xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision c1d255d3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/eventhandler.h>
36 #include <sys/jail.h>
37 #include <sys/poll.h>  /* POLLIN, POLLOUT */
38 #include <sys/kernel.h> /* types used in module initialization */
39 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
40 #include <sys/endian.h>
41 #include <sys/syscallsubr.h> /* kern_ioctl() */
42 
43 #include <sys/rwlock.h>
44 
45 #include <vm/vm.h>      /* vtophys */
46 #include <vm/pmap.h>    /* vtophys */
47 #include <vm/vm_param.h>
48 #include <vm/vm_object.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_pager.h>
51 #include <vm/uma.h>
52 
53 
54 #include <sys/malloc.h>
55 #include <sys/socket.h> /* sockaddrs */
56 #include <sys/selinfo.h>
57 #include <sys/kthread.h> /* kthread_add() */
58 #include <sys/proc.h> /* PROC_LOCK() */
59 #include <sys/unistd.h> /* RFNOWAIT */
60 #include <sys/sched.h> /* sched_bind() */
61 #include <sys/smp.h> /* mp_maxid */
62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_types.h> /* IFT_ETHER */
66 #include <net/ethernet.h> /* ether_ifdetach */
67 #include <net/if_dl.h> /* LLADDR */
68 #include <machine/bus.h>        /* bus_dmamap_* */
69 #include <netinet/in.h>		/* in6_cksum_pseudo() */
70 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
71 
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #include <net/netmap_virt.h>
75 #include <dev/netmap/netmap_mem2.h>
76 
77 
78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
79 
80 static void
81 nm_kqueue_notify(void *opaque, int pending)
82 {
83 	struct nm_selinfo *si = opaque;
84 
85 	/* We use a non-zero hint to distinguish this notification call
86 	 * from the call done in kqueue_scan(), which uses hint=0.
87 	 */
88 	KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
89 }
90 
91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
92 	int err;
93 
94 	TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
95 	si->ntfytq = taskqueue_create(name, M_NOWAIT,
96 	    taskqueue_thread_enqueue, &si->ntfytq);
97 	if (si->ntfytq == NULL)
98 		return -ENOMEM;
99 	err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
100 	if (err) {
101 		taskqueue_free(si->ntfytq);
102 		si->ntfytq = NULL;
103 		return err;
104 	}
105 
106 	snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
107 	mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
108 	knlist_init_mtx(&si->si.si_note, &si->m);
109 	si->kqueue_users = 0;
110 
111 	return (0);
112 }
113 
114 void
115 nm_os_selinfo_uninit(NM_SELINFO_T *si)
116 {
117 	if (si->ntfytq == NULL) {
118 		return;	/* si was not initialized */
119 	}
120 	taskqueue_drain(si->ntfytq, &si->ntfytask);
121 	taskqueue_free(si->ntfytq);
122 	si->ntfytq = NULL;
123 	knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
124 	knlist_destroy(&si->si.si_note);
125 	/* now we don't need the mutex anymore */
126 	mtx_destroy(&si->m);
127 }
128 
129 void *
130 nm_os_malloc(size_t size)
131 {
132 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
133 }
134 
135 void *
136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
137 {
138 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
139 }
140 
141 void
142 nm_os_free(void *addr)
143 {
144 	free(addr, M_DEVBUF);
145 }
146 
147 void
148 nm_os_ifnet_lock(void)
149 {
150 	IFNET_RLOCK();
151 }
152 
153 void
154 nm_os_ifnet_unlock(void)
155 {
156 	IFNET_RUNLOCK();
157 }
158 
159 static int netmap_use_count = 0;
160 
161 void
162 nm_os_get_module(void)
163 {
164 	netmap_use_count++;
165 }
166 
167 void
168 nm_os_put_module(void)
169 {
170 	netmap_use_count--;
171 }
172 
173 static void
174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
175 {
176 	netmap_undo_zombie(ifp);
177 }
178 
179 static void
180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
181 {
182 	netmap_make_zombie(ifp);
183 }
184 
185 static eventhandler_tag nm_ifnet_ah_tag;
186 static eventhandler_tag nm_ifnet_dh_tag;
187 
188 int
189 nm_os_ifnet_init(void)
190 {
191 	nm_ifnet_ah_tag =
192 		EVENTHANDLER_REGISTER(ifnet_arrival_event,
193 				netmap_ifnet_arrival_handler,
194 				NULL, EVENTHANDLER_PRI_ANY);
195 	nm_ifnet_dh_tag =
196 		EVENTHANDLER_REGISTER(ifnet_departure_event,
197 				netmap_ifnet_departure_handler,
198 				NULL, EVENTHANDLER_PRI_ANY);
199 	return 0;
200 }
201 
202 void
203 nm_os_ifnet_fini(void)
204 {
205 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
206 			nm_ifnet_ah_tag);
207 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
208 			nm_ifnet_dh_tag);
209 }
210 
211 unsigned
212 nm_os_ifnet_mtu(struct ifnet *ifp)
213 {
214 #if __FreeBSD_version < 1100030
215 	return ifp->if_data.ifi_mtu;
216 #else /* __FreeBSD_version >= 1100030 */
217 	return ifp->if_mtu;
218 #endif
219 }
220 
221 rawsum_t
222 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
223 {
224 	/* TODO XXX please use the FreeBSD implementation for this. */
225 	uint16_t *words = (uint16_t *)data;
226 	int nw = len / 2;
227 	int i;
228 
229 	for (i = 0; i < nw; i++)
230 		cur_sum += be16toh(words[i]);
231 
232 	if (len & 1)
233 		cur_sum += (data[len-1] << 8);
234 
235 	return cur_sum;
236 }
237 
238 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
239  * return value is in network byte order.
