xref: /freebsd/sys/dev/netmap/netmap_generic.c (revision 2b833162)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2016 Vincenzo Maffione
5  * Copyright (C) 2013-2016 Luigi Rizzo
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *      documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * This module implements netmap support on top of standard,
32  * unmodified device drivers.
33  *
34  * A NIOCREGIF request is handled here if the device does not
35  * have native support. TX and RX rings are emulated as follows:
36  *
37  * NIOCREGIF
38  *	We preallocate a block of TX mbufs (roughly as many as
39  *	tx descriptors; the number is not critical) to speed up
40  *	operation during transmissions. The refcount on most of
41  *	these buffers is artificially bumped up so we can recycle
42  *	them more easily. Also, the destructor is intercepted
43  *	so we use it as an interrupt notification to wake up
44  *	processes blocked on a poll().
45  *
46  *	For each receive ring we allocate one "struct mbq"
47  *	(an mbuf tailq plus a spinlock). We intercept packets
48  *	(through if_input)
49  *	on the receive path and put them in the mbq from which
50  *	netmap receive routines can grab them.
51  *
52  * TX:
53  *	in the generic_txsync() routine, netmap buffers are copied
54  *	(or linked, in a future) to the preallocated mbufs
55  *	and pushed to the transmit queue. Some of these mbufs
56  *	(those with NS_REPORT, or otherwise every half ring)
57  *	have the refcount=1, others have refcount=2.
58  *	When the destructor is invoked, we take that as
59  *	a notification that all mbufs up to that one in
60  *	the specific ring have been completed, and generate
61  *	the equivalent of a transmit interrupt.
62  *
63  * RX:
64  *
65  */
66 
67 #ifdef __FreeBSD__
68 
69 #include <sys/cdefs.h> /* prerequisite */
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/types.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/lock.h>   /* PROT_EXEC */
76 #include <sys/rwlock.h>
77 #include <sys/socket.h> /* sockaddrs */
78 #include <sys/selinfo.h>
79 #include <net/if.h>
80 #include <net/if_types.h>
81 #include <net/if_var.h>
82 #include <machine/bus.h>        /* bus_dmamap_* in netmap_kern.h */
83 
84 #include <net/netmap.h>
85 #include <dev/netmap/netmap_kern.h>
86 #include <dev/netmap/netmap_mem2.h>
87 
88 #define MBUF_RXQ(m)	((m)->m_pkthdr.flowid)
89 #define smp_mb()
90 
91 #elif defined _WIN32
92 
93 #include "win_glue.h"
94 
95 #define MBUF_TXQ(m) 	0//((m)->m_pkthdr.flowid)
96 #define MBUF_RXQ(m)	    0//((m)->m_pkthdr.flowid)
97 #define smp_mb()		//XXX: to be correctly defined
98 
99 #else /* linux */
100 
101 #include "bsd_glue.h"
102 
103 #include <linux/ethtool.h>      /* struct ethtool_ops, get_ringparam */
104 #include <linux/hrtimer.h>
105 
106 static inline struct mbuf *
107 nm_os_get_mbuf(struct ifnet *ifp, int len)
108 {
109 	return alloc_skb(LL_RESERVED_SPACE(ifp) + len +
110 			 ifp->needed_tailroom, GFP_ATOMIC);
111 }
112 
113 #endif /* linux */
114 
115 
116 /* Common headers. */
117 #include <net/netmap.h>
118 #include <dev/netmap/netmap_kern.h>
119 #include <dev/netmap/netmap_mem2.h>
120 
121 
122 #define for_each_kring_n(_i, _k, _karr, _n) \
123 	for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
124 
125 #define for_each_tx_kring(_i, _k, _na) \
126 		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
127 #define for_each_tx_kring_h(_i, _k, _na) \
128 		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
129 
130 #define for_each_rx_kring(_i, _k, _na) \
131 		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
132 #define for_each_rx_kring_h(_i, _k, _na) \
133 		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
134 
135 
136 /* ======================== PERFORMANCE STATISTICS =========================== */
137 
138 #ifdef RATE_GENERIC
139 #define IFRATE(x) x
140 struct rate_stats {
141 	unsigned long txpkt;
142 	unsigned long txsync;
143 	unsigned long txirq;
144 	unsigned long txrepl;
145 	unsigned long txdrop;
146 	unsigned long rxpkt;
147 	unsigned long rxirq;
148 	unsigned long rxsync;
149 };
150 
151 struct rate_context {
152 	unsigned refcount;
153 	struct timer_list timer;
154 	struct rate_stats new;
155 	struct rate_stats old;
156 };
157 
158 #define RATE_PRINTK(_NAME_) \
159 	printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
160 #define RATE_PERIOD  2
161 static void rate_callback(unsigned long arg)
162 {
163 	struct rate_context * ctx = (struct rate_context *)arg;
164 	struct rate_stats cur = ctx->new;
165 	int r;
166 
167 	RATE_PRINTK(txpkt);
168 	RATE_PRINTK(txsync);
169 	RATE_PRINTK(txirq);
170 	RATE_PRINTK(txrepl);
171 	RATE_PRINTK(txdrop);
172 	RATE_PRINTK(rxpkt);
