xref: /freebsd/sys/dev/nge/if_nge.c (revision d0b2dbfa)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2000, 2001
6  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/bus.h>
98 #include <sys/endian.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/module.h>
104 #include <sys/mutex.h>
105 #include <sys/rman.h>
106 #include <sys/socket.h>
107 #include <sys/sockio.h>
108 #include <sys/sysctl.h>
109 
110 #include <net/bpf.h>
111 #include <net/if.h>
112 #include <net/if_var.h>
113 #include <net/if_arp.h>
114 #include <net/ethernet.h>
115 #include <net/if_dl.h>
116 #include <net/if_media.h>
117 #include <net/if_types.h>
118 #include <net/if_vlan_var.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/mii_bitbang.h>
122 #include <dev/mii/miivar.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #include <machine/bus.h>
128 
129 #include <dev/nge/if_ngereg.h>
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 MODULE_DEPEND(nge, pci, 1, 1, 1);
135 MODULE_DEPEND(nge, ether, 1, 1, 1);
136 MODULE_DEPEND(nge, miibus, 1, 1, 1);
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static const struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe(device_t);
150 static int nge_attach(device_t);
151 static int nge_detach(device_t);
152 static int nge_shutdown(device_t);
153 static int nge_suspend(device_t);
154 static int nge_resume(device_t);
155 
156 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
157 static int nge_newbuf(struct nge_softc *, int);
158 static int nge_encap(struct nge_softc *, struct mbuf **);
159 #ifndef __NO_STRICT_ALIGNMENT
160 static __inline void nge_fixup_rx(struct mbuf *);
161 #endif
162 static int nge_rxeof(struct nge_softc *);
163 static void nge_txeof(struct nge_softc *);
164 static void nge_intr(void *);
165 static void nge_tick(void *);
166 static void nge_stats_update(struct nge_softc *);
167 static void nge_start(if_t);
168 static void nge_start_locked(if_t);
169 static int nge_ioctl(if_t, u_long, caddr_t);
170 static void nge_init(void *);
171 static void nge_init_locked(struct nge_softc *);
172 static int nge_stop_mac(struct nge_softc *);
173 static void nge_stop(struct nge_softc *);
174 static void nge_wol(struct nge_softc *);
175 static void nge_watchdog(struct nge_softc *);
176 static int nge_mediachange(if_t);
177 static void nge_mediastatus(if_t, struct ifmediareq *);
178 
179 static void nge_delay(struct nge_softc *);
180 static void nge_eeprom_idle(struct nge_softc *);
181 static void nge_eeprom_putbyte(struct nge_softc *, int);
182 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
183 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
184 
185 static int nge_miibus_readreg(device_t, int, int);
186 static int nge_miibus_writereg(device_t, int, int, int);
187 static void nge_miibus_statchg(device_t);
188 
189 static void nge_rxfilter(struct nge_softc *);
190 static void nge_reset(struct nge_softc *);
191 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
192 static int nge_dma_alloc(struct nge_softc *);
193 static void nge_dma_free(struct nge_softc *);
194 static int nge_list_rx_init(struct nge_softc *);
195 static int nge_list_tx_init(struct nge_softc *);
196 static void nge_sysctl_node(struct nge_softc *);
197 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
198 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
199 
200 /*
201  * MII bit-bang glue
202  */
203 static uint32_t nge_mii_bitbang_read(device_t);
204 static void nge_mii_bitbang_write(device_t, uint32_t);
205 
206 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
207 	nge_mii_bitbang_read,
208 	nge_mii_bitbang_write,
209 	{
210 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
211 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
212 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
213 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
214 		0,			/* MII_BIT_DIR_PHY_HOST */
215 	}
216 };
217 
218 static device_method_t nge_methods[] = {
219 	/* Device interface */
220 	DEVMETHOD(device_probe,		nge_probe),
221 	DEVMETHOD(device_attach,	nge_attach),
222 	DEVMETHOD(device_detach,	nge_detach),
223 	DEVMETHOD(device_shutdown,	nge_shutdown),
224 	DEVMETHOD(device_suspend,	nge_suspend),
225 	DEVMETHOD(device_resume,	nge_resume),
226 
227 	/* MII interface */
228 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
229 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
230 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
231 
232 	DEVMETHOD_END
233 };
234 
235 static driver_t nge_driver = {
236 	"nge",
237 	nge_methods,
238 	sizeof(struct nge_softc)
239 };
240 
241 DRIVER_MODULE(nge, pci, nge_driver, 0, 0);
242 DRIVER_MODULE(miibus, nge, miibus_driver, 0, 0);
243 
244 #define NGE_SETBIT(sc, reg, x)				\
245 	CSR_WRITE_4(sc, reg,				\
246 		CSR_READ_4(sc, reg) | (x))
247 
248 #define NGE_CLRBIT(sc, reg, x)				\
249 	CSR_WRITE_4(sc, reg,				\
250 		CSR_READ_4(sc, reg) & ~(x))
251 
252 #define SIO_SET(x)					\
253 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
254 
255 #define SIO_CLR(x)					\
256 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
257 
258 static void
259 nge_delay(struct nge_softc *sc)
260 {
261 	int idx;
262 
263 	for (idx = (300 / 33) + 1; idx > 0; idx--)
264 		CSR_READ_4(sc, NGE_CSR);
265 }
266 
267 static void
268 nge_eeprom_idle(struct nge_softc *sc)
269 {
270 	int i;
271 
272 	SIO_SET(NGE_MEAR_EE_CSEL);
273 	nge_delay(sc);
274 	SIO_SET(NGE_MEAR_EE_CLK);
275 	nge_delay(sc);
276 
277 	for (i = 0; i < 25; i++) {
278 		SIO_CLR(NGE_MEAR_EE_CLK);
279 		nge_delay(sc);
280 		SIO_SET(NGE_MEAR_EE_CLK);
281 		nge_delay(sc);
282 	}
283 
284 	SIO_CLR(NGE_MEAR_EE_CLK);
285 	nge_delay(sc);
286 	SIO_CLR(NGE_MEAR_EE_CSEL);
287 	nge_delay(sc);
288 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
289 }
290 
291 /*
292  * Send a read command and address to the EEPROM, check for ACK.
293  */
294 static void
295 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
296 {
297 	int d, i;
298 
299 	d = addr | NGE_EECMD_READ;
300 
301 	/*
302 	 * Feed in each bit and stobe the clock.
303 	 */
304 	for (i = 0x400; i; i >>= 1) {
305 		if (d & i) {
306 			SIO_SET(NGE_MEAR_EE_DIN);
307 		} else {
308 			SIO_CLR(NGE_MEAR_EE_DIN);
309 		}
310 		nge_delay(sc);
311 		SIO_SET(NGE_MEAR_EE_CLK);
312 		nge_delay(sc);
313 		SIO_CLR(NGE_MEAR_EE_CLK);
314 		nge_delay(sc);
315 	}
316 }
317 
318 /*
319  * Read a word of data stored in the EEPROM at address 'addr.'
320  */
321 static void
322 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
323 {
324 	int i;
325 	uint16_t word = 0;
326 
327 	/* Force EEPROM to idle state. */
328 	nge_eeprom_idle(sc);
329 
330 	/* Enter EEPROM access mode. */
331 	nge_delay(sc);
332 	SIO_CLR(NGE_MEAR_EE_CLK);
333 	nge_delay(sc);
334 	SIO_SET(NGE_MEAR_EE_CSEL);
335 	nge_delay(sc);
336 
337 	/*
338 	 * Send address of word we want to read.
339 	 */
340 	nge_eeprom_putbyte(sc, addr);
341 
342 	/*
343 	 * Start reading bits from EEPROM.
344 	 */
345 	for (i = 0x8000; i; i >>= 1) {
346 		SIO_SET(NGE_MEAR_EE_CLK);
347 		nge_delay(sc);
348 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
349 			word |= i;
350 		nge_delay(sc);
351 		SIO_CLR(NGE_MEAR_EE_CLK);
352 		nge_delay(sc);
353 	}
354 
355 	/* Turn off EEPROM access mode. */
356 	nge_eeprom_idle(sc);
357 
358 	*dest = word;
359 }
360 
361 /*
362  * Read a sequence of words from the EEPROM.
363  */
364 static void
365 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
366 {
367 	int i;
368 	uint16_t word = 0, *ptr;
369 
370 	for (i = 0; i < cnt; i++) {
371 		nge_eeprom_getword(sc, off + i, &word);
372 		ptr = (uint16_t *)(dest + (i * 2));
373 		*ptr = word;
374 	}
375 }
376 
377 /*
378  * Read the MII serial port for the MII bit-bang module.
379  */
380 static uint32_t
381 nge_mii_bitbang_read(device_t dev)
382 {
383 	struct nge_softc *sc;
384 	uint32_t val;
385 
386 	sc = device_get_softc(dev);
387 
388 	val = CSR_READ_4(sc, NGE_MEAR);
389 	CSR_BARRIER_4(sc, NGE_MEAR,
390 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
391 
392 	return (val);
393 }
394 
395 /*
396  * Write the MII serial port for the MII bit-bang module.
