xref: /freebsd/sys/dev/ocs_fc/ocs_hw.c (revision 266f97b5)
1 /*-
2  * Copyright (c) 2017 Broadcom. All rights reserved.
3  * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  *    this list of conditions and the following disclaimer in the documentation
13  *    and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * $FreeBSD$
32  */
33 
34 /**
35  * @file
36  * Defines and implements the Hardware Abstraction Layer (HW).
37  * All interaction with the hardware is performed through the HW, which abstracts
38  * the details of the underlying SLI-4 implementation.
39  */
40 
41 /**
42  * @defgroup devInitShutdown Device Initialization and Shutdown
43  * @defgroup domain Domain Functions
44  * @defgroup port Port Functions
45  * @defgroup node Remote Node Functions
46  * @defgroup io IO Functions
47  * @defgroup interrupt Interrupt handling
48  * @defgroup os OS Required Functions
49  */
50 
51 #include "ocs.h"
52 #include "ocs_os.h"
53 #include "ocs_hw.h"
54 #include "ocs_hw_queues.h"
55 
56 #define OCS_HW_MQ_DEPTH	128
57 #define OCS_HW_READ_FCF_SIZE	4096
58 #define OCS_HW_DEFAULT_AUTO_XFER_RDY_IOS	256
59 #define OCS_HW_WQ_TIMER_PERIOD_MS	500
60 
61 /* values used for setting the auto xfer rdy parameters */
62 #define OCS_HW_AUTO_XFER_RDY_BLK_SIZE_DEFAULT		0 /* 512 bytes */
63 #define OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA_DEFAULT	TRUE
64 #define OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID_DEFAULT	FALSE
65 #define OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE_DEFAULT	0
66 #define OCS_HW_REQUE_XRI_REGTAG			65534
67 /* max command and response buffer lengths -- arbitrary at the moment */
68 #define OCS_HW_DMTF_CLP_CMD_MAX	256
69 #define OCS_HW_DMTF_CLP_RSP_MAX	256
70 
71 /* HW global data */
72 ocs_hw_global_t hw_global;
73 
74 static void ocs_hw_queue_hash_add(ocs_queue_hash_t *, uint16_t, uint16_t);
75 static void ocs_hw_adjust_wqs(ocs_hw_t *hw);
76 static uint32_t ocs_hw_get_num_chutes(ocs_hw_t *hw);
77 static int32_t ocs_hw_cb_link(void *, void *);
78 static int32_t ocs_hw_cb_fip(void *, void *);
79 static int32_t ocs_hw_command_process(ocs_hw_t *, int32_t, uint8_t *, size_t);
80 static int32_t ocs_hw_mq_process(ocs_hw_t *, int32_t, sli4_queue_t *);
81 static int32_t ocs_hw_cb_read_fcf(ocs_hw_t *, int32_t, uint8_t *, void *);
82 static int32_t ocs_hw_cb_node_attach(ocs_hw_t *, int32_t, uint8_t *, void *);
83 static int32_t ocs_hw_cb_node_free(ocs_hw_t *, int32_t, uint8_t *, void *);
84 static int32_t ocs_hw_cb_node_free_all(ocs_hw_t *, int32_t, uint8_t *, void *);
85 static ocs_hw_rtn_e ocs_hw_setup_io(ocs_hw_t *);
86 static ocs_hw_rtn_e ocs_hw_init_io(ocs_hw_t *);
87 static int32_t ocs_hw_flush(ocs_hw_t *);
88 static int32_t ocs_hw_command_cancel(ocs_hw_t *);
89 static int32_t ocs_hw_io_cancel(ocs_hw_t *);
90 static void ocs_hw_io_quarantine(ocs_hw_t *hw, hw_wq_t *wq, ocs_hw_io_t *io);
91 static void ocs_hw_io_restore_sgl(ocs_hw_t *, ocs_hw_io_t *);
92 static int32_t ocs_hw_io_ini_sge(ocs_hw_t *, ocs_hw_io_t *, ocs_dma_t *, uint32_t, ocs_dma_t *);
93 static ocs_hw_rtn_e ocs_hw_firmware_write_lancer(ocs_hw_t *hw, ocs_dma_t *dma, uint32_t size, uint32_t offset, int last, ocs_hw_fw_cb_t cb, void *arg);
94 static int32_t ocs_hw_cb_fw_write(ocs_hw_t *, int32_t, uint8_t *, void  *);
95 static int32_t ocs_hw_cb_sfp(ocs_hw_t *, int32_t, uint8_t *, void  *);
96 static int32_t ocs_hw_cb_temp(ocs_hw_t *, int32_t, uint8_t *, void  *);
97 static int32_t ocs_hw_cb_link_stat(ocs_hw_t *, int32_t, uint8_t *, void  *);
98 static int32_t ocs_hw_cb_host_stat(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg);
99 static void ocs_hw_dmtf_clp_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg);
100 static int32_t ocs_hw_clp_resp_get_value(ocs_hw_t *hw, const char *keyword, char *value, uint32_t value_len, const char *resp, uint32_t resp_len);
101 typedef void (*ocs_hw_dmtf_clp_cb_t)(ocs_hw_t *hw, int32_t status, uint32_t result_len, void *arg);
102 static ocs_hw_rtn_e ocs_hw_exec_dmtf_clp_cmd(ocs_hw_t *hw, ocs_dma_t *dma_cmd, ocs_dma_t *dma_resp, uint32_t opts, ocs_hw_dmtf_clp_cb_t cb, void *arg);
103 static void ocs_hw_linkcfg_dmtf_clp_cb(ocs_hw_t *hw, int32_t status, uint32_t result_len, void *arg);
104 
105 static int32_t __ocs_read_topology_cb(ocs_hw_t *, int32_t, uint8_t *, void *);
106 static ocs_hw_rtn_e ocs_hw_get_linkcfg(ocs_hw_t *, uint32_t, ocs_hw_port_control_cb_t, void *);
107 static ocs_hw_rtn_e ocs_hw_get_linkcfg_lancer(ocs_hw_t *, uint32_t, ocs_hw_port_control_cb_t, void *);
108 static ocs_hw_rtn_e ocs_hw_get_linkcfg_skyhawk(ocs_hw_t *, uint32_t, ocs_hw_port_control_cb_t, void *);
109 static ocs_hw_rtn_e ocs_hw_set_linkcfg(ocs_hw_t *, ocs_hw_linkcfg_e, uint32_t, ocs_hw_port_control_cb_t, void *);
110 static ocs_hw_rtn_e ocs_hw_set_linkcfg_lancer(ocs_hw_t *, ocs_hw_linkcfg_e, uint32_t, ocs_hw_port_control_cb_t, void *);
111 static ocs_hw_rtn_e ocs_hw_set_linkcfg_skyhawk(ocs_hw_t *, ocs_hw_linkcfg_e, uint32_t, ocs_hw_port_control_cb_t, void *);
112 static void ocs_hw_init_linkcfg_cb(int32_t status, uintptr_t value, void *arg);
113 static ocs_hw_rtn_e ocs_hw_set_eth_license(ocs_hw_t *hw, uint32_t license);
114 static ocs_hw_rtn_e ocs_hw_set_dif_seed(ocs_hw_t *hw);
115 static ocs_hw_rtn_e ocs_hw_set_dif_mode(ocs_hw_t *hw);
116 static void ocs_hw_io_free_internal(void *arg);
117 static void ocs_hw_io_free_port_owned(void *arg);
118 static ocs_hw_rtn_e ocs_hw_config_auto_xfer_rdy_t10pi(ocs_hw_t *hw, uint8_t *buf);
119 static ocs_hw_rtn_e ocs_hw_config_set_fdt_xfer_hint(ocs_hw_t *hw, uint32_t fdt_xfer_hint);
120 static void ocs_hw_wq_process_abort(void *arg, uint8_t *cqe, int32_t status);
121 static int32_t ocs_hw_config_mrq(ocs_hw_t *hw, uint8_t, uint16_t, uint16_t);
122 static ocs_hw_rtn_e ocs_hw_config_watchdog_timer(ocs_hw_t *hw);
123 static ocs_hw_rtn_e ocs_hw_config_sli_port_health_check(ocs_hw_t *hw, uint8_t query, uint8_t enable);
124 
125 /* HW domain database operations */
126 static int32_t ocs_hw_domain_add(ocs_hw_t *, ocs_domain_t *);
127 static int32_t ocs_hw_domain_del(ocs_hw_t *, ocs_domain_t *);
128 
129 /* Port state machine */
130 static void *__ocs_hw_port_alloc_init(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
131 static void *__ocs_hw_port_alloc_read_sparm64(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
132 static void *__ocs_hw_port_alloc_init_vpi(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
133 static void *__ocs_hw_port_done(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
134 static void *__ocs_hw_port_free_unreg_vpi(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
135 
136 /* Domain state machine */
137 static void *__ocs_hw_domain_init(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
138 static void *__ocs_hw_domain_alloc_reg_fcfi(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
139 static void * __ocs_hw_domain_alloc_init_vfi(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
140 static void *__ocs_hw_domain_free_unreg_vfi(ocs_sm_ctx_t *, ocs_sm_event_t, void *);
141 static void *__ocs_hw_domain_free_unreg_fcfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data);
142 static int32_t __ocs_hw_domain_cb(ocs_hw_t *, int32_t, uint8_t *, void *);
143 static int32_t __ocs_hw_port_cb(ocs_hw_t *, int32_t, uint8_t *, void *);
144 static int32_t __ocs_hw_port_realloc_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg);
145 
146 /* BZ 161832 */
147 static void ocs_hw_check_sec_hio_list(ocs_hw_t *hw);
148 
149 /* WQE timeouts */
150 static void target_wqe_timer_cb(void *arg);
151 static void shutdown_target_wqe_timer(ocs_hw_t *hw);
152 
153 static inline void
154 ocs_hw_add_io_timed_wqe(ocs_hw_t *hw, ocs_hw_io_t *io)
155 {
156 	if (hw->config.emulate_tgt_wqe_timeout && io->tgt_wqe_timeout) {
157 		/*
158 		 * Active WQE list currently only used for
159 		 * target WQE timeouts.
160 		 */
161 		ocs_lock(&hw->io_lock);
162 			ocs_list_add_tail(&hw->io_timed_wqe, io);
163 			io->submit_ticks = ocs_get_os_ticks();
164 		ocs_unlock(&hw->io_lock);
165 	}
166 }
167 
168 static inline void
169 ocs_hw_remove_io_timed_wqe(ocs_hw_t *hw, ocs_hw_io_t *io)
170 {
171 	if (hw->config.emulate_tgt_wqe_timeout) {
172 		/*
173 		 * If target wqe timeouts are enabled,
174 		 * remove from active wqe list.
175 		 */
176 		ocs_lock(&hw->io_lock);
177 			if (ocs_list_on_list(&io->wqe_link)) {
178 				ocs_list_remove(&hw->io_timed_wqe, io);
179 			}
180 		ocs_unlock(&hw->io_lock);
181 	}
182 }
183 
184 static uint8_t ocs_hw_iotype_is_originator(uint16_t io_type)
185 {
186 	switch (io_type) {
187 	case OCS_HW_IO_INITIATOR_READ:
188 	case OCS_HW_IO_INITIATOR_WRITE:
189 	case OCS_HW_IO_INITIATOR_NODATA:
190 	case OCS_HW_FC_CT:
191 	case OCS_HW_ELS_REQ:
192 		return 1;
193 	default:
194 		return 0;
195 	}
196 }
197 
198 static uint8_t ocs_hw_wcqe_abort_needed(uint16_t status, uint8_t ext, uint8_t xb)
199 {
200 	/* if exchange not active, nothing to abort */
201 	if (!xb) {
202 		return FALSE;
203 	}
204 	if (status == SLI4_FC_WCQE_STATUS_LOCAL_REJECT) {
205 		switch (ext) {
206 		/* exceptions where abort is not needed */
207 		case SLI4_FC_LOCAL_REJECT_INVALID_RPI: /* lancer returns this after unreg_rpi */
208 		case SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED: /* abort already in progress */
209 			return FALSE;
210 		default:
211 			break;
212 		}
213 	}
214 	return TRUE;
215 }
216 
217 /**
218  * @brief Determine the number of chutes on the device.
219  *
220  * @par Description
221  * Some devices require queue resources allocated per protocol processor
222  * (chute). This function returns the number of chutes on this device.
223  *
224  * @param hw Hardware context allocated by the caller.
225  *
226  * @return Returns the number of chutes on the device for protocol.
227  */
228 static uint32_t
229 ocs_hw_get_num_chutes(ocs_hw_t *hw)
230 {
231 	uint32_t num_chutes = 1;
232 
233 	if (sli_get_is_dual_ulp_capable(&hw->sli) &&
234 	    sli_get_is_ulp_enabled(&hw->sli, 0) &&
235 	    sli_get_is_ulp_enabled(&hw->sli, 1)) {
236 		num_chutes = 2;
237 	}
238 	return num_chutes;
239 }
240 
241 static ocs_hw_rtn_e
242 ocs_hw_link_event_init(ocs_hw_t *hw)
243 {
244 	ocs_hw_assert(hw);
245 
246 	hw->link.status = SLI_LINK_STATUS_MAX;
247 	hw->link.topology = SLI_LINK_TOPO_NONE;
248 	hw->link.medium = SLI_LINK_MEDIUM_MAX;
249 	hw->link.speed = 0;
250 	hw->link.loop_map = NULL;
251 	hw->link.fc_id = UINT32_MAX;
252 
253 	return OCS_HW_RTN_SUCCESS;
254 }
255 
256 /**
257  * @ingroup devInitShutdown
258  * @brief If this is physical port 0, then read the max dump size.
259  *
260  * @par Description
261  * Queries the FW for the maximum dump size
262  *
263  * @param hw Hardware context allocated by the caller.
264  *
265  * @return Returns 0 on success, or a non-zero value on failure.
266  */
267 static ocs_hw_rtn_e
268 ocs_hw_read_max_dump_size(ocs_hw_t *hw)
269 {
270 	uint8_t	buf[SLI4_BMBX_SIZE];
271 	uint8_t bus, dev, func;
272 	int 	rc;
273 
274 	/* lancer only */
275 	if ((SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) &&
276 	    (SLI4_IF_TYPE_LANCER_G7 != sli_get_if_type(&hw->sli))) {
277 		ocs_log_debug(hw->os, "Function only supported for I/F type 2\n");
278 		return OCS_HW_RTN_ERROR;
279 	}
280 
281 	/*
282 	 * Make sure the FW is new enough to support this command. If the FW
283 	 * is too old, the FW will UE.
284 	 */
285 	if (hw->workaround.disable_dump_loc) {
286 		ocs_log_test(hw->os, "FW version is too old for this feature\n");
287 		return OCS_HW_RTN_ERROR;
288 	}
289 
290 	/* attempt to detemine the dump size for function 0 only. */
291 	ocs_get_bus_dev_func(hw->os, &bus, &dev, &func);
292 	if (func == 0) {
293 		if (sli_cmd_common_set_dump_location(&hw->sli, buf,
294 							SLI4_BMBX_SIZE, 1, 0, NULL, 0)) {
295 			sli4_res_common_set_dump_location_t *rsp =
296 				(sli4_res_common_set_dump_location_t *)
297 				(buf + offsetof(sli4_cmd_sli_config_t,
298 						payload.embed));
299 
300 			rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
301 			if (rc != OCS_HW_RTN_SUCCESS) {
302 				ocs_log_test(hw->os, "set dump location command failed\n");
303 				return rc;
304 			} else {
305 				hw->dump_size = rsp->buffer_length;
306 				ocs_log_debug(hw->os, "Dump size %x\n", rsp->buffer_length);
307 			}
308 		}
309 	}
310 	return OCS_HW_RTN_SUCCESS;
311 }
312 
313 /**
314  * @ingroup devInitShutdown
315  * @brief Set up the Hardware Abstraction Layer module.
316  *
317  * @par Description
318  * Calls set up to configure the hardware.
319  *
320  * @param hw Hardware context allocated by the caller.
321  * @param os Device abstraction.
322  * @param port_type Protocol type of port, such as FC and NIC.
323  *
324  * @todo Why is port_type a parameter?
325  *
326  * @return Returns 0 on success, or a non-zero value on failure.
327  */
328 ocs_hw_rtn_e
329 ocs_hw_setup(ocs_hw_t *hw, ocs_os_handle_t os, sli4_port_type_e port_type)
330 {
331 	uint32_t i;
332 	char prop_buf[32];
333 
334 	if (hw == NULL) {
335 		ocs_log_err(os, "bad parameter(s) hw=%p\n", hw);
336 		return OCS_HW_RTN_ERROR;
337 	}
338 
339 	if (hw->hw_setup_called) {
340 		/* Setup run-time workarounds.
341 		 * Call for each setup, to allow for hw_war_version
342 		 */
343 		ocs_hw_workaround_setup(hw);
344 		return OCS_HW_RTN_SUCCESS;
345 	}
346 
347 	/*
348 	 * ocs_hw_init() relies on NULL pointers indicating that a structure
349 	 * needs allocation. If a structure is non-NULL, ocs_hw_init() won't
350 	 * free/realloc that memory
351 	 */
352 	ocs_memset(hw, 0, sizeof(ocs_hw_t));
353 
354 	hw->hw_setup_called = TRUE;
355 
356 	hw->os = os;
357 
358 	ocs_lock_init(hw->os, &hw->cmd_lock, "HW_cmd_lock[%d]", ocs_instance(hw->os));
359 	ocs_list_init(&hw->cmd_head, ocs_command_ctx_t, link);
360 	ocs_list_init(&hw->cmd_pending, ocs_command_ctx_t, link);
361 	hw->cmd_head_count = 0;
362 
363 	ocs_lock_init(hw->os, &hw->io_lock, "HW_io_lock[%d]", ocs_instance(hw->os));
364 	ocs_lock_init(hw->os, &hw->io_abort_lock, "HW_io_abort_lock[%d]", ocs_instance(hw->os));
365 
366 	ocs_atomic_init(&hw->io_alloc_failed_count, 0);
367 
368 	hw->config.speed = FC_LINK_SPEED_AUTO_16_8_4;
369 	hw->config.dif_seed = 0;
370 	hw->config.auto_xfer_rdy_blk_size_chip = OCS_HW_AUTO_XFER_RDY_BLK_SIZE_DEFAULT;
371 	hw->config.auto_xfer_rdy_ref_tag_is_lba = OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA_DEFAULT;
372 	hw->config.auto_xfer_rdy_app_tag_valid =  OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID_DEFAULT;
373 	hw->config.auto_xfer_rdy_app_tag_value = OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE_DEFAULT;
374 
375 	if (sli_setup(&hw->sli, hw->os, port_type)) {
376 		ocs_log_err(hw->os, "SLI setup failed\n");
377 		return OCS_HW_RTN_ERROR;
378 	}
379 
380 	ocs_memset(hw->domains, 0, sizeof(hw->domains));
381 
382 	ocs_memset(hw->fcf_index_fcfi, 0, sizeof(hw->fcf_index_fcfi));
383 
384 	ocs_hw_link_event_init(hw);
385 
386 	sli_callback(&hw->sli, SLI4_CB_LINK, ocs_hw_cb_link, hw);
387 	sli_callback(&hw->sli, SLI4_CB_FIP, ocs_hw_cb_fip, hw);
388 
389 	/*
390 	 * Set all the queue sizes to the maximum allowed. These values may
391 	 * be changes later by the adjust and workaround functions.
392 	 */
393 	for (i = 0; i < ARRAY_SIZE(hw->num_qentries); i++) {
394 		hw->num_qentries[i] = sli_get_max_qentries(&hw->sli, i);
395 	}
396 
397 	/*
398 	 * The RQ assignment for RQ pair mode.
399 	 */
400 	hw->config.rq_default_buffer_size = OCS_HW_RQ_SIZE_PAYLOAD;
401 	hw->config.n_io = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_XRI);
402 	if (ocs_get_property("auto_xfer_rdy_xri_cnt", prop_buf, sizeof(prop_buf)) == 0) {
403 		hw->config.auto_xfer_rdy_xri_cnt = ocs_strtoul(prop_buf, 0, 0);
404 	}
405 
406 	/* by default, enable initiator-only auto-ABTS emulation */
407 	hw->config.i_only_aab = TRUE;
408 
409 	/* Setup run-time workarounds */
410 	ocs_hw_workaround_setup(hw);
411 
412 	/* HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB */
413 	if (hw->workaround.override_fcfi) {
414 		hw->first_domain_idx = -1;
415 	}
416 
417 	/* Must be done after the workaround setup */
418 	if ((SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) ||
419 	    (SLI4_IF_TYPE_LANCER_G7 == sli_get_if_type(&hw->sli))) {
420 
421 		(void)ocs_hw_read_max_dump_size(hw);
422 	}
423 
424 	/* calculate the number of WQs required. */
425 	ocs_hw_adjust_wqs(hw);
426 
427 	/* Set the default dif mode */
428 	if (! sli_is_dif_inline_capable(&hw->sli)) {
429 		ocs_log_test(hw->os, "not inline capable, setting mode to separate\n");
430 		hw->config.dif_mode = OCS_HW_DIF_MODE_SEPARATE;
431 	}
432 	/* Workaround: BZ 161832 */
433 	if (hw->workaround.use_dif_sec_xri) {
434 		ocs_list_init(&hw->sec_hio_wait_list, ocs_hw_io_t, link);
435 	}
436 
437 	/*
438 	 * Figure out the starting and max ULP to spread the WQs across the
439 	 * ULPs.
440 	 */
441 	if (sli_get_is_dual_ulp_capable(&hw->sli)) {
442 		if (sli_get_is_ulp_enabled(&hw->sli, 0) &&
443 		    sli_get_is_ulp_enabled(&hw->sli, 1)) {
444 			hw->ulp_start = 0;
445 			hw->ulp_max   = 1;
446 		} else if (sli_get_is_ulp_enabled(&hw->sli, 0)) {
447 			hw->ulp_start = 0;
448 			hw->ulp_max   = 0;
449 		} else {
450 			hw->ulp_start = 1;
451 			hw->ulp_max   = 1;
452 		}
453 	} else {
454 		if (sli_get_is_ulp_enabled(&hw->sli, 0)) {
455 			hw->ulp_start = 0;
456 			hw->ulp_max   = 0;
457 		} else {
458 			hw->ulp_start = 1;
459 			hw->ulp_max   = 1;
460 		}
461 	}
462 	ocs_log_debug(hw->os, "ulp_start %d, ulp_max %d\n",
463 		hw->ulp_start, hw->ulp_max);
464 	hw->config.queue_topology = hw_global.queue_topology_string;
465 
466 	hw->qtop = ocs_hw_qtop_parse(hw, hw->config.queue_topology);
467 
468 	hw->config.n_eq = hw->qtop->entry_counts[QTOP_EQ];
469 	hw->config.n_cq = hw->qtop->entry_counts[QTOP_CQ];
470 	hw->config.n_rq = hw->qtop->entry_counts[QTOP_RQ];
471 	hw->config.n_wq = hw->qtop->entry_counts[QTOP_WQ];
472 	hw->config.n_mq = hw->qtop->entry_counts[QTOP_MQ];
473 
474 	/* Verify qtop configuration against driver supported configuration */
475 	if (hw->config.n_rq > OCE_HW_MAX_NUM_MRQ_PAIRS) {
476 		ocs_log_crit(hw->os, "Max supported MRQ pairs = %d\n",
477 				OCE_HW_MAX_NUM_MRQ_PAIRS);
478 		return OCS_HW_RTN_ERROR;
479 	}
480 
481 	if (hw->config.n_eq > OCS_HW_MAX_NUM_EQ) {
482 		ocs_log_crit(hw->os, "Max supported EQs = %d\n",
483 				OCS_HW_MAX_NUM_EQ);
484 		return OCS_HW_RTN_ERROR;
485 	}
486 
487 	if (hw->config.n_cq > OCS_HW_MAX_NUM_CQ) {
488 		ocs_log_crit(hw->os, "Max supported CQs = %d\n",
489 				OCS_HW_MAX_NUM_CQ);
490 		return OCS_HW_RTN_ERROR;
491 	}
492 
493 	if (hw->config.n_wq > OCS_HW_MAX_NUM_WQ) {
494 		ocs_log_crit(hw->os, "Max supported WQs = %d\n",
495 				OCS_HW_MAX_NUM_WQ);
496 		return OCS_HW_RTN_ERROR;
497 	}
498 
499 	if (hw->config.n_mq > OCS_HW_MAX_NUM_MQ) {
500 		ocs_log_crit(hw->os, "Max supported MQs = %d\n",
501 				OCS_HW_MAX_NUM_MQ);
502 		return OCS_HW_RTN_ERROR;
503 	}
504 
505 	return OCS_HW_RTN_SUCCESS;
506 }
507 
508 /**
509  * @ingroup devInitShutdown
510  * @brief Allocate memory structures to prepare for the device operation.
511  *
512  * @par Description
513  * Allocates memory structures needed by the device and prepares the device
514  * for operation.
515  * @n @n @b Note: This function may be called more than once (for example, at
516  * initialization and then after a reset), but the size of the internal resources
517  * may not be changed without tearing down the HW (ocs_hw_teardown()).
518  *
519  * @param hw Hardware context allocated by the caller.
520  *
521  * @return Returns 0 on success, or a non-zero value on failure.
522  */
523 ocs_hw_rtn_e
524 ocs_hw_init(ocs_hw_t *hw)
525 {
526 	ocs_hw_rtn_e	rc;
527 	uint32_t	i = 0;
528 	uint8_t		buf[SLI4_BMBX_SIZE];
529 	uint32_t	max_rpi;
530 	int		rem_count;
531 	int	        written_size = 0;
532 	uint32_t	count;
533 	char		prop_buf[32];
534 	uint32_t ramdisc_blocksize = 512;
535 	uint32_t q_count = 0;
536 	/*
537 	 * Make sure the command lists are empty. If this is start-of-day,
538 	 * they'll be empty since they were just initialized in ocs_hw_setup.
539 	 * If we've just gone through a reset, the command and command pending
540 	 * lists should have been cleaned up as part of the reset (ocs_hw_reset()).
541 	 */
542 	ocs_lock(&hw->cmd_lock);
543 		if (!ocs_list_empty(&hw->cmd_head)) {
544 			ocs_log_test(hw->os, "command found on cmd list\n");
545 			ocs_unlock(&hw->cmd_lock);
546 			return OCS_HW_RTN_ERROR;
547 		}
548 		if (!ocs_list_empty(&hw->cmd_pending)) {
549 			ocs_log_test(hw->os, "command found on pending list\n");
550 			ocs_unlock(&hw->cmd_lock);
551 			return OCS_HW_RTN_ERROR;
552 		}
553 	ocs_unlock(&hw->cmd_lock);
554 
555 	/* Free RQ buffers if prevously allocated */
556 	ocs_hw_rx_free(hw);
557 
558 	/*
559 	 * The IO queues must be initialized here for the reset case. The
560 	 * ocs_hw_init_io() function will re-add the IOs to the free list.
561 	 * The cmd_head list should be OK since we free all entries in
562 	 * ocs_hw_command_cancel() that is called in the ocs_hw_reset().
563 	 */
564 
565 	/* If we are in this function due to a reset, there may be stale items
566 	 * on lists that need to be removed.  Clean them up.
567 	 */
568 	rem_count=0;
569 	if (ocs_list_valid(&hw->io_wait_free)) {
570 		while ((!ocs_list_empty(&hw->io_wait_free))) {
571 			rem_count++;
572 			ocs_list_remove_head(&hw->io_wait_free);
573 		}
574 		if (rem_count > 0) {
575 			ocs_log_debug(hw->os, "removed %d items from io_wait_free list\n", rem_count);
576 		}
577 	}
578 	rem_count=0;
579 	if (ocs_list_valid(&hw->io_inuse)) {
580 		while ((!ocs_list_empty(&hw->io_inuse))) {
581 			rem_count++;
582 			ocs_list_remove_head(&hw->io_inuse);
583 		}
584 		if (rem_count > 0) {
585 			ocs_log_debug(hw->os, "removed %d items from io_inuse list\n", rem_count);
586 		}
587 	}
588 	rem_count=0;
589 	if (ocs_list_valid(&hw->io_free)) {
590 		while ((!ocs_list_empty(&hw->io_free))) {
591 			rem_count++;
592 			ocs_list_remove_head(&hw->io_free);
593 		}
594 		if (rem_count > 0) {
595 			ocs_log_debug(hw->os, "removed %d items from io_free list\n", rem_count);
596 		}
597 	}
598 	if (ocs_list_valid(&hw->io_port_owned)) {
599 		while ((!ocs_list_empty(&hw->io_port_owned))) {
600 			ocs_list_remove_head(&hw->io_port_owned);
601 		}
602 	}
603 	ocs_list_init(&hw->io_inuse, ocs_hw_io_t, link);
604 	ocs_list_init(&hw->io_free, ocs_hw_io_t, link);
605 	ocs_list_init(&hw->io_port_owned, ocs_hw_io_t, link);
606 	ocs_list_init(&hw->io_wait_free, ocs_hw_io_t, link);
607 	ocs_list_init(&hw->io_timed_wqe, ocs_hw_io_t, wqe_link);
608 	ocs_list_init(&hw->io_port_dnrx, ocs_hw_io_t, dnrx_link);
609 
610 	/* If MRQ not required, Make sure we dont request feature. */
611 	if (hw->config.n_rq == 1) {
612 		hw->sli.config.features.flag.mrqp = FALSE;
613 	}
614 
615 	if (sli_init(&hw->sli)) {
616 		ocs_log_err(hw->os, "SLI failed to initialize\n");
617 		return OCS_HW_RTN_ERROR;
618 	}
619 
620 	/*
621 	 * Enable the auto xfer rdy feature if requested.
622 	 */
623 	hw->auto_xfer_rdy_enabled = FALSE;
624 	if (sli_get_auto_xfer_rdy_capable(&hw->sli) &&
625 	    hw->config.auto_xfer_rdy_size > 0) {
626 		if (hw->config.esoc){
627 			if (ocs_get_property("ramdisc_blocksize", prop_buf, sizeof(prop_buf)) == 0) {
628 				ramdisc_blocksize = ocs_strtoul(prop_buf, 0, 0);
629 			}
630 			written_size = sli_cmd_config_auto_xfer_rdy_hp(&hw->sli, buf, SLI4_BMBX_SIZE, hw->config.auto_xfer_rdy_size, 1, ramdisc_blocksize);
631 		} else {
632 			written_size = sli_cmd_config_auto_xfer_rdy(&hw->sli, buf, SLI4_BMBX_SIZE, hw->config.auto_xfer_rdy_size);
633 		}
634 		if (written_size) {
635 			rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
636 			if (rc != OCS_HW_RTN_SUCCESS) {
637 				ocs_log_err(hw->os, "config auto xfer rdy failed\n");
638 				return rc;
639 			}
640 		}
641 		hw->auto_xfer_rdy_enabled = TRUE;
642 
643 		if (hw->config.auto_xfer_rdy_t10_enable) {
644 			rc = ocs_hw_config_auto_xfer_rdy_t10pi(hw, buf);
645 			if (rc != OCS_HW_RTN_SUCCESS) {
646 				ocs_log_err(hw->os, "set parameters auto xfer rdy T10 PI failed\n");
647 				return rc;
648 			}
649 		}
650 	}
651 
652 	if(hw->sliport_healthcheck) {
653 		rc = ocs_hw_config_sli_port_health_check(hw, 0, 1);
654 		if (rc != OCS_HW_RTN_SUCCESS) {
655 			ocs_log_err(hw->os, "Enabling Sliport Health check failed \n");
656 			return rc;
657 		}
658 	}
659 
660 	/*
661 	 * Set FDT transfer hint, only works on Lancer
662 	 */
663 	if ((hw->sli.if_type == SLI4_IF_TYPE_LANCER_FC_ETH) && (OCS_HW_FDT_XFER_HINT != 0)) {
664 		/*
665 		 * Non-fatal error. In particular, we can disregard failure to set OCS_HW_FDT_XFER_HINT on
666 		 * devices with legacy firmware that do not support OCS_HW_FDT_XFER_HINT feature.
667 		 */
668 		ocs_hw_config_set_fdt_xfer_hint(hw, OCS_HW_FDT_XFER_HINT);
669 	}
670 
671 	/*
672 	 * Verify that we have not exceeded any queue sizes
673 	 */
674 	q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_EQ),
675 					OCS_HW_MAX_NUM_EQ);
676 	if (hw->config.n_eq > q_count) {
677 		ocs_log_err(hw->os, "requested %d EQ but %d allowed\n",
678 			    hw->config.n_eq, q_count);
679 		return OCS_HW_RTN_ERROR;
680 	}
681 
682 	q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_CQ),
683 					OCS_HW_MAX_NUM_CQ);
684 	if (hw->config.n_cq > q_count) {
685 		ocs_log_err(hw->os, "requested %d CQ but %d allowed\n",
686 			    hw->config.n_cq, q_count);
687 		return OCS_HW_RTN_ERROR;
688 	}
689 
690 	q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_MQ),
691 					OCS_HW_MAX_NUM_MQ);
692 	if (hw->config.n_mq > q_count) {
693 		ocs_log_err(hw->os, "requested %d MQ but %d allowed\n",
694 			    hw->config.n_mq, q_count);
695 		return OCS_HW_RTN_ERROR;
696 	}
697 
698 	q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_RQ),
699 					OCS_HW_MAX_NUM_RQ);
700 	if (hw->config.n_rq > q_count) {
701 		ocs_log_err(hw->os, "requested %d RQ but %d allowed\n",
702 			    hw->config.n_rq, q_count);
703 		return OCS_HW_RTN_ERROR;
704 	}
705 
706 	q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_WQ),
707 					OCS_HW_MAX_NUM_WQ);
708 	if (hw->config.n_wq > q_count) {
709 		ocs_log_err(hw->os, "requested %d WQ but %d allowed\n",
710 			    hw->config.n_wq, q_count);
711 		return OCS_HW_RTN_ERROR;
712 	}
713 
714 	/* zero the hashes */
715 	ocs_memset(hw->cq_hash, 0, sizeof(hw->cq_hash));
716 	ocs_log_debug(hw->os, "Max CQs %d, hash size = %d\n",
717 			OCS_HW_MAX_NUM_CQ, OCS_HW_Q_HASH_SIZE);
718 
719 	ocs_memset(hw->rq_hash, 0, sizeof(hw->rq_hash));
720 	ocs_log_debug(hw->os, "Max RQs %d, hash size = %d\n",
721 			OCS_HW_MAX_NUM_RQ, OCS_HW_Q_HASH_SIZE);
722 
723 	ocs_memset(hw->wq_hash, 0, sizeof(hw->wq_hash));
724 	ocs_log_debug(hw->os, "Max WQs %d, hash size = %d\n",
725 			OCS_HW_MAX_NUM_WQ, OCS_HW_Q_HASH_SIZE);
726 
727 	rc = ocs_hw_init_queues(hw, hw->qtop);
728 	if (rc != OCS_HW_RTN_SUCCESS) {
729 		return rc;
730 	}
731 
732 	max_rpi = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_RPI);
733 	i = sli_fc_get_rpi_requirements(&hw->sli, max_rpi);
734 	if (i) {
735 		ocs_dma_t payload_memory;
736 
737 		rc = OCS_HW_RTN_ERROR;
738 
739 		if (hw->rnode_mem.size) {
740 			ocs_dma_free(hw->os, &hw->rnode_mem);
741 		}
742 
743 		if (ocs_dma_alloc(hw->os, &hw->rnode_mem, i, 4096)) {
744 			ocs_log_err(hw->os, "remote node memory allocation fail\n");
745 			return OCS_HW_RTN_NO_MEMORY;
746 		}
747 
748 		payload_memory.size = 0;
749 		if (sli_cmd_fcoe_post_hdr_templates(&hw->sli, buf, SLI4_BMBX_SIZE,
750 					&hw->rnode_mem, UINT16_MAX, &payload_memory)) {
751 			rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
752 
753 			if (payload_memory.size != 0) {
754 				/* The command was non-embedded - need to free the dma buffer */
755 				ocs_dma_free(hw->os, &payload_memory);
756 			}
757 		}
758 
759 		if (rc != OCS_HW_RTN_SUCCESS) {
760 			ocs_log_err(hw->os, "header template registration failed\n");
761 			return rc;
762 		}
763 	}
764 
765 	/* Allocate and post RQ buffers */
766 	rc = ocs_hw_rx_allocate(hw);
767 	if (rc) {
768 		ocs_log_err(hw->os, "rx_allocate failed\n");
769 		return rc;
770 	}
771 
772 	/* Populate hw->seq_free_list */
773 	if (hw->seq_pool == NULL) {
774 		uint32_t count = 0;
775 		uint32_t i;
776 
777 		/* Sum up the total number of RQ entries, to use to allocate the sequence object pool */
778 		for (i = 0; i < hw->hw_rq_count; i++) {
779 			count += hw->hw_rq[i]->entry_count;
780 		}
781 
782 		hw->seq_pool = ocs_array_alloc(hw->os, sizeof(ocs_hw_sequence_t), count);
783 		if (hw->seq_pool == NULL) {
784 			ocs_log_err(hw->os, "malloc seq_pool failed\n");
785 			return OCS_HW_RTN_NO_MEMORY;
786 		}
787 	}
788 
789 	if(ocs_hw_rx_post(hw)) {
790 		ocs_log_err(hw->os, "WARNING - error posting RQ buffers\n");
791 	}
792 
793 	/* Allocate rpi_ref if not previously allocated */
794 	if (hw->rpi_ref == NULL) {
795 		hw->rpi_ref = ocs_malloc(hw->os, max_rpi * sizeof(*hw->rpi_ref),
796 					  OCS_M_ZERO | OCS_M_NOWAIT);
797 		if (hw->rpi_ref == NULL) {
798 			ocs_log_err(hw->os, "rpi_ref allocation failure (%d)\n", i);
799 			return OCS_HW_RTN_NO_MEMORY;
800 		}
801 	}
802 
803 	for (i = 0; i < max_rpi; i ++) {
804 		ocs_atomic_init(&hw->rpi_ref[i].rpi_count, 0);
805 		ocs_atomic_init(&hw->rpi_ref[i].rpi_attached, 0);
806 	}
807 
808 	ocs_memset(hw->domains, 0, sizeof(hw->domains));
809 
810 	/* HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB */
811 	if (hw->workaround.override_fcfi) {
812 		hw->first_domain_idx = -1;
813 	}
814 
815 	ocs_memset(hw->fcf_index_fcfi, 0, sizeof(hw->fcf_index_fcfi));
816 
817 	/* Register a FCFI to allow unsolicited frames to be routed to the driver */
818 	if (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_FC) {
819 		if (hw->hw_mrq_count) {
820 			ocs_log_debug(hw->os, "using REG_FCFI MRQ\n");
821 
822 			rc = ocs_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_FCFI_MODE, 0, 0);
823 			if (rc != OCS_HW_RTN_SUCCESS) {
824 				ocs_log_err(hw->os, "REG_FCFI_MRQ FCFI registration failed\n");
825 				return rc;
826 			}
827 
828 			rc = ocs_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_MRQ_MODE, 0, 0);
829 			if (rc != OCS_HW_RTN_SUCCESS) {
830 				ocs_log_err(hw->os, "REG_FCFI_MRQ MRQ registration failed\n");
831 				return rc;
832 			}
833 		} else {
834 			sli4_cmd_rq_cfg_t rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG];
835 
836 			ocs_log_debug(hw->os, "using REG_FCFI standard\n");
837 
838 			/* Set the filter match/mask values from hw's filter_def values */
839 			for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) {
840 				rq_cfg[i].rq_id = 0xffff;
841 				rq_cfg[i].r_ctl_mask =	(uint8_t)  hw->config.filter_def[i];
842 				rq_cfg[i].r_ctl_match = (uint8_t) (hw->config.filter_def[i] >> 8);
843 				rq_cfg[i].type_mask =	(uint8_t) (hw->config.filter_def[i] >> 16);
844 				rq_cfg[i].type_match =	(uint8_t) (hw->config.filter_def[i] >> 24);
845 			}
846 
847 			/*
848 			 * Update the rq_id's of the FCF configuration (don't update more than the number
849 			 * of rq_cfg elements)
850 			 */
851 			for (i = 0; i < OCS_MIN(hw->hw_rq_count, SLI4_CMD_REG_FCFI_NUM_RQ_CFG); i++) {
852 				hw_rq_t *rq = hw->hw_rq[i];
853 				uint32_t j;
854 				for (j = 0; j < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; j++) {
855 					uint32_t mask = (rq->filter_mask != 0) ? rq->filter_mask : 1;
856 					if (mask & (1U << j)) {
857 						rq_cfg[j].rq_id = rq->hdr->id;
858 						ocs_log_debug(hw->os, "REG_FCFI: filter[%d] %08X -> RQ[%d] id=%d\n",
859 							j, hw->config.filter_def[j], i, rq->hdr->id);
860 					}
861 				}
862 			}
863 
864 			rc = OCS_HW_RTN_ERROR;
865 
866 			if (sli_cmd_reg_fcfi(&hw->sli, buf, SLI4_BMBX_SIZE, 0, rq_cfg, 0)) {
867 				rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
868 			}
869 
870 			if (rc != OCS_HW_RTN_SUCCESS) {
871 				ocs_log_err(hw->os, "FCFI registration failed\n");
872 				return rc;
873 			}
874 			hw->fcf_indicator = ((sli4_cmd_reg_fcfi_t *)buf)->fcfi;
875 		}
876 	}
877 
878 	/*
879 	 * Allocate the WQ request tag pool, if not previously allocated (the request tag value is 16 bits,
880 	 * thus the pool allocation size of 64k)
881 	 */
882 	rc = ocs_hw_reqtag_init(hw);
883 	if (rc) {
884 		ocs_log_err(hw->os, "ocs_pool_alloc hw_wq_callback_t failed: %d\n", rc);
885 		return rc;
886 	}
887 
888 	rc = ocs_hw_setup_io(hw);
889 	if (rc) {
890 		ocs_log_err(hw->os, "IO allocation failure\n");
891 		return rc;
892 	}
893 
894 	rc = ocs_hw_init_io(hw);
895 	if (rc) {
896 		ocs_log_err(hw->os, "IO initialization failure\n");
897 		return rc;
898 	}
899 
900 	ocs_queue_history_init(hw->os, &hw->q_hist);
901 
902 	/* get hw link config; polling, so callback will be called immediately */
903 	hw->linkcfg = OCS_HW_LINKCFG_NA;
904 	ocs_hw_get_linkcfg(hw, OCS_CMD_POLL, ocs_hw_init_linkcfg_cb, hw);
905 
906 	/* if lancer ethernet, ethernet ports need to be enabled */
907 	if ((hw->sli.if_type == SLI4_IF_TYPE_LANCER_FC_ETH) &&
908 	    (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_ETHERNET)) {
909 		if (ocs_hw_set_eth_license(hw, hw->eth_license)) {
910 			/* log warning but continue */
911 			ocs_log_err(hw->os, "Failed to set ethernet license\n");
912 		}
913 	}
914 
915 	/* Set the DIF seed - only for lancer right now */
916 	if (SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli) &&
917 	    ocs_hw_set_dif_seed(hw) != OCS_HW_RTN_SUCCESS) {
918 		ocs_log_err(hw->os, "Failed to set DIF seed value\n");
919 		return rc;
920 	}
921 
922 	/* Set the DIF mode - skyhawk only */
923 	if (SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli) &&
924 	    sli_get_dif_capable(&hw->sli)) {
925 		rc = ocs_hw_set_dif_mode(hw);
926 		if (rc != OCS_HW_RTN_SUCCESS) {
927 			ocs_log_err(hw->os, "Failed to set DIF mode value\n");
928 			return rc;
929 		}
930 	}
931 
932 	/*
933 	 * Arming the EQ allows (e.g.) interrupts when CQ completions write EQ entries
934 	 */
935 	for (i = 0; i < hw->eq_count; i++) {
936 		sli_queue_arm(&hw->sli, &hw->eq[i], TRUE);
937 	}
938 
939 	/*
940 	 * Initialize RQ hash
941 	 */
942 	for (i = 0; i < hw->rq_count; i++) {
943 		ocs_hw_queue_hash_add(hw->rq_hash, hw->rq[i].id, i);
944 	}
945 
946 	/*
947 	 * Initialize WQ hash
948 	 */
949 	for (i = 0; i < hw->wq_count; i++) {
950 		ocs_hw_queue_hash_add(hw->wq_hash, hw->wq[i].id, i);
951 	}
952 
953 	/*
954 	 * Arming the CQ allows (e.g.) MQ completions to write CQ entries
955 	 */
956 	for (i = 0; i < hw->cq_count; i++) {
957 		ocs_hw_queue_hash_add(hw->cq_hash, hw->cq[i].id, i);
958 		sli_queue_arm(&hw->sli, &hw->cq[i], TRUE);
959 	}
960 
961 	/* record the fact that the queues are functional */
962 	hw->state = OCS_HW_STATE_ACTIVE;
963 
964 	/* Note: Must be after the IOs are setup and the state is active*/
965 	if (ocs_hw_rqpair_init(hw)) {
966 		ocs_log_err(hw->os, "WARNING - error initializing RQ pair\n");
967 	}
968 
969 	/* finally kick off periodic timer to check for timed out target WQEs */
970 	if (hw->config.emulate_tgt_wqe_timeout) {
971 		ocs_setup_timer(hw->os, &hw->wqe_timer, target_wqe_timer_cb, hw,
972 				OCS_HW_WQ_TIMER_PERIOD_MS);
973 	}
974 
975 	/*
976 	 * Allocate a HW IOs for send frame.  Allocate one for each Class 1 WQ, or if there
977 	 * are none of those, allocate one for WQ[0]
978 	 */
979 	if ((count = ocs_varray_get_count(hw->wq_class_array[1])) > 0) {
980 		for (i = 0; i < count; i++) {
981 			hw_wq_t *wq = ocs_varray_iter_next(hw->wq_class_array[1]);
982 			wq->send_frame_io = ocs_hw_io_alloc(hw);
983 			if (wq->send_frame_io == NULL) {
984 				ocs_log_err(hw->os, "ocs_hw_io_alloc for send_frame_io failed\n");
985 			}
986 		}
987 	} else {
988 		hw->hw_wq[0]->send_frame_io = ocs_hw_io_alloc(hw);
989 		if (hw->hw_wq[0]->send_frame_io == NULL) {
990 			ocs_log_err(hw->os, "ocs_hw_io_alloc for send_frame_io failed\n");
991 		}
992 	}
993 
994 	/* Initialize send frame frame sequence id */
995 	ocs_atomic_init(&hw->send_frame_seq_id, 0);
996 
997 	/* Initialize watchdog timer if enabled by user */
998 	hw->expiration_logged = 0;
999 	if(hw->watchdog_timeout) {
1000 		if((hw->watchdog_timeout < 1) || (hw->watchdog_timeout > 65534)) {
1001 			ocs_log_err(hw->os, "watchdog_timeout out of range: Valid range is 1 - 65534\n");
1002 		}else if(!ocs_hw_config_watchdog_timer(hw)) {
1003 			ocs_log_info(hw->os, "watchdog timer configured with timeout = %d seconds \n", hw->watchdog_timeout);
1004 		}
1005 	}
1006 
1007 	if (ocs_dma_alloc(hw->os, &hw->domain_dmem, 112, 4)) {
1008 	   ocs_log_err(hw->os, "domain node memory allocation fail\n");
1009 	   return OCS_HW_RTN_NO_MEMORY;
1010 	}
1011 
1012 	if (ocs_dma_alloc(hw->os, &hw->fcf_dmem, OCS_HW_READ_FCF_SIZE, OCS_HW_READ_FCF_SIZE)) {
1013 	   ocs_log_err(hw->os, "domain fcf memory allocation fail\n");
1014 	   return OCS_HW_RTN_NO_MEMORY;
1015 	}
1016 
1017 	if ((0 == hw->loop_map.size) &&	ocs_dma_alloc(hw->os, &hw->loop_map,
1018 				SLI4_MIN_LOOP_MAP_BYTES, 4)) {
1019 		ocs_log_err(hw->os, "Loop dma alloc failed size:%d \n", hw->loop_map.size);
1020 	}
1021 
1022 	return OCS_HW_RTN_SUCCESS;
1023 }
1024 
1025 /**
1026  * @brief Configure Multi-RQ
1027  *
1028  * @param hw	Hardware context allocated by the caller.
1029  * @param mode	1 to set MRQ filters and 0 to set FCFI index
1030  * @param vlanid    valid in mode 0
1031  * @param fcf_index valid in mode 0
1032  *
1033  * @return Returns 0 on success, or a non-zero value on failure.
1034  */
1035 static int32_t
1036 ocs_hw_config_mrq(ocs_hw_t *hw, uint8_t mode, uint16_t vlanid, uint16_t fcf_index)
1037 {
1038 	uint8_t buf[SLI4_BMBX_SIZE], mrq_bitmask = 0;
1039 	hw_rq_t *rq;
1040 	sli4_cmd_reg_fcfi_mrq_t *rsp = NULL;
1041 	uint32_t i, j;
1042 	sli4_cmd_rq_cfg_t rq_filter[SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG];
1043 	int32_t rc;
1044 
1045 	if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE) {
1046 		goto issue_cmd;
1047 	}
1048 
1049 	/* Set the filter match/mask values from hw's filter_def values */
1050 	for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) {
1051 		rq_filter[i].rq_id = 0xffff;
1052 		rq_filter[i].r_ctl_mask  = (uint8_t)  hw->config.filter_def[i];
1053 		rq_filter[i].r_ctl_match = (uint8_t) (hw->config.filter_def[i] >> 8);
1054 		rq_filter[i].type_mask   = (uint8_t) (hw->config.filter_def[i] >> 16);
1055 		rq_filter[i].type_match  = (uint8_t) (hw->config.filter_def[i] >> 24);
1056 	}
1057 
1058 	/* Accumulate counts for each filter type used, build rq_ids[] list */
1059 	for (i = 0; i < hw->hw_rq_count; i++) {
1060 		rq = hw->hw_rq[i];
1061 		for (j = 0; j < SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG; j++) {
1062 			if (rq->filter_mask & (1U << j)) {
1063 				if (rq_filter[j].rq_id != 0xffff) {
1064 					/* Already used. Bailout ifts not RQset case */
1065 					if (!rq->is_mrq || (rq_filter[j].rq_id != rq->base_mrq_id)) {
1066 						ocs_log_err(hw->os, "Wrong queue topology.\n");
1067 						return OCS_HW_RTN_ERROR;
1068 					}
1069 					continue;
1070 				}
1071 
1072 				if (rq->is_mrq) {
1073 					rq_filter[j].rq_id = rq->base_mrq_id;
1074 					mrq_bitmask |= (1U << j);
1075 				} else {
1076 					rq_filter[j].rq_id = rq->hdr->id;
1077 				}
1078 			}
1079 		}
1080 	}
1081 
1082 issue_cmd:
1083 	/* Invoke REG_FCFI_MRQ */
1084 	rc = sli_cmd_reg_fcfi_mrq(&hw->sli,
1085 				 buf,					/* buf */
1086 				 SLI4_BMBX_SIZE,			/* size */
1087 				 mode,					/* mode 1 */
1088 				 fcf_index,				/* fcf_index */
1089 				 vlanid,				/* vlan_id */
1090 				 hw->config.rq_selection_policy,	/* RQ selection policy*/
1091 				 mrq_bitmask,				/* MRQ bitmask */
1092 				 hw->hw_mrq_count,			/* num_mrqs */
1093 				 rq_filter);				/* RQ filter */
1094 	if (rc == 0) {
1095 		ocs_log_err(hw->os, "sli_cmd_reg_fcfi_mrq() failed: %d\n", rc);
1096 		return OCS_HW_RTN_ERROR;
1097 	}
1098 
1099 	rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
1100 
1101 	rsp = (sli4_cmd_reg_fcfi_mrq_t *)buf;
1102 
1103 	if ((rc != OCS_HW_RTN_SUCCESS) || (rsp->hdr.status)) {
1104 		ocs_log_err(hw->os, "FCFI MRQ registration failed. cmd = %x status = %x\n",
1105 			    rsp->hdr.command, rsp->hdr.status);
1106 		return OCS_HW_RTN_ERROR;
1107 	}
1108 
1109 	if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE) {
1110 		hw->fcf_indicator = rsp->fcfi;
1111 	}
1112 	return 0;
1113 }
1114 
1115 /**
1116  * @brief Callback function for getting linkcfg during HW initialization.
1117  *
1118  * @param status Status of the linkcfg get operation.
1119  * @param value Link configuration enum to which the link configuration is set.
1120  * @param arg Callback argument (ocs_hw_t *).
1121  *
1122  * @return None.
1123  */
1124 static void
1125 ocs_hw_init_linkcfg_cb(int32_t status, uintptr_t value, void *arg)
1126 {
1127 	ocs_hw_t *hw = (ocs_hw_t *)arg;
1128 	if (status == 0) {
1129 		hw->linkcfg = (ocs_hw_linkcfg_e)value;
1130 	} else {
1131 		hw->linkcfg = OCS_HW_LINKCFG_NA;
1132 	}
1133 	ocs_log_debug(hw->os, "linkcfg=%d\n", hw->linkcfg);
1134 }
1135 
1136 /**
1137  * @ingroup devInitShutdown
1138  * @brief Tear down the Hardware Abstraction Layer module.
1139  *
1140  * @par Description
1141  * Frees memory structures needed by the device, and shuts down the device. Does
1142  * not free the HW context memory (which is done by the caller).
1143  *
1144  * @param hw Hardware context allocated by the caller.
1145  *
1146  * @return Returns 0 on success, or a non-zero value on failure.
1147  */
1148 ocs_hw_rtn_e
1149 ocs_hw_teardown(ocs_hw_t *hw)
1150 {
1151 	uint32_t	i = 0;
1152 	uint32_t	iters = 10;/*XXX*/
1153 	uint32_t	max_rpi;
1154 	uint32_t destroy_queues;
1155 	uint32_t free_memory;
1156 
1157 	if (!hw) {
1158 		ocs_log_err(NULL, "bad parameter(s) hw=%p\n", hw);
1159 		return OCS_HW_RTN_ERROR;
1160 	}
1161 
1162 	destroy_queues = (hw->state == OCS_HW_STATE_ACTIVE);
1163 	free_memory = (hw->state != OCS_HW_STATE_UNINITIALIZED);
1164 
1165 	/* shutdown target wqe timer */
1166 	shutdown_target_wqe_timer(hw);
1167 
1168 	/* Cancel watchdog timer if enabled */
1169 	if(hw->watchdog_timeout) {
1170 		hw->watchdog_timeout = 0;
1171 		ocs_hw_config_watchdog_timer(hw);
1172 	}
1173 
1174 	/* Cancel Sliport Healthcheck */
1175 	if(hw->sliport_healthcheck) {
1176 		hw->sliport_healthcheck = 0;
1177 		ocs_hw_config_sli_port_health_check(hw, 0, 0);
1178 	}
1179 
1180 	if (hw->state != OCS_HW_STATE_QUEUES_ALLOCATED) {
1181 		hw->state = OCS_HW_STATE_TEARDOWN_IN_PROGRESS;
1182 
1183 		ocs_hw_flush(hw);
1184 
1185 		/* If there are outstanding commands, wait for them to complete */
1186 		while (!ocs_list_empty(&hw->cmd_head) && iters) {
1187 			ocs_udelay(10000);
1188 			ocs_hw_flush(hw);
1189 			iters--;
1190 		}
1191 
1192 		if (ocs_list_empty(&hw->cmd_head)) {
1193 			ocs_log_debug(hw->os, "All commands completed on MQ queue\n");
1194 		} else {
1195 			ocs_log_debug(hw->os, "Some commands still pending on MQ queue\n");
1196 		}
1197 
1198 		/* Cancel any remaining commands */
1199 		ocs_hw_command_cancel(hw);
1200 	} else {
1201 		hw->state = OCS_HW_STATE_TEARDOWN_IN_PROGRESS;
1202 	}
1203 
1204 	ocs_lock_free(&hw->cmd_lock);
1205 
1206 	/* Free unregistered RPI if workaround is in force */
1207 	if (hw->workaround.use_unregistered_rpi) {
1208 		sli_resource_free(&hw->sli, SLI_RSRC_FCOE_RPI, hw->workaround.unregistered_rid);
1209 	}
1210 
1211 	max_rpi = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_RPI);
1212 	if (hw->rpi_ref) {
1213 		for (i = 0; i < max_rpi; i++) {
1214 			if (ocs_atomic_read(&hw->rpi_ref[i].rpi_count)) {
1215 				ocs_log_debug(hw->os, "non-zero ref [%d]=%d\n",
1216 						i, ocs_atomic_read(&hw->rpi_ref[i].rpi_count));
1217 			}
1218 		}
1219 		ocs_free(hw->os, hw->rpi_ref, max_rpi * sizeof(*hw->rpi_ref));
1220 		hw->rpi_ref = NULL;
1221 	}
1222 
1223 	ocs_dma_free(hw->os, &hw->rnode_mem);
1224 
1225 	if (hw->io) {
1226 		for (i = 0; i < hw->config.n_io; i++) {
1227 			if (hw->io[i] && (hw->io[i]->sgl != NULL) &&
1228 			    (hw->io[i]->sgl->virt != NULL)) {
1229 				if(hw->io[i]->is_port_owned) {
1230 					ocs_lock_free(&hw->io[i]->axr_lock);
1231 				}
1232 				ocs_dma_free(hw->os, hw->io[i]->sgl);
1233 			}
1234 			ocs_free(hw->os, hw->io[i], sizeof(ocs_hw_io_t));
1235 			hw->io[i] = NULL;
1236 		}
1237 		ocs_free(hw->os, hw->wqe_buffs, hw->config.n_io * hw->sli.config.wqe_size);
1238 		hw->wqe_buffs = NULL;
1239 		ocs_free(hw->os, hw->io, hw->config.n_io * sizeof(ocs_hw_io_t *));
1240 		hw->io = NULL;
1241 	}
1242 
1243 	ocs_dma_free(hw->os, &hw->xfer_rdy);
1244 	ocs_dma_free(hw->os, &hw->dump_sges);
1245 	ocs_dma_free(hw->os, &hw->loop_map);
1246 
1247 	ocs_lock_free(&hw->io_lock);
1248 	ocs_lock_free(&hw->io_abort_lock);
1249 
1250 	for (i = 0; i < hw->wq_count; i++) {
1251 		sli_queue_free(&hw->sli, &hw->wq[i], destroy_queues, free_memory);
1252 	}
1253 
1254 	for (i = 0; i < hw->rq_count; i++) {
1255 		sli_queue_free(&hw->sli, &hw->rq[i], destroy_queues, free_memory);
1256 	}
1257 
1258 	for (i = 0; i < hw->mq_count; i++) {
1259 		sli_queue_free(&hw->sli, &hw->mq[i], destroy_queues, free_memory);
1260 	}
1261 
1262 	for (i = 0; i < hw->cq_count; i++) {
1263 		sli_queue_free(&hw->sli, &hw->cq[i], destroy_queues, free_memory);
1264 	}
1265 
1266 	for (i = 0; i < hw->eq_count; i++) {
1267 		sli_queue_free(&hw->sli, &hw->eq[i], destroy_queues, free_memory);
1268 	}
1269 
1270 	ocs_hw_qtop_free(hw->qtop);
1271 
1272 	/* Free rq buffers */
1273 	ocs_hw_rx_free(hw);
1274 
1275 	hw_queue_teardown(hw);
1276 
1277 	ocs_hw_rqpair_teardown(hw);
1278 
1279 	if (sli_teardown(&hw->sli)) {
1280 		ocs_log_err(hw->os, "SLI teardown failed\n");
1281 	}
1282 
1283 	ocs_queue_history_free(&hw->q_hist);
1284 
1285 	/* record the fact that the queues are non-functional */
1286 	hw->state = OCS_HW_STATE_UNINITIALIZED;
1287 
1288 	/* free sequence free pool */
1289 	ocs_array_free(hw->seq_pool);
1290 	hw->seq_pool = NULL;
1291 
1292 	/* free hw_wq_callback pool */
1293 	ocs_pool_free(hw->wq_reqtag_pool);
1294 
1295 	ocs_dma_free(hw->os, &hw->domain_dmem);
1296 	ocs_dma_free(hw->os, &hw->fcf_dmem);
1297 	/* Mark HW setup as not having been called */
1298 	hw->hw_setup_called = FALSE;
1299 
1300 	return OCS_HW_RTN_SUCCESS;
1301 }
1302 
1303 ocs_hw_rtn_e
1304 ocs_hw_reset(ocs_hw_t *hw, ocs_hw_reset_e reset)
1305 {
1306 	uint32_t	i;
1307 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
1308 	uint32_t	iters;
1309 	ocs_hw_state_e prev_state = hw->state;
1310 
1311 	if (hw->state != OCS_HW_STATE_ACTIVE) {
1312 		ocs_log_test(hw->os, "HW state %d is not active\n", hw->state);
1313 	}
1314 
1315 	hw->state = OCS_HW_STATE_RESET_IN_PROGRESS;
1316 
1317 	/* shutdown target wqe timer */
1318 	shutdown_target_wqe_timer(hw);
1319 
1320 	ocs_hw_flush(hw);
1321 
1322 	/*
1323 	 * If an mailbox command requiring a DMA is outstanding (i.e. SFP/DDM),
1324 	 * then the FW will UE when the reset is issued. So attempt to complete
1325 	 * all mailbox commands.
1326 	 */
1327 	iters = 10;
1328 	while (!ocs_list_empty(&hw->cmd_head) && iters) {
1329 		ocs_udelay(10000);
1330 		ocs_hw_flush(hw);
1331 		iters--;
1332 	}
1333 
1334 	if (ocs_list_empty(&hw->cmd_head)) {
1335 		ocs_log_debug(hw->os, "All commands completed on MQ queue\n");
1336 	} else {
1337 		ocs_log_debug(hw->os, "Some commands still pending on MQ queue\n");
1338 	}
1339 
1340 	/* Reset the chip */
1341 	switch(reset) {
1342 	case OCS_HW_RESET_FUNCTION:
1343 		ocs_log_debug(hw->os, "issuing function level reset\n");
1344 		if (sli_reset(&hw->sli)) {
1345 			ocs_log_err(hw->os, "sli_reset failed\n");
1346 			rc = OCS_HW_RTN_ERROR;
1347 		}
1348 		break;
1349 	case OCS_HW_RESET_FIRMWARE:
1350 		ocs_log_debug(hw->os, "issuing firmware reset\n");
1351 		if (sli_fw_reset(&hw->sli)) {
1352 			ocs_log_err(hw->os, "sli_soft_reset failed\n");
1353 			rc = OCS_HW_RTN_ERROR;
1354 		}
1355 		/*
1356 		 * Because the FW reset leaves the FW in a non-running state,
1357 		 * follow that with a regular reset.
1358 		 */
1359 		ocs_log_debug(hw->os, "issuing function level reset\n");
1360 		if (sli_reset(&hw->sli)) {
1361 			ocs_log_err(hw->os, "sli_reset failed\n");
1362 			rc = OCS_HW_RTN_ERROR;
1363 		}
1364 		break;
1365 	default:
1366 		ocs_log_test(hw->os, "unknown reset type - no reset performed\n");
1367 		hw->state = prev_state;
1368 		return OCS_HW_RTN_ERROR;
1369 	}
1370 
1371 	/* Not safe to walk command/io lists unless they've been initialized */
1372 	if (prev_state != OCS_HW_STATE_UNINITIALIZED) {
1373 		ocs_hw_command_cancel(hw);
1374 
1375 		/* Clean up the inuse list, the free list and the wait free list */
1376 		ocs_hw_io_cancel(hw);
1377 
1378 		ocs_memset(hw->domains, 0, sizeof(hw->domains));
1379 		ocs_memset(hw->fcf_index_fcfi, 0, sizeof(hw->fcf_index_fcfi));
1380 
1381 		ocs_hw_link_event_init(hw);
1382 
1383 		ocs_lock(&hw->io_lock);
1384 			/* The io lists should be empty, but remove any that didn't get cleaned up. */
1385 			while (!ocs_list_empty(&hw->io_timed_wqe)) {
1386 				ocs_list_remove_head(&hw->io_timed_wqe);
1387 			}
1388 			/* Don't clean up the io_inuse list, the backend will do that when it finishes the IO */
1389 
1390 			while (!ocs_list_empty(&hw->io_free)) {
1391 				ocs_list_remove_head(&hw->io_free);
1392 			}
1393 			while (!ocs_list_empty(&hw->io_wait_free)) {
1394 				ocs_list_remove_head(&hw->io_wait_free);
1395 			}
1396 
1397 			/* Reset the request tag pool, the HW IO request tags are reassigned in ocs_hw_setup_io() */
1398 			ocs_hw_reqtag_reset(hw);
1399 
1400 		ocs_unlock(&hw->io_lock);
1401 	}
1402 
1403 	if (prev_state != OCS_HW_STATE_UNINITIALIZED) {
1404 		for (i = 0; i < hw->wq_count; i++) {
1405 			sli_queue_reset(&hw->sli, &hw->wq[i]);
1406 		}
1407 
1408 		for (i = 0; i < hw->rq_count; i++) {
1409 			sli_queue_reset(&hw->sli, &hw->rq[i]);
1410 		}
1411 
1412 		for (i = 0; i < hw->hw_rq_count; i++) {
1413 			hw_rq_t *rq = hw->hw_rq[i];
1414 			if (rq->rq_tracker != NULL) {
1415 				uint32_t j;
1416 
1417 				for (j = 0; j < rq->entry_count; j++) {
1418 					rq->rq_tracker[j] = NULL;
1419 				}
1420 			}
1421 		}
1422 
1423 		for (i = 0; i < hw->mq_count; i++) {
1424 			sli_queue_reset(&hw->sli, &hw->mq[i]);
1425 		}
1426 
1427 		for (i = 0; i < hw->cq_count; i++) {
1428 			sli_queue_reset(&hw->sli, &hw->cq[i]);
1429 		}
1430 
1431 		for (i = 0; i < hw->eq_count; i++) {
1432 			sli_queue_reset(&hw->sli, &hw->eq[i]);
1433 		}
1434 
1435 		/* Free rq buffers */
1436 		ocs_hw_rx_free(hw);
1437 
1438 		/* Teardown the HW queue topology */
1439 		hw_queue_teardown(hw);
1440 	} else {
1441 		/* Free rq buffers */
1442 		ocs_hw_rx_free(hw);
1443 	}
1444 
1445 	/*
1446 	 * Re-apply the run-time workarounds after clearing the SLI config
1447 	 * fields in sli_reset.
