xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision f05cddf9)
1 /*-
2  * Copyright (C) 2012 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39 
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include "nvme_private.h"
44 
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46 						struct nvme_async_event_request *aer);
47 
48 static int
49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50 {
51 
52 	/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
53 	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
54 		ctrlr->resource_id = PCIR_BAR(2);
55 	else
56 		ctrlr->resource_id = PCIR_BAR(0);
57 
58 	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
59 	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
60 
61 	if(ctrlr->resource == NULL) {
62 		nvme_printf(ctrlr, "unable to allocate pci resource\n");
63 		return (ENOMEM);
64 	}
65 
66 	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
67 	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
68 	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
69 
70 	/*
71 	 * The NVMe spec allows for the MSI-X table to be placed behind
72 	 *  BAR 4/5, separate from the control/doorbell registers.  Always
73 	 *  try to map this bar, because it must be mapped prior to calling
74 	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
75 	 *  bus_alloc_resource() will just return NULL which is OK.
76 	 */
77 	ctrlr->bar4_resource_id = PCIR_BAR(4);
78 	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
79 	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
80 
81 	return (0);
82 }
83 
84 #ifdef CHATHAM2
85 static int
86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
87 {
88 
89 	ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
90 	ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
91 	    SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
92 	    RF_ACTIVE);
93 
94 	if(ctrlr->chatham_resource == NULL) {
95 		nvme_printf(ctrlr, "unable to alloc pci resource\n");
96 		return (ENOMEM);
97 	}
98 
99 	ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
100 	ctrlr->chatham_bus_handle =
101 	    rman_get_bushandle(ctrlr->chatham_resource);
102 
103 	return (0);
104 }
105 
106 static void
107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
108 {
109 	uint64_t reg1, reg2, reg3;
110 	uint64_t temp1, temp2;
111 	uint32_t temp3;
112 	uint32_t use_flash_timings = 0;
113 
114 	DELAY(10000);
115 
116 	temp3 = chatham_read_4(ctrlr, 0x8080);
117 
118 	device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
119 
120 	ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
121 	ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
122 
123 	device_printf(ctrlr->dev, "Chatham size: %jd\n",
124 	    (intmax_t)ctrlr->chatham_size);
125 
126 	reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
127 
128 	TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
129 	if (use_flash_timings) {
130 		device_printf(ctrlr->dev, "Chatham: using flash timings\n");
131 		temp1 = 0x00001b58000007d0LL;
132 		temp2 = 0x000000cb00000131LL;
133 	} else {
134 		device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
135 		temp1 = temp2 = 0x0LL;
136 	}
137 
138 	chatham_write_8(ctrlr, 0x8000, reg1);
139 	chatham_write_8(ctrlr, 0x8008, reg2);
140 	chatham_write_8(ctrlr, 0x8010, reg3);
141 
142 	chatham_write_8(ctrlr, 0x8020, temp1);
143 	temp3 = chatham_read_4(ctrlr, 0x8020);
144 
145 	chatham_write_8(ctrlr, 0x8028, temp2);
146 	temp3 = chatham_read_4(ctrlr, 0x8028);
147 
148 	chatham_write_8(ctrlr, 0x8030, temp1);
149 	chatham_write_8(ctrlr, 0x8038, temp2);
150 	chatham_write_8(ctrlr, 0x8040, temp1);
151 	chatham_write_8(ctrlr, 0x8048, temp2);
152 	chatham_write_8(ctrlr, 0x8050, temp1);
153 	chatham_write_8(ctrlr, 0x8058, temp2);
154 
155 	DELAY(10000);
156 }
157 
158 static void
159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
160 {
161 	struct nvme_controller_data *cdata;
162 
163 	cdata = &ctrlr->cdata;
164 
165 	cdata->vid = 0x8086;
166 	cdata->ssvid = 0x2011;
167 
168 	/*
169 	 * Chatham2 puts garbage data in these fields when we
170 	 *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
171 	 *  the fields before calling bcopy().
