xref: /freebsd/sys/dev/netmap/netmap_generic.c (revision 148a8da8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2016 Vincenzo Maffione
5  * Copyright (C) 2013-2016 Luigi Rizzo
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *      documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * This module implements netmap support on top of standard,
32  * unmodified device drivers.
33  *
34  * A NIOCREGIF request is handled here if the device does not
35  * have native support. TX and RX rings are emulated as follows:
36  *
37  * NIOCREGIF
38  *	We preallocate a block of TX mbufs (roughly as many as
39  *	tx descriptors; the number is not critical) to speed up
40  *	operation during transmissions. The refcount on most of
41  *	these buffers is artificially bumped up so we can recycle
42  *	them more easily. Also, the destructor is intercepted
43  *	so we use it as an interrupt notification to wake up
44  *	processes blocked on a poll().
45  *
46  *	For each receive ring we allocate one "struct mbq"
47  *	(an mbuf tailq plus a spinlock). We intercept packets
48  *	(through if_input)
49  *	on the receive path and put them in the mbq from which
50  *	netmap receive routines can grab them.
51  *
52  * TX:
53  *	in the generic_txsync() routine, netmap buffers are copied
54  *	(or linked, in a future) to the preallocated mbufs
55  *	and pushed to the transmit queue. Some of these mbufs
56  *	(those with NS_REPORT, or otherwise every half ring)
57  *	have the refcount=1, others have refcount=2.
58  *	When the destructor is invoked, we take that as
59  *	a notification that all mbufs up to that one in
60  *	the specific ring have been completed, and generate
61  *	the equivalent of a transmit interrupt.
62  *
63  * RX:
64  *
65  */
66 
67 #ifdef __FreeBSD__
68 
69 #include <sys/cdefs.h> /* prerequisite */
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/types.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/lock.h>   /* PROT_EXEC */
76 #include <sys/rwlock.h>
77 #include <sys/socket.h> /* sockaddrs */
78 #include <sys/selinfo.h>
79 #include <net/if.h>
80 #include <net/if_types.h>
81 #include <net/if_var.h>
82 #include <machine/bus.h>        /* bus_dmamap_* in netmap_kern.h */
83 
84 #include <net/netmap.h>
85 #include <dev/netmap/netmap_kern.h>
86 #include <dev/netmap/netmap_mem2.h>
87 
88 #define MBUF_RXQ(m)	((m)->m_pkthdr.flowid)
89 #define smp_mb()
90 
91 #elif defined _WIN32
92 
93 #include "win_glue.h"
94 
95 #define MBUF_TXQ(m) 	0//((m)->m_pkthdr.flowid)
96 #define MBUF_RXQ(m)	    0//((m)->m_pkthdr.flowid)
97 #define smp_mb()		//XXX: to be correctly defined
98 
99 #else /* linux */
100 
101 #include "bsd_glue.h"
102 
103 #include <linux/ethtool.h>      /* struct ethtool_ops, get_ringparam */
104 #include <linux/hrtimer.h>
105 
106 static inline struct mbuf *
107 nm_os_get_mbuf(struct ifnet *ifp, int len)
108 {
109 	return alloc_skb(ifp->needed_headroom + len +
110 			 ifp->needed_tailroom, GFP_ATOMIC);
111 }
112 
113 #endif /* linux */
114 
115 
116 /* Common headers. */
117 #include <net/netmap.h>
118 #include <dev/netmap/netmap_kern.h>
119 #include <dev/netmap/netmap_mem2.h>
120 
121 
122 #define for_each_kring_n(_i, _k, _karr, _n) \
123 	for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
124 
125 #define for_each_tx_kring(_i, _k, _na) \
126 		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
127 #define for_each_tx_kring_h(_i, _k, _na) \
128 		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
129 
130 #define for_each_rx_kring(_i, _k, _na) \
131 		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
132 #define for_each_rx_kring_h(_i, _k, _na) \
133 		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
134 
135 
136 /* ======================== PERFORMANCE STATISTICS =========================== */
137 
138 #ifdef RATE_GENERIC
139 #define IFRATE(x) x
140 struct rate_stats {
141 	unsigned long txpkt;
142 	unsigned long txsync;
143 	unsigned long txirq;
144 	unsigned long txrepl;
145 	unsigned long txdrop;
146 	unsigned long rxpkt;
147 	unsigned long rxirq;
148 	unsigned long rxsync;
149 };
150 
151 struct rate_context {
152 	unsigned refcount;
153 	struct timer_list timer;
154 	struct rate_stats new;
155 	struct rate_stats old;
156 };
157 
158 #define RATE_PRINTK(_NAME_) \
159 	printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
160 #define RATE_PERIOD  2
161 static void rate_callback(unsigned long arg)
162 {
163 	struct rate_context * ctx = (struct rate_context *)arg;
164 	struct rate_stats cur = ctx->new;
165 	int r;
166 
167 	RATE_PRINTK(txpkt);
168 	RATE_PRINTK(txsync);
169 	RATE_PRINTK(txirq);
170 	RATE_PRINTK(txrepl);
171 	RATE_PRINTK(txdrop);