397  */
398 static void
399 nge_mii_bitbang_write(device_t dev, uint32_t val)
400 {
401 	struct nge_softc *sc;
402 
403 	sc = device_get_softc(dev);
404 
405 	CSR_WRITE_4(sc, NGE_MEAR, val);
406 	CSR_BARRIER_4(sc, NGE_MEAR,
407 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
408 }
409 
410 static int
411 nge_miibus_readreg(device_t dev, int phy, int reg)
412 {
413 	struct nge_softc *sc;
414 	int rv;
415 
416 	sc = device_get_softc(dev);
417 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
418 		/* Pretend PHY is at address 0. */
419 		if (phy != 0)
420 			return (0);
421 		switch (reg) {
422 		case MII_BMCR:
423 			reg = NGE_TBI_BMCR;
424 			break;
425 		case MII_BMSR:
426 			/* 83820/83821 has different bit layout for BMSR. */
427 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
428 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
429 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
430 				rv |= BMSR_ACOMP;
431 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
432 				rv |= BMSR_LINK;
433 			return (rv);
434 		case MII_ANAR:
435 			reg = NGE_TBI_ANAR;
436 			break;
437 		case MII_ANLPAR:
438 			reg = NGE_TBI_ANLPAR;
439 			break;
440 		case MII_ANER:
441 			reg = NGE_TBI_ANER;
442 			break;
443 		case MII_EXTSR:
444 			reg = NGE_TBI_ESR;
445 			break;
446 		case MII_PHYIDR1:
447 		case MII_PHYIDR2:
448 			return (0);
449 		default:
450 			device_printf(sc->nge_dev,
451 			    "bad phy register read : %d\n", reg);
452 			return (0);
453 		}
454 		return (CSR_READ_4(sc, reg));
455 	}
456 
457 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
458 }
459 
460 static int
461 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
462 {
463 	struct nge_softc *sc;
464 
465 	sc = device_get_softc(dev);
466 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
467 		/* Pretend PHY is at address 0. */
468 		if (phy != 0)
469 			return (0);
470 		switch (reg) {
471 		case MII_BMCR:
472 			reg = NGE_TBI_BMCR;
473 			break;
474 		case MII_BMSR:
475 			return (0);
476 		case MII_ANAR:
477 			reg = NGE_TBI_ANAR;
478 			break;
479 		case MII_ANLPAR:
480 			reg = NGE_TBI_ANLPAR;
481 			break;
482 		case MII_ANER:
483 			reg = NGE_TBI_ANER;
484 			break;
485 		case MII_EXTSR:
486 			reg = NGE_TBI_ESR;
487 			break;
488 		case MII_PHYIDR1:
489 		case MII_PHYIDR2:
490 			return (0);
491 		default:
492 			device_printf(sc->nge_dev,
493 			    "bad phy register write : %d\n", reg);
494 			return (0);
495 		}
496 		CSR_WRITE_4(sc, reg, data);
497 		return (0);
498 	}
499 
500 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
501 
502 	return (0);
503 }
504 
505 /*
506  * media status/link state change handler.
507  */
508 static void
509 nge_miibus_statchg(device_t dev)
510 {
511 	struct nge_softc *sc;
512 	struct mii_data *mii;
513 	if_t ifp;
514 	struct nge_txdesc *txd;
515 	uint32_t done, reg, status;
516 	int i;
517 
518 	sc = device_get_softc(dev);
519 	NGE_LOCK_ASSERT(sc);
520 
521 	mii = device_get_softc(sc->nge_miibus);
522 	ifp = sc->nge_ifp;
523 	if (mii == NULL || ifp == NULL ||
524 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
525 		return;
526 
527 	sc->nge_flags &= ~NGE_FLAG_LINK;
528 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
529 	    (IFM_AVALID | IFM_ACTIVE)) {
530 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
531 		case IFM_10_T:
532 		case IFM_100_TX:
533 		case IFM_1000_T:
534 		case IFM_1000_SX:
535 		case IFM_1000_LX:
536 		case IFM_1000_CX:
537 			sc->nge_flags |= NGE_FLAG_LINK;
538 			break;
539 		default:
540 			break;
541 		}
542 	}
543 
544 	/* Stop Tx/Rx MACs. */
545 	if (nge_stop_mac(sc) == ETIMEDOUT)
546 		device_printf(sc->nge_dev,
547 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
548 	nge_txeof(sc);
549 	nge_rxeof(sc);
550 	if (sc->nge_head != NULL) {
551 		m_freem(sc->nge_head);
552 		sc->nge_head = sc->nge_tail = NULL;
553 	}
554 
555 	/* Release queued frames. */
556 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
557 		txd = &sc->nge_cdata.nge_txdesc[i];
558 		if (txd->tx_m != NULL) {
559 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
560 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
561 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
562 			    txd->tx_dmamap);
563 			m_freem(txd->tx_m);
564 			txd->tx_m = NULL;
565 		}
566 	}
567 
568 	/* Program MAC with resolved speed/duplex. */
569 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
570 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
571 			NGE_SETBIT(sc, NGE_TX_CFG,
572 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
573 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
574 #ifdef notyet
575 			/* Enable flow-control. */
576 			if ((IFM_OPTIONS(mii->mii_media_active) &
577 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
578 				NGE_SETBIT(sc, NGE_PAUSECSR,
579 				    NGE_PAUSECSR_PAUSE_ENB);
580 #endif
581 		} else {
582 			NGE_CLRBIT(sc, NGE_TX_CFG,
583 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
584 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
585 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
586 		}
587 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
588 		reg = CSR_READ_4(sc, NGE_CFG);
589 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
590 		case IFM_1000_SX:
591 		case IFM_1000_LX:
592 		case IFM_1000_CX:
593 		case IFM_1000_T:
594 			reg |= NGE_CFG_MODE_1000;
595 			break;
596 		default:
597 			reg &= ~NGE_CFG_MODE_1000;
598 			break;
599 		}
600 		CSR_WRITE_4(sc, NGE_CFG, reg);
601 
602 		/* Reset Tx/Rx MAC. */
603 		reg = CSR_READ_4(sc, NGE_CSR);
604 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
605 		CSR_WRITE_4(sc, NGE_CSR, reg);
606 		/* Check the completion of reset. */
607 		done = 0;
608 		for (i = 0; i < NGE_TIMEOUT; i++) {
609 			DELAY(1);
610 			status = CSR_READ_4(sc, NGE_ISR);
611 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
612 				done |= NGE_ISR_RX_RESET_DONE;
613 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
614 				done |= NGE_ISR_TX_RESET_DONE;
615 			if (done ==
616 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
617 				break;
618 		}
619 		if (i == NGE_TIMEOUT)
620 			device_printf(sc->nge_dev,
621 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
622 		/* Reuse Rx buffer and reset consumer pointer. */
623 		sc->nge_cdata.nge_rx_cons = 0;
624 		/*
625 		 * It seems that resetting Rx/Tx MAC results in
626 		 * resetting Tx/Rx descriptor pointer registers such
627 		 * that reloading Tx/Rx lists address are needed.
628 		 */
629 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
630 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
631 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
632 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
633 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
634 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
635 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
636 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
637 		/* Reinitialize Tx buffers. */
638 		nge_list_tx_init(sc);
639 
640 		/* Restart Rx MAC. */
641 		reg = CSR_READ_4(sc, NGE_CSR);
642 		reg |= NGE_CSR_RX_ENABLE;
643 		CSR_WRITE_4(sc, NGE_CSR, reg);
644 		for (i = 0; i < NGE_TIMEOUT; i++) {
645 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
646 				break;
647 			DELAY(1);
648 		}
649 		if (i == NGE_TIMEOUT)
650 			device_printf(sc->nge_dev,
651 			    "%s: unable to restart Rx MAC\n", __func__);
652 	}
653 
654 	/* Data LED off for TBI mode */
655 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
656 		CSR_WRITE_4(sc, NGE_GPIO,
657 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
658 }
659 
660 static u_int
661 nge_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
662 {
663 	struct nge_softc *sc = arg;
664 	uint32_t h;
665 	int bit, index;
666 
667 	/*
668 	 * From the 11 bits returned by the crc routine, the top 7
669 	 * bits represent the 16-bit word in the mcast hash table
670 	 * that needs to be updated, and the lower 4 bits represent
671 	 * which bit within that byte needs to be set.
672 	 */
673 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 21;
674 	index = (h >> 4) & 0x7F;
675 	bit = h & 0xF;
676 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2));
677 	NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
678 
679 	return (1);
680 }
681 
682 static void
683 nge_rxfilter(struct nge_softc *sc)
684 {
685 	if_t ifp;
686 	uint32_t i, rxfilt;
687 
688 	NGE_LOCK_ASSERT(sc);
689 	ifp = sc->nge_ifp;
690 
691 	/* Make sure to stop Rx filtering. */
692 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
693 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
694 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
695 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
696 
697 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
698 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
699 	/*
700 	 * We don't want to use the hash table for matching unicast
701 	 * addresses.
702 	 */
703 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
704 
705 	/*
706 	 * For the NatSemi chip, we have to explicitly enable the
707 	 * reception of ARP frames, as well as turn on the 'perfect
708 	 * match' filter where we store the station address, otherwise
709 	 * we won't receive unicasts meant for this host.
710 	 */
711 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
712 
713 	/*
714 	 * Set the capture broadcast bit to capture broadcast frames.
715 	 */
716 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
717 		rxfilt |= NGE_RXFILTCTL_BROAD;
718 
719 	if ((if_getflags(ifp) & IFF_PROMISC) != 0 ||
720 	    (if_getflags(ifp) & IFF_ALLMULTI) != 0) {
721 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
722 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
723 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
724 		goto done;
725 	}
726 
727 	/*
728 	 * We have to explicitly enable the multicast hash table
729 	 * on the NatSemi chip if we want to use it, which we do.
730 	 */
731 	rxfilt |= NGE_RXFILTCTL_MCHASH;
732 
733 	/* first, zot all the existing hash bits */
734 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
735 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
736 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
737 	}
738 
739 	if_foreach_llmaddr(ifp, nge_write_maddr, sc);
740 done:
741 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
742 	/* Turn the receive filter on. */
743 	rxfilt |= NGE_RXFILTCTL_ENABLE;
744 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
745 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
746 }
747 
748 static void
749 nge_reset(struct nge_softc *sc)
750 {
751 	uint32_t v;
752 	int i;
753 
754 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
755 
756 	for (i = 0; i < NGE_TIMEOUT; i++) {
757 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
758 			break;
759 		DELAY(1);
760 	}
761 
762 	if (i == NGE_TIMEOUT)
763 		device_printf(sc->nge_dev, "reset never completed\n");
764 
765 	/* Wait a little while for the chip to get its brains in order. */
766 	DELAY(1000);
767 
768 	/*
769 	 * If this is a NetSemi chip, make sure to clear
770 	 * PME mode.
