xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision 9768746b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_cam.h"
33 #include "opt_nvme.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/ioccom.h>
41 #include <sys/proc.h>
42 #include <sys/smp.h>
43 #include <sys/uio.h>
44 #include <sys/sbuf.h>
45 #include <sys/endian.h>
46 #include <machine/stdarg.h>
47 #include <vm/vm.h>
48 
49 #include "nvme_private.h"
50 
51 #define B4_CHK_RDY_DELAY_MS	2300		/* work around controller bug */
52 
53 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
54 						struct nvme_async_event_request *aer);
55 
56 static void
57 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
58 {
59 	bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
60 }
61 
62 static void
63 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
64 {
65 	struct sbuf sb;
66 	va_list ap;
67 	int error;
68 
69 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
70 		return;
71 	sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
72 	va_start(ap, msg);
73 	sbuf_vprintf(&sb, msg, ap);
74 	va_end(ap);
75 	error = sbuf_finish(&sb);
76 	if (error == 0)
77 		printf("%s\n", sbuf_data(&sb));
78 
79 	sbuf_clear(&sb);
80 	sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
81 	va_start(ap, msg);
82 	sbuf_vprintf(&sb, msg, ap);
83 	va_end(ap);
84 	sbuf_printf(&sb, "\"");
85 	error = sbuf_finish(&sb);
86 	if (error == 0)
87 		devctl_notify("nvme", "controller", type, sbuf_data(&sb));
88 	sbuf_delete(&sb);
89 }
90 
91 static int
92 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
93 {
94 	struct nvme_qpair	*qpair;
95 	uint32_t		num_entries;
96 	int			error;
97 
98 	qpair = &ctrlr->adminq;
99 	qpair->id = 0;
100 	qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
101 	qpair->domain = ctrlr->domain;
102 
103 	num_entries = NVME_ADMIN_ENTRIES;
104 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
105 	/*
106 	 * If admin_entries was overridden to an invalid value, revert it
107 	 *  back to our default value.
108 	 */
109 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
110 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
111 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
112 		    "specified\n", num_entries);
113 		num_entries = NVME_ADMIN_ENTRIES;
114 	}
115 
116 	/*
117 	 * The admin queue's max xfer size is treated differently than the
118 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
119 	 */
120 	error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
121 	     ctrlr);
122 	return (error);
123 }
124 
125 #define QP(ctrlr, c)	((c) * (ctrlr)->num_io_queues / mp_ncpus)
126 
127 static int
128 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
129 {
130 	struct nvme_qpair	*qpair;
131 	uint32_t		cap_lo;
132 	uint16_t		mqes;
133 	int			c, error, i, n;
134 	int			num_entries, num_trackers, max_entries;
135 
136 	/*
137 	 * NVMe spec sets a hard limit of 64K max entries, but devices may
138 	 * specify a smaller limit, so we need to check the MQES field in the
139 	 * capabilities register. We have to cap the number of entries to the
140 	 * current stride allows for in BAR 0/1, otherwise the remainder entries
141 	 * are inaccessible. MQES should reflect this, and this is just a
142 	 * fail-safe.
143 	 */
144 	max_entries =
145 	    (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
146 	    (1 << (ctrlr->dstrd + 1));
147 	num_entries = NVME_IO_ENTRIES;
148 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
149 	cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
150 	mqes = NVME_CAP_LO_MQES(cap_lo);
151 	num_entries = min(num_entries, mqes + 1);
152 	num_entries = min(num_entries, max_entries);
153 
154 	num_trackers = NVME_IO_TRACKERS;
155 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
156 
157 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
158 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
159 	/*
160 	 * No need to have more trackers than entries in the submit queue.  Note
161 	 * also that for a queue size of N, we can only have (N-1) commands
162 	 * outstanding, hence the "-1" here.
163 	 */
164 	num_trackers = min(num_trackers, (num_entries-1));
165 
166 	/*
167 	 * Our best estimate for the maximum number of I/Os that we should
168 	 * normally have in flight at one time. This should be viewed as a hint,
169 	 * not a hard limit and will need to be revisited when the upper layers
170 	 * of the storage system grows multi-queue support.
171 	 */
172 	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
173 
174 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
175 	    M_NVME, M_ZERO | M_WAITOK);
176 
177 	for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
178 		qpair = &ctrlr->ioq[i];
179 
180 		/*
181 		 * Admin queue has ID=0. IO queues start at ID=1 -
182 		 *  hence the 'i+1' here.
183 		 */
184 		qpair->id = i + 1;
185 		if (ctrlr->num_io_queues > 1) {
186 			/* Find number of CPUs served by this queue. */
187 			for (n = 1; QP(ctrlr, c + n) == i; n++)
188 				;
189 			/* Shuffle multiple NVMe devices between CPUs. */
190 			qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
191 			qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
192 		} else {
193 			qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
194 			qpair->domain = ctrlr->domain;
195 		}
196 
197 		/*
198 		 * For I/O queues, use the controller-wide max_xfer_size
199 		 *  calculated in nvme_attach().
200 		 */
201 		error = nvme_qpair_construct(qpair, num_entries, num_trackers,
202 		    ctrlr);
203 		if (error)
204 			return (error);
205 
206 		/*
207 		 * Do not bother binding interrupts if we only have one I/O
208 		 *  interrupt thread for this controller.
209 		 */
210 		if (ctrlr->num_io_queues > 1)
211 			bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
212 	}
213 
214 	return (0);
215 }
216 
217 static void
218 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
219 {
220 	int i;
221 
222 	ctrlr->is_failed = true;
223 	nvme_admin_qpair_disable(&ctrlr->adminq);
224 	nvme_qpair_fail(&ctrlr->adminq);
225 	if (ctrlr->ioq != NULL) {
226 		for (i = 0; i < ctrlr->num_io_queues; i++) {
227 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
228 			nvme_qpair_fail(&ctrlr->ioq[i]);
229 		}
230 	}
231 	nvme_notify_fail_consumers(ctrlr);
232 }
233 
234 void
235 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
236     struct nvme_request *req)
237 {
238 
239 	mtx_lock(&ctrlr->lock);
240 	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
241 	mtx_unlock(&ctrlr->lock);
242 	if (!ctrlr->is_dying)
243 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
244 }
245 
246 static void
247 nvme_ctrlr_fail_req_task(void *arg, int pending)
248 {
249 	struct nvme_controller	*ctrlr = arg;
250 	struct nvme_request	*req;
251 
252 	mtx_lock(&ctrlr->lock);
253 	while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
254 		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
255 		mtx_unlock(&ctrlr->lock);
256 		nvme_qpair_manual_complete_request(req->qpair, req,
257 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
258 		mtx_lock(&ctrlr->lock);
259 	}
260 	mtx_unlock(&ctrlr->lock);
261 }
262 
263 /*
264  * Wait for RDY to change.
