xref: /freebsd/sys/dev/nge/if_nge.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/bus.h>
98 #include <sys/endian.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/module.h>
104 #include <sys/mutex.h>
105 #include <sys/rman.h>
106 #include <sys/socket.h>
107 #include <sys/sockio.h>
108 #include <sys/sysctl.h>
109 
110 #include <net/bpf.h>
111 #include <net/if.h>
112 #include <net/if_arp.h>
113 #include <net/ethernet.h>
114 #include <net/if_dl.h>
115 #include <net/if_media.h>
116 #include <net/if_types.h>
117 #include <net/if_vlan_var.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 
125 #include <machine/bus.h>
126 
127 #include <dev/nge/if_ngereg.h>
128 
129 /* "device miibus" required.  See GENERIC if you get errors here. */
130 #include "miibus_if.h"
131 
132 MODULE_DEPEND(nge, pci, 1, 1, 1);
133 MODULE_DEPEND(nge, ether, 1, 1, 1);
134 MODULE_DEPEND(nge, miibus, 1, 1, 1);
135 
136 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static struct nge_type nge_devs[] = {
142 	{ NGE_VENDORID, NGE_DEVICEID,
143 	    "National Semiconductor Gigabit Ethernet" },
144 	{ 0, 0, NULL }
145 };
146 
147 static int nge_probe(device_t);
148 static int nge_attach(device_t);
149 static int nge_detach(device_t);
150 static int nge_shutdown(device_t);
151 static int nge_suspend(device_t);
152 static int nge_resume(device_t);
153 
154 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
155 static int nge_newbuf(struct nge_softc *, int);
156 static int nge_encap(struct nge_softc *, struct mbuf **);
157 #ifndef __NO_STRICT_ALIGNMENT
158 static __inline void nge_fixup_rx(struct mbuf *);
159 #endif
160 static int nge_rxeof(struct nge_softc *);
161 static void nge_txeof(struct nge_softc *);
162 static void nge_intr(void *);
163 static void nge_tick(void *);
164 static void nge_stats_update(struct nge_softc *);
165 static void nge_start(struct ifnet *);
166 static void nge_start_locked(struct ifnet *);
167 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
168 static void nge_init(void *);
169 static void nge_init_locked(struct nge_softc *);
170 static int nge_stop_mac(struct nge_softc *);
171 static void nge_stop(struct nge_softc *);
172 static void nge_wol(struct nge_softc *);
173 static void nge_watchdog(struct nge_softc *);
174 static int nge_mediachange(struct ifnet *);
175 static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
176 
177 static void nge_delay(struct nge_softc *);
178 static void nge_eeprom_idle(struct nge_softc *);
179 static void nge_eeprom_putbyte(struct nge_softc *, int);
180 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
181 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
182 
183 static void nge_mii_sync(struct nge_softc *);
184 static void nge_mii_send(struct nge_softc *, uint32_t, int);
185 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
186 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
187 
188 static int nge_miibus_readreg(device_t, int, int);
189 static int nge_miibus_writereg(device_t, int, int, int);
190 static void nge_miibus_statchg(device_t);
191 
192 static void nge_rxfilter(struct nge_softc *);
193 static void nge_reset(struct nge_softc *);
194 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
195 static int nge_dma_alloc(struct nge_softc *);
196 static void nge_dma_free(struct nge_softc *);
197 static int nge_list_rx_init(struct nge_softc *);
198 static int nge_list_tx_init(struct nge_softc *);
199 static void nge_sysctl_node(struct nge_softc *);
200 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
201 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
202 
203 static device_method_t nge_methods[] = {
204 	/* Device interface */
205 	DEVMETHOD(device_probe,		nge_probe),
206 	DEVMETHOD(device_attach,	nge_attach),
207 	DEVMETHOD(device_detach,	nge_detach),
208 	DEVMETHOD(device_shutdown,	nge_shutdown),
209 	DEVMETHOD(device_suspend,	nge_suspend),
210 	DEVMETHOD(device_resume,	nge_resume),
211 
212 	/* bus interface */
213 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
214 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
215 
216 	/* MII interface */
217 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
218 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
219 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
220 
221 	{ NULL, NULL }
222 };
223 
224 static driver_t nge_driver = {
225 	"nge",
226 	nge_methods,
227 	sizeof(struct nge_softc)
228 };
229 
230 static devclass_t nge_devclass;
231 
232 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
233 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
234 
235 #define NGE_SETBIT(sc, reg, x)				\
236 	CSR_WRITE_4(sc, reg,				\
237 		CSR_READ_4(sc, reg) | (x))
238 
239 #define NGE_CLRBIT(sc, reg, x)				\
240 	CSR_WRITE_4(sc, reg,				\
241 		CSR_READ_4(sc, reg) & ~(x))
242 
243 #define SIO_SET(x)					\
244 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
245 
246 #define SIO_CLR(x)					\
247 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
248 
249 static void
250 nge_delay(struct nge_softc *sc)
251 {
252 	int idx;
253 
254 	for (idx = (300 / 33) + 1; idx > 0; idx--)
255 		CSR_READ_4(sc, NGE_CSR);
256 }
257 
258 static void
259 nge_eeprom_idle(struct nge_softc *sc)
260 {
261 	int i;
262 
263 	SIO_SET(NGE_MEAR_EE_CSEL);
264 	nge_delay(sc);
265 	SIO_SET(NGE_MEAR_EE_CLK);
266 	nge_delay(sc);
267 
268 	for (i = 0; i < 25; i++) {
269 		SIO_CLR(NGE_MEAR_EE_CLK);
270 		nge_delay(sc);
271 		SIO_SET(NGE_MEAR_EE_CLK);
272 		nge_delay(sc);
273 	}
274 
275 	SIO_CLR(NGE_MEAR_EE_CLK);
276 	nge_delay(sc);
277 	SIO_CLR(NGE_MEAR_EE_CSEL);
278 	nge_delay(sc);
279 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
280 }
281 
282 /*
283  * Send a read command and address to the EEPROM, check for ACK.
284  */
285 static void
286 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
287 {
288 	int d, i;
289 
290 	d = addr | NGE_EECMD_READ;
291 
292 	/*
293 	 * Feed in each bit and stobe the clock.
294 	 */
295 	for (i = 0x400; i; i >>= 1) {
296 		if (d & i) {
297 			SIO_SET(NGE_MEAR_EE_DIN);
298 		} else {
299 			SIO_CLR(NGE_MEAR_EE_DIN);
300 		}
301 		nge_delay(sc);
302 		SIO_SET(NGE_MEAR_EE_CLK);
303 		nge_delay(sc);
304 		SIO_CLR(NGE_MEAR_EE_CLK);
305 		nge_delay(sc);
306 	}
307 }
308 
309 /*
310  * Read a word of data stored in the EEPROM at address 'addr.'
311  */
312 static void
313 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
314 {
315 	int i;
316 	uint16_t word = 0;
317 
318 	/* Force EEPROM to idle state. */
319 	nge_eeprom_idle(sc);
320 
321 	/* Enter EEPROM access mode. */
322 	nge_delay(sc);
323 	SIO_CLR(NGE_MEAR_EE_CLK);
324 	nge_delay(sc);
325 	SIO_SET(NGE_MEAR_EE_CSEL);
326 	nge_delay(sc);
327 
328 	/*
329 	 * Send address of word we want to read.
330 	 */
331 	nge_eeprom_putbyte(sc, addr);
332 
333 	/*
334 	 * Start reading bits from EEPROM.
335 	 */
336 	for (i = 0x8000; i; i >>= 1) {
337 		SIO_SET(NGE_MEAR_EE_CLK);
338 		nge_delay(sc);
339 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
340 			word |= i;
341 		nge_delay(sc);
342 		SIO_CLR(NGE_MEAR_EE_CLK);
343 		nge_delay(sc);
344 	}
345 
346 	/* Turn off EEPROM access mode. */
347 	nge_eeprom_idle(sc);
348 
349 	*dest = word;
350 }
351 
352 /*
353  * Read a sequence of words from the EEPROM.
354  */
355 static void
356 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
357 {
358 	int i;
359 	uint16_t word = 0, *ptr;
360 
361 	for (i = 0; i < cnt; i++) {
362 		nge_eeprom_getword(sc, off + i, &word);
363 		ptr = (uint16_t *)(dest + (i * 2));
364 		*ptr = word;
365 	}
366 }
367 
368 /*
369  * Sync the PHYs by setting data bit and strobing the clock 32 times.
370  */
371 static void
372 nge_mii_sync(struct nge_softc *sc)
373 {
374 	int i;
375 
376 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
377 
378 	for (i = 0; i < 32; i++) {
379 		SIO_SET(NGE_MEAR_MII_CLK);
380 		DELAY(1);
381 		SIO_CLR(NGE_MEAR_MII_CLK);
382 		DELAY(1);
383 	}
384 }
385 
386 /*
387  * Clock a series of bits through the MII.
388  */
389 static void
390 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
391 {
392 	int i;
393 
394 	SIO_CLR(NGE_MEAR_MII_CLK);
395 
396 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
397 		if (bits & i) {
398 			SIO_SET(NGE_MEAR_MII_DATA);
399 		} else {
400 			SIO_CLR(NGE_MEAR_MII_DATA);
401 		}
402 		DELAY(1);
403 		SIO_CLR(NGE_MEAR_MII_CLK);
404 		DELAY(1);
405 		SIO_SET(NGE_MEAR_MII_CLK);
406 	}
407 }
408 
409 /*
410  * Read an PHY register through the MII.
411  */
412 static int
413 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
414 {
415 	int i, ack;
416 
417 	/*
418 	 * Set up frame for RX.
419 	 */
420 	frame->mii_stdelim = NGE_MII_STARTDELIM;
421 	frame->mii_opcode = NGE_MII_READOP;
422 	frame->mii_turnaround = 0;
423 	frame->mii_data = 0;
424 
425 	CSR_WRITE_4(sc, NGE_MEAR, 0);
426 
427 	/*
428  	 * Turn on data xmit.
429 	 */
430 	SIO_SET(NGE_MEAR_MII_DIR);
431 
432 	nge_mii_sync(sc);
433 
434 	/*
435 	 * Send command/address info.
