xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision d6b92ffa)
1 /*
2  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *   1. Redistributions of source code must retain the above copyright
8  *      notice, this list of conditions and the following disclaimer.
9  *   2. Redistributions in binary form must reproduce the above copyright
10  *      notice, this list of conditions and the following disclaimer in the
11  *      documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /* $FreeBSD$ */
27 #include "opt_inet.h"
28 #include "opt_inet6.h"
29 
30 #include <sys/param.h>
31 #include <sys/module.h>
32 #include <sys/errno.h>
33 #include <sys/jail.h>
34 #include <sys/poll.h>  /* POLLIN, POLLOUT */
35 #include <sys/kernel.h> /* types used in module initialization */
36 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
37 #include <sys/endian.h>
38 #include <sys/syscallsubr.h> /* kern_ioctl() */
39 
40 #include <sys/rwlock.h>
41 
42 #include <vm/vm.h>      /* vtophys */
43 #include <vm/pmap.h>    /* vtophys */
44 #include <vm/vm_param.h>
45 #include <vm/vm_object.h>
46 #include <vm/vm_page.h>
47 #include <vm/vm_pager.h>
48 #include <vm/uma.h>
49 
50 
51 #include <sys/malloc.h>
52 #include <sys/socket.h> /* sockaddrs */
53 #include <sys/selinfo.h>
54 #include <sys/kthread.h> /* kthread_add() */
55 #include <sys/proc.h> /* PROC_LOCK() */
56 #include <sys/unistd.h> /* RFNOWAIT */
57 #include <sys/sched.h> /* sched_bind() */
58 #include <sys/smp.h> /* mp_maxid */
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_types.h> /* IFT_ETHER */
62 #include <net/ethernet.h> /* ether_ifdetach */
63 #include <net/if_dl.h> /* LLADDR */
64 #include <machine/bus.h>        /* bus_dmamap_* */
65 #include <netinet/in.h>		/* in6_cksum_pseudo() */
66 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
67 
68 #include <net/netmap.h>
69 #include <dev/netmap/netmap_kern.h>
70 #include <net/netmap_virt.h>
71 #include <dev/netmap/netmap_mem2.h>
72 
73 
74 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
75 
76 void nm_os_selinfo_init(NM_SELINFO_T *si) {
77 	struct mtx *m = &si->m;
78 	mtx_init(m, "nm_kn_lock", NULL, MTX_DEF);
79 	knlist_init_mtx(&si->si.si_note, m);
80 }
81 
82 void
83 nm_os_selinfo_uninit(NM_SELINFO_T *si)
84 {
85 	/* XXX kqueue(9) needed; these will mirror knlist_init. */
86 	knlist_delete(&si->si.si_note, curthread, 0 /* not locked */ );
87 	knlist_destroy(&si->si.si_note);
88 	/* now we don't need the mutex anymore */
89 	mtx_destroy(&si->m);
90 }
91 
92 void *
93 nm_os_malloc(size_t size)
94 {
95 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
96 }
97 
98 void *
99 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
100 {
101 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
102 }
103 
104 void
105 nm_os_free(void *addr)
106 {
107 	free(addr, M_DEVBUF);
108 }
109 
110 void
111 nm_os_ifnet_lock(void)
112 {
113 	IFNET_RLOCK();
114 }
115 
116 void
117 nm_os_ifnet_unlock(void)
118 {
119 	IFNET_RUNLOCK();
120 }
121 
122 static int netmap_use_count = 0;
123 
124 void
125 nm_os_get_module(void)
126 {
127 	netmap_use_count++;
128 }
129 
130 void
131 nm_os_put_module(void)
132 {
133 	netmap_use_count--;
134 }
135 
136 static void
137 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
138 {
139         netmap_undo_zombie(ifp);
140 }
141 
142 static void
143 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
144 {
145         netmap_make_zombie(ifp);
146 }
147 
148 static eventhandler_tag nm_ifnet_ah_tag;
149 static eventhandler_tag nm_ifnet_dh_tag;
150 
151 int
152 nm_os_ifnet_init(void)
153 {
154         nm_ifnet_ah_tag =
155                 EVENTHANDLER_REGISTER(ifnet_arrival_event,
156                         netmap_ifnet_arrival_handler,
157                         NULL, EVENTHANDLER_PRI_ANY);
158         nm_ifnet_dh_tag =
159                 EVENTHANDLER_REGISTER(ifnet_departure_event,
160                         netmap_ifnet_departure_handler,
161                         NULL, EVENTHANDLER_PRI_ANY);
162         return 0;
163 }
164 
165 void
166 nm_os_ifnet_fini(void)
167 {
168         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
169                 nm_ifnet_ah_tag);
170         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
171                 nm_ifnet_dh_tag);
172 }
173 
174 rawsum_t
175 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
176 {
177 	/* TODO XXX please use the FreeBSD implementation for this. */
178 	uint16_t *words = (uint16_t *)data;
179 	int nw = len / 2;
180 	int i;
181 
182 	for (i = 0; i < nw; i++)
183 		cur_sum += be16toh(words[i]);
184 
185 	if (len & 1)
186 		cur_sum += (data[len-1] << 8);
187 
188 	return cur_sum;
189 }
190 
191 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
192  * return value is in network byte order.
193  */
194 uint16_t
195 nm_os_csum_fold(rawsum_t cur_sum)
196 {
197 	/* TODO XXX please use the FreeBSD implementation for this. */
198 	while (cur_sum >> 16)
199 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
200 
201 	return htobe16((~cur_sum) & 0xFFFF);
202 }
203 
204 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
205 {
206 #if 0
207 	return in_cksum_hdr((void *)iph);
208 #else
209 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
210 #endif
211 }
212 
213 void
214 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
215 					size_t datalen, uint16_t *check)
216 {
217 #ifdef INET
218 	uint16_t pseudolen = datalen + iph->protocol;
219 
220 	/* Compute and insert the pseudo-header cheksum. */
221 	*check = in_pseudo(iph->saddr, iph->daddr,
222 				 htobe16(pseudolen));
223 	/* Compute the checksum on TCP/UDP header + payload
224 	 * (includes the pseudo-header).