173 	RATE_PRINTK(rxsync);
174 	RATE_PRINTK(rxirq);
175 	printk("\n");
176 
177 	ctx->old = cur;
178 	r = mod_timer(&ctx->timer, jiffies +
179 			msecs_to_jiffies(RATE_PERIOD * 1000));
180 	if (unlikely(r))
181 		nm_prerr("mod_timer() failed");
182 }
183 
184 static struct rate_context rate_ctx;
185 
186 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
187 {
188 	if (txp) rate_ctx.new.txpkt++;
189 	if (txs) rate_ctx.new.txsync++;
190 	if (txi) rate_ctx.new.txirq++;
191 	if (rxp) rate_ctx.new.rxpkt++;
192 	if (rxs) rate_ctx.new.rxsync++;
193 	if (rxi) rate_ctx.new.rxirq++;
194 }
195 
196 #else /* !RATE */
197 #define IFRATE(x)
198 #endif /* !RATE */
199 
200 
201 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
202 
203 /*
204  * Wrapper used by the generic adapter layer to notify
205  * the poller threads. Differently from netmap_rx_irq(), we check
206  * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
207  */
208 void
209 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
210 {
211 	if (unlikely(!nm_netmap_on(na)))
212 		return;
213 
214 	netmap_common_irq(na, q, work_done);
215 #ifdef RATE_GENERIC
216 	if (work_done)
217 		rate_ctx.new.rxirq++;
218 	else
219 		rate_ctx.new.txirq++;
220 #endif  /* RATE_GENERIC */
221 }
222 
223 static int
224 generic_netmap_unregister(struct netmap_adapter *na)
225 {
226 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
227 	struct netmap_kring *kring = NULL;
228 	int i, r;
229 
230 	if (na->active_fds == 0) {
231 		na->na_flags &= ~NAF_NETMAP_ON;
232 
233 		/* Stop intercepting packets on the RX path. */
234 		nm_os_catch_rx(gna, 0);
235 
236 		/* Release packet steering control. */
237 		nm_os_catch_tx(gna, 0);
238 	}
239 
240 	netmap_krings_mode_commit(na, /*onoff=*/0);
241 
242 	for_each_rx_kring(r, kring, na) {
243 		/* Free the mbufs still pending in the RX queues,
244 		 * that did not end up into the corresponding netmap
245 		 * RX rings. */
246 		mbq_safe_purge(&kring->rx_queue);
247 		nm_os_mitigation_cleanup(&gna->mit[r]);
248 	}
249 
250 	/* Decrement reference counter for the mbufs in the
251 	 * TX pools. These mbufs can be still pending in drivers,
252 	 * (e.g. this happens with virtio-net driver, which
253 	 * does lazy reclaiming of transmitted mbufs). */
254 	for_each_tx_kring(r, kring, na) {
255 		/* We must remove the destructor on the TX event,
256 		 * because the destructor invokes netmap code, and
257 		 * the netmap module may disappear before the
258 		 * TX event is consumed. */
259 		mtx_lock_spin(&kring->tx_event_lock);
260 		if (kring->tx_event) {
261 			SET_MBUF_DESTRUCTOR(kring->tx_event, NULL);
262 		}
263 		kring->tx_event = NULL;
264 		mtx_unlock_spin(&kring->tx_event_lock);
265 	}
266 
267 	if (na->active_fds == 0) {
268 		nm_os_free(gna->mit);
269 
270 		for_each_rx_kring(r, kring, na) {
271 			mbq_safe_fini(&kring->rx_queue);
272 		}
273 
274 		for_each_tx_kring(r, kring, na) {
275 			callout_drain(&kring->tx_event_callout);
276 			mtx_destroy(&kring->tx_event_lock);
277 			if (kring->tx_pool == NULL) {
278 				continue;
279 			}
280 
281 			for (i=0; i<na->num_tx_desc; i++) {
282 				if (kring->tx_pool[i]) {
283 					m_freem(kring->tx_pool[i]);
284 				}
285 			}
286 			nm_os_free(kring->tx_pool);
287 			kring->tx_pool = NULL;
288 		}
289 
290 #ifdef RATE_GENERIC
291 		if (--rate_ctx.refcount == 0) {
292 			nm_prinf("del_timer()");
293 			del_timer(&rate_ctx.timer);
294 		}
295 #endif
296 		nm_prinf("Emulated adapter for %s deactivated", na->name);
297 	}
298 
299 	return 0;
300 }
301 
302 /* Enable/disable netmap mode for a generic network interface. */
303 static int
304 generic_netmap_register(struct netmap_adapter *na, int enable)
305 {
306 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
307 	struct netmap_kring *kring = NULL;
308 	int error;
309 	int i, r;
310 
311 	if (!na) {
312 		return EINVAL;
313 	}
314 
315 	if (!enable) {
316 		/* This is actually an unregif. */
317 		return generic_netmap_unregister(na);
318 	}
319 
320 	if (na->active_fds == 0) {
321 		nm_prinf("Emulated adapter for %s activated", na->name);
322 		/* Do all memory allocations when (na->active_fds == 0), to
323 		 * simplify error management. */
324 
325 		/* Allocate memory for mitigation support on all the rx queues. */
326 		gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
327 		if (!gna->mit) {
328 			nm_prerr("mitigation allocation failed");
329 			error = ENOMEM;
330 			goto out;
331 		}
332 
333 		for_each_rx_kring(r, kring, na) {
334 			/* Init mitigation support. */
335 			nm_os_mitigation_init(&gna->mit[r], r, na);
336 
337 			/* Initialize the rx queue, as generic_rx_handler() can
338 			 * be called as soon as nm_os_catch_rx() returns.
