xref: /freebsd/sys/dev/nge/if_nge.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2000, 2001
6  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
41  * for FreeBSD. Datasheets are available from:
42  *
43  * http://www.national.com/ds/DP/DP83820.pdf
44  * http://www.national.com/ds/DP/DP83821.pdf
45  *
46  * These chips are used on several low cost gigabit ethernet NICs
47  * sold by D-Link, Addtron, SMC and Asante. Both parts are
48  * virtually the same, except the 83820 is a 64-bit/32-bit part,
49  * while the 83821 is 32-bit only.
50  *
51  * Many cards also use National gigE transceivers, such as the
52  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
53  * contains a full register description that applies to all of these
54  * components:
55  *
56  * http://www.national.com/ds/DP/DP83861.pdf
57  *
58  * Written by Bill Paul <wpaul@bsdi.com>
59  * BSDi Open Source Solutions
60  */
61 
62 /*
63  * The NatSemi DP83820 and 83821 controllers are enhanced versions
64  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
65  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
66  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
67  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
68  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
69  * matching buffers, one perfect address filter buffer and interrupt
70  * moderation. The 83820 supports both 64-bit and 32-bit addressing
71  * and data transfers: the 64-bit support can be toggled on or off
72  * via software. This affects the size of certain fields in the DMA
73  * descriptors.
74  *
75  * There are two bugs/misfeatures in the 83820/83821 that I have
76  * discovered so far:
77  *
78  * - Receive buffers must be aligned on 64-bit boundaries, which means
79  *   you must resort to copying data in order to fix up the payload
80  *   alignment.
81  *
82  * - In order to transmit jumbo frames larger than 8170 bytes, you have
83  *   to turn off transmit checksum offloading, because the chip can't
84  *   compute the checksum on an outgoing frame unless it fits entirely
85  *   within the TX FIFO, which is only 8192 bytes in size. If you have
86  *   TX checksum offload enabled and you transmit attempt to transmit a
87  *   frame larger than 8170 bytes, the transmitter will wedge.
88  *
89  * To work around the latter problem, TX checksum offload is disabled
90  * if the user selects an MTU larger than 8152 (8170 - 18).
91  */
92 
93 #ifdef HAVE_KERNEL_OPTION_HEADERS
94 #include "opt_device_polling.h"
95 #endif
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/kernel.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mbuf.h>
105 #include <sys/module.h>
106 #include <sys/mutex.h>
107 #include <sys/rman.h>
108 #include <sys/socket.h>
109 #include <sys/sockio.h>
110 #include <sys/sysctl.h>
111 
112 #include <net/bpf.h>
113 #include <net/if.h>
114 #include <net/if_var.h>
115 #include <net/if_arp.h>
116 #include <net/ethernet.h>
117 #include <net/if_dl.h>
118 #include <net/if_media.h>
119 #include <net/if_types.h>
120 #include <net/if_vlan_var.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/mii_bitbang.h>
124 #include <dev/mii/miivar.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #include <machine/bus.h>
130 
131 #include <dev/nge/if_ngereg.h>
132 
133 /* "device miibus" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 MODULE_DEPEND(nge, pci, 1, 1, 1);
137 MODULE_DEPEND(nge, ether, 1, 1, 1);
138 MODULE_DEPEND(nge, miibus, 1, 1, 1);
139 
140 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static const struct nge_type nge_devs[] = {
146 	{ NGE_VENDORID, NGE_DEVICEID,
147 	    "National Semiconductor Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int nge_probe(device_t);
152 static int nge_attach(device_t);
153 static int nge_detach(device_t);
154 static int nge_shutdown(device_t);
155 static int nge_suspend(device_t);
156 static int nge_resume(device_t);
157 
158 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
159 static int nge_newbuf(struct nge_softc *, int);
160 static int nge_encap(struct nge_softc *, struct mbuf **);
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline void nge_fixup_rx(struct mbuf *);
163 #endif
164 static int nge_rxeof(struct nge_softc *);
165 static void nge_txeof(struct nge_softc *);
166 static void nge_intr(void *);
167 static void nge_tick(void *);
168 static void nge_stats_update(struct nge_softc *);
169 static void nge_start(struct ifnet *);
170 static void nge_start_locked(struct ifnet *);
171 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
172 static void nge_init(void *);
173 static void nge_init_locked(struct nge_softc *);
174 static int nge_stop_mac(struct nge_softc *);
175 static void nge_stop(struct nge_softc *);
176 static void nge_wol(struct nge_softc *);
177 static void nge_watchdog(struct nge_softc *);
178 static int nge_mediachange(struct ifnet *);
179 static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
180 
181 static void nge_delay(struct nge_softc *);
182 static void nge_eeprom_idle(struct nge_softc *);
183 static void nge_eeprom_putbyte(struct nge_softc *, int);
184 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
185 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
186 
187 static int nge_miibus_readreg(device_t, int, int);
188 static int nge_miibus_writereg(device_t, int, int, int);
189 static void nge_miibus_statchg(device_t);
190 
191 static void nge_rxfilter(struct nge_softc *);
192 static void nge_reset(struct nge_softc *);
193 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
194 static int nge_dma_alloc(struct nge_softc *);
195 static void nge_dma_free(struct nge_softc *);
196 static int nge_list_rx_init(struct nge_softc *);
197 static int nge_list_tx_init(struct nge_softc *);
198 static void nge_sysctl_node(struct nge_softc *);
199 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
200 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
201 
202 /*
203  * MII bit-bang glue
204  */
205 static uint32_t nge_mii_bitbang_read(device_t);
206 static void nge_mii_bitbang_write(device_t, uint32_t);
207 
208 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
209 	nge_mii_bitbang_read,
210 	nge_mii_bitbang_write,
211 	{
212 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
213 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
214 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
215 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
216 		0,			/* MII_BIT_DIR_PHY_HOST */
217 	}
218 };
219 
220 static device_method_t nge_methods[] = {
221 	/* Device interface */
222 	DEVMETHOD(device_probe,		nge_probe),
223 	DEVMETHOD(device_attach,	nge_attach),
224 	DEVMETHOD(device_detach,	nge_detach),
225 	DEVMETHOD(device_shutdown,	nge_shutdown),
226 	DEVMETHOD(device_suspend,	nge_suspend),
227 	DEVMETHOD(device_resume,	nge_resume),
228 
229 	/* MII interface */
230 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
231 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
232 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
233 
234 	DEVMETHOD_END
235 };
236 
237 static driver_t nge_driver = {
238 	"nge",
239 	nge_methods,
240 	sizeof(struct nge_softc)
241 };
242 
243 static devclass_t nge_devclass;
244 
245 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
246 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
247 
248 #define NGE_SETBIT(sc, reg, x)				\
249 	CSR_WRITE_4(sc, reg,				\
250 		CSR_READ_4(sc, reg) | (x))
251 
252 #define NGE_CLRBIT(sc, reg, x)				\
253 	CSR_WRITE_4(sc, reg,				\
254 		CSR_READ_4(sc, reg) & ~(x))
255 
256 #define SIO_SET(x)					\
257 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
258 
259 #define SIO_CLR(x)					\
260 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
261 
262 static void
263 nge_delay(struct nge_softc *sc)
264 {
265 	int idx;
266 
267 	for (idx = (300 / 33) + 1; idx > 0; idx--)
268 		CSR_READ_4(sc, NGE_CSR);
269 }
270 
271 static void
272 nge_eeprom_idle(struct nge_softc *sc)
273 {
274 	int i;
275 
276 	SIO_SET(NGE_MEAR_EE_CSEL);
277 	nge_delay(sc);
278 	SIO_SET(NGE_MEAR_EE_CLK);
279 	nge_delay(sc);
280 
281 	for (i = 0; i < 25; i++) {
282 		SIO_CLR(NGE_MEAR_EE_CLK);
283 		nge_delay(sc);
284 		SIO_SET(NGE_MEAR_EE_CLK);
285 		nge_delay(sc);
286 	}
287 
288 	SIO_CLR(NGE_MEAR_EE_CLK);
289 	nge_delay(sc);
290 	SIO_CLR(NGE_MEAR_EE_CSEL);
291 	nge_delay(sc);
292 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
293 }
294 
295 /*
296  * Send a read command and address to the EEPROM, check for ACK.
297  */
298 static void
299 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
300 {
301 	int d, i;
302 
303 	d = addr | NGE_EECMD_READ;
304 
305 	/*
306 	 * Feed in each bit and stobe the clock.
307 	 */
308 	for (i = 0x400; i; i >>= 1) {
309 		if (d & i) {
310 			SIO_SET(NGE_MEAR_EE_DIN);
311 		} else {
312 			SIO_CLR(NGE_MEAR_EE_DIN);
313 		}
314 		nge_delay(sc);
315 		SIO_SET(NGE_MEAR_EE_CLK);
316 		nge_delay(sc);
317 		SIO_CLR(NGE_MEAR_EE_CLK);
318 		nge_delay(sc);
319 	}
320 }
321 
322 /*
323  * Read a word of data stored in the EEPROM at address 'addr.'
324  */
325 static void
326 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
327 {
328 	int i;
329 	uint16_t word = 0;
330 
331 	/* Force EEPROM to idle state. */
332 	nge_eeprom_idle(sc);
333 
334 	/* Enter EEPROM access mode. */
335 	nge_delay(sc);
336 	SIO_CLR(NGE_MEAR_EE_CLK);
337 	nge_delay(sc);
338 	SIO_SET(NGE_MEAR_EE_CSEL);
339 	nge_delay(sc);
340 
341 	/*
342 	 * Send address of word we want to read.
343 	 */
344 	nge_eeprom_putbyte(sc, addr);
345 
346 	/*
347 	 * Start reading bits from EEPROM.
348 	 */
349 	for (i = 0x8000; i; i >>= 1) {
350 		SIO_SET(NGE_MEAR_EE_CLK);
351 		nge_delay(sc);
352 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
353 			word |= i;
354 		nge_delay(sc);
355 		SIO_CLR(NGE_MEAR_EE_CLK);
356 		nge_delay(sc);
357 	}
358 
359 	/* Turn off EEPROM access mode. */
360 	nge_eeprom_idle(sc);
361 
362 	*dest = word;
363 }
364 
365 /*
366  * Read a sequence of words from the EEPROM.