225 	 */
226 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
227 #else
228 	static int notsupported = 0;
229 	if (!notsupported) {
230 		notsupported = 1;
231 		D("inet4 segmentation not supported");
232 	}
233 #endif
234 }
235 
236 void
237 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
238 					size_t datalen, uint16_t *check)
239 {
240 #ifdef INET6
241 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
242 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
243 #else
244 	static int notsupported = 0;
245 	if (!notsupported) {
246 		notsupported = 1;
247 		D("inet6 segmentation not supported");
248 	}
249 #endif
250 }
251 
252 /* on FreeBSD we send up one packet at a time */
253 void *
254 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
255 {
256 	NA(ifp)->if_input(ifp, m);
257 	return NULL;
258 }
259 
260 int
261 nm_os_mbuf_has_offld(struct mbuf *m)
262 {
263 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
264 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
265 					 CSUM_SCTP_IPV6 | CSUM_TSO);
266 }
267 
268 static void
269 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
270 {
271 	int stolen;
272 
273 	if (!NM_NA_VALID(ifp)) {
274 		RD(1, "Warning: got RX packet for invalid emulated adapter");
275 		return;
276 	}
277 
278 	stolen = generic_rx_handler(ifp, m);
279 	if (!stolen) {
280 		struct netmap_generic_adapter *gna =
281 				(struct netmap_generic_adapter *)NA(ifp);
282 		gna->save_if_input(ifp, m);
283 	}
284 }
285 
286 /*
287  * Intercept the rx routine in the standard device driver.
288  * Second argument is non-zero to intercept, 0 to restore
289  */
290 int
291 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
292 {
293 	struct netmap_adapter *na = &gna->up.up;
294 	struct ifnet *ifp = na->ifp;
295 
296 	if (intercept) {
297 		if (gna->save_if_input) {
298 			D("cannot intercept again");
299 			return EINVAL; /* already set */
300 		}
301 		gna->save_if_input = ifp->if_input;
302 		ifp->if_input = freebsd_generic_rx_handler;
303 	} else {
304 		if (!gna->save_if_input){
305 			D("cannot restore");
306 			return EINVAL;  /* not saved */
307 		}
308 		ifp->if_input = gna->save_if_input;
309 		gna->save_if_input = NULL;
310 	}
311 
312 	return 0;
313 }
314 
315 
316 /*
317  * Intercept the packet steering routine in the tx path,
318  * so that we can decide which queue is used for an mbuf.
319  * Second argument is non-zero to intercept, 0 to restore.
320  * On freebsd we just intercept if_transmit.
321  */
322 int
323 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
324 {
325 	struct netmap_adapter *na = &gna->up.up;
326 	struct ifnet *ifp = netmap_generic_getifp(gna);
327 
328 	if (intercept) {
329 		na->if_transmit = ifp->if_transmit;
330 		ifp->if_transmit = netmap_transmit;
331 	} else {
332 		ifp->if_transmit = na->if_transmit;
333 	}
334 
335 	return 0;
336 }
337 
338 
339 /*
340  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
341  * and non-zero on error (which may be packet drops or other errors).
342  * addr and len identify the netmap buffer, m is the (preallocated)
343  * mbuf to use for transmissions.
344  *
345  * We should add a reference to the mbuf so the m_freem() at the end
346  * of the transmission does not consume resources.
347  *
348  * On FreeBSD, and on multiqueue cards, we can force the queue using
349  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
350  *              i = m->m_pkthdr.flowid % adapter->num_queues;
351  *      else
352  *              i = curcpu % adapter->num_queues;
353  *
354  */
355 int
356 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
357 {
358 	int ret;
359 	u_int len = a->len;
360 	struct ifnet *ifp = a->ifp;
361 	struct mbuf *m = a->m;
362 
363 #if __FreeBSD_version < 1100000
364 	/*
365 	 * Old FreeBSD versions. The mbuf has a cluster attached,
366 	 * we need to copy from the cluster to the netmap buffer.