265  *
266  * Starts sleeping for 1us and geometrically increases it the longer we wait,
267  * capped at 1ms.
268  */
269 static int
270 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
271 {
272 	int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
273 	sbintime_t delta_t = SBT_1US;
274 	uint32_t csts;
275 
276 	while (1) {
277 		csts = nvme_mmio_read_4(ctrlr, csts);
278 		if (csts == NVME_GONE)		/* Hot unplug. */
279 			return (ENXIO);
280 		if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
281 		    == desired_val)
282 			break;
283 		if (timeout - ticks < 0) {
284 			nvme_printf(ctrlr, "controller ready did not become %d "
285 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
286 			return (ENXIO);
287 		}
288 
289 		pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
290 		delta_t = min(SBT_1MS, delta_t * 3 / 2);
291 	}
292 
293 	return (0);
294 }
295 
296 static int
297 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
298 {
299 	uint32_t cc;
300 	uint32_t csts;
301 	uint8_t  en, rdy;
302 	int err;
303 
304 	cc = nvme_mmio_read_4(ctrlr, cc);
305 	csts = nvme_mmio_read_4(ctrlr, csts);
306 
307 	en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
308 	rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
309 
310 	/*
311 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
312 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
313 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
314 	 * isn't the desired value. Short circuit if we're already disabled.
315 	 */
316 	if (en == 0) {
317 		/* Wait for RDY == 0 or timeout & fail */
318 		if (rdy == 0)
319 			return (0);
320 		return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
321 	}
322 	if (rdy == 0) {
323 		/* EN == 1, wait for  RDY == 1 or timeout & fail */
324 		err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
325 		if (err != 0)
326 			return (err);
327 	}
328 
329 	cc &= ~NVME_CC_REG_EN_MASK;
330 	nvme_mmio_write_4(ctrlr, cc, cc);
331 
332 	/*
333 	 * A few drives have firmware bugs that freeze the drive if we access
334 	 * the mmio too soon after we disable.
335 	 */
336 	if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
337 		pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
338 	return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
339 }
340 
341 static int
342 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
343 {
344 	uint32_t	cc;
345 	uint32_t	csts;
346 	uint32_t	aqa;
347 	uint32_t	qsize;
348 	uint8_t		en, rdy;
349 	int		err;
350 
351 	cc = nvme_mmio_read_4(ctrlr, cc);
352 	csts = nvme_mmio_read_4(ctrlr, csts);
353 
354 	en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
355 	rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
356 
357 	/*
358 	 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
359 	 */
360 	if (en == 1) {
361 		if (rdy == 1)
362 			return (0);
363 		return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
364 	}
365 
366 	/* EN == 0 already wait for RDY == 0 or timeout & fail */
367 	err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
368 	if (err != 0)
369 		return (err);
370 
371 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
372 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
373 
374 	/* acqs and asqs are 0-based. */
375 	qsize = ctrlr->adminq.num_entries - 1;
376 
377 	aqa = 0;
378 	aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
379 	aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
380 	nvme_mmio_write_4(ctrlr, aqa, aqa);
381 
382 	/* Initialization values for CC */
383 	cc = 0;
384 	cc |= 1 << NVME_CC_REG_EN_SHIFT;
385 	cc |= 0 << NVME_CC_REG_CSS_SHIFT;
386 	cc |= 0 << NVME_CC_REG_AMS_SHIFT;
387 	cc |= 0 << NVME_CC_REG_SHN_SHIFT;
388 	cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
389 	cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
390 
391 	/*
392 	 * Use the Memory Page Size selected during device initialization.  Note
393 	 * that value stored in mps is suitable to use here without adjusting by
394 	 * NVME_MPS_SHIFT.
395 	 */
396 	cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT;
397 
398 	nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
399 	nvme_mmio_write_4(ctrlr, cc, cc);
400 
401 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
402 }
403 
404 static void
405 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
406 {
407 	int i;
408 
409 	nvme_admin_qpair_disable(&ctrlr->adminq);
410 	/*
411 	 * I/O queues are not allocated before the initial HW
412 	 *  reset, so do not try to disable them.  Use is_initialized
413 	 *  to determine if this is the initial HW reset.
414 	 */
415 	if (ctrlr->is_initialized) {
416 		for (i = 0; i < ctrlr->num_io_queues; i++)
417 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
418 	}
419 }
420 
421 static int
422 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
423 {
424 	int err;
425 
426 	TSENTER();
427 
428 	nvme_ctrlr_disable_qpairs(ctrlr);
429 
430 	err = nvme_ctrlr_disable(ctrlr);
431 	if (err != 0)
432 		return err;
433 
434 	err = nvme_ctrlr_enable(ctrlr);
435 	TSEXIT();
436 	return (err);
437 }
438 
439 void
440 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
441 {
442 	int cmpset;
443 
444 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
445 
446 	if (cmpset == 0 || ctrlr->is_failed)
447 		/*
448 		 * Controller is already resetting or has failed.  Return
449 		 *  immediately since there is no need to kick off another
450 		 *  reset in these cases.
451 		 */
452 		return;
453 
454 	if (!ctrlr->is_dying)
455 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
456 }
457 
458 static int
459 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
460 {
461 	struct nvme_completion_poll_status	status;
462 
463 	status.done = 0;
464 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
465 	    nvme_completion_poll_cb, &status);
466 	nvme_completion_poll(&status);
467 	if (nvme_completion_is_error(&status.cpl)) {
468 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
469 		return (ENXIO);
470 	}
471 
472 	/* Convert data to host endian */
473 	nvme_controller_data_swapbytes(&ctrlr->cdata);
474 
475 	/*
476 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
477 	 *  controller supports.
478 	 */
479 	if (ctrlr->cdata.mdts > 0)
480 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
481 		    1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
482 			NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
483 
484 	return (0);
485 }
486 
487 static int
488 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
489 {
490 	struct nvme_completion_poll_status	status;
491 	int					cq_allocated, sq_allocated;
492 
493 	status.done = 0;
494 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
495 	    nvme_completion_poll_cb, &status);
496 	nvme_completion_poll(&status);
497 	if (nvme_completion_is_error(&status.cpl)) {
498 		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
499 		return (ENXIO);
500 	}
501 
502 	/*
503 	 * Data in cdw0 is 0-based.