367  */
368 static void
369 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
370 {
371 	int i;
372 	uint16_t word = 0, *ptr;
373 
374 	for (i = 0; i < cnt; i++) {
375 		nge_eeprom_getword(sc, off + i, &word);
376 		ptr = (uint16_t *)(dest + (i * 2));
377 		*ptr = word;
378 	}
379 }
380 
381 /*
382  * Read the MII serial port for the MII bit-bang module.
383  */
384 static uint32_t
385 nge_mii_bitbang_read(device_t dev)
386 {
387 	struct nge_softc *sc;
388 	uint32_t val;
389 
390 	sc = device_get_softc(dev);
391 
392 	val = CSR_READ_4(sc, NGE_MEAR);
393 	CSR_BARRIER_4(sc, NGE_MEAR,
394 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
395 
396 	return (val);
397 }
398 
399 /*
400  * Write the MII serial port for the MII bit-bang module.
401  */
402 static void
403 nge_mii_bitbang_write(device_t dev, uint32_t val)
404 {
405 	struct nge_softc *sc;
406 
407 	sc = device_get_softc(dev);
408 
409 	CSR_WRITE_4(sc, NGE_MEAR, val);
410 	CSR_BARRIER_4(sc, NGE_MEAR,
411 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
412 }
413 
414 static int
415 nge_miibus_readreg(device_t dev, int phy, int reg)
416 {
417 	struct nge_softc *sc;
418 	int rv;
419 
420 	sc = device_get_softc(dev);
421 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
422 		/* Pretend PHY is at address 0. */
423 		if (phy != 0)
424 			return (0);
425 		switch (reg) {
426 		case MII_BMCR:
427 			reg = NGE_TBI_BMCR;
428 			break;
429 		case MII_BMSR:
430 			/* 83820/83821 has different bit layout for BMSR. */
431 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
432 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
433 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
434 				rv |= BMSR_ACOMP;
435 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
436 				rv |= BMSR_LINK;
437 			return (rv);
438 		case MII_ANAR:
439 			reg = NGE_TBI_ANAR;
440 			break;
441 		case MII_ANLPAR:
442 			reg = NGE_TBI_ANLPAR;
443 			break;
444 		case MII_ANER:
445 			reg = NGE_TBI_ANER;
446 			break;
447 		case MII_EXTSR:
448 			reg = NGE_TBI_ESR;
449 			break;
450 		case MII_PHYIDR1:
451 		case MII_PHYIDR2:
452 			return (0);
453 		default:
454 			device_printf(sc->nge_dev,
455 			    "bad phy register read : %d\n", reg);
456 			return (0);
457 		}
458 		return (CSR_READ_4(sc, reg));
459 	}
460 
461 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
462 }
463 
464 static int
465 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
466 {
467 	struct nge_softc *sc;
468 
469 	sc = device_get_softc(dev);
470 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
471 		/* Pretend PHY is at address 0. */
472 		if (phy != 0)
473 			return (0);
474 		switch (reg) {
475 		case MII_BMCR:
476 			reg = NGE_TBI_BMCR;
477 			break;
478 		case MII_BMSR:
479 			return (0);
480 		case MII_ANAR:
481 			reg = NGE_TBI_ANAR;
482 			break;
483 		case MII_ANLPAR:
484 			reg = NGE_TBI_ANLPAR;
485 			break;
486 		case MII_ANER:
487 			reg = NGE_TBI_ANER;
488 			break;
489 		case MII_EXTSR:
490 			reg = NGE_TBI_ESR;
491 			break;
492 		case MII_PHYIDR1:
493 		case MII_PHYIDR2:
494 			return (0);
495 		default:
496 			device_printf(sc->nge_dev,
497 			    "bad phy register write : %d\n", reg);
498 			return (0);
499 		}
500 		CSR_WRITE_4(sc, reg, data);
501 		return (0);
502 	}
503 
504 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
505 
506 	return (0);
507 }
508 
509 /*
510  * media status/link state change handler.
511  */
512 static void
513 nge_miibus_statchg(device_t dev)
514 {
515 	struct nge_softc *sc;
516 	struct mii_data *mii;
517 	struct ifnet *ifp;
518 	struct nge_txdesc *txd;
519 	uint32_t done, reg, status;
520 	int i;
521 
522 	sc = device_get_softc(dev);
523 	NGE_LOCK_ASSERT(sc);
524 
525 	mii = device_get_softc(sc->nge_miibus);
526 	ifp = sc->nge_ifp;
527 	if (mii == NULL || ifp == NULL ||
528 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
529 		return;
530 
531 	sc->nge_flags &= ~NGE_FLAG_LINK;
532 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
533 	    (IFM_AVALID | IFM_ACTIVE)) {
534 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
535 		case IFM_10_T:
536 		case IFM_100_TX:
537 		case IFM_1000_T:
538 		case IFM_1000_SX:
539 		case IFM_1000_LX:
540 		case IFM_1000_CX:
541 			sc->nge_flags |= NGE_FLAG_LINK;
542 			break;
543 		default:
544 			break;
545 		}
546 	}
547 
548 	/* Stop Tx/Rx MACs. */
549 	if (nge_stop_mac(sc) == ETIMEDOUT)
550 		device_printf(sc->nge_dev,
551 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
552 	nge_txeof(sc);
553 	nge_rxeof(sc);
554 	if (sc->nge_head != NULL) {
555 		m_freem(sc->nge_head);
556 		sc->nge_head = sc->nge_tail = NULL;
557 	}
558 
559 	/* Release queued frames. */
560 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
561 		txd = &sc->nge_cdata.nge_txdesc[i];
562 		if (txd->tx_m != NULL) {
563 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
564 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
565 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
566 			    txd->tx_dmamap);
567 			m_freem(txd->tx_m);
568 			txd->tx_m = NULL;
569 		}
570 	}
571 
572 	/* Program MAC with resolved speed/duplex. */
573 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
574 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
575 			NGE_SETBIT(sc, NGE_TX_CFG,
576 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
577 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
578 #ifdef notyet
579 			/* Enable flow-control. */
580 			if ((IFM_OPTIONS(mii->mii_media_active) &
581 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
582 				NGE_SETBIT(sc, NGE_PAUSECSR,
583 				    NGE_PAUSECSR_PAUSE_ENB);
584 #endif
585 		} else {
586 			NGE_CLRBIT(sc, NGE_TX_CFG,
587 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
588 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
589 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
590 		}
591 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
592 		reg = CSR_READ_4(sc, NGE_CFG);
593 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
594 		case IFM_1000_SX:
595 		case IFM_1000_LX:
596 		case IFM_1000_CX:
597 		case IFM_1000_T:
598 			reg |= NGE_CFG_MODE_1000;
599 			break;
600 		default:
601 			reg &= ~NGE_CFG_MODE_1000;
602 			break;
603 		}
604 		CSR_WRITE_4(sc, NGE_CFG, reg);
605 
606 		/* Reset Tx/Rx MAC. */
607 		reg = CSR_READ_4(sc, NGE_CSR);
608 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
609 		CSR_WRITE_4(sc, NGE_CSR, reg);
610 		/* Check the completion of reset. */
611 		done = 0;
612 		for (i = 0; i < NGE_TIMEOUT; i++) {
613 			DELAY(1);
614 			status = CSR_READ_4(sc, NGE_ISR);
615 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
616 				done |= NGE_ISR_RX_RESET_DONE;
617 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
618 				done |= NGE_ISR_TX_RESET_DONE;
619 			if (done ==
620 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
621 				break;
622 		}
623 		if (i == NGE_TIMEOUT)
624 			device_printf(sc->nge_dev,
625 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
626 		/* Reuse Rx buffer and reset consumer pointer. */
627 		sc->nge_cdata.nge_rx_cons = 0;
628 		/*
629 		 * It seems that resetting Rx/Tx MAC results in
630 		 * resetting Tx/Rx descriptor pointer registers such
631 		 * that reloading Tx/Rx lists address are needed.
632 		 */
633 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
634 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
635 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
636 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
637 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
638 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
639 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
640 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
641 		/* Reinitialize Tx buffers. */
642 		nge_list_tx_init(sc);
643 
644 		/* Restart Rx MAC. */
645 		reg = CSR_READ_4(sc, NGE_CSR);
646 		reg |= NGE_CSR_RX_ENABLE;
647 		CSR_WRITE_4(sc, NGE_CSR, reg);
648 		for (i = 0; i < NGE_TIMEOUT; i++) {
649 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
650 				break;
651 			DELAY(1);
652 		}
653 		if (i == NGE_TIMEOUT)
654 			device_printf(sc->nge_dev,
655 			    "%s: unable to restart Rx MAC\n", __func__);
656 	}
657 
658 	/* Data LED off for TBI mode */
659 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
660 		CSR_WRITE_4(sc, NGE_GPIO,
661 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
662 }
663 
664 static void
665 nge_rxfilter(struct nge_softc *sc)
666 {
667 	struct ifnet *ifp;
668 	struct ifmultiaddr *ifma;
669 	uint32_t h, i, rxfilt;
670 	int bit, index;
671 
672 	NGE_LOCK_ASSERT(sc);
673 	ifp = sc->nge_ifp;
674 
675 	/* Make sure to stop Rx filtering. */
676 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
677 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
678 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
679 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
680 
681 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
682 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
683 	/*
684 	 * We don't want to use the hash table for matching unicast
685 	 * addresses.
686 	 */
687 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
688 
689 	/*
690 	 * For the NatSemi chip, we have to explicitly enable the
691 	 * reception of ARP frames, as well as turn on the 'perfect
692 	 * match' filter where we store the station address, otherwise
693 	 * we won't receive unicasts meant for this host.
694 	 */
695 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
696 
697 	/*
698 	 * Set the capture broadcast bit to capture broadcast frames.
