xref: /freebsd/sys/dev/pci/pci.c (revision 681ce946)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6  * Copyright (c) 2000, BSDi
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_acpi.h"
35 #include "opt_iommu.h"
36 #include "opt_bus.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/endian.h>
41 #include <sys/eventhandler.h>
42 #include <sys/fcntl.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/linker.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/queue.h>
49 #include <sys/sbuf.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/taskqueue.h>
53 #include <sys/tree.h>
54 
55 #include <vm/vm.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_extern.h>
58 
59 #include <sys/bus.h>
60 #include <machine/bus.h>
61 #include <sys/rman.h>
62 #include <machine/resource.h>
63 #include <machine/stdarg.h>
64 
65 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
66 #include <machine/intr_machdep.h>
67 #endif
68 
69 #include <sys/pciio.h>
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pci_private.h>
73 
74 #ifdef PCI_IOV
75 #include <sys/nv.h>
76 #include <dev/pci/pci_iov_private.h>
77 #endif
78 
79 #include <dev/usb/controller/xhcireg.h>
80 #include <dev/usb/controller/ehcireg.h>
81 #include <dev/usb/controller/ohcireg.h>
82 #include <dev/usb/controller/uhcireg.h>
83 
84 #include <dev/iommu/iommu.h>
85 
86 #include "pcib_if.h"
87 #include "pci_if.h"
88 
89 #define	PCIR_IS_BIOS(cfg, reg)						\
90 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
91 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
92 
93 static int		pci_has_quirk(uint32_t devid, int quirk);
94 static pci_addr_t	pci_mapbase(uint64_t mapreg);
95 static const char	*pci_maptype(uint64_t mapreg);
96 static int		pci_maprange(uint64_t mapreg);
97 static pci_addr_t	pci_rombase(uint64_t mapreg);
98 static int		pci_romsize(uint64_t testval);
99 static void		pci_fixancient(pcicfgregs *cfg);
100 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
101 
102 static int		pci_porten(device_t dev);
103 static int		pci_memen(device_t dev);
104 static void		pci_assign_interrupt(device_t bus, device_t dev,
105 			    int force_route);
106 static int		pci_add_map(device_t bus, device_t dev, int reg,
107 			    struct resource_list *rl, int force, int prefetch);
108 static int		pci_probe(device_t dev);
109 static void		pci_load_vendor_data(void);
110 static int		pci_describe_parse_line(char **ptr, int *vendor,
111 			    int *device, char **desc);
112 static char		*pci_describe_device(device_t dev);
113 static int		pci_modevent(module_t mod, int what, void *arg);
114 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
115 			    pcicfgregs *cfg);
116 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
117 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
118 			    int reg, uint32_t *data);
119 #if 0
120 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
121 			    int reg, uint32_t data);
122 #endif
123 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
124 static void		pci_mask_msix(device_t dev, u_int index);
125 static void		pci_unmask_msix(device_t dev, u_int index);
126 static int		pci_msi_blacklisted(void);
127 static int		pci_msix_blacklisted(void);
128 static void		pci_resume_msi(device_t dev);
129 static void		pci_resume_msix(device_t dev);
130 static int		pci_remap_intr_method(device_t bus, device_t dev,
131 			    u_int irq);
132 static void		pci_hint_device_unit(device_t acdev, device_t child,
133 			    const char *name, int *unitp);
134 static int		pci_reset_post(device_t dev, device_t child);
135 static int		pci_reset_prepare(device_t dev, device_t child);
136 static int		pci_reset_child(device_t dev, device_t child,
137 			    int flags);
138 
139 static int		pci_get_id_method(device_t dev, device_t child,
140 			    enum pci_id_type type, uintptr_t *rid);
141 
142 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
143     int b, int s, int f, uint16_t vid, uint16_t did);
144 
145 static device_method_t pci_methods[] = {
146 	/* Device interface */
147 	DEVMETHOD(device_probe,		pci_probe),
148 	DEVMETHOD(device_attach,	pci_attach),
149 	DEVMETHOD(device_detach,	pci_detach),
150 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
151 	DEVMETHOD(device_suspend,	bus_generic_suspend),
152 	DEVMETHOD(device_resume,	pci_resume),
153 
154 	/* Bus interface */
155 	DEVMETHOD(bus_print_child,	pci_print_child),
156 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
157 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
158 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
159 	DEVMETHOD(bus_driver_added,	pci_driver_added),
160 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
161 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
162 	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
163 	DEVMETHOD(bus_reset_post,	pci_reset_post),
164 	DEVMETHOD(bus_reset_child,	pci_reset_child),
165 
166 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
167 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
168 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
169 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
170 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
171 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
172 	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
173 	DEVMETHOD(bus_release_resource,	pci_release_resource),
174 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
175 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
176 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
177 	DEVMETHOD(bus_child_detached,	pci_child_detached),
178 	DEVMETHOD(bus_child_pnpinfo,	pci_child_pnpinfo_method),
179 	DEVMETHOD(bus_child_location,	pci_child_location_method),
180 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
181 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
182 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
183 	DEVMETHOD(bus_resume_child,	pci_resume_child),
184 	DEVMETHOD(bus_rescan,		pci_rescan_method),
185 
186 	/* PCI interface */
187 	DEVMETHOD(pci_read_config,	pci_read_config_method),
188 	DEVMETHOD(pci_write_config,	pci_write_config_method),
189 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
190 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
191 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
192 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
193 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
194 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
195 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
196 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
197 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
198 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
199 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
200 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
201 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
202 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
203 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
204 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
205 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
206 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
207 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
208 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
209 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
210 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
211 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
212 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
213 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
214 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
215 	DEVMETHOD(pci_get_id,		pci_get_id_method),
216 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
217 	DEVMETHOD(pci_child_added,	pci_child_added_method),
218 #ifdef PCI_IOV
219 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
220 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
221 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
222 #endif
223 
224 	DEVMETHOD_END
225 };
226 
227 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
228 
229 static devclass_t pci_devclass;
230 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL,
231     BUS_PASS_BUS);
232 MODULE_VERSION(pci, 1);
233 
234 static char	*pci_vendordata;
235 static size_t	pci_vendordata_size;
236 
237 struct pci_quirk {
238 	uint32_t devid;	/* Vendor/device of the card */
239 	int	type;
240 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
241 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
242 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
243 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
244 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
245 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
246 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
247 	int	arg1;
248 	int	arg2;
249 };
250 
251 static const struct pci_quirk pci_quirks[] = {
252 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
253 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
254 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
255 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
256 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
257 
258 	/*
259 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
260 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
261 	 */
262 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
263 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
264 
265 	/*
266 	 * MSI doesn't work on earlier Intel chipsets including
267 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
268 	 */
269 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
270 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
271 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
272 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
273 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
274 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
275 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
276 
277 	/*
278 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
279 	 * bridge.
280 	 */
281 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
282 
283 	/*
284 	 * Some virtualization environments emulate an older chipset
285 	 * but support MSI just fine.  QEMU uses the Intel 82440.
286 	 */
287 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
288 
289 	/*
290 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
291 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
292 	 * It prevents us from attaching hpet(4) when the bit is unset.
293 	 * Note this quirk only affects SB600 revision A13 and earlier.
294 	 * For SB600 A21 and later, firmware must set the bit to hide it.
295 	 * For SB700 and later, it is unused and hardcoded to zero.
296 	 */
297 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
298 
299 	/*
300 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
301 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
302 	 * of the command register is set.
303 	 */
304 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
305 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
306 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
307 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
308 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
309 
310 	/*
311 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
312 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
313 	 */
314 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
315 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
316 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
317 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
318 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
319 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
320 
321 	/*
322 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
323 	 * expected place.
324 	 */
325 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
326 	{ 0 }
327 };
328 
329 /* map register information */
330 #define	PCI_MAPMEM	0x01	/* memory map */
331 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
332 #define	PCI_MAPPORT	0x04	/* port map */
333 
334 struct devlist pci_devq;
335 uint32_t pci_generation;
336 uint32_t pci_numdevs = 0;
337 static int pcie_chipset, pcix_chipset;
338 
339 /* sysctl vars */
340 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
341     "PCI bus tuning parameters");
342 
343 static int pci_enable_io_modes = 1;
344 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
345     &pci_enable_io_modes, 1,
346     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
347     " enable these bits correctly.  We'd like to do this all the time, but"
348     " there are some peripherals that this causes problems with.");
349 
350 static int pci_do_realloc_bars = 1;
351 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
352     &pci_do_realloc_bars, 0,
353     "Attempt to allocate a new range for any BARs whose original "
354     "firmware-assigned ranges fail to allocate during the initial device scan.");
355 
356 static int pci_do_power_nodriver = 0;
357 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
358     &pci_do_power_nodriver, 0,
359     "Place a function into D3 state when no driver attaches to it.  0 means"
360     " disable.  1 means conservatively place devices into D3 state.  2 means"
361     " aggressively place devices into D3 state.  3 means put absolutely"
362     " everything in D3 state.");
363 
364 int pci_do_power_resume = 1;
365 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
366     &pci_do_power_resume, 1,
367   "Transition from D3 -> D0 on resume.");
368 
369 int pci_do_power_suspend = 1;
370 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
371     &pci_do_power_suspend, 1,
372   "Transition from D0 -> D3 on suspend.");
373 
374 static int pci_do_msi = 1;
375 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
376     "Enable support for MSI interrupts");
377 
378 static int pci_do_msix = 1;
379 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
380     "Enable support for MSI-X interrupts");
381 
382 static int pci_msix_rewrite_table = 0;
383 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
384     &pci_msix_rewrite_table, 0,
385     "Rewrite entire MSI-X table when updating MSI-X entries");
386 
387 static int pci_honor_msi_blacklist = 1;
388 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
389     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
390 
391 #if defined(__i386__) || defined(__amd64__)
392 static int pci_usb_takeover = 1;
393 #else
394 static int pci_usb_takeover = 0;
395 #endif
396 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
397     &pci_usb_takeover, 1,
398     "Enable early takeover of USB controllers. Disable this if you depend on"
399     " BIOS emulation of USB devices, that is you use USB devices (like"
400     " keyboard or mouse) but do not load USB drivers");
401 
402 static int pci_clear_bars;
403 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
404     "Ignore firmware-assigned resources for BARs.");
405 
406 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
407 static int pci_clear_buses;
408 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
409     "Ignore firmware-assigned bus numbers.");
410 #endif
411 
412 static int pci_enable_ari = 1;
413 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
414     0, "Enable support for PCIe Alternative RID Interpretation");
415 
416 int pci_enable_aspm = 1;
417 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
418     0, "Enable support for PCIe Active State Power Management");
419 
420 static int pci_clear_aer_on_attach = 0;
421 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
422     &pci_clear_aer_on_attach, 0,
423     "Clear port and device AER state on driver attach");
424 
425 static int
426 pci_has_quirk(uint32_t devid, int quirk)
427 {
428 	const struct pci_quirk *q;
429 
430 	for (q = &pci_quirks[0]; q->devid; q++) {
431 		if (q->devid == devid && q->type == quirk)
432 			return (1);
433 	}
434 	return (0);
435 }
436 
437 /* Find a device_t by bus/slot/function in domain 0 */
438 
439 device_t
440 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
441 {
442 
443 	return (pci_find_dbsf(0, bus, slot, func));
444 }
445 
446 /* Find a device_t by domain/bus/slot/function */
447 
448 device_t
449 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
450 {
451 	struct pci_devinfo *dinfo = NULL;
452 
453 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
454 		if ((dinfo->cfg.domain == domain) &&
455 		    (dinfo->cfg.bus == bus) &&
456 		    (dinfo->cfg.slot == slot) &&
457 		    (dinfo->cfg.func == func)) {
458 			break;
459 		}
460 	}
461 
462 	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
463 }
464 
465 /* Find a device_t by vendor/device ID */
466 
467 device_t
468 pci_find_device(uint16_t vendor, uint16_t device)
469 {
470 	struct pci_devinfo *dinfo;
471 
472 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
473 		if ((dinfo->cfg.vendor == vendor) &&
474 		    (dinfo->cfg.device == device)) {
475 			return (dinfo->cfg.dev);
476 		}
477 	}
478 
479 	return (NULL);
480 }
481 
482 device_t
483 pci_find_class(uint8_t class, uint8_t subclass)
484 {
485 	struct pci_devinfo *dinfo;
486 
487 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
488 		if (dinfo->cfg.baseclass == class &&
489 		    dinfo->cfg.subclass == subclass) {
490 			return (dinfo->cfg.dev);
491 		}
492 	}
493 
494 	return (NULL);
495 }
496 
497 device_t
498 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
499 {
500 	struct pci_devinfo *dinfo;
501 	bool found = false;
502 
503 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
504 		if (from != NULL && found == false) {
505 			if (from != dinfo->cfg.dev)
506 				continue;
507 			found = true;
508 			continue;
509 		}
510 		if (dinfo->cfg.baseclass == class &&
511 		    dinfo->cfg.subclass == subclass) {
512 			return (dinfo->cfg.dev);
513 		}
514 	}
515 
516 	return (NULL);
517 }
518 
519 static int
520 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
521 {
522 	va_list ap;
523 	int retval;
524 
525 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
526 	    cfg->func);
527 	va_start(ap, fmt);
528 	retval += vprintf(fmt, ap);
529 	va_end(ap);
530 	return (retval);
531 }
532 
533 /* return base address of memory or port map */
534 
535 static pci_addr_t
536 pci_mapbase(uint64_t mapreg)
537 {
538 
539 	if (PCI_BAR_MEM(mapreg))
540 		return (mapreg & PCIM_BAR_MEM_BASE);
541 	else
542 		return (mapreg & PCIM_BAR_IO_BASE);
543 }
544 
545 /* return map type of memory or port map */
546 
547 static const char *
548 pci_maptype(uint64_t mapreg)
549 {
550 
551 	if (PCI_BAR_IO(mapreg))
552 		return ("I/O Port");
553 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
554 		return ("Prefetchable Memory");
555 	return ("Memory");
556 }
557 
558 /* return log2 of map size decoded for memory or port map */
559 
560 int
561 pci_mapsize(uint64_t testval)
562 {
563 	int ln2size;
564 
565 	testval = pci_mapbase(testval);
566 	ln2size = 0;
567 	if (testval != 0) {
568 		while ((testval & 1) == 0)
569 		{
570 			ln2size++;
571 			testval >>= 1;
572 		}
573 	}
574 	return (ln2size);
575 }
576 
577 /* return base address of device ROM */
578 
579 static pci_addr_t
580 pci_rombase(uint64_t mapreg)
581 {
582 
583 	return (mapreg & PCIM_BIOS_ADDR_MASK);
584 }
585 
586 /* return log2 of map size decided for device ROM */
587 
588 static int
589 pci_romsize(uint64_t testval)
590 {
591 	int ln2size;
592 
593 	testval = pci_rombase(testval);
594 	ln2size = 0;
595 	if (testval != 0) {
596 		while ((testval & 1) == 0)
597 		{
598 			ln2size++;
599 			testval >>= 1;
600 		}
601 	}
602 	return (ln2size);
603 }
604 
605 /* return log2 of address range supported by map register */
606 
607 static int
608 pci_maprange(uint64_t mapreg)
609 {
610 	int ln2range = 0;
611 
612 	if (PCI_BAR_IO(mapreg))
613 		ln2range = 32;
614 	else
615 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
616 		case PCIM_BAR_MEM_32:
617 			ln2range = 32;
618 			break;
619 		case PCIM_BAR_MEM_1MB:
620 			ln2range = 20;
621 			break;
622 		case PCIM_BAR_MEM_64:
623 			ln2range = 64;
624 			break;
625 		}
626 	return (ln2range);
627 }
628 
629 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
630 
631 static void
632 pci_fixancient(pcicfgregs *cfg)
633 {
634 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
635 		return;
636 
637 	/* PCI to PCI bridges use header type 1 */
638 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
639 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
640 }
641 
642 /* extract header type specific config data */
643 
644 static void
645 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
646 {
647 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
648 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
649 	case PCIM_HDRTYPE_NORMAL:
650 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
651 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
652 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
653 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
654 		cfg->nummaps	    = PCI_MAXMAPS_0;
655 		break;
656 	case PCIM_HDRTYPE_BRIDGE:
657 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
658 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
659 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
660 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
661 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
662 		cfg->nummaps	    = PCI_MAXMAPS_1;
663 		break;
664 	case PCIM_HDRTYPE_CARDBUS:
665 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
666 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
667 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
668 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
669 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
670 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
671 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
672 		cfg->nummaps	    = PCI_MAXMAPS_2;
673 		break;
674 	}
675 #undef REG
676 }
677 
678 /* read configuration header into pcicfgregs structure */
679 struct pci_devinfo *
680 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
681 {
682 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
683 	uint16_t vid, did;
684 
685 	vid = REG(PCIR_VENDOR, 2);
686 	if (vid == PCIV_INVALID)
687 		return (NULL);
688 
689 	did = REG(PCIR_DEVICE, 2);
690 
691 	return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
692 }
693 
694 struct pci_devinfo *
695 pci_alloc_devinfo_method(device_t dev)
696 {
697 
698 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
699 	    M_WAITOK | M_ZERO));
700 }
701 
702 static struct pci_devinfo *
703 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
704     uint16_t vid, uint16_t did)
705 {
706 	struct pci_devinfo *devlist_entry;
707 	pcicfgregs *cfg;
708 
709 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
710 
711 	cfg = &devlist_entry->cfg;
712 
713 	cfg->domain		= d;
714 	cfg->bus		= b;
715 	cfg->slot		= s;
716 	cfg->func		= f;
717 	cfg->vendor		= vid;
718 	cfg->device		= did;
719 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
720 	cfg->statreg		= REG(PCIR_STATUS, 2);
721 	cfg->baseclass		= REG(PCIR_CLASS, 1);
722 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
723 	cfg->progif		= REG(PCIR_PROGIF, 1);
724 	cfg->revid		= REG(PCIR_REVID, 1);
725 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
726 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
727 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
728 	cfg->intpin		= REG(PCIR_INTPIN, 1);
729 	cfg->intline		= REG(PCIR_INTLINE, 1);
730 
731 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
732 	cfg->hdrtype		&= ~PCIM_MFDEV;
733 	STAILQ_INIT(&cfg->maps);
734 
735 	cfg->iov		= NULL;
736 
737 	pci_fixancient(cfg);
738 	pci_hdrtypedata(pcib, b, s, f, cfg);
739 
740 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
741 		pci_read_cap(pcib, cfg);
742 
743 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
744 
745 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
746 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
747 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
748 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
749 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
750 
751 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
752 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
753 	devlist_entry->conf.pc_vendor = cfg->vendor;
754 	devlist_entry->conf.pc_device = cfg->device;
755 
756 	devlist_entry->conf.pc_class = cfg->baseclass;
757 	devlist_entry->conf.pc_subclass = cfg->subclass;
758 	devlist_entry->conf.pc_progif = cfg->progif;
759 	devlist_entry->conf.pc_revid = cfg->revid;
760 
761 	pci_numdevs++;
762 	pci_generation++;
763 
764 	return (devlist_entry);
765 }
766 #undef REG
767 
768 static void
769 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
770 {
771 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
772     cfg->ea.ea_location + (n), w)
773 	int num_ent;
774 	int ptr;
775 	int a, b;
776 	uint32_t val;
777 	int ent_size;
778 	uint32_t dw[4];
779 	uint64_t base, max_offset;
780 	struct pci_ea_entry *eae;
781 
782 	if (cfg->ea.ea_location == 0)
783 		return;
784 
785 	STAILQ_INIT(&cfg->ea.ea_entries);
786 
787 	/* Determine the number of entries */
788 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
789 	num_ent &= PCIM_EA_NUM_ENT_MASK;
790 
791 	/* Find the first entry to care of */
792 	ptr = PCIR_EA_FIRST_ENT;
793 
794 	/* Skip DWORD 2 for type 1 functions */
795 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
796 		ptr += 4;
797 
798 	for (a = 0; a < num_ent; a++) {
799 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
800 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
801 
802 		/* Read a number of dwords in the entry */
803 		val = REG(ptr, 4);
804 		ptr += 4;
805 		ent_size = (val & PCIM_EA_ES);
806 
807 		for (b = 0; b < ent_size; b++) {
808 			dw[b] = REG(ptr, 4);
809 			ptr += 4;
810 		}
811 
812 		eae->eae_flags = val;
813 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
814 
815 		base = dw[0] & PCIM_EA_FIELD_MASK;
816 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
817 		b = 2;
818 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
819 			base |= (uint64_t)dw[b] << 32UL;
820 			b++;
821 		}
822 		if (((dw[1] & PCIM_EA_IS_64) != 0)
823 		    && (b < ent_size)) {
824 			max_offset |= (uint64_t)dw[b] << 32UL;
825 			b++;
826 		}
827 
828 		eae->eae_base = base;
829 		eae->eae_max_offset = max_offset;
830 
831 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
832 
833 		if (bootverbose) {
834 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
835 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
836 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
837 		}
838 	}
839 }
840 #undef REG
841 
842 static void
843 pci_read_cap(device_t pcib, pcicfgregs *cfg)
844 {
845 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
846 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
847 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
848 	uint64_t addr;
849 #endif
850 	uint32_t val;
851 	int	ptr, nextptr, ptrptr;
852 
853 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
854 	case PCIM_HDRTYPE_NORMAL:
855 	case PCIM_HDRTYPE_BRIDGE:
856 		ptrptr = PCIR_CAP_PTR;
857 		break;
858 	case PCIM_HDRTYPE_CARDBUS:
859 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
860 		break;
861 	default:
862 		return;		/* no extended capabilities support */
863 	}
864 	nextptr = REG(ptrptr, 1);	/* sanity check? */
865 
866 	/*
867 	 * Read capability entries.