367 	 */
368 	if (MBUF_REFCNT(m) != 1) {
369 		D("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
370 		panic("in generic_xmit_frame");
371 	}
372 	if (m->m_ext.ext_size < len) {
373 		RD(5, "size %d < len %d", m->m_ext.ext_size, len);
374 		len = m->m_ext.ext_size;
375 	}
376 	bcopy(a->addr, m->m_data, len);
377 #else  /* __FreeBSD_version >= 1100000 */
378 	/* New FreeBSD versions. Link the external storage to
379 	 * the netmap buffer, so that no copy is necessary. */
380 	m->m_ext.ext_buf = m->m_data = a->addr;
381 	m->m_ext.ext_size = len;
382 #endif /* __FreeBSD_version >= 1100000 */
383 
384 	m->m_len = m->m_pkthdr.len = len;
385 
386 	/* mbuf refcnt is not contended, no need to use atomic
387 	 * (a memory barrier is enough). */
388 	SET_MBUF_REFCNT(m, 2);
389 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
390 	m->m_pkthdr.flowid = a->ring_nr;
391 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
392 	ret = NA(ifp)->if_transmit(ifp, m);
393 	return ret ? -1 : 0;
394 }
395 
396 
397 #if __FreeBSD_version >= 1100005
398 struct netmap_adapter *
399 netmap_getna(if_t ifp)
400 {
401 	return (NA((struct ifnet *)ifp));
402 }
403 #endif /* __FreeBSD_version >= 1100005 */
404 
405 /*
406  * The following two functions are empty until we have a generic
407  * way to extract the info from the ifp
408  */
409 int
410 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
411 {
412 	return 0;
413 }
414 
415 
416 void
417 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
418 {
419 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
420 
421 	*txq = num_rings;
422 	*rxq = num_rings;
423 }
424 
425 void
426 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
427 {
428 
429 	gna->rxsg = 1; /* Supported through m_copydata. */
430 	gna->txqdisc = 0; /* Not supported. */
431 }
432 
433 void
434 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
435 {
436 	ND("called");
437 	mit->mit_pending = 0;
438 	mit->mit_ring_idx = idx;
439 	mit->mit_na = na;
440 }
441 
442 
443 void
444 nm_os_mitigation_start(struct nm_generic_mit *mit)
445 {
446 	ND("called");
447 }
448 
449 
450 void
451 nm_os_mitigation_restart(struct nm_generic_mit *mit)
452 {
453 	ND("called");
454 }
455 
456 
457 int
458 nm_os_mitigation_active(struct nm_generic_mit *mit)
459 {
460 	ND("called");
461 	return 0;
462 }
463 
464 
465 void
466 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
467 {
468 	ND("called");
469 }
470 
471 static int
472 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
473 {
474 	return EINVAL;
475 }
476 
477 static void
478 nm_vi_start(struct ifnet *ifp)
479 {
480 	panic("nm_vi_start() must not be called");
481 }
482 
483 /*
484  * Index manager of persistent virtual interfaces.
485  * It is used to decide the lowest byte of the MAC address.
486  * We use the same algorithm with management of bridge port index.
487  */
488 #define NM_VI_MAX	255
489 static struct {
490 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
491 	uint8_t active;
492 	struct mtx lock;
493 } nm_vi_indices;
494 
495 void
496 nm_os_vi_init_index(void)
497 {
498 	int i;
499 	for (i = 0; i < NM_VI_MAX; i++)
500 		nm_vi_indices.index[i] = i;
501 	nm_vi_indices.active = 0;
502 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
503 }
504 
505 /* return -1 if no index available */
506 static int
507 nm_vi_get_index(void)
508 {
509 	int ret;
510 
511 	mtx_lock(&nm_vi_indices.lock);
512 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
513 		nm_vi_indices.index[nm_vi_indices.active++];
514 	mtx_unlock(&nm_vi_indices.lock);
515 	return ret;
516 }
517 
518 static void
519 nm_vi_free_index(uint8_t val)
520 {
521 	int i, lim;
522 
523 	mtx_lock(&nm_vi_indices.lock);
524 	lim = nm_vi_indices.active;
525 	for (i = 0; i < lim; i++) {
526 		if (nm_vi_indices.index[i] == val) {
527 			/* swap index[lim-1] and j */
528 			int tmp = nm_vi_indices.index[lim-1];
529 			nm_vi_indices.index[lim-1] = val;
530 			nm_vi_indices.index[i] = tmp;
531 			nm_vi_indices.active--;
532 			break;
533 		}
534 	}
535 	if (lim == nm_vi_indices.active)
536 		D("funny, index %u didn't found", val);
537 	mtx_unlock(&nm_vi_indices.lock);
538 }
539 #undef NM_VI_MAX
540 
541 /*
542  * Implementation of a netmap-capable virtual interface that
543  * registered to the system.
544  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
545  *
546  * Note: Linux sets refcount to 0 on allocation of net_device,
547  * then increments it on registration to the system.
548  * FreeBSD sets refcount to 1 on if_alloc(), and does not
549  * increment this refcount on if_attach().
550  */
551 int
552 nm_os_vi_persist(const char *name, struct ifnet **ret)
553 {
554 	struct ifnet *ifp;
555 	u_short macaddr_hi;
556 	uint32_t macaddr_mid;
557 	u_char eaddr[6];
558 	int unit = nm_vi_get_index(); /* just to decide MAC address */
559 
560 	if (unit < 0)
561 		return EBUSY;
562 	/*
563 	 * We use the same MAC address generation method with tap
564 	 * except for the highest octet is 00:be instead of 00:bd
565 	 */
566 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
567 	macaddr_mid = (uint32_t) ticks;
568 	bcopy(&macaddr_hi, eaddr, sizeof(short));
569 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
570 	eaddr[5] = (uint8_t)unit;
571 
572 	ifp = if_alloc(IFT_ETHER);
573 	if (ifp == NULL) {
574 		D("if_alloc failed");
575 		return ENOMEM;
576 	}
577 	if_initname(ifp, name, IF_DUNIT_NONE);
578 	ifp->if_mtu = 65536;
579 	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
580 	ifp->if_init = (void *)nm_vi_dummy;
581 	ifp->if_ioctl = nm_vi_dummy;
582 	ifp->if_start = nm_vi_start;
583 	ifp->if_mtu = ETHERMTU;
584 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
585 	ifp->if_capabilities |= IFCAP_LINKSTATE;
586 	ifp->if_capenable |= IFCAP_LINKSTATE;
587 
588 	ether_ifattach(ifp, eaddr);
589 	*ret = ifp;
590 	return 0;
591 }
592 
593 /* unregister from the system and drop the final refcount */
594 void
595 nm_os_vi_detach(struct ifnet *ifp)
596 {
597 	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
598 	ether_ifdetach(ifp);
599 	if_free(ifp);
600 }
601 
602 /* ======================== PTNETMAP SUPPORT ========================== */
603 
604 #ifdef WITH_PTNETMAP_GUEST
605 #include <sys/bus.h>
606 #include <sys/rman.h>
607 #include <machine/bus.h>        /* bus_dmamap_* */
608 #include <machine/resource.h>
609 #include <dev/pci/pcivar.h>
610 #include <dev/pci/pcireg.h>
611 /*
612  * ptnetmap memory device (memdev) for freebsd guest,
613  * ssed to expose host netmap memory to the guest through a PCI BAR.