436 	 */
437 	nge_mii_send(sc, frame->mii_stdelim, 2);
438 	nge_mii_send(sc, frame->mii_opcode, 2);
439 	nge_mii_send(sc, frame->mii_phyaddr, 5);
440 	nge_mii_send(sc, frame->mii_regaddr, 5);
441 
442 	/* Idle bit */
443 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
444 	DELAY(1);
445 	SIO_SET(NGE_MEAR_MII_CLK);
446 	DELAY(1);
447 
448 	/* Turn off xmit. */
449 	SIO_CLR(NGE_MEAR_MII_DIR);
450 	/* Check for ack */
451 	SIO_CLR(NGE_MEAR_MII_CLK);
452 	DELAY(1);
453 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
454 	SIO_SET(NGE_MEAR_MII_CLK);
455 	DELAY(1);
456 
457 	/*
458 	 * Now try reading data bits. If the ack failed, we still
459 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
460 	 */
461 	if (ack) {
462 		for (i = 0; i < 16; i++) {
463 			SIO_CLR(NGE_MEAR_MII_CLK);
464 			DELAY(1);
465 			SIO_SET(NGE_MEAR_MII_CLK);
466 			DELAY(1);
467 		}
468 		goto fail;
469 	}
470 
471 	for (i = 0x8000; i; i >>= 1) {
472 		SIO_CLR(NGE_MEAR_MII_CLK);
473 		DELAY(1);
474 		if (!ack) {
475 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
476 				frame->mii_data |= i;
477 			DELAY(1);
478 		}
479 		SIO_SET(NGE_MEAR_MII_CLK);
480 		DELAY(1);
481 	}
482 
483 fail:
484 
485 	SIO_CLR(NGE_MEAR_MII_CLK);
486 	DELAY(1);
487 	SIO_SET(NGE_MEAR_MII_CLK);
488 	DELAY(1);
489 
490 	if (ack)
491 		return (1);
492 	return (0);
493 }
494 
495 /*
496  * Write to a PHY register through the MII.
497  */
498 static int
499 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
500 {
501 
502 	/*
503 	 * Set up frame for TX.
504 	 */
505 
506 	frame->mii_stdelim = NGE_MII_STARTDELIM;
507 	frame->mii_opcode = NGE_MII_WRITEOP;
508 	frame->mii_turnaround = NGE_MII_TURNAROUND;
509 
510 	/*
511  	 * Turn on data output.
512 	 */
513 	SIO_SET(NGE_MEAR_MII_DIR);
514 
515 	nge_mii_sync(sc);
516 
517 	nge_mii_send(sc, frame->mii_stdelim, 2);
518 	nge_mii_send(sc, frame->mii_opcode, 2);
519 	nge_mii_send(sc, frame->mii_phyaddr, 5);
520 	nge_mii_send(sc, frame->mii_regaddr, 5);
521 	nge_mii_send(sc, frame->mii_turnaround, 2);
522 	nge_mii_send(sc, frame->mii_data, 16);
523 
524 	/* Idle bit. */
525 	SIO_SET(NGE_MEAR_MII_CLK);
526 	DELAY(1);
527 	SIO_CLR(NGE_MEAR_MII_CLK);
528 	DELAY(1);
529 
530 	/*
531 	 * Turn off xmit.
532 	 */
533 	SIO_CLR(NGE_MEAR_MII_DIR);
534 
535 	return (0);
536 }
537 
538 static int
539 nge_miibus_readreg(device_t dev, int phy, int reg)
540 {
541 	struct nge_softc *sc;
542 	struct nge_mii_frame frame;
543 	int rv;
544 
545 	sc = device_get_softc(dev);
546 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
547 		/* Pretend PHY is at address 0. */
548 		if (phy != 0)
549 			return (0);
550 		switch (reg) {
551 		case MII_BMCR:
552 			reg = NGE_TBI_BMCR;
553 			break;
554 		case MII_BMSR:
555 			/* 83820/83821 has different bit layout for BMSR. */
556 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
557 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
558 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
559 				rv |= BMSR_ACOMP;
560 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
561 				rv |= BMSR_LINK;
562 			return (rv);
563 		case MII_ANAR:
564 			reg = NGE_TBI_ANAR;
565 			break;
566 		case MII_ANLPAR:
567 			reg = NGE_TBI_ANLPAR;
568 			break;
569 		case MII_ANER:
570 			reg = NGE_TBI_ANER;
571 			break;
572 		case MII_EXTSR:
573 			reg = NGE_TBI_ESR;
574 			break;
575 		case MII_PHYIDR1:
576 		case MII_PHYIDR2:
577 			return (0);
578 		default:
579 			device_printf(sc->nge_dev,
580 			    "bad phy register read : %d\n", reg);
581 			return (0);
582 		}
583 		return (CSR_READ_4(sc, reg));
584 	}
585 
586 	bzero((char *)&frame, sizeof(frame));
587 
588 	frame.mii_phyaddr = phy;
589 	frame.mii_regaddr = reg;
590 	nge_mii_readreg(sc, &frame);
591 
592 	return (frame.mii_data);
593 }
594 
595 static int
596 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
597 {
598 	struct nge_softc *sc;
599 	struct nge_mii_frame frame;
600 
601 	sc = device_get_softc(dev);
602 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
603 		/* Pretend PHY is at address 0. */
604 		if (phy != 0)
605 			return (0);
606 		switch (reg) {
607 		case MII_BMCR:
608 			reg = NGE_TBI_BMCR;
609 			break;
610 		case MII_BMSR:
611 			return (0);
612 		case MII_ANAR:
613 			reg = NGE_TBI_ANAR;
614 			break;
615 		case MII_ANLPAR:
616 			reg = NGE_TBI_ANLPAR;
617 			break;
618 		case MII_ANER:
619 			reg = NGE_TBI_ANER;
620 			break;
621 		case MII_EXTSR:
622 			reg = NGE_TBI_ESR;
623 			break;
624 		case MII_PHYIDR1:
625 		case MII_PHYIDR2:
626 			return (0);
627 		default:
628 			device_printf(sc->nge_dev,
629 			    "bad phy register write : %d\n", reg);
630 			return (0);
631 		}
632 		CSR_WRITE_4(sc, reg, data);
633 		return (0);
634 	}
635 
636 	bzero((char *)&frame, sizeof(frame));
637 
638 	frame.mii_phyaddr = phy;
639 	frame.mii_regaddr = reg;
640 	frame.mii_data = data;
641 	nge_mii_writereg(sc, &frame);
642 
643 	return (0);
644 }
645 
646 /*
647  * media status/link state change handler.
648  */
649 static void
650 nge_miibus_statchg(device_t dev)
651 {
652 	struct nge_softc *sc;
653 	struct mii_data *mii;
654 	struct ifnet *ifp;
655 	struct nge_txdesc *txd;
656 	uint32_t done, reg, status;
657 	int i;
658 
659 	sc = device_get_softc(dev);
660 	NGE_LOCK_ASSERT(sc);
661 
662 	mii = device_get_softc(sc->nge_miibus);
663 	ifp = sc->nge_ifp;
664 	if (mii == NULL || ifp == NULL ||
665 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
666 		return;
667 
668 	sc->nge_flags &= ~NGE_FLAG_LINK;
669 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
670 	    (IFM_AVALID | IFM_ACTIVE)) {
671 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
672 		case IFM_10_T:
673 		case IFM_100_TX:
674 		case IFM_1000_T:
675 		case IFM_1000_SX:
676 		case IFM_1000_LX:
677 		case IFM_1000_CX:
678 			sc->nge_flags |= NGE_FLAG_LINK;
679 			break;
680 		default:
681 			break;
682 		}
683 	}
684 
685 	/* Stop Tx/Rx MACs. */
686 	if (nge_stop_mac(sc) == ETIMEDOUT)
687 		device_printf(sc->nge_dev,
688 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
689 	nge_txeof(sc);
690 	nge_rxeof(sc);
691 	if (sc->nge_head != NULL) {
692 		m_freem(sc->nge_head);
693 		sc->nge_head = sc->nge_tail = NULL;
694 	}
695 
696 	/* Release queued frames. */
697 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
698 		txd = &sc->nge_cdata.nge_txdesc[i];
699 		if (txd->tx_m != NULL) {
700 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
701 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
702 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
703 			    txd->tx_dmamap);
704 			m_freem(txd->tx_m);
705 			txd->tx_m = NULL;
706 		}
707 	}
708 
709 	/* Program MAC with resolved speed/duplex. */
710 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
711 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
712 			NGE_SETBIT(sc, NGE_TX_CFG,
713 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
714 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
715 #ifdef notyet
716 			/* Enable flow-control. */
717 			if ((IFM_OPTIONS(mii->mii_media_active) &
718 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
719 				NGE_SETBIT(sc, NGE_PAUSECSR,
720 				    NGE_PAUSECSR_PAUSE_ENB);
721 #endif
722 		} else {
723 			NGE_CLRBIT(sc, NGE_TX_CFG,
724 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
725 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
726 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
727 		}
728 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
729 		reg = CSR_READ_4(sc, NGE_CFG);
730 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
731 		case IFM_1000_SX:
732 		case IFM_1000_LX:
733 		case IFM_1000_CX:
734 		case IFM_1000_T:
735 			reg |= NGE_CFG_MODE_1000;
736 			break;
737 		default:
738 			reg &= ~NGE_CFG_MODE_1000;
739 			break;
740 		}
741 		CSR_WRITE_4(sc, NGE_CFG, reg);
742 
743 		/* Reset Tx/Rx MAC. */
744 		reg = CSR_READ_4(sc, NGE_CSR);
745 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
746 		CSR_WRITE_4(sc, NGE_CSR, reg);
747 		/* Check the completion of reset. */
748 		done = 0;
749 		for (i = 0; i < NGE_TIMEOUT; i++) {
750 			DELAY(1);
751 			status = CSR_READ_4(sc, NGE_ISR);
752 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
753 				done |= NGE_ISR_RX_RESET_DONE;
754 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
755 				done |= NGE_ISR_TX_RESET_DONE;
756 			if (done ==
757 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
758 				break;
759 		}
760 		if (i == NGE_TIMEOUT)
761 			device_printf(sc->nge_dev,
762 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
763 		/* Reuse Rx buffer and reset consumer pointer. */
764 		sc->nge_cdata.nge_rx_cons = 0;
765 		/*
766 		 * It seems that resetting Rx/Tx MAC results in
767 		 * resetting Tx/Rx descriptor pointer registers such
768 		 * that reloading Tx/Rx lists address are needed.