504 	 * Lower 16-bits indicate number of submission queues allocated.
505 	 * Upper 16-bits indicate number of completion queues allocated.
506 	 */
507 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
508 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
509 
510 	/*
511 	 * Controller may allocate more queues than we requested,
512 	 *  so use the minimum of the number requested and what was
513 	 *  actually allocated.
514 	 */
515 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
516 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
517 	if (ctrlr->num_io_queues > vm_ndomains)
518 		ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
519 
520 	return (0);
521 }
522 
523 static int
524 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
525 {
526 	struct nvme_completion_poll_status	status;
527 	struct nvme_qpair			*qpair;
528 	int					i;
529 
530 	for (i = 0; i < ctrlr->num_io_queues; i++) {
531 		qpair = &ctrlr->ioq[i];
532 
533 		status.done = 0;
534 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
535 		    nvme_completion_poll_cb, &status);
536 		nvme_completion_poll(&status);
537 		if (nvme_completion_is_error(&status.cpl)) {
538 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
539 			return (ENXIO);
540 		}
541 
542 		status.done = 0;
543 		nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
544 		    nvme_completion_poll_cb, &status);
545 		nvme_completion_poll(&status);
546 		if (nvme_completion_is_error(&status.cpl)) {
547 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
548 			return (ENXIO);
549 		}
550 	}
551 
552 	return (0);
553 }
554 
555 static int
556 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
557 {
558 	struct nvme_completion_poll_status	status;
559 	struct nvme_qpair			*qpair;
560 
561 	for (int i = 0; i < ctrlr->num_io_queues; i++) {
562 		qpair = &ctrlr->ioq[i];
563 
564 		status.done = 0;
565 		nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
566 		    nvme_completion_poll_cb, &status);
567 		nvme_completion_poll(&status);
568 		if (nvme_completion_is_error(&status.cpl)) {
569 			nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
570 			return (ENXIO);
571 		}
572 
573 		status.done = 0;
574 		nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
575 		    nvme_completion_poll_cb, &status);
576 		nvme_completion_poll(&status);
577 		if (nvme_completion_is_error(&status.cpl)) {
578 			nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
579 			return (ENXIO);
580 		}
581 	}
582 
583 	return (0);
584 }
585 
586 static int
587 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
588 {
589 	struct nvme_namespace	*ns;
590 	uint32_t 		i;
591 
592 	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
593 		ns = &ctrlr->ns[i];
594 		nvme_ns_construct(ns, i+1, ctrlr);
595 	}
596 
597 	return (0);
598 }
599 
600 static bool
601 is_log_page_id_valid(uint8_t page_id)
602 {
603 
604 	switch (page_id) {
605 	case NVME_LOG_ERROR:
606 	case NVME_LOG_HEALTH_INFORMATION:
607 	case NVME_LOG_FIRMWARE_SLOT:
608 	case NVME_LOG_CHANGED_NAMESPACE:
609 	case NVME_LOG_COMMAND_EFFECT:
610 	case NVME_LOG_RES_NOTIFICATION:
611 	case NVME_LOG_SANITIZE_STATUS:
612 		return (true);
613 	}
614 
615 	return (false);
616 }
617 
618 static uint32_t
619 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
620 {
621 	uint32_t	log_page_size;
622 
623 	switch (page_id) {
624 	case NVME_LOG_ERROR:
625 		log_page_size = min(
626 		    sizeof(struct nvme_error_information_entry) *
627 		    (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
628 		break;
629 	case NVME_LOG_HEALTH_INFORMATION:
630 		log_page_size = sizeof(struct nvme_health_information_page);
631 		break;
632 	case NVME_LOG_FIRMWARE_SLOT:
633 		log_page_size = sizeof(struct nvme_firmware_page);
634 		break;
635 	case NVME_LOG_CHANGED_NAMESPACE:
636 		log_page_size = sizeof(struct nvme_ns_list);
637 		break;
638 	case NVME_LOG_COMMAND_EFFECT:
639 		log_page_size = sizeof(struct nvme_command_effects_page);
640 		break;
641 	case NVME_LOG_RES_NOTIFICATION:
642 		log_page_size = sizeof(struct nvme_res_notification_page);
643 		break;
644 	case NVME_LOG_SANITIZE_STATUS:
645 		log_page_size = sizeof(struct nvme_sanitize_status_page);
646 		break;
647 	default:
648 		log_page_size = 0;
649 		break;
650 	}
651 
652 	return (log_page_size);
653 }
654 
655 static void
656 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
657     uint8_t state)
658 {
659 
660 	if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
661 		nvme_ctrlr_devctl_log(ctrlr, "critical",
662 		    "available spare space below threshold");
663 
664 	if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
665 		nvme_ctrlr_devctl_log(ctrlr, "critical",
666 		    "temperature above threshold");
667 
668 	if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
669 		nvme_ctrlr_devctl_log(ctrlr, "critical",
670 		    "device reliability degraded");
671 
672 	if (state & NVME_CRIT_WARN_ST_READ_ONLY)
673 		nvme_ctrlr_devctl_log(ctrlr, "critical",
674 		    "media placed in read only mode");
675 
676 	if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
677 		nvme_ctrlr_devctl_log(ctrlr, "critical",
678 		    "volatile memory backup device failed");
679 
680 	if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
681 		nvme_ctrlr_devctl_log(ctrlr, "critical",
682 		    "unknown critical warning(s): state = 0x%02x", state);
683 }
684 
685 static void
686 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
687 {
688 	struct nvme_async_event_request		*aer = arg;
689 	struct nvme_health_information_page	*health_info;
690 	struct nvme_ns_list			*nsl;
691 	struct nvme_error_information_entry	*err;
692 	int i;
693 
694 	/*
695 	 * If the log page fetch for some reason completed with an error,
696 	 *  don't pass log page data to the consumers.  In practice, this case
697 	 *  should never happen.