614  */
615 
616 /*
617  * ptnetmap memdev private data structure
618  */
619 struct ptnetmap_memdev {
620 	device_t dev;
621 	struct resource *pci_io;
622 	struct resource *pci_mem;
623 	struct netmap_mem_d *nm_mem;
624 };
625 
626 static int	ptn_memdev_probe(device_t);
627 static int	ptn_memdev_attach(device_t);
628 static int	ptn_memdev_detach(device_t);
629 static int	ptn_memdev_shutdown(device_t);
630 
631 static device_method_t ptn_memdev_methods[] = {
632 	DEVMETHOD(device_probe, ptn_memdev_probe),
633 	DEVMETHOD(device_attach, ptn_memdev_attach),
634 	DEVMETHOD(device_detach, ptn_memdev_detach),
635 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
636 	DEVMETHOD_END
637 };
638 
639 static driver_t ptn_memdev_driver = {
640 	PTNETMAP_MEMDEV_NAME,
641 	ptn_memdev_methods,
642 	sizeof(struct ptnetmap_memdev),
643 };
644 
645 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
646  * below. */
647 static devclass_t ptnetmap_devclass;
648 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
649 		      NULL, NULL, SI_ORDER_MIDDLE + 1);
650 
651 /*
652  * Map host netmap memory through PCI-BAR in the guest OS,
653  * returning physical (nm_paddr) and virtual (nm_addr) addresses
654  * of the netmap memory mapped in the guest.
655  */
656 int
657 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
658 		      void **nm_addr, uint64_t *mem_size)
659 {
660 	int rid;
661 
662 	D("ptn_memdev_driver iomap");
663 
664 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
665 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
666 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
667 			(*mem_size << 32);
668 
669 	/* map memory allocator */
670 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
671 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
672 	if (ptn_dev->pci_mem == NULL) {
673 		*nm_paddr = 0;
674 		*nm_addr = NULL;
675 		return ENOMEM;
676 	}
677 
678 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
679 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
680 
681 	D("=== BAR %d start %lx len %lx mem_size %lx ===",
682 			PTNETMAP_MEM_PCI_BAR,
683 			(unsigned long)(*nm_paddr),
684 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
685 			(unsigned long)*mem_size);
686 	return (0);
687 }
688 
689 uint32_t
690 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
691 {
692 	return bus_read_4(ptn_dev->pci_io, reg);
693 }
694 
695 /* Unmap host netmap memory. */
696 void
697 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
698 {
699 	D("ptn_memdev_driver iounmap");
700 
701 	if (ptn_dev->pci_mem) {
702 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
703 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
704 		ptn_dev->pci_mem = NULL;
705 	}
706 }
707 
708 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
709  * positive on failure */
710 static int
711 ptn_memdev_probe(device_t dev)
712 {
713 	char desc[256];
714 
715 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
716 		return (ENXIO);
717 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
718 		return (ENXIO);
719 
720 	snprintf(desc, sizeof(desc), "%s PCI adapter",
721 			PTNETMAP_MEMDEV_NAME);
722 	device_set_desc_copy(dev, desc);
723 
724 	return (BUS_PROBE_DEFAULT);
725 }
726 
727 /* Device initialization routine. */
728 static int
729 ptn_memdev_attach(device_t dev)
730 {
731 	struct ptnetmap_memdev *ptn_dev;
732 	int rid;
733 	uint16_t mem_id;
734 
735 	D("ptn_memdev_driver attach");
736 
737 	ptn_dev = device_get_softc(dev);
738 	ptn_dev->dev = dev;
739 
740 	pci_enable_busmaster(dev);
741 
742 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
743 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
744 						 RF_ACTIVE);
745 	if (ptn_dev->pci_io == NULL) {
746 	        device_printf(dev, "cannot map I/O space\n");
747 	        return (ENXIO);
748 	}
749 
750 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
751 
752 	/* create guest allocator */
753 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
754 	if (ptn_dev->nm_mem == NULL) {
755 		ptn_memdev_detach(dev);
756 	        return (ENOMEM);
757 	}
758 	netmap_mem_get(ptn_dev->nm_mem);
759 
760 	D("ptn_memdev_driver probe OK - host_mem_id: %d", mem_id);
761 
762 	return (0);
763 }
764 
765 /* Device removal routine. */
766 static int
767 ptn_memdev_detach(device_t dev)
768 {
769 	struct ptnetmap_memdev *ptn_dev;
770 
771 	D("ptn_memdev_driver detach");
772 	ptn_dev = device_get_softc(dev);
773 
774 	if (ptn_dev->nm_mem) {
775 		netmap_mem_put(ptn_dev->nm_mem);
776 		ptn_dev->nm_mem = NULL;
777 	}
778 	if (ptn_dev->pci_mem) {
779 		bus_release_resource(dev, SYS_RES_MEMORY,
780 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
781 		ptn_dev->pci_mem = NULL;
782 	}
783 	if (ptn_dev->pci_io) {
784 		bus_release_resource(dev, SYS_RES_IOPORT,
785 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
786 		ptn_dev->pci_io = NULL;
787 	}
788 
789 	return (0);
790 }
791 
792 static int
793 ptn_memdev_shutdown(device_t dev)
794 {
795 	D("ptn_memdev_driver shutdown");
796 	return bus_generic_shutdown(dev);
797 }
798 
799 #endif /* WITH_PTNETMAP_GUEST */
800 
801 /*
802  * In order to track whether pages are still mapped, we hook into
803  * the standard cdev_pager and intercept the constructor and
804  * destructor.