339 			 */
340 			mbq_safe_init(&kring->rx_queue);
341 		}
342 
343 		/*
344 		 * Prepare mbuf pools (parallel to the tx rings), for packet
345 		 * transmission. Don't preallocate the mbufs here, it's simpler
346 		 * to leave this task to txsync.
347 		 */
348 		for_each_tx_kring(r, kring, na) {
349 			kring->tx_pool = NULL;
350 		}
351 		for_each_tx_kring(r, kring, na) {
352 			kring->tx_pool =
353 				nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
354 			if (!kring->tx_pool) {
355 				nm_prerr("tx_pool allocation failed");
356 				error = ENOMEM;
357 				goto free_tx_pools;
358 			}
359 			mtx_init(&kring->tx_event_lock, "tx_event_lock",
360 				 NULL, MTX_SPIN);
361 			callout_init_mtx(&kring->tx_event_callout,
362 					 &kring->tx_event_lock,
363 					 CALLOUT_RETURNUNLOCKED);
364 		}
365 	}
366 
367 	netmap_krings_mode_commit(na, /*onoff=*/1);
368 
369 	for_each_tx_kring(r, kring, na) {
370 		/* Initialize tx_pool and tx_event. */
371 		for (i=0; i<na->num_tx_desc; i++) {
372 			kring->tx_pool[i] = NULL;
373 		}
374 
375 		kring->tx_event = NULL;
376 	}
377 
378 	if (na->active_fds == 0) {
379 		/* Prepare to intercept incoming traffic. */
380 		error = nm_os_catch_rx(gna, 1);
381 		if (error) {
382 			nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
383 			goto free_tx_pools;
384 		}
385 
386 		/* Let netmap control the packet steering. */
387 		error = nm_os_catch_tx(gna, 1);
388 		if (error) {
389 			nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
390 			goto catch_rx;
391 		}
392 
393 		na->na_flags |= NAF_NETMAP_ON;
394 
395 #ifdef RATE_GENERIC
396 		if (rate_ctx.refcount == 0) {
397 			nm_prinf("setup_timer()");
398 			memset(&rate_ctx, 0, sizeof(rate_ctx));
399 			setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
400 			if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
401 				nm_prerr("Error: mod_timer()");
402 			}
403 		}
404 		rate_ctx.refcount++;
405 #endif /* RATE */
406 	}
407 
408 	return 0;
409 
410 	/* Here (na->active_fds == 0) holds. */
411 catch_rx:
412 	nm_os_catch_rx(gna, 0);
413 free_tx_pools:
414 	for_each_tx_kring(r, kring, na) {
415 		mtx_destroy(&kring->tx_event_lock);
416 		if (kring->tx_pool == NULL) {
417 			continue;
418 		}
419 		nm_os_free(kring->tx_pool);
420 		kring->tx_pool = NULL;
421 	}
422 	for_each_rx_kring(r, kring, na) {
423 		mbq_safe_fini(&kring->rx_queue);
424 	}
425 	nm_os_free(gna->mit);
426 out:
427 
428 	return error;
429 }
430 
431 /*
432  * Callback invoked when the device driver frees an mbuf used
433  * by netmap to transmit a packet. This usually happens when
434  * the NIC notifies the driver that transmission is completed.
435  */
436 static void
437 generic_mbuf_dtor(struct mbuf *m)
438 {
439 	struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
440 	struct netmap_kring *kring;
441 	unsigned int r = MBUF_TXQ(m);
442 	unsigned int r_orig = r;
443 
444 	if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
445 		nm_prerr("Error: no netmap adapter on device %p",
446 		  GEN_TX_MBUF_IFP(m));
447 		return;
448 	}
449 
450 	/*
451 	 * First, clear the event mbuf.
452 	 * In principle, the event 'm' should match the one stored
453 	 * on ring 'r'. However we check it explicitly to stay
454 	 * safe against lower layers (qdisc, driver, etc.) changing
455 	 * MBUF_TXQ(m) under our feet. If the match is not found
456 	 * on 'r', we try to see if it belongs to some other ring.