172 	 */
173 	memset(cdata->sn, 0, sizeof(cdata->sn));
174 	memcpy(cdata->sn, "2012", strlen("2012"));
175 	memset(cdata->mn, 0, sizeof(cdata->mn));
176 	memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
177 	memset(cdata->fr, 0, sizeof(cdata->fr));
178 	memcpy(cdata->fr, "0", strlen("0"));
179 	cdata->rab = 8;
180 	cdata->aerl = 3;
181 	cdata->lpa.ns_smart = 1;
182 	cdata->sqes.min = 6;
183 	cdata->sqes.max = 6;
184 	cdata->sqes.min = 4;
185 	cdata->sqes.max = 4;
186 	cdata->nn = 1;
187 
188 	/* Chatham2 doesn't support DSM command */
189 	cdata->oncs.dsm = 0;
190 
191 	cdata->vwc.present = 1;
192 }
193 #endif /* CHATHAM2 */
194 
195 static void
196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
197 {
198 	struct nvme_qpair	*qpair;
199 	uint32_t		num_entries;
200 
201 	qpair = &ctrlr->adminq;
202 
203 	num_entries = NVME_ADMIN_ENTRIES;
204 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
205 	/*
206 	 * If admin_entries was overridden to an invalid value, revert it
207 	 *  back to our default value.
208 	 */
209 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
210 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
211 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
212 		    "specified\n", num_entries);
213 		num_entries = NVME_ADMIN_ENTRIES;
214 	}
215 
216 	/*
217 	 * The admin queue's max xfer size is treated differently than the
218 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
219 	 */
220 	nvme_qpair_construct(qpair,
221 			     0, /* qpair ID */
222 			     0, /* vector */
223 			     num_entries,
224 			     NVME_ADMIN_TRACKERS,
225 			     ctrlr);
226 }
227 
228 static int
229 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
230 {
231 	struct nvme_qpair	*qpair;
232 	union cap_lo_register	cap_lo;
233 	int			i, num_entries, num_trackers;
234 
235 	num_entries = NVME_IO_ENTRIES;
236 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
237 
238 	/*
239 	 * NVMe spec sets a hard limit of 64K max entries, but
240 	 *  devices may specify a smaller limit, so we need to check
241 	 *  the MQES field in the capabilities register.
242 	 */
243 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
244 	num_entries = min(num_entries, cap_lo.bits.mqes+1);
245 
246 	num_trackers = NVME_IO_TRACKERS;
247 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
248 
249 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
250 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
251 	/*
252 	 * No need to have more trackers than entries in the submit queue.
253 	 *  Note also that for a queue size of N, we can only have (N-1)
254 	 *  commands outstanding, hence the "-1" here.
255 	 */
256 	num_trackers = min(num_trackers, (num_entries-1));
257 
258 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
259 	    M_NVME, M_ZERO | M_WAITOK);
260 
261 	for (i = 0; i < ctrlr->num_io_queues; i++) {
262 		qpair = &ctrlr->ioq[i];
263 
264 		/*
265 		 * Admin queue has ID=0. IO queues start at ID=1 -
266 		 *  hence the 'i+1' here.
267 		 *
268 		 * For I/O queues, use the controller-wide max_xfer_size
269 		 *  calculated in nvme_attach().