240  */
241 uint16_t
242 nm_os_csum_fold(rawsum_t cur_sum)
243 {
244 	/* TODO XXX please use the FreeBSD implementation for this. */
245 	while (cur_sum >> 16)
246 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
247 
248 	return htobe16((~cur_sum) & 0xFFFF);
249 }
250 
251 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
252 {
253 #if 0
254 	return in_cksum_hdr((void *)iph);
255 #else
256 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
257 #endif
258 }
259 
260 void
261 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
262 					size_t datalen, uint16_t *check)
263 {
264 #ifdef INET
265 	uint16_t pseudolen = datalen + iph->protocol;
266 
267 	/* Compute and insert the pseudo-header checksum. */
268 	*check = in_pseudo(iph->saddr, iph->daddr,
269 				 htobe16(pseudolen));
270 	/* Compute the checksum on TCP/UDP header + payload
271 	 * (includes the pseudo-header).
272 	 */
273 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
274 #else
275 	static int notsupported = 0;
276 	if (!notsupported) {
277 		notsupported = 1;
278 		nm_prerr("inet4 segmentation not supported");
279 	}
280 #endif
281 }
282 
283 void
284 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
285 					size_t datalen, uint16_t *check)
286 {
287 #ifdef INET6
288 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
289 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
290 #else
291 	static int notsupported = 0;
292 	if (!notsupported) {
293 		notsupported = 1;
294 		nm_prerr("inet6 segmentation not supported");
295 	}
296 #endif
297 }
298 
299 /* on FreeBSD we send up one packet at a time */
300 void *
301 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
302 {
303 	NA(ifp)->if_input(ifp, m);
304 	return NULL;
305 }
306 
307 int
308 nm_os_mbuf_has_csum_offld(struct mbuf *m)
309 {
310 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
311 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
312 					 CSUM_SCTP_IPV6);
313 }
314 
315 int
316 nm_os_mbuf_has_seg_offld(struct mbuf *m)
317 {
318 	return m->m_pkthdr.csum_flags & CSUM_TSO;
319 }
320 
321 static void
322 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
323 {
324 	int stolen;
325 
326 	if (unlikely(!NM_NA_VALID(ifp))) {
327 		nm_prlim(1, "Warning: RX packet intercepted, but no"
328 				" emulated adapter");
329 		return;
330 	}
331 
332 	stolen = generic_rx_handler(ifp, m);
333 	if (!stolen) {
334 		struct netmap_generic_adapter *gna =
335 				(struct netmap_generic_adapter *)NA(ifp);
336 		gna->save_if_input(ifp, m);
337 	}
338 }
339 
340 /*
341  * Intercept the rx routine in the standard device driver.
342  * Second argument is non-zero to intercept, 0 to restore
343  */
344 int
345 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
346 {
347 	struct netmap_adapter *na = &gna->up.up;
348 	struct ifnet *ifp = na->ifp;
349 	int ret = 0;
350 
351 	nm_os_ifnet_lock();
352 	if (intercept) {
353 		if (gna->save_if_input) {
354 			nm_prerr("RX on %s already intercepted", na->name);
355 			ret = EBUSY; /* already set */
356 			goto out;
357 		}
358 		gna->save_if_input = ifp->if_input;
359 		ifp->if_input = freebsd_generic_rx_handler;
360 	} else {
361 		if (!gna->save_if_input) {
362 			nm_prerr("Failed to undo RX intercept on %s",
363 				na->name);
364 			ret = EINVAL;  /* not saved */
365 			goto out;
366 		}
367 		ifp->if_input = gna->save_if_input;
368 		gna->save_if_input = NULL;
369 	}
370 out:
371 	nm_os_ifnet_unlock();
372 
373 	return ret;
374 }
375 
376 
377 /*
378  * Intercept the packet steering routine in the tx path,
379  * so that we can decide which queue is used for an mbuf.
380  * Second argument is non-zero to intercept, 0 to restore.
381  * On freebsd we just intercept if_transmit.
382  */
383 int
384 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
385 {
386 	struct netmap_adapter *na = &gna->up.up;
387 	struct ifnet *ifp = netmap_generic_getifp(gna);
388 
389 	nm_os_ifnet_lock();
390 	if (intercept) {
391 		na->if_transmit = ifp->if_transmit;
392 		ifp->if_transmit = netmap_transmit;
393 	} else {
394 		ifp->if_transmit = na->if_transmit;
395 	}
396 	nm_os_ifnet_unlock();
397 
398 	return 0;
399 }
400 
401 
402 /*
403  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
404  * and non-zero on error (which may be packet drops or other errors).
405  * addr and len identify the netmap buffer, m is the (preallocated)
406  * mbuf to use for transmissions.
407  *
408  * We should add a reference to the mbuf so the m_freem() at the end
409  * of the transmission does not consume resources.
410  *
411  * On FreeBSD, and on multiqueue cards, we can force the queue using
412  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
413  *              i = m->m_pkthdr.flowid % adapter->num_queues;
414  *      else
415  *              i = curcpu % adapter->num_queues;
416  *
417  */
418 int
419 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
420 {
421 	int ret;
422 	u_int len = a->len;
423 	struct ifnet *ifp = a->ifp;
424 	struct mbuf *m = a->m;
425 
426 #if __FreeBSD_version < 1100000
427 	/*
428 	 * Old FreeBSD versions. The mbuf has a cluster attached,
429 	 * we need to copy from the cluster to the netmap buffer.