1448 	 */
1449 	ocs_hw_workaround_setup(hw);
1450 	hw->state = OCS_HW_STATE_QUEUES_ALLOCATED;
1451 
1452 	return rc;
1453 }
1454 
1455 int32_t
1456 ocs_hw_get_num_eq(ocs_hw_t *hw)
1457 {
1458 	return hw->eq_count;
1459 }
1460 
1461 static int32_t
1462 ocs_hw_get_fw_timed_out(ocs_hw_t *hw)
1463 {
1464 	/* The error values below are taken from LOWLEVEL_SET_WATCHDOG_TIMER_rev1.pdf
1465 	* No further explanation is given in the document.
1466 	* */
1467 	return (sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_ERROR1) == 0x2 &&
1468 		sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_ERROR2) == 0x10);
1469 }
1470 
1471 ocs_hw_rtn_e
1472 ocs_hw_get(ocs_hw_t *hw, ocs_hw_property_e prop, uint32_t *value)
1473 {
1474 	ocs_hw_rtn_e		rc = OCS_HW_RTN_SUCCESS;
1475 	int32_t			tmp;
1476 
1477 	if (!value) {
1478 		return OCS_HW_RTN_ERROR;
1479 	}
1480 
1481 	*value = 0;
1482 
1483 	switch (prop) {
1484 	case OCS_HW_N_IO:
1485 		*value = hw->config.n_io;
1486 		break;
1487 	case OCS_HW_N_SGL:
1488 		*value = (hw->config.n_sgl - SLI4_SGE_MAX_RESERVED);
1489 		break;
1490 	case OCS_HW_MAX_IO:
1491 		*value = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_XRI);
1492 		break;
1493 	case OCS_HW_MAX_NODES:
1494 		*value = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_RPI);
1495 		break;
1496 	case OCS_HW_MAX_RQ_ENTRIES:
1497 		*value = hw->num_qentries[SLI_QTYPE_RQ];
1498 		break;
1499 	case OCS_HW_RQ_DEFAULT_BUFFER_SIZE:
1500 		*value = hw->config.rq_default_buffer_size;
1501 		break;
1502 	case OCS_HW_AUTO_XFER_RDY_CAPABLE:
1503 		*value = sli_get_auto_xfer_rdy_capable(&hw->sli);
1504 		break;
1505 	case OCS_HW_AUTO_XFER_RDY_XRI_CNT:
1506 		*value = hw->config.auto_xfer_rdy_xri_cnt;
1507 		break;
1508 	case OCS_HW_AUTO_XFER_RDY_SIZE:
1509 		*value = hw->config.auto_xfer_rdy_size;
1510 		break;
1511 	case OCS_HW_AUTO_XFER_RDY_BLK_SIZE:
1512 		switch (hw->config.auto_xfer_rdy_blk_size_chip) {
1513 		case 0:
1514 			*value = 512;
1515 			break;
1516 		case 1:
1517 			*value = 1024;
1518 			break;
1519 		case 2:
1520 			*value = 2048;
1521 			break;
1522 		case 3:
1523 			*value = 4096;
1524 			break;
1525 		case 4:
1526 			*value = 520;
1527 			break;
1528 		default:
1529 			*value = 0;
1530 			rc = OCS_HW_RTN_ERROR;
1531 			break;
1532 		}
1533 		break;
1534 	case OCS_HW_AUTO_XFER_RDY_T10_ENABLE:
1535 		*value = hw->config.auto_xfer_rdy_t10_enable;
1536 		break;
1537 	case OCS_HW_AUTO_XFER_RDY_P_TYPE:
1538 		*value = hw->config.auto_xfer_rdy_p_type;
1539 		break;
1540 	case OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA:
1541 		*value = hw->config.auto_xfer_rdy_ref_tag_is_lba;
1542 		break;
1543 	case OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID:
1544 		*value = hw->config.auto_xfer_rdy_app_tag_valid;
1545 		break;
1546 	case OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE:
1547 		*value = hw->config.auto_xfer_rdy_app_tag_value;
1548 		break;
1549 	case OCS_HW_MAX_SGE:
1550 		*value = sli_get_max_sge(&hw->sli);
1551 		break;
1552 	case OCS_HW_MAX_SGL:
1553 		*value = sli_get_max_sgl(&hw->sli);
1554 		break;
1555 	case OCS_HW_TOPOLOGY:
1556 		/*
1557 		 * Infer link.status based on link.speed.
1558 		 * Report OCS_HW_TOPOLOGY_NONE if the link is down.
1559 		 */
1560 		if (hw->link.speed == 0) {
1561 			*value = OCS_HW_TOPOLOGY_NONE;
1562 			break;
1563 		}
1564 		switch (hw->link.topology) {
1565 		case SLI_LINK_TOPO_NPORT:
1566 			*value = OCS_HW_TOPOLOGY_NPORT;
1567 			break;
1568 		case SLI_LINK_TOPO_LOOP:
1569 			*value = OCS_HW_TOPOLOGY_LOOP;
1570 			break;
1571 		case SLI_LINK_TOPO_NONE:
1572 			*value = OCS_HW_TOPOLOGY_NONE;
1573 			break;
1574 		default:
1575 			ocs_log_test(hw->os, "unsupported topology %#x\n", hw->link.topology);
1576 			rc = OCS_HW_RTN_ERROR;
1577 			break;
1578 		}
1579 		break;
1580 	case OCS_HW_CONFIG_TOPOLOGY:
1581 		*value = hw->config.topology;
1582 		break;
1583 	case OCS_HW_LINK_SPEED:
1584 		*value = hw->link.speed;
1585 		break;
1586 	case OCS_HW_LINK_CONFIG_SPEED:
1587 		switch (hw->config.speed) {
1588 		case FC_LINK_SPEED_10G:
1589 			*value = 10000;
1590 			break;
1591 		case FC_LINK_SPEED_AUTO_16_8_4:
1592 			*value = 0;
1593 			break;
1594 		case FC_LINK_SPEED_2G:
1595 			*value = 2000;
1596 			break;
1597 		case FC_LINK_SPEED_4G:
1598 			*value = 4000;
1599 			break;
1600 		case FC_LINK_SPEED_8G:
1601 			*value = 8000;
1602 			break;
1603 		case FC_LINK_SPEED_16G:
1604 			*value = 16000;
1605 			break;
1606 		case FC_LINK_SPEED_32G:
1607 			*value = 32000;
1608 			break;
1609 		default:
1610 			ocs_log_test(hw->os, "unsupported speed %#x\n", hw->config.speed);
1611 			rc = OCS_HW_RTN_ERROR;
1612 			break;
1613 		}
1614 		break;
1615 	case OCS_HW_IF_TYPE:
1616 		*value = sli_get_if_type(&hw->sli);
1617 		break;
1618 	case OCS_HW_SLI_REV:
1619 		*value = sli_get_sli_rev(&hw->sli);
1620 		break;
1621 	case OCS_HW_SLI_FAMILY:
1622 		*value = sli_get_sli_family(&hw->sli);
1623 		break;
1624 	case OCS_HW_DIF_CAPABLE:
1625 		*value = sli_get_dif_capable(&hw->sli);
1626 		break;
1627 	case OCS_HW_DIF_SEED:
1628 		*value = hw->config.dif_seed;
1629 		break;
1630 	case OCS_HW_DIF_MODE:
1631 		*value = hw->config.dif_mode;
1632 		break;
1633 	case OCS_HW_DIF_MULTI_SEPARATE:
1634 		/* Lancer supports multiple DIF separates */
1635 		if (hw->sli.if_type == SLI4_IF_TYPE_LANCER_FC_ETH) {
1636 			*value = TRUE;
1637 		} else {
1638 			*value = FALSE;
1639 		}
1640 		break;
1641 	case OCS_HW_DUMP_MAX_SIZE:
1642 		*value = hw->dump_size;
1643 		break;
1644 	case OCS_HW_DUMP_READY:
1645 		*value = sli_dump_is_ready(&hw->sli);
1646 		break;
1647 	case OCS_HW_DUMP_PRESENT:
1648 		*value = sli_dump_is_present(&hw->sli);
1649 		break;
1650 	case OCS_HW_RESET_REQUIRED:
1651 		tmp = sli_reset_required(&hw->sli);
1652 		if(tmp < 0) {
1653 			rc = OCS_HW_RTN_ERROR;
1654 		} else {
1655 			*value = tmp;
1656 		}
1657 		break;
1658 	case OCS_HW_FW_ERROR:
1659 		*value = sli_fw_error_status(&hw->sli);
1660 		break;
1661 	case OCS_HW_FW_READY:
1662 		*value = sli_fw_ready(&hw->sli);
1663 		break;
1664 	case OCS_HW_FW_TIMED_OUT:
1665 		*value = ocs_hw_get_fw_timed_out(hw);
1666 		break;
1667 	case OCS_HW_HIGH_LOGIN_MODE:
1668 		*value = sli_get_hlm_capable(&hw->sli);
1669 		break;
1670 	case OCS_HW_PREREGISTER_SGL:
1671 		*value = sli_get_sgl_preregister_required(&hw->sli);
1672 		break;
1673 	case OCS_HW_HW_REV1:
1674 		*value = sli_get_hw_revision(&hw->sli, 0);
1675 		break;
1676 	case OCS_HW_HW_REV2:
1677 		*value = sli_get_hw_revision(&hw->sli, 1);
1678 		break;
1679 	case OCS_HW_HW_REV3:
1680 		*value = sli_get_hw_revision(&hw->sli, 2);
1681 		break;
1682 	case OCS_HW_LINKCFG:
1683 		*value = hw->linkcfg;
1684 		break;
1685 	case OCS_HW_ETH_LICENSE:
1686 		*value = hw->eth_license;
1687 		break;
1688 	case OCS_HW_LINK_MODULE_TYPE:
1689 		*value = sli_get_link_module_type(&hw->sli);
1690 		break;
1691 	case OCS_HW_NUM_CHUTES:
1692 		*value = ocs_hw_get_num_chutes(hw);
1693 		break;
1694 	case OCS_HW_DISABLE_AR_TGT_DIF:
1695 		*value = hw->workaround.disable_ar_tgt_dif;
1696 		break;
1697 	case OCS_HW_EMULATE_I_ONLY_AAB:
1698 		*value = hw->config.i_only_aab;
1699 		break;
1700 	case OCS_HW_EMULATE_TARGET_WQE_TIMEOUT:
1701 		*value = hw->config.emulate_tgt_wqe_timeout;
1702 		break;
1703 	case OCS_HW_VPD_LEN:
1704 		*value = sli_get_vpd_len(&hw->sli);
1705 		break;
1706 	case OCS_HW_SGL_CHAINING_CAPABLE:
1707 		*value = sli_get_is_sgl_chaining_capable(&hw->sli) || hw->workaround.sglc_misreported;
1708 		break;
1709 	case OCS_HW_SGL_CHAINING_ALLOWED:
1710 		/*
1711 		 * SGL Chaining is allowed in the following cases:
1712 		 *   1. Lancer with host SGL Lists
1713 		 *   2. Skyhawk with pre-registered SGL Lists
1714 		 */
1715 		*value = FALSE;
1716 		if ((sli_get_is_sgl_chaining_capable(&hw->sli) || hw->workaround.sglc_misreported) &&
1717 		    !sli_get_sgl_preregister(&hw->sli) &&
1718 		    SLI4_IF_TYPE_LANCER_FC_ETH  == sli_get_if_type(&hw->sli)) {
1719 			*value = TRUE;
1720 		}
1721 
1722 		if ((sli_get_is_sgl_chaining_capable(&hw->sli) || hw->workaround.sglc_misreported) &&
1723 		    sli_get_sgl_preregister(&hw->sli) &&
1724 		    ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) ||
1725 			(SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli)))) {
1726 			*value = TRUE;
1727 		}
1728 		break;
1729 	case OCS_HW_SGL_CHAINING_HOST_ALLOCATED:
1730 		/* Only lancer supports host allocated SGL Chaining buffers. */
1731 		*value = ((sli_get_is_sgl_chaining_capable(&hw->sli) || hw->workaround.sglc_misreported) &&
1732 			  (SLI4_IF_TYPE_LANCER_FC_ETH  == sli_get_if_type(&hw->sli)));
1733 		break;
1734 	case OCS_HW_SEND_FRAME_CAPABLE:
1735 		if (hw->workaround.ignore_send_frame) {
1736 			*value = 0;
1737 		} else {
1738 			/* Only lancer is capable */
1739 			*value = sli_get_if_type(&hw->sli) == SLI4_IF_TYPE_LANCER_FC_ETH;
1740 		}
1741 		break;
1742 	case OCS_HW_RQ_SELECTION_POLICY:
1743 		*value = hw->config.rq_selection_policy;
1744 		break;
1745 	case OCS_HW_RR_QUANTA:
1746 		*value = hw->config.rr_quanta;
1747 		break;
1748 	case OCS_HW_MAX_VPORTS:
1749 		*value = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_VPI);
1750 		break;
1751 	default:
1752 		ocs_log_test(hw->os, "unsupported property %#x\n", prop);
1753 		rc = OCS_HW_RTN_ERROR;
1754 	}
1755 
1756 	return rc;
1757 }
1758 
1759 void *
1760 ocs_hw_get_ptr(ocs_hw_t *hw, ocs_hw_property_e prop)
1761 {
1762 	void	*rc = NULL;
1763 
1764 	switch (prop) {
1765 	case OCS_HW_WWN_NODE:
1766 		rc = sli_get_wwn_node(&hw->sli);
1767 		break;
1768 	case OCS_HW_WWN_PORT:
1769 		rc = sli_get_wwn_port(&hw->sli);
1770 		break;
1771 	case OCS_HW_VPD:
1772 		/* make sure VPD length is non-zero */
1773 		if (sli_get_vpd_len(&hw->sli)) {
1774 			rc = sli_get_vpd(&hw->sli);
1775 		}
1776 		break;
1777 	case OCS_HW_FW_REV:
1778 		rc = sli_get_fw_name(&hw->sli, 0);
1779 		break;
1780 	case OCS_HW_FW_REV2:
1781 		rc = sli_get_fw_name(&hw->sli, 1);
1782 		break;
1783 	case OCS_HW_IPL:
1784 		rc = sli_get_ipl_name(&hw->sli);
1785 		break;
1786 	case OCS_HW_PORTNUM:
1787 		rc = sli_get_portnum(&hw->sli);
1788 		break;
1789 	case OCS_HW_BIOS_VERSION_STRING:
1790 		rc = sli_get_bios_version_string(&hw->sli);
1791 		break;
1792 	default:
1793 		ocs_log_test(hw->os, "unsupported property %#x\n", prop);
1794 	}
1795 
1796 	return rc;
1797 }
1798 
1799 ocs_hw_rtn_e
1800 ocs_hw_set(ocs_hw_t *hw, ocs_hw_property_e prop, uint32_t value)
1801 {
1802 	ocs_hw_rtn_e		rc = OCS_HW_RTN_SUCCESS;
1803 
1804 	switch (prop) {
1805 	case OCS_HW_N_IO:
1806 		if (value > sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_XRI) ||
1807 		    value == 0) {
1808 			ocs_log_test(hw->os, "IO value out of range %d vs %d\n",
1809 					value, sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_XRI));
1810 			rc = OCS_HW_RTN_ERROR;
1811 		} else {
1812 			hw->config.n_io = value;
1813 		}
1814 		break;
1815 	case OCS_HW_N_SGL:
1816 		value += SLI4_SGE_MAX_RESERVED;
1817 		if (value > sli_get_max_sgl(&hw->sli)) {
1818 			ocs_log_test(hw->os, "SGL value out of range %d vs %d\n",
1819 					value, sli_get_max_sgl(&hw->sli));
1820 			rc = OCS_HW_RTN_ERROR;
1821 		} else {
1822 			hw->config.n_sgl = value;
1823 		}
1824 		break;
1825 	case OCS_HW_TOPOLOGY:
1826 		if ((sli_get_medium(&hw->sli) != SLI_LINK_MEDIUM_FC) &&
1827 				(value != OCS_HW_TOPOLOGY_AUTO)) {
1828 			ocs_log_test(hw->os, "unsupported topology=%#x medium=%#x\n",
1829 					value, sli_get_medium(&hw->sli));
1830 			rc = OCS_HW_RTN_ERROR;
1831 			break;
1832 		}
1833 
1834 		switch (value) {
1835 		case OCS_HW_TOPOLOGY_AUTO:
1836 			if (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_FC) {
1837 				sli_set_topology(&hw->sli, SLI4_READ_CFG_TOPO_FC);
1838 			} else {
1839 				sli_set_topology(&hw->sli, SLI4_READ_CFG_TOPO_FCOE);
1840 			}
1841 			break;
1842 		case OCS_HW_TOPOLOGY_NPORT:
1843 			sli_set_topology(&hw->sli, SLI4_READ_CFG_TOPO_FC_DA);
1844 			break;
1845 		case OCS_HW_TOPOLOGY_LOOP:
1846 			sli_set_topology(&hw->sli, SLI4_READ_CFG_TOPO_FC_AL);
1847 			break;
1848 		default:
1849 			ocs_log_test(hw->os, "unsupported topology %#x\n", value);
1850 			rc = OCS_HW_RTN_ERROR;
1851 		}
1852 		hw->config.topology = value;
1853 		break;
1854 	case OCS_HW_LINK_SPEED:
1855 		if (sli_get_medium(&hw->sli) != SLI_LINK_MEDIUM_FC) {
1856 			switch (value) {
1857 			case 0: 	/* Auto-speed negotiation */
1858 			case 10000:	/* FCoE speed */
1859 				hw->config.speed = FC_LINK_SPEED_10G;
1860 				break;
1861 			default:
1862 				ocs_log_test(hw->os, "unsupported speed=%#x medium=%#x\n",
1863 						value, sli_get_medium(&hw->sli));
1864 				rc = OCS_HW_RTN_ERROR;
1865 			}
1866 			break;
1867 		}
1868 
1869 		switch (value) {
1870 		case 0:		/* Auto-speed negotiation */
1871 			hw->config.speed = FC_LINK_SPEED_AUTO_16_8_4;
1872 			break;
1873 		case 2000:	/* FC speeds */
1874 			hw->config.speed = FC_LINK_SPEED_2G;
1875 			break;
1876 		case 4000:
1877 			hw->config.speed = FC_LINK_SPEED_4G;
1878 			break;
1879 		case 8000:
1880 			hw->config.speed = FC_LINK_SPEED_8G;
1881 			break;
1882 		case 16000:
1883 			hw->config.speed = FC_LINK_SPEED_16G;
1884 			break;
1885 		case 32000:
1886 			hw->config.speed = FC_LINK_SPEED_32G;
1887 			break;
1888 		default:
1889 			ocs_log_test(hw->os, "unsupported speed %d\n", value);
1890 			rc = OCS_HW_RTN_ERROR;
1891 		}
1892 		break;
1893 	case OCS_HW_DIF_SEED:
1894 		/* Set the DIF seed - only for lancer right now */
1895 		if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) {
1896 			ocs_log_test(hw->os, "DIF seed not supported for this device\n");
1897 			rc = OCS_HW_RTN_ERROR;
1898 		} else {
1899 			hw->config.dif_seed = value;
1900 		}
1901 		break;
1902 	case OCS_HW_DIF_MODE:
1903 		switch (value) {
1904 		case OCS_HW_DIF_MODE_INLINE:
1905 			/*
1906 			 *  Make sure we support inline DIF.
1907 			 *
1908 			 * Note: Having both bits clear means that we have old
1909 			 *	FW that doesn't set the bits.
1910 			 */
1911 			if (sli_is_dif_inline_capable(&hw->sli)) {
1912 				hw->config.dif_mode = value;
1913 			} else {
1914 				ocs_log_test(hw->os, "chip does not support DIF inline\n");
1915 				rc = OCS_HW_RTN_ERROR;
1916 			}
1917 			break;
1918 		case OCS_HW_DIF_MODE_SEPARATE:
1919 			/* Make sure we support DIF separates. */
1920 			if (sli_is_dif_separate_capable(&hw->sli)) {
1921 				hw->config.dif_mode = value;
1922 			} else {
1923 				ocs_log_test(hw->os, "chip does not support DIF separate\n");
1924 				rc = OCS_HW_RTN_ERROR;
1925 			}
1926 		}
1927 		break;
1928 	case OCS_HW_RQ_PROCESS_LIMIT: {
1929 		hw_rq_t *rq;
1930 		uint32_t i;
1931 
1932 		/* For each hw_rq object, set its parent CQ limit value */
1933 		for (i = 0; i < hw->hw_rq_count; i++) {
1934 			rq = hw->hw_rq[i];
1935 			hw->cq[rq->cq->instance].proc_limit = value;
1936 		}
1937 		break;
1938 	}
1939 	case OCS_HW_RQ_DEFAULT_BUFFER_SIZE:
1940 		hw->config.rq_default_buffer_size = value;
1941 		break;
1942 	case OCS_HW_AUTO_XFER_RDY_XRI_CNT:
1943 		hw->config.auto_xfer_rdy_xri_cnt = value;
1944 		break;
1945 	case OCS_HW_AUTO_XFER_RDY_SIZE:
1946 		hw->config.auto_xfer_rdy_size = value;
1947 		break;
1948 	case OCS_HW_AUTO_XFER_RDY_BLK_SIZE:
1949 		switch (value) {
1950 		case 512:
1951 			hw->config.auto_xfer_rdy_blk_size_chip = 0;
1952 			break;
1953 		case 1024:
1954 			hw->config.auto_xfer_rdy_blk_size_chip = 1;
1955 			break;
1956 		case 2048:
1957 			hw->config.auto_xfer_rdy_blk_size_chip = 2;
1958 			break;
1959 		case 4096:
1960 			hw->config.auto_xfer_rdy_blk_size_chip = 3;
1961 			break;
1962 		case 520:
1963 			hw->config.auto_xfer_rdy_blk_size_chip = 4;
1964 			break;
1965 		default:
1966 			ocs_log_err(hw->os, "Invalid block size %d\n",
1967 				    value);
1968 			rc = OCS_HW_RTN_ERROR;
1969 		}
1970 		break;
1971 	case OCS_HW_AUTO_XFER_RDY_T10_ENABLE:
1972 		hw->config.auto_xfer_rdy_t10_enable = value;
1973 		break;
1974 	case OCS_HW_AUTO_XFER_RDY_P_TYPE:
1975 		hw->config.auto_xfer_rdy_p_type = value;
1976 		break;
1977 	case OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA:
1978 		hw->config.auto_xfer_rdy_ref_tag_is_lba = value;
1979 		break;
1980 	case OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID:
1981 		hw->config.auto_xfer_rdy_app_tag_valid = value;
1982 		break;
1983 	case OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE:
1984 		hw->config.auto_xfer_rdy_app_tag_value = value;
1985 		break;
1986 	case OCS_ESOC:
1987 		hw->config.esoc = value;
1988 		break;
1989 	case OCS_HW_HIGH_LOGIN_MODE:
1990 		rc = sli_set_hlm(&hw->sli, value);
1991 		break;
1992 	case OCS_HW_PREREGISTER_SGL:
1993 		rc = sli_set_sgl_preregister(&hw->sli, value);
1994 		break;
1995 	case OCS_HW_ETH_LICENSE:
1996 		hw->eth_license = value;
1997 		break;
1998 	case OCS_HW_EMULATE_I_ONLY_AAB:
1999 		hw->config.i_only_aab = value;
2000 		break;
2001 	case OCS_HW_EMULATE_TARGET_WQE_TIMEOUT:
2002 		hw->config.emulate_tgt_wqe_timeout = value;
2003 		break;
2004 	case OCS_HW_BOUNCE:
2005 		hw->config.bounce = value;
2006 		break;
2007 	case OCS_HW_RQ_SELECTION_POLICY:
2008 		hw->config.rq_selection_policy = value;
2009 		break;
2010 	case OCS_HW_RR_QUANTA:
2011 		hw->config.rr_quanta = value;
2012 		break;
2013 	default:
2014 		ocs_log_test(hw->os, "unsupported property %#x\n", prop);
2015 		rc = OCS_HW_RTN_ERROR;
2016 	}
2017 
2018 	return rc;
2019 }
2020 
2021 ocs_hw_rtn_e
2022 ocs_hw_set_ptr(ocs_hw_t *hw, ocs_hw_property_e prop, void *value)
2023 {
2024 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
2025 
2026 	switch (prop) {
2027 	case OCS_HW_WAR_VERSION:
2028 		hw->hw_war_version = value;
2029 		break;
2030 	case OCS_HW_FILTER_DEF: {
2031 		char *p = value;
2032 		uint32_t idx = 0;
2033 
2034 		for (idx = 0; idx < ARRAY_SIZE(hw->config.filter_def); idx++) {
2035 			hw->config.filter_def[idx] = 0;
2036 		}
2037 
2038 		for (idx = 0; (idx < ARRAY_SIZE(hw->config.filter_def)) && (p != NULL) && *p; ) {
2039 			hw->config.filter_def[idx++] = ocs_strtoul(p, 0, 0);
2040 			p = ocs_strchr(p, ',');
2041 			if (p != NULL) {
2042 				p++;
2043 			}
2044 		}
2045 
2046 		break;
2047 	}
2048 	default:
2049 		ocs_log_test(hw->os, "unsupported property %#x\n", prop);
2050 		rc = OCS_HW_RTN_ERROR;
2051 		break;
2052 	}
2053 	return rc;
2054 }
2055 /**
2056  * @ingroup interrupt
2057  * @brief Check for the events associated with the interrupt vector.
2058  *
2059  * @param hw Hardware context.
2060  * @param vector Zero-based interrupt vector number.
2061  *
2062  * @return Returns 0 on success, or a non-zero value on failure.
2063  */
2064 int32_t
2065 ocs_hw_event_check(ocs_hw_t *hw, uint32_t vector)
2066 {
2067 	int32_t rc = 0;
2068 
2069 	if (!hw) {
2070 		ocs_log_err(NULL, "HW context NULL?!?\n");
2071 		return -1;
2072 	}
2073 
2074 	if (vector > hw->eq_count) {
2075 		ocs_log_err(hw->os, "vector %d. max %d\n",
2076 				vector, hw->eq_count);
2077 		return -1;
2078 	}
2079 
2080 	/*
2081 	 * The caller should disable interrupts if they wish to prevent us
2082 	 * from processing during a shutdown. The following states are defined:
2083 	 *   OCS_HW_STATE_UNINITIALIZED - No queues allocated
2084 	 *   OCS_HW_STATE_QUEUES_ALLOCATED - The state after a chip reset,
2085 	 *                                    queues are cleared.
2086 	 *   OCS_HW_STATE_ACTIVE - Chip and queues are operational
2087 	 *   OCS_HW_STATE_RESET_IN_PROGRESS - reset, we still want completions
2088 	 *   OCS_HW_STATE_TEARDOWN_IN_PROGRESS - We still want mailbox
2089 	 *                                        completions.
2090 	 */
2091 	if (hw->state != OCS_HW_STATE_UNINITIALIZED) {
2092 		rc = sli_queue_is_empty(&hw->sli, &hw->eq[vector]);
2093 
2094 		/* Re-arm queue if there are no entries */
2095 		if (rc != 0) {
2096 			sli_queue_arm(&hw->sli, &hw->eq[vector], TRUE);
2097 		}
2098 	}
2099 	return rc;
2100 }
2101 
2102 void
2103 ocs_hw_unsol_process_bounce(void *arg)
2104 {
2105 	ocs_hw_sequence_t *seq = arg;
2106 	ocs_hw_t *hw = seq->hw;
2107 
2108 	ocs_hw_assert(hw != NULL);
2109 	ocs_hw_assert(hw->callback.unsolicited != NULL);
2110 
2111 	hw->callback.unsolicited(hw->args.unsolicited, seq);
2112 }
2113 
2114 int32_t
2115 ocs_hw_process(ocs_hw_t *hw, uint32_t vector, uint32_t max_isr_time_msec)
2116 {
2117 	hw_eq_t *eq;
2118 	int32_t rc = 0;
2119 
2120 	CPUTRACE("");
2121 
2122 	/*
2123 	 * The caller should disable interrupts if they wish to prevent us
2124 	 * from processing during a shutdown. The following states are defined:
2125 	 *   OCS_HW_STATE_UNINITIALIZED - No queues allocated
2126 	 *   OCS_HW_STATE_QUEUES_ALLOCATED - The state after a chip reset,
2127 	 *                                    queues are cleared.
2128 	 *   OCS_HW_STATE_ACTIVE - Chip and queues are operational
2129 	 *   OCS_HW_STATE_RESET_IN_PROGRESS - reset, we still want completions
2130 	 *   OCS_HW_STATE_TEARDOWN_IN_PROGRESS - We still want mailbox
2131 	 *                                        completions.
2132 	 */
2133 	if (hw->state == OCS_HW_STATE_UNINITIALIZED) {
2134 		return 0;
2135 	}
2136 
2137 	/* Get pointer to hw_eq_t */
2138 	eq = hw->hw_eq[vector];
2139 
2140 	OCS_STAT(eq->use_count++);
2141 
2142 	rc = ocs_hw_eq_process(hw, eq, max_isr_time_msec);
2143 
2144 	return rc;
2145 }
2146 
2147 /**
2148  * @ingroup interrupt
2149  * @brief Process events associated with an EQ.
2150  *
2151  * @par Description
2152  * Loop termination:
2153  * @n @n Without a mechanism to terminate the completion processing loop, it
2154  * is possible under some workload conditions for the loop to never terminate
2155  * (or at least take longer than the OS is happy to have an interrupt handler
2156  * or kernel thread context hold a CPU without yielding).
2157  * @n @n The approach taken here is to periodically check how much time
2158  * we have been in this
2159  * processing loop, and if we exceed a predetermined time (multiple seconds), the
2160  * loop is terminated, and ocs_hw_process() returns.
2161  *
2162  * @param hw Hardware context.
2163  * @param eq Pointer to HW EQ object.
2164  * @param max_isr_time_msec Maximum time in msec to stay in this function.
2165  *
2166  * @return Returns 0 on success, or a non-zero value on failure.
2167  */
2168 int32_t
2169 ocs_hw_eq_process(ocs_hw_t *hw, hw_eq_t *eq, uint32_t max_isr_time_msec)
2170 {
2171 	uint8_t		eqe[sizeof(sli4_eqe_t)] = { 0 };
2172 	uint32_t	done = FALSE;
2173 	uint32_t	tcheck_count;
2174 	time_t		tstart;
2175 	time_t		telapsed;
2176 
2177 	tcheck_count = OCS_HW_TIMECHECK_ITERATIONS;
2178 	tstart = ocs_msectime();
2179 
2180 	CPUTRACE("");
2181 
2182 	while (!done && !sli_queue_read(&hw->sli, eq->queue, eqe)) {
2183 		uint16_t	cq_id = 0;
2184 		int32_t		rc;
2185 
2186 		rc = sli_eq_parse(&hw->sli, eqe, &cq_id);
2187 		if (unlikely(rc)) {
2188 			if (rc > 0) {
2189 				uint32_t i;
2190 
2191 				/*
2192 				 * Received a sentinel EQE indicating the EQ is full.
2193 				 * Process all CQs
2194 				 */
2195 				for (i = 0; i < hw->cq_count; i++) {
2196 					ocs_hw_cq_process(hw, hw->hw_cq[i]);
2197 				}
2198 				continue;
2199 			} else {
2200 				return rc;
2201 			}
2202 		} else {
2203 			int32_t index = ocs_hw_queue_hash_find(hw->cq_hash, cq_id);
2204 			if (likely(index >= 0)) {
2205 				ocs_hw_cq_process(hw, hw->hw_cq[index]);
2206 			} else {
2207 				ocs_log_err(hw->os, "bad CQ_ID %#06x\n", cq_id);
2208 			}
2209 		}
2210 
2211 		if (eq->queue->n_posted > (eq->queue->posted_limit)) {
2212 			sli_queue_arm(&hw->sli, eq->queue, FALSE);
2213 		}
2214 
2215 		if (tcheck_count && (--tcheck_count == 0)) {
2216 			tcheck_count = OCS_HW_TIMECHECK_ITERATIONS;
2217 			telapsed = ocs_msectime() - tstart;
2218 			if (telapsed >= max_isr_time_msec) {
2219 				done = TRUE;
2220 			}
2221 		}
2222 	}
2223 	sli_queue_eq_arm(&hw->sli, eq->queue, TRUE);
2224 
2225 	return 0;
2226 }
2227 
2228 /**
2229  * @brief Submit queued (pending) mbx commands.
2230  *
2231  * @par Description
2232  * Submit queued mailbox commands.
2233  * --- Assumes that hw->cmd_lock is held ---
2234  *
2235  * @param hw Hardware context.
2236  *
2237  * @return Returns 0 on success, or a negative error code value on failure.
2238  */
2239 static int32_t
2240 ocs_hw_cmd_submit_pending(ocs_hw_t *hw)
2241 {
2242 	ocs_command_ctx_t *ctx;
2243 	int32_t rc = 0;
2244 
2245 	/* Assumes lock held */
2246 
2247 	/* Only submit MQE if there's room */
2248 	while (hw->cmd_head_count < (OCS_HW_MQ_DEPTH - 1)) {
2249 		ctx = ocs_list_remove_head(&hw->cmd_pending);
2250 		if (ctx == NULL) {
2251 			break;
2252 		}
2253 		ocs_list_add_tail(&hw->cmd_head, ctx);
2254 		hw->cmd_head_count++;
2255 		if (sli_queue_write(&hw->sli, hw->mq, ctx->buf) < 0) {
2256 			ocs_log_test(hw->os, "sli_queue_write failed: %d\n", rc);
2257 			rc = -1;
2258 			break;
2259 		}
2260 	}
2261 	return rc;
2262 }
2263 
2264 /**
2265  * @ingroup io
2266  * @brief Issue a SLI command.
2267  *
2268  * @par Description
2269  * Send a mailbox command to the hardware, and either wait for a completion
2270  * (OCS_CMD_POLL) or get an optional asynchronous completion (OCS_CMD_NOWAIT).
2271  *
2272  * @param hw Hardware context.
2273  * @param cmd Buffer containing a formatted command and results.
2274  * @param opts Command options:
2275  *  - OCS_CMD_POLL - Command executes synchronously and busy-waits for the completion.
2276  *  - OCS_CMD_NOWAIT - Command executes asynchronously. Uses callback.
2277  * @param cb Function callback used for asynchronous mode. May be NULL.
2278  * @n Prototype is <tt>(*cb)(void *arg, uint8_t *cmd)</tt>.
2279  * @n @n @b Note: If the
2280  * callback function pointer is NULL, the results of the command are silently
2281  * discarded, allowing this pointer to exist solely on the stack.
2282  * @param arg Argument passed to an asynchronous callback.
2283  *
2284  * @return Returns 0 on success, or a non-zero value on failure.
2285  */
2286 ocs_hw_rtn_e
2287 ocs_hw_command(ocs_hw_t *hw, uint8_t *cmd, uint32_t opts, void *cb, void *arg)
2288 {
2289 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
2290 
2291 	/*
2292 	 * If the chip is in an error state (UE'd) then reject this mailbox
2293 	 *  command.
2294 	 */
2295 	if (sli_fw_error_status(&hw->sli) > 0) {
2296 		uint32_t err1 = sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_ERROR1);
2297 		uint32_t err2 = sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_ERROR2);
2298 		if (hw->expiration_logged == 0 && err1 == 0x2 && err2 == 0x10) {
2299 			hw->expiration_logged = 1;
2300 			ocs_log_crit(hw->os,"Emulex: Heartbeat expired after %d seconds\n",
2301 					hw->watchdog_timeout);
2302 		}
2303 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2304 		ocs_log_crit(hw->os, "status=%#x error1=%#x error2=%#x\n",
2305 			sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_STATUS),
2306 			err1, err2);
2307 
2308 		return OCS_HW_RTN_ERROR;
2309 	}
2310 
2311 	if (OCS_CMD_POLL == opts) {
2312 		ocs_lock(&hw->cmd_lock);
2313 		if (hw->mq->length && !sli_queue_is_empty(&hw->sli, hw->mq)) {
2314 			/*
2315 			 * Can't issue Boot-strap mailbox command with other
2316 			 * mail-queue commands pending as this interaction is
2317 			 * undefined
2318 			 */
2319 			rc = OCS_HW_RTN_ERROR;
2320 		} else {
2321 			void *bmbx = hw->sli.bmbx.virt;
2322 
2323 			ocs_memset(bmbx, 0, SLI4_BMBX_SIZE);
2324 			ocs_memcpy(bmbx, cmd, SLI4_BMBX_SIZE);
2325 
2326 			if (sli_bmbx_command(&hw->sli) == 0) {
2327 				rc = OCS_HW_RTN_SUCCESS;
2328 				ocs_memcpy(cmd, bmbx, SLI4_BMBX_SIZE);
2329 			}
2330 		}
2331 		ocs_unlock(&hw->cmd_lock);
2332 	} else if (OCS_CMD_NOWAIT == opts) {
2333 		ocs_command_ctx_t	*ctx = NULL;
2334 
2335 		ctx = ocs_malloc(hw->os, sizeof(ocs_command_ctx_t), OCS_M_ZERO | OCS_M_NOWAIT);
2336 		if (!ctx) {
2337 			ocs_log_err(hw->os, "can't allocate command context\n");
2338 			return OCS_HW_RTN_NO_RESOURCES;
2339 		}
2340 
2341 		if (hw->state != OCS_HW_STATE_ACTIVE) {
2342 			ocs_log_err(hw->os, "Can't send command, HW state=%d\n", hw->state);
2343 			ocs_free(hw->os, ctx, sizeof(*ctx));
2344 			return OCS_HW_RTN_ERROR;
2345 		}
2346 
2347 		if (cb) {
2348 			ctx->cb = cb;
2349 			ctx->arg = arg;
2350 		}
2351 		ctx->buf = cmd;
2352 		ctx->ctx = hw;
2353 
2354 		ocs_lock(&hw->cmd_lock);
2355 
2356 			/* Add to pending list */
2357 			ocs_list_add_tail(&hw->cmd_pending, ctx);
2358 
2359 			/* Submit as much of the pending list as we can */
2360 			if (ocs_hw_cmd_submit_pending(hw) == 0) {
2361 				rc = OCS_HW_RTN_SUCCESS;
2362 			}
2363 
2364 		ocs_unlock(&hw->cmd_lock);
2365 	}
2366 
2367 	return rc;
2368 }
2369 
2370 /**
2371  * @ingroup devInitShutdown
2372  * @brief Register a callback for the given event.
2373  *
2374  * @param hw Hardware context.
2375  * @param which Event of interest.
2376  * @param func Function to call when the event occurs.
2377  * @param arg Argument passed to the callback function.
2378  *
2379  * @return Returns 0 on success, or a non-zero value on failure.
2380  */
2381 ocs_hw_rtn_e
2382 ocs_hw_callback(ocs_hw_t *hw, ocs_hw_callback_e which, void *func, void *arg)
2383 {
2384 
2385 	if (!hw || !func || (which >= OCS_HW_CB_MAX)) {
2386 		ocs_log_err(NULL, "bad parameter hw=%p which=%#x func=%p\n",
2387 			    hw, which, func);
2388 		return OCS_HW_RTN_ERROR;
2389 	}
2390 
2391 	switch (which) {
2392 	case OCS_HW_CB_DOMAIN:
2393 		hw->callback.domain = func;
2394 		hw->args.domain = arg;
2395 		break;
2396 	case OCS_HW_CB_PORT:
2397 		hw->callback.port = func;
2398 		hw->args.port = arg;
2399 		break;
2400 	case OCS_HW_CB_UNSOLICITED:
2401 		hw->callback.unsolicited = func;
2402 		hw->args.unsolicited = arg;
2403 		break;
2404 	case OCS_HW_CB_REMOTE_NODE:
2405 		hw->callback.rnode = func;
2406 		hw->args.rnode = arg;
2407 		break;
2408 	case OCS_HW_CB_BOUNCE:
2409 		hw->callback.bounce = func;
2410 		hw->args.bounce = arg;
2411 		break;
2412 	default:
2413 		ocs_log_test(hw->os, "unknown callback %#x\n", which);
2414 		return OCS_HW_RTN_ERROR;
2415 	}
2416 
2417 	return OCS_HW_RTN_SUCCESS;
2418 }
2419 
2420 /**
2421  * @ingroup port
2422  * @brief Allocate a port object.
2423  *
2424  * @par Description
2425  * This function allocates a VPI object for the port and stores it in the
2426  * indicator field of the port object.
2427  *
2428  * @param hw Hardware context.
2429  * @param sport SLI port object used to connect to the domain.
2430  * @param domain Domain object associated with this port (may be NULL).
2431  * @param wwpn Port's WWPN in big-endian order, or NULL to use default.
2432  *
2433  * @return Returns 0 on success, or a non-zero value on failure.
2434  */
2435 ocs_hw_rtn_e
2436 ocs_hw_port_alloc(ocs_hw_t *hw, ocs_sli_port_t *sport, ocs_domain_t *domain,
2437 		uint8_t *wwpn)
2438 {
2439 	uint8_t	*cmd = NULL;
2440 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
2441 	uint32_t index;
2442 
2443 	sport->indicator = UINT32_MAX;
2444 	sport->hw = hw;
2445 	sport->ctx.app = sport;
2446 	sport->sm_free_req_pending = 0;
2447 
2448 	/*
2449 	 * Check if the chip is in an error state (UE'd) before proceeding.
2450 	 */
2451 	if (sli_fw_error_status(&hw->sli) > 0) {
2452 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2453 		return OCS_HW_RTN_ERROR;
2454 	}
2455 
2456 	if (wwpn) {
2457 		ocs_memcpy(&sport->sli_wwpn, wwpn, sizeof(sport->sli_wwpn));
2458 	}
2459 
2460 	if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_VPI, &sport->indicator, &index)) {
2461 		ocs_log_err(hw->os, "FCOE_VPI allocation failure\n");
2462 		return OCS_HW_RTN_ERROR;
2463 	}
2464 
2465 	if (domain != NULL) {
2466 		ocs_sm_function_t	next = NULL;
2467 
2468 		cmd = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
2469 		if (!cmd) {
2470 			ocs_log_err(hw->os, "command memory allocation failed\n");
2471 			rc = OCS_HW_RTN_NO_MEMORY;
2472 			goto ocs_hw_port_alloc_out;
2473 		}
2474 
2475 		/* If the WWPN is NULL, fetch the default WWPN and WWNN before
2476 		 * initializing the VPI
2477 		 */
2478 		if (!wwpn) {
2479 			next = __ocs_hw_port_alloc_read_sparm64;
2480 		} else {
2481 			next = __ocs_hw_port_alloc_init_vpi;
2482 		}
2483 
2484 		ocs_sm_transition(&sport->ctx, next, cmd);
2485 	} else if (!wwpn) {
2486 		/* This is the convention for the HW, not SLI */
2487 		ocs_log_test(hw->os, "need WWN for physical port\n");
2488 		rc = OCS_HW_RTN_ERROR;
2489 	} else {
2490 		/* domain NULL and wwpn non-NULL */
2491 		ocs_sm_transition(&sport->ctx, __ocs_hw_port_alloc_init, NULL);
2492 	}
2493 
2494 ocs_hw_port_alloc_out:
2495 	if (rc != OCS_HW_RTN_SUCCESS) {
2496 		ocs_free(hw->os, cmd, SLI4_BMBX_SIZE);
2497 
2498 		sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator);
2499 	}
2500 
2501 	return rc;
2502 }
2503 
2504 /**
2505  * @ingroup port
2506  * @brief Attach a physical/virtual SLI port to a domain.
2507  *
2508  * @par Description
2509  * This function registers a previously-allocated VPI with the
2510  * device.
2511  *
2512  * @param hw Hardware context.
2513  * @param sport Pointer to the SLI port object.
2514  * @param fc_id Fibre Channel ID to associate with this port.
2515  *
2516  * @return Returns OCS_HW_RTN_SUCCESS on success, or an error code on failure.
2517  */
2518 ocs_hw_rtn_e
2519 ocs_hw_port_attach(ocs_hw_t *hw, ocs_sli_port_t *sport, uint32_t fc_id)
2520 {
2521 	uint8_t	*buf = NULL;
2522 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
2523 
2524 	if (!hw || !sport) {
2525 		ocs_log_err(hw ? hw->os : NULL,
2526 			"bad parameter(s) hw=%p sport=%p\n", hw,
2527 			sport);
2528 		return OCS_HW_RTN_ERROR;
2529 	}
2530 
2531 	/*
2532 	 * Check if the chip is in an error state (UE'd) before proceeding.
2533 	 */
2534 	if (sli_fw_error_status(&hw->sli) > 0) {
2535 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2536 		return OCS_HW_RTN_ERROR;
2537 	}
2538 
2539 	buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
2540 	if (!buf) {
2541 		ocs_log_err(hw->os, "no buffer for command\n");
2542 		return OCS_HW_RTN_NO_MEMORY;
2543 	}
2544 
2545 	sport->fc_id = fc_id;
2546 	ocs_sm_post_event(&sport->ctx, OCS_EVT_HW_PORT_REQ_ATTACH, buf);
2547 	return rc;
2548 }
2549 
2550 /**
2551  * @brief Called when the port control command completes.
2552  *
2553  * @par Description
2554  * We only need to free the mailbox command buffer.
2555  *
2556  * @param hw Hardware context.
2557  * @param status Status field from the mbox completion.
2558  * @param mqe Mailbox response structure.
2559  * @param arg Pointer to a callback function that signals the caller that the command is done.
2560  *
2561  * @return Returns 0.
2562  */
2563 static int32_t
2564 ocs_hw_cb_port_control(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
2565 {
2566 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
2567 	return 0;
2568 }
2569 
2570 /**
2571  * @ingroup port
2572  * @brief Control a port (initialize, shutdown, or set link configuration).
2573  *
2574  * @par Description
2575  * This function controls a port depending on the @c ctrl parameter:
2576  * - @b OCS_HW_PORT_INIT -
2577  * Issues the CONFIG_LINK and INIT_LINK commands for the specified port.
2578  * The HW generates an OCS_HW_DOMAIN_FOUND event when the link comes up.
2579  * .
2580  * - @b OCS_HW_PORT_SHUTDOWN -
2581  * Issues the DOWN_LINK command for the specified port.
2582  * The HW generates an OCS_HW_DOMAIN_LOST event when the link is down.
2583  * .
2584  * - @b OCS_HW_PORT_SET_LINK_CONFIG -
2585  * Sets the link configuration.
2586  *
2587  * @param hw Hardware context.
2588  * @param ctrl Specifies the operation:
2589  * - OCS_HW_PORT_INIT
2590  * - OCS_HW_PORT_SHUTDOWN
2591  * - OCS_HW_PORT_SET_LINK_CONFIG
2592  *
2593  * @param value Operation-specific value.
2594  * - OCS_HW_PORT_INIT - Selective reset AL_PA
2595  * - OCS_HW_PORT_SHUTDOWN - N/A
2596  * - OCS_HW_PORT_SET_LINK_CONFIG - An enum #ocs_hw_linkcfg_e value.
2597  *
2598  * @param cb Callback function to invoke the following operation.
2599  * - OCS_HW_PORT_INIT/OCS_HW_PORT_SHUTDOWN - NULL (link events
2600  * are handled by the OCS_HW_CB_DOMAIN callbacks).
2601  * - OCS_HW_PORT_SET_LINK_CONFIG - Invoked after linkcfg mailbox command
2602  * completes.
2603  *
2604  * @param arg Callback argument invoked after the command completes.
2605  * - OCS_HW_PORT_INIT/OCS_HW_PORT_SHUTDOWN - NULL (link events
2606  * are handled by the OCS_HW_CB_DOMAIN callbacks).
2607  * - OCS_HW_PORT_SET_LINK_CONFIG - Invoked after linkcfg mailbox command
2608  * completes.
2609  *
2610  * @return Returns 0 on success, or a non-zero value on failure.
2611  */
2612 ocs_hw_rtn_e
2613 ocs_hw_port_control(ocs_hw_t *hw, ocs_hw_port_e ctrl, uintptr_t value, ocs_hw_port_control_cb_t cb, void *arg)
2614 {
2615 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
2616 
2617 	switch (ctrl) {
2618 	case OCS_HW_PORT_INIT:
2619 	{
2620 		uint8_t	*init_link;
2621 		uint32_t speed = 0;
2622 		uint8_t reset_alpa = 0;
2623 
2624 		if (SLI_LINK_MEDIUM_FC == sli_get_medium(&hw->sli)) {
2625 			uint8_t	*cfg_link;
2626 
2627 			cfg_link = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
2628 			if (cfg_link == NULL) {
2629 				ocs_log_err(hw->os, "no buffer for command\n");
2630 				return OCS_HW_RTN_NO_MEMORY;
2631 			}
2632 
2633 			if (sli_cmd_config_link(&hw->sli, cfg_link, SLI4_BMBX_SIZE)) {
2634 				rc = ocs_hw_command(hw, cfg_link, OCS_CMD_NOWAIT,
2635 							ocs_hw_cb_port_control, NULL);
2636 			}
2637 
2638 			if (rc != OCS_HW_RTN_SUCCESS) {
2639 				ocs_free(hw->os, cfg_link, SLI4_BMBX_SIZE);
2640 				ocs_log_err(hw->os, "CONFIG_LINK failed\n");
2641 				break;
2642 			}
2643 			speed = hw->config.speed;
2644 			reset_alpa = (uint8_t)(value & 0xff);
2645 		} else {
2646 			speed = FC_LINK_SPEED_10G;
2647 		}
2648 
2649 		/*
2650 		 * Bring link up, unless FW version is not supported
2651 		 */
2652 		if (hw->workaround.fw_version_too_low) {
2653 			if (SLI4_IF_TYPE_LANCER_FC_ETH == hw->sli.if_type) {
2654 				ocs_log_err(hw->os, "Cannot bring up link.  Please update firmware to %s or later (current version is %s)\n",
2655 					OCS_FW_VER_STR(OCS_MIN_FW_VER_LANCER), (char *) sli_get_fw_name(&hw->sli,0));
2656 			} else {
2657 				ocs_log_err(hw->os, "Cannot bring up link.  Please update firmware to %s or later (current version is %s)\n",
2658 					OCS_FW_VER_STR(OCS_MIN_FW_VER_SKYHAWK), (char *) sli_get_fw_name(&hw->sli, 0));
2659 			}
2660 
2661 			return OCS_HW_RTN_ERROR;
2662 		}
2663 
2664 		rc = OCS_HW_RTN_ERROR;
2665 
2666 		/* Allocate a new buffer for the init_link command */
2667 		init_link = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
2668 		if (init_link == NULL) {
2669 			ocs_log_err(hw->os, "no buffer for command\n");
2670 			return OCS_HW_RTN_NO_MEMORY;
2671 		}
2672 
2673 		if (sli_cmd_init_link(&hw->sli, init_link, SLI4_BMBX_SIZE, speed, reset_alpa)) {
2674 			rc = ocs_hw_command(hw, init_link, OCS_CMD_NOWAIT,
2675 						ocs_hw_cb_port_control, NULL);
2676 		}
2677 		/* Free buffer on error, since no callback is coming */
2678 		if (rc != OCS_HW_RTN_SUCCESS) {
2679 			ocs_free(hw->os, init_link, SLI4_BMBX_SIZE);
2680 			ocs_log_err(hw->os, "INIT_LINK failed\n");
2681 		}
2682 		break;
2683 	}
2684 	case OCS_HW_PORT_SHUTDOWN:
2685 	{
2686 		uint8_t	*down_link;
2687 
2688 		down_link = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
2689 		if (down_link == NULL) {
2690 			ocs_log_err(hw->os, "no buffer for command\n");
2691 			return OCS_HW_RTN_NO_MEMORY;
2692 		}
2693 		if (sli_cmd_down_link(&hw->sli, down_link, SLI4_BMBX_SIZE)) {
2694 			rc = ocs_hw_command(hw, down_link, OCS_CMD_NOWAIT,
2695 						ocs_hw_cb_port_control, NULL);
2696 		}
2697 		/* Free buffer on error, since no callback is coming */
2698 		if (rc != OCS_HW_RTN_SUCCESS) {
2699 			ocs_free(hw->os, down_link, SLI4_BMBX_SIZE);
2700 			ocs_log_err(hw->os, "DOWN_LINK failed\n");
2701 		}
2702 		break;
2703 	}
2704 	case OCS_HW_PORT_SET_LINK_CONFIG:
2705 		rc = ocs_hw_set_linkcfg(hw, (ocs_hw_linkcfg_e)value, OCS_CMD_NOWAIT, cb, arg);
2706 		break;
2707 	default:
2708 		ocs_log_test(hw->os, "unhandled control %#x\n", ctrl);
2709 		break;
2710 	}
2711 
2712 	return rc;
2713 }
2714 
2715 /**
2716  * @ingroup port
2717  * @brief Free port resources.
2718  *
2719  * @par Description
2720  * Issue the UNREG_VPI command to free the assigned VPI context.
2721  *
2722  * @param hw Hardware context.
2723  * @param sport SLI port object used to connect to the domain.
2724  *
2725  * @return Returns 0 on success, or a non-zero value on failure.
2726  */
2727 ocs_hw_rtn_e
2728 ocs_hw_port_free(ocs_hw_t *hw, ocs_sli_port_t *sport)
2729 {
2730 	ocs_hw_rtn_e	rc = OCS_HW_RTN_SUCCESS;
2731 
2732 	if (!hw || !sport) {
2733 		ocs_log_err(hw ? hw->os : NULL,
2734 			"bad parameter(s) hw=%p sport=%p\n", hw,
2735 			sport);
2736 		return OCS_HW_RTN_ERROR;
2737 	}
2738 
2739 	/*
2740 	 * Check if the chip is in an error state (UE'd) before proceeding.
2741 	 */
2742 	if (sli_fw_error_status(&hw->sli) > 0) {
2743 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2744 		return OCS_HW_RTN_ERROR;
2745 	}
2746 
2747 	ocs_sm_post_event(&sport->ctx, OCS_EVT_HW_PORT_REQ_FREE, NULL);
2748 	return rc;
2749 }
2750 
2751 /**
2752  * @ingroup domain
2753  * @brief Allocate a fabric domain object.
2754  *
2755  * @par Description
2756  * This function starts a series of commands needed to connect to the domain, including
2757  *   - REG_FCFI
2758  *   - INIT_VFI
2759  *   - READ_SPARMS
2760  *   .
2761  * @b Note: Not all SLI interface types use all of the above commands.
2762  * @n @n Upon successful allocation, the HW generates a OCS_HW_DOMAIN_ALLOC_OK
2763  * event. On failure, it generates a OCS_HW_DOMAIN_ALLOC_FAIL event.
2764  *
2765  * @param hw Hardware context.
2766  * @param domain Pointer to the domain object.
2767  * @param fcf FCF index.
2768  * @param vlan VLAN ID.
2769  *
2770  * @return Returns 0 on success, or a non-zero value on failure.
2771  */
2772 ocs_hw_rtn_e
2773 ocs_hw_domain_alloc(ocs_hw_t *hw, ocs_domain_t *domain, uint32_t fcf, uint32_t vlan)
2774 {
2775 	uint8_t		*cmd = NULL;
2776 	uint32_t	index;
2777 
2778 	if (!hw || !domain || !domain->sport) {
2779 		ocs_log_err(NULL, "bad parameter(s) hw=%p domain=%p sport=%p\n",
2780 				hw, domain, domain ? domain->sport : NULL);
2781 		return OCS_HW_RTN_ERROR;
2782 	}
2783 
2784 	/*
2785 	 * Check if the chip is in an error state (UE'd) before proceeding.
2786 	 */
2787 	if (sli_fw_error_status(&hw->sli) > 0) {
2788 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2789 		return OCS_HW_RTN_ERROR;
2790 	}
2791 
2792 	cmd = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
2793 	if (!cmd) {
2794 		ocs_log_err(hw->os, "command memory allocation failed\n");
2795 		return OCS_HW_RTN_NO_MEMORY;
2796 	}
2797 
2798 	domain->dma = hw->domain_dmem;
2799 
2800 	domain->hw = hw;
2801 	domain->sm.app = domain;
2802 	domain->fcf = fcf;
2803 	domain->fcf_indicator = UINT32_MAX;
2804 	domain->vlan_id = vlan;
2805 	domain->indicator = UINT32_MAX;
2806 
2807 	if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_VFI, &domain->indicator, &index)) {
2808 		ocs_log_err(hw->os, "FCOE_VFI allocation failure\n");
2809 
2810 		ocs_free(hw->os, cmd, SLI4_BMBX_SIZE);
2811 
2812 		return OCS_HW_RTN_ERROR;
2813 	}
2814 
2815 	ocs_sm_transition(&domain->sm, __ocs_hw_domain_init, cmd);
2816 	return OCS_HW_RTN_SUCCESS;
2817 }
2818 
2819 /**
2820  * @ingroup domain
2821  * @brief Attach a SLI port to a domain.
2822  *
2823  * @param hw Hardware context.
2824  * @param domain Pointer to the domain object.
2825  * @param fc_id Fibre Channel ID to associate with this port.
2826  *
2827  * @return Returns 0 on success, or a non-zero value on failure.
2828  */
2829 ocs_hw_rtn_e
2830 ocs_hw_domain_attach(ocs_hw_t *hw, ocs_domain_t *domain, uint32_t fc_id)
2831 {
2832 	uint8_t	*buf = NULL;
2833 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
2834 
2835 	if (!hw || !domain) {
2836 		ocs_log_err(hw ? hw->os : NULL,
2837 			"bad parameter(s) hw=%p domain=%p\n",
2838 			hw, domain);
2839 		return OCS_HW_RTN_ERROR;
2840 	}
2841 
2842 	/*
2843 	 * Check if the chip is in an error state (UE'd) before proceeding.
2844 	 */
2845 	if (sli_fw_error_status(&hw->sli) > 0) {
2846 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2847 		return OCS_HW_RTN_ERROR;
2848 	}
2849 
2850 	buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
2851 	if (!buf) {
2852 		ocs_log_err(hw->os, "no buffer for command\n");
2853 		return OCS_HW_RTN_NO_MEMORY;
2854 	}
2855 
2856 	domain->sport->fc_id = fc_id;
2857 	ocs_sm_post_event(&domain->sm, OCS_EVT_HW_DOMAIN_REQ_ATTACH, buf);
2858 	return rc;
2859 }
2860 
2861 /**
2862  * @ingroup domain
2863  * @brief Free a fabric domain object.
2864  *
2865  * @par Description
2866  * Free both the driver and SLI port resources associated with the domain.
2867  *
2868  * @param hw Hardware context.
2869  * @param domain Pointer to the domain object.
2870  *
2871  * @return Returns 0 on success, or a non-zero value on failure.
2872  */
2873 ocs_hw_rtn_e
2874 ocs_hw_domain_free(ocs_hw_t *hw, ocs_domain_t *domain)
2875 {
2876 	ocs_hw_rtn_e	rc = OCS_HW_RTN_SUCCESS;
2877 
2878 	if (!hw || !domain) {
2879 		ocs_log_err(hw ? hw->os : NULL,
2880 			"bad parameter(s) hw=%p domain=%p\n",
2881 			hw, domain);
2882 		return OCS_HW_RTN_ERROR;
2883 	}
2884 
2885 	/*
2886 	 * Check if the chip is in an error state (UE'd) before proceeding.
2887 	 */
2888 	if (sli_fw_error_status(&hw->sli) > 0) {
2889 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2890 		return OCS_HW_RTN_ERROR;
2891 	}
2892 
2893 	ocs_sm_post_event(&domain->sm, OCS_EVT_HW_DOMAIN_REQ_FREE, NULL);
2894 	return rc;
2895 }
2896 
2897 /**
2898  * @ingroup domain
2899  * @brief Free a fabric domain object.
2900  *
2901  * @par Description
2902  * Free the driver resources associated with the domain. The difference between
2903  * this call and ocs_hw_domain_free() is that this call assumes resources no longer
2904  * exist on the SLI port, due to a reset or after some error conditions.
2905  *
2906  * @param hw Hardware context.
2907  * @param domain Pointer to the domain object.
2908  *
2909  * @return Returns 0 on success, or a non-zero value on failure.
2910  */
2911 ocs_hw_rtn_e
2912 ocs_hw_domain_force_free(ocs_hw_t *hw, ocs_domain_t *domain)
2913 {
2914 	if (!hw || !domain) {
2915 		ocs_log_err(NULL, "bad parameter(s) hw=%p domain=%p\n", hw, domain);
2916 		return OCS_HW_RTN_ERROR;
2917 	}
2918 
2919 	sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VFI, domain->indicator);
2920 
2921 	return OCS_HW_RTN_SUCCESS;
2922 }
2923 
2924 /**
2925  * @ingroup node
2926  * @brief Allocate a remote node object.
2927  *
2928  * @param hw Hardware context.
2929  * @param rnode Allocated remote node object to initialize.
2930  * @param fc_addr FC address of the remote node.
2931  * @param sport SLI port used to connect to remote node.
2932  *
2933  * @return Returns 0 on success, or a non-zero value on failure.
2934  */
2935 ocs_hw_rtn_e
2936 ocs_hw_node_alloc(ocs_hw_t *hw, ocs_remote_node_t *rnode, uint32_t fc_addr,
2937 		ocs_sli_port_t *sport)
2938 {
2939 	/* Check for invalid indicator */
2940 	if (UINT32_MAX != rnode->indicator) {
2941 		ocs_log_err(hw->os, "FCOE_RPI allocation failure addr=%#x rpi=%#x\n",
2942 				fc_addr, rnode->indicator);
2943 		return OCS_HW_RTN_ERROR;
2944 	}
2945 
2946 	/*
2947 	 * Check if the chip is in an error state (UE'd) before proceeding.
2948 	 */
2949 	if (sli_fw_error_status(&hw->sli) > 0) {
2950 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2951 		return OCS_HW_RTN_ERROR;
2952 	}
2953 
2954 	/* NULL SLI port indicates an unallocated remote node */
2955 	rnode->sport = NULL;
2956 
2957 	if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_RPI, &rnode->indicator, &rnode->index)) {
2958 		ocs_log_err(hw->os, "FCOE_RPI allocation failure addr=%#x\n",
2959 				fc_addr);
2960 		return OCS_HW_RTN_ERROR;
2961 	}
2962 
2963 	rnode->fc_id = fc_addr;
2964 	rnode->sport = sport;
2965 
2966 	return OCS_HW_RTN_SUCCESS;
2967 }
2968 
2969 /**
2970  * @ingroup node
2971  * @brief Update a remote node object with the remote port's service parameters.
2972  *
2973  * @param hw Hardware context.
2974  * @param rnode Allocated remote node object to initialize.
2975  * @param sparms DMA buffer containing the remote port's service parameters.
2976  *
2977  * @return Returns 0 on success, or a non-zero value on failure.
2978  */
2979 ocs_hw_rtn_e
2980 ocs_hw_node_attach(ocs_hw_t *hw, ocs_remote_node_t *rnode, ocs_dma_t *sparms)
2981 {
2982 	ocs_hw_rtn_e	rc = OCS_HW_RTN_ERROR;
2983 	uint8_t		*buf = NULL;
2984 	uint32_t	count = 0;
2985 
2986 	if (!hw || !rnode || !sparms) {
2987 		ocs_log_err(NULL, "bad parameter(s) hw=%p rnode=%p sparms=%p\n",
2988 			    hw, rnode, sparms);
2989 		return OCS_HW_RTN_ERROR;
2990 	}
2991 
2992 	/*
2993 	 * Check if the chip is in an error state (UE'd) before proceeding.
2994 	 */
2995 	if (sli_fw_error_status(&hw->sli) > 0) {
2996 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
2997 		return OCS_HW_RTN_ERROR;
2998 	}
2999 
3000 	buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
3001 	if (!buf) {
3002 		ocs_log_err(hw->os, "no buffer for command\n");
3003 		return OCS_HW_RTN_NO_MEMORY;
3004 	}
3005 
3006 	/*
3007 	 * If the attach count is non-zero, this RPI has already been registered.
3008 	 * Otherwise, register the RPI
3009 	 */
3010 	if (rnode->index == UINT32_MAX) {
3011 		ocs_log_err(NULL, "bad parameter rnode->index invalid\n");
3012 		ocs_free(hw->os, buf, SLI4_BMBX_SIZE);
3013 		return OCS_HW_RTN_ERROR;
3014 	}
3015 	count = ocs_atomic_add_return(&hw->rpi_ref[rnode->index].rpi_count, 1);
3016 	if (count) {
3017 		/*
3018 		 * Can't attach multiple FC_ID's to a node unless High Login
3019 		 * Mode is enabled
3020 		 */
3021 		if (sli_get_hlm(&hw->sli) == FALSE) {
3022 			ocs_log_test(hw->os, "attach to already attached node HLM=%d count=%d\n",
3023 					sli_get_hlm(&hw->sli), count);
3024 			rc = OCS_HW_RTN_SUCCESS;
3025 		} else {
3026 			rnode->node_group = TRUE;
3027 			rnode->attached = ocs_atomic_read(&hw->rpi_ref[rnode->index].rpi_attached);
3028 			rc = rnode->attached  ? OCS_HW_RTN_SUCCESS_SYNC : OCS_HW_RTN_SUCCESS;
3029 		}
3030 	} else {
3031 		rnode->node_group = FALSE;
3032 
3033 		ocs_display_sparams("", "reg rpi", 0, NULL, sparms->virt);
3034 		if (sli_cmd_reg_rpi(&hw->sli, buf, SLI4_BMBX_SIZE, rnode->fc_id,
3035 					rnode->indicator, rnode->sport->indicator,
3036 					sparms, 0, (hw->auto_xfer_rdy_enabled && hw->config.auto_xfer_rdy_t10_enable))) {
3037 			rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT,
3038 					ocs_hw_cb_node_attach, rnode);
3039 		}
3040 	}
3041 
3042 	if (count || rc) {
3043 		if (rc < OCS_HW_RTN_SUCCESS) {
3044 			ocs_atomic_sub_return(&hw->rpi_ref[rnode->index].rpi_count, 1);
3045 			ocs_log_err(hw->os, "%s error\n", count ? "HLM" : "REG_RPI");
3046 		}
3047 		ocs_free(hw->os, buf, SLI4_BMBX_SIZE);
3048 	}
3049 
3050 	return rc;
3051 }
3052 
3053 /**
3054  * @ingroup node
3055  * @brief Free a remote node resource.
