_tx_ring *tx;
1903 	struct ifnet *ifp;
1904 	int error;
1905 
1906 	KASSERT_TX_MTX(sc, q);
1907 	tx = MVNETA_TX_RING(sc, q);
1908 	error = 0;
1909 
1910 	ifp = sc->ifp;
1911 
1912 	/* Dont enqueue packet if the queue is disabled. */
1913 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1914 		m_freem(*m);
1915 		*m = NULL;
1916 		return (ENETDOWN);
1917 	}
1918 
1919 	/* Reclaim mbuf if above threshold. */
1920 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1921 		mvneta_tx_queue_complete(sc, q);
1922 
1923 	/* Do not call transmit path if queue is already too full. */
1924 	if (__predict_false(tx->used >
1925 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1926 		return (ENOBUFS);
1927 
1928 	error = mvneta_tx_queue(sc, m, q);
1929 	if (__predict_false(error != 0))
1930 		return (error);
1931 
1932 	/* Send a copy of the frame to the BPF listener */
1933 	ETHER_BPF_MTAP(ifp, *m);
1934 
1935 	/* Set watchdog on */
1936 	tx->watchdog_time = ticks;
1937 	tx->queue_status = MVNETA_QUEUE_WORKING;
1938 
1939 	return (error);
1940 }
1941 
1942 #ifdef MVNETA_MULTIQUEUE
1943 STATIC int
1944 mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
1945 {
1946 	struct mvneta_softc *sc;
1947 	struct mvneta_tx_ring *tx;
1948 	int error;
1949 	int q;
1950 
1951 	sc = ifp->if_softc;
1952 
1953 	/* Use default queue if there is no flow id as thread can migrate. */
1954 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1955 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1956 	else
1957 		q = 0;
1958 
1959 	tx = MVNETA_TX_RING(sc, q);
1960 
1961 	/* If buf_ring is full start transmit immediatly. */
1962 	if (buf_ring_full(tx->br)) {
1963 		mvneta_tx_lockq(sc, q);
1964 		mvneta_xmit_locked(sc, q);
1965 		mvneta_tx_unlockq(sc, q);
1966 	}
1967 
1968 	/*
1969 	 * If the buf_ring is empty we will not reorder packets.
1970 	 * If the lock is available transmit without using buf_ring.
1971 	 */
1972 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1973 		error = mvneta_xmitfast_locked(sc, q, &m);
1974 		mvneta_tx_unlockq(sc, q);
1975 		if (__predict_true(error == 0))
1976 			return (0);
1977 
1978 		/* Transmit can fail in fastpath. */
1979 		if (__predict_false(m == NULL))
1980 			return (error);
1981 	}
1982 
1983 	/* Enqueue then schedule taskqueue. */
1984 	error = drbr_enqueue(ifp, tx->br, m);
1985 	if (__predict_false(error != 0))
1986 		return (error);
1987 
1988 	taskqueue_enqueue(tx->taskq, &tx->task);
1989 	return (0);
1990 }
1991 
1992 STATIC int
1993 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1994 {
1995 	struct ifnet *ifp;
1996 	struct mvneta_tx_ring *tx;
1997 	struct mbuf *m;
1998 	int error;
1999 
2000 	KASSERT_TX_MTX(sc, q);
2001 	ifp = sc->ifp;
2002 	tx = MVNETA_TX_RING(sc, q);
2003 	error = 0;
2004 
2005 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
2006 		error = mvneta_xmitfast_locked(sc, q, &m);
2007 		if (__predict_false(error != 0)) {
2008 			if (m != NULL)
2009 				drbr_putback(ifp, tx->br, m);
2010 			else
2011 				drbr_advance(ifp, tx->br);
2012 			break;
2013 		}
2014 		drbr_advance(ifp, tx->br);
2015 	}
2016 
2017 	return (error);
2018 }
2019 #else /* !MVNETA_MULTIQUEUE */
2020 STATIC void
2021 mvneta_start(struct ifnet *ifp)
2022 {
2023 	struct mvneta_softc *sc;
2024 	struct mvneta_tx_ring *tx;
2025 	int error;
2026 
2027 	sc = ifp->if_softc;
2028 	tx = MVNETA_TX_RING(sc, 0);
2029 
2030 	mvneta_tx_lockq(sc, 0);
2031 	error = mvneta_xmit_locked(sc, 0);
2032 	mvneta_tx_unlockq(sc, 0);
2033 	/* Handle retransmit in the background taskq. */
2034 	if (__predict_false(error != 0 && error != ENETDOWN))
2035 		taskqueue_enqueue(tx->taskq, &tx->task);
2036 }
2037 
2038 STATIC int
2039 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2040 {
2041 	struct ifnet *ifp;
2042 	struct mvneta_tx_ring *tx;
2043 	struct mbuf *m;
2044 	int error;
2045 
2046 	KASSERT_TX_MTX(sc, q);
2047 	ifp = sc->ifp;
2048 	tx = MVNETA_TX_RING(sc, 0);
2049 	error = 0;
2050 
2051 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
2052 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2053 		if (m == NULL)
2054 			break;
2055 
2056 		error = mvneta_xmitfast_locked(sc, q, &m);
2057 		if (__predict_false(error != 0)) {
2058 			if (m != NULL)
2059 				IFQ_DRV_PREPEND(&ifp->if_snd, m);
2060 			break;
2061 		}
2062 	}
2063 
2064 	return (error);
2065 }
2066 #endif
2067 
2068 STATIC int
2069 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2070 {
2071 	struct mvneta_softc *sc;
2072 	struct mvneta_rx_ring *rx;
2073 	struct ifreq *ifr;
2074 	int error, mask;
2075 	uint32_t flags;
2076 	int q;
2077 
2078 	error = 0;
2079 	sc = ifp->if_softc;
2080 	ifr = (struct ifreq *)data;
2081 	switch (cmd) {
2082 	case SIOCSIFFLAGS:
2083 		mvneta_sc_lock(sc);
2084 		if (ifp->if_flags & IFF_UP) {
2085 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2086 				flags = ifp->if_flags ^ sc->mvneta_if_flags;
2087 
2088 				if (flags != 0)
2089 					sc->mvneta_if_flags = ifp->if_flags;
2090 
2091 				if ((flags & IFF_PROMISC) != 0)
2092 					mvneta_filter_setup(sc);
2093 			} else {
2094 				mvneta_init_locked(sc);
2095 				sc->mvneta_if_flags = ifp->if_flags;
2096 				if (sc->phy_attached)
2097 					mii_mediachg(sc->mii);
2098 				mvneta_sc_unlock(sc);
2099 				break;
2100 			}
2101 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2102 			mvneta_stop_locked(sc);
2103 
2104 		sc->mvneta_if_flags = ifp->if_flags;
2105 		mvneta_sc_unlock(sc);
2106 		break;
2107 	case SIOCSIFCAP:
2108 		if (ifp->if_mtu > sc->tx_csum_limit &&
2109 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2110 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2111 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2112 		if (mask & IFCAP_HWCSUM) {
2113 			ifp->if_capenable &= ~IFCAP_HWCSUM;
2114 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
2115 			if (ifp->if_capenable & IFCAP_TXCSUM)
2116 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2117 				    CSUM_UDP;