172 	RATE_PRINTK(rxpkt);
173 	RATE_PRINTK(rxsync);
174 	RATE_PRINTK(rxirq);
175 	printk("\n");
176 
177 	ctx->old = cur;
178 	r = mod_timer(&ctx->timer, jiffies +
179 			msecs_to_jiffies(RATE_PERIOD * 1000));
180 	if (unlikely(r))
181 		nm_prerr("mod_timer() failed");
182 }
183 
184 static struct rate_context rate_ctx;
185 
186 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
187 {
188 	if (txp) rate_ctx.new.txpkt++;
189 	if (txs) rate_ctx.new.txsync++;
190 	if (txi) rate_ctx.new.txirq++;
191 	if (rxp) rate_ctx.new.rxpkt++;
192 	if (rxs) rate_ctx.new.rxsync++;
193 	if (rxi) rate_ctx.new.rxirq++;
194 }
195 
196 #else /* !RATE */
197 #define IFRATE(x)
198 #endif /* !RATE */
199 
200 
201 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
202 
203 /*
204  * Wrapper used by the generic adapter layer to notify
205  * the poller threads. Differently from netmap_rx_irq(), we check
206  * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
207  */
208 void
209 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
210 {
211 	if (unlikely(!nm_netmap_on(na)))
212 		return;
213 
214 	netmap_common_irq(na, q, work_done);
215 #ifdef RATE_GENERIC
216 	if (work_done)
217 		rate_ctx.new.rxirq++;
218 	else
219 		rate_ctx.new.txirq++;
220 #endif  /* RATE_GENERIC */
221 }
222 
223 static int
224 generic_netmap_unregister(struct netmap_adapter *na)
225 {
226 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
227 	struct netmap_kring *kring = NULL;
228 	int i, r;
229 
230 	if (na->active_fds == 0) {
231 		na->na_flags &= ~NAF_NETMAP_ON;
232 
233 		/* Stop intercepting packets on the RX path. */
234 		nm_os_catch_rx(gna, 0);
235 
236 		/* Release packet steering control. */
237 		nm_os_catch_tx(gna, 0);
238 	}
239 
240 	netmap_krings_mode_commit(na, /*onoff=*/0);
241 
242 	for_each_rx_kring(r, kring, na) {
243 		/* Free the mbufs still pending in the RX queues,
244 		 * that did not end up into the corresponding netmap
245 		 * RX rings. */
246 		mbq_safe_purge(&kring->rx_queue);
247 		nm_os_mitigation_cleanup(&gna->mit[r]);
248 	}
249 
250 	/* Decrement reference counter for the mbufs in the
251 	 * TX pools. These mbufs can be still pending in drivers,
252 	 * (e.g. this happens with virtio-net driver, which
253 	 * does lazy reclaiming of transmitted mbufs). */
254 	for_each_tx_kring(r, kring, na) {
255 		/* We must remove the destructor on the TX event,
256 		 * because the destructor invokes netmap code, and
257 		 * the netmap module may disappear before the
258 		 * TX event is consumed. */
259 		mtx_lock_spin(&kring->tx_event_lock);
260 		if (kring->tx_event) {
261 			SET_MBUF_DESTRUCTOR(kring->tx_event, NULL);
262 		}
263 		kring->tx_event = NULL;
264 		mtx_unlock_spin(&kring->tx_event_lock);
265 	}
266 
267 	if (na->active_fds == 0) {
268 		nm_os_free(gna->mit);
269 
270 		for_each_rx_kring(r, kring, na) {
271 			mbq_safe_fini(&kring->rx_queue);
272 		}
273 
274 		for_each_tx_kring(r, kring, na) {
275 			mtx_destroy(&kring->tx_event_lock);
276 			if (kring->tx_pool == NULL) {
277 				continue;
278 			}
279 
280 			for (i=0; i<na->num_tx_desc; i++) {
281 				if (kring->tx_pool[i]) {
282 					m_freem(kring->tx_pool[i]);
283 				}
284 			}
285 			nm_os_free(kring->tx_pool);
286 			kring->tx_pool = NULL;
287 		}
288 
289 #ifdef RATE_GENERIC
290 		if (--rate_ctx.refcount == 0) {
291 			nm_prinf("del_timer()");
292 			del_timer(&rate_ctx.timer);
293 		}
294 #endif
295 		nm_prinf("Emulated adapter for %s deactivated", na->name);
296 	}
297 
298 	return 0;
299 }
300 
301 /* Enable/disable netmap mode for a generic network interface. */
302 static int
303 generic_netmap_register(struct netmap_adapter *na, int enable)
304 {
305 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
306 	struct netmap_kring *kring = NULL;
307 	int error;
308 	int i, r;
309 
310 	if (!na) {
311 		return EINVAL;
312 	}
313 
314 	if (!enable) {
315 		/* This is actually an unregif. */
316 		return generic_netmap_unregister(na);
317 	}
318 
319 	if (na->active_fds == 0) {
320 		nm_prinf("Emulated adapter for %s activated", na->name);
321 		/* Do all memory allocations when (na->active_fds == 0), to
322 		 * simplify error management. */
323 
324 		/* Allocate memory for mitigation support on all the rx queues. */
325 		gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
326 		if (!gna->mit) {
327 			nm_prerr("mitigation allocation failed");
328 			error = ENOMEM;
329 			goto out;
330 		}
331 
332 		for_each_rx_kring(r, kring, na) {
333 			/* Init mitigation support. */
334 			nm_os_mitigation_init(&gna->mit[r], r, na);
335 
336 			/* Initialize the rx queue, as generic_rx_handler() can
337 			 * be called as soon as nm_os_catch_rx() returns.