771 	 */
772 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
773 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
774 
775 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
776 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
777 
778 	/*
779 	 * Only DP83820 supports 64bits addressing/data transfers and
780 	 * 64bit addressing requires different descriptor structures.
781 	 * To make it simple, disable 64bit addressing/data transfers.
782 	 */
783 	v = CSR_READ_4(sc, NGE_CFG);
784 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
785 	CSR_WRITE_4(sc, NGE_CFG, v);
786 }
787 
788 /*
789  * Probe for a NatSemi chip. Check the PCI vendor and device
790  * IDs against our list and return a device name if we find a match.
791  */
792 static int
793 nge_probe(device_t dev)
794 {
795 	const struct nge_type *t;
796 
797 	t = nge_devs;
798 
799 	while (t->nge_name != NULL) {
800 		if ((pci_get_vendor(dev) == t->nge_vid) &&
801 		    (pci_get_device(dev) == t->nge_did)) {
802 			device_set_desc(dev, t->nge_name);
803 			return (BUS_PROBE_DEFAULT);
804 		}
805 		t++;
806 	}
807 
808 	return (ENXIO);
809 }
810 
811 /*
812  * Attach the interface. Allocate softc structures, do ifmedia
813  * setup and ethernet/BPF attach.
814  */
815 static int
816 nge_attach(device_t dev)
817 {
818 	uint8_t eaddr[ETHER_ADDR_LEN];
819 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
820 	struct nge_softc *sc;
821 	if_t ifp;
822 	int error, i, rid;
823 
824 	error = 0;
825 	sc = device_get_softc(dev);
826 	sc->nge_dev = dev;
827 
828 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
829 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
830 
831 	/*
832 	 * Map control/status registers.
833 	 */
834 	pci_enable_busmaster(dev);
835 
836 #ifdef NGE_USEIOSPACE
837 	sc->nge_res_type = SYS_RES_IOPORT;
838 	sc->nge_res_id = PCIR_BAR(0);
839 #else
840 	sc->nge_res_type = SYS_RES_MEMORY;
841 	sc->nge_res_id = PCIR_BAR(1);
842 #endif
843 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
844 	    &sc->nge_res_id, RF_ACTIVE);
845 
846 	if (sc->nge_res == NULL) {
847 		if (sc->nge_res_type == SYS_RES_MEMORY) {
848 			sc->nge_res_type = SYS_RES_IOPORT;
849 			sc->nge_res_id = PCIR_BAR(0);
850 		} else {
851 			sc->nge_res_type = SYS_RES_MEMORY;
852 			sc->nge_res_id = PCIR_BAR(1);
853 		}
854 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
855 		    &sc->nge_res_id, RF_ACTIVE);
856 		if (sc->nge_res == NULL) {
857 			device_printf(dev, "couldn't allocate %s resources\n",
858 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
859 			    "I/O");
860 			NGE_LOCK_DESTROY(sc);
861 			return (ENXIO);
862 		}
863 	}
864 
865 	/* Allocate interrupt */
866 	rid = 0;
867 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
868 	    RF_SHAREABLE | RF_ACTIVE);
869 
870 	if (sc->nge_irq == NULL) {
871 		device_printf(dev, "couldn't map interrupt\n");
872 		error = ENXIO;
873 		goto fail;
874 	}
875 
876 	/* Enable MWI. */
877 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
878 	reg |= PCIM_CMD_MWRICEN;
879 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
880 
881 	/* Reset the adapter. */
882 	nge_reset(sc);
883 
884 	/*
885 	 * Get station address from the EEPROM.
886 	 */
887 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
888 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
889 		ea[i] = le16toh(ea[i]);
890 	ea_temp = ea[0];
891 	ea[0] = ea[2];
892 	ea[2] = ea_temp;
893 	bcopy(ea, eaddr, sizeof(eaddr));
894 
895 	if (nge_dma_alloc(sc) != 0) {
896 		error = ENXIO;
897 		goto fail;
898 	}
899 
900 	nge_sysctl_node(sc);
901 
902 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
903 	if (ifp == NULL) {
904 		device_printf(dev, "can not allocate ifnet structure\n");
905 		error = ENOSPC;
906 		goto fail;
907 	}
908 	if_setsoftc(ifp, sc);
909 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
910 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
911 	if_setioctlfn(ifp, nge_ioctl);
912 	if_setstartfn(ifp, nge_start);
913 	if_setinitfn(ifp, nge_init);
914 	if_setsendqlen(ifp, NGE_TX_RING_CNT - 1);
915 	if_setsendqready(ifp);
916 	if_sethwassist(ifp, NGE_CSUM_FEATURES);
917 	if_setcapabilities(ifp, IFCAP_HWCSUM);
918 	/*
919 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
920 	 * supply(3VAUX) to drive PME such that checking PCI power
921 	 * management capability is necessary.
922 	 */
923 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
924 		if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
925 	if_setcapenable(ifp, if_getcapabilities(ifp));
926 
927 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
928 		sc->nge_flags |= NGE_FLAG_TBI;
929 		device_printf(dev, "Using TBI\n");
930 		/* Configure GPIO. */
931 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
932 		    | NGE_GPIO_GP4_OUT
933 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
934 		    | NGE_GPIO_GP3_OUTENB
935 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
936 	}
937 
938 	/*
939 	 * Do MII setup.
940 	 */
941 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
942 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
943 	if (error != 0) {
944 		device_printf(dev, "attaching PHYs failed\n");
945 		goto fail;
946 	}
947 
948 	/*
949 	 * Call MI attach routine.
950 	 */
951 	ether_ifattach(ifp, eaddr);
952 
953 	/* VLAN capability setup. */
954 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0);
955 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
956 	if_setcapenable(ifp, if_getcapabilities(ifp));
957 #ifdef DEVICE_POLLING
958 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
959 #endif
960 	/*
961 	 * Tell the upper layer(s) we support long frames.
962 	 * Must appear after the call to ether_ifattach() because
963 	 * ether_ifattach() sets ifi_hdrlen to the default value.
964 	 */
965 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
966 
967 	/*
968 	 * Hookup IRQ last.
969 	 */
970 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
971 	    NULL, nge_intr, sc, &sc->nge_intrhand);
972 	if (error) {
973 		device_printf(dev, "couldn't set up irq\n");
974 		goto fail;
975 	}
976 
977 fail:
978 	if (error != 0)
979 		nge_detach(dev);
980 	return (error);
981 }
982 
983 static int
984 nge_detach(device_t dev)
985 {
986 	struct nge_softc *sc;
987 	if_t ifp;
988 
989 	sc = device_get_softc(dev);
990 	ifp = sc->nge_ifp;
991 
992 #ifdef DEVICE_POLLING
993 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
994 		ether_poll_deregister(ifp);
995 #endif
996 
997 	if (device_is_attached(dev)) {
998 		NGE_LOCK(sc);
999 		sc->nge_flags |= NGE_FLAG_DETACH;
1000 		nge_stop(sc);
1001 		NGE_UNLOCK(sc);
1002 		callout_drain(&sc->nge_stat_ch);
1003 		if (ifp != NULL)
1004 			ether_ifdetach(ifp);
1005 	}
1006 
1007 	if (sc->nge_miibus != NULL) {
1008 		device_delete_child(dev, sc->nge_miibus);
1009 		sc->nge_miibus = NULL;
1010 	}
1011 	bus_generic_detach(dev);
1012 	if (sc->nge_intrhand != NULL)
1013 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1014 	if (sc->nge_irq != NULL)
1015 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1016 	if (sc->nge_res != NULL)
1017 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1018 		    sc->nge_res);
1019 
1020 	nge_dma_free(sc);
1021 	if (ifp != NULL)
1022 		if_free(ifp);
1023 
1024 	NGE_LOCK_DESTROY(sc);
1025 
1026 	return (0);
1027 }
1028 
1029 struct nge_dmamap_arg {
1030 	bus_addr_t	nge_busaddr;
1031 };
1032 
1033 static void
1034 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1035 {
1036 	struct nge_dmamap_arg *ctx;
1037 
1038 	if (error != 0)
1039 		return;
1040 	ctx = arg;
1041 	ctx->nge_busaddr = segs[0].ds_addr;
1042 }
1043 
1044 static int
1045 nge_dma_alloc(struct nge_softc *sc)
1046 {
1047 	struct nge_dmamap_arg ctx;
1048 	struct nge_txdesc *txd;
1049 	struct nge_rxdesc *rxd;
1050 	int error, i;
1051 
1052 	/* Create parent DMA tag. */
1053 	error = bus_dma_tag_create(
1054 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1055 	    1, 0,			/* alignment, boundary */
1056 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1057 	    BUS_SPACE_MAXADDR,		/* highaddr */
1058 	    NULL, NULL,			/* filter, filterarg */
1059 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1060 	    0,				/* nsegments */
1061 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1062 	    0,				/* flags */
1063 	    NULL, NULL,			/* lockfunc, lockarg */
1064 	    &sc->nge_cdata.nge_parent_tag);
1065 	if (error != 0) {
1066 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1067 		goto fail;
1068 	}
1069 	/* Create tag for Tx ring. */
1070 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1071 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1072 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1073 	    BUS_SPACE_MAXADDR,		/* highaddr */
1074 	    NULL, NULL,			/* filter, filterarg */
1075 	    NGE_TX_RING_SIZE,		/* maxsize */
1076 	    1,				/* nsegments */
1077 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1078 	    0,				/* flags */
1079 	    NULL, NULL,			/* lockfunc, lockarg */
1080 	    &sc->nge_cdata.nge_tx_ring_tag);
1081 	if (error != 0) {
1082 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1083 		goto fail;
1084 	}
1085 
1086 	/* Create tag for Rx ring. */
1087 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1088 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1089 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1090 	    BUS_SPACE_MAXADDR,		/* highaddr */