3056  *
3057  * @param hw Hardware context.
3058  * @param rnode Remote node object to free.
3059  *
3060  * @return Returns 0 on success, or a non-zero value on failure.
3061  */
3062 ocs_hw_rtn_e
3063 ocs_hw_node_free_resources(ocs_hw_t *hw, ocs_remote_node_t *rnode)
3064 {
3065 	ocs_hw_rtn_e	rc = OCS_HW_RTN_SUCCESS;
3066 
3067 	if (!hw || !rnode) {
3068 		ocs_log_err(NULL, "bad parameter(s) hw=%p rnode=%p\n",
3069 			    hw, rnode);
3070 		return OCS_HW_RTN_ERROR;
3071 	}
3072 
3073 	if (rnode->sport) {
3074 		if (!rnode->attached) {
3075 			if (rnode->indicator != UINT32_MAX) {
3076 				if (sli_resource_free(&hw->sli, SLI_RSRC_FCOE_RPI, rnode->indicator)) {
3077 					ocs_log_err(hw->os, "FCOE_RPI free failure RPI %d addr=%#x\n",
3078 						    rnode->indicator, rnode->fc_id);
3079 					rc = OCS_HW_RTN_ERROR;
3080 				} else {
3081 					rnode->node_group = FALSE;
3082 					rnode->indicator = UINT32_MAX;
3083 					rnode->index = UINT32_MAX;
3084 					rnode->free_group = FALSE;
3085 				}
3086 			}
3087 		} else {
3088 			ocs_log_err(hw->os, "Error: rnode is still attached\n");
3089 			rc = OCS_HW_RTN_ERROR;
3090 		}
3091 	}
3092 
3093 	return rc;
3094 }
3095 
3096 /**
3097  * @ingroup node
3098  * @brief Free a remote node object.
3099  *
3100  * @param hw Hardware context.
3101  * @param rnode Remote node object to free.
3102  *
3103  * @return Returns 0 on success, or a non-zero value on failure.
3104  */
3105 ocs_hw_rtn_e
3106 ocs_hw_node_detach(ocs_hw_t *hw, ocs_remote_node_t *rnode)
3107 {
3108 	uint8_t	*buf = NULL;
3109 	ocs_hw_rtn_e	rc = OCS_HW_RTN_SUCCESS_SYNC;
3110 	uint32_t	index = UINT32_MAX;
3111 
3112 	if (!hw || !rnode) {
3113 		ocs_log_err(NULL, "bad parameter(s) hw=%p rnode=%p\n",
3114 			    hw, rnode);
3115 		return OCS_HW_RTN_ERROR;
3116 	}
3117 
3118 	/*
3119 	 * Check if the chip is in an error state (UE'd) before proceeding.
3120 	 */
3121 	if (sli_fw_error_status(&hw->sli) > 0) {
3122 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
3123 		return OCS_HW_RTN_ERROR;
3124 	}
3125 
3126 	index = rnode->index;
3127 
3128 	if (rnode->sport) {
3129 		uint32_t	count = 0;
3130 		uint32_t	fc_id;
3131 
3132 		if (!rnode->attached) {
3133 			return OCS_HW_RTN_SUCCESS_SYNC;
3134 		}
3135 
3136 		buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
3137 		if (!buf) {
3138 			ocs_log_err(hw->os, "no buffer for command\n");
3139 			return OCS_HW_RTN_NO_MEMORY;
3140 		}
3141 
3142 		count = ocs_atomic_sub_return(&hw->rpi_ref[index].rpi_count, 1);
3143 
3144 		if (count <= 1) {
3145 			/* There are no other references to this RPI
3146 			 * so unregister it and free the resource. */
3147 			fc_id = UINT32_MAX;
3148 			rnode->node_group = FALSE;
3149 			rnode->free_group = TRUE;
3150 		} else {
3151 			if (sli_get_hlm(&hw->sli) == FALSE) {
3152 				ocs_log_test(hw->os, "Invalid count with HLM disabled, count=%d\n",
3153 						count);
3154 			}
3155 			fc_id = rnode->fc_id & 0x00ffffff;
3156 		}
3157 
3158 		rc = OCS_HW_RTN_ERROR;
3159 
3160 		if (sli_cmd_unreg_rpi(&hw->sli, buf, SLI4_BMBX_SIZE, rnode->indicator,
3161 					SLI_RSRC_FCOE_RPI, fc_id)) {
3162 			rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_node_free, rnode);
3163 		}
3164 
3165 		if (rc != OCS_HW_RTN_SUCCESS) {
3166 			ocs_log_err(hw->os, "UNREG_RPI failed\n");
3167 			ocs_free(hw->os, buf, SLI4_BMBX_SIZE);
3168 			rc = OCS_HW_RTN_ERROR;
3169 		}
3170 	}
3171 
3172 	return rc;
3173 }
3174 
3175 /**
3176  * @ingroup node
3177  * @brief Free all remote node objects.
3178  *
3179  * @param hw Hardware context.
3180  *
3181  * @return Returns 0 on success, or a non-zero value on failure.
3182  */
3183 ocs_hw_rtn_e
3184 ocs_hw_node_free_all(ocs_hw_t *hw)
3185 {
3186 	uint8_t	*buf = NULL;
3187 	ocs_hw_rtn_e	rc = OCS_HW_RTN_ERROR;
3188 
3189 	if (!hw) {
3190 		ocs_log_err(NULL, "bad parameter hw=%p\n", hw);
3191 		return OCS_HW_RTN_ERROR;
3192 	}
3193 
3194 	/*
3195 	 * Check if the chip is in an error state (UE'd) before proceeding.
3196 	 */
3197 	if (sli_fw_error_status(&hw->sli) > 0) {
3198 		ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n");
3199 		return OCS_HW_RTN_ERROR;
3200 	}
3201 
3202 	buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
3203 	if (!buf) {
3204 		ocs_log_err(hw->os, "no buffer for command\n");
3205 		return OCS_HW_RTN_NO_MEMORY;
3206 	}
3207 
3208 	if (sli_cmd_unreg_rpi(&hw->sli, buf, SLI4_BMBX_SIZE, 0xffff,
3209 				SLI_RSRC_FCOE_FCFI, UINT32_MAX)) {
3210 		rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_node_free_all,
3211 				NULL);
3212 	}
3213 
3214 	if (rc != OCS_HW_RTN_SUCCESS) {
3215 		ocs_log_err(hw->os, "UNREG_RPI failed\n");
3216 		ocs_free(hw->os, buf, SLI4_BMBX_SIZE);
3217 		rc = OCS_HW_RTN_ERROR;
3218 	}
3219 
3220 	return rc;
3221 }
3222 
3223 ocs_hw_rtn_e
3224 ocs_hw_node_group_alloc(ocs_hw_t *hw, ocs_remote_node_group_t *ngroup)
3225 {
3226 
3227 	if (!hw || !ngroup) {
3228 		ocs_log_err(NULL, "bad parameter hw=%p ngroup=%p\n",
3229 				hw, ngroup);
3230 		return OCS_HW_RTN_ERROR;
3231 	}
3232 
3233 	if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_RPI, &ngroup->indicator,
3234 				&ngroup->index)) {
3235 		ocs_log_err(hw->os, "FCOE_RPI allocation failure addr=%#x\n",
3236 				ngroup->indicator);
3237 		return OCS_HW_RTN_ERROR;
3238 	}
3239 
3240 	return OCS_HW_RTN_SUCCESS;
3241 }
3242 
3243 ocs_hw_rtn_e
3244 ocs_hw_node_group_attach(ocs_hw_t *hw, ocs_remote_node_group_t *ngroup, ocs_remote_node_t *rnode)
3245 {
3246 
3247 	if (!hw || !ngroup || !rnode) {
3248 		ocs_log_err(NULL, "bad parameter hw=%p ngroup=%p rnode=%p\n",
3249 			    hw, ngroup, rnode);
3250 		return OCS_HW_RTN_ERROR;
3251 	}
3252 
3253 	if (rnode->attached) {
3254 		ocs_log_err(hw->os, "node already attached RPI=%#x addr=%#x\n",
3255 			    rnode->indicator, rnode->fc_id);
3256 		return OCS_HW_RTN_ERROR;
3257 	}
3258 
3259 	if (sli_resource_free(&hw->sli, SLI_RSRC_FCOE_RPI, rnode->indicator)) {
3260 		ocs_log_err(hw->os, "FCOE_RPI free failure RPI=%#x\n",
3261 				rnode->indicator);
3262 		return OCS_HW_RTN_ERROR;
3263 	}
3264 
3265 	rnode->indicator = ngroup->indicator;
3266 	rnode->index = ngroup->index;
3267 
3268 	return OCS_HW_RTN_SUCCESS;
3269 }
3270 
3271 ocs_hw_rtn_e
3272 ocs_hw_node_group_free(ocs_hw_t *hw, ocs_remote_node_group_t *ngroup)
3273 {
3274 	int	ref;
3275 
3276 	if (!hw || !ngroup) {
3277 		ocs_log_err(NULL, "bad parameter hw=%p ngroup=%p\n",
3278 				hw, ngroup);
3279 		return OCS_HW_RTN_ERROR;
3280 	}
3281 
3282 	ref = ocs_atomic_read(&hw->rpi_ref[ngroup->index].rpi_count);
3283 	if (ref) {
3284 		/* Hmmm, the reference count is non-zero */
3285 		ocs_log_debug(hw->os, "node group reference=%d (RPI=%#x)\n",
3286 				ref, ngroup->indicator);
3287 
3288 		if (sli_resource_free(&hw->sli, SLI_RSRC_FCOE_RPI, ngroup->indicator)) {
3289 			ocs_log_err(hw->os, "FCOE_RPI free failure RPI=%#x\n",
3290 				    ngroup->indicator);
3291 			return OCS_HW_RTN_ERROR;
3292 		}
3293 
3294 		ocs_atomic_set(&hw->rpi_ref[ngroup->index].rpi_count, 0);
3295 	}
3296 
3297 	ngroup->indicator = UINT32_MAX;
3298 	ngroup->index = UINT32_MAX;
3299 
3300 	return OCS_HW_RTN_SUCCESS;
3301 }
3302 
3303 /**
3304  * @brief Initialize IO fields on each free call.
3305  *
3306  * @n @b Note: This is done on each free call (as opposed to each
3307  * alloc call) because port-owned XRIs are not
3308  * allocated with ocs_hw_io_alloc() but are freed with this
3309  * function.
3310  *
3311  * @param io Pointer to HW IO.
3312  */
3313 static inline void
3314 ocs_hw_init_free_io(ocs_hw_io_t *io)
3315 {
3316 	/*
3317 	 * Set io->done to NULL, to avoid any callbacks, should
3318 	 * a completion be received for one of these IOs
3319 	 */
3320 	io->done = NULL;
3321 	io->abort_done = NULL;
3322 	io->status_saved = 0;
3323 	io->abort_in_progress = FALSE;
3324 	io->port_owned_abort_count = 0;
3325 	io->rnode = NULL;
3326 	io->type = 0xFFFF;
3327 	io->wq = NULL;
3328 	io->ul_io = NULL;
3329 	io->tgt_wqe_timeout = 0;
3330 }
3331 
3332 /**
3333  * @ingroup io
3334  * @brief Lockless allocate a HW IO object.
3335  *
3336  * @par Description
3337  * Assume that hw->ocs_lock is held. This function is only used if
3338  * use_dif_sec_xri workaround is being used.
3339  *
3340  * @param hw Hardware context.
3341  *
3342  * @return Returns a pointer to an object on success, or NULL on failure.
3343  */
3344 static inline ocs_hw_io_t *
3345 _ocs_hw_io_alloc(ocs_hw_t *hw)
3346 {
3347 	ocs_hw_io_t	*io = NULL;
3348 
3349 	if (NULL != (io = ocs_list_remove_head(&hw->io_free))) {
3350 		ocs_list_add_tail(&hw->io_inuse, io);
3351 		io->state = OCS_HW_IO_STATE_INUSE;
3352 		io->quarantine = FALSE;
3353 		io->quarantine_first_phase = TRUE;
3354 		io->abort_reqtag = UINT32_MAX;
3355 		ocs_ref_init(&io->ref, ocs_hw_io_free_internal, io);
3356 	} else {
3357 		ocs_atomic_add_return(&hw->io_alloc_failed_count, 1);
3358 	}
3359 
3360 	return io;
3361 }
3362 /**
3363  * @ingroup io
3364  * @brief Allocate a HW IO object.
3365  *
3366  * @par Description
3367  * @n @b Note: This function applies to non-port owned XRIs
3368  * only.
3369  *
3370  * @param hw Hardware context.
3371  *
3372  * @return Returns a pointer to an object on success, or NULL on failure.
3373  */
3374 ocs_hw_io_t *
3375 ocs_hw_io_alloc(ocs_hw_t *hw)
3376 {
3377 	ocs_hw_io_t	*io = NULL;
3378 
3379 	ocs_lock(&hw->io_lock);
3380 		io = _ocs_hw_io_alloc(hw);
3381 	ocs_unlock(&hw->io_lock);
3382 
3383 	return io;
3384 }
3385 
3386 /**
3387  * @ingroup io
3388  * @brief Allocate/Activate a port owned HW IO object.
3389  *
3390  * @par Description
3391  * This function is called by the transport layer when an XRI is
3392  * allocated by the SLI-Port. This will "activate" the HW IO
3393  * associated with the XRI received from the SLI-Port to mirror
3394  * the state of the XRI.
3395  * @n @n @b Note: This function applies to port owned XRIs only.
3396  *
3397  * @param hw Hardware context.
3398  * @param io Pointer HW IO to activate/allocate.
3399  *
3400  * @return Returns a pointer to an object on success, or NULL on failure.
3401  */
3402 ocs_hw_io_t *
3403 ocs_hw_io_activate_port_owned(ocs_hw_t *hw, ocs_hw_io_t *io)
3404 {
3405 	if (ocs_ref_read_count(&io->ref) > 0) {
3406 		ocs_log_err(hw->os, "Bad parameter: refcount > 0\n");
3407 		return NULL;
3408 	}
3409 
3410 	if (io->wq != NULL) {
3411 		ocs_log_err(hw->os, "XRI %x already in use\n", io->indicator);
3412 		return NULL;
3413 	}
3414 
3415 	ocs_ref_init(&io->ref, ocs_hw_io_free_port_owned, io);
3416 	io->xbusy = TRUE;
3417 
3418 	return io;
3419 }
3420 
3421 /**
3422  * @ingroup io
3423  * @brief When an IO is freed, depending on the exchange busy flag, and other
3424  * workarounds, move it to the correct list.
3425  *
3426  * @par Description
3427  * @n @b Note: Assumes that the hw->io_lock is held and the item has been removed
3428  * from the busy or wait_free list.
3429  *
3430  * @param hw Hardware context.
3431  * @param io Pointer to the IO object to move.
3432  */
3433 static void
3434 ocs_hw_io_free_move_correct_list(ocs_hw_t *hw, ocs_hw_io_t *io)
3435 {
3436 	if (io->xbusy) {
3437 		/* add to wait_free list and wait for XRI_ABORTED CQEs to clean up */
3438 		ocs_list_add_tail(&hw->io_wait_free, io);
3439 		io->state = OCS_HW_IO_STATE_WAIT_FREE;
3440 	} else {
3441 		/* IO not busy, add to free list */
3442 		ocs_list_add_tail(&hw->io_free, io);
3443 		io->state = OCS_HW_IO_STATE_FREE;
3444 	}
3445 
3446 	/* BZ 161832 workaround */
3447 	if (hw->workaround.use_dif_sec_xri) {
3448 		ocs_hw_check_sec_hio_list(hw);
3449 	}
3450 }
3451 
3452 /**
3453  * @ingroup io
3454  * @brief Free a HW IO object. Perform cleanup common to
3455  * port and host-owned IOs.
3456  *
3457  * @param hw Hardware context.
3458  * @param io Pointer to the HW IO object.
3459  */
3460 static inline void
3461 ocs_hw_io_free_common(ocs_hw_t *hw, ocs_hw_io_t *io)
3462 {
3463 	/* initialize IO fields */
3464 	ocs_hw_init_free_io(io);
3465 
3466 	/* Restore default SGL */
3467 	ocs_hw_io_restore_sgl(hw, io);
3468 }
3469 
3470 /**
3471  * @ingroup io
3472  * @brief Free a HW IO object associated with a port-owned XRI.
3473  *
3474  * @param arg Pointer to the HW IO object.
3475  */
3476 static void
3477 ocs_hw_io_free_port_owned(void *arg)
3478 {
3479 	ocs_hw_io_t *io = (ocs_hw_io_t *)arg;
3480 	ocs_hw_t *hw = io->hw;
3481 
3482 	/*
3483 	 * For auto xfer rdy, if the dnrx bit is set, then add it to the list of XRIs
3484 	 * waiting for buffers.
3485 	 */
3486 	if (io->auto_xfer_rdy_dnrx) {
3487 		ocs_lock(&hw->io_lock);
3488 			/* take a reference count because we still own the IO until the buffer is posted */
3489 			ocs_ref_init(&io->ref, ocs_hw_io_free_port_owned, io);
3490 			ocs_list_add_tail(&hw->io_port_dnrx, io);
3491 		ocs_unlock(&hw->io_lock);
3492 	}
3493 
3494 	/* perform common cleanup */
3495 	ocs_hw_io_free_common(hw, io);
3496 }
3497 
3498 /**
3499  * @ingroup io
3500  * @brief Free a previously-allocated HW IO object. Called when
3501  * IO refcount goes to zero (host-owned IOs only).
3502  *
3503  * @param arg Pointer to the HW IO object.
3504  */
3505 static void
3506 ocs_hw_io_free_internal(void *arg)
3507 {
3508 	ocs_hw_io_t *io = (ocs_hw_io_t *)arg;
3509 	ocs_hw_t *hw = io->hw;
3510 
3511 	/* perform common cleanup */
3512 	ocs_hw_io_free_common(hw, io);
3513 
3514 	ocs_lock(&hw->io_lock);
3515 		/* remove from in-use list */
3516 		ocs_list_remove(&hw->io_inuse, io);
3517 		ocs_hw_io_free_move_correct_list(hw, io);
3518 	ocs_unlock(&hw->io_lock);
3519 }
3520 
3521 /**
3522  * @ingroup io
3523  * @brief Free a previously-allocated HW IO object.
3524  *
3525  * @par Description
3526  * @n @b Note: This function applies to port and host owned XRIs.
3527  *
3528  * @param hw Hardware context.
3529  * @param io Pointer to the HW IO object.
3530  *
3531  * @return Returns a non-zero value if HW IO was freed, 0 if references
3532  * on the IO still exist, or a negative value if an error occurred.
3533  */
3534 int32_t
3535 ocs_hw_io_free(ocs_hw_t *hw, ocs_hw_io_t *io)
3536 {
3537 	/* just put refcount */
3538 	if (ocs_ref_read_count(&io->ref) <= 0) {
3539 		ocs_log_err(hw->os, "Bad parameter: refcount <= 0 xri=%x tag=%x\n",
3540 			    io->indicator, io->reqtag);
3541 		return -1;
3542 	}
3543 
3544 	return ocs_ref_put(&io->ref); /* ocs_ref_get(): ocs_hw_io_alloc() */
3545 }
3546 
3547 /**
3548  * @ingroup io
3549  * @brief Check if given HW IO is in-use
3550  *
3551  * @par Description
3552  * This function returns TRUE if the given HW IO has been
3553  * allocated and is in-use, and FALSE otherwise. It applies to
3554  * port and host owned XRIs.
3555  *
3556  * @param hw Hardware context.
3557  * @param io Pointer to the HW IO object.
3558  *
3559  * @return TRUE if an IO is in use, or FALSE otherwise.
3560  */
3561 uint8_t
3562 ocs_hw_io_inuse(ocs_hw_t *hw, ocs_hw_io_t *io)
3563 {
3564 	return (ocs_ref_read_count(&io->ref) > 0);
3565 }
3566 
3567 /**
3568  * @brief Write a HW IO to a work queue.
3569  *
3570  * @par Description
3571  * A HW IO is written to a work queue.
3572  *
3573  * @param wq Pointer to work queue.
3574  * @param wqe Pointer to WQ entry.
3575  *
3576  * @n @b Note: Assumes the SLI-4 queue lock is held.
3577  *
3578  * @return Returns 0 on success, or a negative error code value on failure.
3579  */
3580 static int32_t
3581 _hw_wq_write(hw_wq_t *wq, ocs_hw_wqe_t *wqe)
3582 {
3583 	int32_t rc;
3584 	int32_t queue_rc;
3585 
3586 	/* Every so often, set the wqec bit to generate comsummed completions */
3587 	if (wq->wqec_count) {
3588 		wq->wqec_count--;
3589 	}
3590 	if (wq->wqec_count == 0) {
3591 		sli4_generic_wqe_t *genwqe = (void*)wqe->wqebuf;
3592 		genwqe->wqec = 1;
3593 		wq->wqec_count = wq->wqec_set_count;
3594 	}
3595 
3596 	/* Decrement WQ free count */
3597 	wq->free_count--;
3598 
3599 	queue_rc = _sli_queue_write(&wq->hw->sli, wq->queue, wqe->wqebuf);
3600 
3601 	if (queue_rc < 0) {
3602 		rc = -1;
3603 	} else {
3604 		rc = 0;
3605 		ocs_queue_history_wq(&wq->hw->q_hist, (void *) wqe->wqebuf, wq->queue->id, queue_rc);
3606 	}
3607 
3608 	return rc;
3609 }
3610 
3611 /**
3612  * @brief Write a HW IO to a work queue.
3613  *
3614  * @par Description
3615  * A HW IO is written to a work queue.
3616  *
3617  * @param wq Pointer to work queue.
3618  * @param wqe Pointer to WQE entry.
3619  *
3620  * @n @b Note: Takes the SLI-4 queue lock.
3621  *
3622  * @return Returns 0 on success, or a negative error code value on failure.
3623  */
3624 int32_t
3625 hw_wq_write(hw_wq_t *wq, ocs_hw_wqe_t *wqe)
3626 {
3627 	int32_t rc = 0;
3628 
3629 	sli_queue_lock(wq->queue);
3630 		if ( ! ocs_list_empty(&wq->pending_list)) {
3631 			ocs_list_add_tail(&wq->pending_list, wqe);
3632 			OCS_STAT(wq->wq_pending_count++;)
3633 			while ((wq->free_count > 0) && ((wqe = ocs_list_remove_head(&wq->pending_list)) != NULL)) {
3634 				rc = _hw_wq_write(wq, wqe);
3635 				if (rc < 0) {
3636 					break;
3637 				}
3638 				if (wqe->abort_wqe_submit_needed) {
3639 					wqe->abort_wqe_submit_needed = 0;
3640 					sli_abort_wqe(&wq->hw->sli, wqe->wqebuf, wq->hw->sli.config.wqe_size, SLI_ABORT_XRI,
3641 							wqe->send_abts, wqe->id, 0, wqe->abort_reqtag, SLI4_CQ_DEFAULT );
3642 					ocs_list_add_tail(&wq->pending_list, wqe);
3643 					OCS_STAT(wq->wq_pending_count++;)
3644 				}
3645 			}
3646 		} else {
3647 			if (wq->free_count > 0) {
3648 				rc = _hw_wq_write(wq, wqe);
3649 			} else {
3650 				ocs_list_add_tail(&wq->pending_list, wqe);
3651 				OCS_STAT(wq->wq_pending_count++;)
3652 			}
3653 		}
3654 
3655 	sli_queue_unlock(wq->queue);
3656 
3657 	return rc;
3658 
3659 }
3660 
3661 /**
3662  * @brief Update free count and submit any pending HW IOs
3663  *
3664  * @par Description
3665  * The WQ free count is updated, and any pending HW IOs are submitted that
3666  * will fit in the queue.
3667  *
3668  * @param wq Pointer to work queue.
3669  * @param update_free_count Value added to WQs free count.
3670  *
3671  * @return None.
3672  */
3673 static void
3674 hw_wq_submit_pending(hw_wq_t *wq, uint32_t update_free_count)
3675 {
3676 	ocs_hw_wqe_t *wqe;
3677 
3678 	sli_queue_lock(wq->queue);
3679 
3680 		/* Update free count with value passed in */
3681 		wq->free_count += update_free_count;
3682 
3683 		while ((wq->free_count > 0) && ((wqe = ocs_list_remove_head(&wq->pending_list)) != NULL)) {
3684 			_hw_wq_write(wq, wqe);
3685 
3686 			if (wqe->abort_wqe_submit_needed) {
3687 				wqe->abort_wqe_submit_needed = 0;
3688 				sli_abort_wqe(&wq->hw->sli, wqe->wqebuf, wq->hw->sli.config.wqe_size, SLI_ABORT_XRI,
3689 						wqe->send_abts, wqe->id, 0, wqe->abort_reqtag, SLI4_CQ_DEFAULT);
3690 				ocs_list_add_tail(&wq->pending_list, wqe);
3691 				OCS_STAT(wq->wq_pending_count++;)
3692 			}
3693 		}
3694 
3695 	sli_queue_unlock(wq->queue);
3696 }
3697 
3698 /**
3699  * @brief Check to see if there are any BZ 161832 workaround waiting IOs
3700  *
3701  * @par Description
3702  * Checks hw->sec_hio_wait_list, if an IO is waiting for a HW IO, then try
3703  * to allocate a secondary HW io, and dispatch it.
3704  *
3705  * @n @b Note: hw->io_lock MUST be taken when called.
3706  *
3707  * @param hw pointer to HW object
3708  *
3709  * @return none
3710  */
3711 static void
3712 ocs_hw_check_sec_hio_list(ocs_hw_t *hw)
3713 {
3714 	ocs_hw_io_t *io;
3715 	ocs_hw_io_t *sec_io;
3716 	int rc = 0;
3717 
3718 	while (!ocs_list_empty(&hw->sec_hio_wait_list)) {
3719 		uint16_t flags;
3720 
3721 		sec_io = _ocs_hw_io_alloc(hw);
3722 		if (sec_io == NULL) {
3723 			break;
3724 		}
3725 
3726 		io = ocs_list_remove_head(&hw->sec_hio_wait_list);
3727 		ocs_list_add_tail(&hw->io_inuse, io);
3728 		io->state = OCS_HW_IO_STATE_INUSE;
3729 		io->sec_hio = sec_io;
3730 
3731 		/* mark secondary XRI for second and subsequent data phase as quarantine */
3732 		if (io->xbusy) {
3733 			sec_io->quarantine = TRUE;
3734 		}
3735 
3736 		flags = io->sec_iparam.fcp_tgt.flags;
3737 		if (io->xbusy) {
3738 			flags |= SLI4_IO_CONTINUATION;
3739 		} else {
3740 			flags &= ~SLI4_IO_CONTINUATION;
3741 		}
3742 
3743 		io->tgt_wqe_timeout = io->sec_iparam.fcp_tgt.timeout;
3744 
3745 		/* Complete (continue) TRECV IO */
3746 		if (io->xbusy) {
3747 			if (sli_fcp_cont_treceive64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl,
3748 				io->first_data_sge,
3749 				io->sec_iparam.fcp_tgt.offset, io->sec_len, io->indicator, io->sec_hio->indicator,
3750 				io->reqtag, SLI4_CQ_DEFAULT,
3751 				io->sec_iparam.fcp_tgt.ox_id, io->rnode->indicator, io->rnode,
3752 				flags,
3753 				io->sec_iparam.fcp_tgt.dif_oper, io->sec_iparam.fcp_tgt.blk_size, io->sec_iparam.fcp_tgt.cs_ctl, io->sec_iparam.fcp_tgt.app_id)) {
3754 					ocs_log_test(hw->os, "TRECEIVE WQE error\n");
3755 					break;
3756 			}
3757 		} else {
3758 			if (sli_fcp_treceive64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl,
3759 				io->first_data_sge,
3760 				io->sec_iparam.fcp_tgt.offset, io->sec_len, io->indicator,
3761 				io->reqtag, SLI4_CQ_DEFAULT,
3762 				io->sec_iparam.fcp_tgt.ox_id, io->rnode->indicator, io->rnode,
3763 				flags,
3764 				io->sec_iparam.fcp_tgt.dif_oper, io->sec_iparam.fcp_tgt.blk_size,
3765 				io->sec_iparam.fcp_tgt.cs_ctl, io->sec_iparam.fcp_tgt.app_id)) {
3766 					ocs_log_test(hw->os, "TRECEIVE WQE error\n");
3767 					break;
3768 			}
3769 		}
3770 
3771 		if (io->wq == NULL) {
3772 			io->wq = ocs_hw_queue_next_wq(hw, io);
3773 			ocs_hw_assert(io->wq != NULL);
3774 		}
3775 		io->xbusy = TRUE;
3776 
3777 		/*
3778 		 * Add IO to active io wqe list before submitting, in case the
3779 		 * wcqe processing preempts this thread.
3780 		 */
3781 		ocs_hw_add_io_timed_wqe(hw, io);
3782 		rc = hw_wq_write(io->wq, &io->wqe);
3783 		if (rc >= 0) {
3784 			/* non-negative return is success */
3785 			rc = 0;
3786 		} else {
3787 			/* failed to write wqe, remove from active wqe list */
3788 			ocs_log_err(hw->os, "sli_queue_write failed: %d\n", rc);
3789 			io->xbusy = FALSE;
3790 			ocs_hw_remove_io_timed_wqe(hw, io);
3791 		}
3792 	}
3793 }
3794 
3795 /**
3796  * @ingroup io
3797  * @brief Send a Single Request/Response Sequence (SRRS).
3798  *
3799  * @par Description
3800  * This routine supports communication sequences consisting of a single
3801  * request and single response between two endpoints. Examples include:
3802  *  - Sending an ELS request.
3803  *  - Sending an ELS response - To send an ELS reponse, the caller must provide
3804  * the OX_ID from the received request.
3805  *  - Sending a FC Common Transport (FC-CT) request - To send a FC-CT request,
3806  * the caller must provide the R_CTL, TYPE, and DF_CTL
3807  * values to place in the FC frame header.
3808  *  .
3809  * @n @b Note: The caller is expected to provide both send and receive
3810  * buffers for requests. In the case of sending a response, no receive buffer
3811  * is necessary and the caller may pass in a NULL pointer.
3812  *
3813  * @param hw Hardware context.
3814  * @param type Type of sequence (ELS request/response, FC-CT).
3815  * @param io Previously-allocated HW IO object.
3816  * @param send DMA memory holding data to send (for example, ELS request, BLS response).
3817  * @param len Length, in bytes, of data to send.
3818  * @param receive Optional DMA memory to hold a response.
3819  * @param rnode Destination of data (that is, a remote node).
3820  * @param iparam IO parameters (ELS response and FC-CT).
3821  * @param cb Function call upon completion of sending the data (may be NULL).
3822  * @param arg Argument to pass to IO completion function.
3823  *
3824  * @return Returns 0 on success, or a non-zero on failure.
3825  */
3826 ocs_hw_rtn_e
3827 ocs_hw_srrs_send(ocs_hw_t *hw, ocs_hw_io_type_e type, ocs_hw_io_t *io,
3828 		  ocs_dma_t *send, uint32_t len, ocs_dma_t *receive,
3829 		  ocs_remote_node_t *rnode, ocs_hw_io_param_t *iparam,
3830 		  ocs_hw_srrs_cb_t cb, void *arg)
3831 {
3832 	sli4_sge_t	*sge = NULL;
3833 	ocs_hw_rtn_e	rc = OCS_HW_RTN_SUCCESS;
3834 	uint16_t	local_flags = 0;
3835 
3836 	if (!hw || !io || !rnode || !iparam) {
3837 		ocs_log_err(NULL, "bad parm hw=%p io=%p send=%p receive=%p rnode=%p iparam=%p\n",
3838 			    hw, io, send, receive, rnode, iparam);
3839 		return OCS_HW_RTN_ERROR;
3840 	}
3841 
3842 	if (hw->state != OCS_HW_STATE_ACTIVE) {
3843 		ocs_log_test(hw->os, "cannot send SRRS, HW state=%d\n", hw->state);
3844 		return OCS_HW_RTN_ERROR;
3845 	}
3846 
3847 	if (ocs_hw_is_xri_port_owned(hw, io->indicator)) {
3848 		/* We must set the XC bit for port owned XRIs */
3849 		local_flags |= SLI4_IO_CONTINUATION;
3850 	}
3851 	io->rnode = rnode;
3852 	io->type  = type;
3853 	io->done = cb;
3854 	io->arg  = arg;
3855 
3856 	sge = io->sgl->virt;
3857 
3858 	/* clear both SGE */
3859 	ocs_memset(io->sgl->virt, 0, 2 * sizeof(sli4_sge_t));
3860 
3861 	if (send) {
3862 		sge[0].buffer_address_high = ocs_addr32_hi(send->phys);
3863 		sge[0].buffer_address_low  = ocs_addr32_lo(send->phys);
3864 		sge[0].sge_type = SLI4_SGE_TYPE_DATA;
3865 		sge[0].buffer_length = len;
3866 	}
3867 
3868 	if ((OCS_HW_ELS_REQ == type) || (OCS_HW_FC_CT == type)) {
3869 		sge[1].buffer_address_high = ocs_addr32_hi(receive->phys);
3870 		sge[1].buffer_address_low  = ocs_addr32_lo(receive->phys);
3871 		sge[1].sge_type = SLI4_SGE_TYPE_DATA;
3872 		sge[1].buffer_length = receive->size;
3873 		sge[1].last = TRUE;
3874 	} else {
3875 		sge[0].last = TRUE;
3876 	}
3877 
3878 	switch (type) {
3879 	case OCS_HW_ELS_REQ:
3880 		if ( (!send) || sli_els_request64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, io->sgl,
3881 							*((uint8_t *)(send->virt)), /* req_type */
3882 							len, receive->size,
3883 							iparam->els.timeout, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rnode)) {
3884 			ocs_log_err(hw->os, "REQ WQE error\n");
3885 			rc = OCS_HW_RTN_ERROR;
3886 		}
3887 		break;
3888 	case OCS_HW_ELS_RSP:
3889 		if ( (!send) || sli_xmit_els_rsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, send, len,
3890 					   io->indicator, io->reqtag, SLI4_CQ_DEFAULT,
3891 					   iparam->els.ox_id,
3892 							rnode, local_flags, UINT32_MAX)) {
3893 			ocs_log_err(hw->os, "RSP WQE error\n");
3894 			rc = OCS_HW_RTN_ERROR;
3895 		}
3896 		break;
3897 	case OCS_HW_ELS_RSP_SID:
3898 		if ( (!send) || sli_xmit_els_rsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, send, len,
3899 					   io->indicator, io->reqtag, SLI4_CQ_DEFAULT,
3900 					   iparam->els_sid.ox_id,
3901 							rnode, local_flags, iparam->els_sid.s_id)) {
3902 			ocs_log_err(hw->os, "RSP (SID) WQE error\n");
3903 			rc = OCS_HW_RTN_ERROR;
3904 		}
3905 		break;
3906 	case OCS_HW_FC_CT:
3907 		if ( (!send) || sli_gen_request64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, io->sgl, len,
3908 					  receive->size, iparam->fc_ct.timeout, io->indicator,
3909 					  io->reqtag, SLI4_CQ_DEFAULT, rnode, iparam->fc_ct.r_ctl,
3910 					  iparam->fc_ct.type, iparam->fc_ct.df_ctl)) {
3911 			ocs_log_err(hw->os, "GEN WQE error\n");
3912 			rc = OCS_HW_RTN_ERROR;
3913 		}
3914 		break;
3915 	case OCS_HW_FC_CT_RSP:
3916 		if ( (!send) || sli_xmit_sequence64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, io->sgl, len,
3917 					  iparam->fc_ct_rsp.timeout, iparam->fc_ct_rsp.ox_id, io->indicator,
3918 					  io->reqtag, rnode, iparam->fc_ct_rsp.r_ctl,
3919 					  iparam->fc_ct_rsp.type, iparam->fc_ct_rsp.df_ctl)) {
3920 			ocs_log_err(hw->os, "XMIT SEQ WQE error\n");
3921 			rc = OCS_HW_RTN_ERROR;
3922 		}
3923 		break;
3924 	case OCS_HW_BLS_ACC:
3925 	case OCS_HW_BLS_RJT:
3926 	{
3927 		sli_bls_payload_t	bls;
3928 
3929 		if (OCS_HW_BLS_ACC == type) {
3930 			bls.type = SLI_BLS_ACC;
3931 			ocs_memcpy(&bls.u.acc, iparam->bls.payload, sizeof(bls.u.acc));
3932 		} else {
3933 			bls.type = SLI_BLS_RJT;
3934 			ocs_memcpy(&bls.u.rjt, iparam->bls.payload, sizeof(bls.u.rjt));
3935 		}
3936 
3937 		bls.ox_id = iparam->bls.ox_id;
3938 		bls.rx_id = iparam->bls.rx_id;
3939 
3940 		if (sli_xmit_bls_rsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &bls,
3941 					   io->indicator, io->reqtag,
3942 					   SLI4_CQ_DEFAULT,
3943 					   rnode, UINT32_MAX)) {
3944 			ocs_log_err(hw->os, "XMIT_BLS_RSP64 WQE error\n");
3945 			rc = OCS_HW_RTN_ERROR;
3946 		}
3947 		break;
3948 	}
3949 	case OCS_HW_BLS_ACC_SID:
3950 	{
3951 		sli_bls_payload_t	bls;
3952 
3953 		bls.type = SLI_BLS_ACC;
3954 		ocs_memcpy(&bls.u.acc, iparam->bls_sid.payload, sizeof(bls.u.acc));
3955 
3956 		bls.ox_id = iparam->bls_sid.ox_id;
3957 		bls.rx_id = iparam->bls_sid.rx_id;
3958 
3959 		if (sli_xmit_bls_rsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &bls,
3960 					   io->indicator, io->reqtag,
3961 					   SLI4_CQ_DEFAULT,
3962 					   rnode, iparam->bls_sid.s_id)) {
3963 			ocs_log_err(hw->os, "XMIT_BLS_RSP64 WQE SID error\n");
3964 			rc = OCS_HW_RTN_ERROR;
3965 		}
3966 		break;
3967 	}
3968 	case OCS_HW_BCAST:
3969 		if ( (!send) || sli_xmit_bcast64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, send, len,
3970 					iparam->bcast.timeout, io->indicator, io->reqtag,
3971 					SLI4_CQ_DEFAULT, rnode,
3972 					iparam->bcast.r_ctl, iparam->bcast.type, iparam->bcast.df_ctl)) {
3973 			ocs_log_err(hw->os, "XMIT_BCAST64 WQE error\n");
3974 			rc = OCS_HW_RTN_ERROR;
3975 		}
3976 		break;
3977 	default:
3978 		ocs_log_err(hw->os, "bad SRRS type %#x\n", type);
3979 		rc = OCS_HW_RTN_ERROR;
3980 	}
3981 
3982 	if (OCS_HW_RTN_SUCCESS == rc) {
3983 		if (io->wq == NULL) {
3984 			io->wq = ocs_hw_queue_next_wq(hw, io);
3985 			ocs_hw_assert(io->wq != NULL);
3986 		}
3987 		io->xbusy = TRUE;
3988 
3989 		/*
3990 		 * Add IO to active io wqe list before submitting, in case the
3991 		 * wcqe processing preempts this thread.
3992 		 */
3993 		OCS_STAT(io->wq->use_count++);
3994 		ocs_hw_add_io_timed_wqe(hw, io);
3995 		rc = hw_wq_write(io->wq, &io->wqe);
3996 		if (rc >= 0) {
3997 			/* non-negative return is success */
3998 			rc = 0;
3999 		} else {
4000 			/* failed to write wqe, remove from active wqe list */
4001 			ocs_log_err(hw->os, "sli_queue_write failed: %d\n", rc);
4002 			io->xbusy = FALSE;
4003 			ocs_hw_remove_io_timed_wqe(hw, io);
4004 		}
4005 	}
4006 
4007 	return rc;
4008 }
4009 
4010 /**
4011  * @ingroup io
4012  * @brief Send a read, write, or response IO.
4013  *
4014  * @par Description
4015  * This routine supports sending a higher-level IO (for example, FCP) between two endpoints
4016  * as a target or initiator. Examples include:
4017  *  - Sending read data and good response (target).
4018  *  - Sending a response (target with no data or after receiving write data).
4019  *  .
4020  * This routine assumes all IOs use the SGL associated with the HW IO. Prior to
4021  * calling this routine, the data should be loaded using ocs_hw_io_add_sge().
4022  *
4023  * @param hw Hardware context.
4024  * @param type Type of IO (target read, target response, and so on).
4025  * @param io Previously-allocated HW IO object.
4026  * @param len Length, in bytes, of data to send.
4027  * @param iparam IO parameters.
4028  * @param rnode Destination of data (that is, a remote node).
4029  * @param cb Function call upon completion of sending data (may be NULL).
4030  * @param arg Argument to pass to IO completion function.
4031  *
4032  * @return Returns 0 on success, or a non-zero value on failure.
4033  *
4034  * @todo
4035  *  - Support specifiying relative offset.
4036  *  - Use a WQ other than 0.
4037  */
4038 ocs_hw_rtn_e
4039 ocs_hw_io_send(ocs_hw_t *hw, ocs_hw_io_type_e type, ocs_hw_io_t *io,
4040 		uint32_t len, ocs_hw_io_param_t *iparam, ocs_remote_node_t *rnode,
4041 		void *cb, void *arg)
4042 {
4043 	ocs_hw_rtn_e	rc = OCS_HW_RTN_SUCCESS;
4044 	uint32_t	rpi;
4045 	uint8_t		send_wqe = TRUE;
4046 
4047 	CPUTRACE("");
4048 
4049 	if (!hw || !io || !rnode || !iparam) {
4050 		ocs_log_err(NULL, "bad parm hw=%p io=%p iparam=%p rnode=%p\n",
4051 			    hw, io, iparam, rnode);
4052 		return OCS_HW_RTN_ERROR;
4053 	}
4054 
4055 	if (hw->state != OCS_HW_STATE_ACTIVE) {
4056 		ocs_log_err(hw->os, "cannot send IO, HW state=%d\n", hw->state);
4057 		return OCS_HW_RTN_ERROR;
4058 	}
4059 
4060 	rpi = rnode->indicator;
4061 
4062 	if (hw->workaround.use_unregistered_rpi && (rpi == UINT32_MAX)) {
4063 		rpi = hw->workaround.unregistered_rid;
4064 		ocs_log_test(hw->os, "using unregistered RPI: %d\n", rpi);
4065 	}
4066 
4067 	/*
4068 	 * Save state needed during later stages
4069 	 */
4070 	io->rnode = rnode;
4071 	io->type  = type;
4072 	io->done  = cb;
4073 	io->arg   = arg;
4074 
4075 	/*
4076 	 * Format the work queue entry used to send the IO
4077 	 */
4078 	switch (type) {
4079 	case OCS_HW_IO_INITIATOR_READ:
4080 		/*
4081 		 * If use_dif_quarantine workaround is in effect, and dif_separates then mark the
4082 		 * initiator read IO for quarantine
4083 		 */
4084 		if (hw->workaround.use_dif_quarantine && (hw->config.dif_mode == OCS_HW_DIF_MODE_SEPARATE) &&
4085 		    (iparam->fcp_tgt.dif_oper != OCS_HW_DIF_OPER_DISABLED)) {
4086 			io->quarantine = TRUE;
4087 		}
4088 
4089 		ocs_hw_io_ini_sge(hw, io, iparam->fcp_ini.cmnd, iparam->fcp_ini.cmnd_size,
4090 				iparam->fcp_ini.rsp);
4091 
4092 		if (sli_fcp_iread64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge, len,
4093 					io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rpi, rnode,
4094 					iparam->fcp_ini.dif_oper, iparam->fcp_ini.blk_size,
4095 					iparam->fcp_ini.timeout)) {
4096 			ocs_log_err(hw->os, "IREAD WQE error\n");
4097 			rc = OCS_HW_RTN_ERROR;
4098 		}
4099 		break;
4100 	case OCS_HW_IO_INITIATOR_WRITE:
4101 		ocs_hw_io_ini_sge(hw, io, iparam->fcp_ini.cmnd, iparam->fcp_ini.cmnd_size,
4102 				iparam->fcp_ini.rsp);
4103 
4104 		if (sli_fcp_iwrite64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge,
4105 					 len, iparam->fcp_ini.first_burst,
4106 					 io->indicator, io->reqtag,
4107 					SLI4_CQ_DEFAULT, rpi, rnode,
4108 					iparam->fcp_ini.dif_oper, iparam->fcp_ini.blk_size,
4109 					iparam->fcp_ini.timeout)) {
4110 			ocs_log_err(hw->os, "IWRITE WQE error\n");
4111 			rc = OCS_HW_RTN_ERROR;
4112 		}
4113 		break;
4114 	case OCS_HW_IO_INITIATOR_NODATA:
4115 		ocs_hw_io_ini_sge(hw, io, iparam->fcp_ini.cmnd, iparam->fcp_ini.cmnd_size,
4116 				iparam->fcp_ini.rsp);
4117 
4118 		if (sli_fcp_icmnd64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl,
4119 					io->indicator, io->reqtag, SLI4_CQ_DEFAULT,
4120 					rpi, rnode, iparam->fcp_ini.timeout)) {
4121 			ocs_log_err(hw->os, "ICMND WQE error\n");
4122 			rc = OCS_HW_RTN_ERROR;
4123 		}
4124 		break;
4125 	case OCS_HW_IO_TARGET_WRITE: {
4126 		uint16_t flags = iparam->fcp_tgt.flags;
4127 		fcp_xfer_rdy_iu_t *xfer = io->xfer_rdy.virt;
4128 
4129 		/*
4130 		 * Fill in the XFER_RDY for IF_TYPE 0 devices
4131 		 */
4132 		*((uint32_t *)xfer->fcp_data_ro) = ocs_htobe32(iparam->fcp_tgt.offset);
4133 		*((uint32_t *)xfer->fcp_burst_len) = ocs_htobe32(len);
4134 		*((uint32_t *)xfer->rsvd) = 0;
4135 
4136 		if (io->xbusy) {
4137 			flags |= SLI4_IO_CONTINUATION;
4138 		} else {
4139 			flags &= ~SLI4_IO_CONTINUATION;
4140 		}
4141 
4142 		io->tgt_wqe_timeout = iparam->fcp_tgt.timeout;
4143 
4144 		/*
4145 		 * If use_dif_quarantine workaround is in effect, and this is a DIF enabled IO
4146 		 * then mark the target write IO for quarantine
4147 		 */
4148 		if (hw->workaround.use_dif_quarantine && (hw->config.dif_mode == OCS_HW_DIF_MODE_SEPARATE) &&
4149 		    (iparam->fcp_tgt.dif_oper != OCS_HW_DIF_OPER_DISABLED)) {
4150 			io->quarantine = TRUE;
4151 		}
4152 
4153 		/*
4154 		 * BZ 161832 Workaround:
4155 		 * Check for use_dif_sec_xri workaround.  Note, even though the first dataphase
4156 		 * doesn't really need a secondary XRI, we allocate one anyway, as this avoids the
4157 		 * potential for deadlock where all XRI's are allocated as primaries to IOs that
4158 		 * are on hw->sec_hio_wait_list.   If this secondary XRI is not for the first
4159 		 * data phase, it is marked for quarantine.
4160 		 */
4161 		if (hw->workaround.use_dif_sec_xri && (iparam->fcp_tgt.dif_oper != OCS_HW_DIF_OPER_DISABLED)) {
4162 			/*
4163 			 * If we have allocated a chained SGL for skyhawk, then
4164 			 * we can re-use this for the sec_hio.
4165 			 */
4166 			if (io->ovfl_io != NULL) {
4167 				io->sec_hio = io->ovfl_io;
4168 				io->sec_hio->quarantine = TRUE;
4169 			} else {
4170 				io->sec_hio = ocs_hw_io_alloc(hw);
4171 			}
4172 			if (io->sec_hio == NULL) {
4173 				/* Failed to allocate, so save full request context and put
4174 				 * this IO on the wait list
4175 				 */
4176 				io->sec_iparam = *iparam;
4177 				io->sec_len = len;
4178 				ocs_lock(&hw->io_lock);
4179 					ocs_list_remove(&hw->io_inuse,  io);
4180 					ocs_list_add_tail(&hw->sec_hio_wait_list, io);
4181 					io->state = OCS_HW_IO_STATE_WAIT_SEC_HIO;
4182 					hw->sec_hio_wait_count++;
4183 				ocs_unlock(&hw->io_lock);
4184 				send_wqe = FALSE;
4185 				/* Done */
4186 				break;
4187 			}
4188 			/* We quarantine the secondary IO if this is the second or subsequent data phase */
4189 			if (io->xbusy) {
4190 				io->sec_hio->quarantine = TRUE;
4191 			}
4192 		}
4193 
4194 		/*
4195 		 * If not the first data phase, and io->sec_hio has been allocated, then issue
4196 		 * FCP_CONT_TRECEIVE64 WQE, otherwise use the usual FCP_TRECEIVE64 WQE
4197 		 */
4198 		if (io->xbusy && (io->sec_hio != NULL)) {
4199 			if (sli_fcp_cont_treceive64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge,
4200 						   iparam->fcp_tgt.offset, len, io->indicator, io->sec_hio->indicator,
4201 						   io->reqtag, SLI4_CQ_DEFAULT,
4202 						   iparam->fcp_tgt.ox_id, rpi, rnode,
4203 						   flags,
4204 						   iparam->fcp_tgt.dif_oper, iparam->fcp_tgt.blk_size,
4205 						   iparam->fcp_tgt.cs_ctl, iparam->fcp_tgt.app_id)) {
4206 				ocs_log_err(hw->os, "TRECEIVE WQE error\n");
4207 				rc = OCS_HW_RTN_ERROR;
4208 			}
4209 		} else {
4210 			if (sli_fcp_treceive64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge,
4211 						   iparam->fcp_tgt.offset, len, io->indicator, io->reqtag,
4212 						   SLI4_CQ_DEFAULT,
4213 						   iparam->fcp_tgt.ox_id, rpi, rnode,
4214 						   flags,
4215 						   iparam->fcp_tgt.dif_oper, iparam->fcp_tgt.blk_size,
4216 						   iparam->fcp_tgt.cs_ctl, iparam->fcp_tgt.app_id)) {
4217 				ocs_log_err(hw->os, "TRECEIVE WQE error\n");
4218 				rc = OCS_HW_RTN_ERROR;
4219 			}
4220 		}
4221 		break;
4222 	}
4223 	case OCS_HW_IO_TARGET_READ: {
4224 		uint16_t flags = iparam->fcp_tgt.flags;
4225 
4226 		if (io->xbusy) {
4227 			flags |= SLI4_IO_CONTINUATION;
4228 		} else {
4229 			flags &= ~SLI4_IO_CONTINUATION;
4230 		}
4231 
4232 		io->tgt_wqe_timeout = iparam->fcp_tgt.timeout;
4233 		if (sli_fcp_tsend64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge,
4234 					iparam->fcp_tgt.offset, len, io->indicator, io->reqtag,
4235 					SLI4_CQ_DEFAULT,
4236 					iparam->fcp_tgt.ox_id, rpi, rnode,
4237 					flags,
4238 					iparam->fcp_tgt.dif_oper,
4239 					iparam->fcp_tgt.blk_size,
4240 					iparam->fcp_tgt.cs_ctl,
4241 					iparam->fcp_tgt.app_id)) {
4242 			ocs_log_err(hw->os, "TSEND WQE error\n");
4243 			rc = OCS_HW_RTN_ERROR;
4244 		} else if (hw->workaround.retain_tsend_io_length) {
4245 			io->length = len;
4246 		}
4247 		break;
4248 	}
4249 	case OCS_HW_IO_TARGET_RSP: {
4250 		uint16_t flags = iparam->fcp_tgt.flags;
4251 
4252 		if (io->xbusy) {
4253 			flags |= SLI4_IO_CONTINUATION;
4254 		} else {
4255 			flags &= ~SLI4_IO_CONTINUATION;
4256 		}
4257 
4258 		/* post a new auto xfer ready buffer */
4259 		if (hw->auto_xfer_rdy_enabled && io->is_port_owned) {
4260 			if ((io->auto_xfer_rdy_dnrx = ocs_hw_rqpair_auto_xfer_rdy_buffer_post(hw, io, 1))) {
4261 				flags |= SLI4_IO_DNRX;
4262 			}
4263 		}
4264 
4265 		io->tgt_wqe_timeout = iparam->fcp_tgt.timeout;
4266 		if (sli_fcp_trsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size,
4267 					&io->def_sgl,
4268 					len,
4269 					io->indicator, io->reqtag,
4270 					SLI4_CQ_DEFAULT,
4271 					iparam->fcp_tgt.ox_id,
4272 					rpi, rnode,
4273 					flags, iparam->fcp_tgt.cs_ctl,
4274 					io->is_port_owned,
4275 					iparam->fcp_tgt.app_id)) {
4276 			ocs_log_err(hw->os, "TRSP WQE error\n");
4277 			rc = OCS_HW_RTN_ERROR;
4278 		}
4279 
4280 		break;
4281 	}
4282 	default:
4283 		ocs_log_err(hw->os, "unsupported IO type %#x\n", type);
4284 		rc = OCS_HW_RTN_ERROR;
4285 	}
4286 
4287 	if (send_wqe && (OCS_HW_RTN_SUCCESS == rc)) {
4288 		if (io->wq == NULL) {
4289 			io->wq = ocs_hw_queue_next_wq(hw, io);
4290 			ocs_hw_assert(io->wq != NULL);
4291 		}
4292 
4293 		io->xbusy = TRUE;
4294 
4295 		/*
4296 		 * Add IO to active io wqe list before submitting, in case the
4297 		 * wcqe processing preempts this thread.
4298 		 */
4299 		OCS_STAT(hw->tcmd_wq_submit[io->wq->instance]++);
4300 		OCS_STAT(io->wq->use_count++);
4301 		ocs_hw_add_io_timed_wqe(hw, io);
4302 		rc = hw_wq_write(io->wq, &io->wqe);
4303 		if (rc >= 0) {
4304 			/* non-negative return is success */
4305 			rc = 0;
4306 		} else {
4307 			/* failed to write wqe, remove from active wqe list */
4308 			ocs_log_err(hw->os, "sli_queue_write failed: %d\n", rc);
4309 			io->xbusy = FALSE;
4310 			ocs_hw_remove_io_timed_wqe(hw, io);
4311 		}
4312 	}
4313 
4314 	return rc;
4315 }
4316 
4317 /**
4318  * @brief Send a raw frame
4319  *
4320  * @par Description
4321  * Using the SEND_FRAME_WQE, a frame consisting of header and payload is sent.
4322  *
4323  * @param hw Pointer to HW object.
4324  * @param hdr Pointer to a little endian formatted FC header.
4325  * @param sof Value to use as the frame SOF.
4326  * @param eof Value to use as the frame EOF.
4327  * @param payload Pointer to payload DMA buffer.
4328  * @param ctx Pointer to caller provided send frame context.
4329  * @param callback Callback function.
4330  * @param arg Callback function argument.
4331  *
4332  * @return Returns 0 on success, or a negative error code value on failure.
4333  */
4334 ocs_hw_rtn_e
4335 ocs_hw_send_frame(ocs_hw_t *hw, fc_header_le_t *hdr, uint8_t sof, uint8_t eof, ocs_dma_t *payload,
4336 		   ocs_hw_send_frame_context_t *ctx, void (*callback)(void *arg, uint8_t *cqe, int32_t status), void *arg)
4337 {
4338 	int32_t rc;
4339 	ocs_hw_wqe_t *wqe;
4340 	uint32_t xri;
4341 	hw_wq_t *wq;
4342 
4343 	wqe = &ctx->wqe;
4344 
4345 	/* populate the callback object */
4346 	ctx->hw = hw;
4347 
4348 	/* Fetch and populate request tag */
4349 	ctx->wqcb = ocs_hw_reqtag_alloc(hw, callback, arg);
4350 	if (ctx->wqcb == NULL) {
4351 		ocs_log_err(hw->os, "can't allocate request tag\n");
4352 		return OCS_HW_RTN_NO_RESOURCES;
4353 	}
4354 
4355 	/* Choose a work queue, first look for a class[1] wq, otherwise just use wq[0] */
4356 	wq = ocs_varray_iter_next(hw->wq_class_array[1]);
4357 	if (wq == NULL) {
4358 		wq = hw->hw_wq[0];
4359 	}
4360 
4361 	/* Set XRI and RX_ID in the header based on which WQ, and which send_frame_io we are using */
4362 	xri = wq->send_frame_io->indicator;
4363 
4364 	/* Build the send frame WQE */
4365 	rc = sli_send_frame_wqe(&hw->sli, wqe->wqebuf, hw->sli.config.wqe_size, sof, eof, (uint32_t*) hdr, payload,
4366 				payload->len, OCS_HW_SEND_FRAME_TIMEOUT, xri, ctx->wqcb->instance_index);
4367 	if (rc) {
4368 		ocs_log_err(hw->os, "sli_send_frame_wqe failed: %d\n", rc);
4369 		return OCS_HW_RTN_ERROR;
4370 	}
4371 
4372 	/* Write to WQ */
4373 	rc = hw_wq_write(wq, wqe);
4374 	if (rc) {
4375 		ocs_log_err(hw->os, "hw_wq_write failed: %d\n", rc);
4376 		return OCS_HW_RTN_ERROR;
4377 	}
4378 
4379 	OCS_STAT(wq->use_count++);
4380 
4381 	return OCS_HW_RTN_SUCCESS;
4382 }
4383 
4384 ocs_hw_rtn_e
4385 ocs_hw_io_register_sgl(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_dma_t *sgl, uint32_t sgl_count)
4386 {
4387 	if (sli_get_sgl_preregister(&hw->sli)) {
4388 		ocs_log_err(hw->os, "can't use temporary SGL with pre-registered SGLs\n");
4389 		return OCS_HW_RTN_ERROR;
4390 	}
4391 	io->ovfl_sgl = sgl;
4392 	io->ovfl_sgl_count = sgl_count;
4393 	io->ovfl_io = NULL;
4394 
4395 	return OCS_HW_RTN_SUCCESS;
4396 }
4397 
4398 static void
4399 ocs_hw_io_restore_sgl(ocs_hw_t *hw, ocs_hw_io_t *io)
4400 {
4401 	/* Restore the default */
4402 	io->sgl = &io->def_sgl;
4403 	io->sgl_count = io->def_sgl_count;
4404 
4405 	/*
4406 	 * For skyhawk, we need to free the IO allocated for the chained
4407 	 * SGL. For all devices, clear the overflow fields on the IO.
4408 	 *
4409 	 * Note: For DIF IOs, we may be using the same XRI for the sec_hio and
4410 	 *       the chained SGLs. If so, then we clear the ovfl_io field
4411 	 *       when the sec_hio is freed.
4412 	 */
4413 	if (io->ovfl_io != NULL) {
4414 		ocs_hw_io_free(hw, io->ovfl_io);
4415 		io->ovfl_io = NULL;
4416 	}
4417 
4418 	/* Clear the overflow SGL */
4419 	io->ovfl_sgl = NULL;
4420 	io->ovfl_sgl_count = 0;
4421 	io->ovfl_lsp = NULL;
4422 }
4423 
4424 /**
4425  * @ingroup io
4426  * @brief Initialize the scatter gather list entries of an IO.
4427  *
4428  * @param hw Hardware context.
4429  * @param io Previously-allocated HW IO object.
4430  * @param type Type of IO (target read, target response, and so on).
4431  *
4432  * @return Returns 0 on success, or a non-zero value on failure.
4433  */
4434 ocs_hw_rtn_e
4435 ocs_hw_io_init_sges(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_hw_io_type_e type)
4436 {
4437 	sli4_sge_t	*data = NULL;
4438 	uint32_t	i = 0;
4439 	uint32_t	skips = 0;
4440 
4441 	if (!hw || !io) {
4442 		ocs_log_err(hw ? hw->os : NULL, "bad parameter hw=%p io=%p\n",
4443 			    hw, io);
4444 		return OCS_HW_RTN_ERROR;
4445 	}
4446 
4447 	/* Clear / reset the scatter-gather list */
4448 	io->sgl = &io->def_sgl;
4449 	io->sgl_count = io->def_sgl_count;
4450 	io->first_data_sge = 0;
4451 
4452 	ocs_memset(io->sgl->virt, 0, 2 * sizeof(sli4_sge_t));
4453 	io->n_sge = 0;
4454 	io->sge_offset = 0;
4455 
4456 	io->type = type;
4457 
4458 	data = io->sgl->virt;
4459 
4460 	/*
4461 	 * Some IO types have underlying hardware requirements on the order
4462 	 * of SGEs. Process all special entries here.
4463 	 */
4464 	switch (type) {
4465 	case OCS_HW_IO_INITIATOR_READ:
4466 	case OCS_HW_IO_INITIATOR_WRITE:
4467 	case OCS_HW_IO_INITIATOR_NODATA:
4468 		/*
4469 		 * No skips, 2 special for initiator I/Os
4470 		 * The addresses and length are written later
4471 		 */
4472 		/* setup command pointer */
4473 		data->sge_type = SLI4_SGE_TYPE_DATA;
4474 		data++;
4475 
4476 		/* setup response pointer */
4477 		data->sge_type = SLI4_SGE_TYPE_DATA;
4478 
4479 		if (OCS_HW_IO_INITIATOR_NODATA == type) {
4480 			data->last = TRUE;
4481 		}
4482 		data++;
4483 
4484 		io->n_sge = 2;
4485 		break;
4486 	case OCS_HW_IO_TARGET_WRITE:
4487 #define OCS_TARGET_WRITE_SKIPS	2
4488 		skips = OCS_TARGET_WRITE_SKIPS;
4489 
4490 		/* populate host resident XFER_RDY buffer */
4491 		data->sge_type = SLI4_SGE_TYPE_DATA;
4492 		data->buffer_address_high = ocs_addr32_hi(io->xfer_rdy.phys);
4493 		data->buffer_address_low  = ocs_addr32_lo(io->xfer_rdy.phys);
4494 		data->buffer_length = io->xfer_rdy.size;
4495 		data++;
4496 
4497 		skips--;
4498 
4499 		io->n_sge = 1;
4500 		break;
4501 	case OCS_HW_IO_TARGET_READ:
4502 		/*
4503 		 * For FCP_TSEND64, the first 2 entries are SKIP SGE's
4504 		 */
4505 #define OCS_TARGET_READ_SKIPS	2
4506 		skips = OCS_TARGET_READ_SKIPS;
4507 		break;
4508 	case OCS_HW_IO_TARGET_RSP:
4509 		/*
4510 		 * No skips, etc. for FCP_TRSP64
4511 		 */
4512 		break;
4513 	default:
4514 		ocs_log_err(hw->os, "unsupported IO type %#x\n", type);
4515 		return OCS_HW_RTN_ERROR;
4516 	}
4517 
4518 	/*
4519 	 * Write skip entries
4520 	 */
4521 	for (i = 0; i < skips; i++) {
4522 		data->sge_type = SLI4_SGE_TYPE_SKIP;
4523 		data++;
4524 	}
4525 
4526 	io->n_sge += skips;
4527 
4528 	/*
4529 	 * Set last
4530 	 */
4531 	data->last = TRUE;
4532 
4533 	return OCS_HW_RTN_SUCCESS;
4534 }
4535 
4536 /**
4537  * @ingroup io
4538  * @brief Add a T10 PI seed scatter gather list entry.
4539  *
4540  * @param hw Hardware context.
4541  * @param io Previously-allocated HW IO object.
4542  * @param dif_info Pointer to T10 DIF fields, or NULL if no DIF.
4543  *
4544  * @return Returns 0 on success, or a non-zero value on failure.