2118 			else
2119 				ifp->if_hwassist = 0;
2120 		}
2121 		if (mask & IFCAP_LRO) {
2122 			mvneta_sc_lock(sc);
2123 			ifp->if_capenable ^= IFCAP_LRO;
2124 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2125 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2126 					rx = MVNETA_RX_RING(sc, q);
2127 					rx->lro_enabled = !rx->lro_enabled;
2128 				}
2129 			}
2130 			mvneta_sc_unlock(sc);
2131 		}
2132 		VLAN_CAPABILITIES(ifp);
2133 		break;
2134 	case SIOCSIFMEDIA:
2135 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2136 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2137 		    (ifr->ifr_media & IFM_FDX) == 0) {
2138 			device_printf(sc->dev,
2139 			    "%s half-duplex unsupported\n",
2140 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2141 			    "1000Base-T" :
2142 			    "2500Base-T");
2143 			error = EINVAL;
2144 			break;
2145 		}
2146 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2147 	case SIOCGIFXMEDIA:
2148 		if (!sc->phy_attached)
2149 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2150 			    cmd);
2151 		else
2152 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2153 			    cmd);
2154 		break;
2155 	case SIOCSIFMTU:
2156 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2157 		    MVNETA_ETHER_SIZE) {
2158 			error = EINVAL;
2159 		} else {
2160 			ifp->if_mtu = ifr->ifr_mtu;
2161 			mvneta_sc_lock(sc);
2162 			if (ifp->if_mtu + MVNETA_ETHER_SIZE <= MCLBYTES) {
2163 				sc->rx_frame_size = MCLBYTES;
2164 			} else {
2165 				sc->rx_frame_size = MJUM9BYTES;
2166 			}
2167 			if (ifp->if_mtu > sc->tx_csum_limit) {
2168 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2169 				ifp->if_hwassist = 0;
2170 			} else {
2171 				ifp->if_capenable |= IFCAP_TXCSUM;
2172 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2173 					CSUM_UDP;
2174 			}
2175 
2176 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2177 				/* Stop hardware */
2178 				mvneta_stop_locked(sc);
2179 				/*
2180 				 * Reinitialize RX queues.
2181 				 * We need to update RX descriptor size.
2182 				 */
2183 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2184 					mvneta_rx_lockq(sc, q);
2185 					if (mvneta_rx_queue_init(ifp, q) != 0) {
2186 						device_printf(sc->dev,
2187 						    "initialization failed:"
2188 						    " cannot initialize queue\n");
2189 						mvneta_rx_unlockq(sc, q);
2190 						error = ENOBUFS;
2191 						break;
2192 					}
2193 					mvneta_rx_unlockq(sc, q);
2194 				}
2195 				/* Trigger reinitialization */
2196 				mvneta_init_locked(sc);
2197 			}
2198 			mvneta_sc_unlock(sc);
2199                 }
2200                 break;
2201 
2202 	default:
2203 		error = ether_ioctl(ifp, cmd, data);
2204 		break;
2205 	}
2206 
2207 	return (error);
2208 }
2209 
2210 STATIC void
2211 mvneta_init_locked(void *arg)
2212 {
2213 	struct mvneta_softc *sc;
2214 	struct ifnet *ifp;
2215 	uint32_t reg;
2216 	int q, cpu;
2217 
2218 	sc = arg;
2219 	ifp = sc->ifp;
2220 
2221 	if (!device_is_attached(sc->dev) ||
2222 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2223 		return;
2224 
2225 	mvneta_disable_intr(sc);
2226 	callout_stop(&sc->tick_ch);
2227 
2228 	/* Get the latest mac address */
2229 	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
2230 	mvneta_set_mac_address(sc, sc->enaddr);
2231 	mvneta_filter_setup(sc);
2232 
2233 	/* Start DMA Engine */
2234 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2235 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2236 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2237 
2238 	/* Enable port */
2239 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2240 	reg |= MVNETA_PMACC0_PORTEN;
2241 	reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
2242 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
2243 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2244 
2245 	/* Allow access to each TXQ/RXQ from both CPU's */
2246 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2247 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2248 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2249 
2250 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2251 		mvneta_rx_lockq(sc, q);
2252 		mvneta_rx_queue_refill(sc, q);
2253 		mvneta_rx_unlockq(sc, q);
2254 	}
2255 
2256 	if (!sc->phy_attached)
2257 		mvneta_linkup(sc);
2258 
2259 	/* Enable interrupt */
2260 	mvneta_enable_intr(sc);
2261 
2262 	/* Set Counter */
2263 	callout_schedule(&sc->tick_ch, hz);
2264 
2265 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2266 }
2267 
2268 STATIC void
2269 mvneta_init(void *arg)
2270 {
2271 	struct mvneta_softc *sc;
2272 
2273 	sc = arg;
2274 	mvneta_sc_lock(sc);
2275 	mvneta_init_locked(sc);
2276 	if (sc->phy_attached)
2277 		mii_mediachg(sc->mii);
2278 	mvneta_sc_unlock(sc);
2279 }
2280 
2281 /* ARGSUSED */
2282 STATIC void
2283 mvneta_stop_locked(struct mvneta_softc *sc)
2284 {
2285 	struct ifnet *ifp;
2286 	struct mvneta_rx_ring *rx;
2287 	struct mvneta_tx_ring *tx;
2288 	uint32_t reg;
2289 	int q;
2290 
2291 	ifp = sc->ifp;
2292 	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2293 		return;
2294 
2295 	mvneta_disable_intr(sc);
2296 
2297 	callout_stop(&sc->tick_ch);
2298 
2299 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2300 
2301 	/* Link down */
2302 	if (sc->linkup == TRUE)
2303 		mvneta_linkdown(sc);
2304 
2305 	/* Reset the MAC Port Enable bit */
2306 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2307 	reg &= ~MVNETA_PMACC0_PORTEN;
2308 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2309 
2310 	/* Disable each of queue */
2311 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2312 		rx = MVNETA_RX_RING(sc, q);
2313 
2314 		mvneta_rx_lockq(sc, q);
2315 		mvneta_ring_flush_rx_queue(sc, q);
2316 		mvneta_rx_unlockq(sc, q);
2317 	}
2318 
2319 	/*
2320 	 * Hold Reset state of DMA Engine
2321 	 * (must write 0x0 to restart it)
2322 	 */