457 	 */
458 	for (;;) {
459 		bool match = false;
460 
461 		kring = na->tx_rings[r];
462 		mtx_lock_spin(&kring->tx_event_lock);
463 		if (kring->tx_event == m) {
464 			kring->tx_event = NULL;
465 			match = true;
466 		}
467 		mtx_unlock_spin(&kring->tx_event_lock);
468 
469 		if (match) {
470 			if (r != r_orig) {
471 				nm_prlim(1, "event %p migrated: ring %u --> %u",
472 				      m, r_orig, r);
473 			}
474 			break;
475 		}
476 
477 		if (++r == na->num_tx_rings) r = 0;
478 
479 		if (r == r_orig) {
480 #ifndef __FreeBSD__
481 			/*
482 			 * On FreeBSD this situation can arise if the tx_event
483 			 * callout handler cleared a stuck packet.
484 			 */
485 			nm_prlim(1, "Cannot match event %p", m);
486 #endif
487 			nm_generic_mbuf_dtor(m);
488 			return;
489 		}
490 	}
491 
492 	/* Second, wake up clients. They will reclaim the event through
493 	 * txsync. */
494 	netmap_generic_irq(na, r, NULL);
495 	nm_generic_mbuf_dtor(m);
496 }
497 
498 /* Record completed transmissions and update hwtail.
499  *
500  * The oldest tx buffer not yet completed is at nr_hwtail + 1,
501  * nr_hwcur is the first unsent buffer.
502  */
503 static u_int
504 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
505 {
506 	u_int const lim = kring->nkr_num_slots - 1;
507 	u_int nm_i = nm_next(kring->nr_hwtail, lim);
508 	u_int hwcur = kring->nr_hwcur;
509 	u_int n = 0;
510 	struct mbuf **tx_pool = kring->tx_pool;
511 
512 	nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
513 
514 	while (nm_i != hwcur) { /* buffers not completed */
515 		struct mbuf *m = tx_pool[nm_i];
516 
517 		if (txqdisc) {
518 			if (m == NULL) {
519 				/* Nothing to do, this is going
520 				 * to be replenished. */
521 				nm_prlim(3, "Is this happening?");
522 
523 			} else if (MBUF_QUEUED(m)) {
524 				break; /* Not dequeued yet. */
525 
526 			} else if (MBUF_REFCNT(m) != 1) {
527 				/* This mbuf has been dequeued but is still busy
528 				 * (refcount is 2).
529 				 * Leave it to the driver and replenish. */
530 				m_freem(m);
531 				tx_pool[nm_i] = NULL;
532 			}
533 
534 		} else {
535 			if (unlikely(m == NULL)) {
536 				int event_consumed;
537 
538 				/* This slot was used to place an event. */
539 				mtx_lock_spin(&kring->tx_event_lock);
540 				event_consumed = (kring->tx_event == NULL);
541 				mtx_unlock_spin(&kring->tx_event_lock);
542 				if (!event_consumed) {
543 					/* The event has not been consumed yet,
544 					 * still busy in the driver. */
545 					break;
546 				}
547 				/* The event has been consumed, we can go
548 				 * ahead. */
549 			} else if (MBUF_REFCNT(m) != 1) {
550 				/* This mbuf is still busy: its refcnt is 2. */
551 				break;
552 			}
553 		}
554 
555 		n++;
556 		nm_i = nm_next(nm_i, lim);
557 	}
558 	kring->nr_hwtail = nm_prev(nm_i, lim);
559 	nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
560 
561 	return n;
562 }
563 
564 /* Compute a slot index in the middle between inf and sup. */
565 static inline u_int
566 ring_middle(u_int inf, u_int sup, u_int lim)
567 {
568 	u_int n = lim + 1;
569 	u_int e;
570 
571 	if (sup >= inf) {
572 		e = (sup + inf) / 2;
573 	} else { /* wrap around */
574 		e = (sup + n + inf) / 2;
575 		if (e >= n) {
576 			e -= n;
577 		}
578 	}
579 
580 	if (unlikely(e >= n)) {
581 		nm_prerr("This cannot happen");
582 		e = 0;
583 	}
584 
585 	return e;
586 }
587 
588 #ifdef __FreeBSD__
589 static void
590 generic_tx_callout(void *arg)
591 {
592 	struct netmap_kring *kring = arg;
593 
594 	kring->tx_event = NULL;
595 	mtx_unlock_spin(&kring->tx_event_lock);
596 	netmap_generic_irq(kring->na, kring->ring_id, NULL);
597 }
598 #endif
599 
600 static void
601 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
602 {
603 	u_int lim = kring->nkr_num_slots - 1;
604 	struct mbuf *m;
605 	u_int e;
606 	u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
607 
608 	if (ntc == hwcur) {
609 		return; /* all buffers are free */
610 	}
611 
612 	/*
613 	 * We have pending packets in the driver between hwtail+1
614 	 * and hwcur, and we have to chose one of these slot to
615 	 * generate a notification.
616 	 * There is a race but this is only called within txsync which
617 	 * does a double check.