338 			 */
339 			mbq_safe_init(&kring->rx_queue);
340 		}
341 
342 		/*
343 		 * Prepare mbuf pools (parallel to the tx rings), for packet
344 		 * transmission. Don't preallocate the mbufs here, it's simpler
345 		 * to leave this task to txsync.
346 		 */
347 		for_each_tx_kring(r, kring, na) {
348 			kring->tx_pool = NULL;
349 		}
350 		for_each_tx_kring(r, kring, na) {
351 			kring->tx_pool =
352 				nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
353 			if (!kring->tx_pool) {
354 				nm_prerr("tx_pool allocation failed");
355 				error = ENOMEM;
356 				goto free_tx_pools;
357 			}
358 			mtx_init(&kring->tx_event_lock, "tx_event_lock",
359 				 NULL, MTX_SPIN);
360 		}
361 	}
362 
363 	netmap_krings_mode_commit(na, /*onoff=*/1);
364 
365 	for_each_tx_kring(r, kring, na) {
366 		/* Initialize tx_pool and tx_event. */
367 		for (i=0; i<na->num_tx_desc; i++) {
368 			kring->tx_pool[i] = NULL;
369 		}
370 
371 		kring->tx_event = NULL;
372 	}
373 
374 	if (na->active_fds == 0) {
375 		/* Prepare to intercept incoming traffic. */
376 		error = nm_os_catch_rx(gna, 1);
377 		if (error) {
378 			nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
379 			goto free_tx_pools;
380 		}
381 
382 		/* Let netmap control the packet steering. */
383 		error = nm_os_catch_tx(gna, 1);
384 		if (error) {
385 			nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
386 			goto catch_rx;
387 		}
388 
389 		na->na_flags |= NAF_NETMAP_ON;
390 
391 #ifdef RATE_GENERIC
392 		if (rate_ctx.refcount == 0) {
393 			nm_prinf("setup_timer()");
394 			memset(&rate_ctx, 0, sizeof(rate_ctx));
395 			setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
396 			if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
397 				nm_prerr("Error: mod_timer()");
398 			}
399 		}
400 		rate_ctx.refcount++;
401 #endif /* RATE */
402 	}
403 
404 	return 0;
405 
406 	/* Here (na->active_fds == 0) holds. */
407 catch_rx:
408 	nm_os_catch_rx(gna, 0);
409 free_tx_pools:
410 	for_each_tx_kring(r, kring, na) {
411 		mtx_destroy(&kring->tx_event_lock);
412 		if (kring->tx_pool == NULL) {
413 			continue;
414 		}
415 		nm_os_free(kring->tx_pool);
416 		kring->tx_pool = NULL;
417 	}
418 	for_each_rx_kring(r, kring, na) {
419 		mbq_safe_fini(&kring->rx_queue);
420 	}
421 	nm_os_free(gna->mit);
422 out:
423 
424 	return error;
425 }
426 
427 /*
428  * Callback invoked when the device driver frees an mbuf used
429  * by netmap to transmit a packet. This usually happens when
430  * the NIC notifies the driver that transmission is completed.
431  */
432 static void
433 generic_mbuf_destructor(struct mbuf *m)
434 {
435 	struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
436 	struct netmap_kring *kring;
437 	unsigned int r = MBUF_TXQ(m);
438 	unsigned int r_orig = r;
439 
440 	if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
441 		nm_prerr("Error: no netmap adapter on device %p",
442 		  GEN_TX_MBUF_IFP(m));
443 		return;
444 	}
445 
446 	/*
447 	 * First, clear the event mbuf.