1091 	    NULL, NULL,			/* filter, filterarg */
1092 	    NGE_RX_RING_SIZE,		/* maxsize */
1093 	    1,				/* nsegments */
1094 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1095 	    0,				/* flags */
1096 	    NULL, NULL,			/* lockfunc, lockarg */
1097 	    &sc->nge_cdata.nge_rx_ring_tag);
1098 	if (error != 0) {
1099 		device_printf(sc->nge_dev,
1100 		    "failed to create Rx ring DMA tag\n");
1101 		goto fail;
1102 	}
1103 
1104 	/* Create tag for Tx buffers. */
1105 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1106 	    1, 0,			/* alignment, boundary */
1107 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1108 	    BUS_SPACE_MAXADDR,		/* highaddr */
1109 	    NULL, NULL,			/* filter, filterarg */
1110 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1111 	    NGE_MAXTXSEGS,		/* nsegments */
1112 	    MCLBYTES,			/* maxsegsize */
1113 	    0,				/* flags */
1114 	    NULL, NULL,			/* lockfunc, lockarg */
1115 	    &sc->nge_cdata.nge_tx_tag);
1116 	if (error != 0) {
1117 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1118 		goto fail;
1119 	}
1120 
1121 	/* Create tag for Rx buffers. */
1122 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1123 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1124 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1125 	    BUS_SPACE_MAXADDR,		/* highaddr */
1126 	    NULL, NULL,			/* filter, filterarg */
1127 	    MCLBYTES,			/* maxsize */
1128 	    1,				/* nsegments */
1129 	    MCLBYTES,			/* maxsegsize */
1130 	    0,				/* flags */
1131 	    NULL, NULL,			/* lockfunc, lockarg */
1132 	    &sc->nge_cdata.nge_rx_tag);
1133 	if (error != 0) {
1134 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1135 		goto fail;
1136 	}
1137 
1138 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1139 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1140 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1141 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1142 	if (error != 0) {
1143 		device_printf(sc->nge_dev,
1144 		    "failed to allocate DMA'able memory for Tx ring\n");
1145 		goto fail;
1146 	}
1147 
1148 	ctx.nge_busaddr = 0;
1149 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1150 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1151 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1152 	if (error != 0 || ctx.nge_busaddr == 0) {
1153 		device_printf(sc->nge_dev,
1154 		    "failed to load DMA'able memory for Tx ring\n");
1155 		goto fail;
1156 	}
1157 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1158 
1159 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1160 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1161 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1162 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1163 	if (error != 0) {
1164 		device_printf(sc->nge_dev,
1165 		    "failed to allocate DMA'able memory for Rx ring\n");
1166 		goto fail;
1167 	}
1168 
1169 	ctx.nge_busaddr = 0;
1170 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1171 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1172 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1173 	if (error != 0 || ctx.nge_busaddr == 0) {
1174 		device_printf(sc->nge_dev,
1175 		    "failed to load DMA'able memory for Rx ring\n");
1176 		goto fail;
1177 	}
1178 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1179 
1180 	/* Create DMA maps for Tx buffers. */
1181 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1182 		txd = &sc->nge_cdata.nge_txdesc[i];
1183 		txd->tx_m = NULL;
1184 		txd->tx_dmamap = NULL;
1185 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1186 		    &txd->tx_dmamap);
1187 		if (error != 0) {
1188 			device_printf(sc->nge_dev,
1189 			    "failed to create Tx dmamap\n");
1190 			goto fail;
1191 		}
1192 	}
1193 	/* Create DMA maps for Rx buffers. */
1194 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1195 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1196 		device_printf(sc->nge_dev,
1197 		    "failed to create spare Rx dmamap\n");
1198 		goto fail;
1199 	}
1200 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1201 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1202 		rxd->rx_m = NULL;
1203 		rxd->rx_dmamap = NULL;
1204 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1205 		    &rxd->rx_dmamap);
1206 		if (error != 0) {
1207 			device_printf(sc->nge_dev,
1208 			    "failed to create Rx dmamap\n");
1209 			goto fail;
1210 		}
1211 	}
1212 
1213 fail:
1214 	return (error);
1215 }
1216 
1217 static void
1218 nge_dma_free(struct nge_softc *sc)
1219 {
1220 	struct nge_txdesc *txd;
1221 	struct nge_rxdesc *rxd;
1222 	int i;
1223 
1224 	/* Tx ring. */
1225 	if (sc->nge_cdata.nge_tx_ring_tag) {
1226 		if (sc->nge_rdata.nge_tx_ring_paddr)
1227 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1228 			    sc->nge_cdata.nge_tx_ring_map);
1229 		if (sc->nge_rdata.nge_tx_ring)
1230 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1231 			    sc->nge_rdata.nge_tx_ring,
1232 			    sc->nge_cdata.nge_tx_ring_map);
1233 		sc->nge_rdata.nge_tx_ring = NULL;
1234 		sc->nge_rdata.nge_tx_ring_paddr = 0;
1235 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1236 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1237 	}
1238 	/* Rx ring. */
1239 	if (sc->nge_cdata.nge_rx_ring_tag) {
1240 		if (sc->nge_rdata.nge_rx_ring_paddr)
1241 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1242 			    sc->nge_cdata.nge_rx_ring_map);
1243 		if (sc->nge_rdata.nge_rx_ring)
1244 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1245 			    sc->nge_rdata.nge_rx_ring,
1246 			    sc->nge_cdata.nge_rx_ring_map);
1247 		sc->nge_rdata.nge_rx_ring = NULL;
1248 		sc->nge_rdata.nge_rx_ring_paddr = 0;
1249 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1250 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1251 	}
1252 	/* Tx buffers. */
1253 	if (sc->nge_cdata.nge_tx_tag) {
1254 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1255 			txd = &sc->nge_cdata.nge_txdesc[i];
1256 			if (txd->tx_dmamap) {
1257 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1258 				    txd->tx_dmamap);
1259 				txd->tx_dmamap = NULL;
1260 			}
1261 		}
1262 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1263 		sc->nge_cdata.nge_tx_tag = NULL;
1264 	}
1265 	/* Rx buffers. */
1266 	if (sc->nge_cdata.nge_rx_tag) {
1267 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1268 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1269 			if (rxd->rx_dmamap) {
1270 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1271 				    rxd->rx_dmamap);
1272 				rxd->rx_dmamap = NULL;
1273 			}
1274 		}
1275 		if (sc->nge_cdata.nge_rx_sparemap) {
1276 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1277 			    sc->nge_cdata.nge_rx_sparemap);
1278 			sc->nge_cdata.nge_rx_sparemap = 0;
1279 		}
1280 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1281 		sc->nge_cdata.nge_rx_tag = NULL;
1282 	}
1283 
1284 	if (sc->nge_cdata.nge_parent_tag) {
1285 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1286 		sc->nge_cdata.nge_parent_tag = NULL;
1287 	}
1288 }
1289 
1290 /*
1291  * Initialize the transmit descriptors.
1292  */
1293 static int
1294 nge_list_tx_init(struct nge_softc *sc)
1295 {
1296 	struct nge_ring_data *rd;
1297 	struct nge_txdesc *txd;
1298 	bus_addr_t addr;
1299 	int i;
1300 
1301 	sc->nge_cdata.nge_tx_prod = 0;
1302 	sc->nge_cdata.nge_tx_cons = 0;
1303 	sc->nge_cdata.nge_tx_cnt = 0;
1304 
1305 	rd = &sc->nge_rdata;
1306 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1307 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1308 		if (i == NGE_TX_RING_CNT - 1)
1309 			addr = NGE_TX_RING_ADDR(sc, 0);
1310 		else
1311 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1312 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1313 		txd = &sc->nge_cdata.nge_txdesc[i];
1314 		txd->tx_m = NULL;
1315 	}
1316 
1317 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1318 	    sc->nge_cdata.nge_tx_ring_map,
1319 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1320 
1321 	return (0);
1322 }
1323 
1324 /*
1325  * Initialize the RX descriptors and allocate mbufs for them. Note that
1326  * we arrange the descriptors in a closed ring, so that the last descriptor
1327  * points back to the first.
1328  */
1329 static int
1330 nge_list_rx_init(struct nge_softc *sc)
1331 {
1332 	struct nge_ring_data *rd;
1333 	bus_addr_t addr;
1334 	int i;
1335 
1336 	sc->nge_cdata.nge_rx_cons = 0;
1337 	sc->nge_head = sc->nge_tail = NULL;
1338 
1339 	rd = &sc->nge_rdata;
1340 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1341 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1342 		if (nge_newbuf(sc, i) != 0)
1343 			return (ENOBUFS);
1344 		if (i == NGE_RX_RING_CNT - 1)
1345 			addr = NGE_RX_RING_ADDR(sc, 0);
1346 		else
1347 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1348 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1349 	}
1350 
1351 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1352 	    sc->nge_cdata.nge_rx_ring_map,
1353 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1354 
1355 	return (0);
1356 }
1357 
1358 static __inline void
1359 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1360 {
1361 	struct nge_desc *desc;
1362 
1363 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1364 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1365 	desc->nge_extsts = 0;
1366 }
1367 
1368 /*
1369  * Initialize an RX descriptor and attach an MBUF cluster.