769 		 */
770 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
771 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
772 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
773 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
774 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
775 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
776 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
777 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
778 		/* Reinitialize Tx buffers. */
779 		nge_list_tx_init(sc);
780 
781 		/* Restart Rx MAC. */
782 		reg = CSR_READ_4(sc, NGE_CSR);
783 		reg |= NGE_CSR_RX_ENABLE;
784 		CSR_WRITE_4(sc, NGE_CSR, reg);
785 		for (i = 0; i < NGE_TIMEOUT; i++) {
786 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
787 				break;
788 			DELAY(1);
789 		}
790 		if (i == NGE_TIMEOUT)
791 			device_printf(sc->nge_dev,
792 			    "%s: unable to restart Rx MAC\n", __func__);
793 	}
794 
795 	/* Data LED off for TBI mode */
796 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
797 		CSR_WRITE_4(sc, NGE_GPIO,
798 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
799 }
800 
801 static void
802 nge_rxfilter(struct nge_softc *sc)
803 {
804 	struct ifnet *ifp;
805 	struct ifmultiaddr *ifma;
806 	uint32_t h, i, rxfilt;
807 	int bit, index;
808 
809 	NGE_LOCK_ASSERT(sc);
810 	ifp = sc->nge_ifp;
811 
812 	/* Make sure to stop Rx filtering. */
813 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
814 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
815 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
816 	CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
817 
818 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
819 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
820 	/*
821 	 * We don't want to use the hash table for matching unicast
822 	 * addresses.
823 	 */
824 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
825 
826 	/*
827 	 * For the NatSemi chip, we have to explicitly enable the
828 	 * reception of ARP frames, as well as turn on the 'perfect
829 	 * match' filter where we store the station address, otherwise
830 	 * we won't receive unicasts meant for this host.
831 	 */
832 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
833 
834 	/*
835 	 * Set the capture broadcast bit to capture broadcast frames.
836 	 */
837 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
838 		rxfilt |= NGE_RXFILTCTL_BROAD;
839 
840 	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
841 	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
842 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
843 		if ((ifp->if_flags & IFF_PROMISC) != 0)
844 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
845 		goto done;
846 	}
847 
848 	/*
849 	 * We have to explicitly enable the multicast hash table
850 	 * on the NatSemi chip if we want to use it, which we do.
851 	 */
852 	rxfilt |= NGE_RXFILTCTL_MCHASH;
853 
854 	/* first, zot all the existing hash bits */
855 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
856 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
857 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
858 	}
859 
860 	/*
861 	 * From the 11 bits returned by the crc routine, the top 7
862 	 * bits represent the 16-bit word in the mcast hash table
863 	 * that needs to be updated, and the lower 4 bits represent
864 	 * which bit within that byte needs to be set.
865 	 */
866 	if_maddr_rlock(ifp);
867 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
868 		if (ifma->ifma_addr->sa_family != AF_LINK)
869 			continue;
870 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
871 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
872 		index = (h >> 4) & 0x7F;
873 		bit = h & 0xF;
874 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
875 		    NGE_FILTADDR_MCAST_LO + (index * 2));
876 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
877 	}
878 	if_maddr_runlock(ifp);
879 
880 done:
881 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
882 	/* Turn the receive filter on. */
883 	rxfilt |= NGE_RXFILTCTL_ENABLE;
884 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
885 	CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
886 }
887 
888 static void
889 nge_reset(struct nge_softc *sc)
890 {
891 	uint32_t v;
892 	int i;
893 
894 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
895 
896 	for (i = 0; i < NGE_TIMEOUT; i++) {
897 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
898 			break;
899 		DELAY(1);
900 	}
901 
902 	if (i == NGE_TIMEOUT)
903 		device_printf(sc->nge_dev, "reset never completed\n");
904 
905 	/* Wait a little while for the chip to get its brains in order. */
906 	DELAY(1000);
907 
908 	/*
909 	 * If this is a NetSemi chip, make sure to clear
910 	 * PME mode.
911 	 */
912 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
913 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
914 
915 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
916 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
917 
918 	/*
919 	 * Only DP83820 supports 64bits addressing/data transfers and
920 	 * 64bit addressing requires different descriptor structures.
921 	 * To make it simple, disable 64bit addressing/data transfers.
922 	 */
923 	v = CSR_READ_4(sc, NGE_CFG);
924 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
925 	CSR_WRITE_4(sc, NGE_CFG, v);
926 }
927 
928 /*
929  * Probe for a NatSemi chip. Check the PCI vendor and device
930  * IDs against our list and return a device name if we find a match.
931  */
932 static int
933 nge_probe(device_t dev)
934 {
935 	struct nge_type *t;
936 
937 	t = nge_devs;
938 
939 	while (t->nge_name != NULL) {
940 		if ((pci_get_vendor(dev) == t->nge_vid) &&
941 		    (pci_get_device(dev) == t->nge_did)) {
942 			device_set_desc(dev, t->nge_name);
943 			return (BUS_PROBE_DEFAULT);
944 		}
945 		t++;
946 	}
947 
948 	return (ENXIO);
949 }
950 
951 /*
952  * Attach the interface. Allocate softc structures, do ifmedia
953  * setup and ethernet/BPF attach.
954  */
955 static int
956 nge_attach(device_t dev)
957 {
958 	uint8_t eaddr[ETHER_ADDR_LEN];
959 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
960 	struct nge_softc *sc;
961 	struct ifnet *ifp;
962 	int error, i, rid;
963 
964 	error = 0;
965 	sc = device_get_softc(dev);
966 	sc->nge_dev = dev;
967 
968 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
969 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
970 
971 	/*
972 	 * Map control/status registers.
973 	 */
974 	pci_enable_busmaster(dev);
975 
976 #ifdef NGE_USEIOSPACE
977 	sc->nge_res_type = SYS_RES_IOPORT;
978 	sc->nge_res_id = PCIR_BAR(0);
979 #else
980 	sc->nge_res_type = SYS_RES_MEMORY;
981 	sc->nge_res_id = PCIR_BAR(1);
982 #endif
983 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
984 	    &sc->nge_res_id, RF_ACTIVE);
985 
986 	if (sc->nge_res == NULL) {
987 		if (sc->nge_res_type == SYS_RES_MEMORY) {
988 			sc->nge_res_type = SYS_RES_IOPORT;
989 			sc->nge_res_id = PCIR_BAR(0);
990 		} else {
991 			sc->nge_res_type = SYS_RES_MEMORY;
992 			sc->nge_res_id = PCIR_BAR(1);
993 		}
994 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
995 		    &sc->nge_res_id, RF_ACTIVE);
996 		if (sc->nge_res == NULL) {
997 			device_printf(dev, "couldn't allocate %s resources\n",
998 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
999 			    "I/O");
1000 			NGE_LOCK_DESTROY(sc);
1001 			return (ENXIO);
1002 		}
1003 	}
1004 
1005 	/* Allocate interrupt */
1006 	rid = 0;
1007 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1008 	    RF_SHAREABLE | RF_ACTIVE);
1009 
1010 	if (sc->nge_irq == NULL) {
1011 		device_printf(dev, "couldn't map interrupt\n");
1012 		error = ENXIO;
1013 		goto fail;
1014 	}
1015 
1016 	/* Enable MWI. */
1017 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
1018 	reg |= PCIM_CMD_MWRICEN;
1019 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
1020 
1021 	/* Reset the adapter. */
1022 	nge_reset(sc);
1023 
1024 	/*
1025 	 * Get station address from the EEPROM.
1026 	 */
1027 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
1028 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1029 		ea[i] = le16toh(ea[i]);
1030 	ea_temp = ea[0];
1031 	ea[0] = ea[2];
1032 	ea[2] = ea_temp;
1033 	bcopy(ea, eaddr, sizeof(eaddr));
1034 
1035 	if (nge_dma_alloc(sc) != 0) {
1036 		error = ENXIO;
1037 		goto fail;
1038 	}
1039 
1040 	nge_sysctl_node(sc);
1041 
1042 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
1043 	if (ifp == NULL) {
1044 		device_printf(dev, "can not allocate ifnet structure\n");
1045 		error = ENOSPC;
1046 		goto fail;
1047 	}
1048 	ifp->if_softc = sc;
1049 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1050 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1051 	ifp->if_ioctl = nge_ioctl;
1052 	ifp->if_start = nge_start;
1053 	ifp->if_init = nge_init;
1054 	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
1055 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1056 	IFQ_SET_READY(&ifp->if_snd);
1057 	ifp->if_hwassist = NGE_CSUM_FEATURES;
1058 	ifp->if_capabilities = IFCAP_HWCSUM;
1059 	/*
1060 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
1061 	 * supply(3VAUX) to drive PME such that checking PCI power
1062 	 * management capability is necessary.
1063 	 */
1064 	if (pci_find_extcap(sc->nge_dev, PCIY_PMG, &i) == 0)
1065 		ifp->if_capabilities |= IFCAP_WOL;
1066 	ifp->if_capenable = ifp->if_capabilities;
1067 
1068 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
1069 		sc->nge_flags |= NGE_FLAG_TBI;
1070 		device_printf(dev, "Using TBI\n");
1071 		/* Configure GPIO. */
1072 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1073 		    | NGE_GPIO_GP4_OUT
1074 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
1075 		    | NGE_GPIO_GP3_OUTENB
1076 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
1077 	}
1078 
1079 	/*
1080 	 * Do MII setup.
1081 	 */
1082 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
1083 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1084 	if (error != 0) {
1085 		device_printf(dev, "attaching PHYs failed\n");
1086 		goto fail;
1087 	}
1088 
1089 	/*
1090 	 * Call MI attach routine.
1091 	 */
1092 	ether_ifattach(ifp, eaddr);
1093 
1094 	/* VLAN capability setup. */
1095 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1096 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1097 	ifp->if_capenable = ifp->if_capabilities;
1098 #ifdef DEVICE_POLLING
1099 	ifp->if_capabilities |= IFCAP_POLLING;
1100 #endif
1101 	/*
1102 	 * Tell the upper layer(s) we support long frames.
1103 	 * Must appear after the call to ether_ifattach() because
1104 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1105 	 */
1106 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1107 
1108 	/*
1109 	 * Hookup IRQ last.
