xref: /freebsd/sys/dev/nvd/nvd.c (revision e0c4386e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  * Copyright (C) 2018-2020 Alexander Motin <mav@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/devicestat.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/module.h>
36 #include <sys/queue.h>
37 #include <sys/sysctl.h>
38 #include <sys/systm.h>
39 #include <sys/taskqueue.h>
40 #include <machine/atomic.h>
41 
42 #include <geom/geom.h>
43 #include <geom/geom_disk.h>
44 
45 #include <dev/nvme/nvme.h>
46 #include <dev/nvme/nvme_private.h>
47 
48 #include <dev/pci/pcivar.h>
49 
50 #define NVD_STR		"nvd"
51 
52 struct nvd_disk;
53 struct nvd_controller;
54 
55 static disk_ioctl_t nvd_ioctl;
56 static disk_strategy_t nvd_strategy;
57 static dumper_t nvd_dump;
58 static disk_getattr_t nvd_getattr;
59 
60 static void nvd_done(void *arg, const struct nvme_completion *cpl);
61 static void nvd_gone(struct nvd_disk *ndisk);
62 
63 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr);
64 
65 static void *nvd_new_controller(struct nvme_controller *ctrlr);
66 static void nvd_controller_fail(void *ctrlr);
67 
68 static int nvd_load(void);
69 static void nvd_unload(void);
70 
71 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations");
72 
73 struct nvme_consumer *consumer_handle;
74 
75 struct nvd_disk {
76 	struct nvd_controller	*ctrlr;
77 
78 	struct bio_queue_head	bioq;
79 	struct task		bioqtask;
80 	struct mtx		bioqlock;
81 
82 	struct disk		*disk;
83 	struct taskqueue	*tq;
84 	struct nvme_namespace	*ns;
85 
86 	uint32_t		cur_depth;
87 #define	NVD_ODEPTH	(1 << 30)
88 	uint32_t		ordered_in_flight;
89 	u_int			unit;
90 
91 	TAILQ_ENTRY(nvd_disk)	global_tailq;
92 	TAILQ_ENTRY(nvd_disk)	ctrlr_tailq;
93 };
94 
95 struct nvd_controller {
96 	struct nvme_controller		*ctrlr;
97 	TAILQ_ENTRY(nvd_controller)	tailq;
98 	TAILQ_HEAD(, nvd_disk)		disk_head;
99 };
100 
101 static struct mtx			nvd_lock;
102 static TAILQ_HEAD(, nvd_controller)	ctrlr_head;
103 static TAILQ_HEAD(disk_list, nvd_disk)	disk_head;
104 
105 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
106     "nvd driver parameters");
107 /*
108  * The NVMe specification does not define a maximum or optimal delete size, so
109  *  technically max delete size is min(full size of the namespace, 2^32 - 1
110  *  LBAs).  A single delete for a multi-TB NVMe namespace though may take much
111  *  longer to complete than the nvme(4) I/O timeout period.  So choose a sensible
112  *  default here that is still suitably large to minimize the number of overall
113  *  delete operations.
114  */
115 static uint64_t nvd_delete_max = (1024 * 1024 * 1024);  /* 1GB */
116 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0,
117 	     "nvd maximum BIO_DELETE size in bytes");
118 
119 static int nvd_modevent(module_t mod, int type, void *arg)
120 {
121 	int error = 0;
122 
123 	switch (type) {
124 	case MOD_LOAD:
125 		error = nvd_load();
126 		break;
127 	case MOD_UNLOAD:
128 		nvd_unload();
129 		break;
130 	default:
131 		break;
132 	}
133 
134 	return (error);
135 }
136 
137 moduledata_t nvd_mod = {
138 	NVD_STR,
139 	(modeventhand_t)nvd_modevent,
140 	0
141 };
142 
143 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY);
144 MODULE_VERSION(nvd, 1);
145 MODULE_DEPEND(nvd, nvme, 1, 1, 1);
146 
147 static int
148 nvd_load(void)
149 {
150 	if (!nvme_use_nvd)
151 		return 0;
152 
153 	mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF);