4545  */
4546 ocs_hw_rtn_e
4547 ocs_hw_io_add_seed_sge(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_hw_dif_info_t *dif_info)
4548 {
4549 	sli4_sge_t	*data = NULL;
4550 	sli4_diseed_sge_t *dif_seed;
4551 
4552 	/* If no dif_info, or dif_oper is disabled, then just return success */
4553 	if ((dif_info == NULL) || (dif_info->dif_oper == OCS_HW_DIF_OPER_DISABLED)) {
4554 		return OCS_HW_RTN_SUCCESS;
4555 	}
4556 
4557 	if (!hw || !io) {
4558 		ocs_log_err(hw ? hw->os : NULL, "bad parameter hw=%p io=%p dif_info=%p\n",
4559 			    hw, io, dif_info);
4560 		return OCS_HW_RTN_ERROR;
4561 	}
4562 
4563 	data = io->sgl->virt;
4564 	data += io->n_sge;
4565 
4566 	/* If we are doing T10 DIF add the DIF Seed SGE */
4567 	ocs_memset(data, 0, sizeof(sli4_diseed_sge_t));
4568 	dif_seed = (sli4_diseed_sge_t *)data;
4569 	dif_seed->ref_tag_cmp = dif_info->ref_tag_cmp;
4570 	dif_seed->ref_tag_repl = dif_info->ref_tag_repl;
4571 	dif_seed->app_tag_repl = dif_info->app_tag_repl;
4572 	dif_seed->repl_app_tag = dif_info->repl_app_tag;
4573 	if (SLI4_IF_TYPE_LANCER_FC_ETH != hw->sli.if_type) {
4574 		dif_seed->atrt = dif_info->disable_app_ref_ffff;
4575 		dif_seed->at = dif_info->disable_app_ffff;
4576 	}
4577 	dif_seed->sge_type = SLI4_SGE_TYPE_DISEED;
4578 	/* Workaround for SKH (BZ157233) */
4579 	if (((io->type == OCS_HW_IO_TARGET_WRITE) || (io->type == OCS_HW_IO_INITIATOR_READ)) &&
4580 		(SLI4_IF_TYPE_LANCER_FC_ETH != hw->sli.if_type) && dif_info->dif_separate) {
4581 		dif_seed->sge_type = SLI4_SGE_TYPE_SKIP;
4582 	}
4583 
4584 	dif_seed->app_tag_cmp = dif_info->app_tag_cmp;
4585 	dif_seed->dif_blk_size = dif_info->blk_size;
4586 	dif_seed->auto_incr_ref_tag = dif_info->auto_incr_ref_tag;
4587 	dif_seed->check_app_tag = dif_info->check_app_tag;
4588 	dif_seed->check_ref_tag = dif_info->check_ref_tag;
4589 	dif_seed->check_crc = dif_info->check_guard;
4590 	dif_seed->new_ref_tag = dif_info->repl_ref_tag;
4591 
4592 	switch(dif_info->dif_oper) {
4593 	case OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC:
4594 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_NODIF_OUT_CRC;
4595 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_NODIF_OUT_CRC;
4596 		break;
4597 	case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF:
4598 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CRC_OUT_NODIF;
4599 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CRC_OUT_NODIF;
4600 		break;
4601 	case OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM:
4602 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM;
4603 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM;
4604 		break;
4605 	case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF:
4606 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF;
4607 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF;
4608 		break;
4609 	case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC:
4610 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CRC_OUT_CRC;
4611 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CRC_OUT_CRC;
4612 		break;
4613 	case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM:
4614 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM;
4615 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM;
4616 		break;
4617 	case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM:
4618 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CRC_OUT_CHKSUM;
4619 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CRC_OUT_CHKSUM;
4620 		break;
4621 	case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC:
4622 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CRC;
4623 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CRC;
4624 		break;
4625 	case OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW:
4626 		dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_RAW_OUT_RAW;
4627 		dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_RAW_OUT_RAW;
4628 		break;
4629 	default:
4630 		ocs_log_err(hw->os, "unsupported DIF operation %#x\n",
4631 			    dif_info->dif_oper);
4632 		return OCS_HW_RTN_ERROR;
4633 	}
4634 
4635 	/*
4636 	 * Set last, clear previous last
4637 	 */
4638 	data->last = TRUE;
4639 	if (io->n_sge) {
4640 		data[-1].last = FALSE;
4641 	}
4642 
4643 	io->n_sge++;
4644 
4645 	return OCS_HW_RTN_SUCCESS;
4646 }
4647 
4648 static ocs_hw_rtn_e
4649 ocs_hw_io_overflow_sgl(ocs_hw_t *hw, ocs_hw_io_t *io)
4650 {
4651 	sli4_lsp_sge_t *lsp;
4652 
4653 	/* fail if we're already pointing to the overflow SGL */
4654 	if (io->sgl == io->ovfl_sgl) {
4655 		return OCS_HW_RTN_ERROR;
4656 	}
4657 
4658 	/*
4659 	 * For skyhawk, we can use another SGL to extend the SGL list. The
4660 	 * Chained entry must not be in the first 4 entries.
4661 	 *
4662 	 * Note: For DIF enabled IOs, we will use the ovfl_io for the sec_hio.
4663 	 */
4664 	if (sli_get_sgl_preregister(&hw->sli) &&
4665 	    io->def_sgl_count > 4 &&
4666 	    io->ovfl_io == NULL &&
4667 	    ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) ||
4668 		(SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli)))) {
4669 		io->ovfl_io = ocs_hw_io_alloc(hw);
4670 		if (io->ovfl_io != NULL) {
4671 			/*
4672 			 * Note: We can't call ocs_hw_io_register_sgl() here
4673 			 * because it checks that SGLs are not pre-registered
4674 			 * and for shyhawk, preregistered SGLs are required.
4675 			 */
4676 			io->ovfl_sgl = &io->ovfl_io->def_sgl;
4677 			io->ovfl_sgl_count = io->ovfl_io->def_sgl_count;
4678 		}
4679 	}
4680 
4681 	/* fail if we don't have an overflow SGL registered */
4682 	if (io->ovfl_io == NULL || io->ovfl_sgl == NULL) {
4683 		return OCS_HW_RTN_ERROR;
4684 	}
4685 
4686 	/*
4687 	 * Overflow, we need to put a link SGE in the last location of the current SGL, after
4688 	 * copying the the last SGE to the overflow SGL
4689 	 */
4690 
4691 	((sli4_sge_t*)io->ovfl_sgl->virt)[0] = ((sli4_sge_t*)io->sgl->virt)[io->n_sge - 1];
4692 
4693 	lsp = &((sli4_lsp_sge_t*)io->sgl->virt)[io->n_sge - 1];
4694 	ocs_memset(lsp, 0, sizeof(*lsp));
4695 
4696 	if ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) ||
4697 	    (SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli))) {
4698 		sli_skh_chain_sge_build(&hw->sli,
4699 					(sli4_sge_t*)lsp,
4700 					io->ovfl_io->indicator,
4701 					0, /* frag_num */
4702 					0); /* offset */
4703 	} else {
4704 		lsp->buffer_address_high = ocs_addr32_hi(io->ovfl_sgl->phys);
4705 		lsp->buffer_address_low  = ocs_addr32_lo(io->ovfl_sgl->phys);
4706 		lsp->sge_type = SLI4_SGE_TYPE_LSP;
4707 		lsp->last = 0;
4708 		io->ovfl_lsp = lsp;
4709 		io->ovfl_lsp->segment_length = sizeof(sli4_sge_t);
4710 	}
4711 
4712 	/* Update the current SGL pointer, and n_sgl */
4713 	io->sgl = io->ovfl_sgl;
4714 	io->sgl_count = io->ovfl_sgl_count;
4715 	io->n_sge = 1;
4716 
4717 	return OCS_HW_RTN_SUCCESS;
4718 }
4719 
4720 /**
4721  * @ingroup io
4722  * @brief Add a scatter gather list entry to an IO.
4723  *
4724  * @param hw Hardware context.
4725  * @param io Previously-allocated HW IO object.
4726  * @param addr Physical address.
4727  * @param length Length of memory pointed to by @c addr.
4728  *
4729  * @return Returns 0 on success, or a non-zero value on failure.
4730  */
4731 ocs_hw_rtn_e
4732 ocs_hw_io_add_sge(ocs_hw_t *hw, ocs_hw_io_t *io, uintptr_t addr, uint32_t length)
4733 {
4734 	sli4_sge_t	*data = NULL;
4735 
4736 	if (!hw || !io || !addr || !length) {
4737 		ocs_log_err(hw ? hw->os : NULL,
4738 			    "bad parameter hw=%p io=%p addr=%lx length=%u\n",
4739 			    hw, io, addr, length);
4740 		return OCS_HW_RTN_ERROR;
4741 	}
4742 
4743 	if ((length != 0) && (io->n_sge + 1) > io->sgl_count) {
4744 		if (ocs_hw_io_overflow_sgl(hw, io) != OCS_HW_RTN_SUCCESS) {
4745 			ocs_log_err(hw->os, "SGL full (%d)\n", io->n_sge);
4746 			return OCS_HW_RTN_ERROR;
4747 		}
4748 	}
4749 
4750 	if (length > sli_get_max_sge(&hw->sli)) {
4751 		ocs_log_err(hw->os, "length of SGE %d bigger than allowed %d\n",
4752 			    length, sli_get_max_sge(&hw->sli));
4753 		return OCS_HW_RTN_ERROR;
4754 	}
4755 
4756 	data = io->sgl->virt;
4757 	data += io->n_sge;
4758 
4759 	data->sge_type = SLI4_SGE_TYPE_DATA;
4760 	data->buffer_address_high = ocs_addr32_hi(addr);
4761 	data->buffer_address_low  = ocs_addr32_lo(addr);
4762 	data->buffer_length = length;
4763 	data->data_offset = io->sge_offset;
4764 	/*
4765 	 * Always assume this is the last entry and mark as such.
4766 	 * If this is not the first entry unset the "last SGE"
4767 	 * indication for the previous entry
4768 	 */
4769 	data->last = TRUE;
4770 	if (io->n_sge) {
4771 		data[-1].last = FALSE;
4772 	}
4773 
4774 	/* Set first_data_bde if not previously set */
4775 	if (io->first_data_sge == 0) {
4776 		io->first_data_sge = io->n_sge;
4777 	}
4778 
4779 	io->sge_offset += length;
4780 	io->n_sge++;
4781 
4782 	/* Update the linked segment length (only executed after overflow has begun) */
4783 	if (io->ovfl_lsp != NULL) {
4784 		io->ovfl_lsp->segment_length = io->n_sge * sizeof(sli4_sge_t);
4785 	}
4786 
4787 	return OCS_HW_RTN_SUCCESS;
4788 }
4789 
4790 /**
4791  * @ingroup io
4792  * @brief Add a T10 DIF scatter gather list entry to an IO.
4793  *
4794  * @param hw Hardware context.
4795  * @param io Previously-allocated HW IO object.
4796  * @param addr DIF physical address.
4797  *
4798  * @return Returns 0 on success, or a non-zero value on failure.
4799  */
4800 ocs_hw_rtn_e
4801 ocs_hw_io_add_dif_sge(ocs_hw_t *hw, ocs_hw_io_t *io, uintptr_t addr)
4802 {
4803 	sli4_dif_sge_t	*data = NULL;
4804 
4805 	if (!hw || !io || !addr) {
4806 		ocs_log_err(hw ? hw->os : NULL,
4807 			    "bad parameter hw=%p io=%p addr=%lx\n",
4808 			    hw, io, addr);
4809 		return OCS_HW_RTN_ERROR;
4810 	}
4811 
4812 	if ((io->n_sge + 1) > hw->config.n_sgl) {
4813 		if (ocs_hw_io_overflow_sgl(hw, io) != OCS_HW_RTN_ERROR) {
4814 			ocs_log_err(hw->os, "SGL full (%d)\n", io->n_sge);
4815 			return OCS_HW_RTN_ERROR;
4816 		}
4817 	}
4818 
4819 	data = io->sgl->virt;
4820 	data += io->n_sge;
4821 
4822 	data->sge_type = SLI4_SGE_TYPE_DIF;
4823 	/* Workaround for SKH (BZ157233) */
4824 	if (((io->type == OCS_HW_IO_TARGET_WRITE) || (io->type == OCS_HW_IO_INITIATOR_READ)) &&
4825 		(SLI4_IF_TYPE_LANCER_FC_ETH != hw->sli.if_type)) {
4826 		data->sge_type = SLI4_SGE_TYPE_SKIP;
4827 	}
4828 
4829 	data->buffer_address_high = ocs_addr32_hi(addr);
4830 	data->buffer_address_low  = ocs_addr32_lo(addr);
4831 
4832 	/*
4833 	 * Always assume this is the last entry and mark as such.
4834 	 * If this is not the first entry unset the "last SGE"
4835 	 * indication for the previous entry
4836 	 */
4837 	data->last = TRUE;
4838 	if (io->n_sge) {
4839 		data[-1].last = FALSE;
4840 	}
4841 
4842 	io->n_sge++;
4843 
4844 	return OCS_HW_RTN_SUCCESS;
4845 }
4846 
4847 /**
4848  * @ingroup io
4849  * @brief Abort a previously-started IO.
4850  *
4851  * @param hw Hardware context.
4852  * @param io_to_abort The IO to abort.
4853  * @param send_abts Boolean to have the hardware automatically
4854  * generate an ABTS.
4855  * @param cb Function call upon completion of the abort (may be NULL).
4856  * @param arg Argument to pass to abort completion function.
4857  *
4858  * @return Returns 0 on success, or a non-zero value on failure.
4859  */
4860 ocs_hw_rtn_e
4861 ocs_hw_io_abort(ocs_hw_t *hw, ocs_hw_io_t *io_to_abort, uint32_t send_abts, void *cb, void *arg)
4862 {
4863 	sli4_abort_type_e atype = SLI_ABORT_MAX;
4864 	uint32_t	id = 0, mask = 0;
4865 	ocs_hw_rtn_e	rc = OCS_HW_RTN_SUCCESS;
4866 	hw_wq_callback_t *wqcb;
4867 
4868 	if (!hw || !io_to_abort) {
4869 		ocs_log_err(hw ? hw->os : NULL,
4870 			    "bad parameter hw=%p io=%p\n",
4871 			    hw, io_to_abort);
4872 		return OCS_HW_RTN_ERROR;
4873 	}
4874 
4875 	if (hw->state != OCS_HW_STATE_ACTIVE) {
4876 		ocs_log_err(hw->os, "cannot send IO abort, HW state=%d\n",
4877 			    hw->state);
4878 		return OCS_HW_RTN_ERROR;
4879 	}
4880 
4881 	/* take a reference on IO being aborted */
4882 	if (ocs_ref_get_unless_zero(&io_to_abort->ref) == 0) {
4883 		/* command no longer active */
4884 		ocs_log_test(hw ? hw->os : NULL,
4885 				"io not active xri=0x%x tag=0x%x\n",
4886 				io_to_abort->indicator, io_to_abort->reqtag);
4887 		return OCS_HW_RTN_IO_NOT_ACTIVE;
4888 	}
4889 
4890 	/* non-port owned XRI checks */
4891 	/* Must have a valid WQ reference */
4892 	if (io_to_abort->wq == NULL) {
4893 		ocs_log_test(hw->os, "io_to_abort xri=0x%x not active on WQ\n",
4894 				io_to_abort->indicator);
4895 		ocs_ref_put(&io_to_abort->ref); /* ocs_ref_get(): same function */
4896 		return OCS_HW_RTN_IO_NOT_ACTIVE;
4897 	}
4898 
4899 	/* Validation checks complete; now check to see if already being aborted */
4900 	ocs_lock(&hw->io_abort_lock);
4901 		if (io_to_abort->abort_in_progress) {
4902 			ocs_unlock(&hw->io_abort_lock);
4903 			ocs_ref_put(&io_to_abort->ref); /* ocs_ref_get(): same function */
4904 			ocs_log_debug(hw ? hw->os : NULL,
4905 				"io already being aborted xri=0x%x tag=0x%x\n",
4906 				io_to_abort->indicator, io_to_abort->reqtag);
4907 			return OCS_HW_RTN_IO_ABORT_IN_PROGRESS;
4908 		}
4909 
4910 		/*
4911 		 * This IO is not already being aborted. Set flag so we won't try to
4912 		 * abort it again. After all, we only have one abort_done callback.
4913 		 */
4914 		io_to_abort->abort_in_progress = 1;
4915 	ocs_unlock(&hw->io_abort_lock);
4916 
4917 	/*
4918 	 * If we got here, the possibilities are:
4919 	 * - host owned xri
4920 	 *	- io_to_abort->wq_index != UINT32_MAX
4921 	 *		- submit ABORT_WQE to same WQ
4922 	 * - port owned xri:
4923 	 *	- rxri: io_to_abort->wq_index == UINT32_MAX
4924 	 *		- submit ABORT_WQE to any WQ
4925 	 *	- non-rxri
4926 	 *		- io_to_abort->index != UINT32_MAX
4927 	 *			- submit ABORT_WQE to same WQ
4928 	 *		- io_to_abort->index == UINT32_MAX
4929 	 *			- submit ABORT_WQE to any WQ
4930 	 */
4931 	io_to_abort->abort_done = cb;
4932 	io_to_abort->abort_arg  = arg;
4933 
4934 	atype = SLI_ABORT_XRI;
4935 	id = io_to_abort->indicator;
4936 
4937 	/* Allocate a request tag for the abort portion of this IO */
4938 	wqcb = ocs_hw_reqtag_alloc(hw, ocs_hw_wq_process_abort, io_to_abort);
4939 	if (wqcb == NULL) {
4940 		ocs_log_err(hw->os, "can't allocate request tag\n");
4941 		return OCS_HW_RTN_NO_RESOURCES;
4942 	}
4943 	io_to_abort->abort_reqtag = wqcb->instance_index;
4944 
4945 	/*
4946 	 * If the wqe is on the pending list, then set this wqe to be
4947 	 * aborted when the IO's wqe is removed from the list.
4948 	 */
4949 	if (io_to_abort->wq != NULL) {
4950 		sli_queue_lock(io_to_abort->wq->queue);
4951 			if (ocs_list_on_list(&io_to_abort->wqe.link)) {
4952 				io_to_abort->wqe.abort_wqe_submit_needed = 1;
4953 				io_to_abort->wqe.send_abts = send_abts;
4954 				io_to_abort->wqe.id = id;
4955 				io_to_abort->wqe.abort_reqtag = io_to_abort->abort_reqtag;
4956 				sli_queue_unlock(io_to_abort->wq->queue);
4957 				return 0;
4958 		}
4959 		sli_queue_unlock(io_to_abort->wq->queue);
4960 	}
4961 
4962 	if (sli_abort_wqe(&hw->sli, io_to_abort->wqe.wqebuf, hw->sli.config.wqe_size, atype, send_abts, id, mask,
4963 			  io_to_abort->abort_reqtag, SLI4_CQ_DEFAULT)) {
4964 		ocs_log_err(hw->os, "ABORT WQE error\n");
4965 		io_to_abort->abort_reqtag = UINT32_MAX;
4966 		ocs_hw_reqtag_free(hw, wqcb);
4967 		rc = OCS_HW_RTN_ERROR;
4968 	}
4969 
4970 	if (OCS_HW_RTN_SUCCESS == rc) {
4971 		if (io_to_abort->wq == NULL) {
4972 			io_to_abort->wq = ocs_hw_queue_next_wq(hw, io_to_abort);
4973 			ocs_hw_assert(io_to_abort->wq != NULL);
4974 		}
4975 		/* ABORT_WQE does not actually utilize an XRI on the Port,
4976 		 * therefore, keep xbusy as-is to track the exchange's state,
4977 		 * not the ABORT_WQE's state
4978 		 */
4979 		rc = hw_wq_write(io_to_abort->wq, &io_to_abort->wqe);
4980 		if (rc > 0) {
4981 			/* non-negative return is success */
4982 			rc = 0;
4983 			/* can't abort an abort so skip adding to timed wqe list */
4984 		}
4985 	}
4986 
4987 	if (OCS_HW_RTN_SUCCESS != rc) {
4988 		ocs_lock(&hw->io_abort_lock);
4989 			io_to_abort->abort_in_progress = 0;
4990 		ocs_unlock(&hw->io_abort_lock);
4991 		ocs_ref_put(&io_to_abort->ref); /* ocs_ref_get(): same function */
4992 	}
4993 	return rc;
4994 }
4995 
4996 /**
4997  * @ingroup io
4998  * @brief Return the OX_ID/RX_ID of the IO.
4999  *
5000  * @param hw Hardware context.
5001  * @param io HW IO object.
5002  *
5003  * @return Returns X_ID on success, or -1 on failure.
5004  */
5005 int32_t
5006 ocs_hw_io_get_xid(ocs_hw_t *hw, ocs_hw_io_t *io)
5007 {
5008 	if (!hw || !io) {
5009 		ocs_log_err(hw ? hw->os : NULL,
5010 			    "bad parameter hw=%p io=%p\n", hw, io);
5011 		return -1;
5012 	}
5013 
5014 	return io->indicator;
5015 }
5016 
5017 typedef struct ocs_hw_fw_write_cb_arg {
5018 	ocs_hw_fw_cb_t cb;
5019 	void *arg;
5020 } ocs_hw_fw_write_cb_arg_t;
5021 
5022 typedef struct ocs_hw_sfp_cb_arg {
5023 	ocs_hw_sfp_cb_t cb;
5024 	void *arg;
5025 	ocs_dma_t payload;
5026 } ocs_hw_sfp_cb_arg_t;
5027 
5028 typedef struct ocs_hw_temp_cb_arg {
5029 	ocs_hw_temp_cb_t cb;
5030 	void *arg;
5031 } ocs_hw_temp_cb_arg_t;
5032 
5033 typedef struct ocs_hw_link_stat_cb_arg {
5034 	ocs_hw_link_stat_cb_t cb;
5035 	void *arg;
5036 } ocs_hw_link_stat_cb_arg_t;
5037 
5038 typedef struct ocs_hw_host_stat_cb_arg {
5039 	ocs_hw_host_stat_cb_t cb;
5040 	void *arg;
5041 } ocs_hw_host_stat_cb_arg_t;
5042 
5043 typedef struct ocs_hw_dump_get_cb_arg {
5044 	ocs_hw_dump_get_cb_t cb;
5045 	void *arg;
5046 	void *mbox_cmd;
5047 } ocs_hw_dump_get_cb_arg_t;
5048 
5049 typedef struct ocs_hw_dump_clear_cb_arg {
5050 	ocs_hw_dump_clear_cb_t cb;
5051 	void *arg;
5052 	void *mbox_cmd;
5053 } ocs_hw_dump_clear_cb_arg_t;
5054 
5055 /**
5056  * @brief Write a portion of a firmware image to the device.
5057  *
5058  * @par Description
5059  * Calls the correct firmware write function based on the device type.
5060  *
5061  * @param hw Hardware context.
5062  * @param dma DMA structure containing the firmware image chunk.
5063  * @param size Size of the firmware image chunk.
5064  * @param offset Offset, in bytes, from the beginning of the firmware image.
5065  * @param last True if this is the last chunk of the image.
5066  * Causes the image to be committed to flash.
5067  * @param cb Pointer to a callback function that is called when the command completes.
5068  * The callback function prototype is
5069  * <tt>void cb(int32_t status, uint32_t bytes_written, void *arg)</tt>.
5070  * @param arg Pointer to be passed to the callback function.
5071  *
5072  * @return Returns 0 on success, or a non-zero value on failure.
5073  */
5074 ocs_hw_rtn_e
5075 ocs_hw_firmware_write(ocs_hw_t *hw, ocs_dma_t *dma, uint32_t size, uint32_t offset, int last, ocs_hw_fw_cb_t cb, void *arg)
5076 {
5077 	if (hw->sli.if_type == SLI4_IF_TYPE_LANCER_FC_ETH) {
5078 		return ocs_hw_firmware_write_lancer(hw, dma, size, offset, last, cb, arg);
5079 	} else {
5080 		/* Write firmware_write for BE3/Skyhawk not supported */
5081 		return -1;
5082 	}
5083 }
5084 
5085 /**
5086  * @brief Write a portion of a firmware image to the Emulex XE201 ASIC (Lancer).
5087  *
5088  * @par Description
5089  * Creates a SLI_CONFIG mailbox command, fills it with the correct values to write a
5090  * firmware image chunk, and then sends the command with ocs_hw_command(). On completion,
5091  * the callback function ocs_hw_fw_write_cb() gets called to free the mailbox
5092  * and to signal the caller that the write has completed.
5093  *
5094  * @param hw Hardware context.
5095  * @param dma DMA structure containing the firmware image chunk.
5096  * @param size Size of the firmware image chunk.
5097  * @param offset Offset, in bytes, from the beginning of the firmware image.
5098  * @param last True if this is the last chunk of the image. Causes the image to be committed to flash.
5099  * @param cb Pointer to a callback function that is called when the command completes.
5100  * The callback function prototype is
5101  * <tt>void cb(int32_t status, uint32_t bytes_written, void *arg)</tt>.
5102  * @param arg Pointer to be passed to the callback function.
5103  *
5104  * @return Returns 0 on success, or a non-zero value on failure.
5105  */
5106 ocs_hw_rtn_e
5107 ocs_hw_firmware_write_lancer(ocs_hw_t *hw, ocs_dma_t *dma, uint32_t size, uint32_t offset, int last, ocs_hw_fw_cb_t cb, void *arg)
5108 {
5109 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
5110 	uint8_t *mbxdata;
5111 	ocs_hw_fw_write_cb_arg_t *cb_arg;
5112 	int noc=0;	/* No Commit bit - set to 1 for testing */
5113 
5114 	if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) {
5115 		ocs_log_test(hw->os, "Function only supported for I/F type 2\n");
5116 		return OCS_HW_RTN_ERROR;
5117 	}
5118 
5119 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
5120 	if (mbxdata == NULL) {
5121 		ocs_log_err(hw->os, "failed to malloc mbox\n");
5122 		return OCS_HW_RTN_NO_MEMORY;
5123 	}
5124 
5125 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_fw_write_cb_arg_t), OCS_M_NOWAIT);
5126 	if (cb_arg == NULL) {
5127 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
5128 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5129 		return OCS_HW_RTN_NO_MEMORY;
5130 	}
5131 
5132 	cb_arg->cb = cb;
5133 	cb_arg->arg = arg;
5134 
5135 	if (sli_cmd_common_write_object(&hw->sli, mbxdata, SLI4_BMBX_SIZE, noc, last,
5136 			size, offset, "/prg/", dma)) {
5137 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_fw_write, cb_arg);
5138 	}
5139 
5140 	if (rc != OCS_HW_RTN_SUCCESS) {
5141 		ocs_log_test(hw->os, "COMMON_WRITE_OBJECT failed\n");
5142 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5143 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_fw_write_cb_arg_t));
5144 	}
5145 
5146 	return rc;
5147 
5148 }
5149 
5150 /**
5151  * @brief Called when the WRITE OBJECT command completes.
5152  *
5153  * @par Description
5154  * Get the number of bytes actually written out of the response, free the mailbox
5155  * that was malloc'd by ocs_hw_firmware_write(),
5156  * then call the callback and pass the status and bytes written.
5157  *
5158  * @param hw Hardware context.
5159  * @param status Status field from the mbox completion.
5160  * @param mqe Mailbox response structure.
5161  * @param arg Pointer to a callback function that signals the caller that the command is done.
5162  * The callback function prototype is <tt>void cb(int32_t status, uint32_t bytes_written)</tt>.
5163  *
5164  * @return Returns 0.
5165  */
5166 static int32_t
5167 ocs_hw_cb_fw_write(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
5168 {
5169 
5170 	sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe;
5171 	sli4_res_common_write_object_t* wr_obj_rsp = (sli4_res_common_write_object_t*) &(mbox_rsp->payload.embed);
5172 	ocs_hw_fw_write_cb_arg_t *cb_arg = arg;
5173 	uint32_t bytes_written;
5174 	uint16_t mbox_status;
5175 	uint32_t change_status;
5176 
5177 	bytes_written = wr_obj_rsp->actual_write_length;
5178 	mbox_status = mbox_rsp->hdr.status;
5179 	change_status = wr_obj_rsp->change_status;
5180 
5181 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
5182 
5183 	if (cb_arg) {
5184 		if (cb_arg->cb) {
5185 			if ((status == 0) && mbox_status) {
5186 				status = mbox_status;
5187 			}
5188 			cb_arg->cb(status, bytes_written, change_status, cb_arg->arg);
5189 		}
5190 
5191 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_fw_write_cb_arg_t));
5192 	}
5193 
5194 	return 0;
5195 
5196 }
5197 
5198 /**
5199  * @brief Called when the READ_TRANSCEIVER_DATA command completes.
5200  *
5201  * @par Description
5202  * Get the number of bytes read out of the response, free the mailbox that was malloc'd
5203  * by ocs_hw_get_sfp(), then call the callback and pass the status and bytes written.
5204  *
5205  * @param hw Hardware context.
5206  * @param status Status field from the mbox completion.
5207  * @param mqe Mailbox response structure.
5208  * @param arg Pointer to a callback function that signals the caller that the command is done.
5209  * The callback function prototype is
5210  * <tt>void cb(int32_t status, uint32_t bytes_written, uint32_t *data, void *arg)</tt>.
5211  *
5212  * @return Returns 0.
5213  */
5214 static int32_t
5215 ocs_hw_cb_sfp(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
5216 {
5217 
5218 	ocs_hw_sfp_cb_arg_t *cb_arg = arg;
5219 	ocs_dma_t *payload = NULL;
5220 	sli4_res_common_read_transceiver_data_t* mbox_rsp = NULL;
5221 	uint32_t bytes_written;
5222 
5223 	if (cb_arg) {
5224 		payload = &(cb_arg->payload);
5225 		if (cb_arg->cb) {
5226 			mbox_rsp = (sli4_res_common_read_transceiver_data_t*) payload->virt;
5227 			bytes_written = mbox_rsp->hdr.response_length;
5228 			if ((status == 0) && mbox_rsp->hdr.status) {
5229 				status = mbox_rsp->hdr.status;
5230 			}
5231 			cb_arg->cb(hw->os, status, bytes_written, mbox_rsp->page_data, cb_arg->arg);
5232 		}
5233 
5234 		ocs_dma_free(hw->os, &cb_arg->payload);
5235 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_sfp_cb_arg_t));
5236 	}
5237 
5238 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
5239 	return 0;
5240 }
5241 
5242 /**
5243  * @ingroup io
5244  * @brief Function to retrieve the SFP information.
5245  *
5246  * @param hw Hardware context.
5247  * @param page The page of SFP data to retrieve (0xa0 or 0xa2).
5248  * @param cb Function call upon completion of sending the data (may be NULL).
5249  * @param arg Argument to pass to IO completion function.
5250  *
5251  * @return Returns OCS_HW_RTN_SUCCESS, OCS_HW_RTN_ERROR, or OCS_HW_RTN_NO_MEMORY.
5252  */
5253 ocs_hw_rtn_e
5254 ocs_hw_get_sfp(ocs_hw_t *hw, uint16_t page, ocs_hw_sfp_cb_t cb, void *arg)
5255 {
5256 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
5257 	ocs_hw_sfp_cb_arg_t *cb_arg;
5258 	uint8_t *mbxdata;
5259 
5260 	/* mbxdata holds the header of the command */
5261 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
5262 	if (mbxdata == NULL) {
5263 		ocs_log_err(hw->os, "failed to malloc mbox\n");
5264 		return OCS_HW_RTN_NO_MEMORY;
5265 	}
5266 
5267 	/* cb_arg holds the data that will be passed to the callback on completion */
5268 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_sfp_cb_arg_t), OCS_M_NOWAIT);
5269 	if (cb_arg == NULL) {
5270 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
5271 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5272 		return OCS_HW_RTN_NO_MEMORY;
5273 	}
5274 
5275 	cb_arg->cb = cb;
5276 	cb_arg->arg = arg;
5277 
5278 	/* payload holds the non-embedded portion */
5279 	if (ocs_dma_alloc(hw->os, &cb_arg->payload, sizeof(sli4_res_common_read_transceiver_data_t),
5280 			  OCS_MIN_DMA_ALIGNMENT)) {
5281 		ocs_log_err(hw->os, "Failed to allocate DMA buffer\n");
5282 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_sfp_cb_arg_t));
5283 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5284 		return OCS_HW_RTN_NO_MEMORY;
5285 	}
5286 
5287 	/* Send the HW command */
5288 	if (sli_cmd_common_read_transceiver_data(&hw->sli, mbxdata, SLI4_BMBX_SIZE, page,
5289 	    &cb_arg->payload)) {
5290 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_sfp, cb_arg);
5291 	}
5292 
5293 	if (rc != OCS_HW_RTN_SUCCESS) {
5294 		ocs_log_test(hw->os, "READ_TRANSCEIVER_DATA failed with status %d\n",
5295 				rc);
5296 		ocs_dma_free(hw->os, &cb_arg->payload);
5297 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_sfp_cb_arg_t));
5298 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5299 	}
5300 
5301 	return rc;
5302 }
5303 
5304 /**
5305  * @brief Function to retrieve the temperature information.
5306  *
5307  * @param hw Hardware context.
5308  * @param cb Function call upon completion of sending the data (may be NULL).
5309  * @param arg Argument to pass to IO completion function.
5310  *
5311  * @return Returns OCS_HW_RTN_SUCCESS, OCS_HW_RTN_ERROR, or OCS_HW_RTN_NO_MEMORY.
5312  */
5313 ocs_hw_rtn_e
5314 ocs_hw_get_temperature(ocs_hw_t *hw, ocs_hw_temp_cb_t cb, void *arg)
5315 {
5316 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
5317 	ocs_hw_temp_cb_arg_t *cb_arg;
5318 	uint8_t *mbxdata;
5319 
5320 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
5321 	if (mbxdata == NULL) {
5322 		ocs_log_err(hw->os, "failed to malloc mbox");
5323 		return OCS_HW_RTN_NO_MEMORY;
5324 	}
5325 
5326 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_temp_cb_arg_t), OCS_M_NOWAIT);
5327 	if (cb_arg == NULL) {
5328 		ocs_log_err(hw->os, "failed to malloc cb_arg");
5329 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5330 		return OCS_HW_RTN_NO_MEMORY;
5331 	}
5332 
5333 	cb_arg->cb = cb;
5334 	cb_arg->arg = arg;
5335 
5336 	if (sli_cmd_dump_type4(&hw->sli, mbxdata, SLI4_BMBX_SIZE,
5337 				SLI4_WKI_TAG_SAT_TEM)) {
5338 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_temp, cb_arg);
5339 	}
5340 
5341 	if (rc != OCS_HW_RTN_SUCCESS) {
5342 		ocs_log_test(hw->os, "DUMP_TYPE4 failed\n");
5343 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5344 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_temp_cb_arg_t));
5345 	}
5346 
5347 	return rc;
5348 }
5349 
5350 /**
5351  * @brief Called when the DUMP command completes.
5352  *
5353  * @par Description
5354  * Get the temperature data out of the response, free the mailbox that was malloc'd
5355  * by ocs_hw_get_temperature(), then call the callback and pass the status and data.
5356  *
5357  * @param hw Hardware context.
5358  * @param status Status field from the mbox completion.
5359  * @param mqe Mailbox response structure.
5360  * @param arg Pointer to a callback function that signals the caller that the command is done.
5361  * The callback function prototype is defined by ocs_hw_temp_cb_t.
5362  *
5363  * @return Returns 0.
5364  */
5365 static int32_t
5366 ocs_hw_cb_temp(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
5367 {
5368 
5369 	sli4_cmd_dump4_t* mbox_rsp = (sli4_cmd_dump4_t*) mqe;
5370 	ocs_hw_temp_cb_arg_t *cb_arg = arg;
5371 	uint32_t curr_temp = mbox_rsp->resp_data[0]; /* word 5 */
5372 	uint32_t crit_temp_thrshld = mbox_rsp->resp_data[1]; /* word 6*/
5373 	uint32_t warn_temp_thrshld = mbox_rsp->resp_data[2]; /* word 7 */
5374 	uint32_t norm_temp_thrshld = mbox_rsp->resp_data[3]; /* word 8 */
5375 	uint32_t fan_off_thrshld = mbox_rsp->resp_data[4];   /* word 9 */
5376 	uint32_t fan_on_thrshld = mbox_rsp->resp_data[5];    /* word 10 */
5377 
5378 	if (cb_arg) {
5379 		if (cb_arg->cb) {
5380 			if ((status == 0) && mbox_rsp->hdr.status) {
5381 				status = mbox_rsp->hdr.status;
5382 			}
5383 			cb_arg->cb(status,
5384 				   curr_temp,
5385 				   crit_temp_thrshld,
5386 				   warn_temp_thrshld,
5387 				   norm_temp_thrshld,
5388 				   fan_off_thrshld,
5389 				   fan_on_thrshld,
5390 				   cb_arg->arg);
5391 		}
5392 
5393 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_temp_cb_arg_t));
5394 	}
5395 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
5396 
5397 	return 0;
5398 }
5399 
5400 /**
5401  * @brief Function to retrieve the link statistics.
5402  *
5403  * @param hw Hardware context.
5404  * @param req_ext_counters If TRUE, then the extended counters will be requested.
5405  * @param clear_overflow_flags If TRUE, then overflow flags will be cleared.
5406  * @param clear_all_counters If TRUE, the counters will be cleared.
5407  * @param cb Function call upon completion of sending the data (may be NULL).
5408  * @param arg Argument to pass to IO completion function.
5409  *
5410  * @return Returns OCS_HW_RTN_SUCCESS, OCS_HW_RTN_ERROR, or OCS_HW_RTN_NO_MEMORY.
5411  */
5412 ocs_hw_rtn_e
5413 ocs_hw_get_link_stats(ocs_hw_t *hw,
5414 			uint8_t req_ext_counters,
5415 			uint8_t clear_overflow_flags,
5416 			uint8_t clear_all_counters,
5417 			ocs_hw_link_stat_cb_t cb,
5418 			void *arg)
5419 {
5420 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
5421 	ocs_hw_link_stat_cb_arg_t *cb_arg;
5422 	uint8_t *mbxdata;
5423 
5424 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
5425 	if (mbxdata == NULL) {
5426 		ocs_log_err(hw->os, "failed to malloc mbox");
5427 		return OCS_HW_RTN_NO_MEMORY;
5428 	}
5429 
5430 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_link_stat_cb_arg_t), OCS_M_NOWAIT);
5431 	if (cb_arg == NULL) {
5432 		ocs_log_err(hw->os, "failed to malloc cb_arg");
5433 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5434 		return OCS_HW_RTN_NO_MEMORY;
5435 	}
5436 
5437 	cb_arg->cb = cb;
5438 	cb_arg->arg = arg;
5439 
5440 	if (sli_cmd_read_link_stats(&hw->sli, mbxdata, SLI4_BMBX_SIZE,
5441 				    req_ext_counters,
5442 				    clear_overflow_flags,
5443 				    clear_all_counters)) {
5444 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_link_stat, cb_arg);
5445 	}
5446 
5447 	if (rc != OCS_HW_RTN_SUCCESS) {
5448 		ocs_log_test(hw->os, "READ_LINK_STATS failed\n");
5449 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5450 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_link_stat_cb_arg_t));
5451 	}
5452 
5453 	return rc;
5454 }
5455 
5456 /**
5457  * @brief Called when the READ_LINK_STAT command completes.
5458  *
5459  * @par Description
5460  * Get the counters out of the response, free the mailbox that was malloc'd
5461  * by ocs_hw_get_link_stats(), then call the callback and pass the status and data.
5462  *
5463  * @param hw Hardware context.
5464  * @param status Status field from the mbox completion.
5465  * @param mqe Mailbox response structure.
5466  * @param arg Pointer to a callback function that signals the caller that the command is done.
5467  * The callback function prototype is defined by ocs_hw_link_stat_cb_t.
5468  *
5469  * @return Returns 0.
5470  */
5471 static int32_t
5472 ocs_hw_cb_link_stat(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
5473 {
5474 
5475 	sli4_cmd_read_link_stats_t* mbox_rsp = (sli4_cmd_read_link_stats_t*) mqe;
5476 	ocs_hw_link_stat_cb_arg_t *cb_arg = arg;
5477 	ocs_hw_link_stat_counts_t counts[OCS_HW_LINK_STAT_MAX];
5478 	uint32_t num_counters = (mbox_rsp->gec ? 20 : 13);
5479 
5480 	ocs_memset(counts, 0, sizeof(ocs_hw_link_stat_counts_t) *
5481 		   OCS_HW_LINK_STAT_MAX);
5482 
5483 	counts[OCS_HW_LINK_STAT_LINK_FAILURE_COUNT].overflow = mbox_rsp->w02of;
5484 	counts[OCS_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].overflow = mbox_rsp->w03of;
5485 	counts[OCS_HW_LINK_STAT_LOSS_OF_SIGNAL_COUNT].overflow = mbox_rsp->w04of;
5486 	counts[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].overflow = mbox_rsp->w05of;
5487 	counts[OCS_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].overflow = mbox_rsp->w06of;
5488 	counts[OCS_HW_LINK_STAT_CRC_COUNT].overflow = mbox_rsp->w07of;
5489 	counts[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_TIMEOUT_COUNT].overflow = mbox_rsp->w08of;
5490 	counts[OCS_HW_LINK_STAT_ELASTIC_BUFFER_OVERRUN_COUNT].overflow = mbox_rsp->w09of;
5491 	counts[OCS_HW_LINK_STAT_ARB_TIMEOUT_COUNT].overflow = mbox_rsp->w10of;
5492 	counts[OCS_HW_LINK_STAT_ADVERTISED_RCV_B2B_CREDIT].overflow = mbox_rsp->w11of;
5493 	counts[OCS_HW_LINK_STAT_CURR_RCV_B2B_CREDIT].overflow = mbox_rsp->w12of;
5494 	counts[OCS_HW_LINK_STAT_ADVERTISED_XMIT_B2B_CREDIT].overflow = mbox_rsp->w13of;
5495 	counts[OCS_HW_LINK_STAT_CURR_XMIT_B2B_CREDIT].overflow = mbox_rsp->w14of;
5496 	counts[OCS_HW_LINK_STAT_RCV_EOFA_COUNT].overflow = mbox_rsp->w15of;
5497 	counts[OCS_HW_LINK_STAT_RCV_EOFDTI_COUNT].overflow = mbox_rsp->w16of;
5498 	counts[OCS_HW_LINK_STAT_RCV_EOFNI_COUNT].overflow = mbox_rsp->w17of;
5499 	counts[OCS_HW_LINK_STAT_RCV_SOFF_COUNT].overflow = mbox_rsp->w18of;
5500 	counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_AER_COUNT].overflow = mbox_rsp->w19of;
5501 	counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_RPI_COUNT].overflow = mbox_rsp->w20of;
5502 	counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_XRI_COUNT].overflow = mbox_rsp->w21of;
5503 
5504 	counts[OCS_HW_LINK_STAT_LINK_FAILURE_COUNT].counter = mbox_rsp->link_failure_error_count;
5505 	counts[OCS_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].counter = mbox_rsp->loss_of_sync_error_count;
5506 	counts[OCS_HW_LINK_STAT_LOSS_OF_SIGNAL_COUNT].counter = mbox_rsp->loss_of_signal_error_count;
5507 	counts[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].counter = mbox_rsp->primitive_sequence_error_count;
5508 	counts[OCS_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].counter = mbox_rsp->invalid_transmission_word_error_count;
5509 	counts[OCS_HW_LINK_STAT_CRC_COUNT].counter = mbox_rsp->crc_error_count;
5510 	counts[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_TIMEOUT_COUNT].counter = mbox_rsp->primitive_sequence_event_timeout_count;
5511 	counts[OCS_HW_LINK_STAT_ELASTIC_BUFFER_OVERRUN_COUNT].counter = mbox_rsp->elastic_buffer_overrun_error_count;
5512 	counts[OCS_HW_LINK_STAT_ARB_TIMEOUT_COUNT].counter = mbox_rsp->arbitration_fc_al_timout_count;
5513 	counts[OCS_HW_LINK_STAT_ADVERTISED_RCV_B2B_CREDIT].counter = mbox_rsp->advertised_receive_bufftor_to_buffer_credit;
5514 	counts[OCS_HW_LINK_STAT_CURR_RCV_B2B_CREDIT].counter = mbox_rsp->current_receive_buffer_to_buffer_credit;
5515 	counts[OCS_HW_LINK_STAT_ADVERTISED_XMIT_B2B_CREDIT].counter = mbox_rsp->advertised_transmit_buffer_to_buffer_credit;
5516 	counts[OCS_HW_LINK_STAT_CURR_XMIT_B2B_CREDIT].counter = mbox_rsp->current_transmit_buffer_to_buffer_credit;
5517 	counts[OCS_HW_LINK_STAT_RCV_EOFA_COUNT].counter = mbox_rsp->received_eofa_count;
5518 	counts[OCS_HW_LINK_STAT_RCV_EOFDTI_COUNT].counter = mbox_rsp->received_eofdti_count;
5519 	counts[OCS_HW_LINK_STAT_RCV_EOFNI_COUNT].counter = mbox_rsp->received_eofni_count;
5520 	counts[OCS_HW_LINK_STAT_RCV_SOFF_COUNT].counter = mbox_rsp->received_soff_count;
5521 	counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_AER_COUNT].counter = mbox_rsp->received_dropped_no_aer_count;
5522 	counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_RPI_COUNT].counter = mbox_rsp->received_dropped_no_available_rpi_resources_count;
5523 	counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_XRI_COUNT].counter = mbox_rsp->received_dropped_no_available_xri_resources_count;
5524 
5525 	if (cb_arg) {
5526 		if (cb_arg->cb) {
5527 			if ((status == 0) && mbox_rsp->hdr.status) {
5528 				status = mbox_rsp->hdr.status;
5529 			}
5530 			cb_arg->cb(status,
5531 				   num_counters,
5532 				   counts,
5533 				   cb_arg->arg);
5534 		}
5535 
5536 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_link_stat_cb_arg_t));
5537 	}
5538 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
5539 
5540 	return 0;
5541 }
5542 
5543 /**
5544  * @brief Function to retrieve the link and host statistics.
5545  *
5546  * @param hw Hardware context.
5547  * @param cc clear counters, if TRUE all counters will be cleared.
5548  * @param cb Function call upon completion of receiving the data.
5549  * @param arg Argument to pass to pointer fc hosts statistics structure.
5550  *
5551  * @return Returns OCS_HW_RTN_SUCCESS, OCS_HW_RTN_ERROR, or OCS_HW_RTN_NO_MEMORY.
5552  */
5553 ocs_hw_rtn_e
5554 ocs_hw_get_host_stats(ocs_hw_t *hw, uint8_t cc, ocs_hw_host_stat_cb_t cb, void *arg)
5555 {
5556 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
5557 	ocs_hw_host_stat_cb_arg_t *cb_arg;
5558 	uint8_t *mbxdata;
5559 
5560 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO);
5561 	if (mbxdata == NULL) {
5562 		ocs_log_err(hw->os, "failed to malloc mbox");
5563 		return OCS_HW_RTN_NO_MEMORY;
5564 	}
5565 
5566 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_host_stat_cb_arg_t), 0);
5567 	if (cb_arg == NULL) {
5568 		ocs_log_err(hw->os, "failed to malloc cb_arg");
5569 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5570 		return OCS_HW_RTN_NO_MEMORY;
5571 	 }
5572 
5573 	 cb_arg->cb = cb;
5574 	 cb_arg->arg = arg;
5575 
5576 	 /* Send the HW command to get the host stats */
5577 	if (sli_cmd_read_status(&hw->sli, mbxdata, SLI4_BMBX_SIZE, cc)) {
5578 		 rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_host_stat, cb_arg);
5579 	}
5580 
5581 	if (rc != OCS_HW_RTN_SUCCESS) {
5582 		ocs_log_test(hw->os, "READ_HOST_STATS failed\n");
5583 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5584 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_host_stat_cb_arg_t));
5585 	}
5586 
5587 	return rc;
5588 }
5589 
5590 /**
5591  * @brief Called when the READ_STATUS command completes.
5592  *
5593  * @par Description
5594  * Get the counters out of the response, free the mailbox that was malloc'd
5595  * by ocs_hw_get_host_stats(), then call the callback and pass
5596  * the status and data.
5597  *
5598  * @param hw Hardware context.
5599  * @param status Status field from the mbox completion.
5600  * @param mqe Mailbox response structure.
5601  * @param arg Pointer to a callback function that signals the caller that the command is done.
5602  * The callback function prototype is defined by
5603  * ocs_hw_host_stat_cb_t.
5604  *
5605  * @return Returns 0.
5606  */
5607 static int32_t
5608 ocs_hw_cb_host_stat(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
5609 {
5610 
5611 	sli4_cmd_read_status_t* mbox_rsp = (sli4_cmd_read_status_t*) mqe;
5612 	ocs_hw_host_stat_cb_arg_t *cb_arg = arg;
5613 	ocs_hw_host_stat_counts_t counts[OCS_HW_HOST_STAT_MAX];
5614 	uint32_t num_counters = OCS_HW_HOST_STAT_MAX;
5615 
5616 	ocs_memset(counts, 0, sizeof(ocs_hw_host_stat_counts_t) *
5617 		   OCS_HW_HOST_STAT_MAX);
5618 
5619 	counts[OCS_HW_HOST_STAT_TX_KBYTE_COUNT].counter = mbox_rsp->transmit_kbyte_count;
5620 	counts[OCS_HW_HOST_STAT_RX_KBYTE_COUNT].counter = mbox_rsp->receive_kbyte_count;
5621 	counts[OCS_HW_HOST_STAT_TX_FRAME_COUNT].counter = mbox_rsp->transmit_frame_count;
5622 	counts[OCS_HW_HOST_STAT_RX_FRAME_COUNT].counter = mbox_rsp->receive_frame_count;
5623 	counts[OCS_HW_HOST_STAT_TX_SEQ_COUNT].counter = mbox_rsp->transmit_sequence_count;
5624 	counts[OCS_HW_HOST_STAT_RX_SEQ_COUNT].counter = mbox_rsp->receive_sequence_count;
5625 	counts[OCS_HW_HOST_STAT_TOTAL_EXCH_ORIG].counter = mbox_rsp->total_exchanges_originator;
5626 	counts[OCS_HW_HOST_STAT_TOTAL_EXCH_RESP].counter = mbox_rsp->total_exchanges_responder;
5627 	counts[OCS_HW_HOSY_STAT_RX_P_BSY_COUNT].counter = mbox_rsp->receive_p_bsy_count;
5628 	counts[OCS_HW_HOST_STAT_RX_F_BSY_COUNT].counter = mbox_rsp->receive_f_bsy_count;
5629 	counts[OCS_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_RQ_BUF_COUNT].counter = mbox_rsp->dropped_frames_due_to_no_rq_buffer_count;
5630 	counts[OCS_HW_HOST_STAT_EMPTY_RQ_TIMEOUT_COUNT].counter = mbox_rsp->empty_rq_timeout_count;
5631 	counts[OCS_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_XRI_COUNT].counter = mbox_rsp->dropped_frames_due_to_no_xri_count;
5632 	counts[OCS_HW_HOST_STAT_EMPTY_XRI_POOL_COUNT].counter = mbox_rsp->empty_xri_pool_count;
5633 
5634 	if (cb_arg) {
5635 		if (cb_arg->cb) {
5636 			if ((status == 0) && mbox_rsp->hdr.status) {
5637 				status = mbox_rsp->hdr.status;
5638 			}
5639 			cb_arg->cb(status,
5640 				   num_counters,
5641 				   counts,
5642 				   cb_arg->arg);
5643 		}
5644 
5645 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_host_stat_cb_arg_t));
5646 	}
5647 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
5648 
5649 	return 0;
5650 }
5651 
5652 /**
5653  * @brief HW link configuration enum to the CLP string value mapping.
5654  *
5655  * This structure provides a mapping from the ocs_hw_linkcfg_e
5656  * enum (enum exposed for the OCS_HW_PORT_SET_LINK_CONFIG port
5657  * control) to the CLP string that is used
5658  * in the DMTF_CLP_CMD mailbox command.
5659  */
5660 typedef struct ocs_hw_linkcfg_map_s {
5661 	ocs_hw_linkcfg_e linkcfg;
5662 	const char *clp_str;
5663 } ocs_hw_linkcfg_map_t;
5664 
5665 /**
5666  * @brief Mapping from the HW linkcfg enum to the CLP command value
5667  * string.
5668  */
5669 static ocs_hw_linkcfg_map_t linkcfg_map[] = {
5670 	{OCS_HW_LINKCFG_4X10G, "ELX_4x10G"},
5671 	{OCS_HW_LINKCFG_1X40G, "ELX_1x40G"},
5672 	{OCS_HW_LINKCFG_2X16G, "ELX_2x16G"},
5673 	{OCS_HW_LINKCFG_4X8G, "ELX_4x8G"},
5674 	{OCS_HW_LINKCFG_4X1G, "ELX_4x1G"},
5675 	{OCS_HW_LINKCFG_2X10G, "ELX_2x10G"},
5676 	{OCS_HW_LINKCFG_2X10G_2X8G, "ELX_2x10G_2x8G"}};
5677 
5678 /**
5679  * @brief HW link configuration enum to Skyhawk link config ID mapping.
5680  *
5681  * This structure provides a mapping from the ocs_hw_linkcfg_e
5682  * enum (enum exposed for the OCS_HW_PORT_SET_LINK_CONFIG port
5683  * control) to the link config ID numbers used by Skyhawk
5684  */
5685 typedef struct ocs_hw_skyhawk_linkcfg_map_s {
5686 	ocs_hw_linkcfg_e linkcfg;
5687 	uint32_t	config_id;
5688 } ocs_hw_skyhawk_linkcfg_map_t;
5689 
5690 /**
5691  * @brief Mapping from the HW linkcfg enum to the Skyhawk link config IDs
5692  */
5693 static ocs_hw_skyhawk_linkcfg_map_t skyhawk_linkcfg_map[] = {
5694 	{OCS_HW_LINKCFG_4X10G, 0x0a},
5695 	{OCS_HW_LINKCFG_1X40G, 0x09},
5696 };
5697 
5698 /**
5699  * @brief Helper function for getting the HW linkcfg enum from the CLP
5700  * string value
5701  *
5702  * @param clp_str CLP string value from OEMELX_LinkConfig.
5703  *
5704  * @return Returns the HW linkcfg enum corresponding to clp_str.
5705  */
5706 static ocs_hw_linkcfg_e
5707 ocs_hw_linkcfg_from_clp(const char *clp_str)
5708 {
5709 	uint32_t i;
5710 	for (i = 0; i < ARRAY_SIZE(linkcfg_map); i++) {
5711 		if (ocs_strncmp(linkcfg_map[i].clp_str, clp_str, ocs_strlen(clp_str)) == 0) {
5712 			return linkcfg_map[i].linkcfg;
5713 		}
5714 	}
5715 	return OCS_HW_LINKCFG_NA;
5716 }
5717 
5718 /**
5719  * @brief Helper function for getting the CLP string value from the HW
5720  * linkcfg enum.
5721  *
5722  * @param linkcfg HW linkcfg enum.
5723  *
5724  * @return Returns the OEMELX_LinkConfig CLP string value corresponding to
5725  * given linkcfg.
5726  */
5727 static const char *
5728 ocs_hw_clp_from_linkcfg(ocs_hw_linkcfg_e linkcfg)
5729 {
5730 	uint32_t i;
5731 	for (i = 0; i < ARRAY_SIZE(linkcfg_map); i++) {
5732 		if (linkcfg_map[i].linkcfg == linkcfg) {
5733 			return linkcfg_map[i].clp_str;
5734 		}
5735 	}
5736 	return NULL;
5737 }
5738 
5739 /**
5740  * @brief Helper function for getting a Skyhawk link config ID from the HW
5741  * linkcfg enum.
5742  *
5743  * @param linkcfg HW linkcfg enum.
5744  *
5745  * @return Returns the Skyhawk link config ID corresponding to
5746  * given linkcfg.
5747  */
5748 static uint32_t
5749 ocs_hw_config_id_from_linkcfg(ocs_hw_linkcfg_e linkcfg)
5750 {
5751 	uint32_t i;
5752 	for (i = 0; i < ARRAY_SIZE(skyhawk_linkcfg_map); i++) {
5753 		if (skyhawk_linkcfg_map[i].linkcfg == linkcfg) {
5754 			return skyhawk_linkcfg_map[i].config_id;
5755 		}
5756 	}
5757 	return 0;
5758 }
5759 
5760 /**
5761  * @brief Helper function for getting the HW linkcfg enum from a
5762  * Skyhawk config ID.
5763  *
5764  * @param config_id Skyhawk link config ID.
5765  *
5766  * @return Returns the HW linkcfg enum corresponding to config_id.
5767  */
5768 static ocs_hw_linkcfg_e
5769 ocs_hw_linkcfg_from_config_id(const uint32_t config_id)
5770 {
5771 	uint32_t i;
5772 	for (i = 0; i < ARRAY_SIZE(skyhawk_linkcfg_map); i++) {
5773 		if (skyhawk_linkcfg_map[i].config_id == config_id) {
5774 			return skyhawk_linkcfg_map[i].linkcfg;
5775 		}
5776 	}
5777 	return OCS_HW_LINKCFG_NA;
5778 }
5779 
5780 /**
5781  * @brief Link configuration callback argument.
5782  */
5783 typedef struct ocs_hw_linkcfg_cb_arg_s {
5784 	ocs_hw_port_control_cb_t cb;
5785 	void *arg;
5786 	uint32_t opts;
5787 	int32_t status;
5788 	ocs_dma_t dma_cmd;
5789 	ocs_dma_t dma_resp;
5790 	uint32_t result_len;
5791 } ocs_hw_linkcfg_cb_arg_t;
5792 
5793 /**
5794  * @brief Set link configuration.
5795  *
5796  * @param hw Hardware context.
5797  * @param value Link configuration enum to which the link configuration is
5798  * set.
5799  * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL).
5800  * @param cb Callback function to invoke following mbx command.
5801  * @param arg Callback argument.
5802  *
5803  * @return Returns OCS_HW_RTN_SUCCESS on success.
5804  */
5805 static ocs_hw_rtn_e
5806 ocs_hw_set_linkcfg(ocs_hw_t *hw, ocs_hw_linkcfg_e value, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg)
5807 {
5808 	if (!sli_link_is_configurable(&hw->sli)) {
5809 		ocs_log_debug(hw->os, "Function not supported\n");
5810 		return OCS_HW_RTN_ERROR;
5811 	}
5812 
5813 	if (SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) {
5814 		return ocs_hw_set_linkcfg_lancer(hw, value, opts, cb, arg);
5815 	} else if ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) ||
5816 		   (SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli))) {
5817 		return ocs_hw_set_linkcfg_skyhawk(hw, value, opts, cb, arg);
5818 	} else {
5819 		ocs_log_test(hw->os, "Function not supported for this IF_TYPE\n");
5820 		return OCS_HW_RTN_ERROR;
5821 	}
5822 }
5823 
5824 /**
5825  * @brief Set link configuration for Lancer
5826  *
5827  * @param hw Hardware context.
5828  * @param value Link configuration enum to which the link configuration is
5829  * set.
5830  * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL).
5831  * @param cb Callback function to invoke following mbx command.
5832  * @param arg Callback argument.
5833  *
5834  * @return Returns OCS_HW_RTN_SUCCESS on success.
5835  */
5836 static ocs_hw_rtn_e
5837 ocs_hw_set_linkcfg_lancer(ocs_hw_t *hw, ocs_hw_linkcfg_e value, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg)
5838 {
5839 	char cmd[OCS_HW_DMTF_CLP_CMD_MAX];
5840 	ocs_hw_linkcfg_cb_arg_t *cb_arg;
5841 	const char *value_str = NULL;
5842 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
5843 
5844 	/* translate ocs_hw_linkcfg_e to CLP string */
5845 	value_str = ocs_hw_clp_from_linkcfg(value);
5846 
5847 	/* allocate memory for callback argument */
5848 	cb_arg = ocs_malloc(hw->os, sizeof(*cb_arg), OCS_M_NOWAIT);
5849 	if (cb_arg == NULL) {
5850 		ocs_log_err(hw->os, "failed to malloc cb_arg");
5851 		return OCS_HW_RTN_NO_MEMORY;
5852 	}
5853 
5854 	ocs_snprintf(cmd, OCS_HW_DMTF_CLP_CMD_MAX, "set / OEMELX_LinkConfig=%s", value_str);
5855 	/* allocate DMA for command  */
5856 	if (ocs_dma_alloc(hw->os, &cb_arg->dma_cmd, ocs_strlen(cmd)+1, 4096)) {
5857 		ocs_log_err(hw->os, "malloc failed\n");
5858 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
5859 		return OCS_HW_RTN_NO_MEMORY;
5860 	}
5861 	ocs_memset(cb_arg->dma_cmd.virt, 0, ocs_strlen(cmd)+1);
5862 	ocs_memcpy(cb_arg->dma_cmd.virt, cmd, ocs_strlen(cmd));
5863 
5864 	/* allocate DMA for response */
5865 	if (ocs_dma_alloc(hw->os, &cb_arg->dma_resp, OCS_HW_DMTF_CLP_RSP_MAX, 4096)) {
5866 		ocs_log_err(hw->os, "malloc failed\n");
5867 		ocs_dma_free(hw->os, &cb_arg->dma_cmd);
5868 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
5869 		return OCS_HW_RTN_NO_MEMORY;
5870 	}
5871 	cb_arg->cb = cb;
5872 	cb_arg->arg = arg;
5873 	cb_arg->opts = opts;
5874 
5875 	rc = ocs_hw_exec_dmtf_clp_cmd(hw, &cb_arg->dma_cmd, &cb_arg->dma_resp,
5876 					opts, ocs_hw_linkcfg_dmtf_clp_cb, cb_arg);
5877 
5878 	if (opts == OCS_CMD_POLL || rc != OCS_HW_RTN_SUCCESS) {
5879 		/* if failed, or polling, free memory here; if success and not
5880 		 * polling, will free in callback function
5881 		 */
5882 		if (rc) {
5883 			ocs_log_test(hw->os, "CLP cmd=\"%s\" failed\n",
5884 					(char *)cb_arg->dma_cmd.virt);
5885 		}
5886 		ocs_dma_free(hw->os, &cb_arg->dma_cmd);
5887 		ocs_dma_free(hw->os, &cb_arg->dma_resp);
5888 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
5889 	}
5890 	return rc;
5891 }
5892 
5893 /**
5894  * @brief Callback for ocs_hw_set_linkcfg_skyhawk
5895  *
5896  * @param hw Hardware context.
5897  * @param status Status from the RECONFIG_GET_LINK_INFO command.
5898  * @param mqe Mailbox response structure.
5899  * @param arg Pointer to a callback argument.
5900  *
5901  * @return none
5902  */
5903 static void
5904 ocs_hw_set_active_link_config_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
5905 {
5906 	ocs_hw_linkcfg_cb_arg_t *cb_arg = (ocs_hw_linkcfg_cb_arg_t *)arg;
5907 
5908 	if (status) {
5909 		ocs_log_test(hw->os, "SET_RECONFIG_LINK_ID failed, status=%d\n", status);
5910 	}
5911 
5912 	/* invoke callback */
5913 	if (cb_arg->cb) {
5914 		cb_arg->cb(status, 0, cb_arg->arg);
5915 	}
5916 
5917 	/* if polling, will free memory in calling function */
5918 	if (cb_arg->opts != OCS_CMD_POLL) {
5919 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
5920 	}
5921 }
5922 
5923 /**
5924  * @brief Set link configuration for a Skyhawk
5925  *
5926  * @param hw Hardware context.
5927  * @param value Link configuration enum to which the link configuration is
5928  * set.
5929  * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL).
5930  * @param cb Callback function to invoke following mbx command.
5931  * @param arg Callback argument.
5932  *
5933  * @return Returns OCS_HW_RTN_SUCCESS on success.
5934  */
5935 static ocs_hw_rtn_e
5936 ocs_hw_set_linkcfg_skyhawk(ocs_hw_t *hw, ocs_hw_linkcfg_e value, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg)
5937 {
5938 	uint8_t *mbxdata;
5939 	ocs_hw_linkcfg_cb_arg_t *cb_arg;
5940 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
5941 	uint32_t config_id;
5942 
5943 	config_id = ocs_hw_config_id_from_linkcfg(value);
5944 
5945 	if (config_id == 0) {
5946 		ocs_log_test(hw->os, "Link config %d not supported by Skyhawk\n", value);
5947 		return OCS_HW_RTN_ERROR;
5948 	}
5949 
5950 	/* mbxdata holds the header of the command */
5951 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
5952 	if (mbxdata == NULL) {
5953 		ocs_log_err(hw->os, "failed to malloc mbox\n");
5954 		return OCS_HW_RTN_NO_MEMORY;
5955 	}
5956 
5957 	/* cb_arg holds the data that will be passed to the callback on completion */
5958 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_linkcfg_cb_arg_t), OCS_M_NOWAIT);
5959 	if (cb_arg == NULL) {
5960 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
5961 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5962 		return OCS_HW_RTN_NO_MEMORY;
5963 	}
5964 
5965 	cb_arg->cb = cb;
5966 	cb_arg->arg = arg;
5967 
5968 	if (sli_cmd_common_set_reconfig_link_id(&hw->sli, mbxdata, SLI4_BMBX_SIZE, NULL, 0, config_id)) {
5969 		rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_set_active_link_config_cb, cb_arg);
5970 	}
5971 
5972 	if (rc != OCS_HW_RTN_SUCCESS) {
5973 		ocs_log_err(hw->os, "SET_RECONFIG_LINK_ID failed\n");
5974 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5975 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t));
5976 	} else if (opts == OCS_CMD_POLL) {
5977 		/* if we're polling we have to call the callback here. */
5978 		ocs_hw_set_active_link_config_cb(hw, 0, mbxdata, cb_arg);
5979 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5980 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t));
5981 	} else {
5982 		/* We weren't poling, so the callback got called */
5983 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
5984 	}
5985 
5986 	return rc;
5987 }
5988 
5989 /**
5990  * @brief Get link configuration.
5991  *
5992  * @param hw Hardware context.
5993  * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL).
5994  * @param cb Callback function to invoke following mbx command.
5995  * @param arg Callback argument.
5996  *
5997  * @return Returns OCS_HW_RTN_SUCCESS on success.
5998  */
5999 static ocs_hw_rtn_e
6000 ocs_hw_get_linkcfg(ocs_hw_t *hw, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg)
6001 {
6002 	if (!sli_link_is_configurable(&hw->sli)) {
6003 		ocs_log_debug(hw->os, "Function not supported\n");
6004 		return OCS_HW_RTN_ERROR;
6005 	}
6006 
6007 	if ((SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) ||
6008 	    (SLI4_IF_TYPE_LANCER_G7 == sli_get_if_type(&hw->sli))){
6009 		return ocs_hw_get_linkcfg_lancer(hw, opts, cb, arg);
6010 	} else if ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) ||
6011 		   (SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli))) {
6012 		return ocs_hw_get_linkcfg_skyhawk(hw, opts, cb, arg);
6013 	} else {
6014 		ocs_log_test(hw->os, "Function not supported for this IF_TYPE\n");
6015 		return OCS_HW_RTN_ERROR;
6016 	}
6017 }
6018 
6019 /**
6020  * @brief Get link configuration for a Lancer
6021  *
6022  * @param hw Hardware context.