698 	 */
699 	if (nvme_completion_is_error(cpl))
700 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
701 		    aer->log_page_id, NULL, 0);
702 	else {
703 		/* Convert data to host endian */
704 		switch (aer->log_page_id) {
705 		case NVME_LOG_ERROR:
706 			err = (struct nvme_error_information_entry *)aer->log_page_buffer;
707 			for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
708 				nvme_error_information_entry_swapbytes(err++);
709 			break;
710 		case NVME_LOG_HEALTH_INFORMATION:
711 			nvme_health_information_page_swapbytes(
712 			    (struct nvme_health_information_page *)aer->log_page_buffer);
713 			break;
714 		case NVME_LOG_FIRMWARE_SLOT:
715 			nvme_firmware_page_swapbytes(
716 			    (struct nvme_firmware_page *)aer->log_page_buffer);
717 			break;
718 		case NVME_LOG_CHANGED_NAMESPACE:
719 			nvme_ns_list_swapbytes(
720 			    (struct nvme_ns_list *)aer->log_page_buffer);
721 			break;
722 		case NVME_LOG_COMMAND_EFFECT:
723 			nvme_command_effects_page_swapbytes(
724 			    (struct nvme_command_effects_page *)aer->log_page_buffer);
725 			break;
726 		case NVME_LOG_RES_NOTIFICATION:
727 			nvme_res_notification_page_swapbytes(
728 			    (struct nvme_res_notification_page *)aer->log_page_buffer);
729 			break;
730 		case NVME_LOG_SANITIZE_STATUS:
731 			nvme_sanitize_status_page_swapbytes(
732 			    (struct nvme_sanitize_status_page *)aer->log_page_buffer);
733 			break;
734 		case INTEL_LOG_TEMP_STATS:
735 			intel_log_temp_stats_swapbytes(
736 			    (struct intel_log_temp_stats *)aer->log_page_buffer);
737 			break;
738 		default:
739 			break;
740 		}
741 
742 		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
743 			health_info = (struct nvme_health_information_page *)
744 			    aer->log_page_buffer;
745 			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
746 			    health_info->critical_warning);
747 			/*
748 			 * Critical warnings reported through the
749 			 *  SMART/health log page are persistent, so
750 			 *  clear the associated bits in the async event
751 			 *  config so that we do not receive repeated
752 			 *  notifications for the same event.
753 			 */
754 			aer->ctrlr->async_event_config &=
755 			    ~health_info->critical_warning;
756 			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
757 			    aer->ctrlr->async_event_config, NULL, NULL);
758 		} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
759 		    !nvme_use_nvd) {
760 			nsl = (struct nvme_ns_list *)aer->log_page_buffer;
761 			for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
762 				if (nsl->ns[i] > NVME_MAX_NAMESPACES)
763 					break;
764 				nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
765 			}
766 		}
767 
768 		/*
769 		 * Pass the cpl data from the original async event completion,
770 		 *  not the log page fetch.
771 		 */
772 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
773 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
774 	}
775 
776 	/*
777 	 * Repost another asynchronous event request to replace the one
778 	 *  that just completed.
779 	 */
780 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
781 }
782 
783 static void
784 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
785 {
786 	struct nvme_async_event_request	*aer = arg;
787 
788 	if (nvme_completion_is_error(cpl)) {
789 		/*
790 		 *  Do not retry failed async event requests.  This avoids
791 		 *  infinite loops where a new async event request is submitted
792 		 *  to replace the one just failed, only to fail again and
793 		 *  perpetuate the loop.
794 		 */
795 		return;
796 	}
797 
798 	/* Associated log page is in bits 23:16 of completion entry dw0. */
799 	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
800 
801 	nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
802 	    " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
803 	    aer->log_page_id);
804 
805 	if (is_log_page_id_valid(aer->log_page_id)) {
806 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
807 		    aer->log_page_id);
808 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
809 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
810 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
811 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
812 		    aer);
813 		/* Wait to notify consumers until after log page is fetched. */
814 	} else {
815 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
816 		    NULL, 0);
817 
818 		/*
819 		 * Repost another asynchronous event request to replace the one
820 		 *  that just completed.
821 		 */
822 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
823 	}
824 }
825 
826 static void
827 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
828     struct nvme_async_event_request *aer)
829 {
830 	struct nvme_request *req;
831 
832 	aer->ctrlr = ctrlr;
833 	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
834 	aer->req = req;
835 
836 	/*
837 	 * Disable timeout here, since asynchronous event requests should by
838 	 *  nature never be timed out.
839 	 */
840 	req->timeout = false;
841 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
842 	nvme_ctrlr_submit_admin_request(ctrlr, req);
843 }
844 
845 static void
846 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
847 {
848 	struct nvme_completion_poll_status	status;
849 	struct nvme_async_event_request		*aer;
850 	uint32_t				i;
851 
852 	ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
853 	    NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
854 	    NVME_CRIT_WARN_ST_READ_ONLY |
855 	    NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
856 	if (ctrlr->cdata.ver >= NVME_REV(1, 2))
857 		ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
858 		    NVME_ASYNC_EVENT_FW_ACTIVATE;
859 
860 	status.done = 0;
861 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
862 	    0, NULL, 0, nvme_completion_poll_cb, &status);
863 	nvme_completion_poll(&status);
864 	if (nvme_completion_is_error(&status.cpl) ||
865 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
866 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
867 		nvme_printf(ctrlr, "temperature threshold not supported\n");
868 	} else
869 		ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
870 
871 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
872 	    ctrlr->async_event_config, NULL, NULL);
873 
874 	/* aerl is a zero-based value, so we need to add 1 here. */
875 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
876 
877 	for (i = 0; i < ctrlr->num_aers; i++) {
878 		aer = &ctrlr->aer[i];
879 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
880 	}
881 }
882 
883 static void
884 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
885 {
886 
887 	ctrlr->int_coal_time = 0;
888 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
889 	    &ctrlr->int_coal_time);
890 
891 	ctrlr->int_coal_threshold = 0;
892 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
893 	    &ctrlr->int_coal_threshold);
894 
895 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
896 	    ctrlr->int_coal_threshold, NULL, NULL);
897 }
898 
899 static void
900 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
901 {
902 	struct nvme_hmb_chunk *hmbc;
903 	int i;
904 
905 	if (ctrlr->hmb_desc_paddr) {
906 		bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
907 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
908 		    ctrlr->hmb_desc_map);
909 		ctrlr->hmb_desc_paddr = 0;
910 	}
911 	if (ctrlr->hmb_desc_tag) {
912 		bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
913 		ctrlr->hmb_desc_tag = NULL;
914 	}
915 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
916 		hmbc = &ctrlr->hmb_chunks[i];
917 		bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
918 		bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
919 		    hmbc->hmbc_map);
920 	}
921 	ctrlr->hmb_nchunks = 0;
922 	if (ctrlr->hmb_tag) {
923 		bus_dma_tag_destroy(ctrlr->hmb_tag);
924 		ctrlr->hmb_tag = NULL;
925 	}
926 	if (ctrlr->hmb_chunks) {
927 		free(ctrlr->hmb_chunks, M_NVME);
928 		ctrlr->hmb_chunks = NULL;
929 	}
930 }
931 
932 static void
933 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
934 {
935 	struct nvme_hmb_chunk *hmbc;
936 	size_t pref, min, minc, size;
937 	int err, i;
938 	uint64_t max;
939 
940 	/* Limit HMB to 5% of RAM size per device by default. */
941 	max = (uint64_t)physmem * PAGE_SIZE / 20;
942 	TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
943 
944 	/*
945 	 * Units of Host Memory Buffer in the Identify info are always in terms
946 	 * of 4k units.