2323 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2324 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2325 
2326 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2327 		tx = MVNETA_TX_RING(sc, q);
2328 
2329 		mvneta_tx_lockq(sc, q);
2330 		mvneta_ring_flush_tx_queue(sc, q);
2331 		mvneta_tx_unlockq(sc, q);
2332 	}
2333 }
2334 
2335 STATIC void
2336 mvneta_stop(struct mvneta_softc *sc)
2337 {
2338 
2339 	mvneta_sc_lock(sc);
2340 	mvneta_stop_locked(sc);
2341 	mvneta_sc_unlock(sc);
2342 }
2343 
2344 STATIC int
2345 mvneta_mediachange(struct ifnet *ifp)
2346 {
2347 	struct mvneta_softc *sc;
2348 
2349 	sc = ifp->if_softc;
2350 
2351 	if (!sc->phy_attached && !sc->use_inband_status) {
2352 		/* We shouldn't be here */
2353 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2354 		return (0);
2355 	}
2356 
2357 	if (sc->use_inband_status) {
2358 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2359 		return (0);
2360 	}
2361 
2362 	mvneta_sc_lock(sc);
2363 
2364 	/* Update PHY */
2365 	mii_mediachg(sc->mii);
2366 
2367 	mvneta_sc_unlock(sc);
2368 
2369 	return (0);
2370 }
2371 
2372 STATIC void
2373 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2374 {
2375 	uint32_t psr;
2376 
2377 	psr = MVNETA_READ(sc, MVNETA_PSR);
2378 
2379 	/* Speed */
2380 	if (psr & MVNETA_PSR_GMIISPEED)
2381 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2382 	else if (psr & MVNETA_PSR_MIISPEED)
2383 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2384 	else if (psr & MVNETA_PSR_LINKUP)
2385 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2386 
2387 	/* Duplex */
2388 	if (psr & MVNETA_PSR_FULLDX)
2389 		ifmr->ifm_active |= IFM_FDX;
2390 
2391 	/* Link */
2392 	ifmr->ifm_status = IFM_AVALID;
2393 	if (psr & MVNETA_PSR_LINKUP)
2394 		ifmr->ifm_status |= IFM_ACTIVE;
2395 }
2396 
2397 STATIC void
2398 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2399 {
2400 	struct mvneta_softc *sc;
2401 	struct mii_data *mii;
2402 
2403 	sc = ifp->if_softc;
2404 
2405 	if (!sc->phy_attached && !sc->use_inband_status) {
2406 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2407 		return;
2408 	}
2409 
2410 	mvneta_sc_lock(sc);
2411 
2412 	if (sc->use_inband_status) {
2413 		mvneta_get_media(sc, ifmr);
2414 		mvneta_sc_unlock(sc);
2415 		return;
2416 	}
2417 
2418 	mii = sc->mii;
2419 	mii_pollstat(mii);
2420 
2421 	ifmr->ifm_active = mii->mii_media_active;
2422 	ifmr->ifm_status = mii->mii_media_status;
2423 
2424 	mvneta_sc_unlock(sc);
2425 }
2426 
2427 /*
2428  * Link State Notify
2429  */
2430 STATIC void
2431 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2432 {
2433 	int reg;
2434 
2435 	if (enable) {
2436 		reg = MVNETA_READ(sc, MVNETA_PANC);
2437 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2438 		    MVNETA_PANC_ANFCEN);
2439 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2440 		    MVNETA_PANC_INBANDANEN;
2441 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2442 
2443 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2444 		reg |= MVNETA_PMACC2_INBANDANMODE;
2445 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2446 
2447 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2448 		reg |= MVNETA_PSOMSCD_ENABLE;
2449 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2450 	} else {
2451 		reg = MVNETA_READ(sc, MVNETA_PANC);
2452 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2453 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2454 		    MVNETA_PANC_INBANDANEN);
2455 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2456 
2457 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2458 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2459 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2460 
2461 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2462 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2463 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2464 	}
2465 }
2466 
2467 STATIC int
2468 mvneta_update_media(struct mvneta_softc *sc, int media)
2469 {
2470 	int reg, err;
2471 	boolean_t running;
2472 
2473 	err = 0;
2474 
2475 	mvneta_sc_lock(sc);
2476 
2477 	mvneta_linkreset(sc);
2478 
2479 	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2480 	if (running)
2481 		mvneta_stop_locked(sc);
2482 
2483 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2484 
2485 	if (sc->use_inband_status)
2486 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2487 
2488 	mvneta_update_eee(sc);
2489 	mvneta_update_fc(sc);
2490 
2491 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2492 		reg = MVNETA_READ(sc, MVNETA_PANC);
2493 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2494 		    MVNETA_PANC_SETMIISPEED |
2495 		    MVNETA_PANC_SETFULLDX);
2496 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2497 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2498 			if ((media & IFM_FDX) == 0) {
2499 				device_printf(sc->dev,
2500 				    "%s half-duplex unsupported\n",
2501 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2502 				    "1000Base-T" :
2503 				    "2500Base-T");
2504 				err = EINVAL;
2505 				goto out;
2506 			}
2507 			reg |= MVNETA_PANC_SETGMIISPEED;
2508 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2509 			reg |= MVNETA_PANC_SETMIISPEED;
2510 
2511 		if (media & IFM_FDX)
2512 			reg |= MVNETA_PANC_SETFULLDX;
2513 
2514 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2515 	}
2516 out:
2517 	if (running)
2518 		mvneta_init_locked(sc);
2519 	mvneta_sc_unlock(sc);
2520 	return (err);
2521 }
2522 
2523 STATIC void
2524 mvneta_adjust_link(struct mvneta_softc *sc)
2525 {
2526 	boolean_t phy_linkup;
2527 	int reg;
2528 
2529 	/* Update eee/fc */
2530 	mvneta_update_eee(sc);
2531 	mvneta_update_fc(sc);
2532 
2533 	/* Check for link change */
2534 	phy_linkup = (sc->mii->mii_media_status &
2535 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2536 
2537 	if (sc->linkup != phy_linkup)
2538 		mvneta_linkupdate(sc, phy_linkup);
2539 
2540 	/* Don't update media on disabled link */