805  */
806 
807 struct netmap_vm_handle_t {
808 	struct cdev 		*dev;
809 	struct netmap_priv_d	*priv;
810 };
811 
812 
813 static int
814 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
815     vm_ooffset_t foff, struct ucred *cred, u_short *color)
816 {
817 	struct netmap_vm_handle_t *vmh = handle;
818 
819 	if (netmap_verbose)
820 		D("handle %p size %jd prot %d foff %jd",
821 			handle, (intmax_t)size, prot, (intmax_t)foff);
822 	if (color)
823 		*color = 0;
824 	dev_ref(vmh->dev);
825 	return 0;
826 }
827 
828 
829 static void
830 netmap_dev_pager_dtor(void *handle)
831 {
832 	struct netmap_vm_handle_t *vmh = handle;
833 	struct cdev *dev = vmh->dev;
834 	struct netmap_priv_d *priv = vmh->priv;
835 
836 	if (netmap_verbose)
837 		D("handle %p", handle);
838 	netmap_dtor(priv);
839 	free(vmh, M_DEVBUF);
840 	dev_rel(dev);
841 }
842 
843 
844 static int
845 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
846 	int prot, vm_page_t *mres)
847 {
848 	struct netmap_vm_handle_t *vmh = object->handle;
849 	struct netmap_priv_d *priv = vmh->priv;
850 	struct netmap_adapter *na = priv->np_na;
851 	vm_paddr_t paddr;
852 	vm_page_t page;
853 	vm_memattr_t memattr;
854 	vm_pindex_t pidx;
855 
856 	ND("object %p offset %jd prot %d mres %p",
857 			object, (intmax_t)offset, prot, mres);
858 	memattr = object->memattr;
859 	pidx = OFF_TO_IDX(offset);
860 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
861 	if (paddr == 0)
862 		return VM_PAGER_FAIL;
863 
864 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
865 		/*
866 		 * If the passed in result page is a fake page, update it with
867 		 * the new physical address.
868 		 */
869 		page = *mres;
870 		vm_page_updatefake(page, paddr, memattr);
871 	} else {
872 		/*
873 		 * Replace the passed in reqpage page with our own fake page and
874 		 * free up the all of the original pages.
875 		 */
876 #ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
877 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
878 #define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
879 #endif /* VM_OBJECT_WUNLOCK */
880 
881 		VM_OBJECT_WUNLOCK(object);
882 		page = vm_page_getfake(paddr, memattr);
883 		VM_OBJECT_WLOCK(object);
884 		vm_page_lock(*mres);
885 		vm_page_free(*mres);
886 		vm_page_unlock(*mres);
887 		*mres = page;
888 		vm_page_insert(page, object, pidx);
889 	}
890 	page->valid = VM_PAGE_BITS_ALL;
891 	return (VM_PAGER_OK);
892 }
893 
894 
895 static struct cdev_pager_ops netmap_cdev_pager_ops = {
896 	.cdev_pg_ctor = netmap_dev_pager_ctor,
897 	.cdev_pg_dtor = netmap_dev_pager_dtor,
898 	.cdev_pg_fault = netmap_dev_pager_fault,
899 };
900 
901 
902 static int
903 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
904 	vm_size_t objsize,  vm_object_t *objp, int prot)
905 {
906 	int error;
907 	struct netmap_vm_handle_t *vmh;
908 	struct netmap_priv_d *priv;
909 	vm_object_t obj;
910 
911 	if (netmap_verbose)
912 		D("cdev %p foff %jd size %jd objp %p prot %d", cdev,
913 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
914 
915 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
916 			      M_NOWAIT | M_ZERO);
917 	if (vmh == NULL)
918 		return ENOMEM;
919 	vmh->dev = cdev;
920 
921 	NMG_LOCK();
922 	error = devfs_get_cdevpriv((void**)&priv);
923 	if (error)
924 		goto err_unlock;
925 	if (priv->np_nifp == NULL) {
926 		error = EINVAL;
927 		goto err_unlock;
928 	}
929 	vmh->priv = priv;
930 	priv->np_refs++;
931 	NMG_UNLOCK();
932 
933 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
934 		&netmap_cdev_pager_ops, objsize, prot,
935 		*foff, NULL);
936 	if (obj == NULL) {
937 		D("cdev_pager_allocate failed");
938 		error = EINVAL;
939 		goto err_deref;
940 	}
941 
942 	*objp = obj;
943 	return 0;
944 
945 err_deref:
946 	NMG_LOCK();
947 	priv->np_refs--;
948 err_unlock:
949 	NMG_UNLOCK();
950 // err:
951 	free(vmh, M_DEVBUF);
952 	return error;
953 }
954 
955 /*
956  * On FreeBSD the close routine is only called on the last close on
957  * the device (/dev/netmap) so we cannot do anything useful.
958  * To track close() on individual file descriptors we pass netmap_dtor() to
959  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
960  * when the last fd pointing to the device is closed.
961  *
962  * Note that FreeBSD does not even munmap() on close() so we also have
963  * to track mmap() ourselves, and postpone the call to
964  * netmap_dtor() is called when the process has no open fds and no active
965  * memory maps on /dev/netmap, as in linux.