1370  */
1371 static int
1372 nge_newbuf(struct nge_softc *sc, int idx)
1373 {
1374 	struct nge_desc *desc;
1375 	struct nge_rxdesc *rxd;
1376 	struct mbuf *m;
1377 	bus_dma_segment_t segs[1];
1378 	bus_dmamap_t map;
1379 	int nsegs;
1380 
1381 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1382 	if (m == NULL)
1383 		return (ENOBUFS);
1384 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1385 	m_adj(m, sizeof(uint64_t));
1386 
1387 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1388 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1389 		m_freem(m);
1390 		return (ENOBUFS);
1391 	}
1392 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1393 
1394 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1395 	if (rxd->rx_m != NULL) {
1396 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1397 		    BUS_DMASYNC_POSTREAD);
1398 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1399 	}
1400 	map = rxd->rx_dmamap;
1401 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1402 	sc->nge_cdata.nge_rx_sparemap = map;
1403 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1404 	    BUS_DMASYNC_PREREAD);
1405 	rxd->rx_m = m;
1406 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1407 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1408 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1409 	desc->nge_extsts = 0;
1410 
1411 	return (0);
1412 }
1413 
1414 #ifndef __NO_STRICT_ALIGNMENT
1415 static __inline void
1416 nge_fixup_rx(struct mbuf *m)
1417 {
1418 	int			i;
1419 	uint16_t		*src, *dst;
1420 
1421 	src = mtod(m, uint16_t *);
1422 	dst = src - 1;
1423 
1424 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1425 		*dst++ = *src++;
1426 
1427 	m->m_data -= ETHER_ALIGN;
1428 }
1429 #endif
1430 
1431 /*
1432  * A frame has been uploaded: pass the resulting mbuf chain up to
1433  * the higher level protocols.
1434  */
1435 static int
1436 nge_rxeof(struct nge_softc *sc)
1437 {
1438 	struct mbuf *m;
1439 	if_t ifp;
1440 	struct nge_desc *cur_rx;
1441 	struct nge_rxdesc *rxd;
1442 	int cons, prog, rx_npkts, total_len;
1443 	uint32_t cmdsts, extsts;
1444 
1445 	NGE_LOCK_ASSERT(sc);
1446 
1447 	ifp = sc->nge_ifp;
1448 	cons = sc->nge_cdata.nge_rx_cons;
1449 	rx_npkts = 0;
1450 
1451 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1452 	    sc->nge_cdata.nge_rx_ring_map,
1453 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1454 
1455 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1456 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
1457 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1458 #ifdef DEVICE_POLLING
1459 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1460 			if (sc->rxcycles <= 0)
1461 				break;
1462 			sc->rxcycles--;
1463 		}
1464 #endif
1465 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1466 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1467 		extsts = le32toh(cur_rx->nge_extsts);
1468 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1469 			break;
1470 		prog++;
1471 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1472 		m = rxd->rx_m;
1473 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1474 
1475 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1476 			if (nge_newbuf(sc, cons) != 0) {
1477 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1478 				if (sc->nge_head != NULL) {
1479 					m_freem(sc->nge_head);
1480 					sc->nge_head = sc->nge_tail = NULL;
1481 				}
1482 				nge_discard_rxbuf(sc, cons);
1483 				continue;
1484 			}
1485 			m->m_len = total_len;
1486 			if (sc->nge_head == NULL) {
1487 				m->m_pkthdr.len = total_len;
1488 				sc->nge_head = sc->nge_tail = m;
1489 			} else {
1490 				m->m_flags &= ~M_PKTHDR;
1491 				sc->nge_head->m_pkthdr.len += total_len;
1492 				sc->nge_tail->m_next = m;
1493 				sc->nge_tail = m;
1494 			}
1495 			continue;
1496 		}
1497 
1498 		/*
1499 		 * If an error occurs, update stats, clear the
1500 		 * status word and leave the mbuf cluster in place:
1501 		 * it should simply get re-used next time this descriptor
1502 	 	 * comes up in the ring.
1503 		 */
1504 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1505 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1506 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1507 				/*
1508 				 * Work-around hardware bug, accept runt frames
1509 				 * if its length is larger than or equal to 56.
1510 				 */
1511 			} else {
1512 				/*
1513 				 * Input error counters are updated by hardware.
1514 				 */
1515 				if (sc->nge_head != NULL) {
1516 					m_freem(sc->nge_head);
1517 					sc->nge_head = sc->nge_tail = NULL;
1518 				}
1519 				nge_discard_rxbuf(sc, cons);
1520 				continue;
1521 			}
1522 		}
1523 
1524 		/* Try conjure up a replacement mbuf. */
1525 
1526 		if (nge_newbuf(sc, cons) != 0) {
1527 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1528 			if (sc->nge_head != NULL) {
1529 				m_freem(sc->nge_head);
1530 				sc->nge_head = sc->nge_tail = NULL;
1531 			}
1532 			nge_discard_rxbuf(sc, cons);
1533 			continue;
1534 		}
1535 
1536 		/* Chain received mbufs. */
1537 		if (sc->nge_head != NULL) {
1538 			m->m_len = total_len;
1539 			m->m_flags &= ~M_PKTHDR;
1540 			sc->nge_tail->m_next = m;
1541 			m = sc->nge_head;
1542 			m->m_pkthdr.len += total_len;
1543 			sc->nge_head = sc->nge_tail = NULL;
1544 		} else
1545 			m->m_pkthdr.len = m->m_len = total_len;
1546 
1547 		/*
1548 		 * Ok. NatSemi really screwed up here. This is the
1549 		 * only gigE chip I know of with alignment constraints
1550 		 * on receive buffers. RX buffers must be 64-bit aligned.
1551 		 */
1552 		/*
1553 		 * By popular demand, ignore the alignment problems
1554 		 * on the non-strict alignment platform. The performance hit
1555 		 * incurred due to unaligned accesses is much smaller
1556 		 * than the hit produced by forcing buffer copies all
1557 		 * the time, especially with jumbo frames. We still
1558 		 * need to fix up the alignment everywhere else though.
1559 		 */
1560 #ifndef __NO_STRICT_ALIGNMENT
1561 		nge_fixup_rx(m);
1562 #endif
1563 		m->m_pkthdr.rcvif = ifp;
1564 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1565 
1566 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1567 			/* Do IP checksum checking. */
1568 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1569 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1570 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1571 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1572 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1573 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1574 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1575 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1576 				m->m_pkthdr.csum_flags |=
1577 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1578 				m->m_pkthdr.csum_data = 0xffff;
1579 			}
1580 		}
1581 
1582 		/*
1583 		 * If we received a packet with a vlan tag, pass it
1584 		 * to vlan_input() instead of ether_input().
1585 		 */
1586 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1587 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1588 			m->m_pkthdr.ether_vtag =
1589 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1590 			m->m_flags |= M_VLANTAG;
1591 		}
1592 		NGE_UNLOCK(sc);
1593 		if_input(ifp, m);
1594 		NGE_LOCK(sc);
1595 		rx_npkts++;
1596 	}
1597 
1598 	if (prog > 0) {
1599 		sc->nge_cdata.nge_rx_cons = cons;
1600 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1601 		    sc->nge_cdata.nge_rx_ring_map,
1602 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1603 	}
1604 	return (rx_npkts);
1605 }
1606 
1607 /*
1608  * A frame was downloaded to the chip. It's safe for us to clean up
1609  * the list buffers.
1610  */
1611 static void
1612 nge_txeof(struct nge_softc *sc)
1613 {
1614 	struct nge_desc	*cur_tx;
1615 	struct nge_txdesc *txd;
1616 	if_t ifp;
1617 	uint32_t cmdsts;
1618 	int cons, prod;
1619 
1620 	NGE_LOCK_ASSERT(sc);
1621 	ifp = sc->nge_ifp;
1622 
1623 	cons = sc->nge_cdata.nge_tx_cons;
1624 	prod = sc->nge_cdata.nge_tx_prod;
1625 	if (cons == prod)
1626 		return;
1627 
1628 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1629 	    sc->nge_cdata.nge_tx_ring_map,
1630 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1631 
1632 	/*
1633 	 * Go through our tx list and free mbufs for those
1634 	 * frames that have been transmitted.
1635 	 */
1636 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1637 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1638 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1639 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1640 			break;
1641 		sc->nge_cdata.nge_tx_cnt--;
1642 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1643 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1644 			continue;
1645 
1646 		txd = &sc->nge_cdata.nge_txdesc[cons];
1647 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1648 		    BUS_DMASYNC_POSTWRITE);
1649 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1650 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1651 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1652 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1653 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1654 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1655 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1656 		} else
1657 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1658 
1659 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
1660 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1661 		    __func__));
1662 		m_freem(txd->tx_m);
1663 		txd->tx_m = NULL;
1664 	}
1665 
1666 	sc->nge_cdata.nge_tx_cons = cons;
1667 	if (sc->nge_cdata.nge_tx_cnt == 0)
1668 		sc->nge_watchdog_timer = 0;
1669 }
1670 
1671 static void
1672 nge_tick(void *xsc)
1673 {
1674 	struct nge_softc *sc;
1675 	struct mii_data *mii;
1676 
1677 	sc = xsc;
1678 	NGE_LOCK_ASSERT(sc);
1679 	mii = device_get_softc(sc->nge_miibus);
1680 	mii_tick(mii);
1681 	/*
1682 	 * For PHYs that does not reset established link, it is
1683 	 * necessary to check whether driver still have a valid
1684 	 * link(e.g link state change callback is not called).
1685 	 * Otherwise, driver think it lost link because driver
1686 	 * initialization routine clears link state flag.
1687 	 */
1688 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1689 		nge_miibus_statchg(sc->nge_dev);
1690 	nge_stats_update(sc);
1691 	nge_watchdog(sc);
1692 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1693 }
1694 
1695 static void
1696 nge_stats_update(struct nge_softc *sc)
1697 {
1698 	if_t ifp;
1699 	struct nge_stats now, *stats, *nstats;
1700 
1701 	NGE_LOCK_ASSERT(sc);
1702 
1703 	ifp = sc->nge_ifp;
1704 	stats = &now;
1705 	stats->rx_pkts_errs =
1706 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1707 	stats->rx_crc_errs =
1708 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1709 	stats->rx_fifo_oflows =
1710 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1711 	stats->rx_align_errs =
1712 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1713 	stats->rx_sym_errs =
1714 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1715 	stats->rx_pkts_jumbos =
1716 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1717 	stats->rx_len_errs =
1718 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1719 	stats->rx_unctl_frames =
1720 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1721 	stats->rx_pause =
1722 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1723 	stats->tx_pause =
1724 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1725 	stats->tx_seq_errs =
1726 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1727 
1728 	/*
1729 	 * Since we've accept errored frames exclude Rx length errors.