270 		 */
271 		nvme_qpair_construct(qpair,
272 				     i+1, /* qpair ID */
273 				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
274 				     num_entries,
275 				     num_trackers,
276 				     ctrlr);
277 
278 		if (ctrlr->per_cpu_io_queues)
279 			bus_bind_intr(ctrlr->dev, qpair->res, i);
280 	}
281 
282 	return (0);
283 }
284 
285 static void
286 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
287 {
288 	int i;
289 
290 	ctrlr->is_failed = TRUE;
291 	nvme_qpair_fail(&ctrlr->adminq);
292 	for (i = 0; i < ctrlr->num_io_queues; i++)
293 		nvme_qpair_fail(&ctrlr->ioq[i]);
294 	nvme_notify_fail_consumers(ctrlr);
295 }
296 
297 void
298 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
299     struct nvme_request *req)
300 {
301 
302 	mtx_lock(&ctrlr->lock);
303 	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
304 	mtx_unlock(&ctrlr->lock);
305 	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
306 }
307 
308 static void
309 nvme_ctrlr_fail_req_task(void *arg, int pending)
310 {
311 	struct nvme_controller	*ctrlr = arg;
312 	struct nvme_request	*req;
313 
314 	mtx_lock(&ctrlr->lock);
315 	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
316 		req = STAILQ_FIRST(&ctrlr->fail_req);
317 		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
318 		nvme_qpair_manual_complete_request(req->qpair, req,
319 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
320 	}
321 	mtx_unlock(&ctrlr->lock);
322 }
323 
324 static int
325 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
326 {
327 	int ms_waited;
328 	union cc_register cc;
329 	union csts_register csts;
330 
331 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
332 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
333 
334 	if (!cc.bits.en) {
335 		nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
336 		return (ENXIO);
337 	}
338 
339 	ms_waited = 0;
340 
341 	while (!csts.bits.rdy) {
342 		DELAY(1000);
343 		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
344 			nvme_printf(ctrlr, "controller did not become ready "
345 			    "within %d ms\n", ctrlr->ready_timeout_in_ms);
346 			return (ENXIO);
347 		}
348 		csts.raw = nvme_mmio_read_4(ctrlr, csts);
349 	}
350 
351 	return (0);
352 }
353 
354 static void
355 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
356 {
357 	union cc_register cc;
358 	union csts_register csts;
359 
360 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
361 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
362 
363 	if (cc.bits.en == 1 && csts.bits.rdy == 0)
364 		nvme_ctrlr_wait_for_ready(ctrlr);
365 
366 	cc.bits.en = 0;
367 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
368 	DELAY(5000);
369 }
370 
371 static int
372 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
373 {
374 	union cc_register	cc;
375 	union csts_register	csts;
376 	union aqa_register	aqa;
377 
378 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
379 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
380 
381 	if (cc.bits.en == 1) {
382 		if (csts.bits.rdy == 1)
383 			return (0);
384 		else
385 			return (nvme_ctrlr_wait_for_ready(ctrlr));
386 	}
387 
388 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
389 	DELAY(5000);
390 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
391 	DELAY(5000);
392 
393 	aqa.raw = 0;
394 	/* acqs and asqs are 0-based. */
395 	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
396 	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
397 	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
398 	DELAY(5000);
399 
400 	cc.bits.en = 1;
401 	cc.bits.css = 0;
402 	cc.bits.ams = 0;
403 	cc.bits.shn = 0;
404 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
405 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
406 
407 	/* This evaluates to 0, which is according to spec. */
408 	cc.bits.mps = (PAGE_SIZE >> 13);
409 
410 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
411 	DELAY(5000);
412 
413 	return (nvme_ctrlr_wait_for_ready(ctrlr));
414 }
415 
416 int
417 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
418 {
419 	int i;
420 
421 	nvme_admin_qpair_disable(&ctrlr->adminq);
422 	for (i = 0; i < ctrlr->num_io_queues; i++)
423 		nvme_io_qpair_disable(&ctrlr->ioq[i]);
424 
425 	DELAY(100*1000);
426 
427 	nvme_ctrlr_disable(ctrlr);
428 	return (nvme_ctrlr_enable(ctrlr));
429 }
430 
431 void
432 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
433 {
434 	int cmpset;
435 
436 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
437 
438 	if (cmpset == 0 || ctrlr->is_failed)
439 		/*
440 		 * Controller is already resetting or has failed.  Return
441 		 *  immediately since there is no need to kick off another
442 		 *  reset in these cases.
443 		 */
444 		return;
445 
446 	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
447 }
448 
449 static int
450 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
451 {
452 	struct nvme_completion_poll_status	status;
453 
454 	status.done = FALSE;
455 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
456 	    nvme_completion_poll_cb, &status);
457 	while (status.done == FALSE)
458 		DELAY(5);
459 	if (nvme_completion_is_error(&status.cpl)) {
460 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
461 		return (ENXIO);
462 	}
463 
464 #ifdef CHATHAM2
465 	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
466 		nvme_chatham_populate_cdata(ctrlr);
467 #endif
468 
469 	/*
470 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
471 	 *  controller supports.