966  */
967 static int
968 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
969 {
970 	if (netmap_verbose)
971 		D("dev %p fflag 0x%x devtype %d td %p",
972 			dev, fflag, devtype, td);
973 	return 0;
974 }
975 
976 
977 static int
978 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
979 {
980 	struct netmap_priv_d *priv;
981 	int error;
982 
983 	(void)dev;
984 	(void)oflags;
985 	(void)devtype;
986 	(void)td;
987 
988 	NMG_LOCK();
989 	priv = netmap_priv_new();
990 	if (priv == NULL) {
991 		error = ENOMEM;
992 		goto out;
993 	}
994 	error = devfs_set_cdevpriv(priv, netmap_dtor);
995 	if (error) {
996 		netmap_priv_delete(priv);
997 	}
998 out:
999 	NMG_UNLOCK();
1000 	return error;
1001 }
1002 
1003 /******************** kthread wrapper ****************/
1004 #include <sys/sysproto.h>
1005 u_int
1006 nm_os_ncpus(void)
1007 {
1008 	return mp_maxid + 1;
1009 }
1010 
1011 struct nm_kctx_ctx {
1012 	struct thread *user_td;		/* thread user-space (kthread creator) to send ioctl */
1013 	struct ptnetmap_cfgentry_bhyve	cfg;
1014 
1015 	/* worker function and parameter */
1016 	nm_kctx_worker_fn_t worker_fn;
1017 	void *worker_private;
1018 
1019 	struct nm_kctx *nmk;
1020 
1021 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1022 	long type;
1023 };
1024 
1025 struct nm_kctx {
1026 	struct thread *worker;
1027 	struct mtx worker_lock;
1028 	uint64_t scheduled; 		/* pending wake_up request */
1029 	struct nm_kctx_ctx worker_ctx;
1030 	int run;			/* used to stop kthread */
1031 	int attach_user;		/* kthread attached to user_process */
1032 	int affinity;
1033 };
1034 
1035 void inline
1036 nm_os_kctx_worker_wakeup(struct nm_kctx *nmk)
1037 {
1038 	/*
1039 	 * There may be a race between FE and BE,
1040 	 * which call both this function, and worker kthread,
1041 	 * that reads nmk->scheduled.
1042 	 *
1043 	 * For us it is not important the counter value,
1044 	 * but simply that it has changed since the last
1045 	 * time the kthread saw it.
1046 	 */
1047 	mtx_lock(&nmk->worker_lock);
1048 	nmk->scheduled++;
1049 	if (nmk->worker_ctx.cfg.wchan) {
1050 		wakeup((void *)(uintptr_t)nmk->worker_ctx.cfg.wchan);
1051 	}
1052 	mtx_unlock(&nmk->worker_lock);
1053 }
1054 
1055 void inline
1056 nm_os_kctx_send_irq(struct nm_kctx *nmk)
1057 {
1058 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1059 	int err;
1060 
1061 	if (ctx->user_td && ctx->cfg.ioctl_fd > 0) {
1062 		err = kern_ioctl(ctx->user_td, ctx->cfg.ioctl_fd, ctx->cfg.ioctl_cmd,
1063 				 (caddr_t)&ctx->cfg.ioctl_data);
1064 		if (err) {
1065 			D("kern_ioctl error: %d ioctl parameters: fd %d com %lu data %p",
1066 				err, ctx->cfg.ioctl_fd, (unsigned long)ctx->cfg.ioctl_cmd,
1067 				&ctx->cfg.ioctl_data);
1068 		}
1069 	}
1070 }
1071 
1072 static void
1073 nm_kctx_worker(void *data)
1074 {
1075 	struct nm_kctx *nmk = data;
1076 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1077 	uint64_t old_scheduled = nmk->scheduled;
1078 
1079 	if (nmk->affinity >= 0) {
1080 		thread_lock(curthread);
1081 		sched_bind(curthread, nmk->affinity);
1082 		thread_unlock(curthread);
1083 	}
1084 
1085 	while (nmk->run) {
1086 		/*
1087 		 * check if the parent process dies
1088 		 * (when kthread is attached to user process)
1089 		 */
1090 		if (ctx->user_td) {
1091 			PROC_LOCK(curproc);
1092 			thread_suspend_check(0);
1093 			PROC_UNLOCK(curproc);
1094 		} else {
1095 			kthread_suspend_check();
1096 		}
1097 
1098 		/*
1099 		 * if wchan is not defined, we don't have notification
1100 		 * mechanism and we continually execute worker_fn()
1101 		 */
1102 		if (!ctx->cfg.wchan) {
1103 			ctx->worker_fn(ctx->worker_private, 1); /* worker body */
1104 		} else {
1105 			/* checks if there is a pending notification */
1106 			mtx_lock(&nmk->worker_lock);
1107 			if (likely(nmk->scheduled != old_scheduled)) {
1108 				old_scheduled = nmk->scheduled;
1109 				mtx_unlock(&nmk->worker_lock);
1110 
1111 				ctx->worker_fn(ctx->worker_private, 1); /* worker body */
1112 
1113 				continue;
1114 			} else if (nmk->run) {
1115 				/* wait on event with one second timeout */
1116 				msleep((void *)(uintptr_t)ctx->cfg.wchan, &nmk->worker_lock,
1117 					0, "nmk_ev", hz);
1118 				nmk->scheduled++;
1119 			}
1120 			mtx_unlock(&nmk->worker_lock);
1121 		}
1122 	}
1123 
1124 	kthread_exit();
1125 }
1126 
1127 void
1128 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1129 {
1130 	nmk->affinity = affinity;
1131 }
1132 
1133 struct nm_kctx *
1134 nm_os_kctx_create(struct nm_kctx_cfg *cfg, unsigned int cfgtype,
1135 		     void *opaque)
1136 {
1137 	struct nm_kctx *nmk = NULL;
1138 
1139 	if (cfgtype != PTNETMAP_CFGTYPE_BHYVE) {
1140 		D("Unsupported cfgtype %u", cfgtype);
1141 		return NULL;
1142 	}
1143 