618 	 */
619 #if 0
620 	/* Choose a slot in the middle, so that we don't risk ending
621 	 * up in a situation where the client continuously wake up,
622 	 * fills one or a few TX slots and go to sleep again. */
623 	e = ring_middle(ntc, hwcur, lim);
624 #else
625 	/* Choose the first pending slot, to be safe against driver
626 	 * reordering mbuf transmissions. */
627 	e = ntc;
628 #endif
629 
630 	m = kring->tx_pool[e];
631 	if (m == NULL) {
632 		/* An event is already in place. */
633 		return;
634 	}
635 
636 	mtx_lock_spin(&kring->tx_event_lock);
637 	if (kring->tx_event) {
638 		/* An event is already in place. */
639 		mtx_unlock_spin(&kring->tx_event_lock);
640 		return;
641 	}
642 
643 	SET_MBUF_DESTRUCTOR(m, generic_mbuf_dtor);
644 	kring->tx_event = m;
645 #ifdef __FreeBSD__
646 	/*
647 	 * Handle the possibility that the transmitted buffer isn't reclaimed
648 	 * within a bounded period of time.  This can arise when transmitting
649 	 * out of multiple ports via a lagg or bridge interface, since the
650 	 * member ports may legitimately only free transmitted buffers in
651 	 * batches.
652 	 *
653 	 * The callout handler clears the stuck packet from the ring, allowing
654 	 * transmission to proceed.  In the common case we let
655 	 * generic_mbuf_dtor() unstick the ring, allowing mbufs to be
656 	 * reused most of the time.
657 	 */
658 	callout_reset_sbt_curcpu(&kring->tx_event_callout, SBT_1MS, 0,
659 	    generic_tx_callout, kring, 0);
660 #endif
661 	mtx_unlock_spin(&kring->tx_event_lock);
662 
663 	kring->tx_pool[e] = NULL;
664 
665 	nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
666 
667 	/* Decrement the refcount. This will free it if we lose the race
668 	 * with the driver. */
669 	m_freem(m);
670 }
671 
672 /*
673  * generic_netmap_txsync() transforms netmap buffers into mbufs
674  * and passes them to the standard device driver
675  * (ndo_start_xmit() or ifp->if_transmit() ).
676  * On linux this is not done directly, but using dev_queue_xmit(),
677  * since it implements the TX flow control (and takes some locks).
678  */
679 static int
680 generic_netmap_txsync(struct netmap_kring *kring, int flags)
681 {
682 	struct netmap_adapter *na = kring->na;
683 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
684 	if_t ifp = na->ifp;
685 	struct netmap_ring *ring = kring->ring;
686 	u_int nm_i;	/* index into the netmap ring */ // j
687 	u_int const lim = kring->nkr_num_slots - 1;
688 	u_int const head = kring->rhead;
689 	u_int ring_nr = kring->ring_id;
690 
691 	IFRATE(rate_ctx.new.txsync++);
692 
693 	rmb();
694 
695 	/*
696 	 * First part: process new packets to send.
697 	 */
698 	nm_i = kring->nr_hwcur;
699 	if (nm_i != head) {	/* we have new packets to send */
700 		struct nm_os_gen_arg a;
701 		u_int event = -1;
702 #ifdef __FreeBSD__
703 		struct epoch_tracker et;
704 
705 		NET_EPOCH_ENTER(et);
706 #endif
707 
708 		if (gna->txqdisc && nm_kr_txempty(kring)) {
709 			/* In txqdisc mode, we ask for a delayed notification,
710 			 * but only when cur == hwtail, which means that the
711 			 * client is going to block. */
712 			event = ring_middle(nm_i, head, lim);
713 			nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
714 			      "head=%u,hwtail=%u)", nm_i, event, head,
715 			      kring->nr_hwtail);
716 		}
717 
718 		a.ifp = ifp;
719 		a.ring_nr = ring_nr;
720 		a.head = a.tail = NULL;
721 
722 		while (nm_i != head) {
723 			struct netmap_slot *slot = &ring->slot[nm_i];
724 			u_int len = slot->len;
725 			void *addr = NMB(na, slot);
726 			/* device-specific */
727 			struct mbuf *m;
728 			int tx_ret;
729 
730 			NM_CHECK_ADDR_LEN(na, addr, len);
731 
732 			/* Tale a mbuf from the tx pool (replenishing the pool
733 			 * entry if necessary) and copy in the user packet. */
734 			m = kring->tx_pool[nm_i];
735 			if (unlikely(m == NULL)) {
736 				kring->tx_pool[nm_i] = m =
737 					nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
738 				if (m == NULL) {
739 					nm_prlim(2, "Failed to replenish mbuf");
740 					/* Here we could schedule a timer which
741 					 * retries to replenish after a while,
742 					 * and notifies the client when it
743 					 * manages to replenish some slots. In
744 					 * any case we break early to avoid
745 					 * crashes. */
746 					break;
747 				}
748 				IFRATE(rate_ctx.new.txrepl++);
749 			} else {
750 				nm_os_mbuf_reinit(m);
751 			}
752 
753 			a.m = m;
754 			a.addr = addr;
755 			a.len = len;
756 			a.qevent = (nm_i == event);
757 			/* When not in txqdisc mode, we should ask
758 			 * notifications when NS_REPORT is set, or roughly
759 			 * every half ring. To optimize this, we set a
760 			 * notification event when the client runs out of
761 			 * TX ring space, or when transmission fails. In
762 			 * the latter case we also break early.