430 	 */
431 	if (MBUF_REFCNT(m) != 1) {
432 		nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
433 		panic("in generic_xmit_frame");
434 	}
435 	if (m->m_ext.ext_size < len) {
436 		nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
437 		len = m->m_ext.ext_size;
438 	}
439 	bcopy(a->addr, m->m_data, len);
440 #else  /* __FreeBSD_version >= 1100000 */
441 	/* New FreeBSD versions. Link the external storage to
442 	 * the netmap buffer, so that no copy is necessary. */
443 	m->m_ext.ext_buf = m->m_data = a->addr;
444 	m->m_ext.ext_size = len;
445 #endif /* __FreeBSD_version >= 1100000 */
446 
447 	m->m_flags |= M_PKTHDR;
448 	m->m_len = m->m_pkthdr.len = len;
449 
450 	/* mbuf refcnt is not contended, no need to use atomic
451 	 * (a memory barrier is enough). */
452 	SET_MBUF_REFCNT(m, 2);
453 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
454 	m->m_pkthdr.flowid = a->ring_nr;
455 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
456 	CURVNET_SET(ifp->if_vnet);
457 	ret = NA(ifp)->if_transmit(ifp, m);
458 	CURVNET_RESTORE();
459 	return ret ? -1 : 0;
460 }
461 
462 
463 #if __FreeBSD_version >= 1100005
464 struct netmap_adapter *
465 netmap_getna(if_t ifp)
466 {
467 	return (NA((struct ifnet *)ifp));
468 }
469 #endif /* __FreeBSD_version >= 1100005 */
470 
471 /*
472  * The following two functions are empty until we have a generic
473  * way to extract the info from the ifp
474  */
475 int
476 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
477 {
478 	return 0;
479 }
480 
481 
482 void
483 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
484 {
485 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
486 
487 	*txq = num_rings;
488 	*rxq = num_rings;
489 }
490 
491 void
492 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
493 {
494 
495 	gna->rxsg = 1; /* Supported through m_copydata. */
496 	gna->txqdisc = 0; /* Not supported. */
497 }
498 
499 void
500 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
501 {
502 	mit->mit_pending = 0;
503 	mit->mit_ring_idx = idx;
504 	mit->mit_na = na;
505 }
506 
507 
508 void
509 nm_os_mitigation_start(struct nm_generic_mit *mit)
510 {
511 }
512 
513 
514 void
515 nm_os_mitigation_restart(struct nm_generic_mit *mit)
516 {
517 }
518 
519 
520 int
521 nm_os_mitigation_active(struct nm_generic_mit *mit)
522 {
523 
524 	return 0;
525 }
526 
527 
528 void
529 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
530 {
531 }
532 
533 static int
534 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
535 {
536 
537 	return EINVAL;
538 }
539 
540 static void
541 nm_vi_start(struct ifnet *ifp)
542 {
543 	panic("nm_vi_start() must not be called");
544 }
545 
546 /*
547  * Index manager of persistent virtual interfaces.
548  * It is used to decide the lowest byte of the MAC address.
549  * We use the same algorithm with management of bridge port index.
550  */
551 #define NM_VI_MAX	255
552 static struct {
553 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
554 	uint8_t active;
555 	struct mtx lock;
556 } nm_vi_indices;
557 
558 void
559 nm_os_vi_init_index(void)
560 {
561 	int i;
562 	for (i = 0; i < NM_VI_MAX; i++)
563 		nm_vi_indices.index[i] = i;
564 	nm_vi_indices.active = 0;
565 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
566 }
567 
568 /* return -1 if no index available */
569 static int
570 nm_vi_get_index(void)
571 {
572 	int ret;
573 
574 	mtx_lock(&nm_vi_indices.lock);
575 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
576 		nm_vi_indices.index[nm_vi_indices.active++];
577 	mtx_unlock(&nm_vi_indices.lock);
578 	return ret;
579 }
580 
581 static void
582 nm_vi_free_index(uint8_t val)
583 {
584 	int i, lim;
585 
586 	mtx_lock(&nm_vi_indices.lock);
587 	lim = nm_vi_indices.active;
588 	for (i = 0; i < lim; i++) {
589 		if (nm_vi_indices.index[i] == val) {
590 			/* swap index[lim-1] and j */
591 			int tmp = nm_vi_indices.index[lim-1];
592 			nm_vi_indices.index[lim-1] = val;
593 			nm_vi_indices.index[i] = tmp;
594 			nm_vi_indices.active--;
595 			break;
596 		}
597 	}
598 	if (lim == nm_vi_indices.active)
599 		nm_prerr("Index %u not found", val);
600 	mtx_unlock(&nm_vi_indices.lock);
601 }
602 #undef NM_VI_MAX
603 
604 /*
605  * Implementation of a netmap-capable virtual interface that
606  * registered to the system.
607  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
608  *
609  * Note: Linux sets refcount to 0 on allocation of net_device,
610  * then increments it on registration to the system.
611  * FreeBSD sets refcount to 1 on if_alloc(), and does not
612  * increment this refcount on if_attach().