1110 	 */
1111 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
1112 	    NULL, nge_intr, sc, &sc->nge_intrhand);
1113 	if (error) {
1114 		device_printf(dev, "couldn't set up irq\n");
1115 		goto fail;
1116 	}
1117 
1118 fail:
1119 	if (error != 0)
1120 		nge_detach(dev);
1121 	return (error);
1122 }
1123 
1124 static int
1125 nge_detach(device_t dev)
1126 {
1127 	struct nge_softc *sc;
1128 	struct ifnet *ifp;
1129 
1130 	sc = device_get_softc(dev);
1131 	ifp = sc->nge_ifp;
1132 
1133 #ifdef DEVICE_POLLING
1134 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
1135 		ether_poll_deregister(ifp);
1136 #endif
1137 
1138 	if (device_is_attached(dev)) {
1139 		NGE_LOCK(sc);
1140 		sc->nge_flags |= NGE_FLAG_DETACH;
1141 		nge_stop(sc);
1142 		NGE_UNLOCK(sc);
1143 		callout_drain(&sc->nge_stat_ch);
1144 		if (ifp != NULL)
1145 			ether_ifdetach(ifp);
1146 	}
1147 
1148 	if (sc->nge_miibus != NULL) {
1149 		device_delete_child(dev, sc->nge_miibus);
1150 		sc->nge_miibus = NULL;
1151 	}
1152 	bus_generic_detach(dev);
1153 	if (sc->nge_intrhand != NULL)
1154 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1155 	if (sc->nge_irq != NULL)
1156 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1157 	if (sc->nge_res != NULL)
1158 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1159 		    sc->nge_res);
1160 
1161 	nge_dma_free(sc);
1162 	if (ifp != NULL)
1163 		if_free(ifp);
1164 
1165 	NGE_LOCK_DESTROY(sc);
1166 
1167 	return (0);
1168 }
1169 
1170 struct nge_dmamap_arg {
1171 	bus_addr_t	nge_busaddr;
1172 };
1173 
1174 static void
1175 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1176 {
1177 	struct nge_dmamap_arg *ctx;
1178 
1179 	if (error != 0)
1180 		return;
1181 	ctx = arg;
1182 	ctx->nge_busaddr = segs[0].ds_addr;
1183 }
1184 
1185 static int
1186 nge_dma_alloc(struct nge_softc *sc)
1187 {
1188 	struct nge_dmamap_arg ctx;
1189 	struct nge_txdesc *txd;
1190 	struct nge_rxdesc *rxd;
1191 	int error, i;
1192 
1193 	/* Create parent DMA tag. */
1194 	error = bus_dma_tag_create(
1195 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1196 	    1, 0,			/* alignment, boundary */
1197 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1198 	    BUS_SPACE_MAXADDR,		/* highaddr */
1199 	    NULL, NULL,			/* filter, filterarg */
1200 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1201 	    0,				/* nsegments */
1202 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1203 	    0,				/* flags */
1204 	    NULL, NULL,			/* lockfunc, lockarg */
1205 	    &sc->nge_cdata.nge_parent_tag);
1206 	if (error != 0) {
1207 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1208 		goto fail;
1209 	}
1210 	/* Create tag for Tx ring. */
1211 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1212 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1213 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1214 	    BUS_SPACE_MAXADDR,		/* highaddr */
1215 	    NULL, NULL,			/* filter, filterarg */
1216 	    NGE_TX_RING_SIZE,		/* maxsize */
1217 	    1,				/* nsegments */
1218 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1219 	    0,				/* flags */
1220 	    NULL, NULL,			/* lockfunc, lockarg */
1221 	    &sc->nge_cdata.nge_tx_ring_tag);
1222 	if (error != 0) {
1223 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1224 		goto fail;
1225 	}
1226 
1227 	/* Create tag for Rx ring. */
1228 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1229 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1230 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1231 	    BUS_SPACE_MAXADDR,		/* highaddr */
1232 	    NULL, NULL,			/* filter, filterarg */
1233 	    NGE_RX_RING_SIZE,		/* maxsize */
1234 	    1,				/* nsegments */
1235 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1236 	    0,				/* flags */
1237 	    NULL, NULL,			/* lockfunc, lockarg */
1238 	    &sc->nge_cdata.nge_rx_ring_tag);
1239 	if (error != 0) {
1240 		device_printf(sc->nge_dev,
1241 		    "failed to create Rx ring DMA tag\n");
1242 		goto fail;
1243 	}
1244 
1245 	/* Create tag for Tx buffers. */
1246 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1247 	    1, 0,			/* alignment, boundary */
1248 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1249 	    BUS_SPACE_MAXADDR,		/* highaddr */
1250 	    NULL, NULL,			/* filter, filterarg */
1251 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1252 	    NGE_MAXTXSEGS,		/* nsegments */
1253 	    MCLBYTES,			/* maxsegsize */
1254 	    0,				/* flags */
1255 	    NULL, NULL,			/* lockfunc, lockarg */
1256 	    &sc->nge_cdata.nge_tx_tag);
1257 	if (error != 0) {
1258 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1259 		goto fail;
1260 	}
1261 
1262 	/* Create tag for Rx buffers. */
1263 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1264 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1265 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1266 	    BUS_SPACE_MAXADDR,		/* highaddr */
1267 	    NULL, NULL,			/* filter, filterarg */
1268 	    MCLBYTES,			/* maxsize */
1269 	    1,				/* nsegments */
1270 	    MCLBYTES,			/* maxsegsize */
1271 	    0,				/* flags */
1272 	    NULL, NULL,			/* lockfunc, lockarg */
1273 	    &sc->nge_cdata.nge_rx_tag);
1274 	if (error != 0) {
1275 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1276 		goto fail;
1277 	}
1278 
1279 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1280 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1281 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1282 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1283 	if (error != 0) {
1284 		device_printf(sc->nge_dev,
1285 		    "failed to allocate DMA'able memory for Tx ring\n");
1286 		goto fail;
1287 	}
1288 
1289 	ctx.nge_busaddr = 0;
1290 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1291 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1292 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1293 	if (error != 0 || ctx.nge_busaddr == 0) {
1294 		device_printf(sc->nge_dev,
1295 		    "failed to load DMA'able memory for Tx ring\n");
1296 		goto fail;
1297 	}
1298 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1299 
1300 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1301 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1302 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1303 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1304 	if (error != 0) {
1305 		device_printf(sc->nge_dev,
1306 		    "failed to allocate DMA'able memory for Rx ring\n");
1307 		goto fail;
1308 	}
1309 
1310 	ctx.nge_busaddr = 0;
1311 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1312 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1313 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1314 	if (error != 0 || ctx.nge_busaddr == 0) {
1315 		device_printf(sc->nge_dev,
1316 		    "failed to load DMA'able memory for Rx ring\n");
1317 		goto fail;
1318 	}
1319 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1320 
1321 	/* Create DMA maps for Tx buffers. */
1322 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1323 		txd = &sc->nge_cdata.nge_txdesc[i];
1324 		txd->tx_m = NULL;
1325 		txd->tx_dmamap = NULL;
1326 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1327 		    &txd->tx_dmamap);
1328 		if (error != 0) {
1329 			device_printf(sc->nge_dev,
1330 			    "failed to create Tx dmamap\n");
1331 			goto fail;
1332 		}
1333 	}
1334 	/* Create DMA maps for Rx buffers. */
1335 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1336 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1337 		device_printf(sc->nge_dev,
1338 		    "failed to create spare Rx dmamap\n");
1339 		goto fail;
1340 	}
1341 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1342 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1343 		rxd->rx_m = NULL;
1344 		rxd->rx_dmamap = NULL;
1345 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1346 		    &rxd->rx_dmamap);
1347 		if (error != 0) {
1348 			device_printf(sc->nge_dev,
1349 			    "failed to create Rx dmamap\n");
1350 			goto fail;
1351 		}
1352 	}
1353 
1354 fail:
1355 	return (error);
1356 }
1357 
1358 static void
1359 nge_dma_free(struct nge_softc *sc)
1360 {
1361 	struct nge_txdesc *txd;
1362 	struct nge_rxdesc *rxd;
1363 	int i;
1364 
1365 	/* Tx ring. */
1366 	if (sc->nge_cdata.nge_tx_ring_tag) {
1367 		if (sc->nge_cdata.nge_tx_ring_map)
1368 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1369 			    sc->nge_cdata.nge_tx_ring_map);
1370 		if (sc->nge_cdata.nge_tx_ring_map &&
1371 		    sc->nge_rdata.nge_tx_ring)
1372 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1373 			    sc->nge_rdata.nge_tx_ring,
1374 			    sc->nge_cdata.nge_tx_ring_map);
1375 		sc->nge_rdata.nge_tx_ring = NULL;
1376 		sc->nge_cdata.nge_tx_ring_map = NULL;
1377 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1378 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1379 	}
1380 	/* Rx ring. */
1381 	if (sc->nge_cdata.nge_rx_ring_tag) {
1382 		if (sc->nge_cdata.nge_rx_ring_map)
1383 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1384 			    sc->nge_cdata.nge_rx_ring_map);
1385 		if (sc->nge_cdata.nge_rx_ring_map &&
1386 		    sc->nge_rdata.nge_rx_ring)
1387 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1388 			    sc->nge_rdata.nge_rx_ring,
1389 			    sc->nge_cdata.nge_rx_ring_map);
1390 		sc->nge_rdata.nge_rx_ring = NULL;
1391 		sc->nge_cdata.nge_rx_ring_map = NULL;
1392 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1393 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1394 	}
1395 	/* Tx buffers. */
1396 	if (sc->nge_cdata.nge_tx_tag) {
1397 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1398 			txd = &sc->nge_cdata.nge_txdesc[i];
1399 			if (txd->tx_dmamap) {
1400 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1401 				    txd->tx_dmamap);
1402 				txd->tx_dmamap = NULL;
1403 			}
1404 		}
1405 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1406 		sc->nge_cdata.nge_tx_tag = NULL;
1407 	}
1408 	/* Rx buffers. */
1409 	if (sc->nge_cdata.nge_rx_tag) {
1410 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1411 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1412 			if (rxd->rx_dmamap) {
1413 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1414 				    rxd->rx_dmamap);
1415 				rxd->rx_dmamap = NULL;
1416 			}
1417 		}
1418 		if (sc->nge_cdata.nge_rx_sparemap) {
1419 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1420 			    sc->nge_cdata.nge_rx_sparemap);
1421 			sc->nge_cdata.nge_rx_sparemap = 0;
1422 		}
1423 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1424 		sc->nge_cdata.nge_rx_tag = NULL;
1425 	}
1426 
1427 	if (sc->nge_cdata.nge_parent_tag) {
1428 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1429 		sc->nge_cdata.nge_parent_tag = NULL;
1430 	}
1431 }
1432 
1433 /*
1434  * Initialize the transmit descriptors.
1435  */
1436 static int
1437 nge_list_tx_init(struct nge_softc *sc)
1438 {
1439 	struct nge_ring_data *rd;
1440 	struct nge_txdesc *txd;
1441 	bus_addr_t addr;
1442 	int i;
1443 
1444 	sc->nge_cdata.nge_tx_prod = 0;
1445 	sc->nge_cdata.nge_tx_cons = 0;
1446 	sc->nge_cdata.nge_tx_cnt = 0;
1447 
1448 	rd = &sc->nge_rdata;
1449 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1450 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1451 		if (i == NGE_TX_RING_CNT - 1)
1452 			addr = NGE_TX_RING_ADDR(sc, 0);
1453 		else
1454 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1455 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1456 		txd = &sc->nge_cdata.nge_txdesc[i];
1457 		txd->tx_m = NULL;
1458 	}
1459 
1460 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1461 	    sc->nge_cdata.nge_tx_ring_map,
1462 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1463 
1464 	return (0);
1465 }
1466 
1467 /*
1468  * Initialize the RX descriptors and allocate mbufs for them. Note that
1469  * we arrange the descriptors in a closed ring, so that the last descriptor
1470  * points back to the first.