6023  * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL).
6024  * @param cb Callback function to invoke following mbx command.
6025  * @param arg Callback argument.
6026  *
6027  * @return Returns OCS_HW_RTN_SUCCESS on success.
6028  */
6029 static ocs_hw_rtn_e
6030 ocs_hw_get_linkcfg_lancer(ocs_hw_t *hw, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg)
6031 {
6032 	char cmd[OCS_HW_DMTF_CLP_CMD_MAX];
6033 	ocs_hw_linkcfg_cb_arg_t *cb_arg;
6034 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6035 
6036 	/* allocate memory for callback argument */
6037 	cb_arg = ocs_malloc(hw->os, sizeof(*cb_arg), OCS_M_NOWAIT);
6038 	if (cb_arg == NULL) {
6039 		ocs_log_err(hw->os, "failed to malloc cb_arg");
6040 		return OCS_HW_RTN_NO_MEMORY;
6041 	}
6042 
6043 	ocs_snprintf(cmd, OCS_HW_DMTF_CLP_CMD_MAX, "show / OEMELX_LinkConfig");
6044 
6045 	/* allocate DMA for command  */
6046 	if (ocs_dma_alloc(hw->os, &cb_arg->dma_cmd, ocs_strlen(cmd)+1, 4096)) {
6047 		ocs_log_err(hw->os, "malloc failed\n");
6048 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
6049 		return OCS_HW_RTN_NO_MEMORY;
6050 	}
6051 
6052 	/* copy CLP command to DMA command */
6053 	ocs_memset(cb_arg->dma_cmd.virt, 0, ocs_strlen(cmd)+1);
6054 	ocs_memcpy(cb_arg->dma_cmd.virt, cmd, ocs_strlen(cmd));
6055 
6056 	/* allocate DMA for response */
6057 	if (ocs_dma_alloc(hw->os, &cb_arg->dma_resp, OCS_HW_DMTF_CLP_RSP_MAX, 4096)) {
6058 		ocs_log_err(hw->os, "malloc failed\n");
6059 		ocs_dma_free(hw->os, &cb_arg->dma_cmd);
6060 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
6061 		return OCS_HW_RTN_NO_MEMORY;
6062 	}
6063 	cb_arg->cb = cb;
6064 	cb_arg->arg = arg;
6065 	cb_arg->opts = opts;
6066 
6067 	rc = ocs_hw_exec_dmtf_clp_cmd(hw, &cb_arg->dma_cmd, &cb_arg->dma_resp,
6068 					opts, ocs_hw_linkcfg_dmtf_clp_cb, cb_arg);
6069 
6070 	if (opts == OCS_CMD_POLL || rc != OCS_HW_RTN_SUCCESS) {
6071 		/* if failed or polling, free memory here; if not polling and success,
6072 		 * will free in callback function
6073 		 */
6074 		if (rc) {
6075 			ocs_log_test(hw->os, "CLP cmd=\"%s\" failed\n",
6076 					(char *)cb_arg->dma_cmd.virt);
6077 		}
6078 		ocs_dma_free(hw->os, &cb_arg->dma_cmd);
6079 		ocs_dma_free(hw->os, &cb_arg->dma_resp);
6080 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
6081 	}
6082 	return rc;
6083 }
6084 
6085 /**
6086  * @brief Get the link configuration callback.
6087  *
6088  * @param hw Hardware context.
6089  * @param status Status from the RECONFIG_GET_LINK_INFO command.
6090  * @param mqe Mailbox response structure.
6091  * @param arg Pointer to a callback argument.
6092  *
6093  * @return none
6094  */
6095 static void
6096 ocs_hw_get_active_link_config_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
6097 {
6098 	ocs_hw_linkcfg_cb_arg_t *cb_arg = (ocs_hw_linkcfg_cb_arg_t *)arg;
6099 	sli4_res_common_get_reconfig_link_info_t *rsp = cb_arg->dma_cmd.virt;
6100 	ocs_hw_linkcfg_e value = OCS_HW_LINKCFG_NA;
6101 
6102 	if (status) {
6103 		ocs_log_test(hw->os, "GET_RECONFIG_LINK_INFO failed, status=%d\n", status);
6104 	} else {
6105 		/* Call was successful */
6106 		value = ocs_hw_linkcfg_from_config_id(rsp->active_link_config_id);
6107 	}
6108 
6109 	/* invoke callback */
6110 	if (cb_arg->cb) {
6111 		cb_arg->cb(status, value, cb_arg->arg);
6112 	}
6113 
6114 	/* if polling, will free memory in calling function */
6115 	if (cb_arg->opts != OCS_CMD_POLL) {
6116 		ocs_dma_free(hw->os, &cb_arg->dma_cmd);
6117 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
6118 	}
6119 }
6120 
6121 /**
6122  * @brief Get link configuration for a Skyhawk.
6123  *
6124  * @param hw Hardware context.
6125  * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL).
6126  * @param cb Callback function to invoke following mbx command.
6127  * @param arg Callback argument.
6128  *
6129  * @return Returns OCS_HW_RTN_SUCCESS on success.
6130  */
6131 static ocs_hw_rtn_e
6132 ocs_hw_get_linkcfg_skyhawk(ocs_hw_t *hw, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg)
6133 {
6134 	uint8_t *mbxdata;
6135 	ocs_hw_linkcfg_cb_arg_t *cb_arg;
6136 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6137 
6138 	/* mbxdata holds the header of the command */
6139 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
6140 	if (mbxdata == NULL) {
6141 		ocs_log_err(hw->os, "failed to malloc mbox\n");
6142 		return OCS_HW_RTN_NO_MEMORY;
6143 	}
6144 
6145 	/* cb_arg holds the data that will be passed to the callback on completion */
6146 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_linkcfg_cb_arg_t), OCS_M_NOWAIT);
6147 	if (cb_arg == NULL) {
6148 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
6149 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6150 		return OCS_HW_RTN_NO_MEMORY;
6151 	}
6152 
6153 	cb_arg->cb = cb;
6154 	cb_arg->arg = arg;
6155 	cb_arg->opts = opts;
6156 
6157 	/* dma_mem holds the non-embedded portion */
6158 	if (ocs_dma_alloc(hw->os, &cb_arg->dma_cmd, sizeof(sli4_res_common_get_reconfig_link_info_t), 4)) {
6159 		ocs_log_err(hw->os, "Failed to allocate DMA buffer\n");
6160 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6161 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t));
6162 		return OCS_HW_RTN_NO_MEMORY;
6163 	}
6164 
6165 	if (sli_cmd_common_get_reconfig_link_info(&hw->sli, mbxdata, SLI4_BMBX_SIZE, &cb_arg->dma_cmd)) {
6166 		rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_get_active_link_config_cb, cb_arg);
6167 	}
6168 
6169 	if (rc != OCS_HW_RTN_SUCCESS) {
6170 		ocs_log_err(hw->os, "GET_RECONFIG_LINK_INFO failed\n");
6171 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6172 		ocs_dma_free(hw->os, &cb_arg->dma_cmd);
6173 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t));
6174 	} else if (opts == OCS_CMD_POLL) {
6175 		/* if we're polling we have to call the callback here. */
6176 		ocs_hw_get_active_link_config_cb(hw, 0, mbxdata, cb_arg);
6177 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6178 		ocs_dma_free(hw->os, &cb_arg->dma_cmd);
6179 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t));
6180 	} else {
6181 		/* We weren't poling, so the callback got called */
6182 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6183 	}
6184 
6185 	return rc;
6186 }
6187 
6188 /**
6189  * @brief Sets the DIF seed value.
6190  *
6191  * @param hw Hardware context.
6192  *
6193  * @return Returns OCS_HW_RTN_SUCCESS on success.
6194  */
6195 static ocs_hw_rtn_e
6196 ocs_hw_set_dif_seed(ocs_hw_t *hw)
6197 {
6198 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6199 	uint8_t buf[SLI4_BMBX_SIZE];
6200 	sli4_req_common_set_features_dif_seed_t seed_param;
6201 
6202 	ocs_memset(&seed_param, 0, sizeof(seed_param));
6203 	seed_param.seed = hw->config.dif_seed;
6204 
6205 	/* send set_features command */
6206 	if (sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE,
6207 					SLI4_SET_FEATURES_DIF_SEED,
6208 					4,
6209 					(uint32_t*)&seed_param)) {
6210 		rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
6211 		if (rc) {
6212 			ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc);
6213 		} else {
6214 			ocs_log_debug(hw->os, "DIF seed set to 0x%x\n",
6215 					hw->config.dif_seed);
6216 		}
6217 	} else {
6218 		ocs_log_err(hw->os, "sli_cmd_common_set_features failed\n");
6219 		rc = OCS_HW_RTN_ERROR;
6220 	}
6221 	return rc;
6222 }
6223 
6224 /**
6225  * @brief Sets the DIF mode value.
6226  *
6227  * @param hw Hardware context.
6228  *
6229  * @return Returns OCS_HW_RTN_SUCCESS on success.
6230  */
6231 static ocs_hw_rtn_e
6232 ocs_hw_set_dif_mode(ocs_hw_t *hw)
6233 {
6234 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6235 	uint8_t buf[SLI4_BMBX_SIZE];
6236 	sli4_req_common_set_features_t10_pi_mem_model_t mode_param;
6237 
6238 	ocs_memset(&mode_param, 0, sizeof(mode_param));
6239 	mode_param.tmm = (hw->config.dif_mode == OCS_HW_DIF_MODE_INLINE ? 0 : 1);
6240 
6241 	/* send set_features command */
6242 	if (sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE,
6243 					SLI4_SET_FEATURES_DIF_MEMORY_MODE,
6244 					sizeof(mode_param),
6245 					(uint32_t*)&mode_param)) {
6246 		rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
6247 		if (rc) {
6248 			ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc);
6249 		} else {
6250 			ocs_log_test(hw->os, "DIF mode set to %s\n",
6251 				(hw->config.dif_mode == OCS_HW_DIF_MODE_INLINE ? "inline" : "separate"));
6252 		}
6253 	} else {
6254 		ocs_log_err(hw->os, "sli_cmd_common_set_features failed\n");
6255 		rc = OCS_HW_RTN_ERROR;
6256 	}
6257 	return rc;
6258 }
6259 
6260 static void
6261 ocs_hw_watchdog_timer_cb(void *arg)
6262 {
6263 	ocs_hw_t *hw = (ocs_hw_t *)arg;
6264 
6265 	ocs_hw_config_watchdog_timer(hw);
6266 	return;
6267 }
6268 
6269 static void
6270 ocs_hw_cb_cfg_watchdog(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
6271 {
6272 	uint16_t timeout = hw->watchdog_timeout;
6273 
6274 	if (status != 0) {
6275 		ocs_log_err(hw->os, "config watchdog timer failed, rc = %d\n", status);
6276 	} else {
6277 		if(timeout != 0) {
6278 			/* keeping callback 500ms before timeout to keep heartbeat alive */
6279 			ocs_setup_timer(hw->os, &hw->watchdog_timer, ocs_hw_watchdog_timer_cb, hw, (timeout*1000 - 500) );
6280 		}else {
6281 			ocs_del_timer(&hw->watchdog_timer);
6282 		}
6283 	}
6284 
6285 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
6286 	return;
6287 }
6288 
6289 /**
6290  * @brief Set configuration parameters for watchdog timer feature.
6291  *
6292  * @param hw Hardware context.
6293  * @param timeout Timeout for watchdog timer in seconds
6294  *
6295  * @return Returns OCS_HW_RTN_SUCCESS on success.
6296  */
6297 static ocs_hw_rtn_e
6298 ocs_hw_config_watchdog_timer(ocs_hw_t *hw)
6299 {
6300 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6301 	uint8_t *buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
6302 
6303 	if (!buf) {
6304 		ocs_log_err(hw->os, "no buffer for command\n");
6305 		return OCS_HW_RTN_NO_MEMORY;
6306 	}
6307 
6308 	sli4_cmd_lowlevel_set_watchdog(&hw->sli, buf, SLI4_BMBX_SIZE, hw->watchdog_timeout);
6309 	rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_cfg_watchdog, NULL);
6310 	if (rc) {
6311 		ocs_free(hw->os, buf, SLI4_BMBX_SIZE);
6312 		ocs_log_err(hw->os, "config watchdog timer failed, rc = %d\n", rc);
6313 	}
6314 	return rc;
6315 }
6316 
6317 /**
6318  * @brief Set configuration parameters for auto-generate xfer_rdy T10 PI feature.
6319  *
6320  * @param hw Hardware context.
6321  * @param buf Pointer to a mailbox buffer area.
6322  *
6323  * @return Returns OCS_HW_RTN_SUCCESS on success.
6324  */
6325 static ocs_hw_rtn_e
6326 ocs_hw_config_auto_xfer_rdy_t10pi(ocs_hw_t *hw, uint8_t *buf)
6327 {
6328 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6329 	sli4_req_common_set_features_xfer_rdy_t10pi_t param;
6330 
6331 	ocs_memset(&param, 0, sizeof(param));
6332 	param.rtc = (hw->config.auto_xfer_rdy_ref_tag_is_lba ? 0 : 1);
6333 	param.atv = (hw->config.auto_xfer_rdy_app_tag_valid ? 1 : 0);
6334 	param.tmm = ((hw->config.dif_mode == OCS_HW_DIF_MODE_INLINE) ? 0 : 1);
6335 	param.app_tag = hw->config.auto_xfer_rdy_app_tag_value;
6336 	param.blk_size = hw->config.auto_xfer_rdy_blk_size_chip;
6337 
6338 	switch (hw->config.auto_xfer_rdy_p_type) {
6339 	case 1:
6340 		param.p_type = 0;
6341 		break;
6342 	case 3:
6343 		param.p_type = 2;
6344 		break;
6345 	default:
6346 		ocs_log_err(hw->os, "unsupported p_type %d\n",
6347 			hw->config.auto_xfer_rdy_p_type);
6348 		return OCS_HW_RTN_ERROR;
6349 	}
6350 
6351 	/* build the set_features command */
6352 	sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE,
6353 				    SLI4_SET_FEATURES_SET_CONFIG_AUTO_XFER_RDY_T10PI,
6354 				    sizeof(param),
6355 				    &param);
6356 
6357 	rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
6358 	if (rc) {
6359 		ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc);
6360 	} else {
6361 		ocs_log_test(hw->os, "Auto XFER RDY T10 PI configured rtc:%d atv:%d p_type:%d app_tag:%x blk_size:%d\n",
6362 				param.rtc, param.atv, param.p_type,
6363 				param.app_tag, param.blk_size);
6364 	}
6365 
6366 	return rc;
6367 }
6368 
6369 /**
6370  * @brief enable sli port health check
6371  *
6372  * @param hw Hardware context.
6373  * @param buf Pointer to a mailbox buffer area.
6374  * @param query current status of the health check feature enabled/disabled
6375  * @param enable if 1: enable 0: disable
6376  * @param buf Pointer to a mailbox buffer area.
6377  *
6378  * @return Returns OCS_HW_RTN_SUCCESS on success.
6379  */
6380 static ocs_hw_rtn_e
6381 ocs_hw_config_sli_port_health_check(ocs_hw_t *hw, uint8_t query, uint8_t enable)
6382 {
6383 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6384 	uint8_t buf[SLI4_BMBX_SIZE];
6385 	sli4_req_common_set_features_health_check_t param;
6386 
6387 	ocs_memset(&param, 0, sizeof(param));
6388 	param.hck = enable;
6389 	param.qry = query;
6390 
6391 	/* build the set_features command */
6392 	sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE,
6393 				    SLI4_SET_FEATURES_SLI_PORT_HEALTH_CHECK,
6394 				    sizeof(param),
6395 				    &param);
6396 
6397 	rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
6398 	if (rc) {
6399 		ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc);
6400 	} else {
6401 		ocs_log_test(hw->os, "SLI Port Health Check is enabled \n");
6402 	}
6403 
6404 	return rc;
6405 }
6406 
6407 /**
6408  * @brief Set FTD transfer hint feature
6409  *
6410  * @param hw Hardware context.
6411  * @param fdt_xfer_hint size in bytes where read requests are segmented.
6412  *
6413  * @return Returns OCS_HW_RTN_SUCCESS on success.
6414  */
6415 static ocs_hw_rtn_e
6416 ocs_hw_config_set_fdt_xfer_hint(ocs_hw_t *hw, uint32_t fdt_xfer_hint)
6417 {
6418 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6419 	uint8_t buf[SLI4_BMBX_SIZE];
6420 	sli4_req_common_set_features_set_fdt_xfer_hint_t param;
6421 
6422 	ocs_memset(&param, 0, sizeof(param));
6423 	param.fdt_xfer_hint = fdt_xfer_hint;
6424 	/* build the set_features command */
6425 	sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE,
6426 				    SLI4_SET_FEATURES_SET_FTD_XFER_HINT,
6427 				    sizeof(param),
6428 				    &param);
6429 
6430 	rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL);
6431 	if (rc) {
6432 		ocs_log_warn(hw->os, "set FDT hint %d failed: %d\n", fdt_xfer_hint, rc);
6433 	} else {
6434 		ocs_log_debug(hw->os, "Set FTD transfer hint to %d\n", param.fdt_xfer_hint);
6435 	}
6436 
6437 	return rc;
6438 }
6439 
6440 /**
6441  * @brief Get the link configuration callback.
6442  *
6443  * @param hw Hardware context.
6444  * @param status Status from the DMTF CLP command.
6445  * @param result_len Length, in bytes, of the DMTF CLP result.
6446  * @param arg Pointer to a callback argument.
6447  *
6448  * @return Returns OCS_HW_RTN_SUCCESS on success.
6449  */
6450 static void
6451 ocs_hw_linkcfg_dmtf_clp_cb(ocs_hw_t *hw, int32_t status, uint32_t result_len, void *arg)
6452 {
6453 	int32_t rval;
6454 	char retdata_str[64];
6455 	ocs_hw_linkcfg_cb_arg_t *cb_arg = (ocs_hw_linkcfg_cb_arg_t *)arg;
6456 	ocs_hw_linkcfg_e linkcfg = OCS_HW_LINKCFG_NA;
6457 
6458 	if (status) {
6459 		ocs_log_test(hw->os, "CLP cmd failed, status=%d\n", status);
6460 	} else {
6461 		/* parse CLP response to get return data */
6462 		rval = ocs_hw_clp_resp_get_value(hw, "retdata", retdata_str,
6463 						  sizeof(retdata_str),
6464 						  cb_arg->dma_resp.virt,
6465 						  result_len);
6466 
6467 		if (rval <= 0) {
6468 			ocs_log_err(hw->os, "failed to get retdata %d\n", result_len);
6469 		} else {
6470 			/* translate string into hw enum */
6471 			linkcfg = ocs_hw_linkcfg_from_clp(retdata_str);
6472 		}
6473 	}
6474 
6475 	/* invoke callback */
6476 	if (cb_arg->cb) {
6477 		cb_arg->cb(status, linkcfg, cb_arg->arg);
6478 	}
6479 
6480 	/* if polling, will free memory in calling function */
6481 	if (cb_arg->opts != OCS_CMD_POLL) {
6482 		ocs_dma_free(hw->os, &cb_arg->dma_cmd);
6483 		ocs_dma_free(hw->os, &cb_arg->dma_resp);
6484 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
6485 	}
6486 }
6487 
6488 /**
6489  * @brief Set the Lancer dump location
6490  * @par Description
6491  * This function tells a Lancer chip to use a specific DMA
6492  * buffer as a dump location rather than the internal flash.
6493  *
6494  * @param hw Hardware context.
6495  * @param num_buffers The number of DMA buffers to hold the dump (1..n).
6496  * @param dump_buffers DMA buffers to hold the dump.
6497  *
6498  * @return Returns OCS_HW_RTN_SUCCESS on success.
6499  */
6500 ocs_hw_rtn_e
6501 ocs_hw_set_dump_location(ocs_hw_t *hw, uint32_t num_buffers, ocs_dma_t *dump_buffers, uint8_t fdb)
6502 {
6503 	uint8_t bus, dev, func;
6504 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6505 	uint8_t	buf[SLI4_BMBX_SIZE];
6506 
6507 	/*
6508 	 * Make sure the FW is new enough to support this command. If the FW
6509 	 * is too old, the FW will UE.
6510 	 */
6511 	if (hw->workaround.disable_dump_loc) {
6512 		ocs_log_test(hw->os, "FW version is too old for this feature\n");
6513 		return OCS_HW_RTN_ERROR;
6514 	}
6515 
6516 	/* This command is only valid for physical port 0 */
6517 	ocs_get_bus_dev_func(hw->os, &bus, &dev, &func);
6518 	if (fdb == 0 && func != 0) {
6519 		ocs_log_test(hw->os, "function only valid for pci function 0, %d passed\n",
6520 			     func);
6521 		return OCS_HW_RTN_ERROR;
6522 	}
6523 
6524 	/*
6525 	 * If a single buffer is used, then it may be passed as is to the chip. For multiple buffers,
6526 	 * We must allocate a SGL list and then pass the address of the list to the chip.
6527 	 */
6528 	if (num_buffers > 1) {
6529 		uint32_t sge_size = num_buffers * sizeof(sli4_sge_t);
6530 		sli4_sge_t *sge;
6531 		uint32_t i;
6532 
6533 		if (hw->dump_sges.size < sge_size) {
6534 			ocs_dma_free(hw->os, &hw->dump_sges);
6535 			if (ocs_dma_alloc(hw->os, &hw->dump_sges, sge_size, OCS_MIN_DMA_ALIGNMENT)) {
6536 				ocs_log_err(hw->os, "SGE DMA allocation failed\n");
6537 				return OCS_HW_RTN_NO_MEMORY;
6538 			}
6539 		}
6540 		/* build the SGE list */
6541 		ocs_memset(hw->dump_sges.virt, 0, hw->dump_sges.size);
6542 		hw->dump_sges.len = sge_size;
6543 		sge = hw->dump_sges.virt;
6544 		for (i = 0; i < num_buffers; i++) {
6545 			sge[i].buffer_address_high = ocs_addr32_hi(dump_buffers[i].phys);
6546 			sge[i].buffer_address_low = ocs_addr32_lo(dump_buffers[i].phys);
6547 			sge[i].last = (i == num_buffers - 1 ? 1 : 0);
6548 			sge[i].buffer_length = dump_buffers[i].size;
6549 		}
6550 		rc = sli_cmd_common_set_dump_location(&hw->sli, (void *)buf,
6551 						      SLI4_BMBX_SIZE, FALSE, TRUE,
6552 						      &hw->dump_sges, fdb);
6553 	} else {
6554 		dump_buffers->len = dump_buffers->size;
6555 		rc = sli_cmd_common_set_dump_location(&hw->sli, (void *)buf,
6556 						      SLI4_BMBX_SIZE, FALSE, FALSE,
6557 						      dump_buffers, fdb);
6558 	}
6559 
6560 	if (rc) {
6561 		rc = ocs_hw_command(hw, buf, OCS_CMD_POLL,
6562 				     NULL, NULL);
6563 		if (rc) {
6564 			ocs_log_err(hw->os, "ocs_hw_command returns %d\n",
6565 				rc);
6566 		}
6567 	} else {
6568 		ocs_log_err(hw->os,
6569 			"sli_cmd_common_set_dump_location failed\n");
6570 		rc = OCS_HW_RTN_ERROR;
6571 	}
6572 
6573 	return rc;
6574 }
6575 
6576 /**
6577  * @brief Set the Ethernet license.
6578  *
6579  * @par Description
6580  * This function sends the appropriate mailbox command (DMTF
6581  * CLP) to set the Ethernet license to the given license value.
6582  * Since it is used during the time of ocs_hw_init(), the mailbox
6583  * command is sent via polling (the BMBX route).
6584  *
6585  * @param hw Hardware context.
6586  * @param license 32-bit license value.
6587  *
6588  * @return Returns OCS_HW_RTN_SUCCESS on success.
6589  */
6590 static ocs_hw_rtn_e
6591 ocs_hw_set_eth_license(ocs_hw_t *hw, uint32_t license)
6592 {
6593 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6594 	char cmd[OCS_HW_DMTF_CLP_CMD_MAX];
6595 	ocs_dma_t dma_cmd;
6596 	ocs_dma_t dma_resp;
6597 
6598 	/* only for lancer right now */
6599 	if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) {
6600 		ocs_log_test(hw->os, "Function only supported for I/F type 2\n");
6601 		return OCS_HW_RTN_ERROR;
6602 	}
6603 
6604 	ocs_snprintf(cmd, OCS_HW_DMTF_CLP_CMD_MAX, "set / OEMELX_Ethernet_License=%X", license);
6605 	/* allocate DMA for command  */
6606 	if (ocs_dma_alloc(hw->os, &dma_cmd, ocs_strlen(cmd)+1, 4096)) {
6607 		ocs_log_err(hw->os, "malloc failed\n");
6608 		return OCS_HW_RTN_NO_MEMORY;
6609 	}
6610 	ocs_memset(dma_cmd.virt, 0, ocs_strlen(cmd)+1);
6611 	ocs_memcpy(dma_cmd.virt, cmd, ocs_strlen(cmd));
6612 
6613 	/* allocate DMA for response */
6614 	if (ocs_dma_alloc(hw->os, &dma_resp, OCS_HW_DMTF_CLP_RSP_MAX, 4096)) {
6615 		ocs_log_err(hw->os, "malloc failed\n");
6616 		ocs_dma_free(hw->os, &dma_cmd);
6617 		return OCS_HW_RTN_NO_MEMORY;
6618 	}
6619 
6620 	/* send DMTF CLP command mbx and poll */
6621 	if (ocs_hw_exec_dmtf_clp_cmd(hw, &dma_cmd, &dma_resp, OCS_CMD_POLL, NULL, NULL)) {
6622 		ocs_log_err(hw->os, "CLP cmd=\"%s\" failed\n", (char *)dma_cmd.virt);
6623 		rc = OCS_HW_RTN_ERROR;
6624 	}
6625 
6626 	ocs_dma_free(hw->os, &dma_cmd);
6627 	ocs_dma_free(hw->os, &dma_resp);
6628 	return rc;
6629 }
6630 
6631 /**
6632  * @brief Callback argument structure for the DMTF CLP commands.
6633  */
6634 typedef struct ocs_hw_clp_cb_arg_s {
6635 	ocs_hw_dmtf_clp_cb_t cb;
6636 	ocs_dma_t *dma_resp;
6637 	int32_t status;
6638 	uint32_t opts;
6639 	void *arg;
6640 } ocs_hw_clp_cb_arg_t;
6641 
6642 /**
6643  * @brief Execute the DMTF CLP command.
6644  *
6645  * @param hw Hardware context.
6646  * @param dma_cmd DMA buffer containing the CLP command.
6647  * @param dma_resp DMA buffer that will contain the response (if successful).
6648  * @param opts Mailbox command options (such as OCS_CMD_NOWAIT and POLL).
6649  * @param cb Callback function.
6650  * @param arg Callback argument.
6651  *
6652  * @return Returns the number of bytes written to the response
6653  * buffer on success, or a negative value if failed.
6654  */
6655 static ocs_hw_rtn_e
6656 ocs_hw_exec_dmtf_clp_cmd(ocs_hw_t *hw, ocs_dma_t *dma_cmd, ocs_dma_t *dma_resp, uint32_t opts, ocs_hw_dmtf_clp_cb_t cb, void *arg)
6657 {
6658 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
6659 	ocs_hw_clp_cb_arg_t *cb_arg;
6660 	uint8_t *mbxdata;
6661 
6662 	/* allocate DMA for mailbox */
6663 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
6664 	if (mbxdata == NULL) {
6665 		ocs_log_err(hw->os, "failed to malloc mbox\n");
6666 		return OCS_HW_RTN_NO_MEMORY;
6667 	}
6668 
6669 	/* allocate memory for callback argument */
6670 	cb_arg = ocs_malloc(hw->os, sizeof(*cb_arg), OCS_M_NOWAIT);
6671 	if (cb_arg == NULL) {
6672 		ocs_log_err(hw->os, "failed to malloc cb_arg");
6673 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6674 		return OCS_HW_RTN_NO_MEMORY;
6675 	}
6676 
6677 	cb_arg->cb = cb;
6678 	cb_arg->arg = arg;
6679 	cb_arg->dma_resp = dma_resp;
6680 	cb_arg->opts = opts;
6681 
6682 	/* Send the HW command */
6683 	if (sli_cmd_dmtf_exec_clp_cmd(&hw->sli, mbxdata, SLI4_BMBX_SIZE,
6684 				      dma_cmd, dma_resp)) {
6685 		rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_dmtf_clp_cb, cb_arg);
6686 
6687 		if (opts == OCS_CMD_POLL && rc == OCS_HW_RTN_SUCCESS) {
6688 			/* if we're polling, copy response and invoke callback to
6689 			 * parse result */
6690 			ocs_memcpy(mbxdata, hw->sli.bmbx.virt, SLI4_BMBX_SIZE);
6691 			ocs_hw_dmtf_clp_cb(hw, 0, mbxdata, cb_arg);
6692 
6693 			/* set rc to resulting or "parsed" status */
6694 			rc = cb_arg->status;
6695 		}
6696 
6697 		/* if failed, or polling, free memory here */
6698 		if (opts == OCS_CMD_POLL || rc != OCS_HW_RTN_SUCCESS) {
6699 			if (rc != OCS_HW_RTN_SUCCESS) {
6700 				ocs_log_test(hw->os, "ocs_hw_command failed\n");
6701 			}
6702 			ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6703 			ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
6704 		}
6705 	} else {
6706 		ocs_log_test(hw->os, "sli_cmd_dmtf_exec_clp_cmd failed\n");
6707 		rc = OCS_HW_RTN_ERROR;
6708 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6709 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
6710 	}
6711 
6712 	return rc;
6713 }
6714 
6715 /**
6716  * @brief Called when the DMTF CLP command completes.
6717  *
6718  * @param hw Hardware context.
6719  * @param status Status field from the mbox completion.
6720  * @param mqe Mailbox response structure.
6721  * @param arg Pointer to a callback argument.
6722  *
6723  * @return None.
6724  *
6725  */
6726 static void
6727 ocs_hw_dmtf_clp_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
6728 {
6729 	int32_t cb_status = 0;
6730 	sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe;
6731 	sli4_res_dmtf_exec_clp_cmd_t *clp_rsp = (sli4_res_dmtf_exec_clp_cmd_t *) mbox_rsp->payload.embed;
6732 	ocs_hw_clp_cb_arg_t *cb_arg = arg;
6733 	uint32_t result_len = 0;
6734 	int32_t stat_len;
6735 	char stat_str[8];
6736 
6737 	/* there are several status codes here, check them all and condense
6738 	 * into a single callback status
6739 	 */
6740 	if (status || mbox_rsp->hdr.status || clp_rsp->clp_status) {
6741 		ocs_log_debug(hw->os, "status=x%x/x%x/x%x  addl=x%x clp=x%x detail=x%x\n",
6742 			status,
6743 			mbox_rsp->hdr.status,
6744 			clp_rsp->hdr.status,
6745 			clp_rsp->hdr.additional_status,
6746 			clp_rsp->clp_status,
6747 			clp_rsp->clp_detailed_status);
6748 		if (status) {
6749 			cb_status = status;
6750 		} else if (mbox_rsp->hdr.status) {
6751 			cb_status = mbox_rsp->hdr.status;
6752 		} else {
6753 			cb_status = clp_rsp->clp_status;
6754 		}
6755 	} else {
6756 		result_len = clp_rsp->resp_length;
6757 	}
6758 
6759 	if (cb_status) {
6760 		goto ocs_hw_cb_dmtf_clp_done;
6761 	}
6762 
6763 	if ((result_len == 0) || (cb_arg->dma_resp->size < result_len)) {
6764 		ocs_log_test(hw->os, "Invalid response length: resp_len=%zu result len=%d\n",
6765 			     cb_arg->dma_resp->size, result_len);
6766 		cb_status = -1;
6767 		goto ocs_hw_cb_dmtf_clp_done;
6768 	}
6769 
6770 	/* parse CLP response to get status */
6771 	stat_len = ocs_hw_clp_resp_get_value(hw, "status", stat_str,
6772 					      sizeof(stat_str),
6773 					      cb_arg->dma_resp->virt,
6774 					      result_len);
6775 
6776 	if (stat_len <= 0) {
6777 		ocs_log_test(hw->os, "failed to get status %d\n", stat_len);
6778 		cb_status = -1;
6779 		goto ocs_hw_cb_dmtf_clp_done;
6780 	}
6781 
6782 	if (ocs_strcmp(stat_str, "0") != 0) {
6783 		ocs_log_test(hw->os, "CLP status indicates failure=%s\n", stat_str);
6784 		cb_status = -1;
6785 		goto ocs_hw_cb_dmtf_clp_done;
6786 	}
6787 
6788 ocs_hw_cb_dmtf_clp_done:
6789 
6790 	/* save status in cb_arg for callers with NULL cb's + polling */
6791 	cb_arg->status = cb_status;
6792 	if (cb_arg->cb) {
6793 		cb_arg->cb(hw, cb_status, result_len, cb_arg->arg);
6794 	}
6795 	/* if polling, caller will free memory */
6796 	if (cb_arg->opts != OCS_CMD_POLL) {
6797 		ocs_free(hw->os, cb_arg, sizeof(*cb_arg));
6798 		ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
6799 	}
6800 }
6801 
6802 /**
6803  * @brief Parse the CLP result and get the value corresponding to the given
6804  * keyword.
6805  *
6806  * @param hw Hardware context.
6807  * @param keyword CLP keyword for which the value is returned.
6808  * @param value Location to which the resulting value is copied.
6809  * @param value_len Length of the value parameter.
6810  * @param resp Pointer to the response buffer that is searched
6811  * for the keyword and value.
6812  * @param resp_len Length of response buffer passed in.
6813  *
6814  * @return Returns the number of bytes written to the value
6815  * buffer on success, or a negative vaue on failure.
6816  */
6817 static int32_t
6818 ocs_hw_clp_resp_get_value(ocs_hw_t *hw, const char *keyword, char *value, uint32_t value_len, const char *resp, uint32_t resp_len)
6819 {
6820 	char *start = NULL;
6821 	char *end = NULL;
6822 
6823 	/* look for specified keyword in string */
6824 	start = ocs_strstr(resp, keyword);
6825 	if (start == NULL) {
6826 		ocs_log_test(hw->os, "could not find keyword=%s in CLP response\n",
6827 			     keyword);
6828 		return -1;
6829 	}
6830 
6831 	/* now look for '=' and go one past */
6832 	start = ocs_strchr(start, '=');
6833 	if (start == NULL) {
6834 		ocs_log_test(hw->os, "could not find \'=\' in CLP response for keyword=%s\n",
6835 			     keyword);
6836 		return -1;
6837 	}
6838 	start++;
6839 
6840 	/* \r\n terminates value */
6841 	end = ocs_strstr(start, "\r\n");
6842 	if (end == NULL) {
6843 		ocs_log_test(hw->os, "could not find \\r\\n for keyword=%s in CLP response\n",
6844 			     keyword);
6845 		return -1;
6846 	}
6847 
6848 	/* make sure given result array is big enough */
6849 	if ((end - start + 1) > value_len) {
6850 		ocs_log_test(hw->os, "value len=%d not large enough for actual=%ld\n",
6851 			     value_len, (end-start));
6852 		return -1;
6853 	}
6854 
6855 	ocs_strncpy(value, start, (end - start));
6856 	value[end-start] = '\0';
6857 	return (end-start+1);
6858 }
6859 
6860 /**
6861  * @brief Cause chip to enter an unrecoverable error state.
6862  *
6863  * @par Description
6864  * Cause chip to enter an unrecoverable error state. This is
6865  * used when detecting unexpected FW behavior so that the FW can be
6866  * hwted from the driver as soon as the error is detected.
6867  *
6868  * @param hw Hardware context.
6869  * @param dump Generate dump as part of reset.
6870  *
6871  * @return Returns 0 on success, or a non-zero value on failure.
6872  *
6873  */
6874 ocs_hw_rtn_e
6875 ocs_hw_raise_ue(ocs_hw_t *hw, uint8_t dump)
6876 {
6877 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
6878 
6879 	if (sli_raise_ue(&hw->sli, dump) != 0) {
6880 		rc = OCS_HW_RTN_ERROR;
6881 	} else {
6882 		if (hw->state != OCS_HW_STATE_UNINITIALIZED) {
6883 			hw->state = OCS_HW_STATE_QUEUES_ALLOCATED;
6884 		}
6885 	}
6886 
6887 	return rc;
6888 }
6889 
6890 /**
6891  * @brief Called when the OBJECT_GET command completes.
6892  *
6893  * @par Description
6894  * Get the number of bytes actually written out of the response, free the mailbox
6895  * that was malloc'd by ocs_hw_dump_get(), then call the callback
6896  * and pass the status and bytes read.
6897  *
6898  * @param hw Hardware context.
6899  * @param status Status field from the mbox completion.
6900  * @param mqe Mailbox response structure.
6901  * @param arg Pointer to a callback function that signals the caller that the command is done.
6902  * The callback function prototype is <tt>void cb(int32_t status, uint32_t bytes_read)</tt>.
6903  *
6904  * @return Returns 0.
6905  */
6906 static int32_t
6907 ocs_hw_cb_dump_get(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
6908 {
6909 	sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe;
6910 	sli4_res_common_read_object_t* rd_obj_rsp = (sli4_res_common_read_object_t*) mbox_rsp->payload.embed;
6911 	ocs_hw_dump_get_cb_arg_t *cb_arg = arg;
6912 	uint32_t bytes_read;
6913 	uint8_t eof;
6914 
6915 	bytes_read = rd_obj_rsp->actual_read_length;
6916 	eof = rd_obj_rsp->eof;
6917 
6918 	if (cb_arg) {
6919 		if (cb_arg->cb) {
6920 			if ((status == 0) && mbox_rsp->hdr.status) {
6921 				status = mbox_rsp->hdr.status;
6922 			}
6923 			cb_arg->cb(status, bytes_read, eof, cb_arg->arg);
6924 		}
6925 
6926 		ocs_free(hw->os, cb_arg->mbox_cmd, SLI4_BMBX_SIZE);
6927 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_dump_get_cb_arg_t));
6928 	}
6929 
6930 	return 0;
6931 }
6932 
6933 /**
6934  * @brief Read a dump image to the host.
6935  *
6936  * @par Description
6937  * Creates a SLI_CONFIG mailbox command, fills in the correct values to read a
6938  * dump image chunk, then sends the command with the ocs_hw_command(). On completion,
6939  * the callback function ocs_hw_cb_dump_get() gets called to free the mailbox
6940  * and signal the caller that the read has completed.
6941  *
6942  * @param hw Hardware context.
6943  * @param dma DMA structure to transfer the dump chunk into.
6944  * @param size Size of the dump chunk.
6945  * @param offset Offset, in bytes, from the beginning of the dump.
6946  * @param cb Pointer to a callback function that is called when the command completes.
6947  * The callback function prototype is
6948  * <tt>void cb(int32_t status, uint32_t bytes_read, uint8_t eof, void *arg)</tt>.
6949  * @param arg Pointer to be passed to the callback function.
6950  *
6951  * @return Returns 0 on success, or a non-zero value on failure.
6952  */
6953 ocs_hw_rtn_e
6954 ocs_hw_dump_get(ocs_hw_t *hw, ocs_dma_t *dma, uint32_t size, uint32_t offset, ocs_hw_dump_get_cb_t cb, void *arg)
6955 {
6956 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
6957 	uint8_t *mbxdata;
6958 	ocs_hw_dump_get_cb_arg_t *cb_arg;
6959 	uint32_t opts = (hw->state == OCS_HW_STATE_ACTIVE ? OCS_CMD_NOWAIT : OCS_CMD_POLL);
6960 
6961 	if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) {
6962 		ocs_log_test(hw->os, "Function only supported for I/F type 2\n");
6963 		return OCS_HW_RTN_ERROR;
6964 	}
6965 
6966 	if (1 != sli_dump_is_present(&hw->sli)) {
6967 		ocs_log_test(hw->os, "No dump is present\n");
6968 		return OCS_HW_RTN_ERROR;
6969 	}
6970 
6971 	if (1 == sli_reset_required(&hw->sli)) {
6972 		ocs_log_test(hw->os, "device reset required\n");
6973 		return OCS_HW_RTN_ERROR;
6974 	}
6975 
6976 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
6977 	if (mbxdata == NULL) {
6978 		ocs_log_err(hw->os, "failed to malloc mbox\n");
6979 		return OCS_HW_RTN_NO_MEMORY;
6980 	}
6981 
6982 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_dump_get_cb_arg_t), OCS_M_NOWAIT);
6983 	if (cb_arg == NULL) {
6984 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
6985 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
6986 		return OCS_HW_RTN_NO_MEMORY;
6987 	}
6988 
6989 	cb_arg->cb = cb;
6990 	cb_arg->arg = arg;
6991 	cb_arg->mbox_cmd = mbxdata;
6992 
6993 	if (sli_cmd_common_read_object(&hw->sli, mbxdata, SLI4_BMBX_SIZE,
6994 			size, offset, "/dbg/dump.bin", dma)) {
6995 		rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_cb_dump_get, cb_arg);
6996 		if (rc == 0 && opts == OCS_CMD_POLL) {
6997 			ocs_memcpy(mbxdata, hw->sli.bmbx.virt, SLI4_BMBX_SIZE);
6998 			rc = ocs_hw_cb_dump_get(hw, 0, mbxdata, cb_arg);
6999 		}
7000 	}
7001 
7002 	if (rc != OCS_HW_RTN_SUCCESS) {
7003 		ocs_log_test(hw->os, "COMMON_READ_OBJECT failed\n");
7004 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7005 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_dump_get_cb_arg_t));
7006 	}
7007 
7008 	return rc;
7009 }
7010 
7011 /**
7012  * @brief Called when the OBJECT_DELETE command completes.
7013  *
7014  * @par Description
7015  * Free the mailbox that was malloc'd
7016  * by ocs_hw_dump_clear(), then call the callback and pass the status.
7017  *
7018  * @param hw Hardware context.
7019  * @param status Status field from the mbox completion.
7020  * @param mqe Mailbox response structure.
7021  * @param arg Pointer to a callback function that signals the caller that the command is done.
7022  * The callback function prototype is <tt>void cb(int32_t status, void *arg)</tt>.
7023  *
7024  * @return Returns 0.
7025  */
7026 static int32_t
7027 ocs_hw_cb_dump_clear(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
7028 {
7029 	ocs_hw_dump_clear_cb_arg_t *cb_arg = arg;
7030 	sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe;
7031 
7032 	if (cb_arg) {
7033 		if (cb_arg->cb) {
7034 			if ((status == 0) && mbox_rsp->hdr.status) {
7035 				status = mbox_rsp->hdr.status;
7036 			}
7037 			cb_arg->cb(status, cb_arg->arg);
7038 		}
7039 
7040 		ocs_free(hw->os, cb_arg->mbox_cmd, SLI4_BMBX_SIZE);
7041 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_dump_clear_cb_arg_t));
7042 	}
7043 
7044 	return 0;
7045 }
7046 
7047 /**
7048  * @brief Clear a dump image from the device.
7049  *
7050  * @par Description
7051  * Creates a SLI_CONFIG mailbox command, fills it with the correct values to clear
7052  * the dump, then sends the command with ocs_hw_command(). On completion,
7053  * the callback function ocs_hw_cb_dump_clear() gets called to free the mailbox
7054  * and to signal the caller that the write has completed.
7055  *
7056  * @param hw Hardware context.
7057  * @param cb Pointer to a callback function that is called when the command completes.
7058  * The callback function prototype is
7059  * <tt>void cb(int32_t status, uint32_t bytes_written, void *arg)</tt>.
7060  * @param arg Pointer to be passed to the callback function.
7061  *
7062  * @return Returns 0 on success, or a non-zero value on failure.
7063  */
7064 ocs_hw_rtn_e
7065 ocs_hw_dump_clear(ocs_hw_t *hw, ocs_hw_dump_clear_cb_t cb, void *arg)
7066 {
7067 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
7068 	uint8_t *mbxdata;
7069 	ocs_hw_dump_clear_cb_arg_t *cb_arg;
7070 	uint32_t opts = (hw->state == OCS_HW_STATE_ACTIVE ? OCS_CMD_NOWAIT : OCS_CMD_POLL);
7071 
7072 	if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) {
7073 		ocs_log_test(hw->os, "Function only supported for I/F type 2\n");
7074 		return OCS_HW_RTN_ERROR;
7075 	}
7076 
7077 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
7078 	if (mbxdata == NULL) {
7079 		ocs_log_err(hw->os, "failed to malloc mbox\n");
7080 		return OCS_HW_RTN_NO_MEMORY;
7081 	}
7082 
7083 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_dump_clear_cb_arg_t), OCS_M_NOWAIT);
7084 	if (cb_arg == NULL) {
7085 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
7086 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7087 		return OCS_HW_RTN_NO_MEMORY;
7088 	}
7089 
7090 	cb_arg->cb = cb;
7091 	cb_arg->arg = arg;
7092 	cb_arg->mbox_cmd = mbxdata;
7093 
7094 	if (sli_cmd_common_delete_object(&hw->sli, mbxdata, SLI4_BMBX_SIZE,
7095 			"/dbg/dump.bin")) {
7096 		rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_cb_dump_clear, cb_arg);
7097 		if (rc == 0 && opts == OCS_CMD_POLL) {
7098 			ocs_memcpy(mbxdata, hw->sli.bmbx.virt, SLI4_BMBX_SIZE);
7099 			rc = ocs_hw_cb_dump_clear(hw, 0, mbxdata, cb_arg);
7100 		}
7101 	}
7102 
7103 	if (rc != OCS_HW_RTN_SUCCESS) {
7104 		ocs_log_test(hw->os, "COMMON_DELETE_OBJECT failed\n");
7105 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7106 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_dump_clear_cb_arg_t));
7107 	}
7108 
7109 	return rc;
7110 }
7111 
7112 typedef struct ocs_hw_get_port_protocol_cb_arg_s {
7113 	ocs_get_port_protocol_cb_t cb;
7114 	void *arg;
7115 	uint32_t pci_func;
7116 	ocs_dma_t payload;
7117 } ocs_hw_get_port_protocol_cb_arg_t;
7118 
7119 /**
7120  * @brief Called for the completion of get_port_profile for a
7121  *        user request.
7122  *
7123  * @param hw Hardware context.
7124  * @param status The status from the MQE.
7125  * @param mqe Pointer to mailbox command buffer.
7126  * @param arg Pointer to a callback argument.
7127  *
7128  * @return Returns 0 on success, or a non-zero value on failure.
7129  */
7130 static int32_t
7131 ocs_hw_get_port_protocol_cb(ocs_hw_t *hw, int32_t status,
7132 			    uint8_t *mqe, void *arg)
7133 {
7134 	ocs_hw_get_port_protocol_cb_arg_t *cb_arg = arg;
7135 	ocs_dma_t *payload = &(cb_arg->payload);
7136 	sli4_res_common_get_profile_config_t* response = (sli4_res_common_get_profile_config_t*) payload->virt;
7137 	ocs_hw_port_protocol_e port_protocol;
7138 	int num_descriptors;
7139 	sli4_resource_descriptor_v1_t *desc_p;
7140 	sli4_pcie_resource_descriptor_v1_t *pcie_desc_p;
7141 	int i;
7142 
7143 	port_protocol = OCS_HW_PORT_PROTOCOL_OTHER;
7144 
7145 	num_descriptors = response->desc_count;
7146 	desc_p = (sli4_resource_descriptor_v1_t *)response->desc;
7147 	for (i=0; i<num_descriptors; i++) {
7148 		if (desc_p->descriptor_type == SLI4_RESOURCE_DESCRIPTOR_TYPE_PCIE) {
7149 			pcie_desc_p = (sli4_pcie_resource_descriptor_v1_t*) desc_p;
7150 			if (pcie_desc_p->pf_number == cb_arg->pci_func) {
7151 				switch(pcie_desc_p->pf_type) {
7152 				case 0x02:
7153 					port_protocol = OCS_HW_PORT_PROTOCOL_ISCSI;
7154 					break;
7155 				case 0x04:
7156 					port_protocol = OCS_HW_PORT_PROTOCOL_FCOE;
7157 					break;
7158 				case 0x10:
7159 					port_protocol = OCS_HW_PORT_PROTOCOL_FC;
7160 					break;
7161 				default:
7162 					port_protocol = OCS_HW_PORT_PROTOCOL_OTHER;
7163 					break;
7164 				}
7165 			}
7166 		}
7167 
7168 		desc_p = (sli4_resource_descriptor_v1_t *) ((uint8_t *)desc_p + desc_p->descriptor_length);
7169 	}
7170 
7171 	if (cb_arg->cb) {
7172 		cb_arg->cb(status, port_protocol, cb_arg->arg);
7173 	}
7174 
7175 	ocs_dma_free(hw->os, &cb_arg->payload);
7176 	ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_port_protocol_cb_arg_t));
7177 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
7178 
7179 	return 0;
7180 }
7181 
7182 /**
7183  * @ingroup io
7184  * @brief  Get the current port protocol.
7185  * @par Description
7186  * Issues a SLI4 COMMON_GET_PROFILE_CONFIG mailbox.  When the
7187  * command completes the provided mgmt callback function is
7188  * called.
7189  *
7190  * @param hw Hardware context.
7191  * @param pci_func PCI function to query for current protocol.
7192  * @param cb Callback function to be called when the command completes.
7193  * @param ul_arg An argument that is passed to the callback function.
7194  *
7195  * @return
7196  * - OCS_HW_RTN_SUCCESS on success.
7197  * - OCS_HW_RTN_NO_MEMORY if a malloc fails.
7198  * - OCS_HW_RTN_NO_RESOURCES if unable to get a command
7199  *   context.
7200  * - OCS_HW_RTN_ERROR on any other error.
7201  */
7202 ocs_hw_rtn_e
7203 ocs_hw_get_port_protocol(ocs_hw_t *hw, uint32_t pci_func,
7204 	ocs_get_port_protocol_cb_t cb, void* ul_arg)
7205 {
7206 	uint8_t *mbxdata;
7207 	ocs_hw_get_port_protocol_cb_arg_t *cb_arg;
7208 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
7209 
7210 	/* Only supported on Skyhawk */
7211 	if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) {
7212 		return OCS_HW_RTN_ERROR;
7213 	}
7214 
7215 	/* mbxdata holds the header of the command */
7216 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
7217 	if (mbxdata == NULL) {
7218 		ocs_log_err(hw->os, "failed to malloc mbox\n");
7219 		return OCS_HW_RTN_NO_MEMORY;
7220 	}
7221 
7222 	/* cb_arg holds the data that will be passed to the callback on completion */
7223 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_get_port_protocol_cb_arg_t), OCS_M_NOWAIT);
7224 	if (cb_arg == NULL) {
7225 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
7226 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7227 		return OCS_HW_RTN_NO_MEMORY;
7228 	}
7229 
7230 	cb_arg->cb = cb;
7231 	cb_arg->arg = ul_arg;
7232 	cb_arg->pci_func = pci_func;
7233 
7234 	/* dma_mem holds the non-embedded portion */
7235 	if (ocs_dma_alloc(hw->os, &cb_arg->payload, 4096, 4)) {
7236 		ocs_log_err(hw->os, "Failed to allocate DMA buffer\n");
7237 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7238 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_port_protocol_cb_arg_t));
7239 		return OCS_HW_RTN_NO_MEMORY;
7240 	}
7241 
7242 	if (sli_cmd_common_get_profile_config(&hw->sli, mbxdata, SLI4_BMBX_SIZE, &cb_arg->payload)) {
7243 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_get_port_protocol_cb, cb_arg);
7244 	}
7245 
7246 	if (rc != OCS_HW_RTN_SUCCESS) {
7247 		ocs_log_test(hw->os, "GET_PROFILE_CONFIG failed\n");
7248 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7249 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_fw_write_cb_arg_t));
7250 		ocs_dma_free(hw->os, &cb_arg->payload);
7251 	}
7252 
7253 	return rc;
7254 
7255 }
7256 
7257 typedef struct ocs_hw_set_port_protocol_cb_arg_s {
7258 	ocs_set_port_protocol_cb_t cb;
7259 	void *arg;
7260 	ocs_dma_t payload;
7261 	uint32_t new_protocol;
7262 	uint32_t pci_func;
7263 } ocs_hw_set_port_protocol_cb_arg_t;
7264 
7265 /**
7266  * @brief Called for the completion of set_port_profile for a
7267  *        user request.
7268  *
7269  * @par Description
7270  * This is the second of two callbacks for the set_port_protocol
7271  * function. The set operation is a read-modify-write. This
7272  * callback is called when the write (SET_PROFILE_CONFIG)
7273  * completes.
7274  *
7275  * @param hw Hardware context.
7276  * @param status The status from the MQE.
7277  * @param mqe Pointer to mailbox command buffer.
7278  * @param arg Pointer to a callback argument.
7279  *
7280  * @return 0 on success, non-zero otherwise
7281  */
7282 static int32_t
7283 ocs_hw_set_port_protocol_cb2(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
7284 {
7285 	ocs_hw_set_port_protocol_cb_arg_t *cb_arg = arg;
7286 
7287 	if (cb_arg->cb) {
7288 		cb_arg->cb( status, cb_arg->arg);
7289 	}
7290 
7291 	ocs_dma_free(hw->os, &(cb_arg->payload));
7292 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
7293 	ocs_free(hw->os, arg, sizeof(ocs_hw_set_port_protocol_cb_arg_t));
7294 
7295 	return 0;
7296 }
7297 
7298 /**
7299  * @brief Called for the completion of set_port_profile for a
7300  *        user request.
7301  *
7302  * @par Description
7303  * This is the first of two callbacks for the set_port_protocol
7304  * function.  The set operation is a read-modify-write.  This
7305  * callback is called when the read completes
7306  * (GET_PROFILE_CONFG).  It will updated the resource
7307  * descriptors, then queue the write (SET_PROFILE_CONFIG).
7308  *
7309  * On entry there are three memory areas that were allocated by
7310  * ocs_hw_set_port_protocol.  If a failure is detected in this
7311  * function those need to be freed.  If this function succeeds
7312  * it allocates three more areas.
7313  *
7314  * @param hw Hardware context.
7315  * @param status The status from the MQE
7316  * @param mqe Pointer to mailbox command buffer.
7317  * @param arg Pointer to a callback argument.
7318  *
7319  * @return Returns 0 on success, or a non-zero value otherwise.
7320  */
7321 static int32_t
7322 ocs_hw_set_port_protocol_cb1(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
7323 {
7324 	ocs_hw_set_port_protocol_cb_arg_t *cb_arg = arg;
7325 	ocs_dma_t *payload = &(cb_arg->payload);
7326 	sli4_res_common_get_profile_config_t* response = (sli4_res_common_get_profile_config_t*) payload->virt;
7327 	int num_descriptors;
7328 	sli4_resource_descriptor_v1_t *desc_p;
7329 	sli4_pcie_resource_descriptor_v1_t *pcie_desc_p;
7330 	int i;
7331 	ocs_hw_set_port_protocol_cb_arg_t *new_cb_arg;
7332 	ocs_hw_port_protocol_e new_protocol;
7333 	uint8_t *dst;
7334 	sli4_isap_resouce_descriptor_v1_t *isap_desc_p;
7335 	uint8_t *mbxdata;
7336 	int pci_descriptor_count;
7337 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
7338 	int num_fcoe_ports = 0;
7339 	int num_iscsi_ports = 0;
7340 
7341 	new_protocol = (ocs_hw_port_protocol_e)cb_arg->new_protocol;
7342 
7343 	num_descriptors = response->desc_count;
7344 
7345 	/* Count PCI descriptors */
7346 	pci_descriptor_count = 0;
7347 	desc_p = (sli4_resource_descriptor_v1_t *)response->desc;
7348 	for (i=0; i<num_descriptors; i++) {
7349 		if (desc_p->descriptor_type == SLI4_RESOURCE_DESCRIPTOR_TYPE_PCIE) {
7350 			++pci_descriptor_count;
7351 		}
7352 		desc_p = (sli4_resource_descriptor_v1_t *) ((uint8_t *)desc_p + desc_p->descriptor_length);
7353 	}
7354 
7355 	/* mbxdata holds the header of the command */
7356 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
7357 	if (mbxdata == NULL) {
7358 		ocs_log_err(hw->os, "failed to malloc mbox\n");
7359 		return OCS_HW_RTN_NO_MEMORY;
7360 	}
7361 
7362 	/* cb_arg holds the data that will be passed to the callback on completion */
7363 	new_cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_set_port_protocol_cb_arg_t), OCS_M_NOWAIT);
7364 	if (new_cb_arg == NULL) {
7365 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
7366 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7367 		return OCS_HW_RTN_NO_MEMORY;
7368 	}
7369 
7370 	new_cb_arg->cb = cb_arg->cb;
7371 	new_cb_arg->arg = cb_arg->arg;
7372 
7373 	/* Allocate memory for the descriptors we're going to send.  This is
7374 	 * one for each PCI descriptor plus one ISAP descriptor. */
7375 	if (ocs_dma_alloc(hw->os, &new_cb_arg->payload, sizeof(sli4_req_common_set_profile_config_t) +
7376 			  (pci_descriptor_count * sizeof(sli4_pcie_resource_descriptor_v1_t)) +
7377 			  sizeof(sli4_isap_resouce_descriptor_v1_t), 4)) {
7378 		ocs_log_err(hw->os, "Failed to allocate DMA buffer\n");
7379 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7380 		ocs_free(hw->os, new_cb_arg, sizeof(ocs_hw_set_port_protocol_cb_arg_t));
7381 		return OCS_HW_RTN_NO_MEMORY;
7382 	}
7383 
7384 	sli_cmd_common_set_profile_config(&hw->sli, mbxdata, SLI4_BMBX_SIZE,
7385 						   &new_cb_arg->payload,
7386 						   0, pci_descriptor_count+1, 1);
7387 
7388 	/* Point dst to the first descriptor entry in the SET_PROFILE_CONFIG command */
7389 	dst = (uint8_t *)&(((sli4_req_common_set_profile_config_t *) new_cb_arg->payload.virt)->desc);
7390 
7391 	/* Loop over all descriptors.  If the descriptor is a PCIe descriptor, copy it
7392 	 * to the SET_PROFILE_CONFIG command to be written back.  If it's the descriptor
7393 	 * that we're trying to change also set its pf_type.
7394 	 */
7395 	desc_p = (sli4_resource_descriptor_v1_t *)response->desc;
7396 	for (i=0; i<num_descriptors; i++) {
7397 		if (desc_p->descriptor_type == SLI4_RESOURCE_DESCRIPTOR_TYPE_PCIE) {
7398 			pcie_desc_p = (sli4_pcie_resource_descriptor_v1_t*) desc_p;
7399 			if (pcie_desc_p->pf_number == cb_arg->pci_func) {
7400 				/* This is the PCIe descriptor for this OCS instance.
7401 				 * Update it with the new pf_type */
7402 				switch(new_protocol) {
7403 				case OCS_HW_PORT_PROTOCOL_FC:
7404 					pcie_desc_p->pf_type = SLI4_PROTOCOL_FC;
7405 					break;
7406 				case OCS_HW_PORT_PROTOCOL_FCOE:
7407 					pcie_desc_p->pf_type = SLI4_PROTOCOL_FCOE;
7408 					break;
7409 				case OCS_HW_PORT_PROTOCOL_ISCSI:
7410 					pcie_desc_p->pf_type = SLI4_PROTOCOL_ISCSI;
7411 					break;
7412 				default:
7413 					pcie_desc_p->pf_type = SLI4_PROTOCOL_DEFAULT;
7414 					break;
7415 				}
7416 			}
7417 
7418 			if (pcie_desc_p->pf_type == SLI4_PROTOCOL_FCOE) {
7419 				++num_fcoe_ports;
7420 			}
7421 			if (pcie_desc_p->pf_type == SLI4_PROTOCOL_ISCSI) {
7422 				++num_iscsi_ports;
7423 			}
7424 			ocs_memcpy(dst, pcie_desc_p, sizeof(sli4_pcie_resource_descriptor_v1_t));
7425 			dst += sizeof(sli4_pcie_resource_descriptor_v1_t);
7426 		}
7427 
7428 		desc_p = (sli4_resource_descriptor_v1_t *) ((uint8_t *)desc_p + desc_p->descriptor_length);
7429 	}
7430 
7431 	/* Create an ISAP resource descriptor */
7432 	isap_desc_p = (sli4_isap_resouce_descriptor_v1_t*)dst;
7433 	isap_desc_p->descriptor_type = SLI4_RESOURCE_DESCRIPTOR_TYPE_ISAP;
7434 	isap_desc_p->descriptor_length = sizeof(sli4_isap_resouce_descriptor_v1_t);
7435 	if (num_iscsi_ports > 0) {
7436 		isap_desc_p->iscsi_tgt = 1;
7437 		isap_desc_p->iscsi_ini = 1;
7438 		isap_desc_p->iscsi_dif = 1;
7439 	}
7440 	if (num_fcoe_ports > 0) {
7441 		isap_desc_p->fcoe_tgt = 1;
7442 		isap_desc_p->fcoe_ini = 1;
7443 		isap_desc_p->fcoe_dif = 1;
7444 	}
7445 
7446 	/* At this point we're done with the memory allocated by ocs_port_set_protocol */
7447 	ocs_dma_free(hw->os, &cb_arg->payload);
7448 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
7449 	ocs_free(hw->os, cb_arg, sizeof(ocs_hw_set_port_protocol_cb_arg_t));
7450 
7451 	/* Send a SET_PROFILE_CONFIG mailbox command with the new descriptors */
7452 	rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_set_port_protocol_cb2, new_cb_arg);
7453 	if (rc) {
7454 		ocs_log_err(hw->os, "Error posting COMMON_SET_PROFILE_CONFIG\n");
7455 		/* Call the upper level callback to report a failure */
7456 		if (new_cb_arg->cb) {
7457 			new_cb_arg->cb( rc, new_cb_arg->arg);
7458 		}
7459 
7460 		/* Free the memory allocated by this function */
7461 		ocs_dma_free(hw->os, &new_cb_arg->payload);
7462 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7463 		ocs_free(hw->os, new_cb_arg, sizeof(ocs_hw_set_port_protocol_cb_arg_t));
7464 	}
7465 
7466 	return rc;
7467 }
7468 
7469 /**
7470  * @ingroup io
7471  * @brief  Set the port protocol.
7472  * @par Description
7473  * Setting the port protocol is a read-modify-write operation.
7474  * This function submits a GET_PROFILE_CONFIG command to read
7475  * the current settings.  The callback function will modify the
7476  * settings and issue the write.
7477  *
7478  * On successful completion this function will have allocated
7479  * two regular memory areas and one dma area which will need to
7480  * get freed later in the callbacks.
7481  *
7482  * @param hw Hardware context.
7483  * @param new_protocol New protocol to use.
7484  * @param pci_func PCI function to configure.
7485  * @param cb Callback function to be called when the command completes.
7486  * @param ul_arg An argument that is passed to the callback function.
7487  *
7488  * @return
7489  * - OCS_HW_RTN_SUCCESS on success.
7490  * - OCS_HW_RTN_NO_MEMORY if a malloc fails.
7491  * - OCS_HW_RTN_NO_RESOURCES if unable to get a command
7492  *   context.
7493  * - OCS_HW_RTN_ERROR on any other error.
7494  */
7495 ocs_hw_rtn_e
7496 ocs_hw_set_port_protocol(ocs_hw_t *hw, ocs_hw_port_protocol_e new_protocol,
7497 		uint32_t pci_func, ocs_set_port_protocol_cb_t cb, void *ul_arg)
7498 {
7499 	uint8_t *mbxdata;
7500 	ocs_hw_set_port_protocol_cb_arg_t *cb_arg;
7501 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
7502 
7503 	/* Only supported on Skyhawk */
7504 	if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) {
7505 		return OCS_HW_RTN_ERROR;
7506 	}
7507 
7508 	/* mbxdata holds the header of the command */
7509 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
7510 	if (mbxdata == NULL) {
7511 		ocs_log_err(hw->os, "failed to malloc mbox\n");
7512 		return OCS_HW_RTN_NO_MEMORY;
7513 	}
7514 
7515 	/* cb_arg holds the data that will be passed to the callback on completion */
7516 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_set_port_protocol_cb_arg_t), OCS_M_NOWAIT);
7517 	if (cb_arg == NULL) {
7518 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
7519 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7520 		return OCS_HW_RTN_NO_MEMORY;
7521 	}
7522 
7523 	cb_arg->cb = cb;
7524 	cb_arg->arg = ul_arg;
7525 	cb_arg->new_protocol = new_protocol;
7526 	cb_arg->pci_func = pci_func;
7527 
7528 	/* dma_mem holds the non-embedded portion */
7529 	if (ocs_dma_alloc(hw->os, &cb_arg->payload, 4096, 4)) {
7530 		ocs_log_err(hw->os, "Failed to allocate DMA buffer\n");
7531 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7532 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_port_protocol_cb_arg_t));
7533 		return OCS_HW_RTN_NO_MEMORY;
7534 	}
7535 
7536 	if (sli_cmd_common_get_profile_config(&hw->sli, mbxdata, SLI4_BMBX_SIZE, &cb_arg->payload)) {
7537 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_set_port_protocol_cb1, cb_arg);
7538 	}
7539 
7540 	if (rc != OCS_HW_RTN_SUCCESS) {
7541 		ocs_log_test(hw->os, "GET_PROFILE_CONFIG failed\n");
7542 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7543 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_fw_write_cb_arg_t));
7544 		ocs_dma_free(hw->os, &cb_arg->payload);
7545 	}
7546 
7547 	return rc;
7548 }
7549 
7550 typedef struct ocs_hw_get_profile_list_cb_arg_s {
7551 	ocs_get_profile_list_cb_t cb;
7552 	void *arg;
7553 	ocs_dma_t payload;
7554 } ocs_hw_get_profile_list_cb_arg_t;
7555 
7556 /**
7557  * @brief Called for the completion of get_profile_list for a
7558  *        user request.