868 	 */
869 	while (nextptr != 0) {
870 		/* Sanity check */
871 		if (nextptr > 255) {
872 			printf("illegal PCI extended capability offset %d\n",
873 			    nextptr);
874 			return;
875 		}
876 		/* Find the next entry */
877 		ptr = nextptr;
878 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
879 
880 		/* Process this entry */
881 		switch (REG(ptr + PCICAP_ID, 1)) {
882 		case PCIY_PMG:		/* PCI power management */
883 			if (cfg->pp.pp_cap == 0) {
884 				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
885 				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
886 				cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
887 				if ((nextptr - ptr) > PCIR_POWER_DATA)
888 					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
889 			}
890 			break;
891 		case PCIY_HT:		/* HyperTransport */
892 			/* Determine HT-specific capability type. */
893 			val = REG(ptr + PCIR_HT_COMMAND, 2);
894 
895 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
896 				cfg->ht.ht_slave = ptr;
897 
898 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
899 			switch (val & PCIM_HTCMD_CAP_MASK) {
900 			case PCIM_HTCAP_MSI_MAPPING:
901 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
902 					/* Sanity check the mapping window. */
903 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
904 					    4);
905 					addr <<= 32;
906 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
907 					    4);
908 					if (addr != MSI_INTEL_ADDR_BASE)
909 						device_printf(pcib,
910 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
911 						    cfg->domain, cfg->bus,
912 						    cfg->slot, cfg->func,
913 						    (long long)addr);
914 				} else
915 					addr = MSI_INTEL_ADDR_BASE;
916 
917 				cfg->ht.ht_msimap = ptr;
918 				cfg->ht.ht_msictrl = val;
919 				cfg->ht.ht_msiaddr = addr;
920 				break;
921 			}
922 #endif
923 			break;
924 		case PCIY_MSI:		/* PCI MSI */
925 			cfg->msi.msi_location = ptr;
926 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
927 			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
928 						     PCIM_MSICTRL_MMC_MASK)>>1);
929 			break;
930 		case PCIY_MSIX:		/* PCI MSI-X */
931 			cfg->msix.msix_location = ptr;
932 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
933 			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
934 			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
935 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
936 			cfg->msix.msix_table_bar = PCIR_BAR(val &
937 			    PCIM_MSIX_BIR_MASK);
938 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
939 			val = REG(ptr + PCIR_MSIX_PBA, 4);
940 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
941 			    PCIM_MSIX_BIR_MASK);
942 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
943 			break;
944 		case PCIY_VPD:		/* PCI Vital Product Data */
945 			cfg->vpd.vpd_reg = ptr;
946 			break;
947 		case PCIY_SUBVENDOR:
948 			/* Should always be true. */
949 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
950 			    PCIM_HDRTYPE_BRIDGE) {
951 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
952 				cfg->subvendor = val & 0xffff;
953 				cfg->subdevice = val >> 16;
954 			}
955 			break;
956 		case PCIY_PCIX:		/* PCI-X */
957 			/*
958 			 * Assume we have a PCI-X chipset if we have
959 			 * at least one PCI-PCI bridge with a PCI-X
960 			 * capability.  Note that some systems with
961 			 * PCI-express or HT chipsets might match on
962 			 * this check as well.
963 			 */
964 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
965 			    PCIM_HDRTYPE_BRIDGE)
966 				pcix_chipset = 1;
967 			cfg->pcix.pcix_location = ptr;
968 			break;
969 		case PCIY_EXPRESS:	/* PCI-express */
970 			/*
971 			 * Assume we have a PCI-express chipset if we have
972 			 * at least one PCI-express device.
973 			 */
974 			pcie_chipset = 1;
975 			cfg->pcie.pcie_location = ptr;
976 			val = REG(ptr + PCIER_FLAGS, 2);
977 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
978 			break;
979 		case PCIY_EA:		/* Enhanced Allocation */
980 			cfg->ea.ea_location = ptr;
981 			pci_ea_fill_info(pcib, cfg);
982 			break;
983 		default:
984 			break;
985 		}
986 	}
987 
988 #if defined(__powerpc__)
989 	/*
990 	 * Enable the MSI mapping window for all HyperTransport
991 	 * slaves.  PCI-PCI bridges have their windows enabled via
992 	 * PCIB_MAP_MSI().
993 	 */
994 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
995 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
996 		device_printf(pcib,
997 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
998 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
999 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1000 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
1001 		     2);
1002 	}
1003 #endif
1004 /* REG and WREG use carry through to next functions */
1005 }
1006 
1007 /*
1008  * PCI Vital Product Data
1009  */
1010 
1011 #define	PCI_VPD_TIMEOUT		1000000
1012 
1013 static int
1014 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1015 {
1016 	int count = PCI_VPD_TIMEOUT;
1017 
1018 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1019 
1020 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1021 
1022 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1023 		if (--count < 0)
1024 			return (ENXIO);
1025 		DELAY(1);	/* limit looping */
1026 	}
1027 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1028 
1029 	return (0);
1030 }
1031 
1032 #if 0
1033 static int
1034 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1035 {
1036 	int count = PCI_VPD_TIMEOUT;
1037 
1038 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1039 
1040 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1041 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1042 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1043 		if (--count < 0)
1044 			return (ENXIO);
1045 		DELAY(1);	/* limit looping */
1046 	}
1047 
1048 	return (0);
1049 }
1050 #endif
1051 
1052 #undef PCI_VPD_TIMEOUT
1053 
1054 struct vpd_readstate {
1055 	device_t	pcib;
1056 	pcicfgregs	*cfg;
1057 	uint32_t	val;
1058 	int		bytesinval;
1059 	int		off;
1060 	uint8_t		cksum;
1061 };
1062 
1063 static int
1064 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1065 {
1066 	uint32_t reg;
1067 	uint8_t byte;
1068 
1069 	if (vrs->bytesinval == 0) {
1070 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1071 			return (ENXIO);
1072 		vrs->val = le32toh(reg);
1073 		vrs->off += 4;
1074 		byte = vrs->val & 0xff;
1075 		vrs->bytesinval = 3;
1076 	} else {
1077 		vrs->val = vrs->val >> 8;
1078 		byte = vrs->val & 0xff;
1079 		vrs->bytesinval--;
1080 	}
1081 
1082 	vrs->cksum += byte;
1083 	*data = byte;
1084 	return (0);
1085 }
1086 
1087 static void
1088 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1089 {
1090 	struct vpd_readstate vrs;
1091 	int state;
1092 	int name;
1093 	int remain;
1094 	int i;
1095 	int alloc, off;		/* alloc/off for RO/W arrays */
1096 	int cksumvalid;
1097 	int dflen;
1098 	uint8_t byte;
1099 	uint8_t byte2;
1100 
1101 	/* init vpd reader */
1102 	vrs.bytesinval = 0;
1103 	vrs.off = 0;
1104 	vrs.pcib = pcib;
1105 	vrs.cfg = cfg;
1106 	vrs.cksum = 0;
1107 
1108 	state = 0;
1109 	name = remain = i = 0;	/* shut up stupid gcc */
1110 	alloc = off = 0;	/* shut up stupid gcc */
1111 	dflen = 0;		/* shut up stupid gcc */
1112 	cksumvalid = -1;
1113 	while (state >= 0) {
1114 		if (vpd_nextbyte(&vrs, &byte)) {
1115 			state = -2;
1116 			break;
1117 		}
1118 #if 0
1119 		printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
1120 		    "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
1121 		    vrs.off, vrs.bytesinval, byte, state, remain, name, i);
1122 #endif
1123 		switch (state) {
1124 		case 0:		/* item name */
1125 			if (byte & 0x80) {
1126 				if (vpd_nextbyte(&vrs, &byte2)) {
1127 					state = -2;
1128 					break;
1129 				}
1130 				remain = byte2;
1131 				if (vpd_nextbyte(&vrs, &byte2)) {
1132 					state = -2;
1133 					break;
1134 				}
1135 				remain |= byte2 << 8;
1136 				name = byte & 0x7f;
1137 			} else {
1138 				remain = byte & 0x7;
1139 				name = (byte >> 3) & 0xf;
1140 			}
1141 			if (vrs.off + remain - vrs.bytesinval > 0x8000) {
1142 				pci_printf(cfg,
1143 				    "VPD data overflow, remain %#x\n", remain);
1144 				state = -1;
1145 				break;
1146 			}
1147 			switch (name) {
1148 			case 0x2:	/* String */
1149 				cfg->vpd.vpd_ident = malloc(remain + 1,
1150 				    M_DEVBUF, M_WAITOK);
1151 				i = 0;
1152 				state = 1;
1153 				break;
1154 			case 0xf:	/* End */
1155 				state = -1;
1156 				break;
1157 			case 0x10:	/* VPD-R */
1158 				alloc = 8;
1159 				off = 0;
1160 				cfg->vpd.vpd_ros = malloc(alloc *
1161 				    sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
1162 				    M_WAITOK | M_ZERO);
1163 				state = 2;
1164 				break;
1165 			case 0x11:	/* VPD-W */
1166 				alloc = 8;
1167 				off = 0;
1168 				cfg->vpd.vpd_w = malloc(alloc *
1169 				    sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
1170 				    M_WAITOK | M_ZERO);
1171 				state = 5;
1172 				break;
1173 			default:	/* Invalid data, abort */
1174 				state = -1;
1175 				break;
1176 			}
1177 			break;
1178 
1179 		case 1:	/* Identifier String */
1180 			cfg->vpd.vpd_ident[i++] = byte;
1181 			remain--;
1182 			if (remain == 0)  {
1183 				cfg->vpd.vpd_ident[i] = '\0';
1184 				state = 0;
1185 			}
1186 			break;
1187 
1188 		case 2:	/* VPD-R Keyword Header */
1189 			if (off == alloc) {
1190 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1191 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
1192 				    M_DEVBUF, M_WAITOK | M_ZERO);
1193 			}
1194 			cfg->vpd.vpd_ros[off].keyword[0] = byte;
1195 			if (vpd_nextbyte(&vrs, &byte2)) {
1196 				state = -2;
1197 				break;
1198 			}
1199 			cfg->vpd.vpd_ros[off].keyword[1] = byte2;
1200 			if (vpd_nextbyte(&vrs, &byte2)) {
1201 				state = -2;
1202 				break;
1203 			}
1204 			cfg->vpd.vpd_ros[off].len = dflen = byte2;
1205 			if (dflen == 0 &&
1206 			    strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
1207 			    2) == 0) {
1208 				/*
1209 				 * if this happens, we can't trust the rest
1210 				 * of the VPD.
1211 				 */
1212 				pci_printf(cfg, "bad keyword length: %d\n",
1213 				    dflen);
1214 				cksumvalid = 0;
1215 				state = -1;
1216 				break;
1217 			} else if (dflen == 0) {
1218 				cfg->vpd.vpd_ros[off].value = malloc(1 *
1219 				    sizeof(*cfg->vpd.vpd_ros[off].value),
1220 				    M_DEVBUF, M_WAITOK);
1221 				cfg->vpd.vpd_ros[off].value[0] = '\x00';
1222 			} else
1223 				cfg->vpd.vpd_ros[off].value = malloc(
1224 				    (dflen + 1) *
1225 				    sizeof(*cfg->vpd.vpd_ros[off].value),
1226 				    M_DEVBUF, M_WAITOK);
1227 			remain -= 3;
1228 			i = 0;
1229 			/* keep in sync w/ state 3's transistions */
1230 			if (dflen == 0 && remain == 0)
1231 				state = 0;
1232 			else if (dflen == 0)
1233 				state = 2;
1234 			else
1235 				state = 3;
1236 			break;
1237 
1238 		case 3:	/* VPD-R Keyword Value */
1239 			cfg->vpd.vpd_ros[off].value[i++] = byte;
1240 			if (strncmp(cfg->vpd.vpd_ros[off].keyword,
1241 			    "RV", 2) == 0 && cksumvalid == -1) {
1242 				if (vrs.cksum == 0)
1243 					cksumvalid = 1;
1244 				else {
1245 					if (bootverbose)
1246 						pci_printf(cfg,
1247 					    "bad VPD cksum, remain %hhu\n",
1248 						    vrs.cksum);
1249 					cksumvalid = 0;
1250 					state = -1;
1251 					break;
1252 				}
1253 			}
1254 			dflen--;
1255 			remain--;
1256 			/* keep in sync w/ state 2's transistions */
1257 			if (dflen == 0)
1258 				cfg->vpd.vpd_ros[off++].value[i++] = '\0';
1259 			if (dflen == 0 && remain == 0) {
1260 				cfg->vpd.vpd_rocnt = off;
1261 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1262 				    off * sizeof(*cfg->vpd.vpd_ros),
1263 				    M_DEVBUF, M_WAITOK | M_ZERO);
1264 				state = 0;
1265 			} else if (dflen == 0)
1266 				state = 2;
1267 			break;
1268 
1269 		case 4:
1270 			remain--;
1271 			if (remain == 0)
1272 				state = 0;
1273 			break;
1274 
1275 		case 5:	/* VPD-W Keyword Header */
1276 			if (off == alloc) {
1277 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1278 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
1279 				    M_DEVBUF, M_WAITOK | M_ZERO);
1280 			}
1281 			cfg->vpd.vpd_w[off].keyword[0] = byte;
1282 			if (vpd_nextbyte(&vrs, &byte2)) {
1283 				state = -2;
1284 				break;
1285 			}
1286 			cfg->vpd.vpd_w[off].keyword[1] = byte2;
1287 			if (vpd_nextbyte(&vrs, &byte2)) {
1288 				state = -2;
1289 				break;
1290 			}
1291 			cfg->vpd.vpd_w[off].len = dflen = byte2;
1292 			cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
1293 			cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
1294 			    sizeof(*cfg->vpd.vpd_w[off].value),
1295 			    M_DEVBUF, M_WAITOK);
1296 			remain -= 3;
1297 			i = 0;
1298 			/* keep in sync w/ state 6's transistions */
1299 			if (dflen == 0 && remain == 0)
1300 				state = 0;
1301 			else if (dflen == 0)
1302 				state = 5;
1303 			else
1304 				state = 6;
1305 			break;
1306 
1307 		case 6:	/* VPD-W Keyword Value */
1308 			cfg->vpd.vpd_w[off].value[i++] = byte;
1309 			dflen--;
1310 			remain--;
1311 			/* keep in sync w/ state 5's transistions */
1312 			if (dflen == 0)
1313 				cfg->vpd.vpd_w[off++].value[i++] = '\0';
1314 			if (dflen == 0 && remain == 0) {
1315 				cfg->vpd.vpd_wcnt = off;
1316 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1317 				    off * sizeof(*cfg->vpd.vpd_w),
1318 				    M_DEVBUF, M_WAITOK | M_ZERO);
1319 				state = 0;
1320 			} else if (dflen == 0)
1321 				state = 5;
1322 			break;
1323 
1324 		default:
1325 			pci_printf(cfg, "invalid state: %d\n", state);
1326 			state = -1;
1327 			break;
1328 		}
1329 	}
1330 
1331 	if (cksumvalid == 0 || state < -1) {
1332 		/* read-only data bad, clean up */
1333 		if (cfg->vpd.vpd_ros != NULL) {
1334 			for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
1335 				free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
1336 			free(cfg->vpd.vpd_ros, M_DEVBUF);
1337 			cfg->vpd.vpd_ros = NULL;
1338 		}
1339 	}
1340 	if (state < -1) {
1341 		/* I/O error, clean up */
1342 		pci_printf(cfg, "failed to read VPD data.\n");
1343 		if (cfg->vpd.vpd_ident != NULL) {
1344 			free(cfg->vpd.vpd_ident, M_DEVBUF);
1345 			cfg->vpd.vpd_ident = NULL;
1346 		}
1347 		if (cfg->vpd.vpd_w != NULL) {
1348 			for (off = 0; cfg->vpd.vpd_w[off].value; off++)
1349 				free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
1350 			free(cfg->vpd.vpd_w, M_DEVBUF);
1351 			cfg->vpd.vpd_w = NULL;
1352 		}
1353 	}
1354 	cfg->vpd.vpd_cached = 1;
1355 #undef REG
1356 #undef WREG
1357 }
1358 
1359 int
1360 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1361 {
1362 	struct pci_devinfo *dinfo = device_get_ivars(child);
1363 	pcicfgregs *cfg = &dinfo->cfg;
1364 
1365 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1366 		pci_read_vpd(device_get_parent(dev), cfg);
1367 
1368 	*identptr = cfg->vpd.vpd_ident;
1369 
1370 	if (*identptr == NULL)
1371 		return (ENXIO);
1372 
1373 	return (0);
1374 }
1375 
1376 int
1377 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1378 	const char **vptr)
1379 {
1380 	struct pci_devinfo *dinfo = device_get_ivars(child);
1381 	pcicfgregs *cfg = &dinfo->cfg;
1382 	int i;
1383 
1384 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1385 		pci_read_vpd(device_get_parent(dev), cfg);
1386 
1387 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1388 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1389 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1390 			*vptr = cfg->vpd.vpd_ros[i].value;
1391 			return (0);
1392 		}
1393 
1394 	*vptr = NULL;
1395 	return (ENXIO);
1396 }
1397 
1398 struct pcicfg_vpd *
1399 pci_fetch_vpd_list(device_t dev)
1400 {
1401 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1402 	pcicfgregs *cfg = &dinfo->cfg;
1403 
1404 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1405 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1406 	return (&cfg->vpd);
1407 }
1408 
1409 /*
1410  * Find the requested HyperTransport capability and return the offset
1411  * in configuration space via the pointer provided.  The function
1412  * returns 0 on success and an error code otherwise.