699 	 */
700 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
701 		rxfilt |= NGE_RXFILTCTL_BROAD;
702 
703 	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
704 	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
705 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
706 		if ((ifp->if_flags & IFF_PROMISC) != 0)
707 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
708 		goto done;
709 	}
710 
711 	/*
712 	 * We have to explicitly enable the multicast hash table
713 	 * on the NatSemi chip if we want to use it, which we do.
714 	 */
715 	rxfilt |= NGE_RXFILTCTL_MCHASH;
716 
717 	/* first, zot all the existing hash bits */
718 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
719 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
720 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
721 	}
722 
723 	/*
724 	 * From the 11 bits returned by the crc routine, the top 7
725 	 * bits represent the 16-bit word in the mcast hash table
726 	 * that needs to be updated, and the lower 4 bits represent
727 	 * which bit within that byte needs to be set.
728 	 */
729 	if_maddr_rlock(ifp);
730 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
731 		if (ifma->ifma_addr->sa_family != AF_LINK)
732 			continue;
733 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
734 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
735 		index = (h >> 4) & 0x7F;
736 		bit = h & 0xF;
737 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
738 		    NGE_FILTADDR_MCAST_LO + (index * 2));
739 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
740 	}
741 	if_maddr_runlock(ifp);
742 
743 done:
744 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
745 	/* Turn the receive filter on. */
746 	rxfilt |= NGE_RXFILTCTL_ENABLE;
747 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
748 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
749 }
750 
751 static void
752 nge_reset(struct nge_softc *sc)
753 {
754 	uint32_t v;
755 	int i;
756 
757 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
758 
759 	for (i = 0; i < NGE_TIMEOUT; i++) {
760 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
761 			break;
762 		DELAY(1);
763 	}
764 
765 	if (i == NGE_TIMEOUT)
766 		device_printf(sc->nge_dev, "reset never completed\n");
767 
768 	/* Wait a little while for the chip to get its brains in order. */
769 	DELAY(1000);
770 
771 	/*
772 	 * If this is a NetSemi chip, make sure to clear
773 	 * PME mode.
774 	 */
775 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
776 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
777 
778 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
779 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
780 
781 	/*
782 	 * Only DP83820 supports 64bits addressing/data transfers and
783 	 * 64bit addressing requires different descriptor structures.
784 	 * To make it simple, disable 64bit addressing/data transfers.
785 	 */
786 	v = CSR_READ_4(sc, NGE_CFG);
787 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
788 	CSR_WRITE_4(sc, NGE_CFG, v);
789 }
790 
791 /*
792  * Probe for a NatSemi chip. Check the PCI vendor and device
793  * IDs against our list and return a device name if we find a match.
794  */
795 static int
796 nge_probe(device_t dev)
797 {
798 	const struct nge_type *t;
799 
800 	t = nge_devs;
801 
802 	while (t->nge_name != NULL) {
803 		if ((pci_get_vendor(dev) == t->nge_vid) &&
804 		    (pci_get_device(dev) == t->nge_did)) {
805 			device_set_desc(dev, t->nge_name);
806 			return (BUS_PROBE_DEFAULT);
807 		}
808 		t++;
809 	}
810 
811 	return (ENXIO);
812 }
813 
814 /*
815  * Attach the interface. Allocate softc structures, do ifmedia
816  * setup and ethernet/BPF attach.
817  */
818 static int
819 nge_attach(device_t dev)
820 {
821 	uint8_t eaddr[ETHER_ADDR_LEN];
822 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
823 	struct nge_softc *sc;
824 	struct ifnet *ifp;
825 	int error, i, rid;
826 
827 	error = 0;
828 	sc = device_get_softc(dev);
829 	sc->nge_dev = dev;
830 
831 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
832 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
833 
834 	/*
835 	 * Map control/status registers.
836 	 */
837 	pci_enable_busmaster(dev);
838 
839 #ifdef NGE_USEIOSPACE
840 	sc->nge_res_type = SYS_RES_IOPORT;
841 	sc->nge_res_id = PCIR_BAR(0);
842 #else
843 	sc->nge_res_type = SYS_RES_MEMORY;
844 	sc->nge_res_id = PCIR_BAR(1);
845 #endif
846 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
847 	    &sc->nge_res_id, RF_ACTIVE);
848 
849 	if (sc->nge_res == NULL) {
850 		if (sc->nge_res_type == SYS_RES_MEMORY) {
851 			sc->nge_res_type = SYS_RES_IOPORT;
852 			sc->nge_res_id = PCIR_BAR(0);
853 		} else {
854 			sc->nge_res_type = SYS_RES_MEMORY;
855 			sc->nge_res_id = PCIR_BAR(1);
856 		}
857 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
858 		    &sc->nge_res_id, RF_ACTIVE);
859 		if (sc->nge_res == NULL) {
860 			device_printf(dev, "couldn't allocate %s resources\n",
861 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
862 			    "I/O");
863 			NGE_LOCK_DESTROY(sc);
864 			return (ENXIO);
865 		}
866 	}
867 
868 	/* Allocate interrupt */
869 	rid = 0;
870 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
871 	    RF_SHAREABLE | RF_ACTIVE);
872 
873 	if (sc->nge_irq == NULL) {
874 		device_printf(dev, "couldn't map interrupt\n");
875 		error = ENXIO;
876 		goto fail;
877 	}
878 
879 	/* Enable MWI. */
880 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
881 	reg |= PCIM_CMD_MWRICEN;
882 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
883 
884 	/* Reset the adapter. */
885 	nge_reset(sc);
886 
887 	/*
888 	 * Get station address from the EEPROM.
889 	 */
890 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
891 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
892 		ea[i] = le16toh(ea[i]);
893 	ea_temp = ea[0];
894 	ea[0] = ea[2];
895 	ea[2] = ea_temp;
896 	bcopy(ea, eaddr, sizeof(eaddr));
897 
898 	if (nge_dma_alloc(sc) != 0) {
899 		error = ENXIO;
900 		goto fail;
901 	}
902 
903 	nge_sysctl_node(sc);
904 
905 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
906 	if (ifp == NULL) {
907 		device_printf(dev, "can not allocate ifnet structure\n");
908 		error = ENOSPC;
909 		goto fail;
910 	}
911 	ifp->if_softc = sc;
912 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
913 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
914 	ifp->if_ioctl = nge_ioctl;
915 	ifp->if_start = nge_start;
916 	ifp->if_init = nge_init;
917 	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
918 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
919 	IFQ_SET_READY(&ifp->if_snd);
920 	ifp->if_hwassist = NGE_CSUM_FEATURES;
921 	ifp->if_capabilities = IFCAP_HWCSUM;
922 	/*
923 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
924 	 * supply(3VAUX) to drive PME such that checking PCI power
925 	 * management capability is necessary.
926 	 */
927 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
928 		ifp->if_capabilities |= IFCAP_WOL;
929 	ifp->if_capenable = ifp->if_capabilities;
930 
931 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
932 		sc->nge_flags |= NGE_FLAG_TBI;
933 		device_printf(dev, "Using TBI\n");
934 		/* Configure GPIO. */
935 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
936 		    | NGE_GPIO_GP4_OUT
937 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
938 		    | NGE_GPIO_GP3_OUTENB
939 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
940 	}
941 
942 	/*
943 	 * Do MII setup.
944 	 */
945 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
946 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
947 	if (error != 0) {
948 		device_printf(dev, "attaching PHYs failed\n");
949 		goto fail;
950 	}
951 
952 	/*
953 	 * Call MI attach routine.
954 	 */
955 	ether_ifattach(ifp, eaddr);
956 
957 	/* VLAN capability setup. */
958 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
959 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
960 	ifp->if_capenable = ifp->if_capabilities;
961 #ifdef DEVICE_POLLING
962 	ifp->if_capabilities |= IFCAP_POLLING;
963 #endif
964 	/*
965 	 * Tell the upper layer(s) we support long frames.
966 	 * Must appear after the call to ether_ifattach() because
967 	 * ether_ifattach() sets ifi_hdrlen to the default value.
968 	 */
969 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
970 
971 	/*
972 	 * Hookup IRQ last.