947 	 */
948 	min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
949 	if (max == 0 || max < min)
950 		return;
951 	pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
952 	minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
953 	if (min > 0 && ctrlr->cdata.hmmaxd > 0)
954 		minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
955 	ctrlr->hmb_chunk = pref;
956 
957 again:
958 	/*
959 	 * However, the chunk sizes, number of chunks, and alignment of chunks
960 	 * are all based on the current MPS (ctrlr->page_size).
961 	 */
962 	ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
963 	ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
964 	if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
965 		ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
966 	ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
967 	    ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
968 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
969 	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
970 	    ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
971 	if (err != 0) {
972 		nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
973 		nvme_ctrlr_hmb_free(ctrlr);
974 		return;
975 	}
976 
977 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
978 		hmbc = &ctrlr->hmb_chunks[i];
979 		if (bus_dmamem_alloc(ctrlr->hmb_tag,
980 		    (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
981 		    &hmbc->hmbc_map)) {
982 			nvme_printf(ctrlr, "failed to alloc HMB\n");
983 			break;
984 		}
985 		if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
986 		    hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
987 		    &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
988 			bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
989 			    hmbc->hmbc_map);
990 			nvme_printf(ctrlr, "failed to load HMB\n");
991 			break;
992 		}
993 		bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
994 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
995 	}
996 
997 	if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
998 	    ctrlr->hmb_chunk / 2 >= minc) {
999 		ctrlr->hmb_nchunks = i;
1000 		nvme_ctrlr_hmb_free(ctrlr);
1001 		ctrlr->hmb_chunk /= 2;
1002 		goto again;
1003 	}
1004 	ctrlr->hmb_nchunks = i;
1005 	if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1006 		nvme_ctrlr_hmb_free(ctrlr);
1007 		return;
1008 	}
1009 
1010 	size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1011 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1012 	    16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1013 	    size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1014 	if (err != 0) {
1015 		nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1016 		nvme_ctrlr_hmb_free(ctrlr);
1017 		return;
1018 	}
1019 	if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1020 	    (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1021 	    &ctrlr->hmb_desc_map)) {
1022 		nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1023 		nvme_ctrlr_hmb_free(ctrlr);
1024 		return;
1025 	}
1026 	if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1027 	    ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1028 	    &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1029 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1030 		    ctrlr->hmb_desc_map);
1031 		nvme_printf(ctrlr, "failed to load HMB desc\n");
1032 		nvme_ctrlr_hmb_free(ctrlr);
1033 		return;
1034 	}
1035 
1036 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1037 		ctrlr->hmb_desc_vaddr[i].addr =
1038 		    htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1039 		ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1040 	}
1041 	bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1042 	    BUS_DMASYNC_PREWRITE);
1043 
1044 	nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1045 	    (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1046 	    / 1024 / 1024);
1047 }
1048 
1049 static void
1050 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1051 {
1052 	struct nvme_completion_poll_status	status;
1053 	uint32_t cdw11;
1054 
1055 	cdw11 = 0;
1056 	if (enable)
1057 		cdw11 |= 1;
1058 	if (memret)
1059 		cdw11 |= 2;
1060 	status.done = 0;
1061 	nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1062 	    ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1063 	    ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1064 	    ctrlr->hmb_nchunks, NULL, 0,
1065 	    nvme_completion_poll_cb, &status);
1066 	nvme_completion_poll(&status);
1067 	if (nvme_completion_is_error(&status.cpl))
1068 		nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1069 }
1070 
1071 static void
1072 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1073 {
1074 	struct nvme_controller *ctrlr = ctrlr_arg;
1075 	uint32_t old_num_io_queues;
1076 	int i;
1077 
1078 	TSENTER();
1079 
1080 	/*
1081 	 * Only reset adminq here when we are restarting the
1082 	 *  controller after a reset.  During initialization,
1083 	 *  we have already submitted admin commands to get
1084 	 *  the number of I/O queues supported, so cannot reset
1085 	 *  the adminq again here.
1086 	 */
1087 	if (resetting) {
1088 		nvme_qpair_reset(&ctrlr->adminq);
1089 		nvme_admin_qpair_enable(&ctrlr->adminq);
1090 	}
1091 
1092 	if (ctrlr->ioq != NULL) {
1093 		for (i = 0; i < ctrlr->num_io_queues; i++)
1094 			nvme_qpair_reset(&ctrlr->ioq[i]);
1095 	}
1096 
1097 	/*
1098 	 * If it was a reset on initialization command timeout, just
1099 	 * return here, letting initialization code fail gracefully.
1100 	 */
1101 	if (resetting && !ctrlr->is_initialized)
1102 		return;
1103 
1104 	if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1105 		nvme_ctrlr_fail(ctrlr);
1106 		return;
1107 	}
1108 
1109 	/*
1110 	 * The number of qpairs are determined during controller initialization,
1111 	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1112 	 *  HW limit.  We call SET_FEATURES again here so that it gets called
1113 	 *  after any reset for controllers that depend on the driver to
1114 	 *  explicit specify how many queues it will use.  This value should
1115 	 *  never change between resets, so panic if somehow that does happen.