1471  */
1472 static int
1473 nge_list_rx_init(struct nge_softc *sc)
1474 {
1475 	struct nge_ring_data *rd;
1476 	bus_addr_t addr;
1477 	int i;
1478 
1479 	sc->nge_cdata.nge_rx_cons = 0;
1480 	sc->nge_head = sc->nge_tail = NULL;
1481 
1482 	rd = &sc->nge_rdata;
1483 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1484 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1485 		if (nge_newbuf(sc, i) != 0)
1486 			return (ENOBUFS);
1487 		if (i == NGE_RX_RING_CNT - 1)
1488 			addr = NGE_RX_RING_ADDR(sc, 0);
1489 		else
1490 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1491 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1492 	}
1493 
1494 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1495 	    sc->nge_cdata.nge_rx_ring_map,
1496 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1497 
1498 	return (0);
1499 }
1500 
1501 static __inline void
1502 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1503 {
1504 	struct nge_desc *desc;
1505 
1506 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1507 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1508 	desc->nge_extsts = 0;
1509 }
1510 
1511 /*
1512  * Initialize an RX descriptor and attach an MBUF cluster.
1513  */
1514 static int
1515 nge_newbuf(struct nge_softc *sc, int idx)
1516 {
1517 	struct nge_desc *desc;
1518 	struct nge_rxdesc *rxd;
1519 	struct mbuf *m;
1520 	bus_dma_segment_t segs[1];
1521 	bus_dmamap_t map;
1522 	int nsegs;
1523 
1524 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1525 	if (m == NULL)
1526 		return (ENOBUFS);
1527 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1528 	m_adj(m, sizeof(uint64_t));
1529 
1530 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1531 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1532 		m_freem(m);
1533 		return (ENOBUFS);
1534 	}
1535 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1536 
1537 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1538 	if (rxd->rx_m != NULL) {
1539 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1540 		    BUS_DMASYNC_POSTREAD);
1541 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1542 	}
1543 	map = rxd->rx_dmamap;
1544 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1545 	sc->nge_cdata.nge_rx_sparemap = map;
1546 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1547 	    BUS_DMASYNC_PREREAD);
1548 	rxd->rx_m = m;
1549 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1550 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1551 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1552 	desc->nge_extsts = 0;
1553 
1554 	return (0);
1555 }
1556 
1557 #ifndef __NO_STRICT_ALIGNMENT
1558 static __inline void
1559 nge_fixup_rx(struct mbuf *m)
1560 {
1561 	int			i;
1562 	uint16_t		*src, *dst;
1563 
1564 	src = mtod(m, uint16_t *);
1565 	dst = src - 1;
1566 
1567 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1568 		*dst++ = *src++;
1569 
1570 	m->m_data -= ETHER_ALIGN;
1571 }
1572 #endif
1573 
1574 /*
1575  * A frame has been uploaded: pass the resulting mbuf chain up to
1576  * the higher level protocols.
1577  */
1578 static int
1579 nge_rxeof(struct nge_softc *sc)
1580 {
1581 	struct mbuf *m;
1582 	struct ifnet *ifp;
1583 	struct nge_desc *cur_rx;
1584 	struct nge_rxdesc *rxd;
1585 	int cons, prog, rx_npkts, total_len;
1586 	uint32_t cmdsts, extsts;
1587 
1588 	NGE_LOCK_ASSERT(sc);
1589 
1590 	ifp = sc->nge_ifp;
1591 	cons = sc->nge_cdata.nge_rx_cons;
1592 	rx_npkts = 0;
1593 
1594 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1595 	    sc->nge_cdata.nge_rx_ring_map,
1596 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1597 
1598 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1599 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1600 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1601 #ifdef DEVICE_POLLING
1602 		if (ifp->if_capenable & IFCAP_POLLING) {
1603 			if (sc->rxcycles <= 0)
1604 				break;
1605 			sc->rxcycles--;
1606 		}
1607 #endif
1608 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1609 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1610 		extsts = le32toh(cur_rx->nge_extsts);
1611 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1612 			break;
1613 		prog++;
1614 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1615 		m = rxd->rx_m;
1616 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1617 
1618 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1619 			if (nge_newbuf(sc, cons) != 0) {
1620 				ifp->if_iqdrops++;
1621 				if (sc->nge_head != NULL) {
1622 					m_freem(sc->nge_head);
1623 					sc->nge_head = sc->nge_tail = NULL;
1624 				}
1625 				nge_discard_rxbuf(sc, cons);
1626 				continue;
1627 			}
1628 			m->m_len = total_len;
1629 			if (sc->nge_head == NULL) {
1630 				m->m_pkthdr.len = total_len;
1631 				sc->nge_head = sc->nge_tail = m;
1632 			} else {
1633 				m->m_flags &= ~M_PKTHDR;
1634 				sc->nge_head->m_pkthdr.len += total_len;
1635 				sc->nge_tail->m_next = m;
1636 				sc->nge_tail = m;
1637 			}
1638 			continue;
1639 		}
1640 
1641 		/*
1642 		 * If an error occurs, update stats, clear the
1643 		 * status word and leave the mbuf cluster in place:
1644 		 * it should simply get re-used next time this descriptor
1645 	 	 * comes up in the ring.
1646 		 */
1647 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1648 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1649 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1650 				/*
1651 				 * Work-around hardware bug, accept runt frames
1652 				 * if its length is larger than or equal to 56.
1653 				 */
1654 			} else {
1655 				/*
1656 				 * Input error counters are updated by hardware.
1657 				 */
1658 				if (sc->nge_head != NULL) {
1659 					m_freem(sc->nge_head);
1660 					sc->nge_head = sc->nge_tail = NULL;
1661 				}
1662 				nge_discard_rxbuf(sc, cons);
1663 				continue;
1664 			}
1665 		}
1666 
1667 		/* Try conjure up a replacement mbuf. */
1668 
1669 		if (nge_newbuf(sc, cons) != 0) {
1670 			ifp->if_iqdrops++;
1671 			if (sc->nge_head != NULL) {
1672 				m_freem(sc->nge_head);
1673 				sc->nge_head = sc->nge_tail = NULL;
1674 			}
1675 			nge_discard_rxbuf(sc, cons);
1676 			continue;
1677 		}
1678 
1679 		/* Chain received mbufs. */
1680 		if (sc->nge_head != NULL) {
1681 			m->m_len = total_len;
1682 			m->m_flags &= ~M_PKTHDR;
1683 			sc->nge_tail->m_next = m;
1684 			m = sc->nge_head;
1685 			m->m_pkthdr.len += total_len;
1686 			sc->nge_head = sc->nge_tail = NULL;
1687 		} else
1688 			m->m_pkthdr.len = m->m_len = total_len;
1689 
1690 		/*
1691 		 * Ok. NatSemi really screwed up here. This is the
1692 		 * only gigE chip I know of with alignment constraints
1693 		 * on receive buffers. RX buffers must be 64-bit aligned.
1694 		 */
1695 		/*
1696 		 * By popular demand, ignore the alignment problems
1697 		 * on the non-strict alignment platform. The performance hit
1698 		 * incurred due to unaligned accesses is much smaller
1699 		 * than the hit produced by forcing buffer copies all
1700 		 * the time, especially with jumbo frames. We still
1701 		 * need to fix up the alignment everywhere else though.
1702 		 */
1703 #ifndef __NO_STRICT_ALIGNMENT
1704 		nge_fixup_rx(m);
1705 #endif
1706 		m->m_pkthdr.rcvif = ifp;
1707 		ifp->if_ipackets++;
1708 
1709 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1710 			/* Do IP checksum checking. */
1711 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1712 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1713 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1714 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1715 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1716 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1717 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1718 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1719 				m->m_pkthdr.csum_flags |=
1720 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1721 				m->m_pkthdr.csum_data = 0xffff;
1722 			}
1723 		}
1724 
1725 		/*
1726 		 * If we received a packet with a vlan tag, pass it
1727 		 * to vlan_input() instead of ether_input().
1728 		 */
1729 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1730 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1731 			m->m_pkthdr.ether_vtag =
1732 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1733 			m->m_flags |= M_VLANTAG;
1734 		}
1735 		NGE_UNLOCK(sc);
1736 		(*ifp->if_input)(ifp, m);
1737 		NGE_LOCK(sc);
1738 		rx_npkts++;
1739 	}
1740 
1741 	if (prog > 0) {
1742 		sc->nge_cdata.nge_rx_cons = cons;
1743 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1744 		    sc->nge_cdata.nge_rx_ring_map,
1745 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1746 	}
1747 	return (rx_npkts);
1748 }
1749 
1750 /*
1751  * A frame was downloaded to the chip. It's safe for us to clean up
1752  * the list buffers.
1753  */
1754 static void
1755 nge_txeof(struct nge_softc *sc)
1756 {
1757 	struct nge_desc	*cur_tx;
1758 	struct nge_txdesc *txd;
1759 	struct ifnet *ifp;
1760 	uint32_t cmdsts;
1761 	int cons, prod;
1762 
1763 	NGE_LOCK_ASSERT(sc);
1764 	ifp = sc->nge_ifp;
1765 
1766 	cons = sc->nge_cdata.nge_tx_cons;
1767 	prod = sc->nge_cdata.nge_tx_prod;
1768 	if (cons == prod)
1769 		return;
1770 
1771 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1772 	    sc->nge_cdata.nge_tx_ring_map,
1773 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1774 
1775 	/*
1776 	 * Go through our tx list and free mbufs for those
1777 	 * frames that have been transmitted.
1778 	 */
1779 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1780 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1781 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1782 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1783 			break;
1784 		sc->nge_cdata.nge_tx_cnt--;
1785 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1786 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1787 			continue;
1788 
1789 		txd = &sc->nge_cdata.nge_txdesc[cons];
1790 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1791 		    BUS_DMASYNC_POSTWRITE);
1792 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1793 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1794 			ifp->if_oerrors++;
1795 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1796 				ifp->if_collisions++;
1797 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1798 				ifp->if_collisions++;
1799 		} else
1800 			ifp->if_opackets++;
1801 
1802 		ifp->if_collisions += (cmdsts & NGE_TXSTAT_COLLCNT) >> 16;
1803 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1804 		    __func__));
1805 		m_freem(txd->tx_m);
1806 		txd->tx_m = NULL;
1807 	}
1808 
1809 	sc->nge_cdata.nge_tx_cons = cons;
1810 	if (sc->nge_cdata.nge_tx_cnt == 0)
1811 		sc->nge_watchdog_timer = 0;
1812 }
1813 
1814 static void
1815 nge_tick(void *xsc)
1816 {
1817 	struct nge_softc *sc;
1818 	struct mii_data *mii;
1819 
1820 	sc = xsc;
1821 	NGE_LOCK_ASSERT(sc);
1822 	mii = device_get_softc(sc->nge_miibus);
1823 	mii_tick(mii);
1824 	/*
1825 	 * For PHYs that does not reset established link, it is
1826 	 * necessary to check whether driver still have a valid
1827 	 * link(e.g link state change callback is not called).