613  */
614 int
615 nm_os_vi_persist(const char *name, struct ifnet **ret)
616 {
617 	struct ifnet *ifp;
618 	u_short macaddr_hi;
619 	uint32_t macaddr_mid;
620 	u_char eaddr[6];
621 	int unit = nm_vi_get_index(); /* just to decide MAC address */
622 
623 	if (unit < 0)
624 		return EBUSY;
625 	/*
626 	 * We use the same MAC address generation method with tap
627 	 * except for the highest octet is 00:be instead of 00:bd
628 	 */
629 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
630 	macaddr_mid = (uint32_t) ticks;
631 	bcopy(&macaddr_hi, eaddr, sizeof(short));
632 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
633 	eaddr[5] = (uint8_t)unit;
634 
635 	ifp = if_alloc(IFT_ETHER);
636 	if (ifp == NULL) {
637 		nm_prerr("if_alloc failed");
638 		return ENOMEM;
639 	}
640 	if_initname(ifp, name, IF_DUNIT_NONE);
641 	ifp->if_mtu = 65536;
642 	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
643 	ifp->if_init = (void *)nm_vi_dummy;
644 	ifp->if_ioctl = nm_vi_dummy;
645 	ifp->if_start = nm_vi_start;
646 	ifp->if_mtu = ETHERMTU;
647 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
648 	ifp->if_capabilities |= IFCAP_LINKSTATE;
649 	ifp->if_capenable |= IFCAP_LINKSTATE;
650 
651 	ether_ifattach(ifp, eaddr);
652 	*ret = ifp;
653 	return 0;
654 }
655 
656 /* unregister from the system and drop the final refcount */
657 void
658 nm_os_vi_detach(struct ifnet *ifp)
659 {
660 	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
661 	ether_ifdetach(ifp);
662 	if_free(ifp);
663 }
664 
665 #ifdef WITH_EXTMEM
666 #include <vm/vm_map.h>
667 #include <vm/vm_extern.h>
668 #include <vm/vm_kern.h>
669 struct nm_os_extmem {
670 	vm_object_t obj;
671 	vm_offset_t kva;
672 	vm_offset_t size;
673 	uintptr_t scan;
674 };
675 
676 void
677 nm_os_extmem_delete(struct nm_os_extmem *e)
678 {
679 	nm_prinf("freeing %zx bytes", (size_t)e->size);
680 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
681 	nm_os_free(e);
682 }
683 
684 char *
685 nm_os_extmem_nextpage(struct nm_os_extmem *e)
686 {
687 	char *rv = NULL;
688 	if (e->scan < e->kva + e->size) {
689 		rv = (char *)e->scan;
690 		e->scan += PAGE_SIZE;
691 	}
692 	return rv;
693 }
694 
695 int
696 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
697 {
698 	return (e1->obj == e2->obj);
699 }
700 
701 int
702 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
703 {
704 	return e->size >> PAGE_SHIFT;
705 }
706 
707 struct nm_os_extmem *
708 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
709 {
710 	vm_map_t map;
711 	vm_map_entry_t entry;
712 	vm_object_t obj;
713 	vm_prot_t prot;
714 	vm_pindex_t index;
715 	boolean_t wired;
716 	struct nm_os_extmem *e = NULL;
717 	int rv, error = 0;
718 
719 	e = nm_os_malloc(sizeof(*e));
720 	if (e == NULL) {
721 		error = ENOMEM;
722 		goto out;
723 	}
724 
725 	map = &curthread->td_proc->p_vmspace->vm_map;
726 	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
727 			&obj, &index, &prot, &wired);
728 	if (rv != KERN_SUCCESS) {
729 		nm_prerr("address %lx not found", p);
730 		error = vm_mmap_to_errno(rv);
731 		goto out_free;
732 	}
733 	vm_object_reference(obj);
734 
735 	/* check that we are given the whole vm_object ? */
736 	vm_map_lookup_done(map, entry);
737 
738 	e->obj = obj;
739 	/* Wire the memory and add the vm_object to the kernel map,
740 	 * to make sure that it is not freed even if all the processes
741 	 * that are mmap()ing should munmap() it.
742 	 */
743 	e->kva = vm_map_min(kernel_map);
744 	e->size = obj->size << PAGE_SHIFT;
745 	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
746 			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
747 			VM_PROT_READ | VM_PROT_WRITE, 0);
748 	if (rv != KERN_SUCCESS) {
749 		nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
750 		error = vm_mmap_to_errno(rv);
751 		goto out_rel;
752 	}
753 	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
754 			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
755 	if (rv != KERN_SUCCESS) {
756 		nm_prerr("vm_map_wire failed");
757 		error = vm_mmap_to_errno(rv);
758 		goto out_rem;
759 	}
760 
761 	e->scan = e->kva;
762 
763 	return e;
764 
765 out_rem:
766 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
767 out_rel:
768 	vm_object_deallocate(e->obj);
769 	e->obj = NULL;
770 out_free:
771 	nm_os_free(e);
772 out:
773 	if (perror)
774 		*perror = error;
775 	return NULL;
776 }
777 #endif /* WITH_EXTMEM */
778 
779 /* ================== PTNETMAP GUEST SUPPORT ==================== */
780 
781 #ifdef WITH_PTNETMAP
782 #include <sys/bus.h>
783 #include <sys/rman.h>
784 #include <machine/bus.h>        /* bus_dmamap_* */
785 #include <machine/resource.h>
786 #include <dev/pci/pcivar.h>
787 #include <dev/pci/pcireg.h>
788 /*
789  * ptnetmap memory device (memdev) for freebsd guest,
790  * ssed to expose host netmap memory to the guest through a PCI BAR.
791  */
792 
793 /*
794  * ptnetmap memdev private data structure
795  */
796 struct ptnetmap_memdev {
797 	device_t dev;
798 	struct resource *pci_io;
799 	struct resource *pci_mem;
800 	struct netmap_mem_d *nm_mem;
801 };
802 
803 static int	ptn_memdev_probe(device_t);
804 static int	ptn_memdev_attach(device_t);
805 static int	ptn_memdev_detach(device_t);
806 static int	ptn_memdev_shutdown(device_t);
807 
808 static device_method_t ptn_memdev_methods[] = {
809 	DEVMETHOD(device_probe, ptn_memdev_probe),
810 	DEVMETHOD(device_attach, ptn_memdev_attach),
811 	DEVMETHOD(device_detach, ptn_memdev_detach),
812 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
813 	DEVMETHOD_END
814 };
815 
816 static driver_t ptn_memdev_driver = {
817 	PTNETMAP_MEMDEV_NAME,
818 	ptn_memdev_methods,
819 	sizeof(struct ptnetmap_memdev),
820 };
821 
822 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
823  * below. */
824 static devclass_t ptnetmap_devclass;
825 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
826 		      NULL, NULL, SI_ORDER_MIDDLE + 1);
827 
828 /*
829  * Map host netmap memory through PCI-BAR in the guest OS,
830  * returning physical (nm_paddr) and virtual (nm_addr) addresses
831  * of the netmap memory mapped in the guest.