1413  */
1414 int
1415 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1416 {
1417 	int ptr, error;
1418 	uint16_t val;
1419 
1420 	error = pci_find_cap(child, PCIY_HT, &ptr);
1421 	if (error)
1422 		return (error);
1423 
1424 	/*
1425 	 * Traverse the capabilities list checking each HT capability
1426 	 * to see if it matches the requested HT capability.
1427 	 */
1428 	for (;;) {
1429 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1430 		if (capability == PCIM_HTCAP_SLAVE ||
1431 		    capability == PCIM_HTCAP_HOST)
1432 			val &= 0xe000;
1433 		else
1434 			val &= PCIM_HTCMD_CAP_MASK;
1435 		if (val == capability) {
1436 			if (capreg != NULL)
1437 				*capreg = ptr;
1438 			return (0);
1439 		}
1440 
1441 		/* Skip to the next HT capability. */
1442 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1443 			break;
1444 	}
1445 
1446 	return (ENOENT);
1447 }
1448 
1449 /*
1450  * Find the next requested HyperTransport capability after start and return
1451  * the offset in configuration space via the pointer provided.  The function
1452  * returns 0 on success and an error code otherwise.
1453  */
1454 int
1455 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1456     int start, int *capreg)
1457 {
1458 	int ptr;
1459 	uint16_t val;
1460 
1461 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1462 	    ("start capability is not HyperTransport capability"));
1463 	ptr = start;
1464 
1465 	/*
1466 	 * Traverse the capabilities list checking each HT capability
1467 	 * to see if it matches the requested HT capability.
1468 	 */
1469 	for (;;) {
1470 		/* Skip to the next HT capability. */
1471 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1472 			break;
1473 
1474 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1475 		if (capability == PCIM_HTCAP_SLAVE ||
1476 		    capability == PCIM_HTCAP_HOST)
1477 			val &= 0xe000;
1478 		else
1479 			val &= PCIM_HTCMD_CAP_MASK;
1480 		if (val == capability) {
1481 			if (capreg != NULL)
1482 				*capreg = ptr;
1483 			return (0);
1484 		}
1485 	}
1486 
1487 	return (ENOENT);
1488 }
1489 
1490 /*
1491  * Find the requested capability and return the offset in
1492  * configuration space via the pointer provided.  The function returns
1493  * 0 on success and an error code otherwise.
1494  */
1495 int
1496 pci_find_cap_method(device_t dev, device_t child, int capability,
1497     int *capreg)
1498 {
1499 	struct pci_devinfo *dinfo = device_get_ivars(child);
1500 	pcicfgregs *cfg = &dinfo->cfg;
1501 	uint32_t status;
1502 	uint8_t ptr;
1503 
1504 	/*
1505 	 * Check the CAP_LIST bit of the PCI status register first.
1506 	 */
1507 	status = pci_read_config(child, PCIR_STATUS, 2);
1508 	if (!(status & PCIM_STATUS_CAPPRESENT))
1509 		return (ENXIO);
1510 
1511 	/*
1512 	 * Determine the start pointer of the capabilities list.
1513 	 */
1514 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1515 	case PCIM_HDRTYPE_NORMAL:
1516 	case PCIM_HDRTYPE_BRIDGE:
1517 		ptr = PCIR_CAP_PTR;
1518 		break;
1519 	case PCIM_HDRTYPE_CARDBUS:
1520 		ptr = PCIR_CAP_PTR_2;
1521 		break;
1522 	default:
1523 		/* XXX: panic? */
1524 		return (ENXIO);		/* no extended capabilities support */
1525 	}
1526 	ptr = pci_read_config(child, ptr, 1);
1527 
1528 	/*
1529 	 * Traverse the capabilities list.
1530 	 */
1531 	while (ptr != 0) {
1532 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1533 			if (capreg != NULL)
1534 				*capreg = ptr;
1535 			return (0);
1536 		}
1537 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1538 	}
1539 
1540 	return (ENOENT);
1541 }
1542 
1543 /*
1544  * Find the next requested capability after start and return the offset in
1545  * configuration space via the pointer provided.  The function returns
1546  * 0 on success and an error code otherwise.
1547  */
1548 int
1549 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1550     int start, int *capreg)
1551 {
1552 	uint8_t ptr;
1553 
1554 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1555 	    ("start capability is not expected capability"));
1556 
1557 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1558 	while (ptr != 0) {
1559 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1560 			if (capreg != NULL)
1561 				*capreg = ptr;
1562 			return (0);
1563 		}
1564 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1565 	}
1566 
1567 	return (ENOENT);
1568 }
1569 
1570 /*
1571  * Find the requested extended capability and return the offset in
1572  * configuration space via the pointer provided.  The function returns
1573  * 0 on success and an error code otherwise.
1574  */
1575 int
1576 pci_find_extcap_method(device_t dev, device_t child, int capability,
1577     int *capreg)
1578 {
1579 	struct pci_devinfo *dinfo = device_get_ivars(child);
1580 	pcicfgregs *cfg = &dinfo->cfg;
1581 	uint32_t ecap;
1582 	uint16_t ptr;
1583 
1584 	/* Only supported for PCI-express devices. */
1585 	if (cfg->pcie.pcie_location == 0)
1586 		return (ENXIO);
1587 
1588 	ptr = PCIR_EXTCAP;
1589 	ecap = pci_read_config(child, ptr, 4);
1590 	if (ecap == 0xffffffff || ecap == 0)
1591 		return (ENOENT);
1592 	for (;;) {
1593 		if (PCI_EXTCAP_ID(ecap) == capability) {
1594 			if (capreg != NULL)
1595 				*capreg = ptr;
1596 			return (0);
1597 		}
1598 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1599 		if (ptr == 0)
1600 			break;
1601 		ecap = pci_read_config(child, ptr, 4);
1602 	}
1603 
1604 	return (ENOENT);
1605 }
1606 
1607 /*
1608  * Find the next requested extended capability after start and return the
1609  * offset in configuration space via the pointer provided.  The function
1610  * returns 0 on success and an error code otherwise.
1611  */
1612 int
1613 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1614     int start, int *capreg)
1615 {
1616 	struct pci_devinfo *dinfo = device_get_ivars(child);
1617 	pcicfgregs *cfg = &dinfo->cfg;
1618 	uint32_t ecap;
1619 	uint16_t ptr;
1620 
1621 	/* Only supported for PCI-express devices. */
1622 	if (cfg->pcie.pcie_location == 0)
1623 		return (ENXIO);
1624 
1625 	ecap = pci_read_config(child, start, 4);
1626 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1627 	    ("start extended capability is not expected capability"));
1628 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1629 	while (ptr != 0) {
1630 		ecap = pci_read_config(child, ptr, 4);
1631 		if (PCI_EXTCAP_ID(ecap) == capability) {
1632 			if (capreg != NULL)
1633 				*capreg = ptr;
1634 			return (0);
1635 		}
1636 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1637 	}
1638 
1639 	return (ENOENT);
1640 }
1641 
1642 /*
1643  * Support for MSI-X message interrupts.
1644  */
1645 static void
1646 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1647 {
1648 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1649 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1650 	uint32_t offset;
1651 
1652 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1653 	offset = msix->msix_table_offset + index * 16;
1654 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1655 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1656 	bus_write_4(msix->msix_table_res, offset + 8, data);
1657 }
1658 
1659 void
1660 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1661     uint64_t address, uint32_t data)
1662 {
1663 
1664 	if (pci_msix_rewrite_table) {
1665 		struct pci_devinfo *dinfo = device_get_ivars(child);
1666 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1667 
1668 		/*
1669 		 * Some VM hosts require MSIX to be disabled in the
1670 		 * control register before updating the MSIX table
1671 		 * entries are allowed. It is not enough to only
1672 		 * disable MSIX while updating a single entry. MSIX
1673 		 * must be disabled while updating all entries in the
1674 		 * table.
1675 		 */
1676 		pci_write_config(child,
1677 		    msix->msix_location + PCIR_MSIX_CTRL,
1678 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1679 		pci_resume_msix(child);
1680 	} else
1681 		pci_write_msix_entry(child, index, address, data);
1682 
1683 	/* Enable MSI -> HT mapping. */
1684 	pci_ht_map_msi(child, address);
1685 }
1686 
1687 void
1688 pci_mask_msix(device_t dev, u_int index)
1689 {
1690 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1691 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1692 	uint32_t offset, val;
1693 
1694 	KASSERT(msix->msix_msgnum > index, ("bogus index"));
1695 	offset = msix->msix_table_offset + index * 16 + 12;
1696 	val = bus_read_4(msix->msix_table_res, offset);
1697 	val |= PCIM_MSIX_VCTRL_MASK;
1698 
1699 	/*
1700 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1701 	 * register, so always write the new value.
1702 	 */
1703 	bus_write_4(msix->msix_table_res, offset, val);
1704 }
1705 
1706 void
1707 pci_unmask_msix(device_t dev, u_int index)
1708 {
1709 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1710 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1711 	uint32_t offset, val;
1712 
1713 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1714 	offset = msix->msix_table_offset + index * 16 + 12;
1715 	val = bus_read_4(msix->msix_table_res, offset);
1716 	val &= ~PCIM_MSIX_VCTRL_MASK;
1717 
1718 	/*
1719 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1720 	 * register, so always write the new value.
1721 	 */
1722 	bus_write_4(msix->msix_table_res, offset, val);
1723 }
1724 
1725 int
1726 pci_pending_msix(device_t dev, u_int index)
1727 {
1728 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1729 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1730 	uint32_t offset, bit;
1731 
1732 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1733 	offset = msix->msix_pba_offset + (index / 32) * 4;
1734 	bit = 1 << index % 32;
1735 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1736 }
1737 
1738 /*
1739  * Restore MSI-X registers and table during resume.  If MSI-X is
1740  * enabled then walk the virtual table to restore the actual MSI-X
1741  * table.
1742  */
1743 static void
1744 pci_resume_msix(device_t dev)
1745 {
1746 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1747 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1748 	struct msix_table_entry *mte;
1749 	struct msix_vector *mv;
1750 	int i;
1751 
1752 	if (msix->msix_alloc > 0) {
1753 		/* First, mask all vectors. */
1754 		for (i = 0; i < msix->msix_msgnum; i++)
1755 			pci_mask_msix(dev, i);
1756 
1757 		/* Second, program any messages with at least one handler. */
1758 		for (i = 0; i < msix->msix_table_len; i++) {
1759 			mte = &msix->msix_table[i];
1760 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1761 				continue;
1762 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1763 			pci_write_msix_entry(dev, i, mv->mv_address,
1764 			    mv->mv_data);
1765 			pci_unmask_msix(dev, i);
1766 		}
1767 	}
1768 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1769 	    msix->msix_ctrl, 2);
1770 }
1771 
1772 /*
1773  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1774  * returned in *count.  After this function returns, each message will be
1775  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1776  */
1777 int
1778 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1779 {
1780 	struct pci_devinfo *dinfo = device_get_ivars(child);
1781 	pcicfgregs *cfg = &dinfo->cfg;
1782 	struct resource_list_entry *rle;
1783 	int actual, error, i, irq, max;
1784 
1785 	/* Don't let count == 0 get us into trouble. */
1786 	if (*count == 0)
1787 		return (EINVAL);
1788 
1789 	/* If rid 0 is allocated, then fail. */
1790 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1791 	if (rle != NULL && rle->res != NULL)
1792 		return (ENXIO);
1793 
1794 	/* Already have allocated messages? */
1795 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1796 		return (ENXIO);
1797 
1798 	/* If MSI-X is blacklisted for this system, fail. */
1799 	if (pci_msix_blacklisted())
1800 		return (ENXIO);
1801 
1802 	/* MSI-X capability present? */
1803 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1804 		return (ENODEV);
1805 
1806 	/* Make sure the appropriate BARs are mapped. */
1807 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1808 	    cfg->msix.msix_table_bar);
1809 	if (rle == NULL || rle->res == NULL ||
1810 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1811 		return (ENXIO);
1812 	cfg->msix.msix_table_res = rle->res;
1813 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1814 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1815 		    cfg->msix.msix_pba_bar);
1816 		if (rle == NULL || rle->res == NULL ||
1817 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1818 			return (ENXIO);
1819 	}
1820 	cfg->msix.msix_pba_res = rle->res;
1821 
1822 	if (bootverbose)
1823 		device_printf(child,
1824 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1825 		    *count, cfg->msix.msix_msgnum);
1826 	max = min(*count, cfg->msix.msix_msgnum);
1827 	for (i = 0; i < max; i++) {
1828 		/* Allocate a message. */
1829 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1830 		if (error) {
1831 			if (i == 0)
1832 				return (error);
1833 			break;
1834 		}
1835 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1836 		    irq, 1);
1837 	}
1838 	actual = i;
1839 
1840 	if (bootverbose) {
1841 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1842 		if (actual == 1)
1843 			device_printf(child, "using IRQ %ju for MSI-X\n",
1844 			    rle->start);
1845 		else {
1846 			int run;
1847 
1848 			/*
1849 			 * Be fancy and try to print contiguous runs of
1850 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1851 			 * 'run' is true if we are in a range.
1852 			 */
1853 			device_printf(child, "using IRQs %ju", rle->start);
1854 			irq = rle->start;
1855 			run = 0;
1856 			for (i = 1; i < actual; i++) {
1857 				rle = resource_list_find(&dinfo->resources,
1858 				    SYS_RES_IRQ, i + 1);
1859 
1860 				/* Still in a run? */
1861 				if (rle->start == irq + 1) {
1862 					run = 1;
1863 					irq++;
1864 					continue;
1865 				}
1866 
1867 				/* Finish previous range. */
1868 				if (run) {
1869 					printf("-%d", irq);
1870 					run = 0;
1871 				}
1872 
1873 				/* Start new range. */
1874 				printf(",%ju", rle->start);
1875 				irq = rle->start;
1876 			}
1877 
1878 			/* Unfinished range? */
1879 			if (run)
1880 				printf("-%d", irq);
1881 			printf(" for MSI-X\n");
1882 		}
1883 	}
1884 
1885 	/* Mask all vectors. */
1886 	for (i = 0; i < cfg->msix.msix_msgnum; i++)
1887 		pci_mask_msix(child, i);
1888 
1889 	/* Allocate and initialize vector data and virtual table. */
1890 	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1891 	    M_DEVBUF, M_WAITOK | M_ZERO);
1892 	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1893 	    M_DEVBUF, M_WAITOK | M_ZERO);
1894 	for (i = 0; i < actual; i++) {
1895 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1896 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1897 		cfg->msix.msix_table[i].mte_vector = i + 1;
1898 	}
1899 
1900 	/* Update control register to enable MSI-X. */
1901 	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1902 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1903 	    cfg->msix.msix_ctrl, 2);
1904 
1905 	/* Update counts of alloc'd messages. */
1906 	cfg->msix.msix_alloc = actual;
1907 	cfg->msix.msix_table_len = actual;
1908 	*count = actual;
1909 	return (0);
1910 }
1911 
1912 /*
1913  * By default, pci_alloc_msix() will assign the allocated IRQ
1914  * resources consecutively to the first N messages in the MSI-X table.
1915  * However, device drivers may want to use different layouts if they
1916  * either receive fewer messages than they asked for, or they wish to
1917  * populate the MSI-X table sparsely.  This method allows the driver
1918  * to specify what layout it wants.  It must be called after a
1919  * successful pci_alloc_msix() but before any of the associated
1920  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1921  *
1922  * The 'vectors' array contains 'count' message vectors.  The array
1923  * maps directly to the MSI-X table in that index 0 in the array
1924  * specifies the vector for the first message in the MSI-X table, etc.
1925  * The vector value in each array index can either be 0 to indicate
1926  * that no vector should be assigned to a message slot, or it can be a
1927  * number from 1 to N (where N is the count returned from a
1928  * succcessful call to pci_alloc_msix()) to indicate which message
1929  * vector (IRQ) to be used for the corresponding message.
1930  *
1931  * On successful return, each message with a non-zero vector will have
1932  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1933  * 1.  Additionally, if any of the IRQs allocated via the previous
1934  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1935  * will be freed back to the system automatically.
1936  *
1937  * For example, suppose a driver has a MSI-X table with 6 messages and
1938  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1939  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1940  * C.  After the call to pci_alloc_msix(), the device will be setup to
1941  * have an MSI-X table of ABC--- (where - means no vector assigned).
1942  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1943  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1944  * be freed back to the system.  This device will also have valid
1945  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1946  *
1947  * In any case, the SYS_RES_IRQ rid X will always map to the message
1948  * at MSI-X table index X - 1 and will only be valid if a vector is
1949  * assigned to that table entry.