448 	 * In principle, the event 'm' should match the one stored
449 	 * on ring 'r'. However we check it explicitely to stay
450 	 * safe against lower layers (qdisc, driver, etc.) changing
451 	 * MBUF_TXQ(m) under our feet. If the match is not found
452 	 * on 'r', we try to see if it belongs to some other ring.
453 	 */
454 	for (;;) {
455 		bool match = false;
456 
457 		kring = na->tx_rings[r];
458 		mtx_lock_spin(&kring->tx_event_lock);
459 		if (kring->tx_event == m) {
460 			kring->tx_event = NULL;
461 			match = true;
462 		}
463 		mtx_unlock_spin(&kring->tx_event_lock);
464 
465 		if (match) {
466 			if (r != r_orig) {
467 				nm_prlim(1, "event %p migrated: ring %u --> %u",
468 				      m, r_orig, r);
469 			}
470 			break;
471 		}
472 
473 		if (++r == na->num_tx_rings) r = 0;
474 
475 		if (r == r_orig) {
476 			nm_prlim(1, "Cannot match event %p", m);
477 			return;
478 		}
479 	}
480 
481 	/* Second, wake up clients. They will reclaim the event through
482 	 * txsync. */
483 	netmap_generic_irq(na, r, NULL);
484 #ifdef __FreeBSD__
485 #if __FreeBSD_version <= 1200050
486 	void_mbuf_dtor(m, NULL, NULL);
487 #else  /* __FreeBSD_version >= 1200051 */
488 	void_mbuf_dtor(m);
489 #endif /* __FreeBSD_version >= 1200051 */
490 #endif
491 }
492 
493 /* Record completed transmissions and update hwtail.
494  *
495  * The oldest tx buffer not yet completed is at nr_hwtail + 1,
496  * nr_hwcur is the first unsent buffer.
497  */
498 static u_int
499 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
500 {
501 	u_int const lim = kring->nkr_num_slots - 1;
502 	u_int nm_i = nm_next(kring->nr_hwtail, lim);
503 	u_int hwcur = kring->nr_hwcur;
504 	u_int n = 0;
505 	struct mbuf **tx_pool = kring->tx_pool;
506 
507 	nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
508 
509 	while (nm_i != hwcur) { /* buffers not completed */
510 		struct mbuf *m = tx_pool[nm_i];
511 
512 		if (txqdisc) {
513 			if (m == NULL) {
514 				/* Nothing to do, this is going
515 				 * to be replenished. */
516 				nm_prlim(3, "Is this happening?");
517 
518 			} else if (MBUF_QUEUED(m)) {
519 				break; /* Not dequeued yet. */
520 
521 			} else if (MBUF_REFCNT(m) != 1) {
522 				/* This mbuf has been dequeued but is still busy
523 				 * (refcount is 2).
524 				 * Leave it to the driver and replenish. */
525 				m_freem(m);
526 				tx_pool[nm_i] = NULL;
527 			}
528 
529 		} else {
530 			if (unlikely(m == NULL)) {
531 				int event_consumed;
532 
533 				/* This slot was used to place an event. */
534 				mtx_lock_spin(&kring->tx_event_lock);
535 				event_consumed = (kring->tx_event == NULL);
536 				mtx_unlock_spin(&kring->tx_event_lock);
537 				if (!event_consumed) {
538 					/* The event has not been consumed yet,
539 					 * still busy in the driver. */
540 					break;
541 				}
542 				/* The event has been consumed, we can go
543 				 * ahead. */
544 
545 			} else if (MBUF_REFCNT(m) != 1) {
546 				/* This mbuf is still busy: its refcnt is 2. */
547 				break;
548 			}
549 		}
550 
551 		n++;
552 		nm_i = nm_next(nm_i, lim);
553 	}
554 	kring->nr_hwtail = nm_prev(nm_i, lim);
555 	nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
556 
557 	return n;
558 }
559 
560 /* Compute a slot index in the middle between inf and sup. */
561 static inline u_int
562 ring_middle(u_int inf, u_int sup, u_int lim)
563 {
564 	u_int n = lim + 1;
565 	u_int e;
566 
567 	if (sup >= inf) {
568 		e = (sup + inf) / 2;
569 	} else { /* wrap around */
570 		e = (sup + n + inf) / 2;
571 		if (e >= n) {
572 			e -= n;
573 		}
574 	}
575 
576 	if (unlikely(e >= n)) {
577 		nm_prerr("This cannot happen");
578 		e = 0;
579 	}
580 
581 	return e;
582 }
583 
584 static void
585 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
586 {
587 	u_int lim = kring->nkr_num_slots - 1;
588 	struct mbuf *m;
589 	u_int e;
590 	u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
591 
592 	if (ntc == hwcur) {
593 		return; /* all buffers are free */
594 	}
595 
596 	/*
597 	 * We have pending packets in the driver between hwtail+1
598 	 * and hwcur, and we have to chose one of these slot to
599 	 * generate a notification.