832  */
833 int
834 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
835 		      void **nm_addr, uint64_t *mem_size)
836 {
837 	int rid;
838 
839 	nm_prinf("ptn_memdev_driver iomap");
840 
841 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
842 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
843 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
844 			(*mem_size << 32);
845 
846 	/* map memory allocator */
847 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
848 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
849 	if (ptn_dev->pci_mem == NULL) {
850 		*nm_paddr = 0;
851 		*nm_addr = NULL;
852 		return ENOMEM;
853 	}
854 
855 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
856 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
857 
858 	nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
859 			PTNETMAP_MEM_PCI_BAR,
860 			(unsigned long)(*nm_paddr),
861 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
862 			(unsigned long)*mem_size);
863 	return (0);
864 }
865 
866 uint32_t
867 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
868 {
869 	return bus_read_4(ptn_dev->pci_io, reg);
870 }
871 
872 /* Unmap host netmap memory. */
873 void
874 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
875 {
876 	nm_prinf("ptn_memdev_driver iounmap");
877 
878 	if (ptn_dev->pci_mem) {
879 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
880 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
881 		ptn_dev->pci_mem = NULL;
882 	}
883 }
884 
885 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
886  * positive on failure */
887 static int
888 ptn_memdev_probe(device_t dev)
889 {
890 	char desc[256];
891 
892 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
893 		return (ENXIO);
894 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
895 		return (ENXIO);
896 
897 	snprintf(desc, sizeof(desc), "%s PCI adapter",
898 			PTNETMAP_MEMDEV_NAME);
899 	device_set_desc_copy(dev, desc);
900 
901 	return (BUS_PROBE_DEFAULT);
902 }
903 
904 /* Device initialization routine. */
905 static int
906 ptn_memdev_attach(device_t dev)
907 {
908 	struct ptnetmap_memdev *ptn_dev;
909 	int rid;
910 	uint16_t mem_id;
911 
912 	ptn_dev = device_get_softc(dev);
913 	ptn_dev->dev = dev;
914 
915 	pci_enable_busmaster(dev);
916 
917 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
918 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
919 						 RF_ACTIVE);
920 	if (ptn_dev->pci_io == NULL) {
921 	        device_printf(dev, "cannot map I/O space\n");
922 	        return (ENXIO);
923 	}
924 
925 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
926 
927 	/* create guest allocator */
928 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
929 	if (ptn_dev->nm_mem == NULL) {
930 		ptn_memdev_detach(dev);
931 	        return (ENOMEM);
932 	}
933 	netmap_mem_get(ptn_dev->nm_mem);
934 
935 	nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
936 
937 	return (0);
938 }
939 
940 /* Device removal routine. */
941 static int
942 ptn_memdev_detach(device_t dev)
943 {
944 	struct ptnetmap_memdev *ptn_dev;
945 
946 	ptn_dev = device_get_softc(dev);
947 
948 	if (ptn_dev->nm_mem) {
949 		nm_prinf("ptnetmap memdev detached, host memid %u",
950 			netmap_mem_get_id(ptn_dev->nm_mem));
951 		netmap_mem_put(ptn_dev->nm_mem);
952 		ptn_dev->nm_mem = NULL;
953 	}
954 	if (ptn_dev->pci_mem) {
955 		bus_release_resource(dev, SYS_RES_MEMORY,
956 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
957 		ptn_dev->pci_mem = NULL;
958 	}
959 	if (ptn_dev->pci_io) {
960 		bus_release_resource(dev, SYS_RES_IOPORT,
961 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
962 		ptn_dev->pci_io = NULL;
963 	}
964 
965 	return (0);
966 }
967 
968 static int
969 ptn_memdev_shutdown(device_t dev)
970 {
971 	return bus_generic_shutdown(dev);
972 }
973 
974 #endif /* WITH_PTNETMAP */
975 
976 /*
977  * In order to track whether pages are still mapped, we hook into
978  * the standard cdev_pager and intercept the constructor and
979  * destructor.
980  */
981 
982 struct netmap_vm_handle_t {
983 	struct cdev 		*dev;
984 	struct netmap_priv_d	*priv;
985 };
986 
987 
988 static int
989 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
990 		vm_ooffset_t foff, struct ucred *cred, u_short *color)
991 {
992 	struct netmap_vm_handle_t *vmh = handle;
993 
994 	if (netmap_verbose)
995 		nm_prinf("handle %p size %jd prot %d foff %jd",
996 			handle, (intmax_t)size, prot, (intmax_t)foff);
997 	if (color)
998 		*color = 0;
999 	dev_ref(vmh->dev);
1000 	return 0;
1001 }
1002 
1003 
1004 static void
1005 netmap_dev_pager_dtor(void *handle)
1006 {
1007 	struct netmap_vm_handle_t *vmh = handle;
1008 	struct cdev *dev = vmh->dev;
1009 	struct netmap_priv_d *priv = vmh->priv;
1010 
1011 	if (netmap_verbose)
1012 		nm_prinf("handle %p", handle);
1013 	netmap_dtor(priv);
1014 	free(vmh, M_DEVBUF);
1015 	dev_rel(dev);
1016 }
1017 
1018 
1019 static int
1020 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
1021 	int prot, vm_page_t *mres)
1022 {
1023 	struct netmap_vm_handle_t *vmh = object->handle;
1024 	struct netmap_priv_d *priv = vmh->priv;
1025 	struct netmap_adapter *na = priv->np_na;
1026 	vm_paddr_t paddr;
1027 	vm_page_t page;
1028 	vm_memattr_t memattr;
1029 
1030 	nm_prdis("object %p offset %jd prot %d mres %p",
1031 			object, (intmax_t)offset, prot, mres);
1032 	memattr = object->memattr;
1033 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1034 	if (paddr == 0)
1035 		return VM_PAGER_FAIL;
1036 
1037 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1038 		/*
1039 		 * If the passed in result page is a fake page, update it with
1040 		 * the new physical address.