1730 	 */
1731 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
1732 	    stats->rx_pkts_errs + stats->rx_crc_errs +
1733 	    stats->rx_fifo_oflows + stats->rx_sym_errs);
1734 
1735 	nstats = &sc->nge_stats;
1736 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1737 	nstats->rx_crc_errs += stats->rx_crc_errs;
1738 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1739 	nstats->rx_align_errs += stats->rx_align_errs;
1740 	nstats->rx_sym_errs += stats->rx_sym_errs;
1741 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1742 	nstats->rx_len_errs += stats->rx_len_errs;
1743 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1744 	nstats->rx_pause += stats->rx_pause;
1745 	nstats->tx_pause += stats->tx_pause;
1746 	nstats->tx_seq_errs += stats->tx_seq_errs;
1747 }
1748 
1749 #ifdef DEVICE_POLLING
1750 static poll_handler_t nge_poll;
1751 
1752 static int
1753 nge_poll(if_t ifp, enum poll_cmd cmd, int count)
1754 {
1755 	struct nge_softc *sc;
1756 	int rx_npkts = 0;
1757 
1758 	sc = if_getsoftc(ifp);
1759 
1760 	NGE_LOCK(sc);
1761 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1762 		NGE_UNLOCK(sc);
1763 		return (rx_npkts);
1764 	}
1765 
1766 	/*
1767 	 * On the nge, reading the status register also clears it.
1768 	 * So before returning to intr mode we must make sure that all
1769 	 * possible pending sources of interrupts have been served.
1770 	 * In practice this means run to completion the *eof routines,
1771 	 * and then call the interrupt routine.
1772 	 */
1773 	sc->rxcycles = count;
1774 	rx_npkts = nge_rxeof(sc);
1775 	nge_txeof(sc);
1776 	if (!if_sendq_empty(ifp))
1777 		nge_start_locked(ifp);
1778 
1779 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1780 		uint32_t	status;
1781 
1782 		/* Reading the ISR register clears all interrupts. */
1783 		status = CSR_READ_4(sc, NGE_ISR);
1784 
1785 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1786 			rx_npkts += nge_rxeof(sc);
1787 
1788 		if ((status & NGE_ISR_RX_IDLE) != 0)
1789 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1790 
1791 		if ((status & NGE_ISR_SYSERR) != 0) {
1792 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1793 			nge_init_locked(sc);
1794 		}
1795 	}
1796 	NGE_UNLOCK(sc);
1797 	return (rx_npkts);
1798 }
1799 #endif /* DEVICE_POLLING */
1800 
1801 static void
1802 nge_intr(void *arg)
1803 {
1804 	struct nge_softc *sc;
1805 	if_t ifp;
1806 	uint32_t status;
1807 
1808 	sc = (struct nge_softc *)arg;
1809 	ifp = sc->nge_ifp;
1810 
1811 	NGE_LOCK(sc);
1812 
1813 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1814 		goto done_locked;
1815 
1816 	/* Reading the ISR register clears all interrupts. */
1817 	status = CSR_READ_4(sc, NGE_ISR);
1818 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1819 		goto done_locked;
1820 #ifdef DEVICE_POLLING
1821 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1822 		goto done_locked;
1823 #endif
1824 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1825 		goto done_locked;
1826 
1827 	/* Disable interrupts. */
1828 	CSR_WRITE_4(sc, NGE_IER, 0);
1829 
1830 	/* Data LED on for TBI mode */
1831 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1832 		CSR_WRITE_4(sc, NGE_GPIO,
1833 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1834 
1835 	for (; (status & NGE_INTRS) != 0;) {
1836 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1837 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1838 			nge_txeof(sc);
1839 
1840 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1841 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1842 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1843 			nge_rxeof(sc);
1844 
1845 		if ((status & NGE_ISR_RX_IDLE) != 0)
1846 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1847 
1848 		if ((status & NGE_ISR_SYSERR) != 0) {
1849 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1850 			nge_init_locked(sc);
1851 		}
1852 		/* Reading the ISR register clears all interrupts. */
1853 		status = CSR_READ_4(sc, NGE_ISR);
1854 	}
1855 
1856 	/* Re-enable interrupts. */
1857 	CSR_WRITE_4(sc, NGE_IER, 1);
1858 
1859 	if (!if_sendq_empty(ifp))
1860 		nge_start_locked(ifp);
1861 
1862 	/* Data LED off for TBI mode */
1863 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1864 		CSR_WRITE_4(sc, NGE_GPIO,
1865 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1866 
1867 done_locked:
1868 	NGE_UNLOCK(sc);
1869 }
1870 
1871 /*
1872  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1873  * pointers to the fragment pointers.
1874  */
1875 static int
1876 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1877 {
1878 	struct nge_txdesc *txd, *txd_last;
1879 	struct nge_desc *desc;
1880 	struct mbuf *m;
1881 	bus_dmamap_t map;
1882 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1883 	int error, i, nsegs, prod, si;
1884 
1885 	NGE_LOCK_ASSERT(sc);
1886 
1887 	m = *m_head;
1888 	prod = sc->nge_cdata.nge_tx_prod;
1889 	txd = &sc->nge_cdata.nge_txdesc[prod];
1890 	txd_last = txd;
1891 	map = txd->tx_dmamap;
1892 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1893 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1894 	if (error == EFBIG) {
1895 		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1896 		if (m == NULL) {
1897 			m_freem(*m_head);
1898 			*m_head = NULL;
1899 			return (ENOBUFS);
1900 		}
1901 		*m_head = m;
1902 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1903 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1904 		if (error != 0) {
1905 			m_freem(*m_head);
1906 			*m_head = NULL;
1907 			return (error);
1908 		}
1909 	} else if (error != 0)
1910 		return (error);
1911 	if (nsegs == 0) {
1912 		m_freem(*m_head);
1913 		*m_head = NULL;
1914 		return (EIO);
1915 	}
1916 
1917 	/* Check number of available descriptors. */
1918 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1919 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1920 		return (ENOBUFS);
1921 	}
1922 
1923 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1924 
1925 	si = prod;
1926 	for (i = 0; i < nsegs; i++) {
1927 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1928 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1929 		if (i == 0)
1930 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1931 			    NGE_CMDSTS_MORE);
1932 		else
1933 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1934 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1935 		desc->nge_extsts = 0;
1936 		sc->nge_cdata.nge_tx_cnt++;
1937 		NGE_INC(prod, NGE_TX_RING_CNT);
1938 	}
1939 	/* Update producer index. */
1940 	sc->nge_cdata.nge_tx_prod = prod;
1941 
1942 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1943 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1944 	/* Check if we have a VLAN tag to insert. */
1945 	if ((m->m_flags & M_VLANTAG) != 0)
1946 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1947 		    bswap16(m->m_pkthdr.ether_vtag));
1948 	/* Set EOP on the last descriptor. */
1949 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1950 
1951 	/* Set checksum offload in the first descriptor. */
1952 	desc = &sc->nge_rdata.nge_tx_ring[si];
1953 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1954 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1955 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1956 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1957 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1958 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1959 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1960 	}
1961 	/* Lastly, turn the first descriptor ownership to hardware. */
1962 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1963 
1964 	txd = &sc->nge_cdata.nge_txdesc[prod];
1965 	map = txd_last->tx_dmamap;
1966 	txd_last->tx_dmamap = txd->tx_dmamap;
1967 	txd->tx_dmamap = map;
1968 	txd->tx_m = m;
1969 
1970 	return (0);
1971 }
1972 
1973 /*
1974  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1975  * to the mbuf data regions directly in the transmit lists. We also save a
1976  * copy of the pointers since the transmit list fragment pointers are
1977  * physical addresses.
1978  */
1979 
1980 static void
1981 nge_start(if_t ifp)
1982 {
1983 	struct nge_softc *sc;
1984 
1985 	sc = if_getsoftc(ifp);
1986 	NGE_LOCK(sc);
1987 	nge_start_locked(ifp);
1988 	NGE_UNLOCK(sc);
1989 }
1990 
1991 static void
1992 nge_start_locked(if_t ifp)
1993 {
1994 	struct nge_softc *sc;
1995 	struct mbuf *m_head;
1996 	int enq;
1997 
1998 	sc = if_getsoftc(ifp);
1999 
2000 	NGE_LOCK_ASSERT(sc);
2001 
2002 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2003 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2004 		return;
2005 
2006 	for (enq = 0; !if_sendq_empty(ifp) &&
2007 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2008 		m_head = if_dequeue(ifp);
2009 		if (m_head == NULL)
2010 			break;
2011 		/*
2012 		 * Pack the data into the transmit ring. If we
2013 		 * don't have room, set the OACTIVE flag and wait
2014 		 * for the NIC to drain the ring.
2015 		 */
2016 		if (nge_encap(sc, &m_head)) {
2017 			if (m_head == NULL)
2018 				break;
2019 			if_sendq_prepend(ifp, m_head);
2020 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2021 			break;
2022 		}
2023 
2024 		enq++;
2025 		/*
2026 		 * If there's a BPF listener, bounce a copy of this frame
2027 		 * to him.