973 	 */
974 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
975 	    NULL, nge_intr, sc, &sc->nge_intrhand);
976 	if (error) {
977 		device_printf(dev, "couldn't set up irq\n");
978 		goto fail;
979 	}
980 
981 fail:
982 	if (error != 0)
983 		nge_detach(dev);
984 	return (error);
985 }
986 
987 static int
988 nge_detach(device_t dev)
989 {
990 	struct nge_softc *sc;
991 	struct ifnet *ifp;
992 
993 	sc = device_get_softc(dev);
994 	ifp = sc->nge_ifp;
995 
996 #ifdef DEVICE_POLLING
997 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
998 		ether_poll_deregister(ifp);
999 #endif
1000 
1001 	if (device_is_attached(dev)) {
1002 		NGE_LOCK(sc);
1003 		sc->nge_flags |= NGE_FLAG_DETACH;
1004 		nge_stop(sc);
1005 		NGE_UNLOCK(sc);
1006 		callout_drain(&sc->nge_stat_ch);
1007 		if (ifp != NULL)
1008 			ether_ifdetach(ifp);
1009 	}
1010 
1011 	if (sc->nge_miibus != NULL) {
1012 		device_delete_child(dev, sc->nge_miibus);
1013 		sc->nge_miibus = NULL;
1014 	}
1015 	bus_generic_detach(dev);
1016 	if (sc->nge_intrhand != NULL)
1017 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1018 	if (sc->nge_irq != NULL)
1019 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1020 	if (sc->nge_res != NULL)
1021 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1022 		    sc->nge_res);
1023 
1024 	nge_dma_free(sc);
1025 	if (ifp != NULL)
1026 		if_free(ifp);
1027 
1028 	NGE_LOCK_DESTROY(sc);
1029 
1030 	return (0);
1031 }
1032 
1033 struct nge_dmamap_arg {
1034 	bus_addr_t	nge_busaddr;
1035 };
1036 
1037 static void
1038 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1039 {
1040 	struct nge_dmamap_arg *ctx;
1041 
1042 	if (error != 0)
1043 		return;
1044 	ctx = arg;
1045 	ctx->nge_busaddr = segs[0].ds_addr;
1046 }
1047 
1048 static int
1049 nge_dma_alloc(struct nge_softc *sc)
1050 {
1051 	struct nge_dmamap_arg ctx;
1052 	struct nge_txdesc *txd;
1053 	struct nge_rxdesc *rxd;
1054 	int error, i;
1055 
1056 	/* Create parent DMA tag. */
1057 	error = bus_dma_tag_create(
1058 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1059 	    1, 0,			/* alignment, boundary */
1060 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1061 	    BUS_SPACE_MAXADDR,		/* highaddr */
1062 	    NULL, NULL,			/* filter, filterarg */
1063 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1064 	    0,				/* nsegments */
1065 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1066 	    0,				/* flags */
1067 	    NULL, NULL,			/* lockfunc, lockarg */
1068 	    &sc->nge_cdata.nge_parent_tag);
1069 	if (error != 0) {
1070 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1071 		goto fail;
1072 	}
1073 	/* Create tag for Tx ring. */
1074 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1075 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1076 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1077 	    BUS_SPACE_MAXADDR,		/* highaddr */
1078 	    NULL, NULL,			/* filter, filterarg */
1079 	    NGE_TX_RING_SIZE,		/* maxsize */
1080 	    1,				/* nsegments */
1081 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1082 	    0,				/* flags */
1083 	    NULL, NULL,			/* lockfunc, lockarg */
1084 	    &sc->nge_cdata.nge_tx_ring_tag);
1085 	if (error != 0) {
1086 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1087 		goto fail;
1088 	}
1089 
1090 	/* Create tag for Rx ring. */
1091 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1092 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1093 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1094 	    BUS_SPACE_MAXADDR,		/* highaddr */
1095 	    NULL, NULL,			/* filter, filterarg */
1096 	    NGE_RX_RING_SIZE,		/* maxsize */
1097 	    1,				/* nsegments */
1098 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1099 	    0,				/* flags */
1100 	    NULL, NULL,			/* lockfunc, lockarg */
1101 	    &sc->nge_cdata.nge_rx_ring_tag);
1102 	if (error != 0) {
1103 		device_printf(sc->nge_dev,
1104 		    "failed to create Rx ring DMA tag\n");
1105 		goto fail;
1106 	}
1107 
1108 	/* Create tag for Tx buffers. */
1109 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1110 	    1, 0,			/* alignment, boundary */
1111 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1112 	    BUS_SPACE_MAXADDR,		/* highaddr */
1113 	    NULL, NULL,			/* filter, filterarg */
1114 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1115 	    NGE_MAXTXSEGS,		/* nsegments */
1116 	    MCLBYTES,			/* maxsegsize */
1117 	    0,				/* flags */
1118 	    NULL, NULL,			/* lockfunc, lockarg */
1119 	    &sc->nge_cdata.nge_tx_tag);
1120 	if (error != 0) {
1121 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1122 		goto fail;
1123 	}
1124 
1125 	/* Create tag for Rx buffers. */
1126 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1127 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1128 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1129 	    BUS_SPACE_MAXADDR,		/* highaddr */
1130 	    NULL, NULL,			/* filter, filterarg */
1131 	    MCLBYTES,			/* maxsize */
1132 	    1,				/* nsegments */
1133 	    MCLBYTES,			/* maxsegsize */
1134 	    0,				/* flags */
1135 	    NULL, NULL,			/* lockfunc, lockarg */
1136 	    &sc->nge_cdata.nge_rx_tag);
1137 	if (error != 0) {
1138 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1139 		goto fail;
1140 	}
1141 
1142 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1143 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1144 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1145 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1146 	if (error != 0) {
1147 		device_printf(sc->nge_dev,
1148 		    "failed to allocate DMA'able memory for Tx ring\n");
1149 		goto fail;
1150 	}
1151 
1152 	ctx.nge_busaddr = 0;
1153 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1154 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1155 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1156 	if (error != 0 || ctx.nge_busaddr == 0) {
1157 		device_printf(sc->nge_dev,
1158 		    "failed to load DMA'able memory for Tx ring\n");
1159 		goto fail;
1160 	}
1161 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1162 
1163 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1164 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1165 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1166 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1167 	if (error != 0) {
1168 		device_printf(sc->nge_dev,
1169 		    "failed to allocate DMA'able memory for Rx ring\n");
1170 		goto fail;
1171 	}
1172 
1173 	ctx.nge_busaddr = 0;
1174 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1175 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1176 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1177 	if (error != 0 || ctx.nge_busaddr == 0) {
1178 		device_printf(sc->nge_dev,
1179 		    "failed to load DMA'able memory for Rx ring\n");
1180 		goto fail;
1181 	}
1182 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1183 
1184 	/* Create DMA maps for Tx buffers. */
1185 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1186 		txd = &sc->nge_cdata.nge_txdesc[i];
1187 		txd->tx_m = NULL;
1188 		txd->tx_dmamap = NULL;
1189 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1190 		    &txd->tx_dmamap);
1191 		if (error != 0) {
1192 			device_printf(sc->nge_dev,
1193 			    "failed to create Tx dmamap\n");
1194 			goto fail;
1195 		}
1196 	}
1197 	/* Create DMA maps for Rx buffers. */
1198 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1199 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1200 		device_printf(sc->nge_dev,
1201 		    "failed to create spare Rx dmamap\n");
1202 		goto fail;
1203 	}
1204 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1205 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1206 		rxd->rx_m = NULL;
1207 		rxd->rx_dmamap = NULL;
1208 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1209 		    &rxd->rx_dmamap);
1210 		if (error != 0) {
1211 			device_printf(sc->nge_dev,
1212 			    "failed to create Rx dmamap\n");
1213 			goto fail;
1214 		}
1215 	}
1216 
1217 fail:
1218 	return (error);
1219 }
1220 
1221 static void
1222 nge_dma_free(struct nge_softc *sc)
1223 {
1224 	struct nge_txdesc *txd;
1225 	struct nge_rxdesc *rxd;
1226 	int i;
1227 
1228 	/* Tx ring. */
1229 	if (sc->nge_cdata.nge_tx_ring_tag) {
1230 		if (sc->nge_rdata.nge_tx_ring_paddr)
1231 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1232 			    sc->nge_cdata.nge_tx_ring_map);
1233 		if (sc->nge_rdata.nge_tx_ring)
1234 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1235 			    sc->nge_rdata.nge_tx_ring,
1236 			    sc->nge_cdata.nge_tx_ring_map);
1237 		sc->nge_rdata.nge_tx_ring = NULL;
1238 		sc->nge_rdata.nge_tx_ring_paddr = 0;
1239 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1240 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1241 	}
1242 	/* Rx ring. */
1243 	if (sc->nge_cdata.nge_rx_ring_tag) {
1244 		if (sc->nge_rdata.nge_rx_ring_paddr)
1245 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1246 			    sc->nge_cdata.nge_rx_ring_map);
1247 		if (sc->nge_rdata.nge_rx_ring)
1248 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1249 			    sc->nge_rdata.nge_rx_ring,
1250 			    sc->nge_cdata.nge_rx_ring_map);
1251 		sc->nge_rdata.nge_rx_ring = NULL;
1252 		sc->nge_rdata.nge_rx_ring_paddr = 0;
1253 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1254 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1255 	}
1256 	/* Tx buffers. */
1257 	if (sc->nge_cdata.nge_tx_tag) {
1258 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1259 			txd = &sc->nge_cdata.nge_txdesc[i];
1260 			if (txd->tx_dmamap) {
1261 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1262 				    txd->tx_dmamap);
1263 				txd->tx_dmamap = NULL;
1264 			}
1265 		}
1266 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1267 		sc->nge_cdata.nge_tx_tag = NULL;
1268 	}
1269 	/* Rx buffers. */
1270 	if (sc->nge_cdata.nge_rx_tag) {
1271 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1272 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1273 			if (rxd->rx_dmamap) {
1274 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1275 				    rxd->rx_dmamap);
1276 				rxd->rx_dmamap = NULL;
1277 			}
1278 		}
1279 		if (sc->nge_cdata.nge_rx_sparemap) {
1280 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1281 			    sc->nge_cdata.nge_rx_sparemap);
1282 			sc->nge_cdata.nge_rx_sparemap = 0;
1283 		}
1284 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1285 		sc->nge_cdata.nge_rx_tag = NULL;
1286 	}
1287 
1288 	if (sc->nge_cdata.nge_parent_tag) {
1289 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1290 		sc->nge_cdata.nge_parent_tag = NULL;
1291 	}
1292 }
1293 
1294 /*
1295  * Initialize the transmit descriptors.
1296  */
1297 static int
1298 nge_list_tx_init(struct nge_softc *sc)
1299 {
1300 	struct nge_ring_data *rd;
1301 	struct nge_txdesc *txd;
1302 	bus_addr_t addr;
1303 	int i;
1304 
1305 	sc->nge_cdata.nge_tx_prod = 0;
1306 	sc->nge_cdata.nge_tx_cons = 0;
1307 	sc->nge_cdata.nge_tx_cnt = 0;
1308 
1309 	rd = &sc->nge_rdata;
1310 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1311 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1312 		if (i == NGE_TX_RING_CNT - 1)
1313 			addr = NGE_TX_RING_ADDR(sc, 0);
1314 		else
1315 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1316 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1317 		txd = &sc->nge_cdata.nge_txdesc[i];
1318 		txd->tx_m = NULL;
1319 	}
1320 
1321 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1322 	    sc->nge_cdata.nge_tx_ring_map,
1323 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1324 
1325 	return (0);
1326 }
1327 
1328 /*
1329  * Initialize the RX descriptors and allocate mbufs for them. Note that
1330  * we arrange the descriptors in a closed ring, so that the last descriptor
1331  * points back to the first.