1950  */
1951 int
1952 pci_remap_msix_method(device_t dev, device_t child, int count,
1953     const u_int *vectors)
1954 {
1955 	struct pci_devinfo *dinfo = device_get_ivars(child);
1956 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1957 	struct resource_list_entry *rle;
1958 	int i, irq, j, *used;
1959 
1960 	/*
1961 	 * Have to have at least one message in the table but the
1962 	 * table can't be bigger than the actual MSI-X table in the
1963 	 * device.
1964 	 */
1965 	if (count == 0 || count > msix->msix_msgnum)
1966 		return (EINVAL);
1967 
1968 	/* Sanity check the vectors. */
1969 	for (i = 0; i < count; i++)
1970 		if (vectors[i] > msix->msix_alloc)
1971 			return (EINVAL);
1972 
1973 	/*
1974 	 * Make sure there aren't any holes in the vectors to be used.
1975 	 * It's a big pain to support it, and it doesn't really make
1976 	 * sense anyway.  Also, at least one vector must be used.
1977 	 */
1978 	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
1979 	    M_ZERO);
1980 	for (i = 0; i < count; i++)
1981 		if (vectors[i] != 0)
1982 			used[vectors[i] - 1] = 1;
1983 	for (i = 0; i < msix->msix_alloc - 1; i++)
1984 		if (used[i] == 0 && used[i + 1] == 1) {
1985 			free(used, M_DEVBUF);
1986 			return (EINVAL);
1987 		}
1988 	if (used[0] != 1) {
1989 		free(used, M_DEVBUF);
1990 		return (EINVAL);
1991 	}
1992 
1993 	/* Make sure none of the resources are allocated. */
1994 	for (i = 0; i < msix->msix_table_len; i++) {
1995 		if (msix->msix_table[i].mte_vector == 0)
1996 			continue;
1997 		if (msix->msix_table[i].mte_handlers > 0) {
1998 			free(used, M_DEVBUF);
1999 			return (EBUSY);
2000 		}
2001 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2002 		KASSERT(rle != NULL, ("missing resource"));
2003 		if (rle->res != NULL) {
2004 			free(used, M_DEVBUF);
2005 			return (EBUSY);
2006 		}
2007 	}
2008 
2009 	/* Free the existing resource list entries. */
2010 	for (i = 0; i < msix->msix_table_len; i++) {
2011 		if (msix->msix_table[i].mte_vector == 0)
2012 			continue;
2013 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2014 	}
2015 
2016 	/*
2017 	 * Build the new virtual table keeping track of which vectors are
2018 	 * used.
2019 	 */
2020 	free(msix->msix_table, M_DEVBUF);
2021 	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
2022 	    M_DEVBUF, M_WAITOK | M_ZERO);
2023 	for (i = 0; i < count; i++)
2024 		msix->msix_table[i].mte_vector = vectors[i];
2025 	msix->msix_table_len = count;
2026 
2027 	/* Free any unused IRQs and resize the vectors array if necessary. */
2028 	j = msix->msix_alloc - 1;
2029 	if (used[j] == 0) {
2030 		struct msix_vector *vec;
2031 
2032 		while (used[j] == 0) {
2033 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2034 			    msix->msix_vectors[j].mv_irq);
2035 			j--;
2036 		}
2037 		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
2038 		    M_WAITOK);
2039 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2040 		    (j + 1));
2041 		free(msix->msix_vectors, M_DEVBUF);
2042 		msix->msix_vectors = vec;
2043 		msix->msix_alloc = j + 1;
2044 	}
2045 	free(used, M_DEVBUF);
2046 
2047 	/* Map the IRQs onto the rids. */
2048 	for (i = 0; i < count; i++) {
2049 		if (vectors[i] == 0)
2050 			continue;
2051 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2052 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2053 		    irq, 1);
2054 	}
2055 
2056 	if (bootverbose) {
2057 		device_printf(child, "Remapped MSI-X IRQs as: ");
2058 		for (i = 0; i < count; i++) {
2059 			if (i != 0)
2060 				printf(", ");
2061 			if (vectors[i] == 0)
2062 				printf("---");
2063 			else
2064 				printf("%d",
2065 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2066 		}
2067 		printf("\n");
2068 	}
2069 
2070 	return (0);
2071 }
2072 
2073 static int
2074 pci_release_msix(device_t dev, device_t child)
2075 {
2076 	struct pci_devinfo *dinfo = device_get_ivars(child);
2077 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2078 	struct resource_list_entry *rle;
2079 	int i;
2080 
2081 	/* Do we have any messages to release? */
2082 	if (msix->msix_alloc == 0)
2083 		return (ENODEV);
2084 
2085 	/* Make sure none of the resources are allocated. */
2086 	for (i = 0; i < msix->msix_table_len; i++) {
2087 		if (msix->msix_table[i].mte_vector == 0)
2088 			continue;
2089 		if (msix->msix_table[i].mte_handlers > 0)
2090 			return (EBUSY);
2091 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2092 		KASSERT(rle != NULL, ("missing resource"));
2093 		if (rle->res != NULL)
2094 			return (EBUSY);
2095 	}
2096 
2097 	/* Update control register to disable MSI-X. */
2098 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2099 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2100 	    msix->msix_ctrl, 2);
2101 
2102 	/* Free the resource list entries. */
2103 	for (i = 0; i < msix->msix_table_len; i++) {
2104 		if (msix->msix_table[i].mte_vector == 0)
2105 			continue;
2106 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2107 	}
2108 	free(msix->msix_table, M_DEVBUF);
2109 	msix->msix_table_len = 0;
2110 
2111 	/* Release the IRQs. */
2112 	for (i = 0; i < msix->msix_alloc; i++)
2113 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2114 		    msix->msix_vectors[i].mv_irq);
2115 	free(msix->msix_vectors, M_DEVBUF);
2116 	msix->msix_alloc = 0;
2117 	return (0);
2118 }
2119 
2120 /*
2121  * Return the max supported MSI-X messages this device supports.
2122  * Basically, assuming the MD code can alloc messages, this function
2123  * should return the maximum value that pci_alloc_msix() can return.
2124  * Thus, it is subject to the tunables, etc.
2125  */
2126 int
2127 pci_msix_count_method(device_t dev, device_t child)
2128 {
2129 	struct pci_devinfo *dinfo = device_get_ivars(child);
2130 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2131 
2132 	if (pci_do_msix && msix->msix_location != 0)
2133 		return (msix->msix_msgnum);
2134 	return (0);
2135 }
2136 
2137 int
2138 pci_msix_pba_bar_method(device_t dev, device_t child)
2139 {
2140 	struct pci_devinfo *dinfo = device_get_ivars(child);
2141 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2142 
2143 	if (pci_do_msix && msix->msix_location != 0)
2144 		return (msix->msix_pba_bar);
2145 	return (-1);
2146 }
2147 
2148 int
2149 pci_msix_table_bar_method(device_t dev, device_t child)
2150 {
2151 	struct pci_devinfo *dinfo = device_get_ivars(child);
2152 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2153 
2154 	if (pci_do_msix && msix->msix_location != 0)
2155 		return (msix->msix_table_bar);
2156 	return (-1);
2157 }
2158 
2159 /*
2160  * HyperTransport MSI mapping control
2161  */
2162 void
2163 pci_ht_map_msi(device_t dev, uint64_t addr)
2164 {
2165 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2166 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2167 
2168 	if (!ht->ht_msimap)
2169 		return;
2170 
2171 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2172 	    ht->ht_msiaddr >> 20 == addr >> 20) {
2173 		/* Enable MSI -> HT mapping. */
2174 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2175 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2176 		    ht->ht_msictrl, 2);
2177 	}
2178 
2179 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2180 		/* Disable MSI -> HT mapping. */
2181 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2182 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2183 		    ht->ht_msictrl, 2);
2184 	}
2185 }
2186 
2187 int
2188 pci_get_relaxed_ordering_enabled(device_t dev)
2189 {
2190 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2191 	int cap;
2192 	uint16_t val;
2193 
2194 	cap = dinfo->cfg.pcie.pcie_location;
2195 	if (cap == 0)
2196 		return (0);
2197 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2198 	val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
2199 	return (val != 0);
2200 }
2201 
2202 int
2203 pci_get_max_payload(device_t dev)
2204 {
2205 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2206 	int cap;
2207 	uint16_t val;
2208 
2209 	cap = dinfo->cfg.pcie.pcie_location;
2210 	if (cap == 0)
2211 		return (0);
2212 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2213 	val &= PCIEM_CTL_MAX_PAYLOAD;
2214 	val >>= 5;
2215 	return (1 << (val + 7));
2216 }
2217 
2218 int
2219 pci_get_max_read_req(device_t dev)
2220 {
2221 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2222 	int cap;
2223 	uint16_t val;
2224 
2225 	cap = dinfo->cfg.pcie.pcie_location;
2226 	if (cap == 0)
2227 		return (0);
2228 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2229 	val &= PCIEM_CTL_MAX_READ_REQUEST;
2230 	val >>= 12;
2231 	return (1 << (val + 7));
2232 }
2233 
2234 int
2235 pci_set_max_read_req(device_t dev, int size)
2236 {
2237 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2238 	int cap;
2239 	uint16_t val;
2240 
2241 	cap = dinfo->cfg.pcie.pcie_location;
2242 	if (cap == 0)
2243 		return (0);
2244 	if (size < 128)
2245 		size = 128;
2246 	if (size > 4096)
2247 		size = 4096;
2248 	size = (1 << (fls(size) - 1));
2249 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2250 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2251 	val |= (fls(size) - 8) << 12;
2252 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2253 	return (size);
2254 }
2255 
2256 uint32_t
2257 pcie_read_config(device_t dev, int reg, int width)
2258 {
2259 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2260 	int cap;
2261 
2262 	cap = dinfo->cfg.pcie.pcie_location;
2263 	if (cap == 0) {
2264 		if (width == 2)
2265 			return (0xffff);
2266 		return (0xffffffff);
2267 	}
2268 
2269 	return (pci_read_config(dev, cap + reg, width));
2270 }
2271 
2272 void
2273 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2274 {
2275 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2276 	int cap;
2277 
2278 	cap = dinfo->cfg.pcie.pcie_location;
2279 	if (cap == 0)
2280 		return;
2281 	pci_write_config(dev, cap + reg, value, width);
2282 }
2283 
2284 /*
2285  * Adjusts a PCI-e capability register by clearing the bits in mask
2286  * and setting the bits in (value & mask).  Bits not set in mask are
2287  * not adjusted.
2288  *
2289  * Returns the old value on success or all ones on failure.
2290  */
2291 uint32_t
2292 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2293     int width)
2294 {
2295 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2296 	uint32_t old, new;
2297 	int cap;
2298 
2299 	cap = dinfo->cfg.pcie.pcie_location;
2300 	if (cap == 0) {
2301 		if (width == 2)
2302 			return (0xffff);
2303 		return (0xffffffff);
2304 	}
2305 
2306 	old = pci_read_config(dev, cap + reg, width);
2307 	new = old & ~mask;
2308 	new |= (value & mask);
2309 	pci_write_config(dev, cap + reg, new, width);
2310 	return (old);
2311 }
2312 
2313 /*
2314  * Support for MSI message signalled interrupts.
2315  */
2316 void
2317 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2318     uint16_t data)
2319 {
2320 	struct pci_devinfo *dinfo = device_get_ivars(child);
2321 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2322 
2323 	/* Write data and address values. */
2324 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2325 	    address & 0xffffffff, 4);
2326 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2327 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2328 		    address >> 32, 4);
2329 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2330 		    data, 2);
2331 	} else
2332 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2333 		    2);
2334 
2335 	/* Enable MSI in the control register. */
2336 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2337 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2338 	    msi->msi_ctrl, 2);
2339 
2340 	/* Enable MSI -> HT mapping. */
2341 	pci_ht_map_msi(child, address);
2342 }
2343 
2344 void
2345 pci_disable_msi_method(device_t dev, device_t child)
2346 {
2347 	struct pci_devinfo *dinfo = device_get_ivars(child);
2348 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2349 
2350 	/* Disable MSI -> HT mapping. */
2351 	pci_ht_map_msi(child, 0);
2352 
2353 	/* Disable MSI in the control register. */
2354 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2355 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2356 	    msi->msi_ctrl, 2);
2357 }
2358 
2359 /*
2360  * Restore MSI registers during resume.  If MSI is enabled then
2361  * restore the data and address registers in addition to the control
2362  * register.
2363  */
2364 static void
2365 pci_resume_msi(device_t dev)
2366 {
2367 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2368 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2369 	uint64_t address;
2370 	uint16_t data;
2371 
2372 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2373 		address = msi->msi_addr;
2374 		data = msi->msi_data;
2375 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2376 		    address & 0xffffffff, 4);
2377 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2378 			pci_write_config(dev, msi->msi_location +
2379 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2380 			pci_write_config(dev, msi->msi_location +
2381 			    PCIR_MSI_DATA_64BIT, data, 2);
2382 		} else
2383 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2384 			    data, 2);
2385 	}
2386 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2387 	    2);
2388 }
2389 
2390 static int
2391 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2392 {
2393 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2394 	pcicfgregs *cfg = &dinfo->cfg;
2395 	struct resource_list_entry *rle;
2396 	struct msix_table_entry *mte;
2397 	struct msix_vector *mv;
2398 	uint64_t addr;
2399 	uint32_t data;
2400 	int error, i, j;
2401 
2402 	/*
2403 	 * Handle MSI first.  We try to find this IRQ among our list
2404 	 * of MSI IRQs.  If we find it, we request updated address and
2405 	 * data registers and apply the results.
2406 	 */
2407 	if (cfg->msi.msi_alloc > 0) {
2408 		/* If we don't have any active handlers, nothing to do. */
2409 		if (cfg->msi.msi_handlers == 0)
2410 			return (0);
2411 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2412 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2413 			    i + 1);
2414 			if (rle->start == irq) {
2415 				error = PCIB_MAP_MSI(device_get_parent(bus),
2416 				    dev, irq, &addr, &data);
2417 				if (error)
2418 					return (error);
2419 				pci_disable_msi(dev);
2420 				dinfo->cfg.msi.msi_addr = addr;
2421 				dinfo->cfg.msi.msi_data = data;
2422 				pci_enable_msi(dev, addr, data);
2423 				return (0);
2424 			}
2425 		}
2426 		return (ENOENT);
2427 	}
2428 
2429 	/*
2430 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2431 	 * we request the updated mapping info.  If that works, we go
2432 	 * through all the slots that use this IRQ and update them.
2433 	 */
2434 	if (cfg->msix.msix_alloc > 0) {
2435 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2436 			mv = &cfg->msix.msix_vectors[i];
2437 			if (mv->mv_irq == irq) {
2438 				error = PCIB_MAP_MSI(device_get_parent(bus),
2439 				    dev, irq, &addr, &data);
2440 				if (error)
2441 					return (error);
2442 				mv->mv_address = addr;
2443 				mv->mv_data = data;
2444 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2445 					mte = &cfg->msix.msix_table[j];
2446 					if (mte->mte_vector != i + 1)
2447 						continue;
2448 					if (mte->mte_handlers == 0)
2449 						continue;
2450 					pci_mask_msix(dev, j);
2451 					pci_enable_msix(dev, j, addr, data);
2452 					pci_unmask_msix(dev, j);
2453 				}
2454 			}
2455 		}
2456 		return (ENOENT);
2457 	}
2458 
2459 	return (ENOENT);
2460 }
2461 
2462 /*
2463  * Returns true if the specified device is blacklisted because MSI
2464  * doesn't work.
2465  */
2466 int
2467 pci_msi_device_blacklisted(device_t dev)
2468 {
2469 
2470 	if (!pci_honor_msi_blacklist)
2471 		return (0);
2472 
2473 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2474 }
2475 
2476 /*
2477  * Determine if MSI is blacklisted globally on this system.  Currently,
2478  * we just check for blacklisted chipsets as represented by the
2479  * host-PCI bridge at device 0:0:0.  In the future, it may become
2480  * necessary to check other system attributes, such as the kenv values
2481  * that give the motherboard manufacturer and model number.
2482  */
2483 static int
2484 pci_msi_blacklisted(void)
2485 {
2486 	device_t dev;
2487 
2488 	if (!pci_honor_msi_blacklist)
2489 		return (0);
2490 
2491 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2492 	if (!(pcie_chipset || pcix_chipset)) {
2493 		if (vm_guest != VM_GUEST_NO) {
2494 			/*
2495 			 * Whitelist older chipsets in virtual
2496 			 * machines known to support MSI.
2497 			 */
2498 			dev = pci_find_bsf(0, 0, 0);
2499 			if (dev != NULL)
2500 				return (!pci_has_quirk(pci_get_devid(dev),
2501 					PCI_QUIRK_ENABLE_MSI_VM));
2502 		}
2503 		return (1);
2504 	}
2505 
2506 	dev = pci_find_bsf(0, 0, 0);
2507 	if (dev != NULL)
2508 		return (pci_msi_device_blacklisted(dev));
2509 	return (0);
2510 }
2511 
2512 /*
2513  * Returns true if the specified device is blacklisted because MSI-X
2514  * doesn't work.  Note that this assumes that if MSI doesn't work,
2515  * MSI-X doesn't either.
2516  */
2517 int
2518 pci_msix_device_blacklisted(device_t dev)
2519 {
2520 
2521 	if (!pci_honor_msi_blacklist)
2522 		return (0);
2523 
2524 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2525 		return (1);
2526 
2527 	return (pci_msi_device_blacklisted(dev));
2528 }
2529 
2530 /*
2531  * Determine if MSI-X is blacklisted globally on this system.  If MSI
2532  * is blacklisted, assume that MSI-X is as well.  Check for additional
2533  * chipsets where MSI works but MSI-X does not.