472 	 */
473 	if (ctrlr->cdata.mdts > 0)
474 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
475 		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
476 
477 	return (0);
478 }
479 
480 static int
481 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
482 {
483 	struct nvme_completion_poll_status	status;
484 	int					cq_allocated, i, sq_allocated;
485 
486 	status.done = FALSE;
487 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
488 	    nvme_completion_poll_cb, &status);
489 	while (status.done == FALSE)
490 		DELAY(5);
491 	if (nvme_completion_is_error(&status.cpl)) {
492 		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
493 		return (ENXIO);
494 	}
495 
496 	/*
497 	 * Data in cdw0 is 0-based.
498 	 * Lower 16-bits indicate number of submission queues allocated.
499 	 * Upper 16-bits indicate number of completion queues allocated.
500 	 */
501 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
502 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
503 
504 	/*
505 	 * Check that the controller was able to allocate the number of
506 	 *  queues we requested.  If not, revert to one IO queue pair.
507 	 */
508 	if (sq_allocated < ctrlr->num_io_queues ||
509 	    cq_allocated < ctrlr->num_io_queues) {
510 
511 		/*
512 		 * Destroy extra IO queue pairs that were created at
513 		 *  controller construction time but are no longer
514 		 *  needed.  This will only happen when a controller
515 		 *  supports fewer queues than MSI-X vectors.  This
516 		 *  is not the normal case, but does occur with the
517 		 *  Chatham prototype board.
518 		 */
519 		for (i = 1; i < ctrlr->num_io_queues; i++)
520 			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
521 
522 		ctrlr->num_io_queues = 1;
523 		ctrlr->per_cpu_io_queues = 0;
524 	}
525 
526 	return (0);
527 }
528 
529 static int
530 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
531 {
532 	struct nvme_completion_poll_status	status;
533 	struct nvme_qpair			*qpair;
534 	int					i;
535 
536 	for (i = 0; i < ctrlr->num_io_queues; i++) {
537 		qpair = &ctrlr->ioq[i];
538 
539 		status.done = FALSE;
540 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
541 		    nvme_completion_poll_cb, &status);
542 		while (status.done == FALSE)
543 			DELAY(5);
544 		if (nvme_completion_is_error(&status.cpl)) {
545 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
546 			return (ENXIO);
547 		}
548 
549 		status.done = FALSE;
550 		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
551 		    nvme_completion_poll_cb, &status);
552 		while (status.done == FALSE)
553 			DELAY(5);
554 		if (nvme_completion_is_error(&status.cpl)) {
555 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
556 			return (ENXIO);
557 		}
558 	}
559 
560 	return (0);
561 }
562 
563 static int
564 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
565 {
566 	struct nvme_namespace	*ns;
567 	int			i, status;
568 
569 	for (i = 0; i < ctrlr->cdata.nn; i++) {
570 		ns = &ctrlr->ns[i];
571 		status = nvme_ns_construct(ns, i+1, ctrlr);
572 		if (status != 0)
573 			return (status);
574 	}
575 
576 	return (0);
577 }
578 
579 static boolean_t
580 is_log_page_id_valid(uint8_t page_id)
581 {
582 
583 	switch (page_id) {
584 	case NVME_LOG_ERROR:
585 	case NVME_LOG_HEALTH_INFORMATION:
586 	case NVME_LOG_FIRMWARE_SLOT:
587 		return (TRUE);
588 	}
589 
590 	return (FALSE);
591 }
592 
593 static uint32_t
594 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
595 {
596 	uint32_t	log_page_size;
597 
598 	switch (page_id) {
599 	case NVME_LOG_ERROR:
600 		log_page_size = min(
601 		    sizeof(struct nvme_error_information_entry) *
602 		    ctrlr->cdata.elpe,
603 		    NVME_MAX_AER_LOG_SIZE);
604 		break;
605 	case NVME_LOG_HEALTH_INFORMATION:
606 		log_page_size = sizeof(struct nvme_health_information_page);
607 		break;
608 	case NVME_LOG_FIRMWARE_SLOT:
609 		log_page_size = sizeof(struct nvme_firmware_page);
610 		break;
611 	default:
612 		log_page_size = 0;
613 		break;
614 	}
615 
616 	return (log_page_size);
617 }
618 
619 static void
620 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
621 {
622 	struct nvme_async_event_request	*aer = arg;
623 
624 	/*
625 	 * If the log page fetch for some reason completed with an error,
626 	 *  don't pass log page data to the consumers.  In practice, this case
627 	 *  should never happen.