1332  */
1333 static int
1334 nge_list_rx_init(struct nge_softc *sc)
1335 {
1336 	struct nge_ring_data *rd;
1337 	bus_addr_t addr;
1338 	int i;
1339 
1340 	sc->nge_cdata.nge_rx_cons = 0;
1341 	sc->nge_head = sc->nge_tail = NULL;
1342 
1343 	rd = &sc->nge_rdata;
1344 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1345 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1346 		if (nge_newbuf(sc, i) != 0)
1347 			return (ENOBUFS);
1348 		if (i == NGE_RX_RING_CNT - 1)
1349 			addr = NGE_RX_RING_ADDR(sc, 0);
1350 		else
1351 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1352 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1353 	}
1354 
1355 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1356 	    sc->nge_cdata.nge_rx_ring_map,
1357 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1358 
1359 	return (0);
1360 }
1361 
1362 static __inline void
1363 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1364 {
1365 	struct nge_desc *desc;
1366 
1367 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1368 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1369 	desc->nge_extsts = 0;
1370 }
1371 
1372 /*
1373  * Initialize an RX descriptor and attach an MBUF cluster.
1374  */
1375 static int
1376 nge_newbuf(struct nge_softc *sc, int idx)
1377 {
1378 	struct nge_desc *desc;
1379 	struct nge_rxdesc *rxd;
1380 	struct mbuf *m;
1381 	bus_dma_segment_t segs[1];
1382 	bus_dmamap_t map;
1383 	int nsegs;
1384 
1385 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1386 	if (m == NULL)
1387 		return (ENOBUFS);
1388 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1389 	m_adj(m, sizeof(uint64_t));
1390 
1391 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1392 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1393 		m_freem(m);
1394 		return (ENOBUFS);
1395 	}
1396 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1397 
1398 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1399 	if (rxd->rx_m != NULL) {
1400 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1401 		    BUS_DMASYNC_POSTREAD);
1402 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1403 	}
1404 	map = rxd->rx_dmamap;
1405 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1406 	sc->nge_cdata.nge_rx_sparemap = map;
1407 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1408 	    BUS_DMASYNC_PREREAD);
1409 	rxd->rx_m = m;
1410 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1411 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1412 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1413 	desc->nge_extsts = 0;
1414 
1415 	return (0);
1416 }
1417 
1418 #ifndef __NO_STRICT_ALIGNMENT
1419 static __inline void
1420 nge_fixup_rx(struct mbuf *m)
1421 {
1422 	int			i;
1423 	uint16_t		*src, *dst;
1424 
1425 	src = mtod(m, uint16_t *);
1426 	dst = src - 1;
1427 
1428 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1429 		*dst++ = *src++;
1430 
1431 	m->m_data -= ETHER_ALIGN;
1432 }
1433 #endif
1434 
1435 /*
1436  * A frame has been uploaded: pass the resulting mbuf chain up to
1437  * the higher level protocols.
1438  */
1439 static int
1440 nge_rxeof(struct nge_softc *sc)
1441 {
1442 	struct mbuf *m;
1443 	struct ifnet *ifp;
1444 	struct nge_desc *cur_rx;
1445 	struct nge_rxdesc *rxd;
1446 	int cons, prog, rx_npkts, total_len;
1447 	uint32_t cmdsts, extsts;
1448 
1449 	NGE_LOCK_ASSERT(sc);
1450 
1451 	ifp = sc->nge_ifp;
1452 	cons = sc->nge_cdata.nge_rx_cons;
1453 	rx_npkts = 0;
1454 
1455 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1456 	    sc->nge_cdata.nge_rx_ring_map,
1457 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1458 
1459 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1460 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1461 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1462 #ifdef DEVICE_POLLING
1463 		if (ifp->if_capenable & IFCAP_POLLING) {
1464 			if (sc->rxcycles <= 0)
1465 				break;
1466 			sc->rxcycles--;
1467 		}
1468 #endif
1469 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1470 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1471 		extsts = le32toh(cur_rx->nge_extsts);
1472 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1473 			break;
1474 		prog++;
1475 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1476 		m = rxd->rx_m;
1477 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1478 
1479 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1480 			if (nge_newbuf(sc, cons) != 0) {
1481 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1482 				if (sc->nge_head != NULL) {
1483 					m_freem(sc->nge_head);
1484 					sc->nge_head = sc->nge_tail = NULL;
1485 				}
1486 				nge_discard_rxbuf(sc, cons);
1487 				continue;
1488 			}
1489 			m->m_len = total_len;
1490 			if (sc->nge_head == NULL) {
1491 				m->m_pkthdr.len = total_len;
1492 				sc->nge_head = sc->nge_tail = m;
1493 			} else {
1494 				m->m_flags &= ~M_PKTHDR;
1495 				sc->nge_head->m_pkthdr.len += total_len;
1496 				sc->nge_tail->m_next = m;
1497 				sc->nge_tail = m;
1498 			}
1499 			continue;
1500 		}
1501 
1502 		/*
1503 		 * If an error occurs, update stats, clear the
1504 		 * status word and leave the mbuf cluster in place:
1505 		 * it should simply get re-used next time this descriptor
1506 	 	 * comes up in the ring.
1507 		 */
1508 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1509 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1510 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1511 				/*
1512 				 * Work-around hardware bug, accept runt frames
1513 				 * if its length is larger than or equal to 56.
1514 				 */
1515 			} else {
1516 				/*
1517 				 * Input error counters are updated by hardware.
1518 				 */
1519 				if (sc->nge_head != NULL) {
1520 					m_freem(sc->nge_head);
1521 					sc->nge_head = sc->nge_tail = NULL;
1522 				}
1523 				nge_discard_rxbuf(sc, cons);
1524 				continue;
1525 			}
1526 		}
1527 
1528 		/* Try conjure up a replacement mbuf. */
1529 
1530 		if (nge_newbuf(sc, cons) != 0) {
1531 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1532 			if (sc->nge_head != NULL) {
1533 				m_freem(sc->nge_head);
1534 				sc->nge_head = sc->nge_tail = NULL;
1535 			}
1536 			nge_discard_rxbuf(sc, cons);
1537 			continue;
1538 		}
1539 
1540 		/* Chain received mbufs. */
1541 		if (sc->nge_head != NULL) {
1542 			m->m_len = total_len;
1543 			m->m_flags &= ~M_PKTHDR;
1544 			sc->nge_tail->m_next = m;
1545 			m = sc->nge_head;
1546 			m->m_pkthdr.len += total_len;
1547 			sc->nge_head = sc->nge_tail = NULL;
1548 		} else
1549 			m->m_pkthdr.len = m->m_len = total_len;
1550 
1551 		/*
1552 		 * Ok. NatSemi really screwed up here. This is the
1553 		 * only gigE chip I know of with alignment constraints
1554 		 * on receive buffers. RX buffers must be 64-bit aligned.
1555 		 */
1556 		/*
1557 		 * By popular demand, ignore the alignment problems
1558 		 * on the non-strict alignment platform. The performance hit
1559 		 * incurred due to unaligned accesses is much smaller
1560 		 * than the hit produced by forcing buffer copies all
1561 		 * the time, especially with jumbo frames. We still
1562 		 * need to fix up the alignment everywhere else though.
1563 		 */
1564 #ifndef __NO_STRICT_ALIGNMENT
1565 		nge_fixup_rx(m);
1566 #endif
1567 		m->m_pkthdr.rcvif = ifp;
1568 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1569 
1570 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1571 			/* Do IP checksum checking. */
1572 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1573 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1574 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1575 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1576 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1577 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1578 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1579 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1580 				m->m_pkthdr.csum_flags |=
1581 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1582 				m->m_pkthdr.csum_data = 0xffff;
1583 			}
1584 		}
1585 
1586 		/*
1587 		 * If we received a packet with a vlan tag, pass it
1588 		 * to vlan_input() instead of ether_input().
1589 		 */
1590 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1591 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1592 			m->m_pkthdr.ether_vtag =
1593 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1594 			m->m_flags |= M_VLANTAG;
1595 		}
1596 		NGE_UNLOCK(sc);
1597 		(*ifp->if_input)(ifp, m);
1598 		NGE_LOCK(sc);
1599 		rx_npkts++;
1600 	}
1601 
1602 	if (prog > 0) {
1603 		sc->nge_cdata.nge_rx_cons = cons;
1604 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1605 		    sc->nge_cdata.nge_rx_ring_map,
1606 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1607 	}
1608 	return (rx_npkts);
1609 }
1610 
1611 /*
1612  * A frame was downloaded to the chip. It's safe for us to clean up
1613  * the list buffers.
1614  */
1615 static void
1616 nge_txeof(struct nge_softc *sc)
1617 {
1618 	struct nge_desc	*cur_tx;
1619 	struct nge_txdesc *txd;
1620 	struct ifnet *ifp;
1621 	uint32_t cmdsts;
1622 	int cons, prod;
1623 
1624 	NGE_LOCK_ASSERT(sc);
1625 	ifp = sc->nge_ifp;
1626 
1627 	cons = sc->nge_cdata.nge_tx_cons;
1628 	prod = sc->nge_cdata.nge_tx_prod;
1629 	if (cons == prod)
1630 		return;
1631 
1632 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1633 	    sc->nge_cdata.nge_tx_ring_map,
1634 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1635 
1636 	/*
1637 	 * Go through our tx list and free mbufs for those
1638 	 * frames that have been transmitted.
1639 	 */
1640 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1641 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1642 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1643 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1644 			break;
1645 		sc->nge_cdata.nge_tx_cnt--;
1646 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1647 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1648 			continue;
1649 
1650 		txd = &sc->nge_cdata.nge_txdesc[cons];
1651 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1652 		    BUS_DMASYNC_POSTWRITE);
1653 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1654 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1655 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1656 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1657 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1658 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1659 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1660 		} else
1661 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1662 
1663 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
1664 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1665 		    __func__));
1666 		m_freem(txd->tx_m);
1667 		txd->tx_m = NULL;
1668 	}
1669 
1670 	sc->nge_cdata.nge_tx_cons = cons;
1671 	if (sc->nge_cdata.nge_tx_cnt == 0)
1672 		sc->nge_watchdog_timer = 0;
1673 }
1674 
1675 static void
1676 nge_tick(void *xsc)
1677 {
1678 	struct nge_softc *sc;
1679 	struct mii_data *mii;
1680 
1681 	sc = xsc;
1682 	NGE_LOCK_ASSERT(sc);
1683 	mii = device_get_softc(sc->nge_miibus);
1684 	mii_tick(mii);
1685 	/*
1686 	 * For PHYs that does not reset established link, it is
1687 	 * necessary to check whether driver still have a valid
1688 	 * link(e.g link state change callback is not called).