1041 		 */
1042 		page = *mres;
1043 		vm_page_updatefake(page, paddr, memattr);
1044 	} else {
1045 		/*
1046 		 * Replace the passed in reqpage page with our own fake page and
1047 		 * free up the all of the original pages.
1048 		 */
1049 #ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
1050 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1051 #define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
1052 #endif /* VM_OBJECT_WUNLOCK */
1053 
1054 		VM_OBJECT_WUNLOCK(object);
1055 		page = vm_page_getfake(paddr, memattr);
1056 		VM_OBJECT_WLOCK(object);
1057 		vm_page_replace(page, object, (*mres)->pindex, *mres);
1058 		*mres = page;
1059 	}
1060 	page->valid = VM_PAGE_BITS_ALL;
1061 	return (VM_PAGER_OK);
1062 }
1063 
1064 
1065 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1066 	.cdev_pg_ctor = netmap_dev_pager_ctor,
1067 	.cdev_pg_dtor = netmap_dev_pager_dtor,
1068 	.cdev_pg_fault = netmap_dev_pager_fault,
1069 };
1070 
1071 
1072 static int
1073 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1074 	vm_size_t objsize,  vm_object_t *objp, int prot)
1075 {
1076 	int error;
1077 	struct netmap_vm_handle_t *vmh;
1078 	struct netmap_priv_d *priv;
1079 	vm_object_t obj;
1080 
1081 	if (netmap_verbose)
1082 		nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1083 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1084 
1085 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1086 			      M_NOWAIT | M_ZERO);
1087 	if (vmh == NULL)
1088 		return ENOMEM;
1089 	vmh->dev = cdev;
1090 
1091 	NMG_LOCK();
1092 	error = devfs_get_cdevpriv((void**)&priv);
1093 	if (error)
1094 		goto err_unlock;
1095 	if (priv->np_nifp == NULL) {
1096 		error = EINVAL;
1097 		goto err_unlock;
1098 	}
1099 	vmh->priv = priv;
1100 	priv->np_refs++;
1101 	NMG_UNLOCK();
1102 
1103 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1104 		&netmap_cdev_pager_ops, objsize, prot,
1105 		*foff, NULL);
1106 	if (obj == NULL) {
1107 		nm_prerr("cdev_pager_allocate failed");
1108 		error = EINVAL;
1109 		goto err_deref;
1110 	}
1111 
1112 	*objp = obj;
1113 	return 0;
1114 
1115 err_deref:
1116 	NMG_LOCK();
1117 	priv->np_refs--;
1118 err_unlock:
1119 	NMG_UNLOCK();
1120 // err:
1121 	free(vmh, M_DEVBUF);
1122 	return error;
1123 }
1124 
1125 /*
1126  * On FreeBSD the close routine is only called on the last close on
1127  * the device (/dev/netmap) so we cannot do anything useful.
1128  * To track close() on individual file descriptors we pass netmap_dtor() to
1129  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1130  * when the last fd pointing to the device is closed.
1131  *
1132  * Note that FreeBSD does not even munmap() on close() so we also have
1133  * to track mmap() ourselves, and postpone the call to
1134  * netmap_dtor() is called when the process has no open fds and no active
1135  * memory maps on /dev/netmap, as in linux.
1136  */
1137 static int
1138 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1139 {
1140 	if (netmap_verbose)
1141 		nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1142 			dev, fflag, devtype, td);
1143 	return 0;
1144 }
1145 
1146 
1147 static int
1148 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1149 {
1150 	struct netmap_priv_d *priv;
1151 	int error;
1152 
1153 	(void)dev;
1154 	(void)oflags;
1155 	(void)devtype;
1156 	(void)td;
1157 
1158 	NMG_LOCK();
1159 	priv = netmap_priv_new();
1160 	if (priv == NULL) {
1161 		error = ENOMEM;
1162 		goto out;
1163 	}
1164 	error = devfs_set_cdevpriv(priv, netmap_dtor);
1165 	if (error) {
1166 		netmap_priv_delete(priv);
1167 	}
1168 out:
1169 	NMG_UNLOCK();
1170 	return error;
1171 }
1172 
1173 /******************** kthread wrapper ****************/
1174 #include <sys/sysproto.h>
1175 u_int
1176 nm_os_ncpus(void)
1177 {
1178 	return mp_maxid + 1;
1179 }
1180 
1181 struct nm_kctx_ctx {
1182 	/* Userspace thread (kthread creator). */
1183 	struct thread *user_td;
1184 
1185 	/* worker function and parameter */
1186 	nm_kctx_worker_fn_t worker_fn;
1187 	void *worker_private;
1188 
1189 	struct nm_kctx *nmk;
1190 
1191 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1192 	long type;
1193 };
1194 
1195 struct nm_kctx {
1196 	struct thread *worker;
1197 	struct mtx worker_lock;
1198 	struct nm_kctx_ctx worker_ctx;
1199 	int run;			/* used to stop kthread */
1200 	int attach_user;		/* kthread attached to user_process */
1201 	int affinity;
1202 };
1203 
1204 static void
1205 nm_kctx_worker(void *data)
1206 {
1207 	struct nm_kctx *nmk = data;
1208 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1209 
1210 	if (nmk->affinity >= 0) {
1211 		thread_lock(curthread);
1212 		sched_bind(curthread, nmk->affinity);
1213 		thread_unlock(curthread);
1214 	}
1215 
1216 	while (nmk->run) {
1217 		/*
1218 		 * check if the parent process dies
1219 		 * (when kthread is attached to user process)
1220 		 */
1221 		if (ctx->user_td) {
1222 			PROC_LOCK(curproc);
1223 			thread_suspend_check(0);
1224 			PROC_UNLOCK(curproc);
1225 		} else {
1226 			kthread_suspend_check();
1227 		}
1228 
1229 		/* Continuously execute worker process. */
1230 		ctx->worker_fn(ctx->worker_private); /* worker body */
1231 	}
1232 
1233 	kthread_exit();
1234 }
1235 
1236 void
1237 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1238 {