2541 	if (!phy_linkup)
2542 		return;
2543 
2544 	/* Check for media type change */
2545 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2546 		sc->mvneta_media = sc->mii->mii_media_active;
2547 
2548 		reg = MVNETA_READ(sc, MVNETA_PANC);
2549 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2550 		    MVNETA_PANC_SETMIISPEED |
2551 		    MVNETA_PANC_SETFULLDX);
2552 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2553 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2554 			reg |= MVNETA_PANC_SETGMIISPEED;
2555 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2556 			reg |= MVNETA_PANC_SETMIISPEED;
2557 
2558 		if (sc->mvneta_media & IFM_FDX)
2559 			reg |= MVNETA_PANC_SETFULLDX;
2560 
2561 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2562 	}
2563 }
2564 
2565 STATIC void
2566 mvneta_link_isr(struct mvneta_softc *sc)
2567 {
2568 	int linkup;
2569 
2570 	KASSERT_SC_MTX(sc);
2571 
2572 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2573 	if (sc->linkup == linkup)
2574 		return;
2575 
2576 	if (linkup == TRUE)
2577 		mvneta_linkup(sc);
2578 	else
2579 		mvneta_linkdown(sc);
2580 
2581 #ifdef DEBUG
2582 	log(LOG_DEBUG,
2583 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2584 #endif
2585 }
2586 
2587 STATIC void
2588 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2589 {
2590 
2591 	KASSERT_SC_MTX(sc);
2592 
2593 	if (linkup == TRUE)
2594 		mvneta_linkup(sc);
2595 	else
2596 		mvneta_linkdown(sc);
2597 
2598 #ifdef DEBUG
2599 	log(LOG_DEBUG,
2600 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2601 #endif
2602 }
2603 
2604 STATIC void
2605 mvneta_update_eee(struct mvneta_softc *sc)
2606 {
2607 	uint32_t reg;
2608 
2609 	KASSERT_SC_MTX(sc);
2610 
2611 	/* set EEE parameters */
2612 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2613 	if (sc->cf_lpi)
2614 		reg |= MVNETA_LPIC1_LPIRE;
2615 	else
2616 		reg &= ~MVNETA_LPIC1_LPIRE;
2617 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2618 }
2619 
2620 STATIC void
2621 mvneta_update_fc(struct mvneta_softc *sc)
2622 {
2623 	uint32_t reg;
2624 
2625 	KASSERT_SC_MTX(sc);
2626 
2627 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2628 	if (sc->cf_fc) {
2629 		/* Flow control negotiation */
2630 		reg |= MVNETA_PANC_PAUSEADV;
2631 		reg |= MVNETA_PANC_ANFCEN;
2632 	} else {
2633 		/* Disable flow control negotiation */
2634 		reg &= ~MVNETA_PANC_PAUSEADV;
2635 		reg &= ~MVNETA_PANC_ANFCEN;
2636 	}
2637 
2638 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2639 }
2640 
2641 STATIC void
2642 mvneta_linkup(struct mvneta_softc *sc)
2643 {
2644 	uint32_t reg;
2645 
2646 	KASSERT_SC_MTX(sc);
2647 
2648 	if (!sc->use_inband_status) {
2649 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2650 		reg |= MVNETA_PANC_FORCELINKPASS;
2651 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2652 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2653 	}
2654 
2655 	mvneta_qflush(sc->ifp);
2656 	mvneta_portup(sc);
2657 	sc->linkup = TRUE;
2658 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2659 }
2660 
2661 STATIC void
2662 mvneta_linkdown(struct mvneta_softc *sc)
2663 {
2664 	uint32_t reg;
2665 
2666 	KASSERT_SC_MTX(sc);
2667 
2668 	if (!sc->use_inband_status) {
2669 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2670 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2671 		reg |= MVNETA_PANC_FORCELINKFAIL;
2672 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2673 	}
2674 
2675 	mvneta_portdown(sc);
2676 	mvneta_qflush(sc->ifp);
2677 	sc->linkup = FALSE;
2678 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2679 }
2680 
2681 STATIC void
2682 mvneta_linkreset(struct mvneta_softc *sc)
2683 {
2684 	struct mii_softc *mii;
2685 
2686 	if (sc->phy_attached) {
2687 		/* Force reset PHY */
2688 		mii = LIST_FIRST(&sc->mii->mii_phys);
2689 		if (mii)
2690 			mii_phy_reset(mii);
2691 	}
2692 }
2693 
2694 /*
2695  * Tx Subroutines
2696  */
2697 STATIC int
2698 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2699 {
2700 	struct ifnet *ifp;
2701 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2702 	struct mbuf *mtmp, *mbuf;
2703 	struct mvneta_tx_ring *tx;
2704 	struct mvneta_buf *txbuf;
2705 	struct mvneta_tx_desc *t;
2706 	uint32_t ptxsu;
2707 	int start, used, error, i, txnsegs;
2708 
2709 	mbuf = *mbufp;
2710 	tx = MVNETA_TX_RING(sc, q);
2711 	DASSERT(tx->used >= 0);
2712 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2713 	t = NULL;
2714 	ifp = sc->ifp;
2715 
2716 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2717 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2718 		if (mbuf == NULL) {
2719 			tx->drv_error++;
2720 			*mbufp = NULL;
2721 			return (ENOBUFS);
2722 		}
2723 		mbuf->m_flags &= ~M_VLANTAG;
2724 		*mbufp = mbuf;
2725 	}
2726 
2727 	if (__predict_false(mbuf->m_next != NULL &&
2728 	    (mbuf->m_pkthdr.csum_flags &
2729 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2730 		if (M_WRITABLE(mbuf) == 0) {
2731 			mtmp = m_dup(mbuf, M_NOWAIT);
2732 			m_freem(mbuf);
2733 			if (mtmp == NULL) {
2734 				tx->drv_error++;
2735 				*mbufp = NULL;
2736 				return (ENOBUFS);
2737 			}
2738 			*mbufp = mbuf = mtmp;
2739 		}
2740 	}
2741 
2742 	/* load mbuf using dmamap of 1st descriptor */
2743 	txbuf = &tx->txbuf[tx->cpu];
2744 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2745 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2746 	    BUS_DMA_NOWAIT);
2747 	if (__predict_false(error != 0)) {
2748 #ifdef MVNETA_KTR
2749 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
2750 #endif
2751 		/* This is the only recoverable error (except EFBIG). */
2752 		if (error != ENOMEM) {
2753 			tx->drv_error++;
2754 			m_freem(mbuf);
2755 			*mbufp = NULL;
2756 			return (ENOBUFS);
2757 		}
2758 		return (error);
2759 	}
2760 
2761 	if (__predict_false(txnsegs <= 0
2762 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2763 		/* we have no enough descriptors or mbuf is broken */
2764 #ifdef MVNETA_KTR