1689 	 * Otherwise, driver think it lost link because driver
1690 	 * initialization routine clears link state flag.
1691 	 */
1692 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1693 		nge_miibus_statchg(sc->nge_dev);
1694 	nge_stats_update(sc);
1695 	nge_watchdog(sc);
1696 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1697 }
1698 
1699 static void
1700 nge_stats_update(struct nge_softc *sc)
1701 {
1702 	struct ifnet *ifp;
1703 	struct nge_stats now, *stats, *nstats;
1704 
1705 	NGE_LOCK_ASSERT(sc);
1706 
1707 	ifp = sc->nge_ifp;
1708 	stats = &now;
1709 	stats->rx_pkts_errs =
1710 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1711 	stats->rx_crc_errs =
1712 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1713 	stats->rx_fifo_oflows =
1714 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1715 	stats->rx_align_errs =
1716 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1717 	stats->rx_sym_errs =
1718 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1719 	stats->rx_pkts_jumbos =
1720 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1721 	stats->rx_len_errs =
1722 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1723 	stats->rx_unctl_frames =
1724 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1725 	stats->rx_pause =
1726 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1727 	stats->tx_pause =
1728 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1729 	stats->tx_seq_errs =
1730 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1731 
1732 	/*
1733 	 * Since we've accept errored frames exclude Rx length errors.
1734 	 */
1735 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
1736 	    stats->rx_pkts_errs + stats->rx_crc_errs +
1737 	    stats->rx_fifo_oflows + stats->rx_sym_errs);
1738 
1739 	nstats = &sc->nge_stats;
1740 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1741 	nstats->rx_crc_errs += stats->rx_crc_errs;
1742 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1743 	nstats->rx_align_errs += stats->rx_align_errs;
1744 	nstats->rx_sym_errs += stats->rx_sym_errs;
1745 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1746 	nstats->rx_len_errs += stats->rx_len_errs;
1747 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1748 	nstats->rx_pause += stats->rx_pause;
1749 	nstats->tx_pause += stats->tx_pause;
1750 	nstats->tx_seq_errs += stats->tx_seq_errs;
1751 }
1752 
1753 #ifdef DEVICE_POLLING
1754 static poll_handler_t nge_poll;
1755 
1756 static int
1757 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1758 {
1759 	struct nge_softc *sc;
1760 	int rx_npkts = 0;
1761 
1762 	sc = ifp->if_softc;
1763 
1764 	NGE_LOCK(sc);
1765 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1766 		NGE_UNLOCK(sc);
1767 		return (rx_npkts);
1768 	}
1769 
1770 	/*
1771 	 * On the nge, reading the status register also clears it.
1772 	 * So before returning to intr mode we must make sure that all
1773 	 * possible pending sources of interrupts have been served.
1774 	 * In practice this means run to completion the *eof routines,
1775 	 * and then call the interrupt routine.
1776 	 */
1777 	sc->rxcycles = count;
1778 	rx_npkts = nge_rxeof(sc);
1779 	nge_txeof(sc);
1780 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1781 		nge_start_locked(ifp);
1782 
1783 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1784 		uint32_t	status;
1785 
1786 		/* Reading the ISR register clears all interrupts. */
1787 		status = CSR_READ_4(sc, NGE_ISR);
1788 
1789 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1790 			rx_npkts += nge_rxeof(sc);
1791 
1792 		if ((status & NGE_ISR_RX_IDLE) != 0)
1793 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1794 
1795 		if ((status & NGE_ISR_SYSERR) != 0) {
1796 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1797 			nge_init_locked(sc);
1798 		}
1799 	}
1800 	NGE_UNLOCK(sc);
1801 	return (rx_npkts);
1802 }
1803 #endif /* DEVICE_POLLING */
1804 
1805 static void
1806 nge_intr(void *arg)
1807 {
1808 	struct nge_softc *sc;
1809 	struct ifnet *ifp;
1810 	uint32_t status;
1811 
1812 	sc = (struct nge_softc *)arg;
1813 	ifp = sc->nge_ifp;
1814 
1815 	NGE_LOCK(sc);
1816 
1817 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1818 		goto done_locked;
1819 
1820 	/* Reading the ISR register clears all interrupts. */
1821 	status = CSR_READ_4(sc, NGE_ISR);
1822 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1823 		goto done_locked;
1824 #ifdef DEVICE_POLLING
1825 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1826 		goto done_locked;
1827 #endif
1828 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1829 		goto done_locked;
1830 
1831 	/* Disable interrupts. */
1832 	CSR_WRITE_4(sc, NGE_IER, 0);
1833 
1834 	/* Data LED on for TBI mode */
1835 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1836 		CSR_WRITE_4(sc, NGE_GPIO,
1837 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1838 
1839 	for (; (status & NGE_INTRS) != 0;) {
1840 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1841 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1842 			nge_txeof(sc);
1843 
1844 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1845 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1846 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1847 			nge_rxeof(sc);
1848 
1849 		if ((status & NGE_ISR_RX_IDLE) != 0)
1850 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1851 
1852 		if ((status & NGE_ISR_SYSERR) != 0) {
1853 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1854 			nge_init_locked(sc);
1855 		}
1856 		/* Reading the ISR register clears all interrupts. */
1857 		status = CSR_READ_4(sc, NGE_ISR);
1858 	}
1859 
1860 	/* Re-enable interrupts. */
1861 	CSR_WRITE_4(sc, NGE_IER, 1);
1862 
1863 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1864 		nge_start_locked(ifp);
1865 
1866 	/* Data LED off for TBI mode */
1867 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1868 		CSR_WRITE_4(sc, NGE_GPIO,
1869 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1870 
1871 done_locked:
1872 	NGE_UNLOCK(sc);
1873 }
1874 
1875 /*
1876  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1877  * pointers to the fragment pointers.
1878  */
1879 static int
1880 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1881 {
1882 	struct nge_txdesc *txd, *txd_last;
1883 	struct nge_desc *desc;
1884 	struct mbuf *m;
1885 	bus_dmamap_t map;
1886 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1887 	int error, i, nsegs, prod, si;
1888 
1889 	NGE_LOCK_ASSERT(sc);
1890 
1891 	m = *m_head;
1892 	prod = sc->nge_cdata.nge_tx_prod;
1893 	txd = &sc->nge_cdata.nge_txdesc[prod];
1894 	txd_last = txd;
1895 	map = txd->tx_dmamap;
1896 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1897 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1898 	if (error == EFBIG) {
1899 		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1900 		if (m == NULL) {
1901 			m_freem(*m_head);
1902 			*m_head = NULL;
1903 			return (ENOBUFS);
1904 		}
1905 		*m_head = m;
1906 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1907 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1908 		if (error != 0) {
1909 			m_freem(*m_head);
1910 			*m_head = NULL;
1911 			return (error);
1912 		}
1913 	} else if (error != 0)
1914 		return (error);
1915 	if (nsegs == 0) {
1916 		m_freem(*m_head);
1917 		*m_head = NULL;
1918 		return (EIO);
1919 	}
1920 
1921 	/* Check number of available descriptors. */
1922 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1923 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1924 		return (ENOBUFS);
1925 	}
1926 
1927 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1928 
1929 	si = prod;
1930 	for (i = 0; i < nsegs; i++) {
1931 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1932 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1933 		if (i == 0)
1934 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1935 			    NGE_CMDSTS_MORE);
1936 		else
1937 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1938 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1939 		desc->nge_extsts = 0;
1940 		sc->nge_cdata.nge_tx_cnt++;
1941 		NGE_INC(prod, NGE_TX_RING_CNT);
1942 	}
1943 	/* Update producer index. */
1944 	sc->nge_cdata.nge_tx_prod = prod;
1945 
1946 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1947 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1948 	/* Check if we have a VLAN tag to insert. */
1949 	if ((m->m_flags & M_VLANTAG) != 0)
1950 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1951 		    bswap16(m->m_pkthdr.ether_vtag));
1952 	/* Set EOP on the last desciptor. */
1953 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1954 
1955 	/* Set checksum offload in the first descriptor. */
1956 	desc = &sc->nge_rdata.nge_tx_ring[si];
1957 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1958 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1959 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1960 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1961 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1962 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1963 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1964 	}
1965 	/* Lastly, turn the first descriptor ownership to hardware. */
1966 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1967 
1968 	txd = &sc->nge_cdata.nge_txdesc[prod];
1969 	map = txd_last->tx_dmamap;
1970 	txd_last->tx_dmamap = txd->tx_dmamap;
1971 	txd->tx_dmamap = map;
1972 	txd->tx_m = m;
1973 
1974 	return (0);
1975 }
1976 
1977 /*
1978  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1979  * to the mbuf data regions directly in the transmit lists. We also save a
1980  * copy of the pointers since the transmit list fragment pointers are
1981  * physical addresses.
1982  */
1983 
1984 static void
1985 nge_start(struct ifnet *ifp)
1986 {
1987 	struct nge_softc *sc;
1988 
1989 	sc = ifp->if_softc;
1990 	NGE_LOCK(sc);
1991 	nge_start_locked(ifp);
1992 	NGE_UNLOCK(sc);
1993 }
1994 
1995 static void
1996 nge_start_locked(struct ifnet *ifp)
1997 {
1998 	struct nge_softc *sc;
1999 	struct mbuf *m_head;
2000 	int enq;
2001 
2002 	sc = ifp->if_softc;
2003 
2004 	NGE_LOCK_ASSERT(sc);
2005 
2006 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2007 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2008 		return;
2009 
2010 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2011 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2012 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2013 		if (m_head == NULL)
2014 			break;
2015 		/*
2016 		 * Pack the data into the transmit ring. If we
2017 		 * don't have room, set the OACTIVE flag and wait
2018 		 * for the NIC to drain the ring.