1828 	 * Otherwise, driver think it lost link because driver
1829 	 * initialization routine clears link state flag.
1830 	 */
1831 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1832 		nge_miibus_statchg(sc->nge_dev);
1833 	nge_stats_update(sc);
1834 	nge_watchdog(sc);
1835 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1836 }
1837 
1838 static void
1839 nge_stats_update(struct nge_softc *sc)
1840 {
1841 	struct ifnet *ifp;
1842 	struct nge_stats now, *stats, *nstats;
1843 
1844 	NGE_LOCK_ASSERT(sc);
1845 
1846 	ifp = sc->nge_ifp;
1847 	stats = &now;
1848 	stats->rx_pkts_errs =
1849 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1850 	stats->rx_crc_errs =
1851 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1852 	stats->rx_fifo_oflows =
1853 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1854 	stats->rx_align_errs =
1855 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1856 	stats->rx_sym_errs =
1857 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1858 	stats->rx_pkts_jumbos =
1859 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1860 	stats->rx_len_errs =
1861 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1862 	stats->rx_unctl_frames =
1863 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1864 	stats->rx_pause =
1865 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1866 	stats->tx_pause =
1867 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1868 	stats->tx_seq_errs =
1869 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1870 
1871 	/*
1872 	 * Since we've accept errored frames exclude Rx length errors.
1873 	 */
1874 	ifp->if_ierrors += stats->rx_pkts_errs + stats->rx_crc_errs +
1875 	    stats->rx_fifo_oflows + stats->rx_sym_errs;
1876 
1877 	nstats = &sc->nge_stats;
1878 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1879 	nstats->rx_crc_errs += stats->rx_crc_errs;
1880 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1881 	nstats->rx_align_errs += stats->rx_align_errs;
1882 	nstats->rx_sym_errs += stats->rx_sym_errs;
1883 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1884 	nstats->rx_len_errs += stats->rx_len_errs;
1885 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1886 	nstats->rx_pause += stats->rx_pause;
1887 	nstats->tx_pause += stats->tx_pause;
1888 	nstats->tx_seq_errs += stats->tx_seq_errs;
1889 }
1890 
1891 #ifdef DEVICE_POLLING
1892 static poll_handler_t nge_poll;
1893 
1894 static int
1895 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1896 {
1897 	struct nge_softc *sc;
1898 	int rx_npkts = 0;
1899 
1900 	sc = ifp->if_softc;
1901 
1902 	NGE_LOCK(sc);
1903 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1904 		NGE_UNLOCK(sc);
1905 		return (rx_npkts);
1906 	}
1907 
1908 	/*
1909 	 * On the nge, reading the status register also clears it.
1910 	 * So before returning to intr mode we must make sure that all
1911 	 * possible pending sources of interrupts have been served.
1912 	 * In practice this means run to completion the *eof routines,
1913 	 * and then call the interrupt routine.
1914 	 */
1915 	sc->rxcycles = count;
1916 	rx_npkts = nge_rxeof(sc);
1917 	nge_txeof(sc);
1918 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1919 		nge_start_locked(ifp);
1920 
1921 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1922 		uint32_t	status;
1923 
1924 		/* Reading the ISR register clears all interrupts. */
1925 		status = CSR_READ_4(sc, NGE_ISR);
1926 
1927 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1928 			rx_npkts += nge_rxeof(sc);
1929 
1930 		if ((status & NGE_ISR_RX_IDLE) != 0)
1931 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1932 
1933 		if ((status & NGE_ISR_SYSERR) != 0) {
1934 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1935 			nge_init_locked(sc);
1936 		}
1937 	}
1938 	NGE_UNLOCK(sc);
1939 	return (rx_npkts);
1940 }
1941 #endif /* DEVICE_POLLING */
1942 
1943 static void
1944 nge_intr(void *arg)
1945 {
1946 	struct nge_softc *sc;
1947 	struct ifnet *ifp;
1948 	uint32_t status;
1949 
1950 	sc = (struct nge_softc *)arg;
1951 	ifp = sc->nge_ifp;
1952 
1953 	NGE_LOCK(sc);
1954 
1955 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1956 		goto done_locked;
1957 
1958 	/* Reading the ISR register clears all interrupts. */
1959 	status = CSR_READ_4(sc, NGE_ISR);
1960 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1961 		goto done_locked;
1962 #ifdef DEVICE_POLLING
1963 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1964 		goto done_locked;
1965 #endif
1966 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1967 		goto done_locked;
1968 
1969 	/* Disable interrupts. */
1970 	CSR_WRITE_4(sc, NGE_IER, 0);
1971 
1972 	/* Data LED on for TBI mode */
1973 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1974 		CSR_WRITE_4(sc, NGE_GPIO,
1975 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1976 
1977 	for (; (status & NGE_INTRS) != 0;) {
1978 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1979 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1980 			nge_txeof(sc);
1981 
1982 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1983 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1984 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1985 			nge_rxeof(sc);
1986 
1987 		if ((status & NGE_ISR_RX_IDLE) != 0)
1988 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1989 
1990 		if ((status & NGE_ISR_SYSERR) != 0) {
1991 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1992 			nge_init_locked(sc);
1993 		}
1994 		/* Reading the ISR register clears all interrupts. */
1995 		status = CSR_READ_4(sc, NGE_ISR);
1996 	}
1997 
1998 	/* Re-enable interrupts. */
1999 	CSR_WRITE_4(sc, NGE_IER, 1);
2000 
2001 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2002 		nge_start_locked(ifp);
2003 
2004 	/* Data LED off for TBI mode */
2005 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
2006 		CSR_WRITE_4(sc, NGE_GPIO,
2007 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
2008 
2009 done_locked:
2010 	NGE_UNLOCK(sc);
2011 }
2012 
2013 /*
2014  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2015  * pointers to the fragment pointers.
2016  */
2017 static int
2018 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
2019 {
2020 	struct nge_txdesc *txd, *txd_last;
2021 	struct nge_desc *desc;
2022 	struct mbuf *m;
2023 	bus_dmamap_t map;
2024 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
2025 	int error, i, nsegs, prod, si;
2026 
2027 	NGE_LOCK_ASSERT(sc);
2028 
2029 	m = *m_head;
2030 	prod = sc->nge_cdata.nge_tx_prod;
2031 	txd = &sc->nge_cdata.nge_txdesc[prod];
2032 	txd_last = txd;
2033 	map = txd->tx_dmamap;
2034 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
2035 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2036 	if (error == EFBIG) {
2037 		m = m_collapse(*m_head, M_DONTWAIT, NGE_MAXTXSEGS);
2038 		if (m == NULL) {
2039 			m_freem(*m_head);
2040 			*m_head = NULL;
2041 			return (ENOBUFS);
2042 		}
2043 		*m_head = m;
2044 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
2045 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2046 		if (error != 0) {
2047 			m_freem(*m_head);
2048 			*m_head = NULL;
2049 			return (error);
2050 		}
2051 	} else if (error != 0)
2052 		return (error);
2053 	if (nsegs == 0) {
2054 		m_freem(*m_head);
2055 		*m_head = NULL;
2056 		return (EIO);
2057 	}
2058 
2059 	/* Check number of available descriptors. */
2060 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
2061 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
2062 		return (ENOBUFS);
2063 	}
2064 
2065 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
2066 
2067 	si = prod;
2068 	for (i = 0; i < nsegs; i++) {
2069 		desc = &sc->nge_rdata.nge_tx_ring[prod];
2070 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
2071 		if (i == 0)
2072 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
2073 			    NGE_CMDSTS_MORE);
2074 		else
2075 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
2076 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
2077 		desc->nge_extsts = 0;
2078 		sc->nge_cdata.nge_tx_cnt++;
2079 		NGE_INC(prod, NGE_TX_RING_CNT);
2080 	}
2081 	/* Update producer index. */
2082 	sc->nge_cdata.nge_tx_prod = prod;
2083 
2084 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
2085 	desc = &sc->nge_rdata.nge_tx_ring[prod];
2086 	/* Check if we have a VLAN tag to insert. */
2087 	if ((m->m_flags & M_VLANTAG) != 0)
2088 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
2089 		    bswap16(m->m_pkthdr.ether_vtag));
2090 	/* Set EOP on the last desciptor. */
2091 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
2092 
2093 	/* Set checksum offload in the first descriptor. */
2094 	desc = &sc->nge_rdata.nge_tx_ring[si];
2095 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
2096 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2097 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
2098 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2099 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
2100 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2101 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
2102 	}
2103 	/* Lastly, turn the first descriptor ownership to hardware. */
2104 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
2105 
2106 	txd = &sc->nge_cdata.nge_txdesc[prod];
2107 	map = txd_last->tx_dmamap;
2108 	txd_last->tx_dmamap = txd->tx_dmamap;
2109 	txd->tx_dmamap = map;
2110 	txd->tx_m = m;
2111 
2112 	return (0);
2113 }
2114 
2115 /*
2116  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2117  * to the mbuf data regions directly in the transmit lists. We also save a
2118  * copy of the pointers since the transmit list fragment pointers are
2119  * physical addresses.
2120  */
2121 
2122 static void
2123 nge_start(struct ifnet *ifp)
2124 {
2125 	struct nge_softc *sc;
2126 
2127 	sc = ifp->if_softc;
2128 	NGE_LOCK(sc);
2129 	nge_start_locked(ifp);
2130 	NGE_UNLOCK(sc);
2131 }
2132 
2133 static void
2134 nge_start_locked(struct ifnet *ifp)
2135 {
2136 	struct nge_softc *sc;
2137 	struct mbuf *m_head;
2138 	int enq;
2139 
2140 	sc = ifp->if_softc;
2141 
2142 	NGE_LOCK_ASSERT(sc);
2143 
2144 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2145 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2146 		return;
2147 
2148 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2149 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2150 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2151 		if (m_head == NULL)
2152 			break;
2153 		/*
2154 		 * Pack the data into the transmit ring. If we
2155 		 * don't have room, set the OACTIVE flag and wait
2156 		 * for the NIC to drain the ring.