600 	 * There is a race but this is only called within txsync which
601 	 * does a double check.
602 	 */
603 #if 0
604 	/* Choose a slot in the middle, so that we don't risk ending
605 	 * up in a situation where the client continuously wake up,
606 	 * fills one or a few TX slots and go to sleep again. */
607 	e = ring_middle(ntc, hwcur, lim);
608 #else
609 	/* Choose the first pending slot, to be safe against driver
610 	 * reordering mbuf transmissions. */
611 	e = ntc;
612 #endif
613 
614 	m = kring->tx_pool[e];
615 	if (m == NULL) {
616 		/* An event is already in place. */
617 		return;
618 	}
619 
620 	mtx_lock_spin(&kring->tx_event_lock);
621 	if (kring->tx_event) {
622 		/* An event is already in place. */
623 		mtx_unlock_spin(&kring->tx_event_lock);
624 		return;
625 	}
626 
627 	SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
628 	kring->tx_event = m;
629 	mtx_unlock_spin(&kring->tx_event_lock);
630 
631 	kring->tx_pool[e] = NULL;
632 
633 	nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
634 
635 	/* Decrement the refcount. This will free it if we lose the race
636 	 * with the driver. */
637 	m_freem(m);
638 	smp_mb();
639 }
640 
641 
642 /*
643  * generic_netmap_txsync() transforms netmap buffers into mbufs
644  * and passes them to the standard device driver
645  * (ndo_start_xmit() or ifp->if_transmit() ).
646  * On linux this is not done directly, but using dev_queue_xmit(),
647  * since it implements the TX flow control (and takes some locks).
648  */
649 static int
650 generic_netmap_txsync(struct netmap_kring *kring, int flags)
651 {
652 	struct netmap_adapter *na = kring->na;
653 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
654 	struct ifnet *ifp = na->ifp;
655 	struct netmap_ring *ring = kring->ring;
656 	u_int nm_i;	/* index into the netmap ring */ // j
657 	u_int const lim = kring->nkr_num_slots - 1;
658 	u_int const head = kring->rhead;
659 	u_int ring_nr = kring->ring_id;
660 
661 	IFRATE(rate_ctx.new.txsync++);
662 
663 	rmb();
664 
665 	/*
666 	 * First part: process new packets to send.
667 	 */
668 	nm_i = kring->nr_hwcur;
669 	if (nm_i != head) {	/* we have new packets to send */
670 		struct nm_os_gen_arg a;
671 		u_int event = -1;
672 
673 		if (gna->txqdisc && nm_kr_txempty(kring)) {
674 			/* In txqdisc mode, we ask for a delayed notification,
675 			 * but only when cur == hwtail, which means that the
676 			 * client is going to block. */
677 			event = ring_middle(nm_i, head, lim);
678 			nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
679 			      "head=%u,hwtail=%u)", nm_i, event, head,
680 			      kring->nr_hwtail);
681 		}
682 
683 		a.ifp = ifp;
684 		a.ring_nr = ring_nr;
685 		a.head = a.tail = NULL;
686 
687 		while (nm_i != head) {
688 			struct netmap_slot *slot = &ring->slot[nm_i];
689 			u_int len = slot->len;
690 			void *addr = NMB(na, slot);
691 			/* device-specific */
692 			struct mbuf *m;
693 			int tx_ret;
694 
695 			NM_CHECK_ADDR_LEN(na, addr, len);
696 
697 			/* Tale a mbuf from the tx pool (replenishing the pool
698 			 * entry if necessary) and copy in the user packet. */
699 			m = kring->tx_pool[nm_i];
700 			if (unlikely(m == NULL)) {
701 				kring->tx_pool[nm_i] = m =
702 					nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
703 				if (m == NULL) {
704 					nm_prlim(2, "Failed to replenish mbuf");
705 					/* Here we could schedule a timer which
706 					 * retries to replenish after a while,
707 					 * and notifies the client when it
708 					 * manages to replenish some slots. In
709 					 * any case we break early to avoid
710 					 * crashes. */
711 					break;
712 				}
713 				IFRATE(rate_ctx.new.txrepl++);
714 			}
715 
716 			a.m = m;
717 			a.addr = addr;
718 			a.len = len;
719 			a.qevent = (nm_i == event);
720 			/* When not in txqdisc mode, we should ask
721 			 * notifications when NS_REPORT is set, or roughly
722 			 * every half ring. To optimize this, we set a
723 			 * notification event when the client runs out of
724 			 * TX ring space, or when transmission fails. In
725 			 * the latter case we also break early.