1116 	 */
1117 	if (resetting) {
1118 		old_num_io_queues = ctrlr->num_io_queues;
1119 		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1120 			nvme_ctrlr_fail(ctrlr);
1121 			return;
1122 		}
1123 
1124 		if (old_num_io_queues != ctrlr->num_io_queues) {
1125 			panic("num_io_queues changed from %u to %u",
1126 			      old_num_io_queues, ctrlr->num_io_queues);
1127 		}
1128 	}
1129 
1130 	if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1131 		nvme_ctrlr_hmb_alloc(ctrlr);
1132 		if (ctrlr->hmb_nchunks > 0)
1133 			nvme_ctrlr_hmb_enable(ctrlr, true, false);
1134 	} else if (ctrlr->hmb_nchunks > 0)
1135 		nvme_ctrlr_hmb_enable(ctrlr, true, true);
1136 
1137 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1138 		nvme_ctrlr_fail(ctrlr);
1139 		return;
1140 	}
1141 
1142 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1143 		nvme_ctrlr_fail(ctrlr);
1144 		return;
1145 	}
1146 
1147 	nvme_ctrlr_configure_aer(ctrlr);
1148 	nvme_ctrlr_configure_int_coalescing(ctrlr);
1149 
1150 	for (i = 0; i < ctrlr->num_io_queues; i++)
1151 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
1152 	TSEXIT();
1153 }
1154 
1155 void
1156 nvme_ctrlr_start_config_hook(void *arg)
1157 {
1158 	struct nvme_controller *ctrlr = arg;
1159 
1160 	TSENTER();
1161 
1162 	if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1163 fail:
1164 		nvme_ctrlr_fail(ctrlr);
1165 		config_intrhook_disestablish(&ctrlr->config_hook);
1166 		return;
1167 	}
1168 
1169 #ifdef NVME_2X_RESET
1170 	/*
1171 	 * Reset controller twice to ensure we do a transition from cc.en==1 to
1172 	 * cc.en==0.  This is because we don't really know what status the
1173 	 * controller was left in when boot handed off to OS.  Linux doesn't do
1174 	 * this, however, and when the controller is in state cc.en == 0, no
1175 	 * I/O can happen.
1176 	 */
1177 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1178 		goto fail;
1179 #endif
1180 
1181 	nvme_qpair_reset(&ctrlr->adminq);
1182 	nvme_admin_qpair_enable(&ctrlr->adminq);
1183 
1184 	if (nvme_ctrlr_identify(ctrlr) == 0 &&
1185 	    nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1186 	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1187 		nvme_ctrlr_start(ctrlr, false);
1188 	else
1189 		goto fail;
1190 
1191 	nvme_sysctl_initialize_ctrlr(ctrlr);
1192 	config_intrhook_disestablish(&ctrlr->config_hook);
1193 
1194 	ctrlr->is_initialized = 1;
1195 	nvme_notify_new_controller(ctrlr);
1196 	TSEXIT();
1197 }
1198 
1199 static void
1200 nvme_ctrlr_reset_task(void *arg, int pending)
1201 {
1202 	struct nvme_controller	*ctrlr = arg;
1203 	int			status;
1204 
1205 	nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1206 	status = nvme_ctrlr_hw_reset(ctrlr);
1207 	/*
1208 	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
1209 	 *  handlers on this CPU that were blocked on a qpair lock. We want
1210 	 *  all nvme interrupts completed before proceeding with restarting the
1211 	 *  controller.
1212 	 *
1213 	 * XXX - any way to guarantee the interrupt handlers have quiesced?
1214 	 */
1215 	pause("nvmereset", hz / 10);
1216 	if (status == 0)
1217 		nvme_ctrlr_start(ctrlr, true);
1218 	else
1219 		nvme_ctrlr_fail(ctrlr);
1220 
1221 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1222 }
1223 
1224 /*
1225  * Poll all the queues enabled on the device for completion.
1226  */
1227 void
1228 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1229 {
1230 	int i;
1231 
1232 	nvme_qpair_process_completions(&ctrlr->adminq);
1233 
1234 	for (i = 0; i < ctrlr->num_io_queues; i++)
1235 		if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1236 			nvme_qpair_process_completions(&ctrlr->ioq[i]);
1237 }
1238 
1239 /*
1240  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1241  * there's only a single vector. While we're polling, we mask further
1242  * interrupts in the controller.
1243  */
1244 void
1245 nvme_ctrlr_shared_handler(void *arg)
1246 {
1247 	struct nvme_controller *ctrlr = arg;
1248 
1249 	nvme_mmio_write_4(ctrlr, intms, 1);
1250 	nvme_ctrlr_poll(ctrlr);
1251 	nvme_mmio_write_4(ctrlr, intmc, 1);
1252 }
1253 
1254 static void
1255 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1256 {
1257 	struct nvme_pt_command *pt = arg;
1258 	struct mtx *mtx = pt->driver_lock;
1259 	uint16_t status;
1260 
1261 	bzero(&pt->cpl, sizeof(pt->cpl));
1262 	pt->cpl.cdw0 = cpl->cdw0;
1263 
1264 	status = cpl->status;
1265 	status &= ~NVME_STATUS_P_MASK;
1266 	pt->cpl.status = status;
1267 
1268 	mtx_lock(mtx);
1269 	pt->driver_lock = NULL;
1270 	wakeup(pt);
1271 	mtx_unlock(mtx);
1272 }
1273 
1274 int
1275 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1276     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1277     int is_admin_cmd)
1278 {
1279 	struct nvme_request	*req;
1280 	struct mtx		*mtx;
1281 	struct buf		*buf = NULL;
1282 	int			ret = 0;
1283 
1284 	if (pt->len > 0) {
1285 		if (pt->len > ctrlr->max_xfer_size) {
1286 			nvme_printf(ctrlr, "pt->len (%d) "
1287 			    "exceeds max_xfer_size (%d)\n", pt->len,
1288 			    ctrlr->max_xfer_size);
1289 			return EIO;
1290 		}
1291 		if (is_user_buffer) {
1292 			/*
1293 			 * Ensure the user buffer is wired for the duration of
1294 			 *  this pass-through command.