763 			 */
764 			tx_ret = nm_os_generic_xmit_frame(&a);
765 			if (unlikely(tx_ret)) {
766 				if (!gna->txqdisc) {
767 					/*
768 					 * No room for this mbuf in the device driver.
769 					 * Request a notification FOR A PREVIOUS MBUF,
770 					 * then call generic_netmap_tx_clean(kring) to do the
771 					 * double check and see if we can free more buffers.
772 					 * If there is space continue, else break;
773 					 * NOTE: the double check is necessary if the problem
774 					 * occurs in the txsync call after selrecord().
775 					 * Also, we need some way to tell the caller that not
776 					 * all buffers were queued onto the device (this was
777 					 * not a problem with native netmap driver where space
778 					 * is preallocated). The bridge has a similar problem
779 					 * and we solve it there by dropping the excess packets.
780 					 */
781 					generic_set_tx_event(kring, nm_i);
782 					if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
783 						/* space now available */
784 						continue;
785 					} else {
786 						break;
787 					}
788 				}
789 
790 				/* In txqdisc mode, the netmap-aware qdisc
791 				 * queue has the same length as the number of
792 				 * netmap slots (N). Since tail is advanced
793 				 * only when packets are dequeued, qdisc
794 				 * queue overrun cannot happen, so
795 				 * nm_os_generic_xmit_frame() did not fail
796 				 * because of that.
797 				 * However, packets can be dropped because
798 				 * carrier is off, or because our qdisc is
799 				 * being deactivated, or possibly for other
800 				 * reasons. In these cases, we just let the
801 				 * packet to be dropped. */
802 				IFRATE(rate_ctx.new.txdrop++);
803 			}
804 
805 			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
806 			nm_i = nm_next(nm_i, lim);
807 			IFRATE(rate_ctx.new.txpkt++);
808 		}
809 		if (a.head != NULL) {
810 			a.addr = NULL;
811 			nm_os_generic_xmit_frame(&a);
812 		}
813 		/* Update hwcur to the next slot to transmit. Here nm_i
814 		 * is not necessarily head, we could break early. */
815 		kring->nr_hwcur = nm_i;
816 
817 #ifdef __FreeBSD__
818 		NET_EPOCH_EXIT(et);
819 #endif
820 	}
821 
822 	if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
823 		/* No more available slots? Set a notification event
824 		 * on a netmap slot that will be cleaned in the future.
825 		 * No doublecheck is performed, since txsync() will be
826 		 * called twice by netmap_poll().
827 		 */
828 		generic_set_tx_event(kring, nm_i);
829 	}
830 
831 	/*
832 	 * Second, reclaim completed buffers
833 	 */
834 	generic_netmap_tx_clean(kring, gna->txqdisc);
835 
836 	return 0;
837 }
838 
839 
840 /*
841  * This handler is registered (through nm_os_catch_rx())
842  * within the attached network interface
843  * in the RX subsystem, so that every mbuf passed up by
844  * the driver can be stolen to the network stack.
845  * Stolen packets are put in a queue where the
846  * generic_netmap_rxsync() callback can extract them.
847  * Returns 1 if the packet was stolen, 0 otherwise.
848  */
849 int
850 generic_rx_handler(if_t ifp, struct mbuf *m)
851 {
852 	struct netmap_adapter *na = NA(ifp);
853 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
854 	struct netmap_kring *kring;
855 	u_int work_done;
856 	u_int r = MBUF_RXQ(m); /* receive ring number */
857 
858 	if (r >= na->num_rx_rings) {
859 		r = r % na->num_rx_rings;
860 	}
861 
862 	kring = na->rx_rings[r];
863 
864 	if (kring->nr_mode == NKR_NETMAP_OFF) {
865 		/* We must not intercept this mbuf. */
866 		return 0;
867 	}
868 
869 	/* limit the size of the queue */
870 	if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
871 		/* This may happen when GRO/LRO features are enabled for
872 		 * the NIC driver when the generic adapter does not
873 		 * support RX scatter-gather. */
874 		nm_prlim(2, "Warning: driver pushed up big packet "
875 				"(size=%d)", (int)MBUF_LEN(m));
876 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
877 		m_freem(m);
878 	} else if (unlikely(mbq_len(&kring->rx_queue) > na->num_rx_desc)) {
879 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
880 		m_freem(m);
881 	} else {
882 		mbq_safe_enqueue(&kring->rx_queue, m);
883 	}
884 
885 	if (netmap_generic_mit < 32768) {
886 		/* no rx mitigation, pass notification up */
887 		netmap_generic_irq(na, r, &work_done);
888 	} else {
889 		/* same as send combining, filter notification if there is a
890 		 * pending timer, otherwise pass it up and start a timer.