2534  */
2535 static int
2536 pci_msix_blacklisted(void)
2537 {
2538 	device_t dev;
2539 
2540 	if (!pci_honor_msi_blacklist)
2541 		return (0);
2542 
2543 	dev = pci_find_bsf(0, 0, 0);
2544 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2545 	    PCI_QUIRK_DISABLE_MSIX))
2546 		return (1);
2547 
2548 	return (pci_msi_blacklisted());
2549 }
2550 
2551 /*
2552  * Attempt to allocate *count MSI messages.  The actual number allocated is
2553  * returned in *count.  After this function returns, each message will be
2554  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2555  */
2556 int
2557 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2558 {
2559 	struct pci_devinfo *dinfo = device_get_ivars(child);
2560 	pcicfgregs *cfg = &dinfo->cfg;
2561 	struct resource_list_entry *rle;
2562 	int actual, error, i, irqs[32];
2563 	uint16_t ctrl;
2564 
2565 	/* Don't let count == 0 get us into trouble. */
2566 	if (*count == 0)
2567 		return (EINVAL);
2568 
2569 	/* If rid 0 is allocated, then fail. */
2570 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2571 	if (rle != NULL && rle->res != NULL)
2572 		return (ENXIO);
2573 
2574 	/* Already have allocated messages? */
2575 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2576 		return (ENXIO);
2577 
2578 	/* If MSI is blacklisted for this system, fail. */
2579 	if (pci_msi_blacklisted())
2580 		return (ENXIO);
2581 
2582 	/* MSI capability present? */
2583 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2584 		return (ENODEV);
2585 
2586 	if (bootverbose)
2587 		device_printf(child,
2588 		    "attempting to allocate %d MSI vectors (%d supported)\n",
2589 		    *count, cfg->msi.msi_msgnum);
2590 
2591 	/* Don't ask for more than the device supports. */
2592 	actual = min(*count, cfg->msi.msi_msgnum);
2593 
2594 	/* Don't ask for more than 32 messages. */
2595 	actual = min(actual, 32);
2596 
2597 	/* MSI requires power of 2 number of messages. */
2598 	if (!powerof2(actual))
2599 		return (EINVAL);
2600 
2601 	for (;;) {
2602 		/* Try to allocate N messages. */
2603 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2604 		    actual, irqs);
2605 		if (error == 0)
2606 			break;
2607 		if (actual == 1)
2608 			return (error);
2609 
2610 		/* Try N / 2. */
2611 		actual >>= 1;
2612 	}
2613 
2614 	/*
2615 	 * We now have N actual messages mapped onto SYS_RES_IRQ
2616 	 * resources in the irqs[] array, so add new resources
2617 	 * starting at rid 1.
2618 	 */
2619 	for (i = 0; i < actual; i++)
2620 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2621 		    irqs[i], irqs[i], 1);
2622 
2623 	if (bootverbose) {
2624 		if (actual == 1)
2625 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2626 		else {
2627 			int run;
2628 
2629 			/*
2630 			 * Be fancy and try to print contiguous runs
2631 			 * of IRQ values as ranges.  'run' is true if
2632 			 * we are in a range.
2633 			 */
2634 			device_printf(child, "using IRQs %d", irqs[0]);
2635 			run = 0;
2636 			for (i = 1; i < actual; i++) {
2637 				/* Still in a run? */
2638 				if (irqs[i] == irqs[i - 1] + 1) {
2639 					run = 1;
2640 					continue;
2641 				}
2642 
2643 				/* Finish previous range. */
2644 				if (run) {
2645 					printf("-%d", irqs[i - 1]);
2646 					run = 0;
2647 				}
2648 
2649 				/* Start new range. */
2650 				printf(",%d", irqs[i]);
2651 			}
2652 
2653 			/* Unfinished range? */
2654 			if (run)
2655 				printf("-%d", irqs[actual - 1]);
2656 			printf(" for MSI\n");
2657 		}
2658 	}
2659 
2660 	/* Update control register with actual count. */
2661 	ctrl = cfg->msi.msi_ctrl;
2662 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2663 	ctrl |= (ffs(actual) - 1) << 4;
2664 	cfg->msi.msi_ctrl = ctrl;
2665 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2666 
2667 	/* Update counts of alloc'd messages. */
2668 	cfg->msi.msi_alloc = actual;
2669 	cfg->msi.msi_handlers = 0;
2670 	*count = actual;
2671 	return (0);
2672 }
2673 
2674 /* Release the MSI messages associated with this device. */
2675 int
2676 pci_release_msi_method(device_t dev, device_t child)
2677 {
2678 	struct pci_devinfo *dinfo = device_get_ivars(child);
2679 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2680 	struct resource_list_entry *rle;
2681 	int error, i, irqs[32];
2682 
2683 	/* Try MSI-X first. */
2684 	error = pci_release_msix(dev, child);
2685 	if (error != ENODEV)
2686 		return (error);
2687 
2688 	/* Do we have any messages to release? */
2689 	if (msi->msi_alloc == 0)
2690 		return (ENODEV);
2691 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2692 
2693 	/* Make sure none of the resources are allocated. */
2694 	if (msi->msi_handlers > 0)
2695 		return (EBUSY);
2696 	for (i = 0; i < msi->msi_alloc; i++) {
2697 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2698 		KASSERT(rle != NULL, ("missing MSI resource"));
2699 		if (rle->res != NULL)
2700 			return (EBUSY);
2701 		irqs[i] = rle->start;
2702 	}
2703 
2704 	/* Update control register with 0 count. */
2705 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2706 	    ("%s: MSI still enabled", __func__));
2707 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2708 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2709 	    msi->msi_ctrl, 2);
2710 
2711 	/* Release the messages. */
2712 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2713 	for (i = 0; i < msi->msi_alloc; i++)
2714 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2715 
2716 	/* Update alloc count. */
2717 	msi->msi_alloc = 0;
2718 	msi->msi_addr = 0;
2719 	msi->msi_data = 0;
2720 	return (0);
2721 }
2722 
2723 /*
2724  * Return the max supported MSI messages this device supports.
2725  * Basically, assuming the MD code can alloc messages, this function
2726  * should return the maximum value that pci_alloc_msi() can return.
2727  * Thus, it is subject to the tunables, etc.
2728  */
2729 int
2730 pci_msi_count_method(device_t dev, device_t child)
2731 {
2732 	struct pci_devinfo *dinfo = device_get_ivars(child);
2733 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2734 
2735 	if (pci_do_msi && msi->msi_location != 0)
2736 		return (msi->msi_msgnum);
2737 	return (0);
2738 }
2739 
2740 /* free pcicfgregs structure and all depending data structures */
2741 
2742 int
2743 pci_freecfg(struct pci_devinfo *dinfo)
2744 {
2745 	struct devlist *devlist_head;
2746 	struct pci_map *pm, *next;
2747 	int i;
2748 
2749 	devlist_head = &pci_devq;
2750 
2751 	if (dinfo->cfg.vpd.vpd_reg) {
2752 		free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
2753 		for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
2754 			free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
2755 		free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
2756 		for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
2757 			free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
2758 		free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
2759 	}
2760 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2761 		free(pm, M_DEVBUF);
2762 	}
2763 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2764 	free(dinfo, M_DEVBUF);
2765 
2766 	/* increment the generation count */
2767 	pci_generation++;
2768 
2769 	/* we're losing one device */
2770 	pci_numdevs--;
2771 	return (0);
2772 }
2773 
2774 /*
2775  * PCI power manangement
2776  */
2777 int
2778 pci_set_powerstate_method(device_t dev, device_t child, int state)
2779 {
2780 	struct pci_devinfo *dinfo = device_get_ivars(child);
2781 	pcicfgregs *cfg = &dinfo->cfg;
2782 	uint16_t status;
2783 	int oldstate, highest, delay;
2784 
2785 	if (cfg->pp.pp_cap == 0)
2786 		return (EOPNOTSUPP);
2787 
2788 	/*
2789 	 * Optimize a no state change request away.  While it would be OK to
2790 	 * write to the hardware in theory, some devices have shown odd
2791 	 * behavior when going from D3 -> D3.
2792 	 */
2793 	oldstate = pci_get_powerstate(child);
2794 	if (oldstate == state)
2795 		return (0);
2796 
2797 	/*
2798 	 * The PCI power management specification states that after a state
2799 	 * transition between PCI power states, system software must
2800 	 * guarantee a minimal delay before the function accesses the device.
2801 	 * Compute the worst case delay that we need to guarantee before we
2802 	 * access the device.  Many devices will be responsive much more
2803 	 * quickly than this delay, but there are some that don't respond
2804 	 * instantly to state changes.  Transitions to/from D3 state require
2805 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2806 	 * is done below with DELAY rather than a sleeper function because
2807 	 * this function can be called from contexts where we cannot sleep.
2808 	 */
2809 	highest = (oldstate > state) ? oldstate : state;
2810 	if (highest == PCI_POWERSTATE_D3)
2811 	    delay = 10000;
2812 	else if (highest == PCI_POWERSTATE_D2)
2813 	    delay = 200;
2814 	else
2815 	    delay = 0;
2816 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2817 	    & ~PCIM_PSTAT_DMASK;
2818 	switch (state) {
2819 	case PCI_POWERSTATE_D0:
2820 		status |= PCIM_PSTAT_D0;
2821 		break;
2822 	case PCI_POWERSTATE_D1:
2823 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2824 			return (EOPNOTSUPP);
2825 		status |= PCIM_PSTAT_D1;
2826 		break;
2827 	case PCI_POWERSTATE_D2:
2828 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2829 			return (EOPNOTSUPP);
2830 		status |= PCIM_PSTAT_D2;
2831 		break;
2832 	case PCI_POWERSTATE_D3:
2833 		status |= PCIM_PSTAT_D3;
2834 		break;
2835 	default:
2836 		return (EINVAL);
2837 	}
2838 
2839 	if (bootverbose)
2840 		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2841 		    state);
2842 
2843 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2844 	if (delay)
2845 		DELAY(delay);
2846 	return (0);
2847 }
2848 
2849 int
2850 pci_get_powerstate_method(device_t dev, device_t child)
2851 {
2852 	struct pci_devinfo *dinfo = device_get_ivars(child);
2853 	pcicfgregs *cfg = &dinfo->cfg;
2854 	uint16_t status;
2855 	int result;
2856 
2857 	if (cfg->pp.pp_cap != 0) {
2858 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2859 		switch (status & PCIM_PSTAT_DMASK) {
2860 		case PCIM_PSTAT_D0:
2861 			result = PCI_POWERSTATE_D0;
2862 			break;
2863 		case PCIM_PSTAT_D1:
2864 			result = PCI_POWERSTATE_D1;
2865 			break;
2866 		case PCIM_PSTAT_D2:
2867 			result = PCI_POWERSTATE_D2;
2868 			break;
2869 		case PCIM_PSTAT_D3:
2870 			result = PCI_POWERSTATE_D3;
2871 			break;
2872 		default:
2873 			result = PCI_POWERSTATE_UNKNOWN;
2874 			break;
2875 		}
2876 	} else {
2877 		/* No support, device is always at D0 */
2878 		result = PCI_POWERSTATE_D0;
2879 	}
2880 	return (result);
2881 }
2882 
2883 /*
2884  * Some convenience functions for PCI device drivers.
2885  */
2886 
2887 static __inline void
2888 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2889 {
2890 	uint16_t	command;
2891 
2892 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2893 	command |= bit;
2894 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2895 }
2896 
2897 static __inline void
2898 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2899 {
2900 	uint16_t	command;
2901 
2902 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2903 	command &= ~bit;
2904 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2905 }
2906 
2907 int
2908 pci_enable_busmaster_method(device_t dev, device_t child)
2909 {
2910 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2911 	return (0);
2912 }
2913 
2914 int
2915 pci_disable_busmaster_method(device_t dev, device_t child)
2916 {
2917 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2918 	return (0);
2919 }
2920 
2921 int
2922 pci_enable_io_method(device_t dev, device_t child, int space)
2923 {
2924 	uint16_t bit;
2925 
2926 	switch(space) {
2927 	case SYS_RES_IOPORT:
2928 		bit = PCIM_CMD_PORTEN;
2929 		break;
2930 	case SYS_RES_MEMORY:
2931 		bit = PCIM_CMD_MEMEN;
2932 		break;
2933 	default:
2934 		return (EINVAL);
2935 	}
2936 	pci_set_command_bit(dev, child, bit);
2937 	return (0);
2938 }
2939 
2940 int
2941 pci_disable_io_method(device_t dev, device_t child, int space)
2942 {
2943 	uint16_t bit;
2944 
2945 	switch(space) {
2946 	case SYS_RES_IOPORT:
2947 		bit = PCIM_CMD_PORTEN;
2948 		break;
2949 	case SYS_RES_MEMORY:
2950 		bit = PCIM_CMD_MEMEN;
2951 		break;
2952 	default:
2953 		return (EINVAL);
2954 	}
2955 	pci_clear_command_bit(dev, child, bit);
2956 	return (0);
2957 }
2958 
2959 /*
2960  * New style pci driver.  Parent device is either a pci-host-bridge or a
2961  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
2962  */
2963 
2964 void
2965 pci_print_verbose(struct pci_devinfo *dinfo)
2966 {
2967 
2968 	if (bootverbose) {
2969 		pcicfgregs *cfg = &dinfo->cfg;
2970 
2971 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2972 		    cfg->vendor, cfg->device, cfg->revid);
2973 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2974 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
2975 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2976 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2977 		    cfg->mfdev);
2978 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2979 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2980 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2981 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2982 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2983 		if (cfg->intpin > 0)
2984 			printf("\tintpin=%c, irq=%d\n",
2985 			    cfg->intpin +'a' -1, cfg->intline);
2986 		if (cfg->pp.pp_cap) {
2987 			uint16_t status;
2988 
2989 			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
2990 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
2991 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
2992 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
2993 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
2994 			    status & PCIM_PSTAT_DMASK);
2995 		}
2996 		if (cfg->msi.msi_location) {
2997 			int ctrl;
2998 
2999 			ctrl = cfg->msi.msi_ctrl;
3000 			printf("\tMSI supports %d message%s%s%s\n",
3001 			    cfg->msi.msi_msgnum,
3002 			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
3003 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
3004 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
3005 		}
3006 		if (cfg->msix.msix_location) {
3007 			printf("\tMSI-X supports %d message%s ",
3008 			    cfg->msix.msix_msgnum,
3009 			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
3010 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
3011 				printf("in map 0x%x\n",
3012 				    cfg->msix.msix_table_bar);
3013 			else
3014 				printf("in maps 0x%x and 0x%x\n",
3015 				    cfg->msix.msix_table_bar,
3016 				    cfg->msix.msix_pba_bar);
3017 		}
3018 	}
3019 }
3020 
3021 static int
3022 pci_porten(device_t dev)
3023 {
3024 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3025 }
3026 
3027 static int
3028 pci_memen(device_t dev)
3029 {
3030 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3031 }
3032 
3033 void
3034 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3035     int *bar64)
3036 {
3037 	struct pci_devinfo *dinfo;
3038 	pci_addr_t map, testval;
3039 	int ln2range;
3040 	uint16_t cmd;
3041 
3042 	/*
3043 	 * The device ROM BAR is special.  It is always a 32-bit
3044 	 * memory BAR.  Bit 0 is special and should not be set when
3045 	 * sizing the BAR.
3046 	 */
3047 	dinfo = device_get_ivars(dev);
3048 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3049 		map = pci_read_config(dev, reg, 4);
3050 		pci_write_config(dev, reg, 0xfffffffe, 4);
3051 		testval = pci_read_config(dev, reg, 4);
3052 		pci_write_config(dev, reg, map, 4);
3053 		*mapp = map;
3054 		*testvalp = testval;
3055 		if (bar64 != NULL)
3056 			*bar64 = 0;
3057 		return;
3058 	}
3059 
3060 	map = pci_read_config(dev, reg, 4);
3061 	ln2range = pci_maprange(map);
3062 	if (ln2range == 64)
3063 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3064 
3065 	/*
3066 	 * Disable decoding via the command register before
3067 	 * determining the BAR's length since we will be placing it in
3068 	 * a weird state.
3069 	 */
3070 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3071 	pci_write_config(dev, PCIR_COMMAND,
3072 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3073 
3074 	/*
3075 	 * Determine the BAR's length by writing all 1's.  The bottom
3076 	 * log_2(size) bits of the BAR will stick as 0 when we read
3077 	 * the value back.
3078 	 *
3079 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3080 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3081 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3082 	 *
3083 	 * Writes to both registers must be performed before attempting to
3084 	 * read back the size value.
3085 	 */
3086 	testval = 0;
3087 	pci_write_config(dev, reg, 0xffffffff, 4);
3088 	if (ln2range == 64) {
3089 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3090 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3091 	}
3092 	testval |= pci_read_config(dev, reg, 4);
3093 
3094 	/*
3095 	 * Restore the original value of the BAR.  We may have reprogrammed
3096 	 * the BAR of the low-level console device and when booting verbose,
3097 	 * we need the console device addressable.
3098 	 */
3099 	pci_write_config(dev, reg, map, 4);
3100 	if (ln2range == 64)
3101 		pci_write_config(dev, reg + 4, map >> 32, 4);
3102 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3103 
3104 	*mapp = map;
3105 	*testvalp = testval;
3106 	if (bar64 != NULL)
3107 		*bar64 = (ln2range == 64);
3108 }
3109 
3110 static void
3111 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3112 {
3113 	struct pci_devinfo *dinfo;
3114 	int ln2range;
3115 
3116 	/* The device ROM BAR is always a 32-bit memory BAR. */
3117 	dinfo = device_get_ivars(dev);
3118 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3119 		ln2range = 32;
3120 	else
3121 		ln2range = pci_maprange(pm->pm_value);
3122 	pci_write_config(dev, pm->pm_reg, base, 4);
3123 	if (ln2range == 64)
3124 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3125 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3126 	if (ln2range == 64)
3127 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3128 		    pm->pm_reg + 4, 4) << 32;
3129 }
3130 
3131 struct pci_map *
3132 pci_find_bar(device_t dev, int reg)
3133 {
3134 	struct pci_devinfo *dinfo;
3135 	struct pci_map *pm;
3136 
3137 	dinfo = device_get_ivars(dev);
3138 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3139 		if (pm->pm_reg == reg)
3140 			return (pm);
3141 	}
3142 	return (NULL);
3143 }
3144 
3145 int
3146 pci_bar_enabled(device_t dev, struct pci_map *pm)
3147 {
3148 	struct pci_devinfo *dinfo;
3149 	uint16_t cmd;
3150 
3151 	dinfo = device_get_ivars(dev);
3152 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3153 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3154 		return (0);
3155 #ifdef PCI_IOV
3156 	if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
3157 		struct pcicfg_iov *iov;
3158 
3159 		iov = dinfo->cfg.iov;
3160 		cmd = pci_read_config(iov->iov_pf,
3161 		    iov->iov_pos + PCIR_SRIOV_CTL, 2);
3162 		return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
3163 	}
3164 #endif
3165 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3166 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3167 		return ((cmd & PCIM_CMD_MEMEN) != 0);
3168 	else
3169 		return ((cmd & PCIM_CMD_PORTEN) != 0);
3170 }
3171 
3172 struct pci_map *
3173 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3174 {
3175 	struct pci_devinfo *dinfo;
3176 	struct pci_map *pm, *prev;
3177 
3178 	dinfo = device_get_ivars(dev);
3179 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3180 	pm->pm_reg = reg;
3181 	pm->pm_value = value;
3182 	pm->pm_size = size;
3183 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3184 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3185 		    reg));
3186 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3187 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3188 			break;
3189 	}
3190 	if (prev != NULL)
3191 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3192 	else
3193 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3194 	return (pm);
3195 }
3196 
3197 static void
3198 pci_restore_bars(device_t dev)
3199 {
3200 	struct pci_devinfo *dinfo;
3201 	struct pci_map *pm;
3202 	int ln2range;
3203 
3204 	dinfo = device_get_ivars(dev);
3205 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3206 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3207 			ln2range = 32;
3208 		else
3209 			ln2range = pci_maprange(pm->pm_value);
3210 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3211 		if (ln2range == 64)
3212 			pci_write_config(dev, pm->pm_reg + 4,
3213 			    pm->pm_value >> 32, 4);
3214 	}
3215 }
3216 
3217 /*
3218  * Add a resource based on a pci map register. Return 1 if the map
3219  * register is a 32bit map register or 2 if it is a 64bit register.