1295 			 */
1296 			PHOLD(curproc);
1297 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1298 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1299 			if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1300 				ret = EFAULT;
1301 				goto err;
1302 			}
1303 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
1304 			    nvme_pt_done, pt);
1305 		} else
1306 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1307 			    nvme_pt_done, pt);
1308 	} else
1309 		req = nvme_allocate_request_null(nvme_pt_done, pt);
1310 
1311 	/* Assume user space already converted to little-endian */
1312 	req->cmd.opc = pt->cmd.opc;
1313 	req->cmd.fuse = pt->cmd.fuse;
1314 	req->cmd.rsvd2 = pt->cmd.rsvd2;
1315 	req->cmd.rsvd3 = pt->cmd.rsvd3;
1316 	req->cmd.cdw10 = pt->cmd.cdw10;
1317 	req->cmd.cdw11 = pt->cmd.cdw11;
1318 	req->cmd.cdw12 = pt->cmd.cdw12;
1319 	req->cmd.cdw13 = pt->cmd.cdw13;
1320 	req->cmd.cdw14 = pt->cmd.cdw14;
1321 	req->cmd.cdw15 = pt->cmd.cdw15;
1322 
1323 	req->cmd.nsid = htole32(nsid);
1324 
1325 	mtx = mtx_pool_find(mtxpool_sleep, pt);
1326 	pt->driver_lock = mtx;
1327 
1328 	if (is_admin_cmd)
1329 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1330 	else
1331 		nvme_ctrlr_submit_io_request(ctrlr, req);
1332 
1333 	mtx_lock(mtx);
1334 	while (pt->driver_lock != NULL)
1335 		mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1336 	mtx_unlock(mtx);
1337 
1338 err:
1339 	if (buf != NULL) {
1340 		uma_zfree(pbuf_zone, buf);
1341 		PRELE(curproc);
1342 	}
1343 
1344 	return (ret);
1345 }
1346 
1347 static int
1348 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1349     struct thread *td)
1350 {
1351 	struct nvme_controller			*ctrlr;
1352 	struct nvme_pt_command			*pt;
1353 
1354 	ctrlr = cdev->si_drv1;
1355 
1356 	switch (cmd) {
1357 	case NVME_RESET_CONTROLLER:
1358 		nvme_ctrlr_reset(ctrlr);
1359 		break;
1360 	case NVME_PASSTHROUGH_CMD:
1361 		pt = (struct nvme_pt_command *)arg;
1362 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1363 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1364 	case NVME_GET_NSID:
1365 	{
1366 		struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1367 		strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1368 		    sizeof(gnsid->cdev));
1369 		gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1370 		gnsid->nsid = 0;
1371 		break;
1372 	}
1373 	case NVME_GET_MAX_XFER_SIZE:
1374 		*(uint64_t *)arg = ctrlr->max_xfer_size;
1375 		break;
1376 	default:
1377 		return (ENOTTY);
1378 	}
1379 
1380 	return (0);
1381 }
1382 
1383 static struct cdevsw nvme_ctrlr_cdevsw = {
1384 	.d_version =	D_VERSION,
1385 	.d_flags =	0,
1386 	.d_ioctl =	nvme_ctrlr_ioctl
1387 };
1388 
1389 int
1390 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1391 {
1392 	struct make_dev_args	md_args;
1393 	uint32_t	cap_lo;
1394 	uint32_t	cap_hi;
1395 	uint32_t	to, vs, pmrcap;
1396 	int		status, timeout_period;
1397 
1398 	ctrlr->dev = dev;
1399 
1400 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1401 	if (bus_get_domain(dev, &ctrlr->domain) != 0)
1402 		ctrlr->domain = 0;
1403 
1404 	ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1405 	if (bootverbose) {
1406 		device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1407 		    cap_lo, NVME_CAP_LO_MQES(cap_lo),
1408 		    NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1409 		    NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1410 		    (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1411 		    (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1412 		    NVME_CAP_LO_TO(cap_lo));
1413 	}
1414 	ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1415 	if (bootverbose) {
1416 		device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1417 		    "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1418 		    NVME_CAP_HI_DSTRD(cap_hi),
1419 		    NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1420 		    NVME_CAP_HI_CSS(cap_hi),
1421 		    NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1422 		    NVME_CAP_HI_MPSMIN(cap_hi),
1423 		    NVME_CAP_HI_MPSMAX(cap_hi),
1424 		    NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1425 		    NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1426 	}
1427 	if (bootverbose) {
1428 		vs = nvme_mmio_read_4(ctrlr, vs);
1429 		device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1430 		    NVME_MAJOR(vs), NVME_MINOR(vs));
1431 	}
1432 	if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1433 		pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1434 		device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1435 		    "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1436 		    NVME_PMRCAP_BIR(pmrcap),
1437 		    NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1438 		    NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1439 		    NVME_PMRCAP_PMRTU(pmrcap),
1440 		    NVME_PMRCAP_PMRWBM(pmrcap),
1441 		    NVME_PMRCAP_PMRTO(pmrcap),
1442 		    NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1443 	}
1444 
1445 	ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1446 
1447 	ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1448 	ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1449 
1450 	/* Get ready timeout value from controller, in units of 500ms. */
1451 	to = NVME_CAP_LO_TO(cap_lo) + 1;
1452 	ctrlr->ready_timeout_in_ms = to * 500;
1453 
1454 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1455 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1456 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1457 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1458 	ctrlr->timeout_period = timeout_period;
1459 
1460 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1461 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1462 
1463 	ctrlr->enable_aborts = 0;
1464 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1465 
1466 	/* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1467 	ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1468 	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1469 		return (ENXIO);
1470 
1471 	/*
1472 	 * Create 2 threads for the taskqueue. The reset thread will block when
1473 	 * it detects that the controller has failed until all I/O has been
1474 	 * failed up the stack. The fail_req task needs to be able to run in
1475 	 * this case to finish the request failure for some cases.
1476 	 *
1477 	 * We could partially solve this race by draining the failed requeust
1478 	 * queue before proceding to free the sim, though nothing would stop
1479 	 * new I/O from coming in after we do that drain, but before we reach
1480 	 * cam_sim_free, so this big hammer is used instead.
1481 	 */
1482 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1483 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1484 	taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1485 
1486 	ctrlr->is_resetting = 0;
1487 	ctrlr->is_initialized = 0;
1488 	ctrlr->notification_sent = 0;
1489 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1490 	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1491 	STAILQ_INIT(&ctrlr->fail_req);
1492 	ctrlr->is_failed = false;
1493 
1494 	make_dev_args_init(&md_args);
1495 	md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1496 	md_args.mda_uid = UID_ROOT;
1497 	md_args.mda_gid = GID_WHEEL;
1498 	md_args.mda_mode = 0600;
1499 	md_args.mda_unit = device_get_unit(dev);
1500 	md_args.mda_si_drv1 = (void *)ctrlr;
1501 	status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1502 	    device_get_unit(dev));
1503 	if (status != 0)
1504 		return (ENXIO);
1505 
1506 	return (0);
1507 }
1508 
1509 void
1510 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1511 {
1512 	int	gone, i;
1513 
1514 	ctrlr->is_dying = true;
1515 
1516 	if (ctrlr->resource == NULL)
1517 		goto nores;
1518 	if (!mtx_initialized(&ctrlr->adminq.lock))
1519 		goto noadminq;
1520 
1521 	/*
1522 	 * Check whether it is a hot unplug or a clean driver detach.
1523 	 * If device is not there any more, skip any shutdown commands.