2157 		 */
2158 		if (nge_encap(sc, &m_head)) {
2159 			if (m_head == NULL)
2160 				break;
2161 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2162 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2163 			break;
2164 		}
2165 
2166 		enq++;
2167 		/*
2168 		 * If there's a BPF listener, bounce a copy of this frame
2169 		 * to him.
2170 		 */
2171 		ETHER_BPF_MTAP(ifp, m_head);
2172 	}
2173 
2174 	if (enq > 0) {
2175 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2176 		    sc->nge_cdata.nge_tx_ring_map,
2177 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2178 		/* Transmit */
2179 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2180 
2181 		/* Set a timeout in case the chip goes out to lunch. */
2182 		sc->nge_watchdog_timer = 5;
2183 	}
2184 }
2185 
2186 static void
2187 nge_init(void *xsc)
2188 {
2189 	struct nge_softc *sc = xsc;
2190 
2191 	NGE_LOCK(sc);
2192 	nge_init_locked(sc);
2193 	NGE_UNLOCK(sc);
2194 }
2195 
2196 static void
2197 nge_init_locked(struct nge_softc *sc)
2198 {
2199 	struct ifnet *ifp = sc->nge_ifp;
2200 	struct mii_data *mii;
2201 	uint8_t *eaddr;
2202 	uint32_t reg;
2203 
2204 	NGE_LOCK_ASSERT(sc);
2205 
2206 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2207 		return;
2208 
2209 	/*
2210 	 * Cancel pending I/O and free all RX/TX buffers.
2211 	 */
2212 	nge_stop(sc);
2213 
2214 	/* Reset the adapter. */
2215 	nge_reset(sc);
2216 
2217 	/* Disable Rx filter prior to programming Rx filter. */
2218 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2219 	CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
2220 
2221 	mii = device_get_softc(sc->nge_miibus);
2222 
2223 	/* Set MAC address. */
2224 	eaddr = IF_LLADDR(sc->nge_ifp);
2225 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2226 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2227 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2228 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2229 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2230 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2231 
2232 	/* Init circular RX list. */
2233 	if (nge_list_rx_init(sc) == ENOBUFS) {
2234 		device_printf(sc->nge_dev, "initialization failed: no "
2235 			"memory for rx buffers\n");
2236 		nge_stop(sc);
2237 		return;
2238 	}
2239 
2240 	/*
2241 	 * Init tx descriptors.
2242 	 */
2243 	nge_list_tx_init(sc);
2244 
2245 	/*
2246 	 * For the NatSemi chip, we have to explicitly enable the
2247 	 * reception of ARP frames, as well as turn on the 'perfect
2248 	 * match' filter where we store the station address, otherwise
2249 	 * we won't receive unicasts meant for this host.
2250 	 */
2251 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
2252 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
2253 
2254 	/*
2255 	 * Set the capture broadcast bit to capture broadcast frames.
2256 	 */
2257 	if (ifp->if_flags & IFF_BROADCAST) {
2258 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2259 	} else {
2260 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2261 	}
2262 
2263 	/* Turn the receive filter on. */
2264 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
2265 
2266 	/* Set Rx filter. */
2267 	nge_rxfilter(sc);
2268 
2269 	/* Disable PRIQ ctl. */
2270 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2271 
2272 	/*
2273 	 * Set pause frames paramters.
2274 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2275 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2276 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2277 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2278 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2279 	 */
2280 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2281 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2282 	    NGE_PAUSECSR_PAUSE_ON_DA |
2283 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2284 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2285 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2286 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2287 	    NGE_PAUSECSR_CNT);
2288 
2289 	/*
2290 	 * Load the address of the RX and TX lists.
2291 	 */
2292 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2293 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2294 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2295 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2296 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2297 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2298 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2299 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2300 
2301 	/* Set RX configuration. */
2302 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2303 
2304 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2305 	/*
2306 	 * Enable hardware checksum validation for all IPv4
2307 	 * packets, do not reject packets with bad checksums.
2308 	 */
2309 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2310 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2311 
2312 	/*
2313 	 * Tell the chip to detect and strip VLAN tag info from
2314 	 * received frames. The tag will be provided in the extsts
2315 	 * field in the RX descriptors.
2316 	 */
2317 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2318 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2319 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2320 
2321 	/* Set TX configuration. */
2322 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2323 
2324 	/*
2325 	 * Enable TX IPv4 checksumming on a per-packet basis.
2326 	 */
2327 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2328 
2329 	/*
2330 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2331 	 * dictated by the code in the frame encapsulation routine.
2332 	 */
2333 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2334 
2335 	/*
2336 	 * Enable the delivery of PHY interrupts based on
2337 	 * link/speed/duplex status changes. Also enable the
2338 	 * extsts field in the DMA descriptors (needed for
2339 	 * TCP/IP checksum offload on transmit).
2340 	 */
2341 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2342 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2343 
2344 	/*
2345 	 * Configure interrupt holdoff (moderation). We can
2346 	 * have the chip delay interrupt delivery for a certain
2347 	 * period. Units are in 100us, and the max setting
2348 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2349 	 */
2350 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2351 
2352 	/*
2353 	 * Enable MAC statistics counters and clear.
2354 	 */
2355 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2356 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2357 	reg |= NGE_MIBCTL_CLEAR_CNT;
2358 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2359 
2360 	/*
2361 	 * Enable interrupts.
2362 	 */
2363 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2364 #ifdef DEVICE_POLLING
2365 	/*
2366 	 * ... only enable interrupts if we are not polling, make sure
2367 	 * they are off otherwise.
2368 	 */
2369 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2370 		CSR_WRITE_4(sc, NGE_IER, 0);
2371 	else
2372 #endif
2373 	CSR_WRITE_4(sc, NGE_IER, 1);
2374 
2375 	sc->nge_flags &= ~NGE_FLAG_LINK;
2376 	mii_mediachg(mii);
2377 
2378 	sc->nge_watchdog_timer = 0;
2379 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2380 
2381 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2382 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2383 }
2384 
2385 /*
2386  * Set media options.
2387  */
2388 static int
2389 nge_mediachange(struct ifnet *ifp)
2390 {
2391 	struct nge_softc *sc;
2392 	struct mii_data	*mii;
2393 	struct mii_softc *miisc;
2394 	int error;
2395 
2396 	sc = ifp->if_softc;
2397 	NGE_LOCK(sc);
2398 	mii = device_get_softc(sc->nge_miibus);
2399 	if (mii->mii_instance) {
2400 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2401 			mii_phy_reset(miisc);
2402 	}
2403 	error = mii_mediachg(mii);
2404 	NGE_UNLOCK(sc);
2405 
2406 	return (error);
2407 }
2408 
2409 /*
2410  * Report current media status.
2411  */
2412 static void
2413 nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2414 {
2415 	struct nge_softc *sc;
2416 	struct mii_data *mii;
2417 
2418 	sc = ifp->if_softc;
2419 	NGE_LOCK(sc);
2420 	mii = device_get_softc(sc->nge_miibus);
2421 	mii_pollstat(mii);
2422 	NGE_UNLOCK(sc);
2423 	ifmr->ifm_active = mii->mii_media_active;
2424 	ifmr->ifm_status = mii->mii_media_status;
2425 }
2426 
2427 static int
2428 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2429 {
2430 	struct nge_softc *sc = ifp->if_softc;
2431 	struct ifreq *ifr = (struct ifreq *) data;
2432 	struct mii_data *mii;
2433 	int error = 0, mask;
2434 
2435 	switch (command) {
2436 	case SIOCSIFMTU:
2437 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2438 			error = EINVAL;
2439 		else {
2440 			NGE_LOCK(sc);
2441 			ifp->if_mtu = ifr->ifr_mtu;
2442 			/*
2443 			 * Workaround: if the MTU is larger than
2444 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2445 			 * TX checksum offloading.
2446 			 */
2447 			if (ifr->ifr_mtu >= 8152) {
2448 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2449 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2450 			} else {
2451 				ifp->if_capenable |= IFCAP_TXCSUM;
2452 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2453 			}
2454 			NGE_UNLOCK(sc);
2455 			VLAN_CAPABILITIES(ifp);
2456 		}
2457 		break;
2458 	case SIOCSIFFLAGS:
2459 		NGE_LOCK(sc);
2460 		if ((ifp->if_flags & IFF_UP) != 0) {
2461 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2462 				if ((ifp->if_flags ^ sc->nge_if_flags) &
2463 				    (IFF_PROMISC | IFF_ALLMULTI))
2464 					nge_rxfilter(sc);
2465 			} else {
2466 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2467 					nge_init_locked(sc);
2468 			}
2469 		} else {
2470 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2471 				nge_stop(sc);
2472 		}
2473 		sc->nge_if_flags = ifp->if_flags;
2474 		NGE_UNLOCK(sc);
2475 		error = 0;
2476 		break;
2477 	case SIOCADDMULTI:
2478 	case SIOCDELMULTI:
2479 		NGE_LOCK(sc);
2480 		nge_rxfilter(sc);
2481 		NGE_UNLOCK(sc);
2482 		error = 0;
2483 		break;
2484 	case SIOCGIFMEDIA:
2485 	case SIOCSIFMEDIA:
2486 		mii = device_get_softc(sc->nge_miibus);
2487 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2488 		break;
2489 	case SIOCSIFCAP:
2490 		NGE_LOCK(sc);
2491 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2492 #ifdef DEVICE_POLLING
2493 		if ((mask & IFCAP_POLLING) != 0 &&
2494 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2495 			ifp->if_capenable ^= IFCAP_POLLING;
2496 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2497 				error = ether_poll_register(nge_poll, ifp);
2498 				if (error != 0) {
2499 					NGE_UNLOCK(sc);
2500 					break;
2501 				}
2502 				/* Disable interrupts. */
2503 				CSR_WRITE_4(sc, NGE_IER, 0);
2504 			} else {
2505 				error = ether_poll_deregister(ifp);
2506 				/* Enable interrupts. */
2507 				CSR_WRITE_4(sc, NGE_IER, 1);
2508 			}
2509 		}
2510 #endif /* DEVICE_POLLING */
2511 		if ((mask & IFCAP_TXCSUM) != 0 &&
2512 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2513 			ifp->if_capenable ^= IFCAP_TXCSUM;
2514 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2515 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2516 			else
2517 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2518 		}
2519 		if ((mask & IFCAP_RXCSUM) != 0 &&
2520 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2521 			ifp->if_capenable ^= IFCAP_RXCSUM;
2522 
2523 		if ((mask & IFCAP_WOL) != 0 &&
2524 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2525 			if ((mask & IFCAP_WOL_UCAST) != 0)
2526 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2527 			if ((mask & IFCAP_WOL_MCAST) != 0)
2528 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2529 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2530 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2531 		}
2532 
2533 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2534 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2535 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2536 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2537 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2538 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2539 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2540 				if ((ifp->if_capenable &
2541 				    IFCAP_VLAN_HWTAGGING) != 0)
2542 					NGE_SETBIT(sc,
2543 					    NGE_VLAN_IP_RXCTL,
2544 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2545 				else
2546 					NGE_CLRBIT(sc,
2547 					    NGE_VLAN_IP_RXCTL,
2548 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2549 			}
2550 		}
2551 		/*
2552 		 * Both VLAN hardware tagging and checksum offload is
2553 		 * required to do checksum offload on VLAN interface.