628 	 */
629 	if (nvme_completion_is_error(cpl))
630 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
631 		    aer->log_page_id, NULL, 0);
632 	else
633 		/*
634 		 * Pass the cpl data from the original async event completion,
635 		 *  not the log page fetch.
636 		 */
637 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
638 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
639 
640 	/*
641 	 * Repost another asynchronous event request to replace the one
642 	 *  that just completed.
643 	 */
644 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
645 }
646 
647 static void
648 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
649 {
650 	struct nvme_async_event_request	*aer = arg;
651 
652 	if (cpl->status.sc == NVME_SC_ABORTED_SQ_DELETION) {
653 		/*
654 		 *  This is simulated when controller is being shut down, to
655 		 *  effectively abort outstanding asynchronous event requests
656 		 *  and make sure all memory is freed.  Do not repost the
657 		 *  request in this case.
658 		 */
659 		return;
660 	}
661 
662 	/* Associated log page is in bits 23:16 of completion entry dw0. */
663 	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
664 
665 	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
666 	    aer->log_page_id);
667 
668 	if (is_log_page_id_valid(aer->log_page_id)) {
669 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
670 		    aer->log_page_id);
671 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
672 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
673 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
674 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
675 		    aer);
676 		/* Wait to notify consumers until after log page is fetched. */
677 	} else {
678 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
679 		    NULL, 0);
680 
681 		/*
682 		 * Repost another asynchronous event request to replace the one
683 		 *  that just completed.
684 		 */
685 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
686 	}
687 }
688 
689 static void
690 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
691     struct nvme_async_event_request *aer)
692 {
693 	struct nvme_request *req;
694 
695 	aer->ctrlr = ctrlr;
696 	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
697 	aer->req = req;
698 
699 	/*
700 	 * Disable timeout here, since asynchronous event requests should by
701 	 *  nature never be timed out.
702 	 */
703 	req->timeout = FALSE;
704 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
705 	nvme_ctrlr_submit_admin_request(ctrlr, req);
706 }
707 
708 static void
709 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
710 {
711 	union nvme_critical_warning_state	state;
712 	struct nvme_async_event_request		*aer;
713 	uint32_t				i;
714 
715 	state.raw = 0xFF;
716 	state.bits.reserved = 0;
717 	nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
718 
719 	/* aerl is a zero-based value, so we need to add 1 here. */
720 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
721 
722 	/* Chatham doesn't support AERs. */
723 	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
724 		ctrlr->num_aers = 0;
725 
726 	for (i = 0; i < ctrlr->num_aers; i++) {
727 		aer = &ctrlr->aer[i];
728 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
729 	}
730 }
731 
732 static void
733 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
734 {
735 
736 	ctrlr->int_coal_time = 0;
737 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
738 	    &ctrlr->int_coal_time);
739 
740 	ctrlr->int_coal_threshold = 0;
741 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
742 	    &ctrlr->int_coal_threshold);
743 
744 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
745 	    ctrlr->int_coal_threshold, NULL, NULL);
746 }
747 
748 static void
749 nvme_ctrlr_start(void *ctrlr_arg)
750 {
751 	struct nvme_controller *ctrlr = ctrlr_arg;
752 	int i;
753 
754 	nvme_qpair_reset(&ctrlr->adminq);
755 	for (i = 0; i < ctrlr->num_io_queues; i++)
756 		nvme_qpair_reset(&ctrlr->ioq[i]);
757 
758 	nvme_admin_qpair_enable(&ctrlr->adminq);
759 
760 	if (nvme_ctrlr_identify(ctrlr) != 0) {
761 		nvme_ctrlr_fail(ctrlr);
762 		return;
763 	}
764 
765 	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
766 		nvme_ctrlr_fail(ctrlr);
767 		return;
768 	}
769 
770 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
771 		nvme_ctrlr_fail(ctrlr);
772 		return;
773 	}
774 
775 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
776 		nvme_ctrlr_fail(ctrlr);
777 		return;
778 	}
779 
780 	nvme_ctrlr_configure_aer(ctrlr);
781 	nvme_ctrlr_configure_int_coalescing(ctrlr);
782 
783 	for (i = 0; i < ctrlr->num_io_queues; i++)
784 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
785 
786 	/*
787 	 * Clear software progress marker to 0, to indicate to pre-boot
788 	 *  software that OS driver load was successful.