1239 	nmk->affinity = affinity;
1240 }
1241 
1242 struct nm_kctx *
1243 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1244 {
1245 	struct nm_kctx *nmk = NULL;
1246 
1247 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1248 	if (!nmk)
1249 		return NULL;
1250 
1251 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1252 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1253 	nmk->worker_ctx.worker_private = cfg->worker_private;
1254 	nmk->worker_ctx.type = cfg->type;
1255 	nmk->affinity = -1;
1256 
1257 	/* attach kthread to user process (ptnetmap) */
1258 	nmk->attach_user = cfg->attach_user;
1259 
1260 	return nmk;
1261 }
1262 
1263 int
1264 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1265 {
1266 	struct proc *p = NULL;
1267 	int error = 0;
1268 
1269 	/* Temporarily disable this function as it is currently broken
1270 	 * and causes kernel crashes. The failure can be triggered by
1271 	 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1272 	return EOPNOTSUPP;
1273 
1274 	if (nmk->worker)
1275 		return EBUSY;
1276 
1277 	/* check if we want to attach kthread to user process */
1278 	if (nmk->attach_user) {
1279 		nmk->worker_ctx.user_td = curthread;
1280 		p = curthread->td_proc;
1281 	}
1282 
1283 	/* enable kthread main loop */
1284 	nmk->run = 1;
1285 	/* create kthread */
1286 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1287 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1288 			nmk->worker_ctx.type))) {
1289 		goto err;
1290 	}
1291 
1292 	nm_prinf("nm_kthread started td %p", nmk->worker);
1293 
1294 	return 0;
1295 err:
1296 	nm_prerr("nm_kthread start failed err %d", error);
1297 	nmk->worker = NULL;
1298 	return error;
1299 }
1300 
1301 void
1302 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1303 {
1304 	if (!nmk->worker)
1305 		return;
1306 
1307 	/* tell to kthread to exit from main loop */
1308 	nmk->run = 0;
1309 
1310 	/* wake up kthread if it sleeps */
1311 	kthread_resume(nmk->worker);
1312 
1313 	nmk->worker = NULL;
1314 }
1315 
1316 void
1317 nm_os_kctx_destroy(struct nm_kctx *nmk)
1318 {
1319 	if (!nmk)
1320 		return;
1321 
1322 	if (nmk->worker)
1323 		nm_os_kctx_worker_stop(nmk);
1324 
1325 	free(nmk, M_DEVBUF);
1326 }
1327 
1328 /******************** kqueue support ****************/
1329 
1330 /*
1331  * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1332  * needs to call knote() to wake up kqueue listeners.
1333  * This operation is deferred to a taskqueue in order to avoid possible
1334  * lock order reversals; these may happen because knote() grabs a
1335  * private lock associated to the 'si' (see struct selinfo,
1336  * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1337  * can be called while holding the lock associated to a different
1338  * 'si'.
1339  * When calling knote() we use a non-zero 'hint' argument to inform
1340  * the netmap_knrw() function that it is being called from
1341  * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1342  * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1343  * call netmap_poll().
1344  *
1345  * The netmap_kqfilter() function registers one or another f_event
1346  * depending on read or write mode. A pointer to the struct
1347  * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1348  * be passed to netmap_poll(). We pass NULL as a third argument to
1349  * netmap_poll(), so that the latter only runs the txsync/rxsync
1350  * (if necessary), and skips the nm_os_selrecord() calls.
1351  */
1352 
1353 
1354 void
1355 nm_os_selwakeup(struct nm_selinfo *si)
1356 {
1357 	selwakeuppri(&si->si, PI_NET);
1358 	if (si->kqueue_users > 0) {
1359 		taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1360 	}
1361 }
1362 
1363 void
1364 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1365 {
1366 	selrecord(td, &si->si);
1367 }
1368 
1369 static void
1370 netmap_knrdetach(struct knote *kn)
1371 {
1372 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1373 	struct nm_selinfo *si = priv->np_si[NR_RX];
1374 
1375 	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1376 	NMG_LOCK();
1377 	KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
1378 	    si->mtxname));
1379 	si->kqueue_users--;
1380 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1381 	NMG_UNLOCK();
1382 }
1383 
1384 static void
1385 netmap_knwdetach(struct knote *kn)
1386 {
1387 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1388 	struct nm_selinfo *si = priv->np_si[NR_TX];
1389 
1390 	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1391 	NMG_LOCK();
1392 	si->kqueue_users--;
1393 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1394 	NMG_UNLOCK();
1395 }
1396 
1397 /*
1398  * Callback triggered by netmap notifications (see netmap_notify()),
1399  * and by the application calling kevent(). In the former case we
1400  * just return 1 (events ready), since we are not able to do better.
1401  * In the latter case we use netmap_poll() to see which events are
1402  * ready.
1403  */
1404 static int
1405 netmap_knrw(struct knote *kn, long hint, int events)
1406 {
1407 	struct netmap_priv_d *priv;
1408 	int revents;
1409 
1410 	if (hint != 0) {
1411 		/* Called from netmap_notify(), typically from a
1412 		 * thread different from the one issuing kevent().