154 	TAILQ_INIT(&ctrlr_head);
155 	TAILQ_INIT(&disk_head);
156 
157 	consumer_handle = nvme_register_consumer(nvd_new_disk,
158 	    nvd_new_controller, NULL, nvd_controller_fail);
159 
160 	return (consumer_handle != NULL ? 0 : -1);
161 }
162 
163 static void
164 nvd_unload(void)
165 {
166 	struct nvd_controller	*ctrlr;
167 	struct nvd_disk		*ndisk;
168 
169 	if (!nvme_use_nvd)
170 		return;
171 
172 	mtx_lock(&nvd_lock);
173 	while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) {
174 		TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
175 		TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
176 			nvd_gone(ndisk);
177 		while (!TAILQ_EMPTY(&ctrlr->disk_head))
178 			msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0);
179 		free(ctrlr, M_NVD);
180 	}
181 	mtx_unlock(&nvd_lock);
182 
183 	nvme_unregister_consumer(consumer_handle);
184 
185 	mtx_destroy(&nvd_lock);
186 }
187 
188 static void
189 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp)
190 {
191 	int err;
192 
193 	bp->bio_driver1 = NULL;
194 	if (__predict_false(bp->bio_flags & BIO_ORDERED))
195 		atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH);
196 	else
197 		atomic_add_int(&ndisk->cur_depth, 1);
198 	err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done);
199 	if (err) {
200 		if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
201 			atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
202 			atomic_add_int(&ndisk->ordered_in_flight, -1);
203 			wakeup(&ndisk->cur_depth);
204 		} else {
205 			if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
206 			    __predict_false(ndisk->ordered_in_flight != 0))
207 				wakeup(&ndisk->cur_depth);
208 		}
209 		bp->bio_error = err;
210 		bp->bio_flags |= BIO_ERROR;
211 		bp->bio_resid = bp->bio_bcount;
212 		biodone(bp);
213 	}
214 }
215 
216 static void
217 nvd_strategy(struct bio *bp)
218 {
219 	struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
220 
221 	/*
222 	 * bio with BIO_ORDERED flag must be executed after all previous
223 	 * bios in the queue, and before any successive bios.
224 	 */
225 	if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
226 		if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 &&
227 		    ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) {
228 			nvd_bio_submit(ndisk, bp);
229 			return;
230 		}
231 	} else if (__predict_true(ndisk->ordered_in_flight == 0)) {
232 		nvd_bio_submit(ndisk, bp);
233 		return;
234 	}
235 
236 	/*
237 	 * There are ordered bios in flight, so we need to submit
238 	 *  bios through the task queue to enforce ordering.
239 	 */
240 	mtx_lock(&ndisk->bioqlock);
241 	bioq_insert_tail(&ndisk->bioq, bp);
242 	mtx_unlock(&ndisk->bioqlock);
243 	taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask);
244 }
245 
246 static void
247 nvd_gone(struct nvd_disk *ndisk)
248 {
249 	struct bio	*bp;
250 
251 	printf(NVD_STR"%u: detached\n", ndisk->unit);
252 	mtx_lock(&ndisk->bioqlock);
253 	disk_gone(ndisk->disk);
254 	while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) {
255 		if (__predict_false(bp->bio_flags & BIO_ORDERED))
256 			atomic_add_int(&ndisk->ordered_in_flight, -1);
257 		bp->bio_error = ENXIO;
258 		bp->bio_flags |= BIO_ERROR;
259 		bp->bio_resid = bp->bio_bcount;
260 		biodone(bp);
261 	}
262 	mtx_unlock(&ndisk->bioqlock);
263 }
264 
265 static void
266 nvd_gonecb(struct disk *dp)
267 {
268 	struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1;
269 