789 	 *
790 	 * Chatham does not support this feature.
791 	 */
792 	if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID)
793 		nvme_ctrlr_cmd_set_feature(ctrlr,
794 		    NVME_FEAT_SOFTWARE_PROGRESS_MARKER, 0, NULL, 0, NULL, NULL);
795 }
796 
797 void
798 nvme_ctrlr_start_config_hook(void *arg)
799 {
800 	struct nvme_controller *ctrlr = arg;
801 
802 	nvme_ctrlr_start(ctrlr);
803 	config_intrhook_disestablish(&ctrlr->config_hook);
804 }
805 
806 static void
807 nvme_ctrlr_reset_task(void *arg, int pending)
808 {
809 	struct nvme_controller	*ctrlr = arg;
810 	int			status;
811 
812 	nvme_printf(ctrlr, "resetting controller\n");
813 	status = nvme_ctrlr_hw_reset(ctrlr);
814 	/*
815 	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
816 	 *  handlers on this CPU that were blocked on a qpair lock. We want
817 	 *  all nvme interrupts completed before proceeding with restarting the
818 	 *  controller.
819 	 *
820 	 * XXX - any way to guarantee the interrupt handlers have quiesced?
821 	 */
822 	pause("nvmereset", hz / 10);
823 	if (status == 0)
824 		nvme_ctrlr_start(ctrlr);
825 	else
826 		nvme_ctrlr_fail(ctrlr);
827 
828 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
829 }
830 
831 static void
832 nvme_ctrlr_intx_handler(void *arg)
833 {
834 	struct nvme_controller *ctrlr = arg;
835 
836 	nvme_mmio_write_4(ctrlr, intms, 1);
837 
838 	nvme_qpair_process_completions(&ctrlr->adminq);
839 
840 	if (ctrlr->ioq[0].cpl)
841 		nvme_qpair_process_completions(&ctrlr->ioq[0]);
842 
843 	nvme_mmio_write_4(ctrlr, intmc, 1);
844 }
845 
846 static int
847 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
848 {
849 
850 	ctrlr->num_io_queues = 1;
851 	ctrlr->per_cpu_io_queues = 0;
852 	ctrlr->rid = 0;
853 	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
854 	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
855 
856 	if (ctrlr->res == NULL) {
857 		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
858 		return (ENOMEM);
859 	}
860 
861 	bus_setup_intr(ctrlr->dev, ctrlr->res,
862 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
863 	    ctrlr, &ctrlr->tag);
864 
865 	if (ctrlr->tag == NULL) {
866 		nvme_printf(ctrlr, "unable to setup intx handler\n");
867 		return (ENOMEM);
868 	}
869 
870 	return (0);
871 }
872 
873 static void
874 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
875 {
876 	struct nvme_pt_command *pt = arg;
877 
878 	bzero(&pt->cpl, sizeof(pt->cpl));
879 	pt->cpl.cdw0 = cpl->cdw0;
880 	pt->cpl.status = cpl->status;
881 	pt->cpl.status.p = 0;
882 
883 	mtx_lock(pt->driver_lock);
884 	wakeup(pt);
885 	mtx_unlock(pt->driver_lock);
886 }
887 
888 int
889 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
890     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
891     int is_admin_cmd)
892 {
893 	struct nvme_request	*req;
894 	struct mtx		*mtx;
895 	struct buf		*buf = NULL;
896 	int			ret = 0;
897 
898 	if (pt->len > 0) {
899 		if (pt->len > ctrlr->max_xfer_size) {
900 			nvme_printf(ctrlr, "pt->len (%d) "
901 			    "exceeds max_xfer_size (%d)\n", pt->len,
902 			    ctrlr->max_xfer_size);
903 			return EIO;
904 		}
905 		if (is_user_buffer) {
906 			/*
907 			 * Ensure the user buffer is wired for the duration of
908 			 *  this passthrough command.