726 			 */
727 			tx_ret = nm_os_generic_xmit_frame(&a);
728 			if (unlikely(tx_ret)) {
729 				if (!gna->txqdisc) {
730 					/*
731 					 * No room for this mbuf in the device driver.
732 					 * Request a notification FOR A PREVIOUS MBUF,
733 					 * then call generic_netmap_tx_clean(kring) to do the
734 					 * double check and see if we can free more buffers.
735 					 * If there is space continue, else break;
736 					 * NOTE: the double check is necessary if the problem
737 					 * occurs in the txsync call after selrecord().
738 					 * Also, we need some way to tell the caller that not
739 					 * all buffers were queued onto the device (this was
740 					 * not a problem with native netmap driver where space
741 					 * is preallocated). The bridge has a similar problem
742 					 * and we solve it there by dropping the excess packets.
743 					 */
744 					generic_set_tx_event(kring, nm_i);
745 					if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
746 						/* space now available */
747 						continue;
748 					} else {
749 						break;
750 					}
751 				}
752 
753 				/* In txqdisc mode, the netmap-aware qdisc
754 				 * queue has the same length as the number of
755 				 * netmap slots (N). Since tail is advanced
756 				 * only when packets are dequeued, qdisc
757 				 * queue overrun cannot happen, so
758 				 * nm_os_generic_xmit_frame() did not fail
759 				 * because of that.
760 				 * However, packets can be dropped because
761 				 * carrier is off, or because our qdisc is
762 				 * being deactivated, or possibly for other
763 				 * reasons. In these cases, we just let the
764 				 * packet to be dropped. */
765 				IFRATE(rate_ctx.new.txdrop++);
766 			}
767 
768 			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
769 			nm_i = nm_next(nm_i, lim);
770 			IFRATE(rate_ctx.new.txpkt++);
771 		}
772 		if (a.head != NULL) {
773 			a.addr = NULL;
774 			nm_os_generic_xmit_frame(&a);
775 		}
776 		/* Update hwcur to the next slot to transmit. Here nm_i
777 		 * is not necessarily head, we could break early. */
778 		kring->nr_hwcur = nm_i;
779 	}
780 
781 	/*
782 	 * Second, reclaim completed buffers
783 	 */
784 	if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
785 		/* No more available slots? Set a notification event
786 		 * on a netmap slot that will be cleaned in the future.
787 		 * No doublecheck is performed, since txsync() will be
788 		 * called twice by netmap_poll().
789 		 */
790 		generic_set_tx_event(kring, nm_i);
791 	}
792 
793 	generic_netmap_tx_clean(kring, gna->txqdisc);
794 
795 	return 0;
796 }
797 
798 
799 /*
800  * This handler is registered (through nm_os_catch_rx())
801  * within the attached network interface
802  * in the RX subsystem, so that every mbuf passed up by
803  * the driver can be stolen to the network stack.
804  * Stolen packets are put in a queue where the
805  * generic_netmap_rxsync() callback can extract them.
806  * Returns 1 if the packet was stolen, 0 otherwise.
807  */
808 int
809 generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
810 {
811 	struct netmap_adapter *na = NA(ifp);
812 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
813 	struct netmap_kring *kring;
814 	u_int work_done;
815 	u_int r = MBUF_RXQ(m); /* receive ring number */
816 
817 	if (r >= na->num_rx_rings) {
818 		r = r % na->num_rx_rings;
819 	}
820 
821 	kring = na->rx_rings[r];
822 
823 	if (kring->nr_mode == NKR_NETMAP_OFF) {
824 		/* We must not intercept this mbuf. */
825 		return 0;
826 	}
827 
828 	/* limit the size of the queue */
829 	if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
830 		/* This may happen when GRO/LRO features are enabled for
831 		 * the NIC driver when the generic adapter does not
832 		 * support RX scatter-gather. */
833 		nm_prlim(2, "Warning: driver pushed up big packet "
834 				"(size=%d)", (int)MBUF_LEN(m));
835 		m_freem(m);
836 	} else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) {
837 		m_freem(m);
838 	} else {
839 		mbq_safe_enqueue(&kring->rx_queue, m);
840 	}
841 
842 	if (netmap_generic_mit < 32768) {
843 		/* no rx mitigation, pass notification up */
844 		netmap_generic_irq(na, r, &work_done);
845 	} else {
846 		/* same as send combining, filter notification if there is a
847 		 * pending timer, otherwise pass it up and start a timer.
848 		 */
849 		if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
850 			/* Record that there is some pending work. */
851 			gna->mit[r].mit_pending = 1;
852 		} else {
853 			netmap_generic_irq(na, r, &work_done);
854 			nm_os_mitigation_start(&gna->mit[r]);
855 		}
856 	}
857 
858 	/* We have intercepted the mbuf. */
859 	return 1;
860 }
861 
862 /*
863  * generic_netmap_rxsync() extracts mbufs from the queue filled by
864  * generic_netmap_rx_handler() and puts their content in the netmap
865  * receive ring.