7559  * @par Description
7560  * This function is called when the COMMMON_GET_PROFILE_LIST
7561  * mailbox completes.  The response will be in
7562  * ctx->non_embedded_mem.virt.  This function parses the
7563  * response and creates a ocs_hw_profile_list, then calls the
7564  * mgmt_cb callback function and passes that list to it.
7565  *
7566  * @param hw Hardware context.
7567  * @param status The status from the MQE
7568  * @param mqe Pointer to mailbox command buffer.
7569  * @param arg Pointer to a callback argument.
7570  *
7571  * @return Returns 0 on success, or a non-zero value on failure.
7572  */
7573 static int32_t
7574 ocs_hw_get_profile_list_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
7575 {
7576 	ocs_hw_profile_list_t *list;
7577 	ocs_hw_get_profile_list_cb_arg_t *cb_arg = arg;
7578 	ocs_dma_t *payload = &(cb_arg->payload);
7579 	sli4_res_common_get_profile_list_t *response = (sli4_res_common_get_profile_list_t *)payload->virt;
7580 	int i;
7581 	int num_descriptors;
7582 
7583 	list = ocs_malloc(hw->os, sizeof(ocs_hw_profile_list_t), OCS_M_ZERO);
7584 	list->num_descriptors = response->profile_descriptor_count;
7585 
7586 	num_descriptors = list->num_descriptors;
7587 	if (num_descriptors > OCS_HW_MAX_PROFILES) {
7588 		num_descriptors = OCS_HW_MAX_PROFILES;
7589 	}
7590 
7591 	for (i=0; i<num_descriptors; i++) {
7592 		list->descriptors[i].profile_id = response->profile_descriptor[i].profile_id;
7593 		list->descriptors[i].profile_index = response->profile_descriptor[i].profile_index;
7594 		ocs_strcpy(list->descriptors[i].profile_description, (char *)response->profile_descriptor[i].profile_description);
7595 	}
7596 
7597 	if (cb_arg->cb) {
7598 		cb_arg->cb(status, list, cb_arg->arg);
7599 	} else {
7600 		ocs_free(hw->os, list, sizeof(*list));
7601 	}
7602 
7603 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
7604 	ocs_dma_free(hw->os, &cb_arg->payload);
7605 	ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_profile_list_cb_arg_t));
7606 
7607 	return 0;
7608 }
7609 
7610 /**
7611  * @ingroup io
7612  * @brief  Get a list of available profiles.
7613  * @par Description
7614  * Issues a SLI-4 COMMON_GET_PROFILE_LIST mailbox.  When the
7615  * command completes the provided mgmt callback function is
7616  * called.
7617  *
7618  * @param hw Hardware context.
7619  * @param cb Callback function to be called when the
7620  *      	  command completes.
7621  * @param ul_arg An argument that is passed to the callback
7622  *      	 function.
7623  *
7624  * @return
7625  * - OCS_HW_RTN_SUCCESS on success.
7626  * - OCS_HW_RTN_NO_MEMORY if a malloc fails.
7627  * - OCS_HW_RTN_NO_RESOURCES if unable to get a command
7628  *   context.
7629  * - OCS_HW_RTN_ERROR on any other error.
7630  */
7631 ocs_hw_rtn_e
7632 ocs_hw_get_profile_list(ocs_hw_t *hw, ocs_get_profile_list_cb_t cb, void* ul_arg)
7633 {
7634 	uint8_t *mbxdata;
7635 	ocs_hw_get_profile_list_cb_arg_t *cb_arg;
7636 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
7637 
7638 	/* Only supported on Skyhawk */
7639 	if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) {
7640 		return OCS_HW_RTN_ERROR;
7641 	}
7642 
7643 	/* mbxdata holds the header of the command */
7644 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
7645 	if (mbxdata == NULL) {
7646 		ocs_log_err(hw->os, "failed to malloc mbox\n");
7647 		return OCS_HW_RTN_NO_MEMORY;
7648 	}
7649 
7650 	/* cb_arg holds the data that will be passed to the callback on completion */
7651 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_get_profile_list_cb_arg_t), OCS_M_NOWAIT);
7652 	if (cb_arg == NULL) {
7653 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
7654 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7655 		return OCS_HW_RTN_NO_MEMORY;
7656 	}
7657 
7658 	cb_arg->cb = cb;
7659 	cb_arg->arg = ul_arg;
7660 
7661 	/* dma_mem holds the non-embedded portion */
7662 	if (ocs_dma_alloc(hw->os, &cb_arg->payload, sizeof(sli4_res_common_get_profile_list_t), 4)) {
7663 		ocs_log_err(hw->os, "Failed to allocate DMA buffer\n");
7664 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7665 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_profile_list_cb_arg_t));
7666 		return OCS_HW_RTN_NO_MEMORY;
7667 	}
7668 
7669 	if (sli_cmd_common_get_profile_list(&hw->sli, mbxdata, SLI4_BMBX_SIZE, 0, &cb_arg->payload)) {
7670 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_get_profile_list_cb, cb_arg);
7671 	}
7672 
7673 	if (rc != OCS_HW_RTN_SUCCESS) {
7674 		ocs_log_test(hw->os, "GET_PROFILE_LIST failed\n");
7675 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7676 		ocs_dma_free(hw->os, &cb_arg->payload);
7677 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_profile_list_cb_arg_t));
7678 	}
7679 
7680 	return rc;
7681 }
7682 
7683 typedef struct ocs_hw_get_active_profile_cb_arg_s {
7684 	ocs_get_active_profile_cb_t cb;
7685 	void *arg;
7686 } ocs_hw_get_active_profile_cb_arg_t;
7687 
7688 /**
7689  * @brief Called for the completion of get_active_profile for a
7690  *        user request.
7691  *
7692  * @param hw Hardware context.
7693  * @param status The status from the MQE
7694  * @param mqe Pointer to mailbox command buffer.
7695  * @param arg Pointer to a callback argument.
7696  *
7697  * @return Returns 0 on success, or a non-zero value on failure.
7698  */
7699 static int32_t
7700 ocs_hw_get_active_profile_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
7701 {
7702 	ocs_hw_get_active_profile_cb_arg_t *cb_arg = arg;
7703 	sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe;
7704 	sli4_res_common_get_active_profile_t* response = (sli4_res_common_get_active_profile_t*) mbox_rsp->payload.embed;
7705 	uint32_t active_profile;
7706 
7707 	active_profile = response->active_profile_id;
7708 
7709 	if (cb_arg->cb) {
7710 		cb_arg->cb(status, active_profile, cb_arg->arg);
7711 	}
7712 
7713 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
7714 	ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_active_profile_cb_arg_t));
7715 
7716 	return 0;
7717 }
7718 
7719 /**
7720  * @ingroup io
7721  * @brief  Get the currently active profile.
7722  * @par Description
7723  * Issues a SLI-4 COMMON_GET_ACTIVE_PROFILE mailbox. When the
7724  * command completes the provided mgmt callback function is
7725  * called.
7726  *
7727  * @param hw Hardware context.
7728  * @param cb Callback function to be called when the
7729  *	     command completes.
7730  * @param ul_arg An argument that is passed to the callback
7731  *      	 function.
7732  *
7733  * @return
7734  * - OCS_HW_RTN_SUCCESS on success.
7735  * - OCS_HW_RTN_NO_MEMORY if a malloc fails.
7736  * - OCS_HW_RTN_NO_RESOURCES if unable to get a command
7737  *   context.
7738  * - OCS_HW_RTN_ERROR on any other error.
7739  */
7740 int32_t
7741 ocs_hw_get_active_profile(ocs_hw_t *hw, ocs_get_active_profile_cb_t cb, void* ul_arg)
7742 {
7743 	uint8_t *mbxdata;
7744 	ocs_hw_get_active_profile_cb_arg_t *cb_arg;
7745 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
7746 
7747 	/* Only supported on Skyhawk */
7748 	if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) {
7749 		return OCS_HW_RTN_ERROR;
7750 	}
7751 
7752 	/* mbxdata holds the header of the command */
7753 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
7754 	if (mbxdata == NULL) {
7755 		ocs_log_err(hw->os, "failed to malloc mbox\n");
7756 		return OCS_HW_RTN_NO_MEMORY;
7757 	}
7758 
7759 	/* cb_arg holds the data that will be passed to the callback on completion */
7760 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_get_active_profile_cb_arg_t), OCS_M_NOWAIT);
7761 	if (cb_arg == NULL) {
7762 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
7763 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7764 		return OCS_HW_RTN_NO_MEMORY;
7765 	}
7766 
7767 	cb_arg->cb = cb;
7768 	cb_arg->arg = ul_arg;
7769 
7770 	if (sli_cmd_common_get_active_profile(&hw->sli, mbxdata, SLI4_BMBX_SIZE)) {
7771 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_get_active_profile_cb, cb_arg);
7772 	}
7773 
7774 	if (rc != OCS_HW_RTN_SUCCESS) {
7775 		ocs_log_test(hw->os, "GET_ACTIVE_PROFILE failed\n");
7776 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7777 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_active_profile_cb_arg_t));
7778 	}
7779 
7780 	return rc;
7781 }
7782 
7783 typedef struct ocs_hw_get_nvparms_cb_arg_s {
7784 	ocs_get_nvparms_cb_t cb;
7785 	void *arg;
7786 } ocs_hw_get_nvparms_cb_arg_t;
7787 
7788 /**
7789  * @brief Called for the completion of get_nvparms for a
7790  *        user request.
7791  *
7792  * @param hw Hardware context.
7793  * @param status The status from the MQE.
7794  * @param mqe Pointer to mailbox command buffer.
7795  * @param arg Pointer to a callback argument.
7796  *
7797  * @return 0 on success, non-zero otherwise
7798  */
7799 static int32_t
7800 ocs_hw_get_nvparms_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
7801 {
7802 	ocs_hw_get_nvparms_cb_arg_t *cb_arg = arg;
7803 	sli4_cmd_read_nvparms_t* mbox_rsp = (sli4_cmd_read_nvparms_t*) mqe;
7804 
7805 	if (cb_arg->cb) {
7806 		cb_arg->cb(status, mbox_rsp->wwpn, mbox_rsp->wwnn, mbox_rsp->hard_alpa,
7807 				mbox_rsp->preferred_d_id, cb_arg->arg);
7808 	}
7809 
7810 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
7811 	ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_nvparms_cb_arg_t));
7812 
7813 	return 0;
7814 }
7815 
7816 /**
7817  * @ingroup io
7818  * @brief  Read non-volatile parms.
7819  * @par Description
7820  * Issues a SLI-4 READ_NVPARMS mailbox. When the
7821  * command completes the provided mgmt callback function is
7822  * called.
7823  *
7824  * @param hw Hardware context.
7825  * @param cb Callback function to be called when the
7826  *	  command completes.
7827  * @param ul_arg An argument that is passed to the callback
7828  *	  function.
7829  *
7830  * @return
7831  * - OCS_HW_RTN_SUCCESS on success.
7832  * - OCS_HW_RTN_NO_MEMORY if a malloc fails.
7833  * - OCS_HW_RTN_NO_RESOURCES if unable to get a command
7834  *   context.
7835  * - OCS_HW_RTN_ERROR on any other error.
7836  */
7837 int32_t
7838 ocs_hw_get_nvparms(ocs_hw_t *hw, ocs_get_nvparms_cb_t cb, void* ul_arg)
7839 {
7840 	uint8_t *mbxdata;
7841 	ocs_hw_get_nvparms_cb_arg_t *cb_arg;
7842 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
7843 
7844 	/* mbxdata holds the header of the command */
7845 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
7846 	if (mbxdata == NULL) {
7847 		ocs_log_err(hw->os, "failed to malloc mbox\n");
7848 		return OCS_HW_RTN_NO_MEMORY;
7849 	}
7850 
7851 	/* cb_arg holds the data that will be passed to the callback on completion */
7852 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_get_nvparms_cb_arg_t), OCS_M_NOWAIT);
7853 	if (cb_arg == NULL) {
7854 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
7855 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7856 		return OCS_HW_RTN_NO_MEMORY;
7857 	}
7858 
7859 	cb_arg->cb = cb;
7860 	cb_arg->arg = ul_arg;
7861 
7862 	if (sli_cmd_read_nvparms(&hw->sli, mbxdata, SLI4_BMBX_SIZE)) {
7863 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_get_nvparms_cb, cb_arg);
7864 	}
7865 
7866 	if (rc != OCS_HW_RTN_SUCCESS) {
7867 		ocs_log_test(hw->os, "READ_NVPARMS failed\n");
7868 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7869 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_nvparms_cb_arg_t));
7870 	}
7871 
7872 	return rc;
7873 }
7874 
7875 typedef struct ocs_hw_set_nvparms_cb_arg_s {
7876 	ocs_set_nvparms_cb_t cb;
7877 	void *arg;
7878 } ocs_hw_set_nvparms_cb_arg_t;
7879 
7880 /**
7881  * @brief Called for the completion of set_nvparms for a
7882  *        user request.
7883  *
7884  * @param hw Hardware context.
7885  * @param status The status from the MQE.
7886  * @param mqe Pointer to mailbox command buffer.
7887  * @param arg Pointer to a callback argument.
7888  *
7889  * @return Returns 0 on success, or a non-zero value on failure.
7890  */
7891 static int32_t
7892 ocs_hw_set_nvparms_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
7893 {
7894 	ocs_hw_set_nvparms_cb_arg_t *cb_arg = arg;
7895 
7896 	if (cb_arg->cb) {
7897 		cb_arg->cb(status, cb_arg->arg);
7898 	}
7899 
7900 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
7901 	ocs_free(hw->os, cb_arg, sizeof(ocs_hw_set_nvparms_cb_arg_t));
7902 
7903 	return 0;
7904 }
7905 
7906 /**
7907  * @ingroup io
7908  * @brief  Write non-volatile parms.
7909  * @par Description
7910  * Issues a SLI-4 WRITE_NVPARMS mailbox. When the
7911  * command completes the provided mgmt callback function is
7912  * called.
7913  *
7914  * @param hw Hardware context.
7915  * @param cb Callback function to be called when the
7916  *	  command completes.
7917  * @param wwpn Port's WWPN in big-endian order, or NULL to use default.
7918  * @param wwnn Port's WWNN in big-endian order, or NULL to use default.
7919  * @param hard_alpa A hard AL_PA address setting used during loop
7920  * initialization. If no hard AL_PA is required, set to 0.
7921  * @param preferred_d_id A preferred D_ID address setting
7922  * that may be overridden with the CONFIG_LINK mailbox command.
7923  * If there is no preference, set to 0.
7924  * @param ul_arg An argument that is passed to the callback
7925  *	  function.
7926  *
7927  * @return
7928  * - OCS_HW_RTN_SUCCESS on success.
7929  * - OCS_HW_RTN_NO_MEMORY if a malloc fails.
7930  * - OCS_HW_RTN_NO_RESOURCES if unable to get a command
7931  *   context.
7932  * - OCS_HW_RTN_ERROR on any other error.
7933  */
7934 int32_t
7935 ocs_hw_set_nvparms(ocs_hw_t *hw, ocs_set_nvparms_cb_t cb, uint8_t *wwpn,
7936 		uint8_t *wwnn, uint8_t hard_alpa, uint32_t preferred_d_id, void* ul_arg)
7937 {
7938 	uint8_t *mbxdata;
7939 	ocs_hw_set_nvparms_cb_arg_t *cb_arg;
7940 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
7941 
7942 	/* mbxdata holds the header of the command */
7943 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
7944 	if (mbxdata == NULL) {
7945 		ocs_log_err(hw->os, "failed to malloc mbox\n");
7946 		return OCS_HW_RTN_NO_MEMORY;
7947 	}
7948 
7949 	/* cb_arg holds the data that will be passed to the callback on completion */
7950 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_set_nvparms_cb_arg_t), OCS_M_NOWAIT);
7951 	if (cb_arg == NULL) {
7952 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
7953 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7954 		return OCS_HW_RTN_NO_MEMORY;
7955 	}
7956 
7957 	cb_arg->cb = cb;
7958 	cb_arg->arg = ul_arg;
7959 
7960 	if (sli_cmd_write_nvparms(&hw->sli, mbxdata, SLI4_BMBX_SIZE, wwpn, wwnn, hard_alpa, preferred_d_id)) {
7961 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_set_nvparms_cb, cb_arg);
7962 	}
7963 
7964 	if (rc != OCS_HW_RTN_SUCCESS) {
7965 		ocs_log_test(hw->os, "SET_NVPARMS failed\n");
7966 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
7967 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_set_nvparms_cb_arg_t));
7968 	}
7969 
7970 	return rc;
7971 }
7972 
7973 /**
7974  * @brief Called to obtain the count for the specified type.
7975  *
7976  * @param hw Hardware context.
7977  * @param io_count_type IO count type (inuse, free, wait_free).
7978  *
7979  * @return Returns the number of IOs on the specified list type.
7980  */
7981 uint32_t
7982 ocs_hw_io_get_count(ocs_hw_t *hw, ocs_hw_io_count_type_e io_count_type)
7983 {
7984 	ocs_hw_io_t *io = NULL;
7985 	uint32_t count = 0;
7986 
7987 	ocs_lock(&hw->io_lock);
7988 
7989 	switch (io_count_type) {
7990 	case OCS_HW_IO_INUSE_COUNT :
7991 		ocs_list_foreach(&hw->io_inuse, io) {
7992 			count++;
7993 		}
7994 		break;
7995 	case OCS_HW_IO_FREE_COUNT :
7996 		 ocs_list_foreach(&hw->io_free, io) {
7997 			 count++;
7998 		 }
7999 		 break;
8000 	case OCS_HW_IO_WAIT_FREE_COUNT :
8001 		 ocs_list_foreach(&hw->io_wait_free, io) {
8002 			 count++;
8003 		 }
8004 		 break;
8005 	case OCS_HW_IO_PORT_OWNED_COUNT:
8006 		 ocs_list_foreach(&hw->io_port_owned, io) {
8007 			 count++;
8008 		 }
8009 		 break;
8010 	case OCS_HW_IO_N_TOTAL_IO_COUNT :
8011 		count = hw->config.n_io;
8012 		break;
8013 	}
8014 
8015 	ocs_unlock(&hw->io_lock);
8016 
8017 	return count;
8018 }
8019 
8020 /**
8021  * @brief Called to obtain the count of produced RQs.
8022  *
8023  * @param hw Hardware context.
8024  *
8025  * @return Returns the number of RQs produced.
8026  */
8027 uint32_t
8028 ocs_hw_get_rqes_produced_count(ocs_hw_t *hw)
8029 {
8030 	uint32_t count = 0;
8031 	uint32_t i;
8032 	uint32_t j;
8033 
8034 	for (i = 0; i < hw->hw_rq_count; i++) {
8035 		hw_rq_t *rq = hw->hw_rq[i];
8036 		if (rq->rq_tracker != NULL) {
8037 			for (j = 0; j < rq->entry_count; j++) {
8038 				if (rq->rq_tracker[j] != NULL) {
8039 					count++;
8040 				}
8041 			}
8042 		}
8043 	}
8044 
8045 	return count;
8046 }
8047 
8048 typedef struct ocs_hw_set_active_profile_cb_arg_s {
8049 	ocs_set_active_profile_cb_t cb;
8050 	void *arg;
8051 } ocs_hw_set_active_profile_cb_arg_t;
8052 
8053 /**
8054  * @brief Called for the completion of set_active_profile for a
8055  *        user request.
8056  *
8057  * @param hw Hardware context.
8058  * @param status The status from the MQE
8059  * @param mqe Pointer to mailbox command buffer.
8060  * @param arg Pointer to a callback argument.
8061  *
8062  * @return Returns 0 on success, or a non-zero value on failure.
8063  */
8064 static int32_t
8065 ocs_hw_set_active_profile_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
8066 {
8067 	ocs_hw_set_active_profile_cb_arg_t *cb_arg = arg;
8068 
8069 	if (cb_arg->cb) {
8070 		cb_arg->cb(status, cb_arg->arg);
8071 	}
8072 
8073 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
8074 	ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_active_profile_cb_arg_t));
8075 
8076 	return 0;
8077 }
8078 
8079 /**
8080  * @ingroup io
8081  * @brief  Set the currently active profile.
8082  * @par Description
8083  * Issues a SLI4 COMMON_GET_ACTIVE_PROFILE mailbox. When the
8084  * command completes the provided mgmt callback function is
8085  * called.
8086  *
8087  * @param hw Hardware context.
8088  * @param profile_id Profile ID to activate.
8089  * @param cb Callback function to be called when the command completes.
8090  * @param ul_arg An argument that is passed to the callback function.
8091  *
8092  * @return
8093  * - OCS_HW_RTN_SUCCESS on success.
8094  * - OCS_HW_RTN_NO_MEMORY if a malloc fails.
8095  * - OCS_HW_RTN_NO_RESOURCES if unable to get a command
8096  *   context.
8097  * - OCS_HW_RTN_ERROR on any other error.
8098  */
8099 int32_t
8100 ocs_hw_set_active_profile(ocs_hw_t *hw, ocs_set_active_profile_cb_t cb, uint32_t profile_id, void* ul_arg)
8101 {
8102 	uint8_t *mbxdata;
8103 	ocs_hw_set_active_profile_cb_arg_t *cb_arg;
8104 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
8105 
8106 	/* Only supported on Skyhawk */
8107 	if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) {
8108 		return OCS_HW_RTN_ERROR;
8109 	}
8110 
8111 	/* mbxdata holds the header of the command */
8112 	mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
8113 	if (mbxdata == NULL) {
8114 		ocs_log_err(hw->os, "failed to malloc mbox\n");
8115 		return OCS_HW_RTN_NO_MEMORY;
8116 	}
8117 
8118 	/* cb_arg holds the data that will be passed to the callback on completion */
8119 	cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_set_active_profile_cb_arg_t), OCS_M_NOWAIT);
8120 	if (cb_arg == NULL) {
8121 		ocs_log_err(hw->os, "failed to malloc cb_arg\n");
8122 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
8123 		return OCS_HW_RTN_NO_MEMORY;
8124 	}
8125 
8126 	cb_arg->cb = cb;
8127 	cb_arg->arg = ul_arg;
8128 
8129 	if (sli_cmd_common_set_active_profile(&hw->sli, mbxdata, SLI4_BMBX_SIZE, 0, profile_id)) {
8130 		rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_set_active_profile_cb, cb_arg);
8131 	}
8132 
8133 	if (rc != OCS_HW_RTN_SUCCESS) {
8134 		ocs_log_test(hw->os, "SET_ACTIVE_PROFILE failed\n");
8135 		ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE);
8136 		ocs_free(hw->os, cb_arg, sizeof(ocs_hw_set_active_profile_cb_arg_t));
8137 	}
8138 
8139 	return rc;
8140 }
8141 
8142 /*
8143  * Private functions
8144  */
8145 
8146 /**
8147  * @brief Update the queue hash with the ID and index.
8148  *
8149  * @param hash Pointer to hash table.
8150  * @param id ID that was created.
8151  * @param index The index into the hash object.
8152  */
8153 static void
8154 ocs_hw_queue_hash_add(ocs_queue_hash_t *hash, uint16_t id, uint16_t index)
8155 {
8156 	uint32_t	hash_index = id & (OCS_HW_Q_HASH_SIZE - 1);
8157 
8158 	/*
8159 	 * Since the hash is always bigger than the number of queues, then we
8160 	 * never have to worry about an infinite loop.
8161 	 */
8162 	while(hash[hash_index].in_use) {
8163 		hash_index = (hash_index + 1) & (OCS_HW_Q_HASH_SIZE - 1);
8164 	}
8165 
8166 	/* not used, claim the entry */
8167 	hash[hash_index].id = id;
8168 	hash[hash_index].in_use = 1;
8169 	hash[hash_index].index = index;
8170 }
8171 
8172 /**
8173  * @brief Find index given queue ID.
8174  *
8175  * @param hash Pointer to hash table.
8176  * @param id ID to find.
8177  *
8178  * @return Returns the index into the HW cq array or -1 if not found.
8179  */
8180 int32_t
8181 ocs_hw_queue_hash_find(ocs_queue_hash_t *hash, uint16_t id)
8182 {
8183 	int32_t	rc = -1;
8184 	int32_t	index = id & (OCS_HW_Q_HASH_SIZE - 1);
8185 
8186 	/*
8187 	 * Since the hash is always bigger than the maximum number of Qs, then we
8188 	 * never have to worry about an infinite loop. We will always find an
8189 	 * unused entry.
8190 	 */
8191 	do {
8192 		if (hash[index].in_use &&
8193 		    hash[index].id == id) {
8194 			rc = hash[index].index;
8195 		} else {
8196 			index = (index + 1) & (OCS_HW_Q_HASH_SIZE - 1);
8197 		}
8198 	} while(rc == -1 && hash[index].in_use);
8199 
8200 	return rc;
8201 }
8202 
8203 static int32_t
8204 ocs_hw_domain_add(ocs_hw_t *hw, ocs_domain_t *domain)
8205 {
8206 	int32_t		rc = OCS_HW_RTN_ERROR;
8207 	uint16_t	fcfi = UINT16_MAX;
8208 
8209 	if ((hw == NULL) || (domain == NULL)) {
8210 		ocs_log_err(NULL, "bad parameter hw=%p domain=%p\n",
8211 				hw, domain);
8212 		return OCS_HW_RTN_ERROR;
8213 	}
8214 
8215 	fcfi = domain->fcf_indicator;
8216 
8217 	if (fcfi < SLI4_MAX_FCFI) {
8218 		uint16_t	fcf_index = UINT16_MAX;
8219 
8220 		ocs_log_debug(hw->os, "adding domain %p @ %#x\n",
8221 				domain, fcfi);
8222 		hw->domains[fcfi] = domain;
8223 
8224 		/* HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB */
8225 		if (hw->workaround.override_fcfi) {
8226 			if (hw->first_domain_idx < 0) {
8227 				hw->first_domain_idx = fcfi;
8228 			}
8229 		}
8230 
8231 		fcf_index = domain->fcf;
8232 
8233 		if (fcf_index < SLI4_MAX_FCF_INDEX) {
8234 			ocs_log_debug(hw->os, "adding map of FCF index %d to FCFI %d\n",
8235 				      fcf_index, fcfi);
8236 			hw->fcf_index_fcfi[fcf_index] = fcfi;
8237 			rc = OCS_HW_RTN_SUCCESS;
8238 		} else {
8239 			ocs_log_test(hw->os, "FCF index %d out of range (max %d)\n",
8240 				     fcf_index, SLI4_MAX_FCF_INDEX);
8241 			hw->domains[fcfi] = NULL;
8242 		}
8243 	} else {
8244 		ocs_log_test(hw->os, "FCFI %#x out of range (max %#x)\n",
8245 				fcfi, SLI4_MAX_FCFI);
8246 	}
8247 
8248 	return rc;
8249 }
8250 
8251 static int32_t
8252 ocs_hw_domain_del(ocs_hw_t *hw, ocs_domain_t *domain)
8253 {
8254 	int32_t		rc = OCS_HW_RTN_ERROR;
8255 	uint16_t	fcfi = UINT16_MAX;
8256 
8257 	if ((hw == NULL) || (domain == NULL)) {
8258 		ocs_log_err(NULL, "bad parameter hw=%p domain=%p\n",
8259 				hw, domain);
8260 		return OCS_HW_RTN_ERROR;
8261 	}
8262 
8263 	fcfi = domain->fcf_indicator;
8264 
8265 	if (fcfi < SLI4_MAX_FCFI) {
8266 		uint16_t	fcf_index = UINT16_MAX;
8267 
8268 		ocs_log_debug(hw->os, "deleting domain %p @ %#x\n",
8269 				domain, fcfi);
8270 
8271 		if (domain != hw->domains[fcfi]) {
8272 			ocs_log_test(hw->os, "provided domain %p does not match stored domain %p\n",
8273 				     domain, hw->domains[fcfi]);
8274 			return OCS_HW_RTN_ERROR;
8275 		}
8276 
8277 		hw->domains[fcfi] = NULL;
8278 
8279 		/* HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB */
8280 		if (hw->workaround.override_fcfi) {
8281 			if (hw->first_domain_idx == fcfi) {
8282 				hw->first_domain_idx = -1;
8283 			}
8284 		}
8285 
8286 		fcf_index = domain->fcf;
8287 
8288 		if (fcf_index < SLI4_MAX_FCF_INDEX) {
8289 			if (hw->fcf_index_fcfi[fcf_index] == fcfi) {
8290 				hw->fcf_index_fcfi[fcf_index] = 0;
8291 				rc = OCS_HW_RTN_SUCCESS;
8292 			} else {
8293 				ocs_log_test(hw->os, "indexed FCFI %#x doesn't match provided %#x @ %d\n",
8294 					     hw->fcf_index_fcfi[fcf_index], fcfi, fcf_index);
8295 			}
8296 		} else {
8297 			ocs_log_test(hw->os, "FCF index %d out of range (max %d)\n",
8298 				     fcf_index, SLI4_MAX_FCF_INDEX);
8299 		}
8300 	} else {
8301 		ocs_log_test(hw->os, "FCFI %#x out of range (max %#x)\n",
8302 				fcfi, SLI4_MAX_FCFI);
8303 	}
8304 
8305 	return rc;
8306 }
8307 
8308 ocs_domain_t *
8309 ocs_hw_domain_get(ocs_hw_t *hw, uint16_t fcfi)
8310 {
8311 
8312 	if (hw == NULL) {
8313 		ocs_log_err(NULL, "bad parameter hw=%p\n", hw);
8314 		return NULL;
8315 	}
8316 
8317 	if (fcfi < SLI4_MAX_FCFI) {
8318 		return hw->domains[fcfi];
8319 	} else {
8320 		ocs_log_test(hw->os, "FCFI %#x out of range (max %#x)\n",
8321 				fcfi, SLI4_MAX_FCFI);
8322 		return NULL;
8323 	}
8324 }
8325 
8326 static ocs_domain_t *
8327 ocs_hw_domain_get_indexed(ocs_hw_t *hw, uint16_t fcf_index)
8328 {
8329 
8330 	if (hw == NULL) {
8331 		ocs_log_err(NULL, "bad parameter hw=%p\n", hw);
8332 		return NULL;
8333 	}
8334 
8335 	if (fcf_index < SLI4_MAX_FCF_INDEX) {
8336 		return ocs_hw_domain_get(hw, hw->fcf_index_fcfi[fcf_index]);
8337 	} else {
8338 		ocs_log_test(hw->os, "FCF index %d out of range (max %d)\n",
8339 			     fcf_index, SLI4_MAX_FCF_INDEX);
8340 		return NULL;
8341 	}
8342 }
8343 
8344 /**
8345  * @brief Quaratine an IO by taking a reference count and adding it to the
8346  *        quarantine list. When the IO is popped from the list then the
8347  *        count is released and the IO MAY be freed depending on whether
8348  *        it is still referenced by the IO.
8349  *
8350  *        @n @b Note: BZ 160124 - If this is a target write or an initiator read using
8351  *        DIF, then we must add the XRI to a quarantine list until we receive
8352  *        4 more completions of this same type.
8353  *
8354  * @param hw Hardware context.
8355  * @param wq Pointer to the WQ associated with the IO object to quarantine.
8356  * @param io Pointer to the io object to quarantine.
8357  */
8358 static void
8359 ocs_hw_io_quarantine(ocs_hw_t *hw, hw_wq_t *wq, ocs_hw_io_t *io)
8360 {
8361 	ocs_quarantine_info_t *q_info = &wq->quarantine_info;
8362 	uint32_t	index;
8363 	ocs_hw_io_t	*free_io = NULL;
8364 
8365 	/* return if the QX bit was clear */
8366 	if (!io->quarantine) {
8367 		return;
8368 	}
8369 
8370 	/* increment the IO refcount to prevent it from being freed before the quarantine is over */
8371 	if (ocs_ref_get_unless_zero(&io->ref) == 0) {
8372 		/* command no longer active */
8373 		ocs_log_debug(hw ? hw->os : NULL,
8374 			      "io not active xri=0x%x tag=0x%x\n",
8375 			      io->indicator, io->reqtag);
8376 		return;
8377 	}
8378 
8379 	sli_queue_lock(wq->queue);
8380 		index = q_info->quarantine_index;
8381 		free_io = q_info->quarantine_ios[index];
8382 		q_info->quarantine_ios[index] = io;
8383 		q_info->quarantine_index = (index + 1) % OCS_HW_QUARANTINE_QUEUE_DEPTH;
8384 	sli_queue_unlock(wq->queue);
8385 
8386 	if (free_io != NULL) {
8387 		ocs_ref_put(&free_io->ref); /* ocs_ref_get(): same function */
8388 	}
8389 }
8390 
8391 /**
8392  * @brief Process entries on the given completion queue.
8393  *
8394  * @param hw Hardware context.
8395  * @param cq Pointer to the HW completion queue object.
8396  *
8397  * @return None.
8398  */
8399 void
8400 ocs_hw_cq_process(ocs_hw_t *hw, hw_cq_t *cq)
8401 {
8402 	uint8_t		cqe[sizeof(sli4_mcqe_t)];
8403 	uint16_t	rid = UINT16_MAX;
8404 	sli4_qentry_e	ctype;		/* completion type */
8405 	int32_t		status;
8406 	uint32_t	n_processed = 0;
8407 	time_t		tstart;
8408 	time_t		telapsed;
8409 
8410 	tstart = ocs_msectime();
8411 
8412 	while (!sli_queue_read(&hw->sli, cq->queue, cqe)) {
8413 		status = sli_cq_parse(&hw->sli, cq->queue, cqe, &ctype, &rid);
8414 		/*
8415 		 * The sign of status is significant. If status is:
8416 		 * == 0 : call completed correctly and the CQE indicated success
8417 		 *  > 0 : call completed correctly and the CQE indicated an error
8418 		 *  < 0 : call failed and no information is available about the CQE
8419 		 */
8420 		if (status < 0) {
8421 			if (status == -2) {
8422 				/* Notification that an entry was consumed, but not completed */
8423 				continue;
8424 			}
8425 
8426 			break;
8427 		}
8428 
8429 		switch (ctype) {
8430 		case SLI_QENTRY_ASYNC:
8431 			CPUTRACE("async");
8432 			sli_cqe_async(&hw->sli, cqe);
8433 			break;
8434 		case SLI_QENTRY_MQ:
8435 			/*
8436 			 * Process MQ entry. Note there is no way to determine
8437 			 * the MQ_ID from the completion entry.
8438 			 */
8439 			CPUTRACE("mq");
8440 			ocs_hw_mq_process(hw, status, hw->mq);
8441 			break;
8442 		case SLI_QENTRY_OPT_WRITE_CMD:
8443 			ocs_hw_rqpair_process_auto_xfr_rdy_cmd(hw, cq, cqe);
8444 			break;
8445 		case SLI_QENTRY_OPT_WRITE_DATA:
8446 			ocs_hw_rqpair_process_auto_xfr_rdy_data(hw, cq, cqe);
8447 			break;
8448 		case SLI_QENTRY_WQ:
8449 			CPUTRACE("wq");
8450 			ocs_hw_wq_process(hw, cq, cqe, status, rid);
8451 			break;
8452 		case SLI_QENTRY_WQ_RELEASE: {
8453 			uint32_t wq_id = rid;
8454 			int32_t index = ocs_hw_queue_hash_find(hw->wq_hash, wq_id);
8455 
8456 			if (unlikely(index < 0)) {
8457 				ocs_log_err(hw->os, "unknown idx=%#x rid=%#x\n",
8458 					    index, rid);
8459 				break;
8460 			}
8461 
8462 			hw_wq_t *wq = hw->hw_wq[index];
8463 
8464 			/* Submit any HW IOs that are on the WQ pending list */
8465 			hw_wq_submit_pending(wq, wq->wqec_set_count);
8466 
8467 			break;
8468 		}
8469 
8470 		case SLI_QENTRY_RQ:
8471 			CPUTRACE("rq");
8472 			ocs_hw_rqpair_process_rq(hw, cq, cqe);
8473 			break;
8474 		case SLI_QENTRY_XABT: {
8475 			CPUTRACE("xabt");
8476 			ocs_hw_xabt_process(hw, cq, cqe, rid);
8477 			break;
8478 		}
8479 		default:
8480 			ocs_log_test(hw->os, "unhandled ctype=%#x rid=%#x\n", ctype, rid);
8481 			break;
8482 		}
8483 
8484 		n_processed++;
8485 		if (n_processed == cq->queue->proc_limit) {
8486 			break;
8487 		}
8488 
8489 		if (cq->queue->n_posted >= (cq->queue->posted_limit)) {
8490 			sli_queue_arm(&hw->sli, cq->queue, FALSE);
8491 		}
8492 	}
8493 
8494 	sli_queue_arm(&hw->sli, cq->queue, TRUE);
8495 
8496 	if (n_processed > cq->queue->max_num_processed) {
8497 		cq->queue->max_num_processed = n_processed;
8498 	}
8499 	telapsed = ocs_msectime() - tstart;
8500 	if (telapsed > cq->queue->max_process_time) {
8501 		cq->queue->max_process_time = telapsed;
8502 	}
8503 }
8504 
8505 /**
8506  * @brief Process WQ completion queue entries.
8507  *
8508  * @param hw Hardware context.
8509  * @param cq Pointer to the HW completion queue object.
8510  * @param cqe Pointer to WQ completion queue.
8511  * @param status Completion status.
8512  * @param rid Resource ID (IO tag).
8513  *
8514  * @return none
8515  */
8516 void
8517 ocs_hw_wq_process(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe, int32_t status, uint16_t rid)
8518 {
8519 	hw_wq_callback_t *wqcb;
8520 
8521 	ocs_queue_history_cqe(&hw->q_hist, SLI_QENTRY_WQ, (void *)cqe, ((sli4_fc_wcqe_t *)cqe)->status, cq->queue->id,
8522 			      ((cq->queue->index - 1) & (cq->queue->length - 1)));
8523 
8524 	if(rid == OCS_HW_REQUE_XRI_REGTAG) {
8525 		if(status) {
8526 			ocs_log_err(hw->os, "reque xri failed, status = %d \n", status);
8527 		}
8528 		return;
8529 	}
8530 
8531 	wqcb = ocs_hw_reqtag_get_instance(hw, rid);
8532 	if (wqcb == NULL) {
8533 		ocs_log_err(hw->os, "invalid request tag: x%x\n", rid);
8534 		return;
8535 	}
8536 
8537 	if (wqcb->callback == NULL) {
8538 		ocs_log_err(hw->os, "wqcb callback is NULL\n");
8539 		return;
8540 	}
8541 
8542 	(*wqcb->callback)(wqcb->arg, cqe, status);
8543 }
8544 
8545 /**
8546  * @brief Process WQ completions for IO requests
8547  *
8548  * @param arg Generic callback argument
8549  * @param cqe Pointer to completion queue entry
8550  * @param status Completion status
8551  *
8552  * @par Description
8553  * @n @b Note:  Regarding io->reqtag, the reqtag is assigned once when HW IOs are initialized
8554  * in ocs_hw_setup_io(), and don't need to be returned to the hw->wq_reqtag_pool.
8555  *
8556  * @return None.
8557  */
8558 static void
8559 ocs_hw_wq_process_io(void *arg, uint8_t *cqe, int32_t status)
8560 {
8561 	ocs_hw_io_t *io = arg;
8562 	ocs_hw_t *hw = io->hw;
8563 	sli4_fc_wcqe_t *wcqe = (void *)cqe;
8564 	uint32_t	len = 0;
8565 	uint32_t ext = 0;
8566 	uint8_t out_of_order_axr_cmd = 0;
8567 	uint8_t out_of_order_axr_data = 0;
8568 	uint8_t lock_taken = 0;
8569 #if defined(OCS_DISC_SPIN_DELAY)
8570 	uint32_t delay = 0;
8571 	char prop_buf[32];
8572 #endif
8573 
8574 	/*
8575 	 * For the primary IO, this will also be used for the
8576 	 * response. So it is important to only set/clear this
8577 	 * flag on the first data phase of the IO because
8578 	 * subsequent phases will be done on the secondary XRI.
8579 	 */
8580 	if (io->quarantine && io->quarantine_first_phase) {
8581 		io->quarantine = (wcqe->qx == 1);
8582 		ocs_hw_io_quarantine(hw, io->wq, io);
8583 	}
8584 	io->quarantine_first_phase = FALSE;
8585 
8586 	/* BZ 161832 - free secondary HW IO */
8587 	if (io->sec_hio != NULL &&
8588 	    io->sec_hio->quarantine) {
8589 		/*
8590 		 * If the quarantine flag is set on the
8591 		 * IO, then set it on the secondary IO
8592 		 * based on the quarantine XRI (QX) bit
8593 		 * sent by the FW.
8594 		 */
8595 		io->sec_hio->quarantine = (wcqe->qx == 1);
8596 		/* use the primary io->wq because it is not set on the secondary IO. */
8597 		ocs_hw_io_quarantine(hw, io->wq, io->sec_hio);
8598 	}
8599 
8600 	ocs_hw_remove_io_timed_wqe(hw, io);
8601 
8602 	/* clear xbusy flag if WCQE[XB] is clear */
8603 	if (io->xbusy && wcqe->xb == 0) {
8604 		io->xbusy = FALSE;
8605 	}
8606 
8607 	/* get extended CQE status */
8608 	switch (io->type) {
8609 	case OCS_HW_BLS_ACC:
8610 	case OCS_HW_BLS_ACC_SID:
8611 		break;
8612 	case OCS_HW_ELS_REQ:
8613 		sli_fc_els_did(&hw->sli, cqe, &ext);
8614 		len = sli_fc_response_length(&hw->sli, cqe);
8615 		break;
8616 	case OCS_HW_ELS_RSP:
8617 	case OCS_HW_ELS_RSP_SID:
8618 	case OCS_HW_FC_CT_RSP:
8619 		break;
8620 	case OCS_HW_FC_CT:
8621 		len = sli_fc_response_length(&hw->sli, cqe);
8622 		break;
8623 	case OCS_HW_IO_TARGET_WRITE:
8624 		len = sli_fc_io_length(&hw->sli, cqe);
8625 #if defined(OCS_DISC_SPIN_DELAY)
8626 		if (ocs_get_property("disk_spin_delay", prop_buf, sizeof(prop_buf)) == 0) {
8627 			delay = ocs_strtoul(prop_buf, 0, 0);
8628 			ocs_udelay(delay);
8629 		}
8630 #endif
8631 		break;
8632 	case OCS_HW_IO_TARGET_READ:
8633 		len = sli_fc_io_length(&hw->sli, cqe);
8634 		/*
8635 		 * if_type == 2 seems to return 0 "total length placed" on
8636 		 * FCP_TSEND64_WQE completions. If this appears to happen,
8637 		 * use the CTIO data transfer length instead.
8638 		 */
8639 		if (hw->workaround.retain_tsend_io_length && !len && !status) {
8640 			len = io->length;
8641 		}
8642 
8643 		break;
8644 	case OCS_HW_IO_TARGET_RSP:
8645 		if(io->is_port_owned) {
8646 			ocs_lock(&io->axr_lock);
8647 			lock_taken = 1;
8648 			if(io->axr_buf->call_axr_cmd) {
8649 				out_of_order_axr_cmd = 1;
8650 			}
8651 			if(io->axr_buf->call_axr_data) {
8652 				out_of_order_axr_data = 1;
8653 			}
8654 		}
8655 		break;
8656 	case OCS_HW_IO_INITIATOR_READ:
8657 		len = sli_fc_io_length(&hw->sli, cqe);
8658 		break;
8659 	case OCS_HW_IO_INITIATOR_WRITE:
8660 		len = sli_fc_io_length(&hw->sli, cqe);
8661 		break;
8662 	case OCS_HW_IO_INITIATOR_NODATA:
8663 		break;
8664 	case OCS_HW_IO_DNRX_REQUEUE:
8665 		/* release the count for re-posting the buffer */
8666 		//ocs_hw_io_free(hw, io);
8667 		break;
8668 	default:
8669 		ocs_log_test(hw->os, "XXX unhandled io type %#x for XRI 0x%x\n",
8670 			     io->type, io->indicator);
8671 		break;
8672 	}
8673 	if (status) {
8674 		ext = sli_fc_ext_status(&hw->sli, cqe);
8675 		/* Emulate IAAB=0 for initiator WQEs only; i.e. automatically
8676 		 * abort exchange if an error occurred and exchange is still busy.
8677 		 */
8678 		if (hw->config.i_only_aab &&
8679 		    (ocs_hw_iotype_is_originator(io->type)) &&
8680 		    (ocs_hw_wcqe_abort_needed(status, ext, wcqe->xb))) {
8681 			ocs_hw_rtn_e rc;
8682 
8683 			ocs_log_debug(hw->os, "aborting xri=%#x tag=%#x\n",
8684 				      io->indicator, io->reqtag);
8685 			/*
8686 			 * Because the initiator will not issue another IO phase, then it is OK to to issue the
8687 			 * callback on the abort completion, but for consistency with the target, wait for the
8688 			 * XRI_ABORTED CQE to issue the IO callback.
8689 			 */
8690 			rc = ocs_hw_io_abort(hw, io, TRUE, NULL, NULL);
8691 
8692 			if (rc == OCS_HW_RTN_SUCCESS) {
8693 				/* latch status to return after abort is complete */
8694 				io->status_saved = 1;
8695 				io->saved_status = status;
8696 				io->saved_ext = ext;
8697 				io->saved_len = len;
8698 				goto exit_ocs_hw_wq_process_io;
8699 			} else if (rc == OCS_HW_RTN_IO_ABORT_IN_PROGRESS) {
8700 				/*
8701 				 * Already being aborted by someone else (ABTS
8702 				 * perhaps). Just fall through and return original
8703 				 * error.
8704 				 */
8705 				ocs_log_debug(hw->os, "abort in progress xri=%#x tag=%#x\n",
8706 					      io->indicator, io->reqtag);
8707 
8708 			} else {
8709 				/* Failed to abort for some other reason, log error */
8710 				ocs_log_test(hw->os, "Failed to abort xri=%#x tag=%#x rc=%d\n",
8711 					     io->indicator, io->reqtag, rc);
8712 			}
8713 		}
8714 
8715 		/*
8716 		 * If we're not an originator IO, and XB is set, then issue abort for the IO from within the HW
8717 		 */
8718 		if ( (! ocs_hw_iotype_is_originator(io->type)) && wcqe->xb) {
8719 			ocs_hw_rtn_e rc;
8720 
8721 			ocs_log_debug(hw->os, "aborting xri=%#x tag=%#x\n", io->indicator, io->reqtag);
8722 
8723 			/*
8724 			 * Because targets may send a response when the IO completes using the same XRI, we must
8725 			 * wait for the XRI_ABORTED CQE to issue the IO callback
8726 			 */
8727 			rc = ocs_hw_io_abort(hw, io, FALSE, NULL, NULL);
8728 			if (rc == OCS_HW_RTN_SUCCESS) {
8729 				/* latch status to return after abort is complete */
8730 				io->status_saved = 1;
8731 				io->saved_status = status;
8732 				io->saved_ext = ext;
8733 				io->saved_len = len;
8734 				goto exit_ocs_hw_wq_process_io;
8735 			} else if (rc == OCS_HW_RTN_IO_ABORT_IN_PROGRESS) {
8736 				/*
8737 				 * Already being aborted by someone else (ABTS
8738 				 * perhaps). Just fall through and return original
8739 				 * error.
8740 				 */
8741 				ocs_log_debug(hw->os, "abort in progress xri=%#x tag=%#x\n",
8742 					      io->indicator, io->reqtag);
8743 
8744 			} else {
8745 				/* Failed to abort for some other reason, log error */
8746 				ocs_log_test(hw->os, "Failed to abort xri=%#x tag=%#x rc=%d\n",
8747 					     io->indicator, io->reqtag, rc);
8748 			}
8749 		}
8750 	}
8751 	/* BZ 161832 - free secondary HW IO */
8752 	if (io->sec_hio != NULL) {
8753 		ocs_hw_io_free(hw, io->sec_hio);
8754 		io->sec_hio = NULL;
8755 	}
8756 
8757 	if (io->done != NULL) {
8758 		ocs_hw_done_t  done = io->done;
8759 		void		*arg = io->arg;
8760 
8761 		io->done = NULL;
8762 
8763 		if (io->status_saved) {
8764 			/* use latched status if exists */
8765 			status = io->saved_status;
8766 			len = io->saved_len;
8767 			ext = io->saved_ext;
8768 			io->status_saved = 0;
8769 		}
8770 
8771 		/* Restore default SGL */
8772 		ocs_hw_io_restore_sgl(hw, io);
8773 		done(io, io->rnode, len, status, ext, arg);
8774 	}
8775 
8776 	if(out_of_order_axr_cmd) {
8777 		/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
8778 		if (hw->config.bounce) {
8779 			fc_header_t *hdr = io->axr_buf->cmd_seq->header->dma.virt;
8780 			uint32_t s_id = fc_be24toh(hdr->s_id);
8781 			uint32_t d_id = fc_be24toh(hdr->d_id);
8782 			uint32_t ox_id =  ocs_be16toh(hdr->ox_id);
8783 			if (hw->callback.bounce != NULL) {
8784 				(*hw->callback.bounce)(ocs_hw_unsol_process_bounce, io->axr_buf->cmd_seq, s_id, d_id, ox_id);
8785 			}
8786 		}else {
8787 			hw->callback.unsolicited(hw->args.unsolicited, io->axr_buf->cmd_seq);
8788 		}
8789 
8790 		if(out_of_order_axr_data) {
8791 			/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
8792 			if (hw->config.bounce) {
8793 				fc_header_t *hdr = io->axr_buf->seq.header->dma.virt;
8794 				uint32_t s_id = fc_be24toh(hdr->s_id);
8795 				uint32_t d_id = fc_be24toh(hdr->d_id);
8796 				uint32_t ox_id =  ocs_be16toh(hdr->ox_id);
8797 				if (hw->callback.bounce != NULL) {
8798 					(*hw->callback.bounce)(ocs_hw_unsol_process_bounce, &io->axr_buf->seq, s_id, d_id, ox_id);
8799 				}
8800 			}else {
8801 				hw->callback.unsolicited(hw->args.unsolicited, &io->axr_buf->seq);
8802 			}
8803 		}
8804 	}
8805 
8806 exit_ocs_hw_wq_process_io:
8807 	if(lock_taken) {
8808 		ocs_unlock(&io->axr_lock);
8809 	}
8810 }
8811 
8812 /**
8813  * @brief Process WQ completions for abort requests.
8814  *
8815  * @param arg Generic callback argument.
8816  * @param cqe Pointer to completion queue entry.
8817  * @param status Completion status.
8818  *
8819  * @return None.
8820  */
8821 static void
8822 ocs_hw_wq_process_abort(void *arg, uint8_t *cqe, int32_t status)
8823 {
8824 	ocs_hw_io_t *io = arg;
8825 	ocs_hw_t *hw = io->hw;
8826 	uint32_t ext = 0;
8827 	uint32_t len = 0;
8828 	hw_wq_callback_t *wqcb;
8829 
8830 	/*
8831 	 * For IOs that were aborted internally, we may need to issue the callback here depending
8832 	 * on whether a XRI_ABORTED CQE is expected ot not. If the status is Local Reject/No XRI, then
8833 	 * issue the callback now.
8834 	*/
8835 	ext = sli_fc_ext_status(&hw->sli, cqe);
8836 	if (status == SLI4_FC_WCQE_STATUS_LOCAL_REJECT &&
8837 	    ext == SLI4_FC_LOCAL_REJECT_NO_XRI &&
8838 		io->done != NULL) {
8839 		ocs_hw_done_t  done = io->done;
8840 		void		*arg = io->arg;
8841 
8842 		io->done = NULL;
8843 
8844 		/*
8845 		 * Use latched status as this is always saved for an internal abort
8846 		 *
8847 		 * Note: We wont have both a done and abort_done function, so don't worry about
8848 		 *       clobbering the len, status and ext fields.
8849 		 */
8850 		status = io->saved_status;
8851 		len = io->saved_len;
8852 		ext = io->saved_ext;
8853 		io->status_saved = 0;
8854 		done(io, io->rnode, len, status, ext, arg);
8855 	}
8856 
8857 	if (io->abort_done != NULL) {
8858 		ocs_hw_done_t  done = io->abort_done;
8859 		void		*arg = io->abort_arg;
8860 
8861 		io->abort_done = NULL;
8862 
8863 		done(io, io->rnode, len, status, ext, arg);
8864 	}
8865 	ocs_lock(&hw->io_abort_lock);
8866 		/* clear abort bit to indicate abort is complete */
8867 		io->abort_in_progress = 0;
8868 	ocs_unlock(&hw->io_abort_lock);
8869 
8870 	/* Free the WQ callback */
8871 	ocs_hw_assert(io->abort_reqtag != UINT32_MAX);
8872 	wqcb = ocs_hw_reqtag_get_instance(hw, io->abort_reqtag);
8873 	ocs_hw_reqtag_free(hw, wqcb);
8874 
8875 	/*
8876 	 * Call ocs_hw_io_free() because this releases the WQ reservation as
8877 	 * well as doing the refcount put. Don't duplicate the code here.
8878 	 */
8879 	(void)ocs_hw_io_free(hw, io);
8880 }
8881 
8882 /**
8883  * @brief Process XABT completions
8884  *
8885  * @param hw Hardware context.
8886  * @param cq Pointer to the HW completion queue object.
8887  * @param cqe Pointer to WQ completion queue.
8888  * @param rid Resource ID (IO tag).
8889  *
8890  *
8891  * @return None.
8892  */
8893 void
8894 ocs_hw_xabt_process(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe, uint16_t rid)
8895 {
8896 	/* search IOs wait free list */
8897 	ocs_hw_io_t *io = NULL;
8898 
8899 	io = ocs_hw_io_lookup(hw, rid);
8900 
8901 	ocs_queue_history_cqe(&hw->q_hist, SLI_QENTRY_XABT, (void *)cqe, 0, cq->queue->id,
8902 			      ((cq->queue->index - 1) & (cq->queue->length - 1)));
8903 	if (io == NULL) {
8904 		/* IO lookup failure should never happen */
8905 		ocs_log_err(hw->os, "Error: xabt io lookup failed rid=%#x\n", rid);
8906 		return;
8907 	}
8908 
8909 	if (!io->xbusy) {
8910 		ocs_log_debug(hw->os, "xabt io not busy rid=%#x\n", rid);
8911 	} else {
8912 		/* mark IO as no longer busy */
8913 		io->xbusy = FALSE;
8914 	}
8915 
8916        if (io->is_port_owned) {
8917                ocs_lock(&hw->io_lock);
8918                /* Take reference so that below callback will not free io before reque */
8919                ocs_ref_get(&io->ref);
8920                ocs_unlock(&hw->io_lock);
8921        }
8922 
8923 	/* For IOs that were aborted internally, we need to issue any pending callback here. */
8924 	if (io->done != NULL) {
8925 		ocs_hw_done_t  done = io->done;
8926 		void		*arg = io->arg;
8927 
8928 		/* Use latched status as this is always saved for an internal abort */
8929 		int32_t status = io->saved_status;
8930 		uint32_t len = io->saved_len;
8931 		uint32_t ext = io->saved_ext;
8932 
8933 		io->done = NULL;
8934 		io->status_saved = 0;
8935 
8936 		done(io, io->rnode, len, status, ext, arg);
8937 	}
8938 
8939 	/* Check to see if this is a port owned XRI */
8940 	if (io->is_port_owned) {
8941 		ocs_lock(&hw->io_lock);
8942 		ocs_hw_reque_xri(hw, io);
8943 		ocs_unlock(&hw->io_lock);
8944 		/* Not hanlding reque xri completion, free io */
8945 		ocs_hw_io_free(hw, io);
8946 		return;
8947 	}
8948 
8949 	ocs_lock(&hw->io_lock);
8950 		if ((io->state == OCS_HW_IO_STATE_INUSE) || (io->state == OCS_HW_IO_STATE_WAIT_FREE)) {
8951 			/* if on wait_free list, caller has already freed IO;
8952 			 * remove from wait_free list and add to free list.
8953 			 * if on in-use list, already marked as no longer busy;
8954 			 * just leave there and wait for caller to free.
8955 			 */
8956 			if (io->state == OCS_HW_IO_STATE_WAIT_FREE) {
8957 				io->state = OCS_HW_IO_STATE_FREE;
8958 				ocs_list_remove(&hw->io_wait_free, io);
8959 				ocs_hw_io_free_move_correct_list(hw, io);
8960 			}
8961 		}
8962 	ocs_unlock(&hw->io_lock);
8963 }
8964 
8965 /**
8966  * @brief Adjust the number of WQs and CQs within the HW.
8967  *
8968  * @par Description
8969  * Calculates the number of WQs and associated CQs needed in the HW based on
8970  * the number of IOs. Calculates the starting CQ index for each WQ, RQ and
8971  * MQ.
8972  *
8973  * @param hw Hardware context allocated by the caller.
8974  */
8975 static void
8976 ocs_hw_adjust_wqs(ocs_hw_t *hw)
8977 {
8978 	uint32_t max_wq_num = sli_get_max_queue(&hw->sli, SLI_QTYPE_WQ);
8979 	uint32_t max_wq_entries = hw->num_qentries[SLI_QTYPE_WQ];
8980 	uint32_t max_cq_entries = hw->num_qentries[SLI_QTYPE_CQ];
8981 
8982 	/*
8983 	 * possibly adjust the the size of the WQs so that the CQ is twice as
8984 	 * big as the WQ to allow for 2 completions per IO. This allows us to
8985 	 * handle multi-phase as well as aborts.
8986 	 */
8987 	if (max_cq_entries < max_wq_entries * 2) {
8988 		max_wq_entries = hw->num_qentries[SLI_QTYPE_WQ] = max_cq_entries / 2;
8989 	}
8990 
8991 	/*
8992 	 * Calculate the number of WQs to use base on the number of IOs.
8993 	 *
8994 	 * Note: We need to reserve room for aborts which must be sent down
8995 	 *       the same WQ as the IO. So we allocate enough WQ space to
8996 	 *       handle 2 times the number of IOs. Half of the space will be
8997 	 *       used for normal IOs and the other hwf is reserved for aborts.
8998 	 */
8999 	hw->config.n_wq = ((hw->config.n_io * 2) + (max_wq_entries - 1)) / max_wq_entries;
9000 
9001 	/*
9002 	 * For performance reasons, it is best to use use a minimum of 4 WQs
9003 	 * for BE3 and Skyhawk.
9004 	 */
9005 	if (hw->config.n_wq < 4 &&
9006 	    SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) {
9007 		hw->config.n_wq = 4;
9008 	}
9009 
9010 	/*
9011 	 * For dual-chute support, we need to have at least one WQ per chute.
9012 	 */
9013 	if (hw->config.n_wq < 2 &&
9014 	    ocs_hw_get_num_chutes(hw) > 1) {
9015 		hw->config.n_wq = 2;
9016 	}
9017 
9018 	/* make sure we haven't exceeded the max supported in the HW */
9019 	if (hw->config.n_wq > OCS_HW_MAX_NUM_WQ) {
9020 		hw->config.n_wq = OCS_HW_MAX_NUM_WQ;
9021 	}
9022 
9023 	/* make sure we haven't exceeded the chip maximum */
9024 	if (hw->config.n_wq > max_wq_num) {
9025 		hw->config.n_wq = max_wq_num;
9026 	}
9027 
9028 	/*
9029 	 * Using Queue Topology string, we divide by number of chutes
9030 	 */
9031 	hw->config.n_wq /= ocs_hw_get_num_chutes(hw);
9032 }
9033 
9034 static int32_t
9035 ocs_hw_command_process(ocs_hw_t *hw, int32_t status, uint8_t *mqe, size_t size)
9036 {
9037 	ocs_command_ctx_t *ctx = NULL;
9038 
9039 	ocs_lock(&hw->cmd_lock);
9040 		if (NULL == (ctx = ocs_list_remove_head(&hw->cmd_head))) {
9041 			ocs_log_err(hw->os, "XXX no command context?!?\n");
9042 			ocs_unlock(&hw->cmd_lock);
9043 			return -1;
9044 		}
9045 
9046 		hw->cmd_head_count--;
9047 
9048 		/* Post any pending requests */
9049 		ocs_hw_cmd_submit_pending(hw);
9050 
9051 	ocs_unlock(&hw->cmd_lock);
9052 
9053 	if (ctx->cb) {
9054 		if (ctx->buf) {
9055 			ocs_memcpy(ctx->buf, mqe, size);
9056 		}
9057 		ctx->cb(hw, status, ctx->buf, ctx->arg);
9058 	}
9059 
9060 	ocs_memset(ctx, 0, sizeof(ocs_command_ctx_t));
9061 	ocs_free(hw->os, ctx, sizeof(ocs_command_ctx_t));
9062 
9063 	return 0;
9064 }
9065 
9066 /**
9067  * @brief Process entries on the given mailbox queue.
9068  *
9069  * @param hw Hardware context.
9070  * @param status CQE status.
9071  * @param mq Pointer to the mailbox queue object.
9072  *
9073  * @return Returns 0 on success, or a non-zero value on failure.
9074  */
9075 static int32_t
9076 ocs_hw_mq_process(ocs_hw_t *hw, int32_t status, sli4_queue_t *mq)
9077 {
9078 	uint8_t		mqe[SLI4_BMBX_SIZE];
9079 
9080 	if (!sli_queue_read(&hw->sli, mq, mqe)) {
9081 		ocs_hw_command_process(hw, status, mqe, mq->size);
9082 	}
9083 
9084 	return 0;
9085 }
9086 
9087 /**
9088  * @brief Read a FCF table entry.
9089  *
9090  * @param hw Hardware context.
9091  * @param index Table index to read. Use SLI4_FCOE_FCF_TABLE_FIRST for the first
9092  * read and the next_index field from the FCOE_READ_FCF_TABLE command
9093  * for subsequent reads.
9094  *
9095  * @return Returns 0 on success, or a non-zero value on failure.
9096  */
9097 static ocs_hw_rtn_e
9098 ocs_hw_read_fcf(ocs_hw_t *hw, uint32_t index)
9099 {
9100 	uint8_t		*buf = NULL;
9101 	int32_t		rc = OCS_HW_RTN_ERROR;
9102 
9103 	buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
9104 	if (!buf) {
9105 		ocs_log_err(hw->os, "no buffer for command\n");
9106 		return OCS_HW_RTN_NO_MEMORY;
9107 	}
9108 
9109 	if (sli_cmd_fcoe_read_fcf_table(&hw->sli, buf, SLI4_BMBX_SIZE, &hw->fcf_dmem,
9110 			index)) {
9111 		rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_read_fcf, &hw->fcf_dmem);
9112 	}
9113 
9114 	if (rc != OCS_HW_RTN_SUCCESS) {
9115 		ocs_log_test(hw->os, "FCOE_READ_FCF_TABLE failed\n");
9116 		ocs_free(hw->os, buf, SLI4_BMBX_SIZE);
9117 	}
9118 
9119 	return rc;
9120 }
9121 
9122 /**
9123  * @brief Callback function for the FCOE_READ_FCF_TABLE command.
9124  *
9125  * @par Description
9126  * Note that the caller has allocated:
9127  *  - DMA memory to hold the table contents
9128  *  - DMA memory structure
9129  *  - Command/results buffer
9130  *  .
9131  * Each of these must be freed here.
9132  *
9133  * @param hw Hardware context.
9134  * @param status Hardware status.
9135  * @param mqe Pointer to the mailbox command/results buffer.
9136  * @param arg Pointer to the DMA memory structure.
9137  *
9138  * @return Returns 0 on success, or a non-zero value on failure.
9139  */
9140 static int32_t
9141 ocs_hw_cb_read_fcf(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
9142 {
9143 	ocs_dma_t	*dma = arg;
9144 	sli4_mbox_command_header_t	*hdr = (sli4_mbox_command_header_t *)mqe;
9145 
9146 	if (status || hdr->status) {
9147 		ocs_log_test(hw->os, "bad status cqe=%#x mqe=%#x\n",
9148 				status, hdr->status);
9149 	} else if (dma->virt) {
9150 		sli4_res_fcoe_read_fcf_table_t *read_fcf = dma->virt;
9151 
9152 		/* if FC or FCOE and FCF entry valid, process it */
9153 		if (read_fcf->fcf_entry.fc ||
9154 				(read_fcf->fcf_entry.val && !read_fcf->fcf_entry.sol)) {
9155 			if (hw->callback.domain != NULL) {
9156 				ocs_domain_record_t drec = {0};
9157 
9158 				if (read_fcf->fcf_entry.fc) {
9159 					/*
9160 					 * This is a pseudo FCF entry. Create a domain
9161 					 * record based on the read topology information
9162 					 */
9163 					drec.speed = hw->link.speed;
9164 					drec.fc_id = hw->link.fc_id;
9165 					drec.is_fc = TRUE;
9166 					if (SLI_LINK_TOPO_LOOP == hw->link.topology) {
9167 						drec.is_loop = TRUE;
9168 						ocs_memcpy(drec.map.loop, hw->link.loop_map,
9169 							   sizeof(drec.map.loop));
9170 					} else if (SLI_LINK_TOPO_NPORT == hw->link.topology) {
9171 						drec.is_nport = TRUE;
9172 					}
9173 				} else {
9174 					drec.index = read_fcf->fcf_entry.fcf_index;
9175 					drec.priority = read_fcf->fcf_entry.fip_priority;
9176 
9177 					/* copy address, wwn and vlan_bitmap */
9178 					ocs_memcpy(drec.address, read_fcf->fcf_entry.fcf_mac_address,
9179 						   sizeof(drec.address));
9180 					ocs_memcpy(drec.wwn, read_fcf->fcf_entry.fabric_name_id,
9181 						   sizeof(drec.wwn));
9182 					ocs_memcpy(drec.map.vlan, read_fcf->fcf_entry.vlan_bitmap,
9183 						   sizeof(drec.map.vlan));
9184 
9185 					drec.is_ethernet = TRUE;
9186 					drec.is_nport = TRUE;
9187 				}
9188 
9189 				hw->callback.domain(hw->args.domain,
9190 						OCS_HW_DOMAIN_FOUND,
9191 						&drec);
9192 			}
9193 		} else {
9194 			/* if FCOE and FCF is not valid, ignore it */
9195 			ocs_log_test(hw->os, "ignore invalid FCF entry\n");
9196 		}
9197 
9198 		if (SLI4_FCOE_FCF_TABLE_LAST != read_fcf->next_index) {
9199 			ocs_hw_read_fcf(hw, read_fcf->next_index);
9200 		}
9201 	}
9202 
9203 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
9204 	//ocs_dma_free(hw->os, dma);
9205 	//ocs_free(hw->os, dma, sizeof(ocs_dma_t));
9206 
9207 	return 0;
9208 }
9209 
9210 /**
9211  * @brief Callback function for the SLI link events.