909 			 */
910 			PHOLD(curproc);
911 			buf = getpbuf(NULL);
912 			buf->b_saveaddr = buf->b_data;
913 			buf->b_data = pt->buf;
914 			buf->b_bufsize = pt->len;
915 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
916 #ifdef NVME_UNMAPPED_BIO_SUPPORT
917 			if (vmapbuf(buf, 1) < 0) {
918 #else
919 			if (vmapbuf(buf) < 0) {
920 #endif
921 				ret = EFAULT;
922 				goto err;
923 			}
924 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
925 			    nvme_pt_done, pt);
926 		} else
927 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
928 			    nvme_pt_done, pt);
929 	} else
930 		req = nvme_allocate_request_null(nvme_pt_done, pt);
931 
932 	req->cmd.opc	= pt->cmd.opc;
933 	req->cmd.cdw10	= pt->cmd.cdw10;
934 	req->cmd.cdw11	= pt->cmd.cdw11;
935 	req->cmd.cdw12	= pt->cmd.cdw12;
936 	req->cmd.cdw13	= pt->cmd.cdw13;
937 	req->cmd.cdw14	= pt->cmd.cdw14;
938 	req->cmd.cdw15	= pt->cmd.cdw15;
939 
940 	req->cmd.nsid = nsid;
941 
942 	if (is_admin_cmd)
943 		mtx = &ctrlr->lock;
944 	else
945 		mtx = &ctrlr->ns[nsid-1].lock;
946 
947 	mtx_lock(mtx);
948 	pt->driver_lock = mtx;
949 
950 	if (is_admin_cmd)
951 		nvme_ctrlr_submit_admin_request(ctrlr, req);
952 	else
953 		nvme_ctrlr_submit_io_request(ctrlr, req);
954 
955 	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
956 	mtx_unlock(mtx);
957 
958 	pt->driver_lock = NULL;
959 
960 err:
961 	if (buf != NULL) {
962 		relpbuf(buf, NULL);
963 		PRELE(curproc);
964 	}
965 
966 	return (ret);
967 }
968 
969 static int
970 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
971     struct thread *td)
972 {
973 	struct nvme_controller			*ctrlr;
974 	struct nvme_pt_command			*pt;
975 
976 	ctrlr = cdev->si_drv1;
977 
978 	switch (cmd) {
979 	case NVME_RESET_CONTROLLER:
980 		nvme_ctrlr_reset(ctrlr);
981 		break;
982 	case NVME_PASSTHROUGH_CMD:
983 		pt = (struct nvme_pt_command *)arg;
984 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
985 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
986 	default:
987 		return (ENOTTY);
988 	}
989 
990 	return (0);
991 }
992 
993 static struct cdevsw nvme_ctrlr_cdevsw = {
994 	.d_version =	D_VERSION,
995 	.d_flags =	0,
996 	.d_ioctl =	nvme_ctrlr_ioctl
997 };
998 
999 int
1000 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1001 {
1002 	union cap_lo_register	cap_lo;
1003 	union cap_hi_register	cap_hi;
1004 	int			num_vectors, per_cpu_io_queues, status = 0;
1005 	int			timeout_period;
1006 
1007 	ctrlr->dev = dev;
1008 
1009 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1010 
1011 	status = nvme_ctrlr_allocate_bar(ctrlr);
1012 
1013 	if (status != 0)
1014 		return (status);
1015 
1016 #ifdef CHATHAM2
1017 	if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
1018 		status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
1019 		if (status != 0)
1020 			return (status);
1021 		nvme_ctrlr_setup_chatham(ctrlr);
1022 	}
1023 #endif
1024 
1025 	/*
1026 	 * Software emulators may set the doorbell stride to something
1027 	 *  other than zero, but this driver is not set up to handle that.