270 	disk_destroy(ndisk->disk);
271 	mtx_lock(&nvd_lock);
272 	TAILQ_REMOVE(&disk_head, ndisk, global_tailq);
273 	TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq);
274 	if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head))
275 		wakeup(&ndisk->ctrlr->disk_head);
276 	mtx_unlock(&nvd_lock);
277 	taskqueue_free(ndisk->tq);
278 	mtx_destroy(&ndisk->bioqlock);
279 	free(ndisk, M_NVD);
280 }
281 
282 static int
283 nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag,
284     struct thread *td)
285 {
286 	struct nvd_disk		*ndisk = dp->d_drv1;
287 
288 	return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td));
289 }
290 
291 static int
292 nvd_dump(void *arg, void *virt, off_t offset, size_t len)
293 {
294 	struct disk *dp = arg;
295 	struct nvd_disk *ndisk = dp->d_drv1;
296 
297 	return (nvme_ns_dump(ndisk->ns, virt, offset, len));
298 }
299 
300 static int
301 nvd_getattr(struct bio *bp)
302 {
303 	struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
304 	const struct nvme_namespace_data *nsdata;
305 	u_int i;
306 
307 	if (!strcmp("GEOM::lunid", bp->bio_attribute)) {
308 		nsdata = nvme_ns_get_data(ndisk->ns);
309 
310 		/* Try to return NGUID as lunid. */
311 		for (i = 0; i < sizeof(nsdata->nguid); i++) {
312 			if (nsdata->nguid[i] != 0)
313 				break;
314 		}
315 		if (i < sizeof(nsdata->nguid)) {
316 			if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1)
317 				return (EFAULT);
318 			for (i = 0; i < sizeof(nsdata->nguid); i++) {
319 				sprintf(&bp->bio_data[i * 2], "%02x",
320 				    nsdata->nguid[i]);
321 			}
322 			bp->bio_completed = bp->bio_length;
323 			return (0);
324 		}
325 
326 		/* Try to return EUI64 as lunid. */
327 		for (i = 0; i < sizeof(nsdata->eui64); i++) {
328 			if (nsdata->eui64[i] != 0)
329 				break;
330 		}
331 		if (i < sizeof(nsdata->eui64)) {
332 			if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1)
333 				return (EFAULT);
334 			for (i = 0; i < sizeof(nsdata->eui64); i++) {
335 				sprintf(&bp->bio_data[i * 2], "%02x",
336 				    nsdata->eui64[i]);
337 			}
338 			bp->bio_completed = bp->bio_length;
339 			return (0);
340 		}
341 	}
342 	return (-1);
343 }
344 
345 static void
346 nvd_done(void *arg, const struct nvme_completion *cpl)
347 {
348 	struct bio *bp = (struct bio *)arg;
349 	struct nvd_disk *ndisk = bp->bio_disk->d_drv1;
350 
351 	if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
352 		atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
353 		atomic_add_int(&ndisk->ordered_in_flight, -1);
354 		wakeup(&ndisk->cur_depth);
355 	} else {
356 		if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
357 		    __predict_false(ndisk->ordered_in_flight != 0))
358 			wakeup(&ndisk->cur_depth);
359 	}
360 
361 	biodone(bp);
362 }
363 
364 static void
365 nvd_bioq_process(void *arg, int pending)
366 {
367 	struct nvd_disk *ndisk = arg;
368 	struct bio *bp;
369 
370 	for (;;) {
371 		mtx_lock(&ndisk->bioqlock);
372 		bp = bioq_takefirst(&ndisk->bioq);
373 		mtx_unlock(&ndisk->bioqlock);
374 		if (bp == NULL)
375 			break;
376 
377 		if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
378 			/*
379 			 * bio with BIO_ORDERED flag set must be executed
380 			 * after all previous bios.
381 			 */
382 			while (ndisk->cur_depth > 0)
383 				tsleep(&ndisk->cur_depth, 0, "nvdorb", 1);
384 		} else {
385 			/*
386 			 * bio with BIO_ORDERED flag set must be completed
387 			 * before proceeding with additional bios.