866  * Access must be protected because the rx handler is asynchronous,
867  */
868 static int
869 generic_netmap_rxsync(struct netmap_kring *kring, int flags)
870 {
871 	struct netmap_ring *ring = kring->ring;
872 	struct netmap_adapter *na = kring->na;
873 	u_int nm_i;	/* index into the netmap ring */ //j,
874 	u_int n;
875 	u_int const lim = kring->nkr_num_slots - 1;
876 	u_int const head = kring->rhead;
877 	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
878 
879 	/* Adapter-specific variables. */
880 	u_int nm_buf_len = NETMAP_BUF_SIZE(na);
881 	struct mbq tmpq;
882 	struct mbuf *m;
883 	int avail; /* in bytes */
884 	int mlen;
885 	int copy;
886 
887 	if (head > lim)
888 		return netmap_ring_reinit(kring);
889 
890 	IFRATE(rate_ctx.new.rxsync++);
891 
892 	/*
893 	 * First part: skip past packets that userspace has released.
894 	 * This can possibly make room for the second part.
895 	 */
896 	nm_i = kring->nr_hwcur;
897 	if (nm_i != head) {
898 		/* Userspace has released some packets. */
899 		for (n = 0; nm_i != head; n++) {
900 			struct netmap_slot *slot = &ring->slot[nm_i];
901 
902 			slot->flags &= ~NS_BUF_CHANGED;
903 			nm_i = nm_next(nm_i, lim);
904 		}
905 		kring->nr_hwcur = head;
906 	}
907 
908 	/*
909 	 * Second part: import newly received packets.
910 	 */
911 	if (!netmap_no_pendintr && !force_update) {
912 		return 0;
913 	}
914 
915 	nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
916 
917 	/* Compute the available space (in bytes) in this netmap ring.
918 	 * The first slot that is not considered in is the one before
919 	 * nr_hwcur. */
920 
921 	avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
922 	if (avail < 0)
923 		avail += lim + 1;
924 	avail *= nm_buf_len;
925 
926 	/* First pass: While holding the lock on the RX mbuf queue,
927 	 * extract as many mbufs as they fit the available space,
928 	 * and put them in a temporary queue.
929 	 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
930 	 * to update avail, we do the update in a while loop that we
931 	 * also use to set the RX slots, but without performing the copy. */
932 	mbq_init(&tmpq);
933 	mbq_lock(&kring->rx_queue);
934 	for (n = 0;; n++) {
935 		m = mbq_peek(&kring->rx_queue);
936 		if (!m) {
937 			/* No more packets from the driver. */
938 			break;
939 		}
940 
941 		mlen = MBUF_LEN(m);
942 		if (mlen > avail) {
943 			/* No more space in the ring. */
944 			break;
945 		}
946 
947 		mbq_dequeue(&kring->rx_queue);
948 
949 		while (mlen) {
950 			copy = nm_buf_len;
951 			if (mlen < copy) {
952 				copy = mlen;
953 			}
954 			mlen -= copy;
955 			avail -= nm_buf_len;
956 
957 			ring->slot[nm_i].len = copy;
958 			ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
959 			nm_i = nm_next(nm_i, lim);
960 		}
961 
962 		mbq_enqueue(&tmpq, m);
963 	}
964 	mbq_unlock(&kring->rx_queue);
965 
966 	/* Second pass: Drain the temporary queue, going over the used RX slots,
967 	 * and perform the copy out of the RX queue lock. */
968 	nm_i = kring->nr_hwtail;
969 
970 	for (;;) {
971 		void *nmaddr;
972 		int ofs = 0;
973 		int morefrag;
974 
975 		m = mbq_dequeue(&tmpq);
976 		if (!m)	{
977 			break;
978 		}
979 
980 		do {
981 			nmaddr = NMB(na, &ring->slot[nm_i]);
982 			/* We only check the address here on generic rx rings. */
983 			if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
984 				m_freem(m);
985 				mbq_purge(&tmpq);
986 				mbq_fini(&tmpq);
987 				return netmap_ring_reinit(kring);
988 			}
989 
990 			copy = ring->slot[nm_i].len;
991 			m_copydata(m, ofs, copy, nmaddr);
992 			ofs += copy;
993 			morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
994 			nm_i = nm_next(nm_i, lim);
995 		} while (morefrag);
996 
997 		m_freem(m);
998 	}
999 
1000 	mbq_fini(&tmpq);
1001 
1002 	if (n) {
1003 		kring->nr_hwtail = nm_i;
1004 		IFRATE(rate_ctx.new.rxpkt += n);
1005 	}
1006 	kring->nr_kflags &= ~NKR_PENDINTR;
1007 
1008 	return 0;
1009 }
1010 
1011 static void
1012 generic_netmap_dtor(struct netmap_adapter *na)
1013 {
1014 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1015 	struct ifnet *ifp = netmap_generic_getifp(gna);
1016 	struct netmap_adapter *prev_na = gna->prev;
1017 
1018 	if (prev_na != NULL) {
1019 		netmap_adapter_put(prev_na);
1020 		if (nm_iszombie(na)) {
1021 		        /*
1022 		         * The driver has been removed without releasing
1023 		         * the reference so we need to do it here.