2028 		 */
2029 		ETHER_BPF_MTAP(ifp, m_head);
2030 	}
2031 
2032 	if (enq > 0) {
2033 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2034 		    sc->nge_cdata.nge_tx_ring_map,
2035 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2036 		/* Transmit */
2037 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2038 
2039 		/* Set a timeout in case the chip goes out to lunch. */
2040 		sc->nge_watchdog_timer = 5;
2041 	}
2042 }
2043 
2044 static void
2045 nge_init(void *xsc)
2046 {
2047 	struct nge_softc *sc = xsc;
2048 
2049 	NGE_LOCK(sc);
2050 	nge_init_locked(sc);
2051 	NGE_UNLOCK(sc);
2052 }
2053 
2054 static void
2055 nge_init_locked(struct nge_softc *sc)
2056 {
2057 	if_t ifp = sc->nge_ifp;
2058 	struct mii_data *mii;
2059 	uint8_t *eaddr;
2060 	uint32_t reg;
2061 
2062 	NGE_LOCK_ASSERT(sc);
2063 
2064 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2065 		return;
2066 
2067 	/*
2068 	 * Cancel pending I/O and free all RX/TX buffers.
2069 	 */
2070 	nge_stop(sc);
2071 
2072 	/* Reset the adapter. */
2073 	nge_reset(sc);
2074 
2075 	/* Disable Rx filter prior to programming Rx filter. */
2076 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2077 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2078 
2079 	mii = device_get_softc(sc->nge_miibus);
2080 
2081 	/* Set MAC address. */
2082 	eaddr = if_getlladdr(sc->nge_ifp);
2083 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2084 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2085 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2086 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2087 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2088 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2089 
2090 	/* Init circular RX list. */
2091 	if (nge_list_rx_init(sc) == ENOBUFS) {
2092 		device_printf(sc->nge_dev, "initialization failed: no "
2093 			"memory for rx buffers\n");
2094 		nge_stop(sc);
2095 		return;
2096 	}
2097 
2098 	/*
2099 	 * Init tx descriptors.
2100 	 */
2101 	nge_list_tx_init(sc);
2102 
2103 	/* Set Rx filter. */
2104 	nge_rxfilter(sc);
2105 
2106 	/* Disable PRIQ ctl. */
2107 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2108 
2109 	/*
2110 	 * Set pause frames parameters.
2111 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2112 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2113 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2114 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2115 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2116 	 */
2117 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2118 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2119 	    NGE_PAUSECSR_PAUSE_ON_DA |
2120 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2121 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2122 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2123 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2124 	    NGE_PAUSECSR_CNT);
2125 
2126 	/*
2127 	 * Load the address of the RX and TX lists.
2128 	 */
2129 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2130 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2131 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2132 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2133 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2134 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2135 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2136 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2137 
2138 	/* Set RX configuration. */
2139 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2140 
2141 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2142 	/*
2143 	 * Enable hardware checksum validation for all IPv4
2144 	 * packets, do not reject packets with bad checksums.
2145 	 */
2146 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2147 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2148 
2149 	/*
2150 	 * Tell the chip to detect and strip VLAN tag info from
2151 	 * received frames. The tag will be provided in the extsts
2152 	 * field in the RX descriptors.
2153 	 */
2154 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2155 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2156 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2157 
2158 	/* Set TX configuration. */
2159 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2160 
2161 	/*
2162 	 * Enable TX IPv4 checksumming on a per-packet basis.
2163 	 */
2164 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2165 
2166 	/*
2167 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2168 	 * dictated by the code in the frame encapsulation routine.
2169 	 */
2170 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2171 
2172 	/*
2173 	 * Enable the delivery of PHY interrupts based on
2174 	 * link/speed/duplex status changes. Also enable the
2175 	 * extsts field in the DMA descriptors (needed for
2176 	 * TCP/IP checksum offload on transmit).
2177 	 */
2178 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2179 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2180 
2181 	/*
2182 	 * Configure interrupt holdoff (moderation). We can
2183 	 * have the chip delay interrupt delivery for a certain
2184 	 * period. Units are in 100us, and the max setting
2185 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2186 	 */
2187 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2188 
2189 	/*
2190 	 * Enable MAC statistics counters and clear.
2191 	 */
2192 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2193 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2194 	reg |= NGE_MIBCTL_CLEAR_CNT;
2195 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2196 
2197 	/*
2198 	 * Enable interrupts.
2199 	 */
2200 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2201 #ifdef DEVICE_POLLING
2202 	/*
2203 	 * ... only enable interrupts if we are not polling, make sure
2204 	 * they are off otherwise.
2205 	 */
2206 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
2207 		CSR_WRITE_4(sc, NGE_IER, 0);
2208 	else
2209 #endif
2210 	CSR_WRITE_4(sc, NGE_IER, 1);
2211 
2212 	sc->nge_flags &= ~NGE_FLAG_LINK;
2213 	mii_mediachg(mii);
2214 
2215 	sc->nge_watchdog_timer = 0;
2216 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2217 
2218 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2219 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2220 }
2221 
2222 /*
2223  * Set media options.
2224  */
2225 static int
2226 nge_mediachange(if_t ifp)
2227 {
2228 	struct nge_softc *sc;
2229 	struct mii_data	*mii;
2230 	struct mii_softc *miisc;
2231 	int error;
2232 
2233 	sc = if_getsoftc(ifp);
2234 	NGE_LOCK(sc);
2235 	mii = device_get_softc(sc->nge_miibus);
2236 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2237 		PHY_RESET(miisc);
2238 	error = mii_mediachg(mii);
2239 	NGE_UNLOCK(sc);
2240 
2241 	return (error);
2242 }
2243 
2244 /*
2245  * Report current media status.
2246  */
2247 static void
2248 nge_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2249 {
2250 	struct nge_softc *sc;
2251 	struct mii_data *mii;
2252 
2253 	sc = if_getsoftc(ifp);
2254 	NGE_LOCK(sc);
2255 	mii = device_get_softc(sc->nge_miibus);
2256 	mii_pollstat(mii);
2257 	ifmr->ifm_active = mii->mii_media_active;
2258 	ifmr->ifm_status = mii->mii_media_status;
2259 	NGE_UNLOCK(sc);
2260 }
2261 
2262 static int
2263 nge_ioctl(if_t ifp, u_long command, caddr_t data)
2264 {
2265 	struct nge_softc *sc = if_getsoftc(ifp);
2266 	struct ifreq *ifr = (struct ifreq *) data;
2267 	struct mii_data *mii;
2268 	int error = 0, mask;
2269 
2270 	switch (command) {
2271 	case SIOCSIFMTU:
2272 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2273 			error = EINVAL;
2274 		else {
2275 			NGE_LOCK(sc);
2276 			if_setmtu(ifp, ifr->ifr_mtu);
2277 			/*
2278 			 * Workaround: if the MTU is larger than
2279 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2280 			 * TX checksum offloading.
2281 			 */
2282 			if (ifr->ifr_mtu >= 8152) {
2283 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2284 				if_sethwassistbits(ifp, 0, NGE_CSUM_FEATURES);
2285 			} else {
2286 				if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2287 				if_sethwassistbits(ifp, NGE_CSUM_FEATURES, 0);
2288 			}
2289 			NGE_UNLOCK(sc);
2290 			VLAN_CAPABILITIES(ifp);
2291 		}
2292 		break;
2293 	case SIOCSIFFLAGS:
2294 		NGE_LOCK(sc);
2295 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2296 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2297 				if ((if_getflags(ifp) ^ sc->nge_if_flags) &
2298 				    (IFF_PROMISC | IFF_ALLMULTI))
2299 					nge_rxfilter(sc);
2300 			} else {
2301 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2302 					nge_init_locked(sc);
2303 			}
2304 		} else {
2305 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2306 				nge_stop(sc);
2307 		}
2308 		sc->nge_if_flags = if_getflags(ifp);
2309 		NGE_UNLOCK(sc);
2310 		error = 0;
2311 		break;
2312 	case SIOCADDMULTI:
2313 	case SIOCDELMULTI:
2314 		NGE_LOCK(sc);
2315 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2316 			nge_rxfilter(sc);
2317 		NGE_UNLOCK(sc);
2318 		break;
2319 	case SIOCGIFMEDIA:
2320 	case SIOCSIFMEDIA:
2321 		mii = device_get_softc(sc->nge_miibus);
2322 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2323 		break;
2324 	case SIOCSIFCAP:
2325 		NGE_LOCK(sc);
2326 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2327 #ifdef DEVICE_POLLING
2328 		if ((mask & IFCAP_POLLING) != 0 &&
2329 		    (IFCAP_POLLING & if_getcapabilities(ifp)) != 0) {
2330 			if_togglecapenable(ifp, IFCAP_POLLING);
2331 			if ((IFCAP_POLLING & if_getcapenable(ifp)) != 0) {
2332 				error = ether_poll_register(nge_poll, ifp);
2333 				if (error != 0) {
2334 					NGE_UNLOCK(sc);
2335 					break;
2336 				}
2337 				/* Disable interrupts. */
2338 				CSR_WRITE_4(sc, NGE_IER, 0);
2339 			} else {
2340 				error = ether_poll_deregister(ifp);
2341 				/* Enable interrupts. */
2342 				CSR_WRITE_4(sc, NGE_IER, 1);
2343 			}
2344 		}
2345 #endif /* DEVICE_POLLING */
2346 		if ((mask & IFCAP_TXCSUM) != 0 &&
2347 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2348 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2349 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2350 				if_sethwassistbits(ifp, NGE_CSUM_FEATURES, 0);
2351 			else
2352 				if_sethwassistbits(ifp, 0, NGE_CSUM_FEATURES);
2353 		}
2354 		if ((mask & IFCAP_RXCSUM) != 0 &&
2355 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
2356 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2357 
2358 		if ((mask & IFCAP_WOL) != 0 &&
2359 		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
2360 			if ((mask & IFCAP_WOL_UCAST) != 0)
2361 				if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2362 			if ((mask & IFCAP_WOL_MCAST) != 0)
2363 				if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2364 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2365 				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2366 		}
2367 
2368 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2369 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2370 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2371 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2372 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2373 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2374 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2375 				if ((if_getcapenable(ifp) &
2376 				    IFCAP_VLAN_HWTAGGING) != 0)
2377 					NGE_SETBIT(sc,
2378 					    NGE_VLAN_IP_RXCTL,
2379 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2380 				else
2381 					NGE_CLRBIT(sc,
2382 					    NGE_VLAN_IP_RXCTL,
2383 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2384 			}
2385 		}
2386 		/*
2387 		 * Both VLAN hardware tagging and checksum offload is
2388 		 * required to do checksum offload on VLAN interface.