1413 		 * Assume we are ready. */
1414 		return 1;
1415 	}
1416 
1417 	/* Called from kevent(). */
1418 	priv = kn->kn_hook;
1419 	revents = netmap_poll(priv, events, /*thread=*/NULL);
1420 
1421 	return (events & revents) ? 1 : 0;
1422 }
1423 
1424 static int
1425 netmap_knread(struct knote *kn, long hint)
1426 {
1427 	return netmap_knrw(kn, hint, POLLIN);
1428 }
1429 
1430 static int
1431 netmap_knwrite(struct knote *kn, long hint)
1432 {
1433 	return netmap_knrw(kn, hint, POLLOUT);
1434 }
1435 
1436 static struct filterops netmap_rfiltops = {
1437 	.f_isfd = 1,
1438 	.f_detach = netmap_knrdetach,
1439 	.f_event = netmap_knread,
1440 };
1441 
1442 static struct filterops netmap_wfiltops = {
1443 	.f_isfd = 1,
1444 	.f_detach = netmap_knwdetach,
1445 	.f_event = netmap_knwrite,
1446 };
1447 
1448 
1449 /*
1450  * This is called when a thread invokes kevent() to record
1451  * a change in the configuration of the kqueue().
1452  * The 'priv' is the one associated to the open netmap device.
1453  */
1454 static int
1455 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1456 {
1457 	struct netmap_priv_d *priv;
1458 	int error;
1459 	struct netmap_adapter *na;
1460 	struct nm_selinfo *si;
1461 	int ev = kn->kn_filter;
1462 
1463 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1464 		nm_prerr("bad filter request %d", ev);
1465 		return 1;
1466 	}
1467 	error = devfs_get_cdevpriv((void**)&priv);
1468 	if (error) {
1469 		nm_prerr("device not yet setup");
1470 		return 1;
1471 	}
1472 	na = priv->np_na;
1473 	if (na == NULL) {
1474 		nm_prerr("no netmap adapter for this file descriptor");
1475 		return 1;
1476 	}
1477 	/* the si is indicated in the priv */
1478 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1479 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1480 		&netmap_wfiltops : &netmap_rfiltops;
1481 	kn->kn_hook = priv;
1482 	NMG_LOCK();
1483 	si->kqueue_users++;
1484 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1485 	NMG_UNLOCK();
1486 	knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1487 
1488 	return 0;
1489 }
1490 
1491 static int
1492 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1493 {
1494 	struct netmap_priv_d *priv;
1495 	if (devfs_get_cdevpriv((void **)&priv)) {
1496 		return POLLERR;
1497 	}
1498 	return netmap_poll(priv, events, td);
1499 }
1500 
1501 static int
1502 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1503 		int ffla __unused, struct thread *td)
1504 {
1505 	int error;
1506 	struct netmap_priv_d *priv;
1507 
1508 	CURVNET_SET(TD_TO_VNET(td));
1509 	error = devfs_get_cdevpriv((void **)&priv);
1510 	if (error) {
1511 		/* XXX ENOENT should be impossible, since the priv
1512 		 * is now created in the open */
1513 		if (error == ENOENT)
1514 			error = ENXIO;
1515 		goto out;
1516 	}
1517 	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1518 out:
1519 	CURVNET_RESTORE();
1520 
1521 	return error;
1522 }
1523 
1524 void
1525 nm_os_onattach(struct ifnet *ifp)
1526 {
1527 	ifp->if_capabilities |= IFCAP_NETMAP;
1528 }
1529 
1530 void
1531 nm_os_onenter(struct ifnet *ifp)
1532 {
1533 	struct netmap_adapter *na = NA(ifp);
1534 
1535 	na->if_transmit = ifp->if_transmit;
1536 	ifp->if_transmit = netmap_transmit;
1537 	ifp->if_capenable |= IFCAP_NETMAP;
1538 }
1539 
1540 void
1541 nm_os_onexit(struct ifnet *ifp)
1542 {
1543 	struct netmap_adapter *na = NA(ifp);
1544 
1545 	ifp->if_transmit = na->if_transmit;
1546 	ifp->if_capenable &= ~IFCAP_NETMAP;
1547 }
1548 
1549 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1550 struct cdevsw netmap_cdevsw = {
1551 	.d_version = D_VERSION,
1552 	.d_name = "netmap",
1553 	.d_open = netmap_open,
1554 	.d_mmap_single = netmap_mmap_single,
1555 	.d_ioctl = freebsd_netmap_ioctl,
1556 	.d_poll = freebsd_netmap_poll,
1557 	.d_kqfilter = netmap_kqfilter,
1558 	.d_close = netmap_close,
1559 };
1560 /*--- end of kqueue support ----*/
1561 
1562 /*
1563  * Kernel entry point.
1564  *
1565  * Initialize/finalize the module and return.
1566  *
1567  * Return 0 on success, errno on failure.
1568  */
1569 static int
1570 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1571 {
1572 	int error = 0;
1573 
1574 	switch (event) {
1575 	case MOD_LOAD:
1576 		error = netmap_init();
1577 		break;
1578 
1579 	case MOD_UNLOAD:
1580 		/*
1581 		 * if some one is still using netmap,
1582 		 * then the module can not be unloaded.
1583 		 */
1584 		if (netmap_use_count) {
1585 			nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1586 					netmap_use_count);
1587 			error = EBUSY;
1588 			break;
1589 		}
1590 		netmap_fini();
1591 		break;
1592 
1593 	default:
1594 		error = EOPNOTSUPP;
1595 		break;
1596 	}
1597 
1598 	return (error);
1599 }
1600 
1601 #ifdef DEV_MODULE_ORDERED
1602 /*
1603  * The netmap module contains three drivers: (i) the netmap character device
1604  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1605  * device driver. The attach() routines of both (ii) and (iii) need the
1606  * lock of the global allocator, and such lock is initialized in netmap_init(),
1607  * which is part of (i).
1608  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1609  * the 'order' parameter of driver declaration macros. For (i), we specify
1610  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1611  * macros for (ii) and (iii).
1612  */
1613 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1614 #else /* !DEV_MODULE_ORDERED */
1615 DEV_MODULE(netmap, netmap_loader, NULL);
1616 #endif /* DEV_MODULE_ORDERED  */
1617 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1618 MODULE_VERSION(netmap, 1);
1619 /* reduce conditional code */
1620 // linux API, use for the knlist in FreeBSD
1621 /* use a private mutex for the knlist */
1622