1524 	 */
1525 	gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1526 	if (gone)
1527 		nvme_ctrlr_fail(ctrlr);
1528 	else
1529 		nvme_notify_fail_consumers(ctrlr);
1530 
1531 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1532 		nvme_ns_destruct(&ctrlr->ns[i]);
1533 
1534 	if (ctrlr->cdev)
1535 		destroy_dev(ctrlr->cdev);
1536 
1537 	if (ctrlr->is_initialized) {
1538 		if (!gone) {
1539 			if (ctrlr->hmb_nchunks > 0)
1540 				nvme_ctrlr_hmb_enable(ctrlr, false, false);
1541 			nvme_ctrlr_delete_qpairs(ctrlr);
1542 		}
1543 		nvme_ctrlr_hmb_free(ctrlr);
1544 	}
1545 	if (ctrlr->ioq != NULL) {
1546 		for (i = 0; i < ctrlr->num_io_queues; i++)
1547 			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1548 		free(ctrlr->ioq, M_NVME);
1549 	}
1550 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1551 
1552 	/*
1553 	 *  Notify the controller of a shutdown, even though this is due to
1554 	 *   a driver unload, not a system shutdown (this path is not invoked
1555 	 *   during shutdown).  This ensures the controller receives a
1556 	 *   shutdown notification in case the system is shutdown before
1557 	 *   reloading the driver.
1558 	 */
1559 	if (!gone)
1560 		nvme_ctrlr_shutdown(ctrlr);
1561 
1562 	if (!gone)
1563 		nvme_ctrlr_disable(ctrlr);
1564 
1565 noadminq:
1566 	if (ctrlr->taskqueue)
1567 		taskqueue_free(ctrlr->taskqueue);
1568 
1569 	if (ctrlr->tag)
1570 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1571 
1572 	if (ctrlr->res)
1573 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1574 		    rman_get_rid(ctrlr->res), ctrlr->res);
1575 
1576 	if (ctrlr->bar4_resource != NULL) {
1577 		bus_release_resource(dev, SYS_RES_MEMORY,
1578 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1579 	}
1580 
1581 	bus_release_resource(dev, SYS_RES_MEMORY,
1582 	    ctrlr->resource_id, ctrlr->resource);
1583 
1584 nores:
1585 	mtx_destroy(&ctrlr->lock);
1586 }
1587 
1588 void
1589 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1590 {
1591 	uint32_t	cc;
1592 	uint32_t	csts;
1593 	int		timeout;
1594 
1595 	cc = nvme_mmio_read_4(ctrlr, cc);
1596 	cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1597 	cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1598 	nvme_mmio_write_4(ctrlr, cc, cc);
1599 
1600 	timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1601 	    ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1602 	while (1) {
1603 		csts = nvme_mmio_read_4(ctrlr, csts);
1604 		if (csts == NVME_GONE)		/* Hot unplug. */
1605 			break;
1606 		if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1607 			break;
1608 		if (timeout - ticks < 0) {
1609 			nvme_printf(ctrlr, "shutdown timeout\n");
1610 			break;
1611 		}
1612 		pause("nvmeshut", 1);
1613 	}
1614 }
1615 
1616 void
1617 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1618     struct nvme_request *req)
1619 {
1620 
1621 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1622 }
1623 
1624 void
1625 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1626     struct nvme_request *req)
1627 {
1628 	struct nvme_qpair       *qpair;
1629 
1630 	qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1631 	nvme_qpair_submit_request(qpair, req);
1632 }
1633 
1634 device_t
1635 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1636 {
1637 
1638 	return (ctrlr->dev);
1639 }
1640 
1641 const struct nvme_controller_data *
1642 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1643 {
1644 
1645 	return (&ctrlr->cdata);
1646 }
1647 
1648 int
1649 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1650 {
1651 	int to = hz;
1652 
1653 	/*
1654 	 * Can't touch failed controllers, so it's already suspended.
1655 	 */
1656 	if (ctrlr->is_failed)
1657 		return (0);
1658 
1659 	/*
1660 	 * We don't want the reset taskqueue running, since it does similar
1661 	 * things, so prevent it from running after we start. Wait for any reset
1662 	 * that may have been started to complete. The reset process we follow
1663 	 * will ensure that any new I/O will queue and be given to the hardware
1664 	 * after we resume (though there should be none).
1665 	 */
1666 	while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1667 		pause("nvmesusp", 1);
1668 	if (to <= 0) {
1669 		nvme_printf(ctrlr,
1670 		    "Competing reset task didn't finish. Try again later.\n");
1671 		return (EWOULDBLOCK);
1672 	}
1673 
1674 	if (ctrlr->hmb_nchunks > 0)
1675 		nvme_ctrlr_hmb_enable(ctrlr, false, false);
1676 
1677 	/*
1678 	 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1679 	 * delete the hardware I/O queues, and then shutdown. This properly
1680 	 * flushes any metadata the drive may have stored so it can survive
1681 	 * having its power removed and prevents the unsafe shutdown count from
1682 	 * incriminating. Once we delete the qpairs, we have to disable them
1683 	 * before shutting down.
1684 	 */
1685 	nvme_ctrlr_delete_qpairs(ctrlr);
1686 	nvme_ctrlr_disable_qpairs(ctrlr);
1687 	nvme_ctrlr_shutdown(ctrlr);
1688 
1689 	return (0);
1690 }
1691 
1692 int
1693 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1694 {
1695 
1696 	/*
1697 	 * Can't touch failed controllers, so nothing to do to resume.
1698 	 */
1699 	if (ctrlr->is_failed)
1700 		return (0);
1701 
1702 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1703 		goto fail;
1704 #ifdef NVME_2X_RESET
1705 	/*
1706 	 * Prior to FreeBSD 13.1, FreeBSD's nvme driver reset the hardware twice
1707 	 * to get it into a known good state. However, the hardware's state is
1708 	 * good and we don't need to do this for proper functioning.
1709 	 */
1710 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1711 		goto fail;
1712 #endif
1713 
1714 	/*
1715 	 * Now that we've reset the hardware, we can restart the controller. Any
1716 	 * I/O that was pending is requeued. Any admin commands are aborted with
1717 	 * an error. Once we've restarted, take the controller out of reset.
1718 	 */
1719 	nvme_ctrlr_start(ctrlr, true);
1720 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1721 
1722 	return (0);
1723 fail:
1724 	/*
1725 	 * Since we can't bring the controller out of reset, announce and fail
1726 	 * the controller. However, we have to return success for the resume
1727 	 * itself, due to questionable APIs.
1728 	 */
1729 	nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1730 	nvme_ctrlr_fail(ctrlr);
1731 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1732 	return (0);
1733 }
1734