3220  */
3221 static int
3222 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3223     int force, int prefetch)
3224 {
3225 	struct pci_map *pm;
3226 	pci_addr_t base, map, testval;
3227 	pci_addr_t start, end, count;
3228 	int barlen, basezero, flags, maprange, mapsize, type;
3229 	uint16_t cmd;
3230 	struct resource *res;
3231 
3232 	/*
3233 	 * The BAR may already exist if the device is a CardBus card
3234 	 * whose CIS is stored in this BAR.
3235 	 */
3236 	pm = pci_find_bar(dev, reg);
3237 	if (pm != NULL) {
3238 		maprange = pci_maprange(pm->pm_value);
3239 		barlen = maprange == 64 ? 2 : 1;
3240 		return (barlen);
3241 	}
3242 
3243 	pci_read_bar(dev, reg, &map, &testval, NULL);
3244 	if (PCI_BAR_MEM(map)) {
3245 		type = SYS_RES_MEMORY;
3246 		if (map & PCIM_BAR_MEM_PREFETCH)
3247 			prefetch = 1;
3248 	} else
3249 		type = SYS_RES_IOPORT;
3250 	mapsize = pci_mapsize(testval);
3251 	base = pci_mapbase(map);
3252 #ifdef __PCI_BAR_ZERO_VALID
3253 	basezero = 0;
3254 #else
3255 	basezero = base == 0;
3256 #endif
3257 	maprange = pci_maprange(map);
3258 	barlen = maprange == 64 ? 2 : 1;
3259 
3260 	/*
3261 	 * For I/O registers, if bottom bit is set, and the next bit up
3262 	 * isn't clear, we know we have a BAR that doesn't conform to the
3263 	 * spec, so ignore it.  Also, sanity check the size of the data
3264 	 * areas to the type of memory involved.  Memory must be at least
3265 	 * 16 bytes in size, while I/O ranges must be at least 4.
3266 	 */
3267 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3268 		return (barlen);
3269 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3270 	    (type == SYS_RES_IOPORT && mapsize < 2))
3271 		return (barlen);
3272 
3273 	/* Save a record of this BAR. */
3274 	pm = pci_add_bar(dev, reg, map, mapsize);
3275 	if (bootverbose) {
3276 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3277 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3278 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3279 			printf(", port disabled\n");
3280 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3281 			printf(", memory disabled\n");
3282 		else
3283 			printf(", enabled\n");
3284 	}
3285 
3286 	/*
3287 	 * If base is 0, then we have problems if this architecture does
3288 	 * not allow that.  It is best to ignore such entries for the
3289 	 * moment.  These will be allocated later if the driver specifically
3290 	 * requests them.  However, some removable buses look better when
3291 	 * all resources are allocated, so allow '0' to be overriden.
3292 	 *
3293 	 * Similarly treat maps whose values is the same as the test value
3294 	 * read back.  These maps have had all f's written to them by the
3295 	 * BIOS in an attempt to disable the resources.
3296 	 */
3297 	if (!force && (basezero || map == testval))
3298 		return (barlen);
3299 	if ((u_long)base != base) {
3300 		device_printf(bus,
3301 		    "pci%d:%d:%d:%d bar %#x too many address bits",
3302 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3303 		    pci_get_function(dev), reg);
3304 		return (barlen);
3305 	}
3306 
3307 	/*
3308 	 * This code theoretically does the right thing, but has
3309 	 * undesirable side effects in some cases where peripherals
3310 	 * respond oddly to having these bits enabled.  Let the user
3311 	 * be able to turn them off (since pci_enable_io_modes is 1 by
3312 	 * default).
3313 	 */
3314 	if (pci_enable_io_modes) {
3315 		/* Turn on resources that have been left off by a lazy BIOS */
3316 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3317 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3318 			cmd |= PCIM_CMD_PORTEN;
3319 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3320 		}
3321 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3322 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3323 			cmd |= PCIM_CMD_MEMEN;
3324 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3325 		}
3326 	} else {
3327 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3328 			return (barlen);
3329 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3330 			return (barlen);
3331 	}
3332 
3333 	count = (pci_addr_t)1 << mapsize;
3334 	flags = RF_ALIGNMENT_LOG2(mapsize);
3335 	if (prefetch)
3336 		flags |= RF_PREFETCHABLE;
3337 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3338 		start = 0;	/* Let the parent decide. */
3339 		end = ~0;
3340 	} else {
3341 		start = base;
3342 		end = base + count - 1;
3343 	}
3344 	resource_list_add(rl, type, reg, start, end, count);
3345 
3346 	/*
3347 	 * Try to allocate the resource for this BAR from our parent
3348 	 * so that this resource range is already reserved.  The
3349 	 * driver for this device will later inherit this resource in
3350 	 * pci_alloc_resource().
3351 	 */
3352 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3353 	    flags);
3354 	if ((pci_do_realloc_bars
3355 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3356 	    && res == NULL && (start != 0 || end != ~0)) {
3357 		/*
3358 		 * If the allocation fails, try to allocate a resource for
3359 		 * this BAR using any available range.  The firmware felt
3360 		 * it was important enough to assign a resource, so don't
3361 		 * disable decoding if we can help it.
3362 		 */
3363 		resource_list_delete(rl, type, reg);
3364 		resource_list_add(rl, type, reg, 0, ~0, count);
3365 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3366 		    count, flags);
3367 	}
3368 	if (res == NULL) {
3369 		/*
3370 		 * If the allocation fails, delete the resource list entry
3371 		 * and disable decoding for this device.
3372 		 *
3373 		 * If the driver requests this resource in the future,
3374 		 * pci_reserve_map() will try to allocate a fresh
3375 		 * resource range.
3376 		 */
3377 		resource_list_delete(rl, type, reg);
3378 		pci_disable_io(dev, type);
3379 		if (bootverbose)
3380 			device_printf(bus,
3381 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3382 			    pci_get_domain(dev), pci_get_bus(dev),
3383 			    pci_get_slot(dev), pci_get_function(dev), reg);
3384 	} else {
3385 		start = rman_get_start(res);
3386 		pci_write_bar(dev, pm, start);
3387 	}
3388 	return (barlen);
3389 }
3390 
3391 /*
3392  * For ATA devices we need to decide early what addressing mode to use.
3393  * Legacy demands that the primary and secondary ATA ports sits on the
3394  * same addresses that old ISA hardware did. This dictates that we use
3395  * those addresses and ignore the BAR's if we cannot set PCI native
3396  * addressing mode.
3397  */
3398 static void
3399 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3400     uint32_t prefetchmask)
3401 {
3402 	int rid, type, progif;
3403 #if 0
3404 	/* if this device supports PCI native addressing use it */
3405 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3406 	if ((progif & 0x8a) == 0x8a) {
3407 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3408 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3409 			printf("Trying ATA native PCI addressing mode\n");
3410 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3411 		}
3412 	}
3413 #endif
3414 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3415 	type = SYS_RES_IOPORT;
3416 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3417 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3418 		    prefetchmask & (1 << 0));
3419 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3420 		    prefetchmask & (1 << 1));
3421 	} else {
3422 		rid = PCIR_BAR(0);
3423 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3424 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3425 		    0x1f7, 8, 0);
3426 		rid = PCIR_BAR(1);
3427 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3428 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3429 		    0x3f6, 1, 0);
3430 	}
3431 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3432 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3433 		    prefetchmask & (1 << 2));
3434 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3435 		    prefetchmask & (1 << 3));
3436 	} else {
3437 		rid = PCIR_BAR(2);
3438 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3439 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3440 		    0x177, 8, 0);
3441 		rid = PCIR_BAR(3);
3442 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3443 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3444 		    0x376, 1, 0);
3445 	}
3446 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3447 	    prefetchmask & (1 << 4));
3448 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3449 	    prefetchmask & (1 << 5));
3450 }
3451 
3452 static void
3453 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3454 {
3455 	struct pci_devinfo *dinfo = device_get_ivars(dev);
3456 	pcicfgregs *cfg = &dinfo->cfg;
3457 	char tunable_name[64];
3458 	int irq;
3459 
3460 	/* Has to have an intpin to have an interrupt. */
3461 	if (cfg->intpin == 0)
3462 		return;
3463 
3464 	/* Let the user override the IRQ with a tunable. */
3465 	irq = PCI_INVALID_IRQ;
3466 	snprintf(tunable_name, sizeof(tunable_name),
3467 	    "hw.pci%d.%d.%d.INT%c.irq",
3468 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3469 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3470 		irq = PCI_INVALID_IRQ;
3471 
3472 	/*
3473 	 * If we didn't get an IRQ via the tunable, then we either use the
3474 	 * IRQ value in the intline register or we ask the bus to route an
3475 	 * interrupt for us.  If force_route is true, then we only use the
3476 	 * value in the intline register if the bus was unable to assign an
3477 	 * IRQ.
3478 	 */
3479 	if (!PCI_INTERRUPT_VALID(irq)) {
3480 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3481 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3482 		if (!PCI_INTERRUPT_VALID(irq))
3483 			irq = cfg->intline;
3484 	}
3485 
3486 	/* If after all that we don't have an IRQ, just bail. */
3487 	if (!PCI_INTERRUPT_VALID(irq))
3488 		return;
3489 
3490 	/* Update the config register if it changed. */
3491 	if (irq != cfg->intline) {
3492 		cfg->intline = irq;
3493 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3494 	}
3495 
3496 	/* Add this IRQ as rid 0 interrupt resource. */
3497 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3498 }
3499 
3500 /* Perform early OHCI takeover from SMM. */
3501 static void
3502 ohci_early_takeover(device_t self)
3503 {
3504 	struct resource *res;
3505 	uint32_t ctl;
3506 	int rid;
3507 	int i;
3508 
3509 	rid = PCIR_BAR(0);
3510 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3511 	if (res == NULL)
3512 		return;
3513 
3514 	ctl = bus_read_4(res, OHCI_CONTROL);
3515 	if (ctl & OHCI_IR) {
3516 		if (bootverbose)
3517 			printf("ohci early: "
3518 			    "SMM active, request owner change\n");
3519 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3520 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3521 			DELAY(1000);
3522 			ctl = bus_read_4(res, OHCI_CONTROL);
3523 		}
3524 		if (ctl & OHCI_IR) {
3525 			if (bootverbose)
3526 				printf("ohci early: "
3527 				    "SMM does not respond, resetting\n");
3528 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3529 		}
3530 		/* Disable interrupts */
3531 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3532 	}
3533 
3534 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3535 }
3536 
3537 /* Perform early UHCI takeover from SMM. */
3538 static void
3539 uhci_early_takeover(device_t self)
3540 {
3541 	struct resource *res;
3542 	int rid;
3543 
3544 	/*
3545 	 * Set the PIRQD enable bit and switch off all the others. We don't
3546 	 * want legacy support to interfere with us XXX Does this also mean
3547 	 * that the BIOS won't touch the keyboard anymore if it is connected
3548 	 * to the ports of the root hub?
3549 	 */
3550 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3551 
3552 	/* Disable interrupts */
3553 	rid = PCI_UHCI_BASE_REG;
3554 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3555 	if (res != NULL) {
3556 		bus_write_2(res, UHCI_INTR, 0);
3557 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3558 	}
3559 }
3560 
3561 /* Perform early EHCI takeover from SMM. */
3562 static void
3563 ehci_early_takeover(device_t self)
3564 {
3565 	struct resource *res;
3566 	uint32_t cparams;
3567 	uint32_t eec;
3568 	uint8_t eecp;
3569 	uint8_t bios_sem;
3570 	uint8_t offs;
3571 	int rid;
3572 	int i;
3573 
3574 	rid = PCIR_BAR(0);
3575 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3576 	if (res == NULL)
3577 		return;
3578 
3579 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3580 
3581 	/* Synchronise with the BIOS if it owns the controller. */
3582 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3583 	    eecp = EHCI_EECP_NEXT(eec)) {
3584 		eec = pci_read_config(self, eecp, 4);
3585 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3586 			continue;
3587 		}
3588 		bios_sem = pci_read_config(self, eecp +
3589 		    EHCI_LEGSUP_BIOS_SEM, 1);
3590 		if (bios_sem == 0) {
3591 			continue;
3592 		}
3593 		if (bootverbose)
3594 			printf("ehci early: "
3595 			    "SMM active, request owner change\n");
3596 
3597 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3598 
3599 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3600 			DELAY(1000);
3601 			bios_sem = pci_read_config(self, eecp +
3602 			    EHCI_LEGSUP_BIOS_SEM, 1);
3603 		}
3604 
3605 		if (bios_sem != 0) {
3606 			if (bootverbose)
3607 				printf("ehci early: "
3608 				    "SMM does not respond\n");
3609 		}
3610 		/* Disable interrupts */
3611 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3612 		bus_write_4(res, offs + EHCI_USBINTR, 0);
3613 	}
3614 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3615 }
3616 
3617 /* Perform early XHCI takeover from SMM. */
3618 static void
3619 xhci_early_takeover(device_t self)
3620 {
3621 	struct resource *res;
3622 	uint32_t cparams;
3623 	uint32_t eec;
3624 	uint8_t eecp;
3625 	uint8_t bios_sem;
3626 	uint8_t offs;
3627 	int rid;
3628 	int i;
3629 
3630 	rid = PCIR_BAR(0);
3631 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3632 	if (res == NULL)
3633 		return;
3634 
3635 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3636 
3637 	eec = -1;
3638 
3639 	/* Synchronise with the BIOS if it owns the controller. */
3640 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3641 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3642 		eec = bus_read_4(res, eecp);
3643 
3644 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3645 			continue;
3646 
3647 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3648 		if (bios_sem == 0)
3649 			continue;
3650 
3651 		if (bootverbose)
3652 			printf("xhci early: "
3653 			    "SMM active, request owner change\n");
3654 
3655 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3656 
3657 		/* wait a maximum of 5 second */
3658 
3659 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3660 			DELAY(1000);
3661 			bios_sem = bus_read_1(res, eecp +
3662 			    XHCI_XECP_BIOS_SEM);
3663 		}
3664 
3665 		if (bios_sem != 0) {
3666 			if (bootverbose)
3667 				printf("xhci early: "
3668 				    "SMM does not respond\n");
3669 		}
3670 
3671 		/* Disable interrupts */
3672 		offs = bus_read_1(res, XHCI_CAPLENGTH);
3673 		bus_write_4(res, offs + XHCI_USBCMD, 0);
3674 		bus_read_4(res, offs + XHCI_USBSTS);
3675 	}
3676 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3677 }
3678 
3679 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
3680 static void
3681 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3682     struct resource_list *rl)
3683 {
3684 	struct resource *res;
3685 	char *cp;
3686 	rman_res_t start, end, count;
3687 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3688 
3689 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3690 	case PCIM_HDRTYPE_BRIDGE:
3691 		sec_reg = PCIR_SECBUS_1;
3692 		sub_reg = PCIR_SUBBUS_1;
3693 		break;
3694 	case PCIM_HDRTYPE_CARDBUS:
3695 		sec_reg = PCIR_SECBUS_2;
3696 		sub_reg = PCIR_SUBBUS_2;
3697 		break;
3698 	default:
3699 		return;
3700 	}
3701 
3702 	/*
3703 	 * If the existing bus range is valid, attempt to reserve it
3704 	 * from our parent.  If this fails for any reason, clear the
3705 	 * secbus and subbus registers.
3706 	 *
3707 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3708 	 * This would at least preserve the existing sec_bus if it is
3709 	 * valid.
3710 	 */
3711 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3712 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3713 
3714 	/* Quirk handling. */
3715 	switch (pci_get_devid(dev)) {
3716 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3717 		sup_bus = pci_read_config(dev, 0x41, 1);
3718 		if (sup_bus != 0xff) {
3719 			sec_bus = sup_bus + 1;
3720 			sub_bus = sup_bus + 1;
3721 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3722 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3723 		}
3724 		break;
3725 
3726 	case 0x00dd10de:
3727 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3728 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3729 			break;
3730 		if (strncmp(cp, "Compal", 6) != 0) {
3731 			freeenv(cp);
3732 			break;
3733 		}
3734 		freeenv(cp);
3735 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3736 			break;
3737 		if (strncmp(cp, "08A0", 4) != 0) {
3738 			freeenv(cp);
3739 			break;
3740 		}
3741 		freeenv(cp);
3742 		if (sub_bus < 0xa) {
3743 			sub_bus = 0xa;
3744 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3745 		}
3746 		break;
3747 	}
3748 
3749 	if (bootverbose)
3750 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3751 	if (sec_bus > 0 && sub_bus >= sec_bus) {
3752 		start = sec_bus;
3753 		end = sub_bus;
3754 		count = end - start + 1;
3755 
3756 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3757 
3758 		/*
3759 		 * If requested, clear secondary bus registers in
3760 		 * bridge devices to force a complete renumbering
3761 		 * rather than reserving the existing range.  However,
3762 		 * preserve the existing size.