1144 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1145 	if (!nmk)
1146 		return NULL;
1147 
1148 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1149 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1150 	nmk->worker_ctx.worker_private = cfg->worker_private;
1151 	nmk->worker_ctx.type = cfg->type;
1152 	nmk->affinity = -1;
1153 
1154 	/* attach kthread to user process (ptnetmap) */
1155 	nmk->attach_user = cfg->attach_user;
1156 
1157 	/* store kick/interrupt configuration */
1158 	if (opaque) {
1159 		nmk->worker_ctx.cfg = *((struct ptnetmap_cfgentry_bhyve *)opaque);
1160 	}
1161 
1162 	return nmk;
1163 }
1164 
1165 int
1166 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1167 {
1168 	struct proc *p = NULL;
1169 	int error = 0;
1170 
1171 	if (nmk->worker) {
1172 		return EBUSY;
1173 	}
1174 
1175 	/* check if we want to attach kthread to user process */
1176 	if (nmk->attach_user) {
1177 		nmk->worker_ctx.user_td = curthread;
1178 		p = curthread->td_proc;
1179 	}
1180 
1181 	/* enable kthread main loop */
1182 	nmk->run = 1;
1183 	/* create kthread */
1184 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1185 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1186 			nmk->worker_ctx.type))) {
1187 		goto err;
1188 	}
1189 
1190 	D("nm_kthread started td %p", nmk->worker);
1191 
1192 	return 0;
1193 err:
1194 	D("nm_kthread start failed err %d", error);
1195 	nmk->worker = NULL;
1196 	return error;
1197 }
1198 
1199 void
1200 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1201 {
1202 	if (!nmk->worker) {
1203 		return;
1204 	}
1205 	/* tell to kthread to exit from main loop */
1206 	nmk->run = 0;
1207 
1208 	/* wake up kthread if it sleeps */
1209 	kthread_resume(nmk->worker);
1210 	nm_os_kctx_worker_wakeup(nmk);
1211 
1212 	nmk->worker = NULL;
1213 }
1214 
1215 void
1216 nm_os_kctx_destroy(struct nm_kctx *nmk)
1217 {
1218 	if (!nmk)
1219 		return;
1220 	if (nmk->worker) {
1221 		nm_os_kctx_worker_stop(nmk);
1222 	}
1223 
1224 	memset(&nmk->worker_ctx.cfg, 0, sizeof(nmk->worker_ctx.cfg));
1225 
1226 	free(nmk, M_DEVBUF);
1227 }
1228 
1229 /******************** kqueue support ****************/
1230 
1231 /*
1232  * nm_os_selwakeup also needs to issue a KNOTE_UNLOCKED.
1233  * We use a non-zero argument to distinguish the call from the one
1234  * in kevent_scan() which instead also needs to run netmap_poll().
1235  * The knote uses a global mutex for the time being. We might
1236  * try to reuse the one in the si, but it is not allocated
1237  * permanently so it might be a bit tricky.
1238  *
1239  * The *kqfilter function registers one or another f_event
1240  * depending on read or write mode.
1241  * In the call to f_event() td_fpop is NULL so any child function
1242  * calling devfs_get_cdevpriv() would fail - and we need it in
1243  * netmap_poll(). As a workaround we store priv into kn->kn_hook
1244  * and pass it as first argument to netmap_poll(), which then
1245  * uses the failure to tell that we are called from f_event()
1246  * and do not need the selrecord().
1247  */
1248 
1249 
1250 void
1251 nm_os_selwakeup(struct nm_selinfo *si)
1252 {
1253 	if (netmap_verbose)
1254 		D("on knote %p", &si->si.si_note);
1255 	selwakeuppri(&si->si, PI_NET);
1256 	/* use a non-zero hint to tell the notification from the
1257 	 * call done in kqueue_scan() which uses 0
1258 	 */
1259 	KNOTE_UNLOCKED(&si->si.si_note, 0x100 /* notification */);
1260 }
1261 
1262 void
1263 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1264 {
1265 	selrecord(td, &si->si);
1266 }
1267 
1268 static void
1269 netmap_knrdetach(struct knote *kn)
1270 {
1271 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1272 	struct selinfo *si = &priv->np_si[NR_RX]->si;
1273 
1274 	D("remove selinfo %p", si);
1275 	knlist_remove(&si->si_note, kn, 0);
1276 }
1277 
1278 static void
1279 netmap_knwdetach(struct knote *kn)
1280 {
1281 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1282 	struct selinfo *si = &priv->np_si[NR_TX]->si;
1283 
1284 	D("remove selinfo %p", si);
1285 	knlist_remove(&si->si_note, kn, 0);
1286 }
1287 
1288 /*
1289  * callback from notifies (generated externally) and our
1290  * calls to kevent(). The former we just return 1 (ready)
1291  * since we do not know better.
1292  * In the latter we call netmap_poll and return 0/1 accordingly.
1293  */
1294 static int
1295 netmap_knrw(struct knote *kn, long hint, int events)
1296 {
1297 	struct netmap_priv_d *priv;
1298 	int revents;
1299 
1300 	if (hint != 0) {
1301 		ND(5, "call from notify");
1302 		return 1; /* assume we are ready */
1303 	}
1304 	priv = kn->kn_hook;
1305 	/* the notification may come from an external thread,
1306 	 * in which case we do not want to run the netmap_poll
1307 	 * This should be filtered above, but check just in case.