1024 		         */
1025 		        netmap_adapter_put(prev_na);
1026 		}
1027 		nm_prinf("Native netmap adapter %p restored", prev_na);
1028 	}
1029 	NM_RESTORE_NA(ifp, prev_na);
1030 	/*
1031 	 * netmap_detach_common(), that it's called after this function,
1032 	 * overrides WNA(ifp) if na->ifp is not NULL.
1033 	 */
1034 	na->ifp = NULL;
1035 	nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1036 }
1037 
1038 int
1039 na_is_generic(struct netmap_adapter *na)
1040 {
1041 	return na->nm_register == generic_netmap_register;
1042 }
1043 
1044 /*
1045  * generic_netmap_attach() makes it possible to use netmap on
1046  * a device without native netmap support.
1047  * This is less performant than native support but potentially
1048  * faster than raw sockets or similar schemes.
1049  *
1050  * In this "emulated" mode, netmap rings do not necessarily
1051  * have the same size as those in the NIC. We use a default
1052  * value and possibly override it if the OS has ways to fetch the
1053  * actual configuration.
1054  */
1055 int
1056 generic_netmap_attach(struct ifnet *ifp)
1057 {
1058 	struct netmap_adapter *na;
1059 	struct netmap_generic_adapter *gna;
1060 	int retval;
1061 	u_int num_tx_desc, num_rx_desc;
1062 
1063 #ifdef __FreeBSD__
1064 	if (ifp->if_type == IFT_LOOP) {
1065 		nm_prerr("if_loop is not supported by %s", __func__);
1066 		return EINVAL;
1067 	}
1068 #endif
1069 
1070 	if (NM_NA_CLASH(ifp)) {
1071 		/* If NA(ifp) is not null but there is no valid netmap
1072 		 * adapter it means that someone else is using the same
1073 		 * pointer (e.g. ax25_ptr on linux). This happens for
1074 		 * instance when also PF_RING is in use. */
1075 		nm_prerr("Error: netmap adapter hook is busy");
1076 		return EBUSY;
1077 	}
1078 
1079 	num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1080 
1081 	nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1082 	if (num_tx_desc == 0 || num_rx_desc == 0) {
1083 		nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1084 		return EINVAL;
1085 	}
1086 
1087 	gna = nm_os_malloc(sizeof(*gna));
1088 	if (gna == NULL) {
1089 		nm_prerr("no memory on attach, give up");
1090 		return ENOMEM;
1091 	}
1092 	na = (struct netmap_adapter *)gna;
1093 	strlcpy(na->name, ifp->if_xname, sizeof(na->name));
1094 	na->ifp = ifp;
1095 	na->num_tx_desc = num_tx_desc;
1096 	na->num_rx_desc = num_rx_desc;
1097 	na->rx_buf_maxsize = 32768;
1098 	na->nm_register = &generic_netmap_register;
1099 	na->nm_txsync = &generic_netmap_txsync;
1100 	na->nm_rxsync = &generic_netmap_rxsync;
1101 	na->nm_dtor = &generic_netmap_dtor;
1102 	/* when using generic, NAF_NETMAP_ON is set so we force
1103 	 * NAF_SKIP_INTR to use the regular interrupt handler
1104 	 */
1105 	na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1106 
1107 	nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1108 			ifp->num_tx_queues, ifp->real_num_tx_queues,
1109 			ifp->tx_queue_len);
1110 	nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1111 			ifp->num_rx_queues, ifp->real_num_rx_queues);
1112 
1113 	nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1114 
1115 	retval = netmap_attach_common(na);
1116 	if (retval) {
1117 		nm_os_free(gna);
1118 		return retval;
1119 	}
1120 
1121 	if (NM_NA_VALID(ifp)) {
1122 		gna->prev = NA(ifp); /* save old na */
1123 		netmap_adapter_get(gna->prev);
1124 	}
1125 	NM_ATTACH_NA(ifp, na);
1126 
1127 	nm_os_generic_set_features(gna);
1128 
1129 	nm_prinf("Emulated adapter for %s created (prev was %p)", na->name, gna->prev);
1130 
1131 	return retval;
1132 }
1133