891 		 */
892 		if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
893 			/* Record that there is some pending work. */
894 			gna->mit[r].mit_pending = 1;
895 		} else {
896 			netmap_generic_irq(na, r, &work_done);
897 			nm_os_mitigation_start(&gna->mit[r]);
898 		}
899 	}
900 
901 	/* We have intercepted the mbuf. */
902 	return 1;
903 }
904 
905 /*
906  * generic_netmap_rxsync() extracts mbufs from the queue filled by
907  * generic_netmap_rx_handler() and puts their content in the netmap
908  * receive ring.
909  * Access must be protected because the rx handler is asynchronous,
910  */
911 static int
912 generic_netmap_rxsync(struct netmap_kring *kring, int flags)
913 {
914 	struct netmap_ring *ring = kring->ring;
915 	struct netmap_adapter *na = kring->na;
916 	u_int nm_i;	/* index into the netmap ring */ //j,
917 	u_int n;
918 	u_int const lim = kring->nkr_num_slots - 1;
919 	u_int const head = kring->rhead;
920 	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
921 
922 	/* Adapter-specific variables. */
923 	u_int nm_buf_len = NETMAP_BUF_SIZE(na);
924 	struct mbq tmpq;
925 	struct mbuf *m;
926 	int avail; /* in bytes */
927 	int mlen;
928 	int copy;
929 
930 	if (head > lim)
931 		return netmap_ring_reinit(kring);
932 
933 	IFRATE(rate_ctx.new.rxsync++);
934 
935 	/*
936 	 * First part: skip past packets that userspace has released.
937 	 * This can possibly make room for the second part.
938 	 */
939 	nm_i = kring->nr_hwcur;
940 	if (nm_i != head) {
941 		/* Userspace has released some packets. */
942 		for (n = 0; nm_i != head; n++) {
943 			struct netmap_slot *slot = &ring->slot[nm_i];
944 
945 			slot->flags &= ~NS_BUF_CHANGED;
946 			nm_i = nm_next(nm_i, lim);
947 		}
948 		kring->nr_hwcur = head;
949 	}
950 
951 	/*
952 	 * Second part: import newly received packets.
953 	 */
954 	if (!netmap_no_pendintr && !force_update) {
955 		return 0;
956 	}
957 
958 	nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
959 
960 	/* Compute the available space (in bytes) in this netmap ring.
961 	 * The first slot that is not considered in is the one before
962 	 * nr_hwcur. */
963 
964 	avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
965 	if (avail < 0)
966 		avail += lim + 1;
967 	avail *= nm_buf_len;
968 
969 	/* First pass: While holding the lock on the RX mbuf queue,
970 	 * extract as many mbufs as they fit the available space,
971 	 * and put them in a temporary queue.
972 	 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
973 	 * to update avail, we do the update in a while loop that we
974 	 * also use to set the RX slots, but without performing the copy. */
975 	mbq_init(&tmpq);
976 	mbq_lock(&kring->rx_queue);
977 	for (n = 0;; n++) {
978 		m = mbq_peek(&kring->rx_queue);
979 		if (!m) {
980 			/* No more packets from the driver. */
981 			break;
982 		}
983 
984 		mlen = MBUF_LEN(m);
985 		if (mlen > avail) {
986 			/* No more space in the ring. */
987 			break;
988 		}
989 
990 		mbq_dequeue(&kring->rx_queue);
991 
992 		while (mlen) {
993 			copy = nm_buf_len;
994 			if (mlen < copy) {
995 				copy = mlen;
996 			}
997 			mlen -= copy;
998 			avail -= nm_buf_len;
999 
1000 			ring->slot[nm_i].len = copy;
1001 			ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
1002 			nm_i = nm_next(nm_i, lim);
1003 		}
1004 
1005 		mbq_enqueue(&tmpq, m);
1006 	}
1007 	mbq_unlock(&kring->rx_queue);
1008 
1009 	/* Second pass: Drain the temporary queue, going over the used RX slots,
1010 	 * and perform the copy out of the RX queue lock. */
1011 	nm_i = kring->nr_hwtail;
1012 
1013 	for (;;) {
1014 		void *nmaddr;
1015 		int ofs = 0;
1016 		int morefrag;
1017 
1018 		m = mbq_dequeue(&tmpq);
1019 		if (!m)	{
1020 			break;
1021 		}
1022 
1023 		do {
1024 			nmaddr = NMB(na, &ring->slot[nm_i]);
1025 			/* We only check the address here on generic rx rings. */
1026 			if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
1027 				m_freem(m);
1028 				mbq_purge(&tmpq);
1029 				mbq_fini(&tmpq);
1030 				return netmap_ring_reinit(kring);
1031 			}
1032 
1033 			copy = ring->slot[nm_i].len;
1034 			m_copydata(m, ofs, copy, nmaddr);
1035 			ofs += copy;
1036 			morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
1037 			nm_i = nm_next(nm_i, lim);
1038 		} while (morefrag);
1039 
1040 		m_freem(m);
1041 	}
1042 
1043 	mbq_fini(&tmpq);
1044 
1045 	if (n) {
1046 		kring->nr_hwtail = nm_i;
1047 		IFRATE(rate_ctx.new.rxpkt += n);
1048 	}
1049 	kring->nr_kflags &= ~NKR_PENDINTR;
1050 
1051 	return 0;
1052 }
1053 
1054 static void
1055 generic_netmap_dtor(struct netmap_adapter *na)
1056 {
1057 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1058 	if_t ifp = netmap_generic_getifp(gna);
1059 	struct netmap_adapter *prev_na = gna->prev;
1060 
1061 	if (prev_na != NULL) {
1062 		netmap_adapter_put(prev_na);
1063 		if (nm_iszombie(na)) {
1064 		        /*
1065 		         * The driver has been removed without releasing
1066 		         * the reference so we need to do it here.