2765 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2766 		    ifp->if_xname, q, txnsegs);
2767 #endif
2768 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2769 		return (ENOBUFS);
2770 	}
2771 	DASSERT(txbuf->m == NULL);
2772 
2773 	/* remember mbuf using 1st descriptor */
2774 	txbuf->m = mbuf;
2775 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2776 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2777 
2778 	/* load to tx descriptors */
2779 	start = tx->cpu;
2780 	used = 0;
2781 	for (i = 0; i < txnsegs; i++) {
2782 		t = &tx->desc[tx->cpu];
2783 		t->command = 0;
2784 		t->l4ichk = 0;
2785 		t->flags = 0;
2786 		if (__predict_true(i == 0)) {
2787 			/* 1st descriptor */
2788 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2789 			t->command |= MVNETA_TX_CMD_F;
2790 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2791 		}
2792 		t->bufptr_pa = txsegs[i].ds_addr;
2793 		t->bytecnt = txsegs[i].ds_len;
2794 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2795 
2796 		tx->used++;
2797 		used++;
2798 	}
2799 	/* t is last descriptor here */
2800 	DASSERT(t != NULL);
2801 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2802 
2803 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2804 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2805 
2806 	while (__predict_false(used > 255)) {
2807 		ptxsu = MVNETA_PTXSU_NOWD(255);
2808 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2809 		used -= 255;
2810 	}
2811 	if (__predict_true(used > 0)) {
2812 		ptxsu = MVNETA_PTXSU_NOWD(used);
2813 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2814 	}
2815 	return (0);
2816 }
2817 
2818 STATIC void
2819 mvneta_tx_set_csumflag(struct ifnet *ifp,
2820     struct mvneta_tx_desc *t, struct mbuf *m)
2821 {
2822 	struct ether_header *eh;
2823 	int csum_flags;
2824 	uint32_t iphl, ipoff;
2825 	struct ip *ip;
2826 
2827 	iphl = ipoff = 0;
2828 	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
2829 	eh = mtod(m, struct ether_header *);
2830 
2831 	if (csum_flags == 0)
2832 		return;
2833 
2834 	switch (ntohs(eh->ether_type)) {
2835 	case ETHERTYPE_IP:
2836 		ipoff = ETHER_HDR_LEN;
2837 		break;
2838 	case ETHERTYPE_IPV6:
2839 		return;
2840 	case ETHERTYPE_VLAN:
2841 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2842 		break;
2843 	}
2844 
2845 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2846 		ip = (struct ip *)(m->m_data + ipoff);
2847 		iphl = ip->ip_hl<<2;
2848 		t->command |= MVNETA_TX_CMD_L3_IP4;
2849 	} else {
2850 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2851 		return;
2852 	}
2853 
2854 
2855 	/* L3 */
2856 	if (csum_flags & CSUM_IP) {
2857 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2858 	}
2859 
2860 	/* L4 */
2861 	if (csum_flags & CSUM_IP_TCP) {
2862 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2863 		t->command |= MVNETA_TX_CMD_L4_TCP;
2864 	} else if (csum_flags & CSUM_IP_UDP) {
2865 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2866 		t->command |= MVNETA_TX_CMD_L4_UDP;
2867 	} else
2868 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2869 
2870 	t->l4ichk = 0;
2871 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2872 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2873 }
2874 
2875 STATIC void
2876 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2877 {
2878 	struct mvneta_tx_ring *tx;
2879 	struct mvneta_buf *txbuf;
2880 	struct mvneta_tx_desc *t;
2881 	uint32_t ptxs, ptxsu, ndesc;
2882 	int i;
2883 
2884 	KASSERT_TX_MTX(sc, q);
2885 
2886 	tx = MVNETA_TX_RING(sc, q);
2887 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2888 		return;
2889 
2890 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2891 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2892 
2893 	if (__predict_false(ndesc == 0)) {
2894 		if (tx->used == 0)
2895 			tx->queue_status = MVNETA_QUEUE_IDLE;
2896 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2897 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2898 			tx->queue_hung = TRUE;
2899 		return;
2900 	}
2901 
2902 #ifdef MVNETA_KTR
2903 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2904 	    sc->ifp->if_xname, q, ndesc);
2905 #endif
2906 
2907 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2908 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2909 
2910 	for (i = 0; i < ndesc; i++) {
2911 		t = &tx->desc[tx->dma];
2912 #ifdef MVNETA_KTR
2913 		if (t->flags & MVNETA_TX_F_ES)
2914 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2915 			    sc->ifp->if_xname, q, tx->dma);
2916 #endif
2917 		txbuf = &tx->txbuf[tx->dma];
2918 		if (__predict_true(txbuf->m != NULL)) {
2919 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2920 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2921 			m_freem(txbuf->m);
2922 			txbuf->m = NULL;
2923 		}
2924 		else
2925 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2926 		tx->dma = tx_counter_adv(tx->dma, 1);
2927 		tx->used--;
2928 	}
2929 	DASSERT(tx->used >= 0);
2930 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2931 	while (__predict_false(ndesc > 255)) {
2932 		ptxsu = MVNETA_PTXSU_NORB(255);
2933 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2934 		ndesc -= 255;
2935 	}
2936 	if (__predict_true(ndesc > 0)) {
2937 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2938 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2939 	}
2940 #ifdef MVNETA_KTR
2941 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2942 	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
2943 #endif
2944 
2945 	tx->watchdog_time = ticks;
2946 
2947 	if (tx->used == 0)
2948 		tx->queue_status = MVNETA_QUEUE_IDLE;
2949 }
2950 
2951 /*
2952  * Do a final TX complete when TX is idle.
2953  */
2954 STATIC void
2955 mvneta_tx_drain(struct mvneta_softc *sc)
2956 {
2957 	struct mvneta_tx_ring *tx;
2958 	int q;
2959 
2960 	/*
2961 	 * Handle trailing mbuf on TX queue.
2962 	 * Check is done lockess to avoid TX path contention.