3763 		 */
3764 		if (pci_clear_buses)
3765 			goto clear;
3766 
3767 		rid = 0;
3768 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3769 		    start, end, count, 0);
3770 		if (res != NULL)
3771 			return;
3772 
3773 		if (bootverbose)
3774 			device_printf(bus,
3775 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3776 			    pci_get_domain(dev), pci_get_bus(dev),
3777 			    pci_get_slot(dev), pci_get_function(dev));
3778 	}
3779 
3780 clear:
3781 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3782 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3783 }
3784 
3785 static struct resource *
3786 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3787     rman_res_t end, rman_res_t count, u_int flags)
3788 {
3789 	struct pci_devinfo *dinfo;
3790 	pcicfgregs *cfg;
3791 	struct resource_list *rl;
3792 	struct resource *res;
3793 	int sec_reg, sub_reg;
3794 
3795 	dinfo = device_get_ivars(child);
3796 	cfg = &dinfo->cfg;
3797 	rl = &dinfo->resources;
3798 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3799 	case PCIM_HDRTYPE_BRIDGE:
3800 		sec_reg = PCIR_SECBUS_1;
3801 		sub_reg = PCIR_SUBBUS_1;
3802 		break;
3803 	case PCIM_HDRTYPE_CARDBUS:
3804 		sec_reg = PCIR_SECBUS_2;
3805 		sub_reg = PCIR_SUBBUS_2;
3806 		break;
3807 	default:
3808 		return (NULL);
3809 	}
3810 
3811 	if (*rid != 0)
3812 		return (NULL);
3813 
3814 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3815 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3816 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3817 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3818 		    start, end, count, flags & ~RF_ACTIVE);
3819 		if (res == NULL) {
3820 			resource_list_delete(rl, PCI_RES_BUS, *rid);
3821 			device_printf(child, "allocating %ju bus%s failed\n",
3822 			    count, count == 1 ? "" : "es");
3823 			return (NULL);
3824 		}
3825 		if (bootverbose)
3826 			device_printf(child,
3827 			    "Lazy allocation of %ju bus%s at %ju\n", count,
3828 			    count == 1 ? "" : "es", rman_get_start(res));
3829 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3830 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3831 	}
3832 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3833 	    end, count, flags));
3834 }
3835 #endif
3836 
3837 static int
3838 pci_ea_bei_to_rid(device_t dev, int bei)
3839 {
3840 #ifdef PCI_IOV
3841 	struct pci_devinfo *dinfo;
3842 	int iov_pos;
3843 	struct pcicfg_iov *iov;
3844 
3845 	dinfo = device_get_ivars(dev);
3846 	iov = dinfo->cfg.iov;
3847 	if (iov != NULL)
3848 		iov_pos = iov->iov_pos;
3849 	else
3850 		iov_pos = 0;
3851 #endif
3852 
3853 	/* Check if matches BAR */
3854 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3855 	    (bei <= PCIM_EA_BEI_BAR_5))
3856 		return (PCIR_BAR(bei));
3857 
3858 	/* Check ROM */
3859 	if (bei == PCIM_EA_BEI_ROM)
3860 		return (PCIR_BIOS);
3861 
3862 #ifdef PCI_IOV
3863 	/* Check if matches VF_BAR */
3864 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3865 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3866 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3867 		    iov_pos);
3868 #endif
3869 
3870 	return (-1);
3871 }
3872 
3873 int
3874 pci_ea_is_enabled(device_t dev, int rid)
3875 {
3876 	struct pci_ea_entry *ea;
3877 	struct pci_devinfo *dinfo;
3878 
3879 	dinfo = device_get_ivars(dev);
3880 
3881 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3882 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3883 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3884 	}
3885 
3886 	return (0);
3887 }
3888 
3889 void
3890 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
3891 {
3892 	struct pci_ea_entry *ea;
3893 	struct pci_devinfo *dinfo;
3894 	pci_addr_t start, end, count;
3895 	struct resource_list *rl;
3896 	int type, flags, rid;
3897 	struct resource *res;
3898 	uint32_t tmp;
3899 #ifdef PCI_IOV
3900 	struct pcicfg_iov *iov;
3901 #endif
3902 
3903 	dinfo = device_get_ivars(dev);
3904 	rl = &dinfo->resources;
3905 	flags = 0;
3906 
3907 #ifdef PCI_IOV
3908 	iov = dinfo->cfg.iov;
3909 #endif
3910 
3911 	if (dinfo->cfg.ea.ea_location == 0)
3912 		return;
3913 
3914 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3915 		/*
3916 		 * TODO: Ignore EA-BAR if is not enabled.
3917 		 *   Currently the EA implementation supports
3918 		 *   only situation, where EA structure contains
3919 		 *   predefined entries. In case they are not enabled
3920 		 *   leave them unallocated and proceed with
3921 		 *   a legacy-BAR mechanism.
3922 		 */
3923 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
3924 			continue;
3925 
3926 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
3927 		case PCIM_EA_P_MEM_PREFETCH:
3928 		case PCIM_EA_P_VF_MEM_PREFETCH:
3929 			flags = RF_PREFETCHABLE;
3930 			/* FALLTHROUGH */
3931 		case PCIM_EA_P_VF_MEM:
3932 		case PCIM_EA_P_MEM:
3933 			type = SYS_RES_MEMORY;
3934 			break;
3935 		case PCIM_EA_P_IO:
3936 			type = SYS_RES_IOPORT;
3937 			break;
3938 		default:
3939 			continue;
3940 		}
3941 
3942 		if (alloc_iov != 0) {
3943 #ifdef PCI_IOV
3944 			/* Allocating IOV, confirm BEI matches */
3945 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
3946 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
3947 				continue;
3948 #else
3949 			continue;
3950 #endif
3951 		} else {
3952 			/* Allocating BAR, confirm BEI matches */
3953 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
3954 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
3955 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
3956 				continue;
3957 		}
3958 
3959 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
3960 		if (rid < 0)
3961 			continue;
3962 
3963 		/* Skip resources already allocated by EA */
3964 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
3965 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
3966 			continue;
3967 
3968 		start = ea->eae_base;
3969 		count = ea->eae_max_offset + 1;
3970 #ifdef PCI_IOV
3971 		if (iov != NULL)
3972 			count = count * iov->iov_num_vfs;
3973 #endif
3974 		end = start + count - 1;
3975 		if (count == 0)
3976 			continue;
3977 
3978 		resource_list_add(rl, type, rid, start, end, count);
3979 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
3980 		    flags);
3981 		if (res == NULL) {
3982 			resource_list_delete(rl, type, rid);
3983 
3984 			/*
3985 			 * Failed to allocate using EA, disable entry.
3986 			 * Another attempt to allocation will be performed
3987 			 * further, but this time using legacy BAR registers
3988 			 */
3989 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
3990 			tmp &= ~PCIM_EA_ENABLE;
3991 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
3992 
3993 			/*
3994 			 * Disabling entry might fail in case it is hardwired.
3995 			 * Read flags again to match current status.
3996 			 */
3997 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
3998 
3999 			continue;
4000 		}
4001 
4002 		/* As per specification, fill BAR with zeros */
4003 		pci_write_config(dev, rid, 0, 4);
4004 	}
4005 }
4006 
4007 void
4008 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
4009 {
4010 	struct pci_devinfo *dinfo;
4011 	pcicfgregs *cfg;
4012 	struct resource_list *rl;
4013 	const struct pci_quirk *q;
4014 	uint32_t devid;
4015 	int i;
4016 
4017 	dinfo = device_get_ivars(dev);
4018 	cfg = &dinfo->cfg;
4019 	rl = &dinfo->resources;
4020 	devid = (cfg->device << 16) | cfg->vendor;
4021 
4022 	/* Allocate resources using Enhanced Allocation */
4023 	pci_add_resources_ea(bus, dev, 0);
4024 
4025 	/* ATA devices needs special map treatment */
4026 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
4027 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4028 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4029 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4030 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
4031 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
4032 	else
4033 		for (i = 0; i < cfg->nummaps;) {
4034 			/* Skip resources already managed by EA */
4035 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4036 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4037 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4038 				i++;
4039 				continue;
4040 			}
4041 
4042 			/*
4043 			 * Skip quirked resources.
4044 			 */
4045 			for (q = &pci_quirks[0]; q->devid != 0; q++)
4046 				if (q->devid == devid &&
4047 				    q->type == PCI_QUIRK_UNMAP_REG &&
4048 				    q->arg1 == PCIR_BAR(i))
4049 					break;
4050 			if (q->devid != 0) {
4051 				i++;
4052 				continue;
4053 			}
4054 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4055 			    prefetchmask & (1 << i));
4056 		}
4057 
4058 	/*
4059 	 * Add additional, quirked resources.
4060 	 */
4061 	for (q = &pci_quirks[0]; q->devid != 0; q++)
4062 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4063 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4064 
4065 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4066 #ifdef __PCI_REROUTE_INTERRUPT
4067 		/*
4068 		 * Try to re-route interrupts. Sometimes the BIOS or
4069 		 * firmware may leave bogus values in these registers.
4070 		 * If the re-route fails, then just stick with what we
4071 		 * have.
4072 		 */
4073 		pci_assign_interrupt(bus, dev, 1);
4074 #else
4075 		pci_assign_interrupt(bus, dev, 0);
4076 #endif
4077 	}
4078 
4079 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4080 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4081 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4082 			xhci_early_takeover(dev);
4083 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4084 			ehci_early_takeover(dev);
4085 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4086 			ohci_early_takeover(dev);
4087 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4088 			uhci_early_takeover(dev);
4089 	}
4090 
4091 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
4092 	/*
4093 	 * Reserve resources for secondary bus ranges behind bridge
4094 	 * devices.
4095 	 */
4096 	pci_reserve_secbus(bus, dev, cfg, rl);
4097 #endif
4098 }
4099 
4100 static struct pci_devinfo *
4101 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4102     int slot, int func)
4103 {
4104 	struct pci_devinfo *dinfo;
4105 
4106 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4107 	if (dinfo != NULL)
4108 		pci_add_child(dev, dinfo);
4109 
4110 	return (dinfo);
4111 }
4112 
4113 void
4114 pci_add_children(device_t dev, int domain, int busno)
4115 {
4116 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4117 	device_t pcib = device_get_parent(dev);
4118 	struct pci_devinfo *dinfo;
4119 	int maxslots;
4120 	int s, f, pcifunchigh;
4121 	uint8_t hdrtype;
4122 	int first_func;
4123 
4124 	/*
4125 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4126 	 * enable ARI.  We must enable ARI before detecting the rest of the
4127 	 * functions on this bus as ARI changes the set of slots and functions
4128 	 * that are legal on this bus.
4129 	 */
4130 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4131 	if (dinfo != NULL && pci_enable_ari)
4132 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4133 
4134 	/*
4135 	 * Start looking for new devices on slot 0 at function 1 because we
4136 	 * just identified the device at slot 0, function 0.
4137 	 */
4138 	first_func = 1;
4139 
4140 	maxslots = PCIB_MAXSLOTS(pcib);
4141 	for (s = 0; s <= maxslots; s++, first_func = 0) {
4142 		pcifunchigh = 0;
4143 		f = 0;
4144 		DELAY(1);
4145 
4146 		/* If function 0 is not present, skip to the next slot. */
4147 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4148 			continue;
4149 		hdrtype = REG(PCIR_HDRTYPE, 1);
4150 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4151 			continue;
4152 		if (hdrtype & PCIM_MFDEV)
4153 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4154 		for (f = first_func; f <= pcifunchigh; f++)
4155 			pci_identify_function(pcib, dev, domain, busno, s, f);
4156 	}
4157 #undef REG
4158 }
4159 
4160 int
4161 pci_rescan_method(device_t dev)
4162 {
4163 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4164 	device_t pcib = device_get_parent(dev);
4165 	device_t child, *devlist, *unchanged;
4166 	int devcount, error, i, j, maxslots, oldcount;
4167 	int busno, domain, s, f, pcifunchigh;
4168 	uint8_t hdrtype;
4169 
4170 	/* No need to check for ARI on a rescan. */
4171 	error = device_get_children(dev, &devlist, &devcount);
4172 	if (error)
4173 		return (error);
4174 	if (devcount != 0) {
4175 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4176 		    M_NOWAIT | M_ZERO);
4177 		if (unchanged == NULL) {
4178 			free(devlist, M_TEMP);
4179 			return (ENOMEM);
4180 		}
4181 	} else
4182 		unchanged = NULL;
4183 
4184 	domain = pcib_get_domain(dev);
4185 	busno = pcib_get_bus(dev);
4186 	maxslots = PCIB_MAXSLOTS(pcib);
4187 	for (s = 0; s <= maxslots; s++) {
4188 		/* If function 0 is not present, skip to the next slot. */
4189 		f = 0;
4190 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4191 			continue;
4192 		pcifunchigh = 0;
4193 		hdrtype = REG(PCIR_HDRTYPE, 1);
4194 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4195 			continue;
4196 		if (hdrtype & PCIM_MFDEV)
4197 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4198 		for (f = 0; f <= pcifunchigh; f++) {
4199 			if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4200 				continue;
4201 
4202 			/*
4203 			 * Found a valid function.  Check if a
4204 			 * device_t for this device already exists.
4205 			 */
4206 			for (i = 0; i < devcount; i++) {
4207 				child = devlist[i];
4208 				if (child == NULL)
4209 					continue;
4210 				if (pci_get_slot(child) == s &&
4211 				    pci_get_function(child) == f) {
4212 					unchanged[i] = child;
4213 					goto next_func;
4214 				}
4215 			}
4216 
4217 			pci_identify_function(pcib, dev, domain, busno, s, f);
4218 		next_func:;
4219 		}
4220 	}
4221 
4222 	/* Remove devices that are no longer present. */
4223 	for (i = 0; i < devcount; i++) {
4224 		if (unchanged[i] != NULL)
4225 			continue;
4226 		device_delete_child(dev, devlist[i]);
4227 	}
4228 
4229 	free(devlist, M_TEMP);
4230 	oldcount = devcount;
4231 
4232 	/* Try to attach the devices just added. */
4233 	error = device_get_children(dev, &devlist, &devcount);
4234 	if (error) {
4235 		free(unchanged, M_TEMP);
4236 		return (error);
4237 	}
4238 
4239 	for (i = 0; i < devcount; i++) {
4240 		for (j = 0; j < oldcount; j++) {
4241 			if (devlist[i] == unchanged[j])
4242 				goto next_device;
4243 		}
4244 
4245 		device_probe_and_attach(devlist[i]);
4246 	next_device:;
4247 	}
4248 
4249 	free(unchanged, M_TEMP);
4250 	free(devlist, M_TEMP);
4251 	return (0);
4252 #undef REG
4253 }
4254 
4255 #ifdef PCI_IOV
4256 device_t
4257 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4258     uint16_t did)
4259 {
4260 	struct pci_devinfo *vf_dinfo;
4261 	device_t pcib;
4262 	int busno, slot, func;
4263 
4264 	pcib = device_get_parent(bus);
4265 
4266 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4267 
4268 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4269 	    slot, func, vid, did);
4270 
4271 	vf_dinfo->cfg.flags |= PCICFG_VF;
4272 	pci_add_child(bus, vf_dinfo);
4273 
4274 	return (vf_dinfo->cfg.dev);
4275 }
4276 
4277 device_t
4278 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4279     uint16_t vid, uint16_t did)
4280 {
4281 
4282 	return (pci_add_iov_child(bus, pf, rid, vid, did));
4283 }
4284 #endif
4285 
4286 /*
4287  * For PCIe device set Max_Payload_Size to match PCIe root's.
4288  */
4289 static void
4290 pcie_setup_mps(device_t dev)
4291 {
4292 	struct pci_devinfo *dinfo = device_get_ivars(dev);
4293 	device_t root;
4294 	uint16_t rmps, mmps, mps;
4295 
4296 	if (dinfo->cfg.pcie.pcie_location == 0)
4297 		return;
4298 	root = pci_find_pcie_root_port(dev);
4299 	if (root == NULL)
4300 		return;
4301 	/* Check whether the MPS is already configured. */
4302 	rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
4303 	    PCIEM_CTL_MAX_PAYLOAD;
4304 	mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
4305 	    PCIEM_CTL_MAX_PAYLOAD;
4306 	if (mps == rmps)
4307 		return;
4308 	/* Check whether the device is capable of the root's MPS. */
4309 	mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
4310 	    PCIEM_CAP_MAX_PAYLOAD) << 5;
4311 	if (rmps > mmps) {
4312 		/*
4313 		 * The device is unable to handle root's MPS.  Limit root.
4314 		 * XXX: We should traverse through all the tree, applying
4315 		 * it to all the devices.
4316 		 */
4317 		pcie_adjust_config(root, PCIER_DEVICE_CTL,
4318 		    PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
4319 	} else {
4320 		pcie_adjust_config(dev, PCIER_DEVICE_CTL,
4321 		    PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
4322 	}
4323 }
4324 
4325 static void
4326 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4327 {
4328 	int aer;
4329 	uint32_t r;
4330 	uint16_t r2;
4331 
4332 	if (dinfo->cfg.pcie.pcie_location != 0 &&
4333 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4334 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4335 		    PCIER_ROOT_CTL, 2);
4336 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4337 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4338 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4339 		    PCIER_ROOT_CTL, r2, 2);
4340 	}
4341 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4342 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4343 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4344 		if (r != 0 && bootverbose) {
4345 			pci_printf(&dinfo->cfg,
4346 			    "clearing AER UC 0x%08x -> 0x%08x\n",
4347 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4348 			    4));
4349 		}
4350 
4351 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4352 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4353 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4354 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4355 		    PCIM_AER_UC_POISONED_TLP |
4356 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4357 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4358 		    PCIM_AER_UC_COMPLETER_ABORT |
4359 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4360 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4361 		    PCIM_AER_UC_MALFORMED_TLP |
4362 		    PCIM_AER_UC_ECRC_ERROR |
4363 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4364 		    PCIM_AER_UC_ACS_VIOLATION |
4365 		    PCIM_AER_UC_INTERNAL_ERROR |
4366 		    PCIM_AER_UC_MC_BLOCKED_TLP |
4367 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4368 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4369 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4370 
4371 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4372 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4373 		if (r != 0 && bootverbose) {
4374 			pci_printf(&dinfo->cfg,
4375 			    "clearing AER COR 0x%08x -> 0x%08x\n",
4376 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4377 			    4));
4378 		}
4379 
4380 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4381 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4382 		    PCIM_AER_COR_BAD_TLP |
4383 		    PCIM_AER_COR_BAD_DLLP |
4384 		    PCIM_AER_COR_REPLAY_ROLLOVER |
4385 		    PCIM_AER_COR_REPLAY_TIMEOUT |
4386 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4387 		    PCIM_AER_COR_INTERNAL_ERROR |
4388 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4389 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4390 
4391 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4392 		    PCIER_DEVICE_CTL, 2);
4393 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4394 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4395 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4396 		    PCIER_DEVICE_CTL, r, 2);
4397 	}
4398 }
4399 
4400 void
4401 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4402 {
4403 	device_t dev;
4404 
4405 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1);
4406 	device_set_ivars(dev, dinfo);
4407 	resource_list_init(&dinfo->resources);
4408 	pci_cfg_save(dev, dinfo, 0);
4409 	pci_cfg_restore(dev, dinfo);
4410 	pci_print_verbose(dinfo);
4411 	pci_add_resources(bus, dev, 0, 0);
4412 	pcie_setup_mps(dev);
4413 	pci_child_added(dinfo->cfg.dev);
4414 
4415 	if (pci_clear_aer_on_attach)
4416 		pci_add_child_clear_aer(dev, dinfo);
4417 
4418 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4419 }
4420 
4421 void
4422 pci_child_added_method(device_t dev, device_t child)
4423 {
4424 
4425 }
4426 
4427 static int
4428 pci_probe(device_t dev)
4429 {
4430 
4431 	device_set_desc(dev, "PCI bus");
4432 
4433 	/* Allow other subclasses to override this driver. */
4434 	return (BUS_PROBE_GENERIC);
4435 }
4436 
4437 int
4438 pci_attach_common(device_t dev)
4439 {
4440 	struct pci_softc *sc;
4441 	int busno, domain;
4442 #ifdef PCI_RES_BUS
4443 	int rid;
4444 #endif
4445 
4446 	sc = device_get_softc(dev);
4447 	domain = pcib_get_domain(dev);
4448 	busno = pcib_get_bus(dev);
4449 #ifdef PCI_RES_BUS
4450 	rid = 0;
4451 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4452 	    1, 0);
4453 	if (sc->sc_bus == NULL) {
4454 		device_printf(dev, "failed to allocate bus number\n");
4455 		return (ENXIO);
4456 	}
4457 #endif
4458 	if (bootverbose)
4459 		device_printf(dev, "domain=%d, physical bus=%d\n",
4460 		    domain, busno);
4461 	sc->sc_dma_tag = bus_get_dma_tag(dev);
4462 	return (0);
4463 }
4464 
4465 int
4466 pci_attach(device_t dev)
4467 {
4468 	int busno, domain, error;
4469 
4470 	error = pci_attach_common(dev);
4471 	if (error)
4472 		return (error);
4473 
4474 	/*
4475 	 * Since there can be multiple independently numbered PCI
4476 	 * buses on systems with multiple PCI domains, we can't use
4477 	 * the unit number to decide which bus we are probing. We ask
4478 	 * the parent pcib what our domain and bus numbers are.