1067 		         */
1068 		        netmap_adapter_put(prev_na);
1069 		}
1070 		nm_prinf("Native netmap adapter for %s restored", prev_na->name);
1071 	}
1072 	NM_RESTORE_NA(ifp, prev_na);
1073 	na->ifp = NULL;
1074 	nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1075 }
1076 
1077 int
1078 na_is_generic(struct netmap_adapter *na)
1079 {
1080 	return na->nm_register == generic_netmap_register;
1081 }
1082 
1083 /*
1084  * generic_netmap_attach() makes it possible to use netmap on
1085  * a device without native netmap support.
1086  * This is less performant than native support but potentially
1087  * faster than raw sockets or similar schemes.
1088  *
1089  * In this "emulated" mode, netmap rings do not necessarily
1090  * have the same size as those in the NIC. We use a default
1091  * value and possibly override it if the OS has ways to fetch the
1092  * actual configuration.
1093  */
1094 int
1095 generic_netmap_attach(if_t ifp)
1096 {
1097 	struct netmap_adapter *na;
1098 	struct netmap_generic_adapter *gna;
1099 	int retval;
1100 	u_int num_tx_desc, num_rx_desc;
1101 
1102 #ifdef __FreeBSD__
1103 	if (if_gettype(ifp) == IFT_LOOP) {
1104 		nm_prerr("if_loop is not supported by %s", __func__);
1105 		return EINVAL;
1106 	}
1107 #endif
1108 
1109 	if (NM_NA_CLASH(ifp)) {
1110 		/* If NA(ifp) is not null but there is no valid netmap
1111 		 * adapter it means that someone else is using the same
1112 		 * pointer (e.g. ax25_ptr on linux). This happens for
1113 		 * instance when also PF_RING is in use. */
1114 		nm_prerr("Error: netmap adapter hook is busy");
1115 		return EBUSY;
1116 	}
1117 
1118 	num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1119 
1120 	nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1121 	if (num_tx_desc == 0 || num_rx_desc == 0) {
1122 		nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1123 		return EINVAL;
1124 	}
1125 
1126 	gna = nm_os_malloc(sizeof(*gna));
1127 	if (gna == NULL) {
1128 		nm_prerr("no memory on attach, give up");
1129 		return ENOMEM;
1130 	}
1131 	na = (struct netmap_adapter *)gna;
1132 	strlcpy(na->name, if_name(ifp), sizeof(na->name));
1133 	na->ifp = ifp;
1134 	na->num_tx_desc = num_tx_desc;
1135 	na->num_rx_desc = num_rx_desc;
1136 	na->rx_buf_maxsize = 32768;
1137 	na->nm_register = &generic_netmap_register;
1138 	na->nm_txsync = &generic_netmap_txsync;
1139 	na->nm_rxsync = &generic_netmap_rxsync;
1140 	na->nm_dtor = &generic_netmap_dtor;
1141 	/* when using generic, NAF_NETMAP_ON is set so we force
1142 	 * NAF_SKIP_INTR to use the regular interrupt handler
1143 	 */
1144 	na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1145 
1146 	nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1147 			ifp->num_tx_queues, ifp->real_num_tx_queues,
1148 			ifp->tx_queue_len);
1149 	nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1150 			ifp->num_rx_queues, ifp->real_num_rx_queues);
1151 
1152 	nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1153 
1154 	retval = netmap_attach_common(na);
1155 	if (retval) {
1156 		nm_os_free(gna);
1157 		return retval;
1158 	}
1159 
1160 	if (NM_NA_VALID(ifp)) {
1161 		gna->prev = NA(ifp); /* save old na */
1162 		netmap_adapter_get(gna->prev);
1163 	}
1164 	NM_ATTACH_NA(ifp, na);
1165 
1166 	nm_os_generic_set_features(gna);
1167 
1168 	nm_prinf("Emulated adapter for %s created (prev was %s)", na->name,
1169 	    gna->prev ? gna->prev->name : "NULL");
1170 
1171 	return retval;
1172 }
1173