2963 	 */
2964 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2965 		tx = MVNETA_TX_RING(sc, q);
2966 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2967 		    tx->used > 0) {
2968 			mvneta_tx_lockq(sc, q);
2969 			mvneta_tx_queue_complete(sc, q);
2970 			mvneta_tx_unlockq(sc, q);
2971 		}
2972 	}
2973 }
2974 
2975 /*
2976  * Rx Subroutines
2977  */
2978 STATIC int
2979 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2980 {
2981 	uint32_t prxs, npkt;
2982 	int more;
2983 
2984 	more = 0;
2985 	mvneta_rx_lockq(sc, q);
2986 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2987 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2988 	if (__predict_false(npkt == 0))
2989 		goto out;
2990 
2991 	if (count > 0 && npkt > count) {
2992 		more = 1;
2993 		npkt = count;
2994 	}
2995 	mvneta_rx_queue(sc, q, npkt);
2996 out:
2997 	mvneta_rx_unlockq(sc, q);
2998 	return more;
2999 }
3000 
3001 /*
3002  * Helper routine for updating PRXSU register of a given queue.
3003  * Handles number of processed descriptors bigger than maximum acceptable value.
3004  */
3005 STATIC __inline void
3006 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
3007 {
3008 	uint32_t prxsu;
3009 
3010 	while (__predict_false(processed > 255)) {
3011 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
3012 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3013 		processed -= 255;
3014 	}
3015 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
3016 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3017 }
3018 
3019 static __inline void
3020 mvneta_prefetch(void *p)
3021 {
3022 
3023 	__builtin_prefetch(p);
3024 }
3025 
3026 STATIC void
3027 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
3028 {
3029 	struct ifnet *ifp;
3030 	struct mvneta_rx_ring *rx;
3031 	struct mvneta_rx_desc *r;
3032 	struct mvneta_buf *rxbuf;
3033 	struct mbuf *m;
3034 	struct lro_ctrl *lro;
3035 	struct lro_entry *queued;
3036 	void *pktbuf;
3037 	int i, pktlen, processed, ndma;
3038 
3039 	KASSERT_RX_MTX(sc, q);
3040 
3041 	ifp = sc->ifp;
3042 	rx = MVNETA_RX_RING(sc, q);
3043 	processed = 0;
3044 
3045 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3046 		return;
3047 
3048 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3049 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3050 
3051 	for (i = 0; i < npkt; i++) {
3052 		/* Prefetch next desc, rxbuf. */
3053 		ndma = rx_counter_adv(rx->dma, 1);
3054 		mvneta_prefetch(&rx->desc[ndma]);
3055 		mvneta_prefetch(&rx->rxbuf[ndma]);
3056 
3057 		/* get descriptor and packet */
3058 		r = &rx->desc[rx->dma];
3059 		rxbuf = &rx->rxbuf[rx->dma];
3060 		m = rxbuf->m;
3061 		rxbuf->m = NULL;
3062 		DASSERT(m != NULL);
3063 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3064 		    BUS_DMASYNC_POSTREAD);
3065 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3066 		/* Prefetch mbuf header. */
3067 		mvneta_prefetch(m);
3068 
3069 		processed++;
3070 		/* Drop desc with error status or not in a single buffer. */
3071 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3072 		    (MVNETA_RX_F|MVNETA_RX_L));
3073 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3074 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3075 		    (MVNETA_RX_F|MVNETA_RX_L)))
3076 			goto rx_error;
3077 
3078 		/*
3079 		 * [ OFF | MH | PKT | CRC ]
3080 		 * bytecnt cover MH, PKT, CRC
3081 		 */
3082 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3083 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3084                     MVNETA_HWHEADER_SIZE;
3085 
3086 		/* Prefetch mbuf data. */
3087 		mvneta_prefetch(pktbuf);
3088 
3089 		/* Write value to mbuf (avoid read). */
3090 		m->m_data = pktbuf;
3091 		m->m_len = m->m_pkthdr.len = pktlen;
3092 		m->m_pkthdr.rcvif = ifp;
3093 		mvneta_rx_set_csumflag(ifp, r, m);
3094 
3095 		/* Increase rx_dma before releasing the lock. */
3096 		rx->dma = ndma;
3097 
3098 		if (__predict_false(rx->lro_enabled &&
3099 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3100 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3101 		    (m->m_pkthdr.csum_flags &
3102 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3103 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3104 			if (rx->lro.lro_cnt != 0) {
3105 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3106 					goto rx_done;
3107 			}
3108 		}
3109 
3110 		mvneta_rx_unlockq(sc, q);
3111 		(*ifp->if_input)(ifp, m);
3112 		mvneta_rx_lockq(sc, q);
3113 		/*
3114 		 * Check whether this queue has been disabled in the
3115 		 * meantime. If yes, then clear LRO and exit.
3116 		 */
3117 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3118 			goto rx_lro;
3119 rx_done:
3120 		/* Refresh receive ring to avoid stall and minimize jitter. */
3121 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3122 			mvneta_prxsu_update(sc, q, processed);
3123 			mvneta_rx_queue_refill(sc, q);
3124 			processed = 0;
3125 		}
3126 		continue;
3127 rx_error:
3128 		m_freem(m);
3129 		rx->dma = ndma;
3130 		/* Refresh receive ring to avoid stall and minimize jitter. */
3131 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3132 			mvneta_prxsu_update(sc, q, processed);
3133 			mvneta_rx_queue_refill(sc, q);
3134 			processed = 0;
3135 		}
3136 	}
3137 #ifdef MVNETA_KTR
3138 	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
3139 #endif
3140 	/* DMA status update */
3141 	mvneta_prxsu_update(sc, q, processed);
3142 	/* Refill the rest of buffers if there are any to refill */
3143 	mvneta_rx_queue_refill(sc, q);
3144 
3145 rx_lro:
3146 	/*
3147 	 * Flush any outstanding LRO work
3148 	 */
3149 	lro = &rx->lro;
3150 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3151 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3152 		tcp_lro_flush(lro, queued);
3153 	}
3154 }
3155 
3156 STATIC void
3157 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3158 {
3159 
3160 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3161 	/* This will remove all data at once */
3162 	m_freem(rxbuf->m);
3163 }
3164 
3165 STATIC void
3166 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3167 {
3168 	struct mvneta_rx_ring *rx;
3169 	struct mvneta_rx_desc *r;
3170 	struct mvneta_buf *rxbuf;
3171 	bus_dma_segment_t segs;
3172 	struct mbuf *m;
3173 	uint32_t prxs, prxsu, ndesc;
3174 	int npkt, refill, nsegs, error;
3175 
3176 	KASSERT_RX_MTX(sc, q);
3177 
3178 	rx = MVNETA_RX_RING(sc, q);
3179 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3180 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3181 	refill = MVNETA_RX_RING_CNT - ndesc;
3182 #ifdef MVNETA_KTR
3183 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
3184 	    refill);
3185 #endif
3186 	if (__predict_false(refill <= 0))
3187 		return;
3188 
3189 	for (npkt = 0; npkt < refill; npkt++) {
3190 		rxbuf = &rx->rxbuf[rx->cpu];
3191 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
3192 		if (__predict_false(m == NULL)) {
3193 			error = ENOBUFS;
3194 			break;
3195 		}
3196 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3197 
3198 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3199 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3200 		if (__predict_false(error != 0 || nsegs != 1)) {