2019 		 */
2020 		if (nge_encap(sc, &m_head)) {
2021 			if (m_head == NULL)
2022 				break;
2023 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2024 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2025 			break;
2026 		}
2027 
2028 		enq++;
2029 		/*
2030 		 * If there's a BPF listener, bounce a copy of this frame
2031 		 * to him.
2032 		 */
2033 		ETHER_BPF_MTAP(ifp, m_head);
2034 	}
2035 
2036 	if (enq > 0) {
2037 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2038 		    sc->nge_cdata.nge_tx_ring_map,
2039 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2040 		/* Transmit */
2041 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2042 
2043 		/* Set a timeout in case the chip goes out to lunch. */
2044 		sc->nge_watchdog_timer = 5;
2045 	}
2046 }
2047 
2048 static void
2049 nge_init(void *xsc)
2050 {
2051 	struct nge_softc *sc = xsc;
2052 
2053 	NGE_LOCK(sc);
2054 	nge_init_locked(sc);
2055 	NGE_UNLOCK(sc);
2056 }
2057 
2058 static void
2059 nge_init_locked(struct nge_softc *sc)
2060 {
2061 	struct ifnet *ifp = sc->nge_ifp;
2062 	struct mii_data *mii;
2063 	uint8_t *eaddr;
2064 	uint32_t reg;
2065 
2066 	NGE_LOCK_ASSERT(sc);
2067 
2068 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2069 		return;
2070 
2071 	/*
2072 	 * Cancel pending I/O and free all RX/TX buffers.
2073 	 */
2074 	nge_stop(sc);
2075 
2076 	/* Reset the adapter. */
2077 	nge_reset(sc);
2078 
2079 	/* Disable Rx filter prior to programming Rx filter. */
2080 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2081 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2082 
2083 	mii = device_get_softc(sc->nge_miibus);
2084 
2085 	/* Set MAC address. */
2086 	eaddr = IF_LLADDR(sc->nge_ifp);
2087 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2088 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2089 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2090 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2091 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2092 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2093 
2094 	/* Init circular RX list. */
2095 	if (nge_list_rx_init(sc) == ENOBUFS) {
2096 		device_printf(sc->nge_dev, "initialization failed: no "
2097 			"memory for rx buffers\n");
2098 		nge_stop(sc);
2099 		return;
2100 	}
2101 
2102 	/*
2103 	 * Init tx descriptors.
2104 	 */
2105 	nge_list_tx_init(sc);
2106 
2107 	/* Set Rx filter. */
2108 	nge_rxfilter(sc);
2109 
2110 	/* Disable PRIQ ctl. */
2111 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2112 
2113 	/*
2114 	 * Set pause frames parameters.
2115 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2116 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2117 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2118 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2119 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2120 	 */
2121 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2122 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2123 	    NGE_PAUSECSR_PAUSE_ON_DA |
2124 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2125 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2126 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2127 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2128 	    NGE_PAUSECSR_CNT);
2129 
2130 	/*
2131 	 * Load the address of the RX and TX lists.
2132 	 */
2133 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2134 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2135 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2136 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2137 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2138 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2139 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2140 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2141 
2142 	/* Set RX configuration. */
2143 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2144 
2145 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2146 	/*
2147 	 * Enable hardware checksum validation for all IPv4
2148 	 * packets, do not reject packets with bad checksums.
2149 	 */
2150 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2151 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2152 
2153 	/*
2154 	 * Tell the chip to detect and strip VLAN tag info from
2155 	 * received frames. The tag will be provided in the extsts
2156 	 * field in the RX descriptors.
2157 	 */
2158 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2159 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2160 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2161 
2162 	/* Set TX configuration. */
2163 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2164 
2165 	/*
2166 	 * Enable TX IPv4 checksumming on a per-packet basis.
2167 	 */
2168 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2169 
2170 	/*
2171 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2172 	 * dictated by the code in the frame encapsulation routine.
2173 	 */
2174 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2175 
2176 	/*
2177 	 * Enable the delivery of PHY interrupts based on
2178 	 * link/speed/duplex status changes. Also enable the
2179 	 * extsts field in the DMA descriptors (needed for
2180 	 * TCP/IP checksum offload on transmit).
2181 	 */
2182 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2183 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2184 
2185 	/*
2186 	 * Configure interrupt holdoff (moderation). We can
2187 	 * have the chip delay interrupt delivery for a certain
2188 	 * period. Units are in 100us, and the max setting
2189 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2190 	 */
2191 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2192 
2193 	/*
2194 	 * Enable MAC statistics counters and clear.
2195 	 */
2196 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2197 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2198 	reg |= NGE_MIBCTL_CLEAR_CNT;
2199 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2200 
2201 	/*
2202 	 * Enable interrupts.
2203 	 */
2204 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2205 #ifdef DEVICE_POLLING
2206 	/*
2207 	 * ... only enable interrupts if we are not polling, make sure
2208 	 * they are off otherwise.
2209 	 */
2210 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2211 		CSR_WRITE_4(sc, NGE_IER, 0);
2212 	else
2213 #endif
2214 	CSR_WRITE_4(sc, NGE_IER, 1);
2215 
2216 	sc->nge_flags &= ~NGE_FLAG_LINK;
2217 	mii_mediachg(mii);
2218 
2219 	sc->nge_watchdog_timer = 0;
2220 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2221 
2222 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2223 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2224 }
2225 
2226 /*
2227  * Set media options.
2228  */
2229 static int
2230 nge_mediachange(struct ifnet *ifp)
2231 {
2232 	struct nge_softc *sc;
2233 	struct mii_data	*mii;
2234 	struct mii_softc *miisc;
2235 	int error;
2236 
2237 	sc = ifp->if_softc;
2238 	NGE_LOCK(sc);
2239 	mii = device_get_softc(sc->nge_miibus);
2240 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2241 		PHY_RESET(miisc);
2242 	error = mii_mediachg(mii);
2243 	NGE_UNLOCK(sc);
2244 
2245 	return (error);
2246 }
2247 
2248 /*
2249  * Report current media status.
2250  */
2251 static void
2252 nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2253 {
2254 	struct nge_softc *sc;
2255 	struct mii_data *mii;
2256 
2257 	sc = ifp->if_softc;
2258 	NGE_LOCK(sc);
2259 	mii = device_get_softc(sc->nge_miibus);
2260 	mii_pollstat(mii);
2261 	ifmr->ifm_active = mii->mii_media_active;
2262 	ifmr->ifm_status = mii->mii_media_status;
2263 	NGE_UNLOCK(sc);
2264 }
2265 
2266 static int
2267 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2268 {
2269 	struct nge_softc *sc = ifp->if_softc;
2270 	struct ifreq *ifr = (struct ifreq *) data;
2271 	struct mii_data *mii;
2272 	int error = 0, mask;
2273 
2274 	switch (command) {
2275 	case SIOCSIFMTU:
2276 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2277 			error = EINVAL;
2278 		else {
2279 			NGE_LOCK(sc);
2280 			ifp->if_mtu = ifr->ifr_mtu;
2281 			/*
2282 			 * Workaround: if the MTU is larger than
2283 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2284 			 * TX checksum offloading.
2285 			 */
2286 			if (ifr->ifr_mtu >= 8152) {
2287 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2288 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2289 			} else {
2290 				ifp->if_capenable |= IFCAP_TXCSUM;
2291 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2292 			}
2293 			NGE_UNLOCK(sc);
2294 			VLAN_CAPABILITIES(ifp);
2295 		}
2296 		break;
2297 	case SIOCSIFFLAGS:
2298 		NGE_LOCK(sc);
2299 		if ((ifp->if_flags & IFF_UP) != 0) {
2300 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2301 				if ((ifp->if_flags ^ sc->nge_if_flags) &
2302 				    (IFF_PROMISC | IFF_ALLMULTI))
2303 					nge_rxfilter(sc);
2304 			} else {
2305 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2306 					nge_init_locked(sc);
2307 			}
2308 		} else {
2309 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2310 				nge_stop(sc);
2311 		}
2312 		sc->nge_if_flags = ifp->if_flags;
2313 		NGE_UNLOCK(sc);
2314 		error = 0;
2315 		break;
2316 	case SIOCADDMULTI:
2317 	case SIOCDELMULTI:
2318 		NGE_LOCK(sc);
2319 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2320 			nge_rxfilter(sc);
2321 		NGE_UNLOCK(sc);
2322 		break;
2323 	case SIOCGIFMEDIA:
2324 	case SIOCSIFMEDIA:
2325 		mii = device_get_softc(sc->nge_miibus);
2326 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2327 		break;
2328 	case SIOCSIFCAP:
2329 		NGE_LOCK(sc);
2330 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2331 #ifdef DEVICE_POLLING
2332 		if ((mask & IFCAP_POLLING) != 0 &&
2333 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2334 			ifp->if_capenable ^= IFCAP_POLLING;
2335 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2336 				error = ether_poll_register(nge_poll, ifp);
2337 				if (error != 0) {
2338 					NGE_UNLOCK(sc);
2339 					break;
2340 				}
2341 				/* Disable interrupts. */
2342 				CSR_WRITE_4(sc, NGE_IER, 0);
2343 			} else {
2344 				error = ether_poll_deregister(ifp);
2345 				/* Enable interrupts. */
2346 				CSR_WRITE_4(sc, NGE_IER, 1);
2347 			}
2348 		}
2349 #endif /* DEVICE_POLLING */
2350 		if ((mask & IFCAP_TXCSUM) != 0 &&
2351 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2352 			ifp->if_capenable ^= IFCAP_TXCSUM;
2353 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2354 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2355 			else
2356 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2357 		}
2358 		if ((mask & IFCAP_RXCSUM) != 0 &&
2359 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2360 			ifp->if_capenable ^= IFCAP_RXCSUM;
2361 
2362 		if ((mask & IFCAP_WOL) != 0 &&
2363 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2364 			if ((mask & IFCAP_WOL_UCAST) != 0)
2365 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2366 			if ((mask & IFCAP_WOL_MCAST) != 0)
2367 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2368 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2369 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2370 		}
2371 
2372 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2373 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2374 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2375 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2376 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2377 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2378 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2379 				if ((ifp->if_capenable &
2380 				    IFCAP_VLAN_HWTAGGING) != 0)
2381 					NGE_SETBIT(sc,
2382 					    NGE_VLAN_IP_RXCTL,
2383 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2384 				else
2385 					NGE_CLRBIT(sc,
2386 					    NGE_VLAN_IP_RXCTL,
2387 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2388 			}
2389 		}
2390 		/*
2391 		 * Both VLAN hardware tagging and checksum offload is
2392 		 * required to do checksum offload on VLAN interface.