1028 	 */
1029 	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1030 	if (cap_hi.bits.dstrd != 0)
1031 		return (ENXIO);
1032 
1033 	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1034 
1035 	/* Get ready timeout value from controller, in units of 500ms. */
1036 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1037 	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1038 
1039 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1040 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1041 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1042 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1043 	ctrlr->timeout_period = timeout_period;
1044 
1045 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1046 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1047 
1048 	per_cpu_io_queues = 1;
1049 	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1050 	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
1051 
1052 	if (ctrlr->per_cpu_io_queues)
1053 		ctrlr->num_io_queues = mp_ncpus;
1054 	else
1055 		ctrlr->num_io_queues = 1;
1056 
1057 	ctrlr->force_intx = 0;
1058 	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1059 
1060 	ctrlr->enable_aborts = 0;
1061 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1062 
1063 	ctrlr->msix_enabled = 1;
1064 
1065 	if (ctrlr->force_intx) {
1066 		ctrlr->msix_enabled = 0;
1067 		goto intx;
1068 	}
1069 
1070 	/* One vector per IO queue, plus one vector for admin queue. */
1071 	num_vectors = ctrlr->num_io_queues + 1;
1072 
1073 	if (pci_msix_count(dev) < num_vectors) {
1074 		ctrlr->msix_enabled = 0;
1075 		goto intx;
1076 	}
1077 
1078 	if (pci_alloc_msix(dev, &num_vectors) != 0)
1079 		ctrlr->msix_enabled = 0;
1080 
1081 intx:
1082 
1083 	if (!ctrlr->msix_enabled)
1084 		nvme_ctrlr_configure_intx(ctrlr);
1085 
1086 	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1087 	nvme_ctrlr_construct_admin_qpair(ctrlr);
1088 	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1089 
1090 	if (status != 0)
1091 		return (status);
1092 
1093 	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
1094 	    "nvme%d", device_get_unit(dev));
1095 
1096 	if (ctrlr->cdev == NULL)
1097 		return (ENXIO);
1098 
1099 	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1100 
1101 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1102 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1103 	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1104 
1105 	ctrlr->is_resetting = 0;
1106 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1107 
1108 	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1109 	STAILQ_INIT(&ctrlr->fail_req);
1110 	ctrlr->is_failed = FALSE;
1111 
1112 	return (0);
1113 }
1114 
1115 void
1116 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1117 {
1118 	int				i;
1119 
1120 	nvme_ctrlr_disable(ctrlr);
1121 	taskqueue_free(ctrlr->taskqueue);
1122 
1123 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1124 		nvme_ns_destruct(&ctrlr->ns[i]);
1125 
1126 	if (ctrlr->cdev)
1127 		destroy_dev(ctrlr->cdev);
1128 
1129 	for (i = 0; i < ctrlr->num_io_queues; i++) {
1130 		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1131 	}
1132 
1133 	free(ctrlr->ioq, M_NVME);
1134 
1135 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1136 
1137 	if (ctrlr->resource != NULL) {
1138 		bus_release_resource(dev, SYS_RES_MEMORY,
1139 		    ctrlr->resource_id, ctrlr->resource);
1140 	}
1141 
1142 	if (ctrlr->bar4_resource != NULL) {
1143 		bus_release_resource(dev, SYS_RES_MEMORY,
1144 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1145 	}
1146 
1147 #ifdef CHATHAM2
1148 	if (ctrlr->chatham_resource != NULL) {
1149 		bus_release_resource(dev, SYS_RES_MEMORY,
1150 		    ctrlr->chatham_resource_id, ctrlr->chatham_resource);
1151 	}
1152 #endif
1153 
1154 	if (ctrlr->tag)
1155 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1156 
1157 	if (ctrlr->res)
1158 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1159 		    rman_get_rid(ctrlr->res), ctrlr->res);
1160 
1161 	if (ctrlr->msix_enabled)
1162 		pci_release_msi(dev);
1163 }
1164 
1165 void
1166 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1167     struct nvme_request *req)
1168 {
1169 
1170 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1171 }
1172 
1173 void
1174 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1175     struct nvme_request *req)
1176 {
1177 	struct nvme_qpair       *qpair;
1178 
1179 	if (ctrlr->per_cpu_io_queues)
1180 		qpair = &ctrlr->ioq[curcpu];
1181 	else
1182 		qpair = &ctrlr->ioq[0];
1183 
1184 	nvme_qpair_submit_request(qpair, req);
1185 }
1186 
1187 device_t
1188 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1189 {
1190 
1191 	return (ctrlr->dev);
1192 }
1193 
1194 const struct nvme_controller_data *
1195 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1196 {
1197 
1198 	return (&ctrlr->cdata);
1199 }
1200