9212  *
9213  * @par Description
9214  * This function allocates memory which must be freed in its callback.
9215  *
9216  * @param ctx Hardware context pointer (that is, ocs_hw_t *).
9217  * @param e Event structure pointer (that is, sli4_link_event_t *).
9218  *
9219  * @return Returns 0 on success, or a non-zero value on failure.
9220  */
9221 static int32_t
9222 ocs_hw_cb_link(void *ctx, void *e)
9223 {
9224 	ocs_hw_t	*hw = ctx;
9225 	sli4_link_event_t *event = e;
9226 	ocs_domain_t	*d = NULL;
9227 	uint32_t	i = 0;
9228 	int32_t		rc = OCS_HW_RTN_ERROR;
9229 	ocs_t 		*ocs = hw->os;
9230 
9231 	ocs_hw_link_event_init(hw);
9232 
9233 	switch (event->status) {
9234 	case SLI_LINK_STATUS_UP:
9235 
9236 		hw->link = *event;
9237 
9238 		if (SLI_LINK_TOPO_NPORT == event->topology) {
9239 			device_printf(ocs->dev, "Link Up, NPORT, speed is %d\n", event->speed);
9240 			ocs_hw_read_fcf(hw, SLI4_FCOE_FCF_TABLE_FIRST);
9241 		} else if (SLI_LINK_TOPO_LOOP == event->topology) {
9242 			uint8_t	*buf = NULL;
9243 			device_printf(ocs->dev, "Link Up, LOOP, speed is %d\n", event->speed);
9244 
9245 			buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
9246 			if (!buf) {
9247 				ocs_log_err(hw->os, "no buffer for command\n");
9248 				break;
9249 			}
9250 
9251 			if (sli_cmd_read_topology(&hw->sli, buf, SLI4_BMBX_SIZE, &hw->loop_map)) {
9252 				rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, __ocs_read_topology_cb, NULL);
9253 			}
9254 
9255 			if (rc != OCS_HW_RTN_SUCCESS) {
9256 				ocs_log_test(hw->os, "READ_TOPOLOGY failed\n");
9257 				ocs_free(hw->os, buf, SLI4_BMBX_SIZE);
9258 			}
9259 		} else {
9260 			device_printf(ocs->dev, "Link Up, unsupported topology (%#x), speed is %d\n",
9261 					event->topology, event->speed);
9262 		}
9263 		break;
9264 	case SLI_LINK_STATUS_DOWN:
9265 		device_printf(ocs->dev, "Link Down\n");
9266 
9267 		hw->link.status = event->status;
9268 
9269 		for (i = 0; i < SLI4_MAX_FCFI; i++) {
9270 			d = hw->domains[i];
9271 			if (d != NULL &&
9272 			    hw->callback.domain != NULL) {
9273 				hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_LOST, d);
9274 			}
9275 		}
9276 		break;
9277 	default:
9278 		ocs_log_test(hw->os, "unhandled link status %#x\n", event->status);
9279 		break;
9280 	}
9281 
9282 	return 0;
9283 }
9284 
9285 static int32_t
9286 ocs_hw_cb_fip(void *ctx, void *e)
9287 {
9288 	ocs_hw_t	*hw = ctx;
9289 	ocs_domain_t	*domain = NULL;
9290 	sli4_fip_event_t *event = e;
9291 
9292 	ocs_hw_assert(event);
9293 	ocs_hw_assert(hw);
9294 
9295 	/* Find the associated domain object */
9296 	if (event->type == SLI4_FCOE_FIP_FCF_CLEAR_VLINK) {
9297 		ocs_domain_t *d = NULL;
9298 		uint32_t	i = 0;
9299 
9300 		/* Clear VLINK is different from the other FIP events as it passes back
9301 		 * a VPI instead of a FCF index. Check all attached SLI ports for a
9302 		 * matching VPI */
9303 		for (i = 0; i < SLI4_MAX_FCFI; i++) {
9304 			d = hw->domains[i];
9305 			if (d != NULL) {
9306 				ocs_sport_t	*sport = NULL;
9307 
9308 				ocs_list_foreach(&d->sport_list, sport) {
9309 					if (sport->indicator == event->index) {
9310 						domain = d;
9311 						break;
9312 					}
9313 				}
9314 
9315 				if (domain != NULL) {
9316 					break;
9317 				}
9318 			}
9319 		}
9320 	} else {
9321 		domain = ocs_hw_domain_get_indexed(hw, event->index);
9322 	}
9323 
9324 	switch (event->type) {
9325 	case SLI4_FCOE_FIP_FCF_DISCOVERED:
9326 		ocs_hw_read_fcf(hw, event->index);
9327 		break;
9328 	case SLI4_FCOE_FIP_FCF_DEAD:
9329 		if (domain != NULL &&
9330 		    hw->callback.domain != NULL) {
9331 			hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_LOST, domain);
9332 		}
9333 		break;
9334 	case SLI4_FCOE_FIP_FCF_CLEAR_VLINK:
9335 		if (domain != NULL &&
9336 		    hw->callback.domain != NULL) {
9337 			/*
9338 			 * We will want to issue rediscover FCF when this domain is free'd  in order
9339 			 * to invalidate the FCF table
9340 			 */
9341 			domain->req_rediscover_fcf = TRUE;
9342 			hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_LOST, domain);
9343 		}
9344 		break;
9345 	case SLI4_FCOE_FIP_FCF_MODIFIED:
9346 		if (domain != NULL &&
9347 		    hw->callback.domain != NULL) {
9348 			hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_LOST, domain);
9349 		}
9350 
9351 		ocs_hw_read_fcf(hw, event->index);
9352 		break;
9353 	default:
9354 		ocs_log_test(hw->os, "unsupported event %#x\n", event->type);
9355 	}
9356 
9357 	return 0;
9358 }
9359 
9360 static int32_t
9361 ocs_hw_cb_node_attach(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
9362 {
9363 	ocs_remote_node_t *rnode = arg;
9364 	sli4_mbox_command_header_t	*hdr = (sli4_mbox_command_header_t *)mqe;
9365 	ocs_hw_remote_node_event_e	evt = 0;
9366 
9367 	if (status || hdr->status) {
9368 		ocs_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status,
9369 				hdr->status);
9370 		ocs_atomic_sub_return(&hw->rpi_ref[rnode->index].rpi_count, 1);
9371 		rnode->attached = FALSE;
9372 		ocs_atomic_set(&hw->rpi_ref[rnode->index].rpi_attached, 0);
9373 		evt = OCS_HW_NODE_ATTACH_FAIL;
9374 	} else {
9375 		rnode->attached = TRUE;
9376 		ocs_atomic_set(&hw->rpi_ref[rnode->index].rpi_attached, 1);
9377 		evt = OCS_HW_NODE_ATTACH_OK;
9378 	}
9379 
9380 	if (hw->callback.rnode != NULL) {
9381 		hw->callback.rnode(hw->args.rnode, evt, rnode);
9382 	}
9383 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
9384 
9385 	return 0;
9386 }
9387 
9388 static int32_t
9389 ocs_hw_cb_node_free(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
9390 {
9391 	ocs_remote_node_t *rnode = arg;
9392 	sli4_mbox_command_header_t	*hdr = (sli4_mbox_command_header_t *)mqe;
9393 	ocs_hw_remote_node_event_e	evt = OCS_HW_NODE_FREE_FAIL;
9394 	int32_t		rc = 0;
9395 
9396 	if (status || hdr->status) {
9397 		ocs_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status,
9398 				hdr->status);
9399 
9400 		/*
9401 		 * In certain cases, a non-zero MQE status is OK (all must be true):
9402 		 *   - node is attached
9403 		 *   - if High Login Mode is enabled, node is part of a node group
9404 		 *   - status is 0x1400
9405 		 */
9406 		if (!rnode->attached || ((sli_get_hlm(&hw->sli) == TRUE) && !rnode->node_group) ||
9407 				(hdr->status != SLI4_MBOX_STATUS_RPI_NOT_REG)) {
9408 			rc = -1;
9409 		}
9410 	}
9411 
9412 	if (rc == 0) {
9413 		rnode->node_group = FALSE;
9414 		rnode->attached = FALSE;
9415 
9416 		if (ocs_atomic_read(&hw->rpi_ref[rnode->index].rpi_count) == 0) {
9417 			ocs_atomic_set(&hw->rpi_ref[rnode->index].rpi_attached, 0);
9418 		}
9419 
9420 		evt = OCS_HW_NODE_FREE_OK;
9421 	}
9422 
9423 	if (hw->callback.rnode != NULL) {
9424 		hw->callback.rnode(hw->args.rnode, evt, rnode);
9425 	}
9426 
9427 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
9428 
9429 	return rc;
9430 }
9431 
9432 static int32_t
9433 ocs_hw_cb_node_free_all(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
9434 {
9435 	sli4_mbox_command_header_t	*hdr = (sli4_mbox_command_header_t *)mqe;
9436 	ocs_hw_remote_node_event_e	evt = OCS_HW_NODE_FREE_FAIL;
9437 	int32_t		rc = 0;
9438 	uint32_t	i;
9439 
9440 	if (status || hdr->status) {
9441 		ocs_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status,
9442 				hdr->status);
9443 	} else {
9444 		evt = OCS_HW_NODE_FREE_ALL_OK;
9445 	}
9446 
9447 	if (evt == OCS_HW_NODE_FREE_ALL_OK) {
9448 		for (i = 0; i < sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_RPI); i++) {
9449 			ocs_atomic_set(&hw->rpi_ref[i].rpi_count, 0);
9450 		}
9451 
9452 		if (sli_resource_reset(&hw->sli, SLI_RSRC_FCOE_RPI)) {
9453 			ocs_log_test(hw->os, "FCOE_RPI free all failure\n");
9454 			rc = -1;
9455 		}
9456 	}
9457 
9458 	if (hw->callback.rnode != NULL) {
9459 		hw->callback.rnode(hw->args.rnode, evt, NULL);
9460 	}
9461 
9462 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
9463 
9464 	return rc;
9465 }
9466 
9467 /**
9468  * @brief Initialize the pool of HW IO objects.
9469  *
9470  * @param hw Hardware context.
9471  *
9472  * @return Returns 0 on success, or a non-zero value on failure.
9473  */
9474 static ocs_hw_rtn_e
9475 ocs_hw_setup_io(ocs_hw_t *hw)
9476 {
9477 	uint32_t	i = 0;
9478 	ocs_hw_io_t	*io = NULL;
9479 	uintptr_t	xfer_virt = 0;
9480 	uintptr_t	xfer_phys = 0;
9481 	uint32_t	index;
9482 	uint8_t		new_alloc = TRUE;
9483 
9484 	if (NULL == hw->io) {
9485 		hw->io = ocs_malloc(hw->os, hw->config.n_io * sizeof(ocs_hw_io_t *), OCS_M_ZERO | OCS_M_NOWAIT);
9486 
9487 		if (NULL == hw->io) {
9488 			ocs_log_err(hw->os, "IO pointer memory allocation failed, %d Ios at size %zu\n",
9489 				    hw->config.n_io,
9490 				    sizeof(ocs_hw_io_t *));
9491 			return OCS_HW_RTN_NO_MEMORY;
9492 		}
9493 		for (i = 0; i < hw->config.n_io; i++) {
9494 			hw->io[i] = ocs_malloc(hw->os, sizeof(ocs_hw_io_t),
9495 						OCS_M_ZERO | OCS_M_NOWAIT);
9496 			if (hw->io[i] == NULL) {
9497 				ocs_log_err(hw->os, "IO(%d) memory allocation failed\n", i);
9498 				goto error;
9499 			}
9500 		}
9501 
9502 		/* Create WQE buffs for IO */
9503 		hw->wqe_buffs = ocs_malloc(hw->os, hw->config.n_io * hw->sli.config.wqe_size,
9504 				OCS_M_ZERO | OCS_M_NOWAIT);
9505 		if (NULL == hw->wqe_buffs) {
9506 			ocs_free(hw->os, hw->io, hw->config.n_io * sizeof(ocs_hw_io_t));
9507 			ocs_log_err(hw->os, "%s: IO WQE buff allocation failed, %d Ios at size %zu\n",
9508 					__func__, hw->config.n_io, hw->sli.config.wqe_size);
9509 			return OCS_HW_RTN_NO_MEMORY;
9510 		}
9511 
9512 	} else {
9513 		/* re-use existing IOs, including SGLs */
9514 		new_alloc = FALSE;
9515 	}
9516 
9517 	if (new_alloc) {
9518 		if (ocs_dma_alloc(hw->os, &hw->xfer_rdy,
9519 					sizeof(fcp_xfer_rdy_iu_t) * hw->config.n_io,
9520 					4/*XXX what does this need to be? */)) {
9521 			ocs_log_err(hw->os, "XFER_RDY buffer allocation failed\n");
9522 			return OCS_HW_RTN_NO_MEMORY;
9523 		}
9524 	}
9525 	xfer_virt = (uintptr_t)hw->xfer_rdy.virt;
9526 	xfer_phys = hw->xfer_rdy.phys;
9527 
9528 	for (i = 0; i < hw->config.n_io; i++) {
9529 		hw_wq_callback_t *wqcb;
9530 
9531 		io = hw->io[i];
9532 
9533 		/* initialize IO fields */
9534 		io->hw = hw;
9535 
9536 		/* Assign a WQE buff */
9537 		io->wqe.wqebuf = &hw->wqe_buffs[i * hw->sli.config.wqe_size];
9538 
9539 		/* Allocate the request tag for this IO */
9540 		wqcb = ocs_hw_reqtag_alloc(hw, ocs_hw_wq_process_io, io);
9541 		if (wqcb == NULL) {
9542 			ocs_log_err(hw->os, "can't allocate request tag\n");
9543 			return OCS_HW_RTN_NO_RESOURCES;
9544 		}
9545 		io->reqtag = wqcb->instance_index;
9546 
9547 		/* Now for the fields that are initialized on each free */
9548 		ocs_hw_init_free_io(io);
9549 
9550 		/* The XB flag isn't cleared on IO free, so initialize it to zero here */
9551 		io->xbusy = 0;
9552 
9553 		if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_XRI, &io->indicator, &index)) {
9554 			ocs_log_err(hw->os, "sli_resource_alloc failed @ %d\n", i);
9555 			return OCS_HW_RTN_NO_MEMORY;
9556 		}
9557 
9558 		if (new_alloc && ocs_dma_alloc(hw->os, &io->def_sgl, hw->config.n_sgl * sizeof(sli4_sge_t), 64)) {
9559 			ocs_log_err(hw->os, "ocs_dma_alloc failed @ %d\n", i);
9560 			ocs_memset(&io->def_sgl, 0, sizeof(ocs_dma_t));
9561 			return OCS_HW_RTN_NO_MEMORY;
9562 		}
9563 		io->def_sgl_count = hw->config.n_sgl;
9564 		io->sgl = &io->def_sgl;
9565 		io->sgl_count = io->def_sgl_count;
9566 
9567 		if (hw->xfer_rdy.size) {
9568 			io->xfer_rdy.virt = (void *)xfer_virt;
9569 			io->xfer_rdy.phys = xfer_phys;
9570 			io->xfer_rdy.size = sizeof(fcp_xfer_rdy_iu_t);
9571 
9572 			xfer_virt += sizeof(fcp_xfer_rdy_iu_t);
9573 			xfer_phys += sizeof(fcp_xfer_rdy_iu_t);
9574 		}
9575 	}
9576 
9577 	return OCS_HW_RTN_SUCCESS;
9578 error:
9579 	for (i = 0; i < hw->config.n_io && hw->io[i]; i++) {
9580 		ocs_free(hw->os, hw->io[i], sizeof(ocs_hw_io_t));
9581 		hw->io[i] = NULL;
9582 	}
9583 
9584 	return OCS_HW_RTN_NO_MEMORY;
9585 }
9586 
9587 static ocs_hw_rtn_e
9588 ocs_hw_init_io(ocs_hw_t *hw)
9589 {
9590 	uint32_t        i = 0, io_index = 0;
9591 	uint32_t        prereg = 0;
9592 	ocs_hw_io_t	*io = NULL;
9593 	uint8_t		cmd[SLI4_BMBX_SIZE];
9594 	ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS;
9595 	uint32_t	nremaining;
9596 	uint32_t	n = 0;
9597 	uint32_t	sgls_per_request = 256;
9598 	ocs_dma_t	**sgls = NULL;
9599 	ocs_dma_t	reqbuf = { 0 };
9600 
9601 	prereg = sli_get_sgl_preregister(&hw->sli);
9602 
9603 	if (prereg) {
9604 		sgls = ocs_malloc(hw->os, sizeof(*sgls) * sgls_per_request, OCS_M_NOWAIT);
9605 		if (sgls == NULL) {
9606 			ocs_log_err(hw->os, "ocs_malloc sgls failed\n");
9607 			return OCS_HW_RTN_NO_MEMORY;
9608 		}
9609 
9610 		rc = ocs_dma_alloc(hw->os, &reqbuf, 32 + sgls_per_request*16, OCS_MIN_DMA_ALIGNMENT);
9611 		if (rc) {
9612 			ocs_log_err(hw->os, "ocs_dma_alloc reqbuf failed\n");
9613 			ocs_free(hw->os, sgls, sizeof(*sgls) * sgls_per_request);
9614 			return OCS_HW_RTN_NO_MEMORY;
9615 		}
9616 	}
9617 
9618 	io = hw->io[io_index];
9619 	for (nremaining = hw->config.n_io; nremaining; nremaining -= n) {
9620 		if (prereg) {
9621 			/* Copy address of SGL's into local sgls[] array, break out if the xri
9622 			 * is not contiguous.
9623 			 */
9624 			for (n = 0; n < MIN(sgls_per_request, nremaining); n++) {
9625 				/* Check that we have contiguous xri values */
9626 				if (n > 0) {
9627 					if (hw->io[io_index + n]->indicator != (hw->io[io_index + n-1]->indicator+1)) {
9628 						break;
9629 					}
9630 				}
9631 				sgls[n] = hw->io[io_index + n]->sgl;
9632 			}
9633 
9634 			if (sli_cmd_fcoe_post_sgl_pages(&hw->sli, cmd, sizeof(cmd),
9635 						io->indicator, n, sgls, NULL, &reqbuf)) {
9636 				if (ocs_hw_command(hw, cmd, OCS_CMD_POLL, NULL, NULL)) {
9637 					rc = OCS_HW_RTN_ERROR;
9638 					ocs_log_err(hw->os, "SGL post failed\n");
9639 					break;
9640 				}
9641 			}
9642 		} else {
9643 			n = nremaining;
9644 		}
9645 
9646 		/* Add to tail if successful */
9647 		for (i = 0; i < n; i ++) {
9648 			io->is_port_owned = 0;
9649 			io->state = OCS_HW_IO_STATE_FREE;
9650 			ocs_list_add_tail(&hw->io_free, io);
9651 			io = hw->io[io_index+1];
9652 			io_index++;
9653 		}
9654 	}
9655 
9656 	if (prereg) {
9657 		ocs_dma_free(hw->os, &reqbuf);
9658 		ocs_free(hw->os, sgls, sizeof(*sgls) * sgls_per_request);
9659 	}
9660 
9661 	return rc;
9662 }
9663 
9664 static int32_t
9665 ocs_hw_flush(ocs_hw_t *hw)
9666 {
9667 	uint32_t	i = 0;
9668 
9669 	/* Process any remaining completions */
9670 	for (i = 0; i < hw->eq_count; i++) {
9671 		ocs_hw_process(hw, i, ~0);
9672 	}
9673 
9674 	return 0;
9675 }
9676 
9677 static int32_t
9678 ocs_hw_command_cancel(ocs_hw_t *hw)
9679 {
9680 
9681 	ocs_lock(&hw->cmd_lock);
9682 
9683 	/*
9684 	 * Manually clean up remaining commands. Note: since this calls
9685 	 * ocs_hw_command_process(), we'll also process the cmd_pending
9686 	 * list, so no need to manually clean that out.
9687 	 */
9688 	while (!ocs_list_empty(&hw->cmd_head)) {
9689 		uint8_t		mqe[SLI4_BMBX_SIZE] = { 0 };
9690 		ocs_command_ctx_t *ctx = ocs_list_get_head(&hw->cmd_head);
9691 
9692 		ocs_log_test(hw->os, "hung command %08x\n",
9693 				NULL == ctx ? UINT32_MAX :
9694 				(NULL == ctx->buf ? UINT32_MAX : *((uint32_t *)ctx->buf)));
9695 		ocs_unlock(&hw->cmd_lock);
9696 		ocs_hw_command_process(hw, -1/*Bad status*/, mqe, SLI4_BMBX_SIZE);
9697 		ocs_lock(&hw->cmd_lock);
9698 	}
9699 
9700 	ocs_unlock(&hw->cmd_lock);
9701 
9702 	return 0;
9703 }
9704 
9705 /**
9706  * @brief Find IO given indicator (xri).
9707  *
9708  * @param hw Hal context.
9709  * @param indicator Indicator (xri) to look for.
9710  *
9711  * @return Returns io if found, NULL otherwise.
9712  */
9713 ocs_hw_io_t *
9714 ocs_hw_io_lookup(ocs_hw_t *hw, uint32_t xri)
9715 {
9716 	uint32_t ioindex;
9717 	ioindex = xri - hw->sli.config.extent[SLI_RSRC_FCOE_XRI].base[0];
9718 	return hw->io[ioindex];
9719 }
9720 
9721 /**
9722  * @brief Issue any pending callbacks for an IO and remove off the timer and pending lists.
9723  *
9724  * @param hw Hal context.
9725  * @param io Pointer to the IO to cleanup.
9726  */
9727 static void
9728 ocs_hw_io_cancel_cleanup(ocs_hw_t *hw, ocs_hw_io_t *io)
9729 {
9730 	ocs_hw_done_t  done = io->done;
9731 	ocs_hw_done_t  abort_done = io->abort_done;
9732 
9733 	/* first check active_wqe list and remove if there */
9734 	if (ocs_list_on_list(&io->wqe_link)) {
9735 		ocs_list_remove(&hw->io_timed_wqe, io);
9736 	}
9737 
9738 	/* Remove from WQ pending list */
9739 	if ((io->wq != NULL) && ocs_list_on_list(&io->wq->pending_list)) {
9740 		ocs_list_remove(&io->wq->pending_list, io);
9741 	}
9742 
9743 	if (io->done) {
9744 		void		*arg = io->arg;
9745 
9746 		io->done = NULL;
9747 		ocs_unlock(&hw->io_lock);
9748 		done(io, io->rnode, 0, SLI4_FC_WCQE_STATUS_SHUTDOWN, 0, arg);
9749 		ocs_lock(&hw->io_lock);
9750 	}
9751 
9752 	if (io->abort_done != NULL) {
9753 		void		*abort_arg = io->abort_arg;
9754 
9755 		io->abort_done = NULL;
9756 		ocs_unlock(&hw->io_lock);
9757 		abort_done(io, io->rnode, 0, SLI4_FC_WCQE_STATUS_SHUTDOWN, 0, abort_arg);
9758 		ocs_lock(&hw->io_lock);
9759 	}
9760 }
9761 
9762 static int32_t
9763 ocs_hw_io_cancel(ocs_hw_t *hw)
9764 {
9765 	ocs_hw_io_t	*io = NULL;
9766 	ocs_hw_io_t	*tmp_io = NULL;
9767 	uint32_t	iters = 100; /* One second limit */
9768 
9769 	/*
9770 	 * Manually clean up outstanding IO.
9771 	 * Only walk through list once: the backend will cleanup any IOs when done/abort_done is called.
9772 	 */
9773 	ocs_lock(&hw->io_lock);
9774 	ocs_list_foreach_safe(&hw->io_inuse, io, tmp_io) {
9775 		ocs_hw_done_t  done = io->done;
9776 		ocs_hw_done_t  abort_done = io->abort_done;
9777 
9778 		ocs_hw_io_cancel_cleanup(hw, io);
9779 
9780 		/*
9781 		 * Since this is called in a reset/shutdown
9782 		 * case, If there is no callback, then just
9783 		 * free the IO.
9784 		 *
9785 		 * Note: A port owned XRI cannot be on
9786 		 *       the in use list. We cannot call
9787 		 *       ocs_hw_io_free() because we already
9788 		 *       hold the io_lock.
9789 		 */
9790 		if (done == NULL &&
9791 		    abort_done == NULL) {
9792 			/*
9793 			 * Since this is called in a reset/shutdown
9794 			 * case, If there is no callback, then just
9795 			 * free the IO.
9796 			 */
9797 			ocs_hw_io_free_common(hw, io);
9798 			ocs_list_remove(&hw->io_inuse, io);
9799 			ocs_hw_io_free_move_correct_list(hw, io);
9800 		}
9801 	}
9802 
9803 	/*
9804 	 * For port owned XRIs, they are not on the in use list, so
9805 	 * walk though XRIs and issue any callbacks.
9806 	 */
9807 	ocs_list_foreach_safe(&hw->io_port_owned, io, tmp_io) {
9808 		/* check  list and remove if there */
9809 		if (ocs_list_on_list(&io->dnrx_link)) {
9810 			ocs_list_remove(&hw->io_port_dnrx, io);
9811 			ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */
9812 		}
9813 		ocs_hw_io_cancel_cleanup(hw, io);
9814 		ocs_list_remove(&hw->io_port_owned, io);
9815 		ocs_hw_io_free_common(hw, io);
9816 	}
9817 	ocs_unlock(&hw->io_lock);
9818 
9819 	/* Give time for the callbacks to complete */
9820 	do {
9821 		ocs_udelay(10000);
9822 		iters--;
9823 	} while (!ocs_list_empty(&hw->io_inuse) && iters);
9824 
9825 	/* Leave a breadcrumb that cleanup is not yet complete. */
9826 	if (!ocs_list_empty(&hw->io_inuse)) {
9827 		ocs_log_test(hw->os, "io_inuse list is not empty\n");
9828 	}
9829 
9830 	return 0;
9831 }
9832 
9833 static int32_t
9834 ocs_hw_io_ini_sge(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_dma_t *cmnd, uint32_t cmnd_size,
9835 		ocs_dma_t *rsp)
9836 {
9837 	sli4_sge_t	*data = NULL;
9838 
9839 	if (!hw || !io) {
9840 		ocs_log_err(NULL, "bad parm hw=%p io=%p\n", hw, io);
9841 		return OCS_HW_RTN_ERROR;
9842 	}
9843 
9844 	data = io->def_sgl.virt;
9845 
9846 	/* setup command pointer */
9847 	data->buffer_address_high = ocs_addr32_hi(cmnd->phys);
9848 	data->buffer_address_low  = ocs_addr32_lo(cmnd->phys);
9849 	data->buffer_length = cmnd_size;
9850 	data++;
9851 
9852 	/* setup response pointer */
9853 	data->buffer_address_high = ocs_addr32_hi(rsp->phys);
9854 	data->buffer_address_low  = ocs_addr32_lo(rsp->phys);
9855 	data->buffer_length = rsp->size;
9856 
9857 	return 0;
9858 }
9859 
9860 static int32_t
9861 __ocs_read_topology_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
9862 {
9863 	sli4_cmd_read_topology_t *read_topo = (sli4_cmd_read_topology_t *)mqe;
9864 
9865 	if (status || read_topo->hdr.status) {
9866 		ocs_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n",
9867 				status, read_topo->hdr.status);
9868 		ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
9869 		return -1;
9870 	}
9871 
9872 	switch (read_topo->attention_type) {
9873 	case SLI4_READ_TOPOLOGY_LINK_UP:
9874 		hw->link.status = SLI_LINK_STATUS_UP;
9875 		break;
9876 	case SLI4_READ_TOPOLOGY_LINK_DOWN:
9877 		hw->link.status = SLI_LINK_STATUS_DOWN;
9878 		break;
9879 	case SLI4_READ_TOPOLOGY_LINK_NO_ALPA:
9880 		hw->link.status = SLI_LINK_STATUS_NO_ALPA;
9881 		break;
9882 	default:
9883 		hw->link.status = SLI_LINK_STATUS_MAX;
9884 		break;
9885 	}
9886 
9887 	switch (read_topo->topology) {
9888 	case SLI4_READ_TOPOLOGY_NPORT:
9889 		hw->link.topology = SLI_LINK_TOPO_NPORT;
9890 		break;
9891 	case SLI4_READ_TOPOLOGY_FC_AL:
9892 		hw->link.topology = SLI_LINK_TOPO_LOOP;
9893 		if (SLI_LINK_STATUS_UP == hw->link.status) {
9894 			hw->link.loop_map = hw->loop_map.virt;
9895 		}
9896 		hw->link.fc_id = read_topo->acquired_al_pa;
9897 		break;
9898 	default:
9899 		hw->link.topology = SLI_LINK_TOPO_MAX;
9900 		break;
9901 	}
9902 
9903 	hw->link.medium = SLI_LINK_MEDIUM_FC;
9904 
9905 	switch (read_topo->link_current.link_speed) {
9906 	case SLI4_READ_TOPOLOGY_SPEED_1G:
9907 		hw->link.speed =  1 * 1000;
9908 		break;
9909 	case SLI4_READ_TOPOLOGY_SPEED_2G:
9910 		hw->link.speed =  2 * 1000;
9911 		break;
9912 	case SLI4_READ_TOPOLOGY_SPEED_4G:
9913 		hw->link.speed =  4 * 1000;
9914 		break;
9915 	case SLI4_READ_TOPOLOGY_SPEED_8G:
9916 		hw->link.speed =  8 * 1000;
9917 		break;
9918 	case SLI4_READ_TOPOLOGY_SPEED_16G:
9919 		hw->link.speed = 16 * 1000;
9920 		hw->link.loop_map = NULL;
9921 		break;
9922 	case SLI4_READ_TOPOLOGY_SPEED_32G:
9923 		hw->link.speed = 32 * 1000;
9924 		hw->link.loop_map = NULL;
9925 		break;
9926 	}
9927 
9928 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
9929 
9930 	ocs_hw_read_fcf(hw, SLI4_FCOE_FCF_TABLE_FIRST);
9931 
9932 	return 0;
9933 }
9934 
9935 static int32_t
9936 __ocs_hw_port_common(const char *funcname, ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
9937 {
9938 	ocs_sli_port_t	*sport = ctx->app;
9939 	ocs_hw_t	*hw = sport->hw;
9940 
9941 	smtrace("port");
9942 
9943 	switch (evt) {
9944 	case OCS_EVT_EXIT:
9945 		/* ignore */
9946 		break;
9947 
9948 	case OCS_EVT_HW_PORT_REQ_FREE:
9949 	case OCS_EVT_HW_PORT_REQ_ATTACH:
9950 		if (data != NULL) {
9951 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
9952 		}
9953 		/* fall through */
9954 	default:
9955 		ocs_log_test(hw->os, "%s %-20s not handled\n", funcname, ocs_sm_event_name(evt));
9956 		break;
9957 	}
9958 
9959 	return 0;
9960 }
9961 
9962 static void *
9963 __ocs_hw_port_free_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
9964 {
9965 	ocs_sli_port_t	*sport = ctx->app;
9966 	ocs_hw_t	*hw = sport->hw;
9967 
9968 	smtrace("port");
9969 
9970 	switch (evt) {
9971 	case OCS_EVT_ENTER:
9972 		if (data != NULL) {
9973 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
9974 		}
9975 		if (hw->callback.port != NULL) {
9976 			hw->callback.port(hw->args.port,
9977 					OCS_HW_PORT_FREE_FAIL, sport);
9978 		}
9979 		break;
9980 	default:
9981 		break;
9982 	}
9983 
9984 	return NULL;
9985 }
9986 
9987 static void *
9988 __ocs_hw_port_freed(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
9989 {
9990 	ocs_sli_port_t	*sport = ctx->app;
9991 	ocs_hw_t	*hw = sport->hw;
9992 
9993 	smtrace("port");
9994 
9995 	switch (evt) {
9996 	case OCS_EVT_ENTER:
9997 		/* free SLI resource */
9998 		if (sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator)) {
9999 			ocs_log_err(hw->os, "FCOE_VPI free failure addr=%#x\n", sport->fc_id);
10000 		}
10001 
10002 		/* free mailbox buffer */
10003 		if (data != NULL) {
10004 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10005 		}
10006 		if (hw->callback.port != NULL) {
10007 			hw->callback.port(hw->args.port,
10008 					OCS_HW_PORT_FREE_OK, sport);
10009 		}
10010 		break;
10011 	default:
10012 		break;
10013 	}
10014 
10015 	return NULL;
10016 }
10017 
10018 static void *
10019 __ocs_hw_port_attach_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10020 {
10021 	ocs_sli_port_t	*sport = ctx->app;
10022 	ocs_hw_t	*hw = sport->hw;
10023 
10024 	smtrace("port");
10025 
10026 	switch (evt) {
10027 	case OCS_EVT_ENTER:
10028 		/* free SLI resource */
10029 		sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator);
10030 
10031 		/* free mailbox buffer */
10032 		if (data != NULL) {
10033 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10034 		}
10035 
10036 		if (hw->callback.port != NULL) {
10037 			hw->callback.port(hw->args.port,
10038 					OCS_HW_PORT_ATTACH_FAIL, sport);
10039 		}
10040 		if (sport->sm_free_req_pending) {
10041 			ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL);
10042 		}
10043 		break;
10044 	default:
10045 		__ocs_hw_port_common(__func__, ctx, evt, data);
10046 		break;
10047 	}
10048 
10049 	return NULL;
10050 }
10051 
10052 static void *
10053 __ocs_hw_port_free_unreg_vpi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10054 {
10055 	ocs_sli_port_t	*sport = ctx->app;
10056 	ocs_hw_t	*hw = sport->hw;
10057 	uint8_t		*cmd = NULL;
10058 
10059 	smtrace("port");
10060 
10061 	switch (evt) {
10062 	case OCS_EVT_ENTER:
10063 		/* allocate memory and send unreg_vpi */
10064 		cmd = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
10065 		if (!cmd) {
10066 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10067 			break;
10068 		}
10069 
10070 		if (0 == sli_cmd_unreg_vpi(&hw->sli, cmd, SLI4_BMBX_SIZE, sport->indicator,
10071 					   SLI4_UNREG_TYPE_PORT)) {
10072 			ocs_log_err(hw->os, "UNREG_VPI format failure\n");
10073 			ocs_free(hw->os, cmd, SLI4_BMBX_SIZE);
10074 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10075 			break;
10076 		}
10077 
10078 		if (ocs_hw_command(hw, cmd, OCS_CMD_NOWAIT, __ocs_hw_port_cb, sport)) {
10079 			ocs_log_err(hw->os, "UNREG_VPI command failure\n");
10080 			ocs_free(hw->os, cmd, SLI4_BMBX_SIZE);
10081 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10082 			break;
10083 		}
10084 		break;
10085 	case OCS_EVT_RESPONSE:
10086 		ocs_sm_transition(ctx, __ocs_hw_port_freed, data);
10087 		break;
10088 	case OCS_EVT_ERROR:
10089 		ocs_sm_transition(ctx, __ocs_hw_port_free_report_fail, data);
10090 		break;
10091 	default:
10092 		__ocs_hw_port_common(__func__, ctx, evt, data);
10093 		break;
10094 	}
10095 
10096 	return NULL;
10097 }
10098 
10099 static void *
10100 __ocs_hw_port_free_nop(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10101 {
10102 	ocs_sli_port_t	*sport = ctx->app;
10103 	ocs_hw_t	*hw = sport->hw;
10104 
10105 	smtrace("port");
10106 
10107 	switch (evt) {
10108 	case OCS_EVT_ENTER:
10109 		/* Forward to execute in mailbox completion processing context */
10110 		if (ocs_hw_async_call(hw, __ocs_hw_port_realloc_cb, sport)) {
10111 			ocs_log_err(hw->os, "ocs_hw_async_call failed\n");
10112 		}
10113 		break;
10114 	case OCS_EVT_RESPONSE:
10115 		ocs_sm_transition(ctx, __ocs_hw_port_freed, data);
10116 		break;
10117 	case OCS_EVT_ERROR:
10118 		ocs_sm_transition(ctx, __ocs_hw_port_free_report_fail, data);
10119 		break;
10120 	default:
10121 		break;
10122 	}
10123 
10124 	return NULL;
10125 }
10126 
10127 static void *
10128 __ocs_hw_port_attached(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10129 {
10130 	ocs_sli_port_t	*sport = ctx->app;
10131 	ocs_hw_t	*hw = sport->hw;
10132 
10133 	smtrace("port");
10134 
10135 	switch (evt) {
10136 	case OCS_EVT_ENTER:
10137 		if (data != NULL) {
10138 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10139 		}
10140 		if (hw->callback.port != NULL) {
10141 			hw->callback.port(hw->args.port,
10142 					OCS_HW_PORT_ATTACH_OK, sport);
10143 		}
10144 		if (sport->sm_free_req_pending) {
10145 			ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL);
10146 		}
10147 		break;
10148 	case OCS_EVT_HW_PORT_REQ_FREE:
10149 		/* virtual/physical port request free */
10150 		ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL);
10151 		break;
10152 	default:
10153 		__ocs_hw_port_common(__func__, ctx, evt, data);
10154 		break;
10155 	}
10156 
10157 	return NULL;
10158 }
10159 
10160 static void *
10161 __ocs_hw_port_attach_reg_vpi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10162 {
10163 	ocs_sli_port_t	*sport = ctx->app;
10164 	ocs_hw_t	*hw = sport->hw;
10165 
10166 	smtrace("port");
10167 
10168 	switch (evt) {
10169 	case OCS_EVT_ENTER:
10170 		if (0 == sli_cmd_reg_vpi(&hw->sli, data, SLI4_BMBX_SIZE, sport, FALSE)) {
10171 			ocs_log_err(hw->os, "REG_VPI format failure\n");
10172 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10173 			break;
10174 		}
10175 
10176 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_port_cb, sport)) {
10177 			ocs_log_err(hw->os, "REG_VPI command failure\n");
10178 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10179 			break;
10180 		}
10181 		break;
10182 	case OCS_EVT_RESPONSE:
10183 		ocs_sm_transition(ctx, __ocs_hw_port_attached, data);
10184 		break;
10185 	case OCS_EVT_ERROR:
10186 		ocs_sm_transition(ctx, __ocs_hw_port_attach_report_fail, data);
10187 		break;
10188 	case OCS_EVT_HW_PORT_REQ_FREE:
10189 		/* Wait for attach response and then free */
10190 		sport->sm_free_req_pending = 1;
10191 		break;
10192 	default:
10193 		__ocs_hw_port_common(__func__, ctx, evt, data);
10194 		break;
10195 	}
10196 
10197 	return NULL;
10198 }
10199 
10200 static void *
10201 __ocs_hw_port_done(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10202 {
10203 	ocs_sli_port_t	*sport = ctx->app;
10204 	ocs_hw_t	*hw = sport->hw;
10205 
10206 	smtrace("port");
10207 
10208 	switch (evt) {
10209 	case OCS_EVT_ENTER:
10210 		/* free SLI resource */
10211 		sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator);
10212 
10213 		/* free mailbox buffer */
10214 		if (data != NULL) {
10215 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10216 		}
10217 		break;
10218 	default:
10219 		__ocs_hw_port_common(__func__, ctx, evt, data);
10220 		break;
10221 	}
10222 
10223 	return NULL;
10224 }
10225 
10226 static void *
10227 __ocs_hw_port_allocated(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10228 {
10229 	ocs_sli_port_t	*sport = ctx->app;
10230 	ocs_hw_t	*hw = sport->hw;
10231 
10232 	smtrace("port");
10233 
10234 	switch (evt) {
10235 	case OCS_EVT_ENTER:
10236 		if (data != NULL) {
10237 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10238 		}
10239 		if (hw->callback.port != NULL) {
10240 			hw->callback.port(hw->args.port,
10241 					OCS_HW_PORT_ALLOC_OK, sport);
10242 		}
10243 		/* If there is a pending free request, then handle it now */
10244 		if (sport->sm_free_req_pending) {
10245 			ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL);
10246 		}
10247 		break;
10248 	case OCS_EVT_HW_PORT_REQ_ATTACH:
10249 		/* virtual port requests attach */
10250 		ocs_sm_transition(ctx, __ocs_hw_port_attach_reg_vpi, data);
10251 		break;
10252 	case OCS_EVT_HW_PORT_ATTACH_OK:
10253 		/* physical port attached (as part of attaching domain) */
10254 		ocs_sm_transition(ctx, __ocs_hw_port_attached, data);
10255 		break;
10256 	case OCS_EVT_HW_PORT_REQ_FREE:
10257 		/* virtual port request free */
10258 		if (SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) {
10259 			ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL);
10260 		} else {
10261 			/*
10262 			 * Note: BE3/Skyhawk will respond with a status of 0x20
10263 			 *       unless the reg_vpi has been issued, so we can
10264 			 *       skip the unreg_vpi for these adapters.
10265 			 *
10266 			 * Send a nop to make sure that free doesn't occur in
10267 			 * same context
10268 			 */
10269 			ocs_sm_transition(ctx, __ocs_hw_port_free_nop, NULL);
10270 		}
10271 		break;
10272 	default:
10273 		__ocs_hw_port_common(__func__, ctx, evt, data);
10274 		break;
10275 	}
10276 
10277 	return NULL;
10278 }
10279 
10280 static void *
10281 __ocs_hw_port_alloc_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10282 {
10283 	ocs_sli_port_t	*sport = ctx->app;
10284 	ocs_hw_t	*hw = sport->hw;
10285 
10286 	smtrace("port");
10287 
10288 	switch (evt) {
10289 	case OCS_EVT_ENTER:
10290 		/* free SLI resource */
10291 		sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator);
10292 
10293 		/* free mailbox buffer */
10294 		if (data != NULL) {
10295 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10296 		}
10297 
10298 		if (hw->callback.port != NULL) {
10299 			hw->callback.port(hw->args.port,
10300 					OCS_HW_PORT_ALLOC_FAIL, sport);
10301 		}
10302 
10303 		/* If there is a pending free request, then handle it now */
10304 		if (sport->sm_free_req_pending) {
10305 			ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL);
10306 		}
10307 		break;
10308 	default:
10309 		__ocs_hw_port_common(__func__, ctx, evt, data);
10310 		break;
10311 	}
10312 
10313 	return NULL;
10314 }
10315 
10316 static void *
10317 __ocs_hw_port_alloc_read_sparm64(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10318 {
10319 	ocs_sli_port_t	*sport = ctx->app;
10320 	ocs_hw_t	*hw = sport->hw;
10321 	uint8_t		*payload = NULL;
10322 
10323 	smtrace("port");
10324 
10325 	switch (evt) {
10326 	case OCS_EVT_ENTER:
10327 		/* allocate memory for the service parameters */
10328 		if (ocs_dma_alloc(hw->os, &sport->dma, 112, 4)) {
10329 			ocs_log_err(hw->os, "Failed to allocate DMA memory\n");
10330 			ocs_sm_transition(ctx, __ocs_hw_port_done, data);
10331 			break;
10332 		}
10333 
10334 		if (0 == sli_cmd_read_sparm64(&hw->sli, data, SLI4_BMBX_SIZE,
10335 					&sport->dma, sport->indicator)) {
10336 			ocs_log_err(hw->os, "READ_SPARM64 allocation failure\n");
10337 			ocs_dma_free(hw->os, &sport->dma);
10338 			ocs_sm_transition(ctx, __ocs_hw_port_done, data);
10339 			break;
10340 		}
10341 
10342 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_port_cb, sport)) {
10343 			ocs_log_err(hw->os, "READ_SPARM64 command failure\n");
10344 			ocs_dma_free(hw->os, &sport->dma);
10345 			ocs_sm_transition(ctx, __ocs_hw_port_done, data);
10346 			break;
10347 		}
10348 		break;
10349 	case OCS_EVT_RESPONSE:
10350 		payload = sport->dma.virt;
10351 
10352 		ocs_display_sparams(sport->display_name, "sport sparm64", 0, NULL, payload);
10353 
10354 		ocs_memcpy(&sport->sli_wwpn, payload + SLI4_READ_SPARM64_WWPN_OFFSET,
10355 				sizeof(sport->sli_wwpn));
10356 		ocs_memcpy(&sport->sli_wwnn, payload + SLI4_READ_SPARM64_WWNN_OFFSET,
10357 				sizeof(sport->sli_wwnn));
10358 
10359 		ocs_dma_free(hw->os, &sport->dma);
10360 		ocs_sm_transition(ctx, __ocs_hw_port_alloc_init_vpi, data);
10361 		break;
10362 	case OCS_EVT_ERROR:
10363 		ocs_dma_free(hw->os, &sport->dma);
10364 		ocs_sm_transition(ctx, __ocs_hw_port_alloc_report_fail, data);
10365 		break;
10366 	case OCS_EVT_HW_PORT_REQ_FREE:
10367 		/* Wait for attach response and then free */
10368 		sport->sm_free_req_pending = 1;
10369 		break;
10370 	case OCS_EVT_EXIT:
10371 		break;
10372 	default:
10373 		__ocs_hw_port_common(__func__, ctx, evt, data);
10374 		break;
10375 	}
10376 
10377 	return NULL;
10378 }
10379 
10380 static void *
10381 __ocs_hw_port_alloc_init(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10382 {
10383 	ocs_sli_port_t	*sport = ctx->app;
10384 
10385 	smtrace("port");
10386 
10387 	switch (evt) {
10388 	case OCS_EVT_ENTER:
10389 		/* no-op */
10390 		break;
10391 	case OCS_EVT_HW_PORT_ALLOC_OK:
10392 		ocs_sm_transition(ctx, __ocs_hw_port_allocated, NULL);
10393 		break;
10394 	case OCS_EVT_HW_PORT_ALLOC_FAIL:
10395 		ocs_sm_transition(ctx, __ocs_hw_port_alloc_report_fail, NULL);
10396 		break;
10397 	case OCS_EVT_HW_PORT_REQ_FREE:
10398 		/* Wait for attach response and then free */
10399 		sport->sm_free_req_pending = 1;
10400 		break;
10401 	default:
10402 		__ocs_hw_port_common(__func__, ctx, evt, data);
10403 		break;
10404 	}
10405 
10406 	return NULL;
10407 }
10408 
10409 static void *
10410 __ocs_hw_port_alloc_init_vpi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10411 {
10412 	ocs_sli_port_t	*sport = ctx->app;
10413 	ocs_hw_t	*hw = sport->hw;
10414 
10415 	smtrace("port");
10416 
10417 	switch (evt) {
10418 	case OCS_EVT_ENTER:
10419 		/* If there is a pending free request, then handle it now */
10420 		if (sport->sm_free_req_pending) {
10421 			ocs_sm_transition(ctx, __ocs_hw_port_freed, NULL);
10422 			return NULL;
10423 		}
10424 
10425 		/* TODO XXX transitioning to done only works if this is called
10426 		 * directly from ocs_hw_port_alloc BUT not if called from
10427 		 * read_sparm64. In the later case, we actually want to go
10428 		 * through report_ok/fail
10429 		 */
10430 		if (0 == sli_cmd_init_vpi(&hw->sli, data, SLI4_BMBX_SIZE,
10431 					sport->indicator, sport->domain->indicator)) {
10432 			ocs_log_err(hw->os, "INIT_VPI allocation failure\n");
10433 			ocs_sm_transition(ctx, __ocs_hw_port_done, data);
10434 			break;
10435 		}
10436 
10437 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_port_cb, sport)) {
10438 			ocs_log_err(hw->os, "INIT_VPI command failure\n");
10439 			ocs_sm_transition(ctx, __ocs_hw_port_done, data);
10440 			break;
10441 		}
10442 		break;
10443 	case OCS_EVT_RESPONSE:
10444 		ocs_sm_transition(ctx, __ocs_hw_port_allocated, data);
10445 		break;
10446 	case OCS_EVT_ERROR:
10447 		ocs_sm_transition(ctx, __ocs_hw_port_alloc_report_fail, data);
10448 		break;
10449 	case OCS_EVT_HW_PORT_REQ_FREE:
10450 		/* Wait for attach response and then free */
10451 		sport->sm_free_req_pending = 1;
10452 		break;
10453 	case OCS_EVT_EXIT:
10454 		break;
10455 	default:
10456 		__ocs_hw_port_common(__func__, ctx, evt, data);
10457 		break;
10458 	}
10459 
10460 	return NULL;
10461 }
10462 
10463 static int32_t
10464 __ocs_hw_port_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
10465 {
10466 	ocs_sli_port_t *sport = arg;
10467 	sli4_mbox_command_header_t	*hdr = (sli4_mbox_command_header_t *)mqe;
10468 	ocs_sm_event_t	evt;
10469 
10470 	if (status || hdr->status) {
10471 		ocs_log_debug(hw->os, "bad status vpi=%#x st=%x hdr=%x\n",
10472 			      sport->indicator, status, hdr->status);
10473 		evt = OCS_EVT_ERROR;
10474 	} else {
10475 		evt = OCS_EVT_RESPONSE;
10476 	}
10477 
10478 	ocs_sm_post_event(&sport->ctx, evt, mqe);
10479 
10480 	return 0;
10481 }
10482 
10483 static int32_t
10484 __ocs_hw_port_realloc_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
10485 {
10486 	ocs_sli_port_t *sport = arg;
10487 	sli4_mbox_command_header_t	*hdr = (sli4_mbox_command_header_t *)mqe;
10488 	ocs_sm_event_t	evt;
10489 	uint8_t *mqecpy;
10490 
10491 	if (status || hdr->status) {
10492 		ocs_log_debug(hw->os, "bad status vpi=%#x st=%x hdr=%x\n",
10493 			      sport->indicator, status, hdr->status);
10494 		evt = OCS_EVT_ERROR;
10495 	} else {
10496 		evt = OCS_EVT_RESPONSE;
10497 	}
10498 
10499 	/*
10500 	 * In this case we have to malloc a mailbox command buffer, as it is reused
10501 	 * in the state machine post event call, and eventually freed
10502 	 */
10503 	mqecpy = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
10504 	if (mqecpy == NULL) {
10505 		ocs_log_err(hw->os, "malloc mqecpy failed\n");
10506 		return -1;
10507 	}
10508 	ocs_memcpy(mqecpy, mqe, SLI4_BMBX_SIZE);
10509 
10510 	ocs_sm_post_event(&sport->ctx, evt, mqecpy);
10511 
10512 	return 0;
10513 }
10514 
10515 /***************************************************************************
10516  * Domain state machine
10517  */
10518 
10519 static int32_t
10520 __ocs_hw_domain_common(const char *funcname, ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10521 {
10522 	ocs_domain_t	*domain = ctx->app;
10523 	ocs_hw_t	*hw = domain->hw;
10524 
10525 	smtrace("domain");
10526 
10527 	switch (evt) {
10528 	case OCS_EVT_EXIT:
10529 		/* ignore */
10530 		break;
10531 
10532 	default:
10533 		ocs_log_test(hw->os, "%s %-20s not handled\n", funcname, ocs_sm_event_name(evt));
10534 		break;
10535 	}
10536 
10537 	return 0;
10538 }
10539 
10540 static void *
10541 __ocs_hw_domain_alloc_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10542 {
10543 	ocs_domain_t	*domain = ctx->app;
10544 	ocs_hw_t	*hw = domain->hw;
10545 
10546 	smtrace("domain");
10547 
10548 	switch (evt) {
10549 	case OCS_EVT_ENTER:
10550 		/* free command buffer */
10551 		if (data != NULL) {
10552 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10553 		}
10554 		/* free SLI resources */
10555 		sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VFI, domain->indicator);
10556 		/* TODO how to free FCFI (or do we at all)? */
10557 
10558 		if (hw->callback.domain != NULL) {
10559 			hw->callback.domain(hw->args.domain,
10560 					OCS_HW_DOMAIN_ALLOC_FAIL,
10561 					domain);
10562 		}
10563 		break;
10564 	default:
10565 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10566 		break;
10567 	}
10568 
10569 	return NULL;
10570 }
10571 
10572 static void *
10573 __ocs_hw_domain_attached(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10574 {
10575 	ocs_domain_t	*domain = ctx->app;
10576 	ocs_hw_t	*hw = domain->hw;
10577 
10578 	smtrace("domain");
10579 
10580 	switch (evt) {
10581 	case OCS_EVT_ENTER:
10582 		/* free mailbox buffer and send alloc ok to physical sport */
10583 		ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10584 		ocs_sm_post_event(&domain->sport->ctx, OCS_EVT_HW_PORT_ATTACH_OK, NULL);
10585 
10586 		/* now inform registered callbacks */
10587 		if (hw->callback.domain != NULL) {
10588 			hw->callback.domain(hw->args.domain,
10589 					OCS_HW_DOMAIN_ATTACH_OK,
10590 					domain);
10591 		}
10592 		break;
10593 	case OCS_EVT_HW_DOMAIN_REQ_FREE:
10594 		ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_vfi, NULL);
10595 		break;
10596 	default:
10597 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10598 		break;
10599 	}
10600 
10601 	return NULL;
10602 }
10603 
10604 static void *
10605 __ocs_hw_domain_attach_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10606 {
10607 	ocs_domain_t	*domain = ctx->app;
10608 	ocs_hw_t	*hw = domain->hw;
10609 
10610 	smtrace("domain");
10611 
10612 	switch (evt) {
10613 	case OCS_EVT_ENTER:
10614 		if (data != NULL) {
10615 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10616 		}
10617 		/* free SLI resources */
10618 		sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VFI, domain->indicator);
10619 		/* TODO how to free FCFI (or do we at all)? */
10620 
10621 		if (hw->callback.domain != NULL) {
10622 			hw->callback.domain(hw->args.domain,
10623 					OCS_HW_DOMAIN_ATTACH_FAIL,
10624 					domain);
10625 		}
10626 		break;
10627 	case OCS_EVT_EXIT:
10628 		break;
10629 	default:
10630 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10631 		break;
10632 	}
10633 
10634 	return NULL;
10635 }
10636 
10637 static void *
10638 __ocs_hw_domain_attach_reg_vfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10639 {
10640 	ocs_domain_t	*domain = ctx->app;
10641 	ocs_hw_t	*hw = domain->hw;
10642 
10643 	smtrace("domain");
10644 
10645 	switch (evt) {
10646 	case OCS_EVT_ENTER:
10647 
10648 		ocs_display_sparams("", "reg vpi", 0, NULL, domain->dma.virt);
10649 
10650 		if (0 == sli_cmd_reg_vfi(&hw->sli, data, SLI4_BMBX_SIZE, domain)) {
10651 			ocs_log_err(hw->os, "REG_VFI format failure\n");
10652 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10653 			break;
10654 		}
10655 
10656 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) {
10657 			ocs_log_err(hw->os, "REG_VFI command failure\n");
10658 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10659 			break;
10660 		}
10661 		break;
10662 	case OCS_EVT_RESPONSE:
10663 		ocs_sm_transition(ctx, __ocs_hw_domain_attached, data);
10664 		break;
10665 	case OCS_EVT_ERROR:
10666 		ocs_sm_transition(ctx, __ocs_hw_domain_attach_report_fail, data);
10667 		break;
10668 	default:
10669 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10670 		break;
10671 	}
10672 
10673 	return NULL;
10674 }
10675 
10676 static void *
10677 __ocs_hw_domain_allocated(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10678 {
10679 	ocs_domain_t	*domain = ctx->app;
10680 	ocs_hw_t	*hw = domain->hw;
10681 
10682 	smtrace("domain");
10683 
10684 	switch (evt) {
10685 	case OCS_EVT_ENTER:
10686 		/* free mailbox buffer and send alloc ok to physical sport */
10687 		ocs_free(hw->os, data, SLI4_BMBX_SIZE);
10688 		ocs_sm_post_event(&domain->sport->ctx, OCS_EVT_HW_PORT_ALLOC_OK, NULL);
10689 
10690 		ocs_hw_domain_add(hw, domain);
10691 
10692 		/* now inform registered callbacks */
10693 		if (hw->callback.domain != NULL) {
10694 			hw->callback.domain(hw->args.domain,
10695 					OCS_HW_DOMAIN_ALLOC_OK,
10696 					domain);
10697 		}
10698 		break;
10699 	case OCS_EVT_HW_DOMAIN_REQ_ATTACH:
10700 		ocs_sm_transition(ctx, __ocs_hw_domain_attach_reg_vfi, data);
10701 		break;
10702 	case OCS_EVT_HW_DOMAIN_REQ_FREE:
10703 		/* unreg_fcfi/vfi */
10704 		if (SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) {
10705 			ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_fcfi, NULL);
10706 		} else {
10707 			ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_vfi, NULL);
10708 		}
10709 		break;
10710 	default:
10711 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10712 		break;
10713 	}
10714 
10715 	return NULL;
10716 }
10717 
10718 static void *
10719 __ocs_hw_domain_alloc_read_sparm64(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10720 {
10721 	ocs_domain_t	*domain = ctx->app;
10722 	ocs_hw_t	*hw = domain->hw;
10723 
10724 	smtrace("domain");
10725 
10726 	switch (evt) {
10727 	case OCS_EVT_ENTER:
10728 		if (0 == sli_cmd_read_sparm64(&hw->sli, data, SLI4_BMBX_SIZE,
10729 					&domain->dma, SLI4_READ_SPARM64_VPI_DEFAULT)) {
10730 			ocs_log_err(hw->os, "READ_SPARM64 format failure\n");
10731 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10732 			break;
10733 		}
10734 
10735 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) {
10736 			ocs_log_err(hw->os, "READ_SPARM64 command failure\n");
10737 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10738 			break;
10739 		}
10740 		break;
10741 	case OCS_EVT_EXIT:
10742 		break;
10743 	case OCS_EVT_RESPONSE:
10744 		ocs_display_sparams(domain->display_name, "domain sparm64", 0, NULL, domain->dma.virt);
10745 
10746 		ocs_sm_transition(ctx, __ocs_hw_domain_allocated, data);
10747 		break;
10748 	case OCS_EVT_ERROR:
10749 		ocs_sm_transition(ctx, __ocs_hw_domain_alloc_report_fail, data);
10750 		break;
10751 	default:
10752 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10753 		break;
10754 	}
10755 
10756 	return NULL;
10757 }
10758 
10759 static void *
10760 __ocs_hw_domain_alloc_init_vfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10761 {
10762 	ocs_domain_t	*domain = ctx->app;
10763 	ocs_sli_port_t	*sport = domain->sport;
10764 	ocs_hw_t	*hw = domain->hw;
10765 
10766 	smtrace("domain");
10767 
10768 	switch (evt) {
10769 	case OCS_EVT_ENTER:
10770 		if (0 == sli_cmd_init_vfi(&hw->sli, data, SLI4_BMBX_SIZE, domain->indicator,
10771 					domain->fcf_indicator, sport->indicator)) {
10772 			ocs_log_err(hw->os, "INIT_VFI format failure\n");
10773 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10774 			break;
10775 		}
10776 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) {
10777 			ocs_log_err(hw->os, "INIT_VFI command failure\n");
10778 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10779 			break;
10780 		}
10781 		break;
10782 	case OCS_EVT_EXIT:
10783 		break;
10784 	case OCS_EVT_RESPONSE:
10785 		ocs_sm_transition(ctx, __ocs_hw_domain_alloc_read_sparm64, data);
10786 		break;
10787 	case OCS_EVT_ERROR:
10788 		ocs_sm_transition(ctx, __ocs_hw_domain_alloc_report_fail, data);
10789 		break;
10790 	default:
10791 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10792 		break;
10793 	}
10794 
10795 	return NULL;
10796 }
10797 
10798 static void *
10799 __ocs_hw_domain_alloc_reg_fcfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10800 {
10801 	ocs_domain_t	*domain = ctx->app;
10802 	ocs_hw_t	*hw = domain->hw;
10803 
10804 	smtrace("domain");
10805 
10806 	switch (evt) {
10807 	case OCS_EVT_ENTER: {
10808 		sli4_cmd_rq_cfg_t rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG];
10809 		uint32_t i;
10810 
10811 		/* Set the filter match/mask values from hw's filter_def values */
10812 		for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) {
10813 			rq_cfg[i].rq_id = 0xffff;
10814 			rq_cfg[i].r_ctl_mask = (uint8_t) hw->config.filter_def[i];
10815 			rq_cfg[i].r_ctl_match = (uint8_t) (hw->config.filter_def[i] >> 8);
10816 			rq_cfg[i].type_mask = (uint8_t) (hw->config.filter_def[i] >> 16);
10817 			rq_cfg[i].type_match = (uint8_t) (hw->config.filter_def[i] >> 24);
10818 		}
10819 
10820 		/* Set the rq_id for each, in order of RQ definition */
10821 		for (i = 0; i < hw->hw_rq_count; i++) {
10822 			if (i >= ARRAY_SIZE(rq_cfg)) {
10823 				ocs_log_warn(hw->os, "more RQs than REG_FCFI filter entries\n");
10824 				break;
10825 			}
10826 			rq_cfg[i].rq_id = hw->hw_rq[i]->hdr->id;
10827 		}
10828 
10829 		if (!data) {
10830 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10831 			break;
10832 		}
10833 
10834 		if (hw->hw_mrq_count) {
10835 			if (OCS_HW_RTN_SUCCESS != ocs_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_FCFI_MODE,
10836 				 domain->vlan_id, domain->fcf)) {
10837 				ocs_log_err(hw->os, "REG_FCFI_MRQ format failure\n");
10838 				ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10839 				break;
10840 			}
10841 
10842 		} else {
10843 			if (0 == sli_cmd_reg_fcfi(&hw->sli, data, SLI4_BMBX_SIZE, domain->fcf,
10844 						rq_cfg, domain->vlan_id)) {
10845 				ocs_log_err(hw->os, "REG_FCFI format failure\n");
10846 				ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10847 				break;
10848 			}
10849 		}
10850 
10851 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) {
10852 			ocs_log_err(hw->os, "REG_FCFI command failure\n");
10853 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10854 			break;
10855 		}
10856 		break;
10857 	}
10858 	case OCS_EVT_EXIT:
10859 		break;
10860 	case OCS_EVT_RESPONSE:
10861 		if (!data) {
10862 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
10863 			break;
10864 		}
10865 
10866 		domain->fcf_indicator = ((sli4_cmd_reg_fcfi_t *)data)->fcfi;
10867 
10868 		/*
10869 		 * IF_TYPE 0 devices do not support explicit VFI and VPI initialization
10870 		 * and instead rely on implicit initialization during VFI registration.
10871 		 * Short circuit normal processing here for those devices.