3201 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3202 			m_freem(m);
3203 			break;
3204 		}
3205 
3206 		/* Add the packet to the ring */
3207 		rxbuf->m = m;
3208 		r = &rx->desc[rx->cpu];
3209 		r->bufptr_pa = segs.ds_addr;
3210 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3211 
3212 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3213 	}
3214 	if (npkt == 0) {
3215 		if (refill == MVNETA_RX_RING_CNT)
3216 			rx->needs_refill = TRUE;
3217 		return;
3218 	}
3219 
3220 	rx->needs_refill = FALSE;
3221 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3222 
3223 	while (__predict_false(npkt > 255)) {
3224 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3225 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3226 		npkt -= 255;
3227 	}
3228 	if (__predict_true(npkt > 0)) {
3229 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3230 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3231 	}
3232 }
3233 
3234 STATIC __inline void
3235 mvneta_rx_set_csumflag(struct ifnet *ifp,
3236     struct mvneta_rx_desc *r, struct mbuf *m)
3237 {
3238 	uint32_t csum_flags;
3239 
3240 	csum_flags = 0;
3241 	if (__predict_false((r->status &
3242 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3243 		return; /* not a IP packet */
3244 
3245 	/* L3 */
3246 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3247 	    MVNETA_RX_IP_HEADER_OK))
3248 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3249 
3250 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3251 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3252 		/* L4 */
3253 		switch (r->status & MVNETA_RX_L4_MASK) {
3254 		case MVNETA_RX_L4_TCP:
3255 		case MVNETA_RX_L4_UDP:
3256 			csum_flags |= CSUM_L4_CALC;
3257 			if (__predict_true((r->status &
3258 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3259 				csum_flags |= CSUM_L4_VALID;
3260 				m->m_pkthdr.csum_data = htons(0xffff);
3261 			}
3262 			break;
3263 		case MVNETA_RX_L4_OTH:
3264 		default:
3265 			break;
3266 		}
3267 	}
3268 	m->m_pkthdr.csum_flags = csum_flags;
3269 }
3270 
3271 /*
3272  * MAC address filter
3273  */
3274 STATIC void
3275 mvneta_filter_setup(struct mvneta_softc *sc)
3276 {
3277 	struct ifnet *ifp;
3278 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3279 	uint32_t pxc;
3280 	int i;
3281 
3282 	KASSERT_SC_MTX(sc);
3283 
3284 	memset(dfut, 0, sizeof(dfut));
3285 	memset(dfsmt, 0, sizeof(dfsmt));
3286 	memset(dfomt, 0, sizeof(dfomt));
3287 
3288 	ifp = sc->ifp;
3289 	ifp->if_flags |= IFF_ALLMULTI;
3290 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
3291 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3292 			dfsmt[i] = dfomt[i] =
3293 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3294 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3295 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3296 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3297 		}
3298 	}
3299 
3300 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3301 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3302 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3303 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3304 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3305 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3306 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3307 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3308 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3309 	if (ifp->if_flags & IFF_BROADCAST) {
3310 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3311 	}
3312 	if (ifp->if_flags & IFF_PROMISC) {
3313 		pxc |= MVNETA_PXC_UPM;
3314 	}
3315 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3316 
3317 	/* Set Destination Address Filter Unicast Table */
3318 	if (ifp->if_flags & IFF_PROMISC) {
3319 		/* pass all unicast addresses */
3320 		for (i = 0; i < MVNETA_NDFUT; i++) {
3321 			dfut[i] =
3322 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3323 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3324 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3325 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3326 		}
3327 	} else {
3328 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3329 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3330 	}
3331 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3332 
3333 	/* Set Destination Address Filter Multicast Tables */
3334 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3335 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3336 }
3337 
3338 /*
3339  * sysctl(9)
3340  */
3341 STATIC int
3342 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3343 {
3344 	struct mvneta_sysctl_mib *arg;
3345 	struct mvneta_softc *sc;
3346 	uint64_t val;
3347 
3348 	arg = (struct mvneta_sysctl_mib *)arg1;
3349 	if (arg == NULL)
3350 		return (EINVAL);
3351 
3352 	sc = arg->sc;
3353 	if (sc == NULL)
3354 		return (EINVAL);
3355 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3356 		return (EINVAL);
3357 
3358 	mvneta_sc_lock(sc);
3359 	val = arg->counter;
3360 	mvneta_sc_unlock(sc);
3361 	return sysctl_handle_64(oidp, &val, 0, req);
3362 }
3363 
3364 
3365 STATIC int
3366 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3367 {
3368 	struct mvneta_softc *sc;
3369 	int err, val;
3370 
3371 	val = 0;
3372 	sc = (struct mvneta_softc *)arg1;
3373 	if (sc == NULL)
3374 		return (EINVAL);
3375 
3376 	err = sysctl_handle_int(oidp, &val, 0, req);
3377 	if (err != 0)
3378 		return (err);
3379 
3380 	if (val < 0 || val > 1)
3381 		return (EINVAL);
3382 
3383 	if (val == 1) {
3384 		mvneta_sc_lock(sc);
3385 		mvneta_clear_mib(sc);
3386 		mvneta_sc_unlock(sc);
3387 	}
3388 
3389 	return (0);
3390 }
3391 
3392 STATIC int
3393 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3394 {
3395 	struct mvneta_sysctl_queue *arg;
3396 	struct mvneta_rx_ring *rx;
3397 	struct mvneta_softc *sc;
3398 	uint32_t reg, time_mvtclk;
3399 	int err, time_us;
3400 
3401 	rx = NULL;
3402 	arg = (struct mvneta_sysctl_queue *)arg1;
3403 	if (arg == NULL)
3404 		return (EINVAL);
3405 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3406 		return (EINVAL);
3407 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3408 		return (EINVAL);
3409 
3410 	sc = arg->sc;
3411 	if (sc == NULL)
3412 		return (EINVAL);
3413 
3414 	/* read queue length */
3415 	mvneta_sc_lock(sc);
3416 	mvneta_rx_lockq(sc, arg->queue);
3417 	rx = MVNETA_RX_RING(sc, arg->queue);
3418 	time_mvtclk = rx->queue_th_time;
3419 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk();
3420 	mvneta_rx_unlockq(sc, arg->queue);
3421 	mvneta_sc_unlock(sc);
3422 
3423 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3424 	if (err != 0)
3425 		return (err);
3426 
3427 	mvneta_sc_lock(sc);
3428 	mvneta_rx_lockq(sc, arg->queue);
3429 
3430 	/* update queue length (0[sec] - 1[sec]) */
3431 	if (time_us < 0 || time_us > (1000 * 1000)) {
3432 		mvneta_rx_unlockq(sc, arg->queue);
3433 		mvneta_sc_unlock(sc);
3434 		return (EINVAL);
3435 	}
3436 	time_mvtclk =
3437 	    (uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL);
3438 	rx->queue_th_time = time_mvtclk;