1308 	 */
1309 	if (curthread != priv->np_td) { /* should not happen */
1310 		RD(5, "curthread changed %p %p", curthread, priv->np_td);
1311 		return 1;
1312 	} else {
1313 		revents = netmap_poll(priv, events, NULL);
1314 		return (events & revents) ? 1 : 0;
1315 	}
1316 }
1317 
1318 static int
1319 netmap_knread(struct knote *kn, long hint)
1320 {
1321 	return netmap_knrw(kn, hint, POLLIN);
1322 }
1323 
1324 static int
1325 netmap_knwrite(struct knote *kn, long hint)
1326 {
1327 	return netmap_knrw(kn, hint, POLLOUT);
1328 }
1329 
1330 static struct filterops netmap_rfiltops = {
1331 	.f_isfd = 1,
1332 	.f_detach = netmap_knrdetach,
1333 	.f_event = netmap_knread,
1334 };
1335 
1336 static struct filterops netmap_wfiltops = {
1337 	.f_isfd = 1,
1338 	.f_detach = netmap_knwdetach,
1339 	.f_event = netmap_knwrite,
1340 };
1341 
1342 
1343 /*
1344  * This is called when a thread invokes kevent() to record
1345  * a change in the configuration of the kqueue().
1346  * The 'priv' should be the same as in the netmap device.
1347  */
1348 static int
1349 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1350 {
1351 	struct netmap_priv_d *priv;
1352 	int error;
1353 	struct netmap_adapter *na;
1354 	struct nm_selinfo *si;
1355 	int ev = kn->kn_filter;
1356 
1357 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1358 		D("bad filter request %d", ev);
1359 		return 1;
1360 	}
1361 	error = devfs_get_cdevpriv((void**)&priv);
1362 	if (error) {
1363 		D("device not yet setup");
1364 		return 1;
1365 	}
1366 	na = priv->np_na;
1367 	if (na == NULL) {
1368 		D("no netmap adapter for this file descriptor");
1369 		return 1;
1370 	}
1371 	/* the si is indicated in the priv */
1372 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1373 	// XXX lock(priv) ?
1374 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1375 		&netmap_wfiltops : &netmap_rfiltops;
1376 	kn->kn_hook = priv;
1377 	knlist_add(&si->si.si_note, kn, 1);
1378 	// XXX unlock(priv)
1379 	ND("register %p %s td %p priv %p kn %p np_nifp %p kn_fp/fpop %s",
1380 		na, na->ifp->if_xname, curthread, priv, kn,
1381 		priv->np_nifp,
1382 		kn->kn_fp == curthread->td_fpop ? "match" : "MISMATCH");
1383 	return 0;
1384 }
1385 
1386 static int
1387 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1388 {
1389 	struct netmap_priv_d *priv;
1390 	if (devfs_get_cdevpriv((void **)&priv)) {
1391 		return POLLERR;
1392 	}
1393 	return netmap_poll(priv, events, td);
1394 }
1395 
1396 static int
1397 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1398         int ffla __unused, struct thread *td)
1399 {
1400 	int error;
1401 	struct netmap_priv_d *priv;
1402 
1403 	CURVNET_SET(TD_TO_VNET(td));
1404 	error = devfs_get_cdevpriv((void **)&priv);
1405 	if (error) {
1406 		/* XXX ENOENT should be impossible, since the priv
1407 		 * is now created in the open */
1408 		if (error == ENOENT)
1409 			error = ENXIO;
1410 		goto out;
1411 	}
1412 	error = netmap_ioctl(priv, cmd, data, td);
1413 out:
1414 	CURVNET_RESTORE();
1415 
1416 	return error;
1417 }
1418 
1419 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1420 struct cdevsw netmap_cdevsw = {
1421 	.d_version = D_VERSION,
1422 	.d_name = "netmap",
1423 	.d_open = netmap_open,
1424 	.d_mmap_single = netmap_mmap_single,
1425 	.d_ioctl = freebsd_netmap_ioctl,
1426 	.d_poll = freebsd_netmap_poll,
1427 	.d_kqfilter = netmap_kqfilter,
1428 	.d_close = netmap_close,
1429 };
1430 /*--- end of kqueue support ----*/
1431 
1432 /*
1433  * Kernel entry point.
1434  *
1435  * Initialize/finalize the module and return.
1436  *
1437  * Return 0 on success, errno on failure.
1438  */
1439 static int
1440 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1441 {
1442 	int error = 0;
1443 
1444 	switch (event) {
1445 	case MOD_LOAD:
1446 		error = netmap_init();
1447 		break;
1448 
1449 	case MOD_UNLOAD:
1450 		/*
1451 		 * if some one is still using netmap,
1452 		 * then the module can not be unloaded.
1453 		 */
1454 		if (netmap_use_count) {
1455 			D("netmap module can not be unloaded - netmap_use_count: %d",
1456 					netmap_use_count);
1457 			error = EBUSY;
1458 			break;
1459 		}
1460 		netmap_fini();
1461 		break;
1462 
1463 	default:
1464 		error = EOPNOTSUPP;
1465 		break;
1466 	}
1467 
1468 	return (error);
1469 }
1470 
1471 #ifdef DEV_MODULE_ORDERED
1472 /*
1473  * The netmap module contains three drivers: (i) the netmap character device
1474  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1475  * device driver. The attach() routines of both (ii) and (iii) need the
1476  * lock of the global allocator, and such lock is initialized in netmap_init(),
1477  * which is part of (i).
1478  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1479  * the 'order' parameter of driver declaration macros. For (i), we specify
1480  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1481  * macros for (ii) and (iii).
1482  */
1483 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1484 #else /* !DEV_MODULE_ORDERED */
1485 DEV_MODULE(netmap, netmap_loader, NULL);
1486 #endif /* DEV_MODULE_ORDERED  */
1487 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1488 MODULE_VERSION(netmap, 1);
1489 /* reduce conditional code */
1490 // linux API, use for the knlist in FreeBSD
1491 /* use a private mutex for the knlist */
1492