388 			 */
389 			while (ndisk->cur_depth >= NVD_ODEPTH)
390 				tsleep(&ndisk->cur_depth, 0, "nvdora", 1);
391 		}
392 
393 		nvd_bio_submit(ndisk, bp);
394 	}
395 }
396 
397 static void *
398 nvd_new_controller(struct nvme_controller *ctrlr)
399 {
400 	struct nvd_controller	*nvd_ctrlr;
401 
402 	nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD,
403 	    M_ZERO | M_WAITOK);
404 
405 	nvd_ctrlr->ctrlr = ctrlr;
406 	TAILQ_INIT(&nvd_ctrlr->disk_head);
407 	mtx_lock(&nvd_lock);
408 	TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq);
409 	mtx_unlock(&nvd_lock);
410 
411 	return (nvd_ctrlr);
412 }
413 
414 static void *
415 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg)
416 {
417 	uint8_t			descr[NVME_MODEL_NUMBER_LENGTH+1];
418 	struct nvd_disk		*ndisk, *tnd;
419 	struct disk		*disk;
420 	struct nvd_controller	*ctrlr = ctrlr_arg;
421 	device_t		 dev = ctrlr->ctrlr->dev;
422 	int unit;
423 
424 	ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK);
425 	ndisk->ctrlr = ctrlr;
426 	ndisk->ns = ns;
427 	ndisk->cur_depth = 0;
428 	ndisk->ordered_in_flight = 0;
429 	mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF);
430 	bioq_init(&ndisk->bioq);
431 	TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk);
432 
433 	mtx_lock(&nvd_lock);
434 	unit = 0;
435 	TAILQ_FOREACH(tnd, &disk_head, global_tailq) {
436 		if (tnd->unit > unit)
437 			break;
438 		unit = tnd->unit + 1;
439 	}
440 	ndisk->unit = unit;
441 	if (tnd != NULL)
442 		TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq);
443 	else
444 		TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq);
445 	TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq);
446 	mtx_unlock(&nvd_lock);
447 
448 	ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK,
449 	    taskqueue_thread_enqueue, &ndisk->tq);
450 	taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq");
451 
452 	disk = ndisk->disk = disk_alloc();
453 	disk->d_strategy = nvd_strategy;
454 	disk->d_ioctl = nvd_ioctl;
455 	disk->d_dump = nvd_dump;
456 	disk->d_getattr = nvd_getattr;
457 	disk->d_gone = nvd_gonecb;
458 	disk->d_name = NVD_STR;
459 	disk->d_unit = ndisk->unit;
460 	disk->d_drv1 = ndisk;
461 
462 	disk->d_sectorsize = nvme_ns_get_sector_size(ns);
463 	disk->d_mediasize = (off_t)nvme_ns_get_size(ns);
464 	disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns);
465 	disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns);
466 	if (disk->d_delmaxsize > nvd_delete_max)
467 		disk->d_delmaxsize = nvd_delete_max;
468 	disk->d_stripesize = nvme_ns_get_stripesize(ns);
469 	disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION;
470 	if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED)
471 		disk->d_flags |= DISKFLAG_CANDELETE;
472 	if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED)
473 		disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
474 	disk->d_devstat = devstat_new_entry(disk->d_name, disk->d_unit,
475 	    disk->d_sectorsize, DEVSTAT_ALL_SUPPORTED,
476 	    DEVSTAT_TYPE_DIRECT | DEVSTAT_TYPE_IF_NVME,
477 	    DEVSTAT_PRIORITY_DISK);
478 
479 	/*
480 	 * d_ident and d_descr are both far bigger than the length of either
481 	 *  the serial or model number strings.
482 	 */
483 	nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns),
484 	    sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH);
485 	nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr),
486 	    NVME_MODEL_NUMBER_LENGTH);
487 	strlcpy(disk->d_descr, descr, sizeof(descr));
488 
489 	/*
490 	 * For devices that are reported as children of the AHCI controller,
491 	 * which has no access to the config space for this controller, report
492 	 * the AHCI controller's data.
493 	 */
494 	if (ctrlr->ctrlr->quirks & QUIRK_AHCI)
495 		dev = device_get_parent(dev);
496 	disk->d_hba_vendor = pci_get_vendor(dev);
497 	disk->d_hba_device = pci_get_device(dev);
498 	disk->d_hba_subvendor = pci_get_subvendor(dev);
499 	disk->d_hba_subdevice = pci_get_subdevice(dev);
500 	disk->d_rotation_rate = DISK_RR_NON_ROTATING;
501 	strlcpy(disk->d_attachment, device_get_nameunit(dev),
502 	    sizeof(disk->d_attachment));
503 
504 	disk_create(disk, DISK_VERSION);
505 
506 	printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr);
507 	printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit,
508 		(uintmax_t)disk->d_mediasize / (1024*1024),
509 		(uintmax_t)disk->d_mediasize / disk->d_sectorsize,
510 		disk->d_sectorsize);
511 
512 	return (ndisk);
513 }
514 
515 static void
516 nvd_controller_fail(void *ctrlr_arg)
517 {
518 	struct nvd_controller	*ctrlr = ctrlr_arg;
519 	struct nvd_disk		*ndisk;
520 
521 	mtx_lock(&nvd_lock);
522 	TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
523 	TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
524 		nvd_gone(ndisk);
525 	while (!TAILQ_EMPTY(&ctrlr->disk_head))
526 		msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0);
527 	mtx_unlock(&nvd_lock);
528 	free(ctrlr, M_NVD);
529 }
530