3439 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3440 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3441 	mvneta_rx_unlockq(sc, arg->queue);
3442 	mvneta_sc_unlock(sc);
3443 
3444 	return (0);
3445 }
3446 
3447 STATIC void
3448 sysctl_mvneta_init(struct mvneta_softc *sc)
3449 {
3450 	struct sysctl_ctx_list *ctx;
3451 	struct sysctl_oid_list *children;
3452 	struct sysctl_oid_list *rxchildren;
3453 	struct sysctl_oid_list *qchildren, *mchildren;
3454 	struct sysctl_oid *tree;
3455 	int i, q;
3456 	struct mvneta_sysctl_queue *rxarg;
3457 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3458 	static const char *sysctl_queue_names[] = {
3459 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3460 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3461 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3462 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3463 	};
3464 #undef MVNETA_SYSCTL_NAME
3465 
3466 #ifndef NO_SYSCTL_DESCR
3467 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3468 	static const char *sysctl_queue_descrs[] = {
3469 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3470 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3471 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3472 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3473 	};
3474 #undef MVNETA_SYSCTL_DESCR
3475 #endif
3476 
3477 
3478 	ctx = device_get_sysctl_ctx(sc->dev);
3479 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3480 
3481 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3482 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
3483 	rxchildren = SYSCTL_CHILDREN(tree);
3484 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3485 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
3486 	mchildren = SYSCTL_CHILDREN(tree);
3487 
3488 
3489 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3490 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3491 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3492 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3493 
3494 	/*
3495 	 * MIB access
3496 	 */
3497 	/* dev.mvneta.[unit].mib.<mibs> */
3498 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3499 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3500 
3501 		mib_arg->sc = sc;
3502 		mib_arg->index = i;
3503 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3504 		    mvneta_mib_list[i].sysctl_name,
3505 		    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
3506 		    (void *)mib_arg, 0, sysctl_read_mib, "I",
3507 		    mvneta_mib_list[i].desc);
3508 	}
3509 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3510 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3511 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3512 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3513 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3514 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3515 
3516 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3517 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3518 	    (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
3519 
3520 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3521 		rxarg = &sc->sysctl_rx_queue[q];
3522 
3523 		rxarg->sc = sc;
3524 		rxarg->queue = q;
3525 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3526 
3527 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3528 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3529 		    sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3530 		    sysctl_queue_descrs[q]);
3531 		qchildren = SYSCTL_CHILDREN(tree);
3532 
3533 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3534 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3535 		    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
3536 		    sysctl_set_queue_rxthtime, "I",
3537 		    "interrupt coalescing threshold timer [us]");
3538 	}
3539 }
3540 
3541 /*
3542  * MIB
3543  */
3544 STATIC void
3545 mvneta_clear_mib(struct mvneta_softc *sc)
3546 {
3547 	int i;
3548 
3549 	KASSERT_SC_MTX(sc);
3550 
3551 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3552 		if (mvneta_mib_list[i].reg64)
3553 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
3554 		else
3555 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
3556 		sc->sysctl_mib[i].counter = 0;
3557 	}
3558 	MVNETA_READ(sc, MVNETA_PDFC);
3559 	sc->counter_pdfc = 0;
3560 	MVNETA_READ(sc, MVNETA_POFC);
3561 	sc->counter_pofc = 0;
3562 	sc->counter_watchdog = 0;
3563 }
3564 
3565 STATIC void
3566 mvneta_update_mib(struct mvneta_softc *sc)
3567 {
3568 	struct mvneta_tx_ring *tx;
3569 	int i;
3570 	uint64_t val;
3571 	uint32_t reg;
3572 
3573 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3574 
3575 		if (mvneta_mib_list[i].reg64)
3576 			val = MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
3577 		else
3578 			val = MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
3579 
3580 		if (val == 0)
3581 			continue;
3582 
3583 		sc->sysctl_mib[i].counter += val;
3584 		switch (mvneta_mib_list[i].regnum) {
3585 			case MVNETA_MIB_RX_GOOD_OCT:
3586 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3587 				break;
3588 			case MVNETA_MIB_RX_BAD_FRAME:
3589 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3590 				break;
3591 			case MVNETA_MIB_RX_GOOD_FRAME:
3592 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3593 				break;
3594 			case MVNETA_MIB_RX_MCAST_FRAME:
3595 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3596 				break;
3597 			case MVNETA_MIB_TX_GOOD_OCT:
3598 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3599 				break;
3600 			case MVNETA_MIB_TX_GOOD_FRAME:
3601 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3602 				break;
3603 			case MVNETA_MIB_TX_MCAST_FRAME:
3604 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3605 				break;
3606 			case MVNETA_MIB_MAC_COL:
3607 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3608 				break;
3609 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3610 			case MVNETA_MIB_TX_EXCES_COL:
3611 			case MVNETA_MIB_MAC_LATE_COL:
3612 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3613 				break;
3614 		}
3615 	}
3616 
3617 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3618 	sc->counter_pdfc += reg;
3619 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3620 	reg = MVNETA_READ(sc, MVNETA_POFC);
3621 	sc->counter_pofc += reg;
3622 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3623 
3624 	/* TX watchdog. */
3625 	if (sc->counter_watchdog_mib > 0) {
3626 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3627 		sc->counter_watchdog_mib = 0;
3628 	}
3629 	/*
3630 	 * TX driver errors:
3631 	 * We do not take queue locks to not disrupt TX path.
3632 	 * We may only miss one drv error which will be fixed at
3633 	 * next mib update. We may also clear counter when TX path
3634 	 * is incrementing it but we only do it if counter was not zero
3635 	 * thus we may only loose one error.
3636 	 */
3637 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3638 		tx = MVNETA_TX_RING(sc, i);
3639 
3640 		if (tx->drv_error > 0) {
3641 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3642 			tx->drv_error = 0;
3643 		}
3644 	}
3645 }
3646