10872 		 */
10873 		if (SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) {
10874 			ocs_sm_transition(ctx, __ocs_hw_domain_alloc_read_sparm64, data);
10875 		} else {
10876 			ocs_sm_transition(ctx, __ocs_hw_domain_alloc_init_vfi, data);
10877 		}
10878 		break;
10879 	case OCS_EVT_ERROR:
10880 		ocs_sm_transition(ctx, __ocs_hw_domain_alloc_report_fail, data);
10881 		break;
10882 	default:
10883 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10884 		break;
10885 	}
10886 
10887 	return NULL;
10888 }
10889 
10890 static void *
10891 __ocs_hw_domain_init(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10892 {
10893 	ocs_domain_t	*domain = ctx->app;
10894 	ocs_hw_t	*hw = domain->hw;
10895 
10896 	smtrace("domain");
10897 
10898 	switch (evt) {
10899 	case OCS_EVT_ENTER:
10900 		if (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_FC) {
10901 			/*
10902 			 * For FC, the HW alread registered a FCFI
10903 			 * Copy FCF information into the domain and jump to INIT_VFI
10904 			 */
10905 			domain->fcf_indicator = hw->fcf_indicator;
10906 			ocs_sm_transition(&domain->sm, __ocs_hw_domain_alloc_init_vfi, data);
10907 		} else {
10908 			ocs_sm_transition(&domain->sm, __ocs_hw_domain_alloc_reg_fcfi, data);
10909 		}
10910 		break;
10911 	default:
10912 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10913 		break;
10914 	}
10915 
10916 	return NULL;
10917 }
10918 
10919 static void *
10920 __ocs_hw_domain_free_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10921 {
10922 	ocs_domain_t	*domain = ctx->app;
10923 
10924 	smtrace("domain");
10925 
10926 	switch (evt) {
10927 	case OCS_EVT_ENTER:
10928 		if (domain != NULL) {
10929 			ocs_hw_t	*hw = domain->hw;
10930 
10931 			ocs_hw_domain_del(hw, domain);
10932 
10933 			if (hw->callback.domain != NULL) {
10934 				hw->callback.domain(hw->args.domain,
10935 						     OCS_HW_DOMAIN_FREE_FAIL,
10936 						     domain);
10937 			}
10938 		}
10939 
10940 		/* free command buffer */
10941 		if (data != NULL) {
10942 			ocs_free(domain != NULL ? domain->hw->os : NULL, data, SLI4_BMBX_SIZE);
10943 		}
10944 		break;
10945 	case OCS_EVT_EXIT:
10946 		break;
10947 	default:
10948 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10949 		break;
10950 	}
10951 
10952 	return NULL;
10953 }
10954 
10955 static void *
10956 __ocs_hw_domain_freed(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10957 {
10958 	ocs_domain_t	*domain = ctx->app;
10959 
10960 	smtrace("domain");
10961 
10962 	switch (evt) {
10963 	case OCS_EVT_ENTER:
10964 		/* Free DMA and mailbox buffer */
10965 		if (domain != NULL) {
10966 			ocs_hw_t *hw = domain->hw;
10967 
10968 			/* free VFI resource */
10969 			sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VFI,
10970 					  domain->indicator);
10971 
10972 			ocs_hw_domain_del(hw, domain);
10973 
10974 			/* inform registered callbacks */
10975 			if (hw->callback.domain != NULL) {
10976 				hw->callback.domain(hw->args.domain,
10977 						     OCS_HW_DOMAIN_FREE_OK,
10978 						     domain);
10979 			}
10980 		}
10981 		if (data != NULL) {
10982 			ocs_free(NULL, data, SLI4_BMBX_SIZE);
10983 		}
10984 		break;
10985 	case OCS_EVT_EXIT:
10986 		break;
10987 	default:
10988 		__ocs_hw_domain_common(__func__, ctx, evt, data);
10989 		break;
10990 	}
10991 
10992 	return NULL;
10993 }
10994 
10995 static void *
10996 __ocs_hw_domain_free_redisc_fcf(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
10997 {
10998 	ocs_domain_t	*domain = ctx->app;
10999 	ocs_hw_t	*hw = domain->hw;
11000 
11001 	smtrace("domain");
11002 
11003 	switch (evt) {
11004 	case OCS_EVT_ENTER:
11005 		/* if we're in the middle of a teardown, skip sending rediscover */
11006 		if (hw->state == OCS_HW_STATE_TEARDOWN_IN_PROGRESS) {
11007 			ocs_sm_transition(ctx, __ocs_hw_domain_freed, data);
11008 			break;
11009 		}
11010 		if (0 == sli_cmd_fcoe_rediscover_fcf(&hw->sli, data, SLI4_BMBX_SIZE, domain->fcf)) {
11011 			ocs_log_err(hw->os, "REDISCOVER_FCF format failure\n");
11012 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
11013 			break;
11014 		}
11015 
11016 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) {
11017 			ocs_log_err(hw->os, "REDISCOVER_FCF command failure\n");
11018 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
11019 		}
11020 		break;
11021 	case OCS_EVT_RESPONSE:
11022 	case OCS_EVT_ERROR:
11023 		/* REDISCOVER_FCF can fail if none exist */
11024 		ocs_sm_transition(ctx, __ocs_hw_domain_freed, data);
11025 		break;
11026 	case OCS_EVT_EXIT:
11027 		break;
11028 	default:
11029 		__ocs_hw_domain_common(__func__, ctx, evt, data);
11030 		break;
11031 	}
11032 
11033 	return NULL;
11034 }
11035 
11036 static void *
11037 __ocs_hw_domain_free_unreg_fcfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
11038 {
11039 	ocs_domain_t	*domain = ctx->app;
11040 	ocs_hw_t	*hw = domain->hw;
11041 
11042 	smtrace("domain");
11043 
11044 	switch (evt) {
11045 	case OCS_EVT_ENTER:
11046 		if (data == NULL) {
11047 			data = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
11048 			if (!data) {
11049 				ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
11050 				break;
11051 			}
11052 		}
11053 
11054 		if (0 == sli_cmd_unreg_fcfi(&hw->sli, data, SLI4_BMBX_SIZE, domain->fcf_indicator)) {
11055 			ocs_log_err(hw->os, "UNREG_FCFI format failure\n");
11056 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
11057 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
11058 			break;
11059 		}
11060 
11061 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) {
11062 			ocs_log_err(hw->os, "UNREG_FCFI command failure\n");
11063 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
11064 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
11065 			break;
11066 		}
11067 		break;
11068 	case OCS_EVT_RESPONSE:
11069 		if (domain->req_rediscover_fcf) {
11070 			domain->req_rediscover_fcf = FALSE;
11071 			ocs_sm_transition(ctx, __ocs_hw_domain_free_redisc_fcf, data);
11072 		} else {
11073 			ocs_sm_transition(ctx, __ocs_hw_domain_freed, data);
11074 		}
11075 		break;
11076 	case OCS_EVT_ERROR:
11077 		ocs_sm_transition(ctx, __ocs_hw_domain_free_report_fail, data);
11078 		break;
11079 	case OCS_EVT_EXIT:
11080 		break;
11081 	default:
11082 		__ocs_hw_domain_common(__func__, ctx, evt, data);
11083 		break;
11084 	}
11085 
11086 	return NULL;
11087 }
11088 
11089 static void *
11090 __ocs_hw_domain_free_unreg_vfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data)
11091 {
11092 	ocs_domain_t	*domain = ctx->app;
11093 	ocs_hw_t	*hw = domain->hw;
11094 	uint8_t		is_fc = FALSE;
11095 
11096 	smtrace("domain");
11097 
11098 	is_fc = (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_FC);
11099 
11100 	switch (evt) {
11101 	case OCS_EVT_ENTER:
11102 		if (data == NULL) {
11103 			data = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
11104 			if (!data) {
11105 				ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
11106 				break;
11107 			}
11108 		}
11109 
11110 		if (0 == sli_cmd_unreg_vfi(&hw->sli, data, SLI4_BMBX_SIZE, domain,
11111 					SLI4_UNREG_TYPE_DOMAIN)) {
11112 			ocs_log_err(hw->os, "UNREG_VFI format failure\n");
11113 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
11114 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
11115 			break;
11116 		}
11117 
11118 		if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) {
11119 			ocs_log_err(hw->os, "UNREG_VFI command failure\n");
11120 			ocs_free(hw->os, data, SLI4_BMBX_SIZE);
11121 			ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL);
11122 			break;
11123 		}
11124 		break;
11125 	case OCS_EVT_ERROR:
11126 		if (is_fc) {
11127 			ocs_sm_transition(ctx, __ocs_hw_domain_free_report_fail, data);
11128 		} else {
11129 			ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_fcfi, data);
11130 		}
11131 		break;
11132 	case OCS_EVT_RESPONSE:
11133 		if (is_fc) {
11134 			ocs_sm_transition(ctx, __ocs_hw_domain_freed, data);
11135 		} else {
11136 			ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_fcfi, data);
11137 		}
11138 		break;
11139 	default:
11140 		__ocs_hw_domain_common(__func__, ctx, evt, data);
11141 		break;
11142 	}
11143 
11144 	return NULL;
11145 }
11146 
11147 /* callback for domain alloc/attach/free */
11148 static int32_t
11149 __ocs_hw_domain_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
11150 {
11151 	ocs_domain_t	*domain = arg;
11152 	sli4_mbox_command_header_t	*hdr = (sli4_mbox_command_header_t *)mqe;
11153 	ocs_sm_event_t	evt;
11154 
11155 	if (status || hdr->status) {
11156 		ocs_log_debug(hw->os, "bad status vfi=%#x st=%x hdr=%x\n",
11157 			      domain->indicator, status, hdr->status);
11158 		evt = OCS_EVT_ERROR;
11159 	} else {
11160 		evt = OCS_EVT_RESPONSE;
11161 	}
11162 
11163 	ocs_sm_post_event(&domain->sm, evt, mqe);
11164 
11165 	return 0;
11166 }
11167 
11168 static int32_t
11169 target_wqe_timer_nop_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
11170 {
11171 	ocs_hw_io_t *io = NULL;
11172 	ocs_hw_io_t *io_next = NULL;
11173 	uint64_t ticks_current = ocs_get_os_ticks();
11174 	uint32_t sec_elapsed;
11175 	ocs_hw_rtn_e rc;
11176 
11177 	sli4_mbox_command_header_t	*hdr = (sli4_mbox_command_header_t *)mqe;
11178 
11179 	if (status || hdr->status) {
11180 		ocs_log_debug(hw->os, "bad status st=%x hdr=%x\n",
11181 			      status, hdr->status);
11182 		/* go ahead and proceed with wqe timer checks... */
11183 	}
11184 
11185 	/* loop through active WQE list and check for timeouts */
11186 	ocs_lock(&hw->io_lock);
11187 	ocs_list_foreach_safe(&hw->io_timed_wqe, io, io_next) {
11188 		sec_elapsed = ((ticks_current - io->submit_ticks) / ocs_get_os_tick_freq());
11189 
11190 		/*
11191 		 * If elapsed time > timeout, abort it. No need to check type since
11192 		 * it wouldn't be on this list unless it was a target WQE
11193 		 */
11194 		if (sec_elapsed > io->tgt_wqe_timeout) {
11195 			ocs_log_test(hw->os, "IO timeout xri=0x%x tag=0x%x type=%d\n",
11196 				     io->indicator, io->reqtag, io->type);
11197 
11198 			/* remove from active_wqe list so won't try to abort again */
11199 			ocs_list_remove(&hw->io_timed_wqe, io);
11200 
11201 			/* save status of "timed out" for when abort completes */
11202 			io->status_saved = 1;
11203 			io->saved_status = SLI4_FC_WCQE_STATUS_TARGET_WQE_TIMEOUT;
11204 			io->saved_ext = 0;
11205 			io->saved_len = 0;
11206 
11207 			/* now abort outstanding IO */
11208 			rc = ocs_hw_io_abort(hw, io, FALSE, NULL, NULL);
11209 			if (rc) {
11210 				ocs_log_test(hw->os,
11211 					"abort failed xri=%#x tag=%#x rc=%d\n",
11212 					io->indicator, io->reqtag, rc);
11213 			}
11214 		}
11215 		/*
11216 		 * need to go through entire list since each IO could have a
11217 		 * different timeout value
11218 		 */
11219 	}
11220 	ocs_unlock(&hw->io_lock);
11221 
11222 	/* if we're not in the middle of shutting down, schedule next timer */
11223 	if (!hw->active_wqe_timer_shutdown) {
11224 		ocs_setup_timer(hw->os, &hw->wqe_timer, target_wqe_timer_cb, hw, OCS_HW_WQ_TIMER_PERIOD_MS);
11225 	}
11226 	hw->in_active_wqe_timer = FALSE;
11227 	return 0;
11228 }
11229 
11230 static void
11231 target_wqe_timer_cb(void *arg)
11232 {
11233 	ocs_hw_t *hw = (ocs_hw_t *)arg;
11234 
11235 	/* delete existing timer; will kick off new timer after checking wqe timeouts */
11236 	hw->in_active_wqe_timer = TRUE;
11237 	ocs_del_timer(&hw->wqe_timer);
11238 
11239 	/* Forward timer callback to execute in the mailbox completion processing context */
11240 	if (ocs_hw_async_call(hw, target_wqe_timer_nop_cb, hw)) {
11241 		ocs_log_test(hw->os, "ocs_hw_async_call failed\n");
11242 	}
11243 }
11244 
11245 static void
11246 shutdown_target_wqe_timer(ocs_hw_t *hw)
11247 {
11248 	uint32_t	iters = 100;
11249 
11250 	if (hw->config.emulate_tgt_wqe_timeout) {
11251 		/* request active wqe timer shutdown, then wait for it to complete */
11252 		hw->active_wqe_timer_shutdown = TRUE;
11253 
11254 		/* delete WQE timer and wait for timer handler to complete (if necessary) */
11255 		ocs_del_timer(&hw->wqe_timer);
11256 
11257 		/* now wait for timer handler to complete (if necessary) */
11258 		while (hw->in_active_wqe_timer && iters) {
11259 			/*
11260 			 * if we happen to have just sent NOP mailbox command, make sure
11261 			 * completions are being processed
11262 			 */
11263 			ocs_hw_flush(hw);
11264 			iters--;
11265 		}
11266 
11267 		if (iters == 0) {
11268 			ocs_log_test(hw->os, "Failed to shutdown active wqe timer\n");
11269 		}
11270 	}
11271 }
11272 
11273 /**
11274  * @brief Determine if HW IO is owned by the port.
11275  *
11276  * @par Description
11277  * Determines if the given HW IO has been posted to the chip.
11278  *
11279  * @param hw Hardware context allocated by the caller.
11280  * @param io HW IO.
11281  *
11282  * @return Returns TRUE if given HW IO is port-owned.
11283  */
11284 uint8_t
11285 ocs_hw_is_io_port_owned(ocs_hw_t *hw, ocs_hw_io_t *io)
11286 {
11287 	/* Check to see if this is a port owned XRI */
11288 	return io->is_port_owned;
11289 }
11290 
11291 /**
11292  * @brief Return TRUE if exchange is port-owned.
11293  *
11294  * @par Description
11295  * Test to see if the xri is a port-owned xri.
11296  *
11297  * @param hw Hardware context.
11298  * @param xri Exchange indicator.
11299  *
11300  * @return Returns TRUE if XRI is a port owned XRI.
11301  */
11302 
11303 uint8_t
11304 ocs_hw_is_xri_port_owned(ocs_hw_t *hw, uint32_t xri)
11305 {
11306 	ocs_hw_io_t *io = ocs_hw_io_lookup(hw, xri);
11307 	return (io == NULL ? FALSE : io->is_port_owned);
11308 }
11309 
11310 /**
11311  * @brief Returns an XRI from the port owned list to the host.
11312  *
11313  * @par Description
11314  * Used when the POST_XRI command fails as well as when the RELEASE_XRI completes.
11315  *
11316  * @param hw Hardware context.
11317  * @param xri_base The starting XRI number.
11318  * @param xri_count The number of XRIs to free from the base.
11319  */
11320 static void
11321 ocs_hw_reclaim_xri(ocs_hw_t *hw, uint16_t xri_base, uint16_t xri_count)
11322 {
11323 	ocs_hw_io_t	*io;
11324 	uint32_t i;
11325 
11326 	for (i = 0; i < xri_count; i++) {
11327 		io = ocs_hw_io_lookup(hw, xri_base + i);
11328 
11329 		/*
11330 		 * if this is an auto xfer rdy XRI, then we need to release any
11331 		 * buffer attached to the XRI before moving the XRI back to the free pool.
11332 		 */
11333 		if (hw->auto_xfer_rdy_enabled) {
11334 			ocs_hw_rqpair_auto_xfer_rdy_move_to_host(hw, io);
11335 		}
11336 
11337 		ocs_lock(&hw->io_lock);
11338 			ocs_list_remove(&hw->io_port_owned, io);
11339 			io->is_port_owned = 0;
11340 			ocs_list_add_tail(&hw->io_free, io);
11341 		ocs_unlock(&hw->io_lock);
11342 	}
11343 }
11344 
11345 /**
11346  * @brief Called when the POST_XRI command completes.
11347  *
11348  * @par Description
11349  * Free the mailbox command buffer and reclaim the XRIs on failure.
11350  *
11351  * @param hw Hardware context.
11352  * @param status Status field from the mbox completion.
11353  * @param mqe Mailbox response structure.
11354  * @param arg Pointer to a callback function that signals the caller that the command is done.
11355  *
11356  * @return Returns 0.
11357  */
11358 static int32_t
11359 ocs_hw_cb_post_xri(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
11360 {
11361 	sli4_cmd_post_xri_t	*post_xri = (sli4_cmd_post_xri_t*)mqe;
11362 
11363 	/* Reclaim the XRIs as host owned if the command fails */
11364 	if (status != 0) {
11365 		ocs_log_debug(hw->os, "Status 0x%x for XRI base 0x%x, cnt =x%x\n",
11366 			      status, post_xri->xri_base, post_xri->xri_count);
11367 		ocs_hw_reclaim_xri(hw, post_xri->xri_base, post_xri->xri_count);
11368 	}
11369 
11370 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
11371 	return 0;
11372 }
11373 
11374 /**
11375  * @brief Issues a mailbox command to move XRIs from the host-controlled pool to the port.
11376  *
11377  * @param hw Hardware context.
11378  * @param xri_start The starting XRI to post.
11379  * @param num_to_post The number of XRIs to post.
11380  *
11381  * @return Returns OCS_HW_RTN_NO_MEMORY, OCS_HW_RTN_ERROR, or OCS_HW_RTN_SUCCESS.
11382  */
11383 
11384 static ocs_hw_rtn_e
11385 ocs_hw_post_xri(ocs_hw_t *hw, uint32_t xri_start, uint32_t num_to_post)
11386 {
11387 	uint8_t	*post_xri;
11388 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
11389 
11390 	/* Since we need to allocate for mailbox queue, just always allocate */
11391 	post_xri = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
11392 	if (post_xri == NULL) {
11393 		ocs_log_err(hw->os, "no buffer for command\n");
11394 		return OCS_HW_RTN_NO_MEMORY;
11395 	}
11396 
11397 	/* Register the XRIs */
11398 	if (sli_cmd_post_xri(&hw->sli, post_xri, SLI4_BMBX_SIZE,
11399 			     xri_start, num_to_post)) {
11400 		rc = ocs_hw_command(hw, post_xri, OCS_CMD_NOWAIT, ocs_hw_cb_post_xri, NULL);
11401 		if (rc != OCS_HW_RTN_SUCCESS) {
11402 			ocs_free(hw->os, post_xri, SLI4_BMBX_SIZE);
11403 			ocs_log_err(hw->os, "post_xri failed\n");
11404 		}
11405 	}
11406 	return rc;
11407 }
11408 
11409 /**
11410  * @brief Move XRIs from the host-controlled pool to the port.
11411  *
11412  * @par Description
11413  * Removes IOs from the free list and moves them to the port.
11414  *
11415  * @param hw Hardware context.
11416  * @param num_xri The number of XRIs being requested to move to the chip.
11417  *
11418  * @return Returns the number of XRIs that were moved.
11419  */
11420 
11421 uint32_t
11422 ocs_hw_xri_move_to_port_owned(ocs_hw_t *hw, uint32_t num_xri)
11423 {
11424 	ocs_hw_io_t	*io;
11425 	uint32_t i;
11426 	uint32_t num_posted = 0;
11427 
11428 	/*
11429 	 * Note: We cannot use ocs_hw_io_alloc() because that would place the
11430 	 *       IO on the io_inuse list. We need to move from the io_free to
11431 	 *       the io_port_owned list.
11432 	 */
11433 	ocs_lock(&hw->io_lock);
11434 
11435 	for (i = 0; i < num_xri; i++) {
11436 		if (NULL != (io = ocs_list_remove_head(&hw->io_free))) {
11437 			ocs_hw_rtn_e rc;
11438 
11439 			/*
11440 			 * if this is an auto xfer rdy XRI, then we need to attach a
11441 			 * buffer to the XRI before submitting it to the chip. If a
11442 			 * buffer is unavailable, then we cannot post it, so return it
11443 			 * to the free pool.
11444 			 */
11445 			if (hw->auto_xfer_rdy_enabled) {
11446 				/* Note: uses the IO lock to get the auto xfer rdy buffer */
11447 				ocs_unlock(&hw->io_lock);
11448 				rc = ocs_hw_rqpair_auto_xfer_rdy_move_to_port(hw, io);
11449 				ocs_lock(&hw->io_lock);
11450 				if (rc != OCS_HW_RTN_SUCCESS) {
11451 					ocs_list_add_head(&hw->io_free, io);
11452 					break;
11453 				}
11454 			}
11455 			ocs_lock_init(hw->os, &io->axr_lock, "HW_axr_lock[%d]", io->indicator);
11456 			io->is_port_owned = 1;
11457 			ocs_list_add_tail(&hw->io_port_owned, io);
11458 
11459 			/* Post XRI */
11460 			if (ocs_hw_post_xri(hw, io->indicator, 1) != OCS_HW_RTN_SUCCESS ) {
11461 				ocs_hw_reclaim_xri(hw, io->indicator, i);
11462 				break;
11463 			}
11464 			num_posted++;
11465 		} else {
11466 			/* no more free XRIs */
11467 			break;
11468 		}
11469 	}
11470 	ocs_unlock(&hw->io_lock);
11471 
11472 	return num_posted;
11473 }
11474 
11475 /**
11476  * @brief Called when the RELEASE_XRI command completes.
11477  *
11478  * @par Description
11479  * Move the IOs back to the free pool on success.
11480  *
11481  * @param hw Hardware context.
11482  * @param status Status field from the mbox completion.
11483  * @param mqe Mailbox response structure.
11484  * @param arg Pointer to a callback function that signals the caller that the command is done.
11485  *
11486  * @return Returns 0.
11487  */
11488 static int32_t
11489 ocs_hw_cb_release_xri(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
11490 {
11491 	sli4_cmd_release_xri_t	*release_xri = (sli4_cmd_release_xri_t*)mqe;
11492 	uint8_t i;
11493 
11494 	/* Reclaim the XRIs as host owned if the command fails */
11495 	if (status != 0) {
11496 		ocs_log_err(hw->os, "Status 0x%x\n", status);
11497 	} else {
11498 		for (i = 0; i < release_xri->released_xri_count; i++) {
11499 			uint16_t xri = ((i & 1) == 0 ? release_xri->xri_tbl[i/2].xri_tag0 :
11500 					release_xri->xri_tbl[i/2].xri_tag1);
11501 			ocs_hw_reclaim_xri(hw, xri, 1);
11502 		}
11503 	}
11504 
11505 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
11506 	return 0;
11507 }
11508 
11509 /**
11510  * @brief Move XRIs from the port-controlled pool to the host.
11511  *
11512  * Requests XRIs from the FW to return to the host-owned pool.
11513  *
11514  * @param hw Hardware context.
11515  * @param num_xri The number of XRIs being requested to moved from the chip.
11516  *
11517  * @return Returns 0 for success, or a negative error code value for failure.
11518  */
11519 
11520 ocs_hw_rtn_e
11521 ocs_hw_xri_move_to_host_owned(ocs_hw_t *hw, uint8_t num_xri)
11522 {
11523 	uint8_t	*release_xri;
11524 	ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR;
11525 
11526 	/* non-local buffer required for mailbox queue */
11527 	release_xri = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
11528 	if (release_xri == NULL) {
11529 		ocs_log_err(hw->os, "no buffer for command\n");
11530 		return OCS_HW_RTN_NO_MEMORY;
11531 	}
11532 
11533 	/* release the XRIs */
11534 	if (sli_cmd_release_xri(&hw->sli, release_xri, SLI4_BMBX_SIZE, num_xri)) {
11535 		rc = ocs_hw_command(hw, release_xri, OCS_CMD_NOWAIT, ocs_hw_cb_release_xri, NULL);
11536 		if (rc != OCS_HW_RTN_SUCCESS) {
11537 			ocs_log_err(hw->os, "release_xri failed\n");
11538 		}
11539 	}
11540 	/* If we are polling or an error occurred, then free the mailbox buffer */
11541 	if (release_xri != NULL && rc != OCS_HW_RTN_SUCCESS) {
11542 		ocs_free(hw->os, release_xri, SLI4_BMBX_SIZE);
11543 	}
11544 	return rc;
11545 }
11546 
11547 /**
11548  * @brief Allocate an ocs_hw_rx_buffer_t array.
11549  *
11550  * @par Description
11551  * An ocs_hw_rx_buffer_t array is allocated, along with the required DMA memory.
11552  *
11553  * @param hw Pointer to HW object.
11554  * @param rqindex RQ index for this buffer.
11555  * @param count Count of buffers in array.
11556  * @param size Size of buffer.
11557  *
11558  * @return Returns the pointer to the allocated ocs_hw_rq_buffer_t array.
11559  */
11560 static ocs_hw_rq_buffer_t *
11561 ocs_hw_rx_buffer_alloc(ocs_hw_t *hw, uint32_t rqindex, uint32_t count, uint32_t size)
11562 {
11563 	ocs_t *ocs = hw->os;
11564 	ocs_hw_rq_buffer_t *rq_buf = NULL;
11565 	ocs_hw_rq_buffer_t *prq;
11566 	uint32_t i;
11567 
11568 	if (count != 0) {
11569 		rq_buf = ocs_malloc(hw->os, sizeof(*rq_buf) * count, OCS_M_NOWAIT | OCS_M_ZERO);
11570 		if (rq_buf == NULL) {
11571 			ocs_log_err(hw->os, "Failure to allocate unsolicited DMA trackers\n");
11572 			return NULL;
11573 		}
11574 
11575 		for (i = 0, prq = rq_buf; i < count; i ++, prq++) {
11576 			prq->rqindex = rqindex;
11577 			if (ocs_dma_alloc(ocs, &prq->dma, size, OCS_MIN_DMA_ALIGNMENT)) {
11578 				ocs_log_err(hw->os, "DMA allocation failed\n");
11579 				ocs_free(hw->os, rq_buf, sizeof(*rq_buf) * count);
11580 				rq_buf = NULL;
11581 				break;
11582 			}
11583 		}
11584 	}
11585 	return rq_buf;
11586 }
11587 
11588 /**
11589  * @brief Free an ocs_hw_rx_buffer_t array.
11590  *
11591  * @par Description
11592  * The ocs_hw_rx_buffer_t array is freed, along with allocated DMA memory.
11593  *
11594  * @param hw Pointer to HW object.
11595  * @param rq_buf Pointer to ocs_hw_rx_buffer_t array.
11596  * @param count Count of buffers in array.
11597  *
11598  * @return None.
11599  */
11600 static void
11601 ocs_hw_rx_buffer_free(ocs_hw_t *hw, ocs_hw_rq_buffer_t *rq_buf, uint32_t count)
11602 {
11603 	ocs_t *ocs = hw->os;
11604 	uint32_t i;
11605 	ocs_hw_rq_buffer_t *prq;
11606 
11607 	if (rq_buf != NULL) {
11608 		for (i = 0, prq = rq_buf; i < count; i++, prq++) {
11609 			ocs_dma_free(ocs, &prq->dma);
11610 		}
11611 		ocs_free(hw->os, rq_buf, sizeof(*rq_buf) * count);
11612 	}
11613 }
11614 
11615 /**
11616  * @brief Allocate the RQ data buffers.
11617  *
11618  * @param hw Pointer to HW object.
11619  *
11620  * @return Returns 0 on success, or a non-zero value on failure.
11621  */
11622 ocs_hw_rtn_e
11623 ocs_hw_rx_allocate(ocs_hw_t *hw)
11624 {
11625 	ocs_t *ocs = hw->os;
11626 	uint32_t i;
11627 	int32_t rc = OCS_HW_RTN_SUCCESS;
11628 	uint32_t rqindex = 0;
11629 	hw_rq_t *rq;
11630 	uint32_t hdr_size = OCS_HW_RQ_SIZE_HDR;
11631 	uint32_t payload_size = hw->config.rq_default_buffer_size;
11632 
11633 	rqindex = 0;
11634 
11635 	for (i = 0; i < hw->hw_rq_count; i++) {
11636 		rq = hw->hw_rq[i];
11637 
11638 		/* Allocate header buffers */
11639 		rq->hdr_buf = ocs_hw_rx_buffer_alloc(hw, rqindex, rq->entry_count, hdr_size);
11640 		if (rq->hdr_buf == NULL) {
11641 			ocs_log_err(ocs, "ocs_hw_rx_buffer_alloc hdr_buf failed\n");
11642 			rc = OCS_HW_RTN_ERROR;
11643 			break;
11644 		}
11645 
11646 		ocs_log_debug(hw->os, "rq[%2d] rq_id %02d header  %4d by %4d bytes\n", i, rq->hdr->id,
11647 			      rq->entry_count, hdr_size);
11648 
11649 		rqindex++;
11650 
11651 		/* Allocate payload buffers */
11652 		rq->payload_buf = ocs_hw_rx_buffer_alloc(hw, rqindex, rq->entry_count, payload_size);
11653 		if (rq->payload_buf == NULL) {
11654 			ocs_log_err(ocs, "ocs_hw_rx_buffer_alloc fb_buf failed\n");
11655 			rc = OCS_HW_RTN_ERROR;
11656 			break;
11657 		}
11658 		ocs_log_debug(hw->os, "rq[%2d] rq_id %02d default %4d by %4d bytes\n", i, rq->data->id,
11659 			      rq->entry_count, payload_size);
11660 		rqindex++;
11661 	}
11662 
11663 	return rc ? OCS_HW_RTN_ERROR : OCS_HW_RTN_SUCCESS;
11664 }
11665 
11666 /**
11667  * @brief Post the RQ data buffers to the chip.
11668  *
11669  * @param hw Pointer to HW object.
11670  *
11671  * @return Returns 0 on success, or a non-zero value on failure.
11672  */
11673 ocs_hw_rtn_e
11674 ocs_hw_rx_post(ocs_hw_t *hw)
11675 {
11676 	uint32_t i;
11677 	uint32_t idx;
11678 	uint32_t rq_idx;
11679 	int32_t rc = 0;
11680 
11681 	/*
11682 	 * In RQ pair mode, we MUST post the header and payload buffer at the
11683 	 * same time.
11684 	 */
11685 	for (rq_idx = 0, idx = 0; rq_idx < hw->hw_rq_count; rq_idx++) {
11686 		hw_rq_t *rq = hw->hw_rq[rq_idx];
11687 
11688 		for (i = 0; i < rq->entry_count-1; i++) {
11689 			ocs_hw_sequence_t *seq = ocs_array_get(hw->seq_pool, idx++);
11690 			ocs_hw_assert(seq != NULL);
11691 
11692 			seq->header = &rq->hdr_buf[i];
11693 
11694 			seq->payload = &rq->payload_buf[i];
11695 
11696 			rc = ocs_hw_sequence_free(hw, seq);
11697 			if (rc) {
11698 				break;
11699 			}
11700 		}
11701 		if (rc) {
11702 			break;
11703 		}
11704 	}
11705 
11706 	return rc;
11707 }
11708 
11709 /**
11710  * @brief Free the RQ data buffers.
11711  *
11712  * @param hw Pointer to HW object.
11713  *
11714  */
11715 void
11716 ocs_hw_rx_free(ocs_hw_t *hw)
11717 {
11718 	hw_rq_t *rq;
11719 	uint32_t i;
11720 
11721 	/* Free hw_rq buffers */
11722 	for (i = 0; i < hw->hw_rq_count; i++) {
11723 		rq = hw->hw_rq[i];
11724 		if (rq != NULL) {
11725 			ocs_hw_rx_buffer_free(hw, rq->hdr_buf, rq->entry_count);
11726 			rq->hdr_buf = NULL;
11727 			ocs_hw_rx_buffer_free(hw, rq->payload_buf, rq->entry_count);
11728 			rq->payload_buf = NULL;
11729 		}
11730 	}
11731 }
11732 
11733 /**
11734  * @brief HW async call context structure.
11735  */
11736 typedef struct {
11737 	ocs_hw_async_cb_t callback;
11738 	void *arg;
11739 	uint8_t cmd[SLI4_BMBX_SIZE];
11740 } ocs_hw_async_call_ctx_t;
11741 
11742 /**
11743  * @brief HW async callback handler
11744  *
11745  * @par Description
11746  * This function is called when the NOP mailbox command completes.  The callback stored
11747  * in the requesting context is invoked.
11748  *
11749  * @param hw Pointer to HW object.
11750  * @param status Completion status.
11751  * @param mqe Pointer to mailbox completion queue entry.
11752  * @param arg Caller-provided argument.
11753  *
11754  * @return None.
11755  */
11756 static void
11757 ocs_hw_async_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
11758 {
11759 	ocs_hw_async_call_ctx_t *ctx = arg;
11760 
11761 	if (ctx != NULL) {
11762 		if (ctx->callback != NULL) {
11763 			(*ctx->callback)(hw, status, mqe, ctx->arg);
11764 		}
11765 		ocs_free(hw->os, ctx, sizeof(*ctx));
11766 	}
11767 }
11768 
11769 /**
11770  * @brief Make an async callback using NOP mailbox command
11771  *
11772  * @par Description
11773  * Post a NOP mailbox command; the callback with argument is invoked upon completion
11774  * while in the event processing context.
11775  *
11776  * @param hw Pointer to HW object.
11777  * @param callback Pointer to callback function.
11778  * @param arg Caller-provided callback.
11779  *
11780  * @return Returns 0 on success, or a negative error code value on failure.
11781  */
11782 int32_t
11783 ocs_hw_async_call(ocs_hw_t *hw, ocs_hw_async_cb_t callback, void *arg)
11784 {
11785 	ocs_hw_async_call_ctx_t *ctx;
11786 
11787 	/*
11788 	 * Allocate a callback context (which includes the mailbox command buffer), we need
11789 	 * this to be persistent as the mailbox command submission may be queued and executed later
11790 	 * execution.
11791 	 */
11792 	ctx = ocs_malloc(hw->os, sizeof(*ctx), OCS_M_ZERO | OCS_M_NOWAIT);
11793 	if (ctx == NULL) {
11794 		ocs_log_err(hw->os, "failed to malloc async call context\n");
11795 		return OCS_HW_RTN_NO_MEMORY;
11796 	}
11797 	ctx->callback = callback;
11798 	ctx->arg = arg;
11799 
11800 	/* Build and send a NOP mailbox command */
11801 	if (sli_cmd_common_nop(&hw->sli, ctx->cmd, sizeof(ctx->cmd), 0) == 0) {
11802 		ocs_log_err(hw->os, "COMMON_NOP format failure\n");
11803 		ocs_free(hw->os, ctx, sizeof(*ctx));
11804 		return OCS_HW_RTN_ERROR;
11805 	}
11806 
11807 	if (ocs_hw_command(hw, ctx->cmd, OCS_CMD_NOWAIT, ocs_hw_async_cb, ctx)) {
11808 		ocs_log_err(hw->os, "COMMON_NOP command failure\n");
11809 		ocs_free(hw->os, ctx, sizeof(*ctx));
11810 		return OCS_HW_RTN_ERROR;
11811 	}
11812 	return OCS_HW_RTN_SUCCESS;
11813 }
11814 
11815 /**
11816  * @brief Initialize the reqtag pool.
11817  *
11818  * @par Description
11819  * The WQ request tag pool is initialized.
11820  *
11821  * @param hw Pointer to HW object.
11822  *
11823  * @return Returns 0 on success, or a negative error code value on failure.
11824  */
11825 ocs_hw_rtn_e
11826 ocs_hw_reqtag_init(ocs_hw_t *hw)
11827 {
11828 	if (hw->wq_reqtag_pool == NULL) {
11829 		hw->wq_reqtag_pool = ocs_pool_alloc(hw->os, sizeof(hw_wq_callback_t), 65536, TRUE);
11830 		if (hw->wq_reqtag_pool == NULL) {
11831 			ocs_log_err(hw->os, "ocs_pool_alloc hw_wq_callback_t failed\n");
11832 			return OCS_HW_RTN_NO_MEMORY;
11833 		}
11834 	}
11835 	ocs_hw_reqtag_reset(hw);
11836 	return OCS_HW_RTN_SUCCESS;
11837 }
11838 
11839 /**
11840  * @brief Allocate a WQ request tag.
11841  *
11842  * Allocate and populate a WQ request tag from the WQ request tag pool.
11843  *
11844  * @param hw Pointer to HW object.
11845  * @param callback Callback function.
11846  * @param arg Pointer to callback argument.
11847  *
11848  * @return Returns pointer to allocated WQ request tag, or NULL if object cannot be allocated.
11849  */
11850 hw_wq_callback_t *
11851 ocs_hw_reqtag_alloc(ocs_hw_t *hw, void (*callback)(void *arg, uint8_t *cqe, int32_t status), void *arg)
11852 {
11853 	hw_wq_callback_t *wqcb;
11854 
11855 	ocs_hw_assert(callback != NULL);
11856 
11857 	wqcb = ocs_pool_get(hw->wq_reqtag_pool);
11858 	if (wqcb != NULL) {
11859 		ocs_hw_assert(wqcb->callback == NULL);
11860 		wqcb->callback = callback;
11861 		wqcb->arg = arg;
11862 	}
11863 	return wqcb;
11864 }
11865 
11866 /**
11867  * @brief Free a WQ request tag.
11868  *
11869  * Free the passed in WQ request tag.
11870  *
11871  * @param hw Pointer to HW object.
11872  * @param wqcb Pointer to WQ request tag object to free.
11873  *
11874  * @return None.
11875  */
11876 void
11877 ocs_hw_reqtag_free(ocs_hw_t *hw, hw_wq_callback_t *wqcb)
11878 {
11879 	ocs_hw_assert(wqcb->callback != NULL);
11880 	wqcb->callback = NULL;
11881 	wqcb->arg = NULL;
11882 	ocs_pool_put(hw->wq_reqtag_pool, wqcb);
11883 }
11884 
11885 /**
11886  * @brief Return WQ request tag by index.
11887  *
11888  * @par Description
11889  * Return pointer to WQ request tag object given an index.
11890  *
11891  * @param hw Pointer to HW object.
11892  * @param instance_index Index of WQ request tag to return.
11893  *
11894  * @return Pointer to WQ request tag, or NULL.
11895  */
11896 hw_wq_callback_t *
11897 ocs_hw_reqtag_get_instance(ocs_hw_t *hw, uint32_t instance_index)
11898 {
11899 	hw_wq_callback_t *wqcb;
11900 
11901 	wqcb = ocs_pool_get_instance(hw->wq_reqtag_pool, instance_index);
11902 	if (wqcb == NULL) {
11903 		ocs_log_err(hw->os, "wqcb for instance %d is null\n", instance_index);
11904 	}
11905 	return wqcb;
11906 }
11907 
11908 /**
11909  * @brief Reset the WQ request tag pool.
11910  *
11911  * @par Description
11912  * Reset the WQ request tag pool, returning all to the free list.
11913  *
11914  * @param hw pointer to HW object.
11915  *
11916  * @return None.
11917  */
11918 void
11919 ocs_hw_reqtag_reset(ocs_hw_t *hw)
11920 {
11921 	hw_wq_callback_t *wqcb;
11922 	uint32_t i;
11923 
11924 	/* Remove all from freelist */
11925 	while(ocs_pool_get(hw->wq_reqtag_pool) != NULL) {
11926 		;
11927 	}
11928 
11929 	/* Put them all back */
11930 	for (i = 0; ((wqcb = ocs_pool_get_instance(hw->wq_reqtag_pool, i)) != NULL); i++) {
11931 		wqcb->instance_index = i;
11932 		wqcb->callback = NULL;
11933 		wqcb->arg = NULL;
11934 		ocs_pool_put(hw->wq_reqtag_pool, wqcb);
11935 	}
11936 }
11937 
11938 /**
11939  * @brief Handle HW assertion
11940  *
11941  * HW assert, display diagnostic message, and abort.
11942  *
11943  * @param cond string describing failing assertion condition
11944  * @param filename file name
11945  * @param linenum line number
11946  *
11947  * @return none
11948  */
11949 void
11950 _ocs_hw_assert(const char *cond, const char *filename, int linenum)
11951 {
11952 	ocs_printf("%s(%d): HW assertion (%s) failed\n", filename, linenum, cond);
11953 	ocs_abort();
11954 		/* no return */
11955 }
11956 
11957 /**
11958  * @brief Handle HW verify
11959  *
11960  * HW verify, display diagnostic message, dump stack and return.
11961  *
11962  * @param cond string describing failing verify condition
11963  * @param filename file name
11964  * @param linenum line number
11965  *
11966  * @return none
11967  */
11968 void
11969 _ocs_hw_verify(const char *cond, const char *filename, int linenum)
11970 {
11971 	ocs_printf("%s(%d): HW verify (%s) failed\n", filename, linenum, cond);
11972 	ocs_print_stack();
11973 }
11974 
11975 /**
11976  * @brief Reque XRI
11977  *
11978  * @par Description
11979  * Reque XRI
11980  *
11981  * @param hw Pointer to HW object.
11982  * @param io Pointer to HW IO
11983  *
11984  * @return Return 0 if successful else returns -1
11985  */
11986 int32_t
11987 ocs_hw_reque_xri( ocs_hw_t *hw, ocs_hw_io_t *io )
11988 {
11989 	int32_t rc = 0;
11990 
11991 	rc = ocs_hw_rqpair_auto_xfer_rdy_buffer_post(hw, io, 1);
11992 	if (rc) {
11993 		ocs_list_add_tail(&hw->io_port_dnrx, io);
11994 		rc = -1;
11995 		goto exit_ocs_hw_reque_xri;
11996 	}
11997 
11998 	io->auto_xfer_rdy_dnrx = 0;
11999 	io->type = OCS_HW_IO_DNRX_REQUEUE;
12000 	if (sli_requeue_xri_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, io->indicator, OCS_HW_REQUE_XRI_REGTAG, SLI4_CQ_DEFAULT)) {
12001 		/* Clear buffer from XRI */
12002 		ocs_pool_put(hw->auto_xfer_rdy_buf_pool, io->axr_buf);
12003 		io->axr_buf = NULL;
12004 
12005 		ocs_log_err(hw->os, "requeue_xri WQE error\n");
12006 		ocs_list_add_tail(&hw->io_port_dnrx, io);
12007 
12008 		rc = -1;
12009 		goto exit_ocs_hw_reque_xri;
12010 	}
12011 
12012 	if (io->wq == NULL) {
12013 		io->wq = ocs_hw_queue_next_wq(hw, io);
12014 		ocs_hw_assert(io->wq != NULL);
12015 	}
12016 
12017 	/*
12018 	 * Add IO to active io wqe list before submitting, in case the
12019 	 * wcqe processing preempts this thread.
12020 	 */
12021 	OCS_STAT(hw->tcmd_wq_submit[io->wq->instance]++);
12022 	OCS_STAT(io->wq->use_count++);
12023 
12024 	rc = hw_wq_write(io->wq, &io->wqe);
12025 	if (rc < 0) {
12026 		ocs_log_err(hw->os, "sli_queue_write reque xri failed: %d\n", rc);
12027 		rc = -1;
12028 	}
12029 
12030 exit_ocs_hw_reque_xri:
12031 	return 0;
12032 }
12033 
12034 uint32_t
12035 ocs_hw_get_def_wwn(ocs_t *ocs, uint32_t chan, uint64_t *wwpn, uint64_t *wwnn)
12036 {
12037 	sli4_t *sli4 = &ocs->hw.sli;
12038 	ocs_dma_t       dma;
12039 	uint8_t		*payload = NULL;
12040 
12041 	int indicator = sli4->config.extent[SLI_RSRC_FCOE_VPI].base[0] + chan;
12042 
12043 	/* allocate memory for the service parameters */
12044 	if (ocs_dma_alloc(ocs, &dma, 112, 4)) {
12045 		ocs_log_err(ocs, "Failed to allocate DMA memory\n");
12046 		return 1;
12047 	}
12048 
12049 	if (0 == sli_cmd_read_sparm64(sli4, sli4->bmbx.virt, SLI4_BMBX_SIZE,
12050 				&dma, indicator)) {
12051 		ocs_log_err(ocs, "READ_SPARM64 allocation failure\n");
12052 		ocs_dma_free(ocs, &dma);
12053 		return 1;
12054 	}
12055 
12056 	if (sli_bmbx_command(sli4)) {
12057 		ocs_log_err(ocs, "READ_SPARM64 command failure\n");
12058 		ocs_dma_free(ocs, &dma);
12059 		return 1;
12060 	}
12061 
12062 	payload = dma.virt;
12063 	ocs_memcpy(wwpn, payload + SLI4_READ_SPARM64_WWPN_OFFSET, sizeof(*wwpn));
12064 	ocs_memcpy(wwnn, payload + SLI4_READ_SPARM64_WWNN_OFFSET, sizeof(*wwnn));
12065 	ocs_dma_free(ocs, &dma);
12066 	return 0;
12067 }
12068 
12069 /**
12070  * @page fc_hw_api_overview HW APIs
12071  * - @ref devInitShutdown
12072  * - @ref domain
12073  * - @ref port
12074  * - @ref node
12075  * - @ref io
12076  * - @ref interrupt
12077  *
12078  * <div class="overview">
12079  * The Hardware Abstraction Layer (HW) insulates the higher-level code from the SLI-4
12080  * message details, but the higher level code must still manage domains, ports,
12081  * IT nexuses, and IOs. The HW API is designed to help the higher level manage
12082  * these objects.<br><br>
12083  *
12084  * The HW uses function callbacks to notify the higher-level code of events
12085  * that are received from the chip. There are currently three types of
12086  * functions that may be registered:
12087  *
12088  * <ul><li>domain – This function is called whenever a domain event is generated
12089  * within the HW. Examples include a new FCF is discovered, a connection
12090  * to a domain is disrupted, and allocation callbacks.</li>
12091  * <li>unsolicited – This function is called whenever new data is received in
12092  * the SLI-4 receive queue.</li>
12093  * <li>rnode – This function is called for remote node events, such as attach status
12094  * and  allocation callbacks.</li></ul>
12095  *
12096  * Upper layer functions may be registered by using the ocs_hw_callback() function.
12097  *
12098  * <img src="elx_fc_hw.jpg" alt="FC/FCoE HW" title="FC/FCoE HW" align="right"/>
12099  * <h2>FC/FCoE HW API</h2>
12100  * The FC/FCoE HW component builds upon the SLI-4 component to establish a flexible
12101  * interface for creating the necessary common objects and sending I/Os. It may be used
12102  * “as is” in customer implementations or it can serve as an example of typical interactions
12103  * between a driver and the SLI-4 hardware. The broad categories of functionality include:
12104  *
12105  * <ul><li>Setting-up and tearing-down of the HW.</li>
12106  * <li>Allocating and using the common objects (SLI Port, domain, remote node).</li>
12107  * <li>Sending and receiving I/Os.</li></ul>
12108  *
12109  * <h3>HW Setup</h3>
12110  * To set up the HW:
12111  *
12112  * <ol>
12113  * <li>Set up the HW object using ocs_hw_setup().<br>
12114  * This step performs a basic configuration of the SLI-4 component and the HW to
12115  * enable querying the hardware for its capabilities. At this stage, the HW is not
12116  * capable of general operations (such as, receiving events or sending I/Os).</li><br><br>
12117  * <li>Configure the HW according to the driver requirements.<br>
12118  * The HW provides functions to discover hardware capabilities (ocs_hw_get()), as
12119  * well as configures the amount of resources required (ocs_hw_set()). The driver
12120  * must also register callback functions (ocs_hw_callback()) to receive notification of
12121  * various asynchronous events.<br><br>
12122  * @b Note: Once configured, the driver must initialize the HW (ocs_hw_init()). This
12123  * step creates the underlying queues, commits resources to the hardware, and
12124  * prepares the hardware for operation. While the hardware is operational, the
12125  * port is not online, and cannot send or receive data.</li><br><br>
12126  * <br><br>
12127  * <li>Finally, the driver can bring the port online (ocs_hw_port_control()).<br>
12128  * When the link comes up, the HW determines if a domain is present and notifies the
12129  * driver using the domain callback function. This is the starting point of the driver's
12130  * interaction with the common objects.<br><br>
12131  * @b Note: For FCoE, there may be more than one domain available and, therefore,
12132  * more than one callback.</li>
12133  * </ol>
12134  *
12135  * <h3>Allocating and Using Common Objects</h3>
12136  * Common objects provide a mechanism through which the various OneCore Storage
12137  * driver components share and track information. These data structures are primarily
12138  * used to track SLI component information but can be extended by other components, if
12139  * needed. The main objects are:
12140  *
12141  * <ul><li>DMA – the ocs_dma_t object describes a memory region suitable for direct
12142  * memory access (DMA) transactions.</li>
12143  * <li>SCSI domain – the ocs_domain_t object represents the SCSI domain, including
12144  * any infrastructure devices such as FC switches and FC forwarders. The domain
12145  * object contains both an FCFI and a VFI.</li>
12146  * <li>SLI Port (sport) – the ocs_sli_port_t object represents the connection between
12147  * the driver and the SCSI domain. The SLI Port object contains a VPI.</li>
12148  * <li>Remote node – the ocs_remote_node_t represents a connection between the SLI
12149  * Port and another device in the SCSI domain. The node object contains an RPI.</li></ul>
12150  *
12151  * Before the driver can send I/Os, it must allocate the SCSI domain, SLI Port, and remote
12152  * node common objects and establish the connections between them. The goal is to
12153  * connect the driver to the SCSI domain to exchange I/Os with other devices. These
12154  * common object connections are shown in the following figure, FC Driver Common Objects:
12155  * <img src="elx_fc_common_objects.jpg"
12156  * alt="FC Driver Common Objects" title="FC Driver Common Objects" align="center"/>
12157  *
12158  * The first step is to create a connection to the domain by allocating an SLI Port object.
12159  * The SLI Port object represents a particular FC ID and must be initialized with one. With
12160  * the SLI Port object, the driver can discover the available SCSI domain(s). On identifying
12161  * a domain, the driver allocates a domain object and attaches to it using the previous SLI
12162  * port object.<br><br>
12163  *
12164  * @b Note: In some cases, the driver may need to negotiate service parameters (that is,
12165  * FLOGI) with the domain before attaching.<br><br>
12166  *
12167  * Once attached to the domain, the driver can discover and attach to other devices
12168  * (remote nodes). The exact discovery method depends on the driver, but it typically
12169  * includes using a position map, querying the fabric name server, or an out-of-band
12170  * method. In most cases, it is necessary to log in with devices before performing I/Os.
12171  * Prior to sending login-related ELS commands (ocs_hw_srrs_send()), the driver must
12172  * allocate a remote node object (ocs_hw_node_alloc()). If the login negotiation is
12173  * successful, the driver must attach the nodes (ocs_hw_node_attach()) to the SLI Port
12174  * before exchanging FCP I/O.<br><br>
12175  *
12176  * @b Note: The HW manages both the well known fabric address and the name server as
12177  * nodes in the domain. Therefore, the driver must allocate node objects prior to
12178  * communicating with either of these entities.
12179  *
12180  * <h3>Sending and Receiving I/Os</h3>
12181  * The HW provides separate interfaces for sending BLS/ ELS/ FC-CT and FCP, but the
12182  * commands are conceptually similar. Since the commands complete asynchronously,
12183  * the caller must provide a HW I/O object that maintains the I/O state, as well as
12184  * provide a callback function. The driver may use the same callback function for all I/O
12185  * operations, but each operation must use a unique HW I/O object. In the SLI-4
12186  * architecture, there is a direct association between the HW I/O object and the SGL used
12187  * to describe the data. Therefore, a driver typically performs the following operations:
12188  *
12189  * <ul><li>Allocates a HW I/O object (ocs_hw_io_alloc()).</li>
12190  * <li>Formats the SGL, specifying both the HW I/O object and the SGL.
12191  * (ocs_hw_io_init_sges() and ocs_hw_io_add_sge()).</li>
12192  * <li>Sends the HW I/O (ocs_hw_io_send()).</li></ul>
12193  *
12194  * <h3>HW Tear Down</h3>
12195  * To tear-down the HW:
12196  *
12197  * <ol><li>Take the port offline (ocs_hw_port_control()) to prevent receiving further
12198  * data andevents.</li>
12199  * <li>Destroy the HW object (ocs_hw_teardown()).</li>
12200  * <li>Free any memory used by the HW, such as buffers for unsolicited data.</li></ol>
12201  * <br>
12202  * </div><!-- overview -->
12203  *
12204  */
12205 
12206 /**
12207  * This contains all hw runtime workaround code.  Based on the asic type,
12208  * asic revision, and range of fw revisions, a particular workaround may be enabled.
12209  *
12210  * A workaround may consist of overriding a particular HW/SLI4 value that was initialized
12211  * during ocs_hw_setup() (for example the MAX_QUEUE overrides for mis-reported queue
12212  * sizes). Or if required, elements of the ocs_hw_workaround_t structure may be set to
12213  * control specific runtime behavior.
12214  *
12215  * It is intended that the controls in ocs_hw_workaround_t be defined functionally.  So we
12216  * would have the driver look like:  "if (hw->workaround.enable_xxx) then ...", rather than
12217  * what we might previously see as "if this is a BE3, then do xxx"
12218  *
12219  */
12220 
12221 #define HW_FWREV_ZERO		(0ull)
12222 #define HW_FWREV_MAX		(~0ull)
12223 
12224 #define SLI4_ASIC_TYPE_ANY	0
12225 #define SLI4_ASIC_REV_ANY	0
12226 
12227 /**
12228  * @brief Internal definition of workarounds
12229  */
12230 
12231 typedef enum {
12232 	HW_WORKAROUND_TEST = 1,
12233 	HW_WORKAROUND_MAX_QUEUE,	/**< Limits all queues */
12234 	HW_WORKAROUND_MAX_RQ,		/**< Limits only the RQ */
12235 	HW_WORKAROUND_RETAIN_TSEND_IO_LENGTH,
12236 	HW_WORKAROUND_WQE_COUNT_METHOD,
12237 	HW_WORKAROUND_RQE_COUNT_METHOD,
12238 	HW_WORKAROUND_USE_UNREGISTERD_RPI,
12239 	HW_WORKAROUND_DISABLE_AR_TGT_DIF, /**< Disable of auto-response target DIF */
12240 	HW_WORKAROUND_DISABLE_SET_DUMP_LOC,
12241 	HW_WORKAROUND_USE_DIF_QUARANTINE,
12242 	HW_WORKAROUND_USE_DIF_SEC_XRI,		/**< Use secondary xri for multiple data phases */
12243 	HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB,	/**< FCFI reported in SRB not correct, use "first" registered domain */
12244 	HW_WORKAROUND_FW_VERSION_TOO_LOW,	/**< The FW version is not the min version supported by this driver */
12245 	HW_WORKAROUND_SGLC_MISREPORTED,	/**< Chip supports SGL Chaining but SGLC is not set in SLI4_PARAMS */
12246 	HW_WORKAROUND_IGNORE_SEND_FRAME_CAPABLE,	/**< Don't use SEND_FRAME capable if FW version is too old */
12247 } hw_workaround_e;
12248 
12249 /**
12250  * @brief Internal workaround structure instance
12251  */
12252 
12253 typedef struct {
12254 	sli4_asic_type_e asic_type;
12255 	sli4_asic_rev_e asic_rev;
12256 	uint64_t fwrev_low;
12257 	uint64_t fwrev_high;
12258 
12259 	hw_workaround_e workaround;
12260 	uint32_t value;
12261 } hw_workaround_t;
12262 
12263 static hw_workaround_t hw_workarounds[] = {
12264 	{SLI4_ASIC_TYPE_ANY,	SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12265 		HW_WORKAROUND_TEST, 999},
12266 
12267 	/* Bug: 127585: if_type == 2 returns 0 for total length placed on
12268 	 * FCP_TSEND64_WQE completions.   Note, original driver code enables this
12269 	 * workaround for all asic types
12270 	 */
12271 	{SLI4_ASIC_TYPE_ANY,	SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12272 		HW_WORKAROUND_RETAIN_TSEND_IO_LENGTH, 0},
12273 
12274 	/* Bug: unknown, Lancer A0 has mis-reported max queue depth */
12275 	{SLI4_ASIC_TYPE_LANCER,	SLI4_ASIC_REV_A0, HW_FWREV_ZERO, HW_FWREV_MAX,
12276 		HW_WORKAROUND_MAX_QUEUE, 2048},
12277 
12278 	/* Bug: 143399, BE3 has mis-reported max RQ queue depth */
12279 	{SLI4_ASIC_TYPE_BE3,	SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(4,6,293,0),
12280 		HW_WORKAROUND_MAX_RQ, 2048},
12281 
12282 	/* Bug: 143399, skyhawk has mis-reported max RQ queue depth */
12283 	{SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(10,0,594,0),
12284 		HW_WORKAROUND_MAX_RQ, 2048},
12285 
12286 	/* Bug: 103487, BE3 before f/w 4.2.314.0 has mis-reported WQE count method */
12287 	{SLI4_ASIC_TYPE_BE3,	SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(4,2,314,0),
12288 		HW_WORKAROUND_WQE_COUNT_METHOD, 1},
12289 
12290 	/* Bug: 103487, BE3 before f/w 4.2.314.0 has mis-reported RQE count method */
12291 	{SLI4_ASIC_TYPE_BE3,	SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(4,2,314,0),
12292 		HW_WORKAROUND_RQE_COUNT_METHOD, 1},
12293 
12294 	/* Bug: 142968, BE3 UE with RPI == 0xffff */
12295 	{SLI4_ASIC_TYPE_BE3,	SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12296 		HW_WORKAROUND_USE_UNREGISTERD_RPI, 0},
12297 
12298 	/* Bug: unknown, Skyhawk won't support auto-response on target T10-PI  */
12299 	{SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12300 		HW_WORKAROUND_DISABLE_AR_TGT_DIF, 0},
12301 
12302 	{SLI4_ASIC_TYPE_LANCER,	SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(1,1,65,0),
12303 		HW_WORKAROUND_DISABLE_SET_DUMP_LOC, 0},
12304 
12305 	/* Bug: 160124, Skyhawk quarantine DIF XRIs  */
12306 	{SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12307 		HW_WORKAROUND_USE_DIF_QUARANTINE, 0},
12308 
12309 	/* Bug: 161832, Skyhawk use secondary XRI for multiple data phase TRECV */
12310 	{SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12311 		HW_WORKAROUND_USE_DIF_SEC_XRI, 0},
12312 
12313 	/* Bug: xxxxxx, FCFI reported in SRB not corrrect */
12314 	{SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12315 		HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB, 0},
12316 #if 0
12317 	/* Bug: 165642, FW version check for driver */
12318 	{SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_1(OCS_MIN_FW_VER_LANCER),
12319 		HW_WORKAROUND_FW_VERSION_TOO_LOW, 0},
12320 #endif
12321 	{SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_1(OCS_MIN_FW_VER_SKYHAWK),
12322 		HW_WORKAROUND_FW_VERSION_TOO_LOW, 0},
12323 
12324 	/* Bug 177061, Lancer FW does not set the SGLC bit */
12325 	{SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12326 		HW_WORKAROUND_SGLC_MISREPORTED, 0},
12327 
12328 	/* BZ 181208/183914, enable this workaround for ALL revisions */
12329 	{SLI4_ASIC_TYPE_ANY, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX,
12330 		HW_WORKAROUND_IGNORE_SEND_FRAME_CAPABLE, 0},
12331 };
12332 
12333 /**
12334  * @brief Function prototypes
12335  */
12336 
12337 static int32_t ocs_hw_workaround_match(ocs_hw_t *hw, hw_workaround_t *w);
12338 
12339 /**
12340  * @brief Parse the firmware version (name)
12341  *
12342  * Parse a string of the form a.b.c.d, returning a uint64_t packed as defined
12343  * by the HW_FWREV() macro
12344  *
12345  * @param fwrev_string pointer to the firmware string
12346  *
12347  * @return packed firmware revision value
12348  */
12349 
12350 static uint64_t
12351 parse_fw_version(const char *fwrev_string)
12352 {
12353 	int v[4] = {0};
12354 	const char *p;
12355 	int i;
12356 
12357 	for (p = fwrev_string, i = 0; *p && (i < 4); i ++) {
12358 		v[i] = ocs_strtoul(p, 0, 0);
12359 		while(*p && *p != '.') {
12360 			p ++;
12361 		}
12362 		if (*p) {
12363 			p ++;
12364 		}
12365 	}
12366 
12367 	/* Special case for bootleg releases with f/w rev 0.0.9999.0, set to max value */
12368 	if (v[2] == 9999) {
12369 		return HW_FWREV_MAX;
12370 	} else {
12371 		return HW_FWREV(v[0], v[1], v[2], v[3]);
12372 	}
12373 }
12374 
12375 /**
12376  * @brief Test for a workaround match
12377  *
12378  * Looks at the asic type, asic revision, and fw revision, and returns TRUE if match.
12379  *
12380  * @param hw Pointer to the HW structure
12381  * @param w Pointer to a workaround structure entry
12382  *
12383  * @return Return TRUE for a match
12384  */
12385 
12386 static int32_t
12387 ocs_hw_workaround_match(ocs_hw_t *hw, hw_workaround_t *w)
12388 {
12389 	return (((w->asic_type == SLI4_ASIC_TYPE_ANY) || (w->asic_type == hw->sli.asic_type)) &&
12390 		    ((w->asic_rev == SLI4_ASIC_REV_ANY) || (w->asic_rev == hw->sli.asic_rev)) &&
12391 		    (w->fwrev_low <= hw->workaround.fwrev) &&
12392 		    ((w->fwrev_high == HW_FWREV_MAX) || (hw->workaround.fwrev < w->fwrev_high)));
12393 }
12394 
12395 /**
12396  * @brief Setup HW runtime workarounds
12397  *
12398  * The function is called at the end of ocs_hw_setup() to setup any runtime workarounds
12399  * based on the HW/SLI setup.
12400  *
12401  * @param hw Pointer to HW structure
12402  *
12403  * @return none
12404  */
12405 
12406 void
12407 ocs_hw_workaround_setup(struct ocs_hw_s *hw)
12408 {
12409 	hw_workaround_t *w;
12410 	sli4_t *sli4 = &hw->sli;
12411 	uint32_t i;
12412 
12413 	/* Initialize the workaround settings */
12414 	ocs_memset(&hw->workaround, 0, sizeof(hw->workaround));
12415 
12416 	/* If hw_war_version is non-null, then its a value that was set by a module parameter
12417 	 * (sorry for the break in abstraction, but workarounds are ... well, workarounds)
12418 	 */
12419 
12420 	if (hw->hw_war_version) {
12421 		hw->workaround.fwrev = parse_fw_version(hw->hw_war_version);
12422 	} else {
12423 		hw->workaround.fwrev = parse_fw_version((char*) sli4->config.fw_name[0]);
12424 	}
12425 
12426 	/* Walk the workaround list, if a match is found, then handle it */
12427 	for (i = 0, w = hw_workarounds; i < ARRAY_SIZE(hw_workarounds); i++, w++) {
12428 		if (ocs_hw_workaround_match(hw, w)) {
12429 			switch(w->workaround) {
12430 			case HW_WORKAROUND_TEST: {
12431 				ocs_log_debug(hw->os, "Override: test: %d\n", w->value);
12432 				break;
12433 			}
12434 
12435 			case HW_WORKAROUND_RETAIN_TSEND_IO_LENGTH: {
12436 				ocs_log_debug(hw->os, "HW Workaround: retain TSEND IO length\n");
12437 				hw->workaround.retain_tsend_io_length = 1;
12438 				break;
12439 			}
12440 			case HW_WORKAROUND_MAX_QUEUE: {
12441 				sli4_qtype_e q;
12442 
12443 				ocs_log_debug(hw->os, "HW Workaround: override max_qentries: %d\n", w->value);
12444 				for (q = SLI_QTYPE_EQ; q < SLI_QTYPE_MAX; q++) {
12445 					if (hw->num_qentries[q] > w->value) {
12446 						hw->num_qentries[q] = w->value;
12447 					}
12448 				}
12449 				break;
12450 			}
12451 			case HW_WORKAROUND_MAX_RQ: {
12452 				ocs_log_debug(hw->os, "HW Workaround: override RQ max_qentries: %d\n", w->value);
12453 				if (hw->num_qentries[SLI_QTYPE_RQ] > w->value) {
12454 					hw->num_qentries[SLI_QTYPE_RQ] = w->value;
12455 				}
12456 				break;
12457 			}
12458 			case HW_WORKAROUND_WQE_COUNT_METHOD: {
12459 				ocs_log_debug(hw->os, "HW Workaround: set WQE count method=%d\n", w->value);
12460 				sli4->config.count_method[SLI_QTYPE_WQ] = w->value;
12461 				sli_calc_max_qentries(sli4);
12462 				break;
12463 			}
12464 			case HW_WORKAROUND_RQE_COUNT_METHOD: {
12465 				ocs_log_debug(hw->os, "HW Workaround: set RQE count method=%d\n", w->value);
12466 				sli4->config.count_method[SLI_QTYPE_RQ] = w->value;
12467 				sli_calc_max_qentries(sli4);
12468 				break;
12469 			}
12470 			case HW_WORKAROUND_USE_UNREGISTERD_RPI:
12471 				ocs_log_debug(hw->os, "HW Workaround: use unreg'd RPI if rnode->indicator == 0xFFFF\n");
12472 				hw->workaround.use_unregistered_rpi = TRUE;
12473 				/*
12474 				 * Allocate an RPI that is never registered, to be used in the case where
12475 				 * a node has been unregistered, and its indicator (RPI) value is set to 0xFFFF
12476 				 */
12477 				if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_RPI, &hw->workaround.unregistered_rid,
12478 					&hw->workaround.unregistered_index)) {
12479 					ocs_log_err(hw->os, "sli_resource_alloc unregistered RPI failed\n");
12480 					hw->workaround.use_unregistered_rpi = FALSE;
12481 				}
12482 				break;
12483 			case HW_WORKAROUND_DISABLE_AR_TGT_DIF:
12484 				ocs_log_debug(hw->os, "HW Workaround: disable AR on T10-PI TSEND\n");
12485 				hw->workaround.disable_ar_tgt_dif = TRUE;
12486 				break;
12487 			case HW_WORKAROUND_DISABLE_SET_DUMP_LOC:
12488 				ocs_log_debug(hw->os, "HW Workaround: disable set_dump_loc\n");
12489 				hw->workaround.disable_dump_loc = TRUE;
12490 				break;
12491 			case HW_WORKAROUND_USE_DIF_QUARANTINE:
12492 				ocs_log_debug(hw->os, "HW Workaround: use DIF quarantine\n");
12493 				hw->workaround.use_dif_quarantine = TRUE;
12494 				break;
12495 			case HW_WORKAROUND_USE_DIF_SEC_XRI:
12496 				ocs_log_debug(hw->os, "HW Workaround: use DIF secondary xri\n");
12497 				hw->workaround.use_dif_sec_xri = TRUE;
12498 				break;
12499 			case HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB:
12500 				ocs_log_debug(hw->os, "HW Workaround: override FCFI in SRB\n");
12501 				hw->workaround.override_fcfi = TRUE;
12502 				break;
12503 
12504 			case HW_WORKAROUND_FW_VERSION_TOO_LOW:
12505 				ocs_log_debug(hw->os, "HW Workaround: fw version is below the minimum for this driver\n");
12506 				hw->workaround.fw_version_too_low = TRUE;
12507 				break;
12508 			case HW_WORKAROUND_SGLC_MISREPORTED:
12509 				ocs_log_debug(hw->os, "HW Workaround: SGLC misreported - chaining is enabled\n");
12510 				hw->workaround.sglc_misreported = TRUE;
12511 				break;
12512 			case HW_WORKAROUND_IGNORE_SEND_FRAME_CAPABLE:
12513 				ocs_log_debug(hw->os, "HW Workaround: not SEND_FRAME capable - disabled\n");
12514 				hw->workaround.ignore_send_frame = TRUE;
12515 				break;
12516 			} /* switch(w->workaround) */
12517 		}
12518 	}
12519 }
12520