2554 		 */
2555 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2556 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2557 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2558 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2559 		NGE_UNLOCK(sc);
2560 		VLAN_CAPABILITIES(ifp);
2561 		break;
2562 	default:
2563 		error = ether_ioctl(ifp, command, data);
2564 		break;
2565 	}
2566 
2567 	return (error);
2568 }
2569 
2570 static void
2571 nge_watchdog(struct nge_softc *sc)
2572 {
2573 	struct ifnet *ifp;
2574 
2575 	NGE_LOCK_ASSERT(sc);
2576 
2577 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2578 		return;
2579 
2580 	ifp = sc->nge_ifp;
2581 	ifp->if_oerrors++;
2582 	if_printf(ifp, "watchdog timeout\n");
2583 
2584 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2585 	nge_init_locked(sc);
2586 
2587 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2588 		nge_start_locked(ifp);
2589 }
2590 
2591 static int
2592 nge_stop_mac(struct nge_softc *sc)
2593 {
2594 	uint32_t reg;
2595 	int i;
2596 
2597 	NGE_LOCK_ASSERT(sc);
2598 
2599 	reg = CSR_READ_4(sc, NGE_CSR);
2600 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2601 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2602 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2603 		CSR_WRITE_4(sc, NGE_CSR, reg);
2604 		for (i = 0; i < NGE_TIMEOUT; i++) {
2605 			DELAY(1);
2606 			if ((CSR_READ_4(sc, NGE_CSR) &
2607 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2608 				break;
2609 		}
2610 		if (i == NGE_TIMEOUT)
2611 			return (ETIMEDOUT);
2612 	}
2613 
2614 	return (0);
2615 }
2616 
2617 /*
2618  * Stop the adapter and free any mbufs allocated to the
2619  * RX and TX lists.
2620  */
2621 static void
2622 nge_stop(struct nge_softc *sc)
2623 {
2624 	struct nge_txdesc *txd;
2625 	struct nge_rxdesc *rxd;
2626 	int i;
2627 	struct ifnet *ifp;
2628 
2629 	NGE_LOCK_ASSERT(sc);
2630 	ifp = sc->nge_ifp;
2631 
2632 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2633 	sc->nge_flags &= ~NGE_FLAG_LINK;
2634 	callout_stop(&sc->nge_stat_ch);
2635 	sc->nge_watchdog_timer = 0;
2636 
2637 	CSR_WRITE_4(sc, NGE_IER, 0);
2638 	CSR_WRITE_4(sc, NGE_IMR, 0);
2639 	if (nge_stop_mac(sc) == ETIMEDOUT)
2640 		device_printf(sc->nge_dev,
2641 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2642 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2643 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2644 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2645 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2646 	nge_stats_update(sc);
2647 	if (sc->nge_head != NULL) {
2648 		m_freem(sc->nge_head);
2649 		sc->nge_head = sc->nge_tail = NULL;
2650 	}
2651 
2652 	/*
2653 	 * Free RX and TX mbufs still in the queues.
2654 	 */
2655 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2656 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2657 		if (rxd->rx_m != NULL) {
2658 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2659 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2660 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2661 			    rxd->rx_dmamap);
2662 			m_freem(rxd->rx_m);
2663 			rxd->rx_m = NULL;
2664 		}
2665 	}
2666 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2667 		txd = &sc->nge_cdata.nge_txdesc[i];
2668 		if (txd->tx_m != NULL) {
2669 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2670 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2671 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2672 			    txd->tx_dmamap);
2673 			m_freem(txd->tx_m);
2674 			txd->tx_m = NULL;
2675 		}
2676 	}
2677 }
2678 
2679 /*
2680  * Before setting WOL bits, caller should have stopped Receiver.
2681  */
2682 static void
2683 nge_wol(struct nge_softc *sc)
2684 {
2685 	struct ifnet *ifp;
2686 	uint32_t reg;
2687 	uint16_t pmstat;
2688 	int pmc;
2689 
2690 	NGE_LOCK_ASSERT(sc);
2691 
2692 	if (pci_find_extcap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2693 		return;
2694 
2695 	ifp = sc->nge_ifp;
2696 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2697 		/* Disable WOL & disconnect CLKRUN to save power. */
2698 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2699 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2700 	} else {
2701 		if (nge_stop_mac(sc) == ETIMEDOUT)
2702 			device_printf(sc->nge_dev,
2703 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2704 		/*
2705 		 * Make sure wake frames will be buffered in the Rx FIFO.
2706 		 * (i.e. Silent Rx mode.)
2707 		 */
2708 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2709 		CSR_BARRIER_WRITE_4(sc, NGE_RX_LISTPTR_HI);
2710 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2711 		CSR_BARRIER_WRITE_4(sc, NGE_RX_LISTPTR_LO);
2712 		/* Enable Rx again. */
2713 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2714 		CSR_BARRIER_WRITE_4(sc, NGE_CSR);
2715 
2716 		/* Configure WOL events. */
2717 		reg = 0;
2718 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2719 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2720 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2721 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2722 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2723 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2724 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2725 
2726 		/* Activate CLKRUN. */
2727 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2728 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2729 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2730 	}
2731 
2732 	/* Request PME. */
2733 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2734 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2735 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2736 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2737 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2738 }
2739 
2740 /*
2741  * Stop all chip I/O so that the kernel's probe routines don't
2742  * get confused by errant DMAs when rebooting.
2743  */
2744 static int
2745 nge_shutdown(device_t dev)
2746 {
2747 
2748 	return (nge_suspend(dev));
2749 }
2750 
2751 static int
2752 nge_suspend(device_t dev)
2753 {
2754 	struct nge_softc *sc;
2755 
2756 	sc = device_get_softc(dev);
2757 
2758 	NGE_LOCK(sc);
2759 	nge_stop(sc);
2760 	nge_wol(sc);
2761 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2762 	NGE_UNLOCK(sc);
2763 
2764 	return (0);
2765 }
2766 
2767 static int
2768 nge_resume(device_t dev)
2769 {
2770 	struct nge_softc *sc;
2771 	struct ifnet *ifp;
2772 	uint16_t pmstat;
2773 	int pmc;
2774 
2775 	sc = device_get_softc(dev);
2776 
2777 	NGE_LOCK(sc);
2778 	ifp = sc->nge_ifp;
2779 	if (pci_find_extcap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2780 		/* Disable PME and clear PME status. */
2781 		pmstat = pci_read_config(sc->nge_dev,
2782 		    pmc + PCIR_POWER_STATUS, 2);
2783 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2784 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2785 			pci_write_config(sc->nge_dev,
2786 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2787 		}
2788 	}
2789 	if (ifp->if_flags & IFF_UP) {
2790 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2791 		nge_init_locked(sc);
2792 	}
2793 
2794 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2795 	NGE_UNLOCK(sc);
2796 
2797 	return (0);
2798 }
2799 
2800 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2801 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2802 
2803 static void
2804 nge_sysctl_node(struct nge_softc *sc)
2805 {
2806 	struct sysctl_ctx_list *ctx;
2807 	struct sysctl_oid_list *child, *parent;
2808 	struct sysctl_oid *tree;
2809 	struct nge_stats *stats;
2810 	int error;
2811 
2812 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2813 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2814 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2815 	    CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2816 	    sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2817 	/* Pull in device tunables. */
2818 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2819 	error = resource_int_value(device_get_name(sc->nge_dev),
2820 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2821 	if (error == 0) {
2822 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2823 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2824 			device_printf(sc->nge_dev,
2825 			    "int_holdoff value out of range; "
2826 			    "using default: %d(%d us)\n",
2827 			    NGE_INT_HOLDOFF_DEFAULT,
2828 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2829 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2830 		}
2831 	}
2832 
2833 	stats = &sc->nge_stats;
2834 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2835 	    NULL, "NGE statistics");
2836 	parent = SYSCTL_CHILDREN(tree);
2837 
2838 	/* Rx statistics. */
2839 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2840 	    NULL, "Rx MAC statistics");
2841 	child = SYSCTL_CHILDREN(tree);
2842 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2843 	    &stats->rx_pkts_errs,
2844 	    "Packet errors including both wire errors and FIFO overruns");
2845 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2846 	    &stats->rx_crc_errs, "CRC errors");
2847 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2848 	    &stats->rx_fifo_oflows, "FIFO overflows");
2849 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2850 	    &stats->rx_align_errs, "Frame alignment errors");
2851 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2852 	    &stats->rx_sym_errs, "One or more symbol errors");
2853 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2854 	    &stats->rx_pkts_jumbos,
2855 	    "Packets received with length greater than 1518 bytes");
2856 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2857 	    &stats->rx_len_errs, "In Range Length errors");
2858 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2859 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2860 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2861 	    &stats->rx_pause, "Pause frames");
2862 
2863 	/* Tx statistics. */
2864 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2865 	    NULL, "Tx MAC statistics");
2866 	child = SYSCTL_CHILDREN(tree);
2867 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2868 	    &stats->tx_pause, "Pause frames");
2869 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2870 	    &stats->tx_seq_errs,
2871 	    "Loss of collision heartbeat during transmission");
2872 }
2873 
2874 #undef NGE_SYSCTL_STAT_ADD32
2875 
2876 static int
2877 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2878 {
2879 	int error, value;
2880 
2881 	if (arg1 == NULL)
2882 		return (EINVAL);
2883 	value = *(int *)arg1;
2884 	error = sysctl_handle_int(oidp, &value, 0, req);
2885 	if (error != 0 || req->newptr == NULL)
2886 		return (error);
2887 	if (value < low || value > high)
2888 		return (EINVAL);
2889 	*(int *)arg1 = value;
2890 
2891 	return (0);
2892 }
2893 
2894 static int
2895 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2896 {
2897 
2898 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2899 	    NGE_INT_HOLDOFF_MAX));
2900 }
2901