2393 		 */
2394 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2395 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2396 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2397 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2398 		NGE_UNLOCK(sc);
2399 		VLAN_CAPABILITIES(ifp);
2400 		break;
2401 	default:
2402 		error = ether_ioctl(ifp, command, data);
2403 		break;
2404 	}
2405 
2406 	return (error);
2407 }
2408 
2409 static void
2410 nge_watchdog(struct nge_softc *sc)
2411 {
2412 	struct ifnet *ifp;
2413 
2414 	NGE_LOCK_ASSERT(sc);
2415 
2416 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2417 		return;
2418 
2419 	ifp = sc->nge_ifp;
2420 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2421 	if_printf(ifp, "watchdog timeout\n");
2422 
2423 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2424 	nge_init_locked(sc);
2425 
2426 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2427 		nge_start_locked(ifp);
2428 }
2429 
2430 static int
2431 nge_stop_mac(struct nge_softc *sc)
2432 {
2433 	uint32_t reg;
2434 	int i;
2435 
2436 	NGE_LOCK_ASSERT(sc);
2437 
2438 	reg = CSR_READ_4(sc, NGE_CSR);
2439 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2440 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2441 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2442 		CSR_WRITE_4(sc, NGE_CSR, reg);
2443 		for (i = 0; i < NGE_TIMEOUT; i++) {
2444 			DELAY(1);
2445 			if ((CSR_READ_4(sc, NGE_CSR) &
2446 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2447 				break;
2448 		}
2449 		if (i == NGE_TIMEOUT)
2450 			return (ETIMEDOUT);
2451 	}
2452 
2453 	return (0);
2454 }
2455 
2456 /*
2457  * Stop the adapter and free any mbufs allocated to the
2458  * RX and TX lists.
2459  */
2460 static void
2461 nge_stop(struct nge_softc *sc)
2462 {
2463 	struct nge_txdesc *txd;
2464 	struct nge_rxdesc *rxd;
2465 	int i;
2466 	struct ifnet *ifp;
2467 
2468 	NGE_LOCK_ASSERT(sc);
2469 	ifp = sc->nge_ifp;
2470 
2471 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2472 	sc->nge_flags &= ~NGE_FLAG_LINK;
2473 	callout_stop(&sc->nge_stat_ch);
2474 	sc->nge_watchdog_timer = 0;
2475 
2476 	CSR_WRITE_4(sc, NGE_IER, 0);
2477 	CSR_WRITE_4(sc, NGE_IMR, 0);
2478 	if (nge_stop_mac(sc) == ETIMEDOUT)
2479 		device_printf(sc->nge_dev,
2480 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2481 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2482 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2483 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2484 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2485 	nge_stats_update(sc);
2486 	if (sc->nge_head != NULL) {
2487 		m_freem(sc->nge_head);
2488 		sc->nge_head = sc->nge_tail = NULL;
2489 	}
2490 
2491 	/*
2492 	 * Free RX and TX mbufs still in the queues.
2493 	 */
2494 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2495 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2496 		if (rxd->rx_m != NULL) {
2497 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2498 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2499 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2500 			    rxd->rx_dmamap);
2501 			m_freem(rxd->rx_m);
2502 			rxd->rx_m = NULL;
2503 		}
2504 	}
2505 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2506 		txd = &sc->nge_cdata.nge_txdesc[i];
2507 		if (txd->tx_m != NULL) {
2508 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2509 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2510 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2511 			    txd->tx_dmamap);
2512 			m_freem(txd->tx_m);
2513 			txd->tx_m = NULL;
2514 		}
2515 	}
2516 }
2517 
2518 /*
2519  * Before setting WOL bits, caller should have stopped Receiver.
2520  */
2521 static void
2522 nge_wol(struct nge_softc *sc)
2523 {
2524 	struct ifnet *ifp;
2525 	uint32_t reg;
2526 	uint16_t pmstat;
2527 	int pmc;
2528 
2529 	NGE_LOCK_ASSERT(sc);
2530 
2531 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2532 		return;
2533 
2534 	ifp = sc->nge_ifp;
2535 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2536 		/* Disable WOL & disconnect CLKRUN to save power. */
2537 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2538 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2539 	} else {
2540 		if (nge_stop_mac(sc) == ETIMEDOUT)
2541 			device_printf(sc->nge_dev,
2542 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2543 		/*
2544 		 * Make sure wake frames will be buffered in the Rx FIFO.
2545 		 * (i.e. Silent Rx mode.)
2546 		 */
2547 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2548 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2549 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2550 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2551 		/* Enable Rx again. */
2552 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2553 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2554 
2555 		/* Configure WOL events. */
2556 		reg = 0;
2557 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2558 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2559 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2560 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2561 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2562 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2563 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2564 
2565 		/* Activate CLKRUN. */
2566 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2567 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2568 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2569 	}
2570 
2571 	/* Request PME. */
2572 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2573 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2574 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2575 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2576 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2577 }
2578 
2579 /*
2580  * Stop all chip I/O so that the kernel's probe routines don't
2581  * get confused by errant DMAs when rebooting.
2582  */
2583 static int
2584 nge_shutdown(device_t dev)
2585 {
2586 
2587 	return (nge_suspend(dev));
2588 }
2589 
2590 static int
2591 nge_suspend(device_t dev)
2592 {
2593 	struct nge_softc *sc;
2594 
2595 	sc = device_get_softc(dev);
2596 
2597 	NGE_LOCK(sc);
2598 	nge_stop(sc);
2599 	nge_wol(sc);
2600 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2601 	NGE_UNLOCK(sc);
2602 
2603 	return (0);
2604 }
2605 
2606 static int
2607 nge_resume(device_t dev)
2608 {
2609 	struct nge_softc *sc;
2610 	struct ifnet *ifp;
2611 	uint16_t pmstat;
2612 	int pmc;
2613 
2614 	sc = device_get_softc(dev);
2615 
2616 	NGE_LOCK(sc);
2617 	ifp = sc->nge_ifp;
2618 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2619 		/* Disable PME and clear PME status. */
2620 		pmstat = pci_read_config(sc->nge_dev,
2621 		    pmc + PCIR_POWER_STATUS, 2);
2622 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2623 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2624 			pci_write_config(sc->nge_dev,
2625 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2626 		}
2627 	}
2628 	if (ifp->if_flags & IFF_UP) {
2629 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2630 		nge_init_locked(sc);
2631 	}
2632 
2633 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2634 	NGE_UNLOCK(sc);
2635 
2636 	return (0);
2637 }
2638 
2639 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2640 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2641 
2642 static void
2643 nge_sysctl_node(struct nge_softc *sc)
2644 {
2645 	struct sysctl_ctx_list *ctx;
2646 	struct sysctl_oid_list *child, *parent;
2647 	struct sysctl_oid *tree;
2648 	struct nge_stats *stats;
2649 	int error;
2650 
2651 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2652 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2653 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2654 	    CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2655 	    sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2656 	/* Pull in device tunables. */
2657 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2658 	error = resource_int_value(device_get_name(sc->nge_dev),
2659 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2660 	if (error == 0) {
2661 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2662 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2663 			device_printf(sc->nge_dev,
2664 			    "int_holdoff value out of range; "
2665 			    "using default: %d(%d us)\n",
2666 			    NGE_INT_HOLDOFF_DEFAULT,
2667 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2668 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2669 		}
2670 	}
2671 
2672 	stats = &sc->nge_stats;
2673 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2674 	    NULL, "NGE statistics");
2675 	parent = SYSCTL_CHILDREN(tree);
2676 
2677 	/* Rx statistics. */
2678 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2679 	    NULL, "Rx MAC statistics");
2680 	child = SYSCTL_CHILDREN(tree);
2681 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2682 	    &stats->rx_pkts_errs,
2683 	    "Packet errors including both wire errors and FIFO overruns");
2684 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2685 	    &stats->rx_crc_errs, "CRC errors");
2686 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2687 	    &stats->rx_fifo_oflows, "FIFO overflows");
2688 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2689 	    &stats->rx_align_errs, "Frame alignment errors");
2690 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2691 	    &stats->rx_sym_errs, "One or more symbol errors");
2692 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2693 	    &stats->rx_pkts_jumbos,
2694 	    "Packets received with length greater than 1518 bytes");
2695 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2696 	    &stats->rx_len_errs, "In Range Length errors");
2697 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2698 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2699 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2700 	    &stats->rx_pause, "Pause frames");
2701 
2702 	/* Tx statistics. */
2703 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2704 	    NULL, "Tx MAC statistics");
2705 	child = SYSCTL_CHILDREN(tree);
2706 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2707 	    &stats->tx_pause, "Pause frames");
2708 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2709 	    &stats->tx_seq_errs,
2710 	    "Loss of collision heartbeat during transmission");
2711 }
2712 
2713 #undef NGE_SYSCTL_STAT_ADD32
2714 
2715 static int
2716 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2717 {
2718 	int error, value;
2719 
2720 	if (arg1 == NULL)
2721 		return (EINVAL);
2722 	value = *(int *)arg1;
2723 	error = sysctl_handle_int(oidp, &value, 0, req);
2724 	if (error != 0 || req->newptr == NULL)
2725 		return (error);
2726 	if (value < low || value > high)
2727 		return (EINVAL);
2728 	*(int *)arg1 = value;
2729 
2730 	return (0);
2731 }
2732 
2733 static int
2734 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2735 {
2736 
2737 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2738 	    NGE_INT_HOLDOFF_MAX));
2739 }
2740