2389 		 */
2390 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) == 0)
2391 			if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM);
2392 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2393 			if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM);
2394 		NGE_UNLOCK(sc);
2395 		VLAN_CAPABILITIES(ifp);
2396 		break;
2397 	default:
2398 		error = ether_ioctl(ifp, command, data);
2399 		break;
2400 	}
2401 
2402 	return (error);
2403 }
2404 
2405 static void
2406 nge_watchdog(struct nge_softc *sc)
2407 {
2408 	if_t ifp;
2409 
2410 	NGE_LOCK_ASSERT(sc);
2411 
2412 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2413 		return;
2414 
2415 	ifp = sc->nge_ifp;
2416 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2417 	if_printf(ifp, "watchdog timeout\n");
2418 
2419 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2420 	nge_init_locked(sc);
2421 
2422 	if (!if_sendq_empty(ifp))
2423 		nge_start_locked(ifp);
2424 }
2425 
2426 static int
2427 nge_stop_mac(struct nge_softc *sc)
2428 {
2429 	uint32_t reg;
2430 	int i;
2431 
2432 	NGE_LOCK_ASSERT(sc);
2433 
2434 	reg = CSR_READ_4(sc, NGE_CSR);
2435 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2436 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2437 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2438 		CSR_WRITE_4(sc, NGE_CSR, reg);
2439 		for (i = 0; i < NGE_TIMEOUT; i++) {
2440 			DELAY(1);
2441 			if ((CSR_READ_4(sc, NGE_CSR) &
2442 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2443 				break;
2444 		}
2445 		if (i == NGE_TIMEOUT)
2446 			return (ETIMEDOUT);
2447 	}
2448 
2449 	return (0);
2450 }
2451 
2452 /*
2453  * Stop the adapter and free any mbufs allocated to the
2454  * RX and TX lists.
2455  */
2456 static void
2457 nge_stop(struct nge_softc *sc)
2458 {
2459 	struct nge_txdesc *txd;
2460 	struct nge_rxdesc *rxd;
2461 	int i;
2462 	if_t ifp;
2463 
2464 	NGE_LOCK_ASSERT(sc);
2465 	ifp = sc->nge_ifp;
2466 
2467 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2468 	sc->nge_flags &= ~NGE_FLAG_LINK;
2469 	callout_stop(&sc->nge_stat_ch);
2470 	sc->nge_watchdog_timer = 0;
2471 
2472 	CSR_WRITE_4(sc, NGE_IER, 0);
2473 	CSR_WRITE_4(sc, NGE_IMR, 0);
2474 	if (nge_stop_mac(sc) == ETIMEDOUT)
2475 		device_printf(sc->nge_dev,
2476 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2477 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2478 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2479 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2480 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2481 	nge_stats_update(sc);
2482 	if (sc->nge_head != NULL) {
2483 		m_freem(sc->nge_head);
2484 		sc->nge_head = sc->nge_tail = NULL;
2485 	}
2486 
2487 	/*
2488 	 * Free RX and TX mbufs still in the queues.
2489 	 */
2490 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2491 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2492 		if (rxd->rx_m != NULL) {
2493 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2494 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2495 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2496 			    rxd->rx_dmamap);
2497 			m_freem(rxd->rx_m);
2498 			rxd->rx_m = NULL;
2499 		}
2500 	}
2501 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2502 		txd = &sc->nge_cdata.nge_txdesc[i];
2503 		if (txd->tx_m != NULL) {
2504 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2505 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2506 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2507 			    txd->tx_dmamap);
2508 			m_freem(txd->tx_m);
2509 			txd->tx_m = NULL;
2510 		}
2511 	}
2512 }
2513 
2514 /*
2515  * Before setting WOL bits, caller should have stopped Receiver.
2516  */
2517 static void
2518 nge_wol(struct nge_softc *sc)
2519 {
2520 	if_t ifp;
2521 	uint32_t reg;
2522 	uint16_t pmstat;
2523 	int pmc;
2524 
2525 	NGE_LOCK_ASSERT(sc);
2526 
2527 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2528 		return;
2529 
2530 	ifp = sc->nge_ifp;
2531 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
2532 		/* Disable WOL & disconnect CLKRUN to save power. */
2533 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2534 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2535 	} else {
2536 		if (nge_stop_mac(sc) == ETIMEDOUT)
2537 			device_printf(sc->nge_dev,
2538 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2539 		/*
2540 		 * Make sure wake frames will be buffered in the Rx FIFO.
2541 		 * (i.e. Silent Rx mode.)
2542 		 */
2543 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2544 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2545 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2546 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2547 		/* Enable Rx again. */
2548 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2549 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2550 
2551 		/* Configure WOL events. */
2552 		reg = 0;
2553 		if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2554 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2555 		if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2556 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2557 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2558 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2559 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2560 
2561 		/* Activate CLKRUN. */
2562 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2563 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2564 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2565 	}
2566 
2567 	/* Request PME. */
2568 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2569 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2570 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2571 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2572 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2573 }
2574 
2575 /*
2576  * Stop all chip I/O so that the kernel's probe routines don't
2577  * get confused by errant DMAs when rebooting.
2578  */
2579 static int
2580 nge_shutdown(device_t dev)
2581 {
2582 
2583 	return (nge_suspend(dev));
2584 }
2585 
2586 static int
2587 nge_suspend(device_t dev)
2588 {
2589 	struct nge_softc *sc;
2590 
2591 	sc = device_get_softc(dev);
2592 
2593 	NGE_LOCK(sc);
2594 	nge_stop(sc);
2595 	nge_wol(sc);
2596 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2597 	NGE_UNLOCK(sc);
2598 
2599 	return (0);
2600 }
2601 
2602 static int
2603 nge_resume(device_t dev)
2604 {
2605 	struct nge_softc *sc;
2606 	if_t ifp;
2607 	uint16_t pmstat;
2608 	int pmc;
2609 
2610 	sc = device_get_softc(dev);
2611 
2612 	NGE_LOCK(sc);
2613 	ifp = sc->nge_ifp;
2614 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2615 		/* Disable PME and clear PME status. */
2616 		pmstat = pci_read_config(sc->nge_dev,
2617 		    pmc + PCIR_POWER_STATUS, 2);
2618 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2619 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2620 			pci_write_config(sc->nge_dev,
2621 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2622 		}
2623 	}
2624 	if (if_getflags(ifp) & IFF_UP) {
2625 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2626 		nge_init_locked(sc);
2627 	}
2628 
2629 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2630 	NGE_UNLOCK(sc);
2631 
2632 	return (0);
2633 }
2634 
2635 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2636 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2637 
2638 static void
2639 nge_sysctl_node(struct nge_softc *sc)
2640 {
2641 	struct sysctl_ctx_list *ctx;
2642 	struct sysctl_oid_list *child, *parent;
2643 	struct sysctl_oid *tree;
2644 	struct nge_stats *stats;
2645 	int error;
2646 
2647 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2648 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2649 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2650 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->nge_int_holdoff,
2651 	    0, sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2652 	/* Pull in device tunables. */
2653 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2654 	error = resource_int_value(device_get_name(sc->nge_dev),
2655 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2656 	if (error == 0) {
2657 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2658 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2659 			device_printf(sc->nge_dev,
2660 			    "int_holdoff value out of range; "
2661 			    "using default: %d(%d us)\n",
2662 			    NGE_INT_HOLDOFF_DEFAULT,
2663 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2664 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2665 		}
2666 	}
2667 
2668 	stats = &sc->nge_stats;
2669 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2670 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NGE statistics");
2671 	parent = SYSCTL_CHILDREN(tree);
2672 
2673 	/* Rx statistics. */
2674 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2675 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2676 	child = SYSCTL_CHILDREN(tree);
2677 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2678 	    &stats->rx_pkts_errs,
2679 	    "Packet errors including both wire errors and FIFO overruns");
2680 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2681 	    &stats->rx_crc_errs, "CRC errors");
2682 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2683 	    &stats->rx_fifo_oflows, "FIFO overflows");
2684 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2685 	    &stats->rx_align_errs, "Frame alignment errors");
2686 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2687 	    &stats->rx_sym_errs, "One or more symbol errors");
2688 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2689 	    &stats->rx_pkts_jumbos,
2690 	    "Packets received with length greater than 1518 bytes");
2691 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2692 	    &stats->rx_len_errs, "In Range Length errors");
2693 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2694 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2695 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2696 	    &stats->rx_pause, "Pause frames");
2697 
2698 	/* Tx statistics. */
2699 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2700 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2701 	child = SYSCTL_CHILDREN(tree);
2702 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2703 	    &stats->tx_pause, "Pause frames");
2704 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2705 	    &stats->tx_seq_errs,
2706 	    "Loss of collision heartbeat during transmission");
2707 }
2708 
2709 #undef NGE_SYSCTL_STAT_ADD32
2710 
2711 static int
2712 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2713 {
2714 	int error, value;
2715 
2716 	if (arg1 == NULL)
2717 		return (EINVAL);
2718 	value = *(int *)arg1;
2719 	error = sysctl_handle_int(oidp, &value, 0, req);
2720 	if (error != 0 || req->newptr == NULL)
2721 		return (error);
2722 	if (value < low || value > high)
2723 		return (EINVAL);
2724 	*(int *)arg1 = value;
2725 
2726 	return (0);
2727 }
2728 
2729 static int
2730 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2731 {
2732 
2733 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2734 	    NGE_INT_HOLDOFF_MAX));
2735 }
2736