4479 	 */
4480 	domain = pcib_get_domain(dev);
4481 	busno = pcib_get_bus(dev);
4482 	pci_add_children(dev, domain, busno);
4483 	return (bus_generic_attach(dev));
4484 }
4485 
4486 int
4487 pci_detach(device_t dev)
4488 {
4489 #ifdef PCI_RES_BUS
4490 	struct pci_softc *sc;
4491 #endif
4492 	int error;
4493 
4494 	error = bus_generic_detach(dev);
4495 	if (error)
4496 		return (error);
4497 #ifdef PCI_RES_BUS
4498 	sc = device_get_softc(dev);
4499 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4500 	if (error)
4501 		return (error);
4502 #endif
4503 	return (device_delete_children(dev));
4504 }
4505 
4506 static void
4507 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4508 {
4509 	int line, unit;
4510 	const char *at;
4511 	char me1[24], me2[32];
4512 	uint8_t b, s, f;
4513 	uint32_t d;
4514 
4515 	d = pci_get_domain(child);
4516 	b = pci_get_bus(child);
4517 	s = pci_get_slot(child);
4518 	f = pci_get_function(child);
4519 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4520 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4521 	line = 0;
4522 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4523 		resource_string_value(name, unit, "at", &at);
4524 		if (strcmp(at, me1) != 0 && strcmp(at, me2) != 0)
4525 			continue; /* No match, try next candidate */
4526 		*unitp = unit;
4527 		return;
4528 	}
4529 }
4530 
4531 static void
4532 pci_set_power_child(device_t dev, device_t child, int state)
4533 {
4534 	device_t pcib;
4535 	int dstate;
4536 
4537 	/*
4538 	 * Set the device to the given state.  If the firmware suggests
4539 	 * a different power state, use it instead.  If power management
4540 	 * is not present, the firmware is responsible for managing
4541 	 * device power.  Skip children who aren't attached since they
4542 	 * are handled separately.
4543 	 */
4544 	pcib = device_get_parent(dev);
4545 	dstate = state;
4546 	if (device_is_attached(child) &&
4547 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4548 		pci_set_powerstate(child, dstate);
4549 }
4550 
4551 int
4552 pci_suspend_child(device_t dev, device_t child)
4553 {
4554 	struct pci_devinfo *dinfo;
4555 	struct resource_list_entry *rle;
4556 	int error;
4557 
4558 	dinfo = device_get_ivars(child);
4559 
4560 	/*
4561 	 * Save the PCI configuration space for the child and set the
4562 	 * device in the appropriate power state for this sleep state.
4563 	 */
4564 	pci_cfg_save(child, dinfo, 0);
4565 
4566 	/* Suspend devices before potentially powering them down. */
4567 	error = bus_generic_suspend_child(dev, child);
4568 
4569 	if (error)
4570 		return (error);
4571 
4572 	if (pci_do_power_suspend) {
4573 		/*
4574 		 * Make sure this device's interrupt handler is not invoked
4575 		 * in the case the device uses a shared interrupt that can
4576 		 * be raised by some other device.
4577 		 * This is applicable only to regular (legacy) PCI interrupts
4578 		 * as MSI/MSI-X interrupts are never shared.
4579 		 */
4580 		rle = resource_list_find(&dinfo->resources,
4581 		    SYS_RES_IRQ, 0);
4582 		if (rle != NULL && rle->res != NULL)
4583 			(void)bus_suspend_intr(child, rle->res);
4584 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4585 	}
4586 
4587 	return (0);
4588 }
4589 
4590 int
4591 pci_resume_child(device_t dev, device_t child)
4592 {
4593 	struct pci_devinfo *dinfo;
4594 	struct resource_list_entry *rle;
4595 
4596 	if (pci_do_power_resume)
4597 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4598 
4599 	dinfo = device_get_ivars(child);
4600 	pci_cfg_restore(child, dinfo);
4601 	if (!device_is_attached(child))
4602 		pci_cfg_save(child, dinfo, 1);
4603 
4604 	bus_generic_resume_child(dev, child);
4605 
4606 	/*
4607 	 * Allow interrupts only after fully resuming the driver and hardware.
4608 	 */
4609 	if (pci_do_power_suspend) {
4610 		/* See pci_suspend_child for details. */
4611 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4612 		if (rle != NULL && rle->res != NULL)
4613 			(void)bus_resume_intr(child, rle->res);
4614 	}
4615 
4616 	return (0);
4617 }
4618 
4619 int
4620 pci_resume(device_t dev)
4621 {
4622 	device_t child, *devlist;
4623 	int error, i, numdevs;
4624 
4625 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4626 		return (error);
4627 
4628 	/*
4629 	 * Resume critical devices first, then everything else later.
4630 	 */
4631 	for (i = 0; i < numdevs; i++) {
4632 		child = devlist[i];
4633 		switch (pci_get_class(child)) {
4634 		case PCIC_DISPLAY:
4635 		case PCIC_MEMORY:
4636 		case PCIC_BRIDGE:
4637 		case PCIC_BASEPERIPH:
4638 			BUS_RESUME_CHILD(dev, child);
4639 			break;
4640 		}
4641 	}
4642 	for (i = 0; i < numdevs; i++) {
4643 		child = devlist[i];
4644 		switch (pci_get_class(child)) {
4645 		case PCIC_DISPLAY:
4646 		case PCIC_MEMORY:
4647 		case PCIC_BRIDGE:
4648 		case PCIC_BASEPERIPH:
4649 			break;
4650 		default:
4651 			BUS_RESUME_CHILD(dev, child);
4652 		}
4653 	}
4654 	free(devlist, M_TEMP);
4655 	return (0);
4656 }
4657 
4658 static void
4659 pci_load_vendor_data(void)
4660 {
4661 	caddr_t data;
4662 	void *ptr;
4663 	size_t sz;
4664 
4665 	data = preload_search_by_type("pci_vendor_data");
4666 	if (data != NULL) {
4667 		ptr = preload_fetch_addr(data);
4668 		sz = preload_fetch_size(data);
4669 		if (ptr != NULL && sz != 0) {
4670 			pci_vendordata = ptr;
4671 			pci_vendordata_size = sz;
4672 			/* terminate the database */
4673 			pci_vendordata[pci_vendordata_size] = '\n';
4674 		}
4675 	}
4676 }
4677 
4678 void
4679 pci_driver_added(device_t dev, driver_t *driver)
4680 {
4681 	int numdevs;
4682 	device_t *devlist;
4683 	device_t child;
4684 	struct pci_devinfo *dinfo;
4685 	int i;
4686 
4687 	if (bootverbose)
4688 		device_printf(dev, "driver added\n");
4689 	DEVICE_IDENTIFY(driver, dev);
4690 	if (device_get_children(dev, &devlist, &numdevs) != 0)
4691 		return;
4692 	for (i = 0; i < numdevs; i++) {
4693 		child = devlist[i];
4694 		if (device_get_state(child) != DS_NOTPRESENT)
4695 			continue;
4696 		dinfo = device_get_ivars(child);
4697 		pci_print_verbose(dinfo);
4698 		if (bootverbose)
4699 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4700 		pci_cfg_restore(child, dinfo);
4701 		if (device_probe_and_attach(child) != 0)
4702 			pci_child_detached(dev, child);
4703 	}
4704 	free(devlist, M_TEMP);
4705 }
4706 
4707 int
4708 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4709     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4710 {
4711 	struct pci_devinfo *dinfo;
4712 	struct msix_table_entry *mte;
4713 	struct msix_vector *mv;
4714 	uint64_t addr;
4715 	uint32_t data;
4716 	void *cookie;
4717 	int error, rid;
4718 
4719 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4720 	    arg, &cookie);
4721 	if (error)
4722 		return (error);
4723 
4724 	/* If this is not a direct child, just bail out. */
4725 	if (device_get_parent(child) != dev) {
4726 		*cookiep = cookie;
4727 		return(0);
4728 	}
4729 
4730 	rid = rman_get_rid(irq);
4731 	if (rid == 0) {
4732 		/* Make sure that INTx is enabled */
4733 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4734 	} else {
4735 		/*
4736 		 * Check to see if the interrupt is MSI or MSI-X.
4737 		 * Ask our parent to map the MSI and give
4738 		 * us the address and data register values.
4739 		 * If we fail for some reason, teardown the
4740 		 * interrupt handler.
4741 		 */
4742 		dinfo = device_get_ivars(child);
4743 		if (dinfo->cfg.msi.msi_alloc > 0) {
4744 			if (dinfo->cfg.msi.msi_addr == 0) {
4745 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4746 			    ("MSI has handlers, but vectors not mapped"));
4747 				error = PCIB_MAP_MSI(device_get_parent(dev),
4748 				    child, rman_get_start(irq), &addr, &data);
4749 				if (error)
4750 					goto bad;
4751 				dinfo->cfg.msi.msi_addr = addr;
4752 				dinfo->cfg.msi.msi_data = data;
4753 			}
4754 			if (dinfo->cfg.msi.msi_handlers == 0)
4755 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4756 				    dinfo->cfg.msi.msi_data);
4757 			dinfo->cfg.msi.msi_handlers++;
4758 		} else {
4759 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4760 			    ("No MSI or MSI-X interrupts allocated"));
4761 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4762 			    ("MSI-X index too high"));
4763 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4764 			KASSERT(mte->mte_vector != 0, ("no message vector"));
4765 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4766 			KASSERT(mv->mv_irq == rman_get_start(irq),
4767 			    ("IRQ mismatch"));
4768 			if (mv->mv_address == 0) {
4769 				KASSERT(mte->mte_handlers == 0,
4770 		    ("MSI-X table entry has handlers, but vector not mapped"));
4771 				error = PCIB_MAP_MSI(device_get_parent(dev),
4772 				    child, rman_get_start(irq), &addr, &data);
4773 				if (error)
4774 					goto bad;
4775 				mv->mv_address = addr;
4776 				mv->mv_data = data;
4777 			}
4778 
4779 			/*
4780 			 * The MSIX table entry must be made valid by
4781 			 * incrementing the mte_handlers before
4782 			 * calling pci_enable_msix() and
4783 			 * pci_resume_msix(). Else the MSIX rewrite
4784 			 * table quirk will not work as expected.
4785 			 */
4786 			mte->mte_handlers++;
4787 			if (mte->mte_handlers == 1) {
4788 				pci_enable_msix(child, rid - 1, mv->mv_address,
4789 				    mv->mv_data);
4790 				pci_unmask_msix(child, rid - 1);
4791 			}
4792 		}
4793 
4794 		/*
4795 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4796 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4797 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4798 		 */
4799 		if (!pci_has_quirk(pci_get_devid(child),
4800 		    PCI_QUIRK_MSI_INTX_BUG))
4801 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4802 		else
4803 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4804 	bad:
4805 		if (error) {
4806 			(void)bus_generic_teardown_intr(dev, child, irq,
4807 			    cookie);
4808 			return (error);
4809 		}
4810 	}
4811 	*cookiep = cookie;
4812 	return (0);
4813 }
4814 
4815 int
4816 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4817     void *cookie)
4818 {
4819 	struct msix_table_entry *mte;
4820 	struct resource_list_entry *rle;
4821 	struct pci_devinfo *dinfo;
4822 	int error, rid;
4823 
4824 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4825 		return (EINVAL);
4826 
4827 	/* If this isn't a direct child, just bail out */
4828 	if (device_get_parent(child) != dev)
4829 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4830 
4831 	rid = rman_get_rid(irq);
4832 	if (rid == 0) {
4833 		/* Mask INTx */
4834 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4835 	} else {
4836 		/*
4837 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4838 		 * decrement the appropriate handlers count and mask the
4839 		 * MSI-X message, or disable MSI messages if the count
4840 		 * drops to 0.
4841 		 */
4842 		dinfo = device_get_ivars(child);
4843 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4844 		if (rle->res != irq)
4845 			return (EINVAL);
4846 		if (dinfo->cfg.msi.msi_alloc > 0) {
4847 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4848 			    ("MSI-X index too high"));
4849 			if (dinfo->cfg.msi.msi_handlers == 0)
4850 				return (EINVAL);
4851 			dinfo->cfg.msi.msi_handlers--;
4852 			if (dinfo->cfg.msi.msi_handlers == 0)
4853 				pci_disable_msi(child);
4854 		} else {
4855 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4856 			    ("No MSI or MSI-X interrupts allocated"));
4857 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4858 			    ("MSI-X index too high"));
4859 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4860 			if (mte->mte_handlers == 0)
4861 				return (EINVAL);
4862 			mte->mte_handlers--;
4863 			if (mte->mte_handlers == 0)
4864 				pci_mask_msix(child, rid - 1);
4865 		}
4866 	}
4867 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4868 	if (rid > 0)
4869 		KASSERT(error == 0,
4870 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4871 	return (error);
4872 }
4873 
4874 int
4875 pci_print_child(device_t dev, device_t child)
4876 {
4877 	struct pci_devinfo *dinfo;
4878 	struct resource_list *rl;
4879 	int retval = 0;
4880 
4881 	dinfo = device_get_ivars(child);
4882 	rl = &dinfo->resources;
4883 
4884 	retval += bus_print_child_header(dev, child);
4885 
4886 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4887 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4888 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4889 	if (device_get_flags(dev))
4890 		retval += printf(" flags %#x", device_get_flags(dev));
4891 
4892 	retval += printf(" at device %d.%d", pci_get_slot(child),
4893 	    pci_get_function(child));
4894 
4895 	retval += bus_print_child_domain(dev, child);
4896 	retval += bus_print_child_footer(dev, child);
4897 
4898 	return (retval);
4899 }
4900 
4901 static const struct
4902 {
4903 	int		class;
4904 	int		subclass;
4905 	int		report; /* 0 = bootverbose, 1 = always */
4906 	const char	*desc;
4907 } pci_nomatch_tab[] = {
4908 	{PCIC_OLD,		-1,			1, "old"},
4909 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
4910 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
4911 	{PCIC_STORAGE,		-1,			1, "mass storage"},
4912 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
4913 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
4914 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
4915 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
4916 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
4917 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
4918 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
4919 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
4920 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
4921 	{PCIC_NETWORK,		-1,			1, "network"},
4922 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
4923 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
4924 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
4925 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
4926 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
4927 	{PCIC_DISPLAY,		-1,			1, "display"},
4928 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
4929 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
4930 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
4931 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
4932 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
4933 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
4934 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
4935 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
4936 	{PCIC_MEMORY,		-1,			1, "memory"},
4937 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
4938 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
4939 	{PCIC_BRIDGE,		-1,			1, "bridge"},
4940 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
4941 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
4942 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
4943 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
4944 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
4945 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
4946 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
4947 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
4948 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
4949 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
4950 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
4951 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
4952 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
4953 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
4954 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
4955 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
4956 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
4957 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
4958 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
4959 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
4960 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
4961 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
4962 	{PCIC_INPUTDEV,		-1,			1, "input device"},
4963 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
4964 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
4965 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
4966 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
4967 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
4968 	{PCIC_DOCKING,		-1,			1, "docking station"},
4969 	{PCIC_PROCESSOR,	-1,			1, "processor"},
4970 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
4971 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
4972 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
4973 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
4974 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
4975 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
4976 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
4977 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
4978 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
4979 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
4980 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
4981 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
4982 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
4983 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
4984 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
4985 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
4986 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
4987 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
4988 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
4989 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
4990 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
4991 	{PCIC_DASP,		-1,			0, "dasp"},
4992 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
4993 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
4994 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
4995 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
4996 	{0, 0, 0,		NULL}
4997 };
4998 
4999 void
5000 pci_probe_nomatch(device_t dev, device_t child)
5001 {
5002 	int i, report;
5003 	const char *cp, *scp;
5004 	char *device;
5005 
5006 	/*
5007 	 * Look for a listing for this device in a loaded device database.
5008 	 */
5009 	report = 1;
5010 	if ((device = pci_describe_device(child)) != NULL) {
5011 		device_printf(dev, "<%s>", device);
5012 		free(device, M_DEVBUF);
5013 	} else {
5014 		/*
5015 		 * Scan the class/subclass descriptions for a general
5016 		 * description.
5017 		 */
5018 		cp = "unknown";
5019 		scp = NULL;
5020 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
5021 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
5022 				if (pci_nomatch_tab[i].subclass == -1) {
5023 					cp = pci_nomatch_tab[i].desc;
5024 					report = pci_nomatch_tab[i].report;
5025 				} else if (pci_nomatch_tab[i].subclass ==
5026 				    pci_get_subclass(child)) {
5027 					scp = pci_nomatch_tab[i].desc;
5028 					report = pci_nomatch_tab[i].report;
5029 				}
5030 			}
5031 		}
5032 		if (report || bootverbose) {
5033 			device_printf(dev, "<%s%s%s>",
5034 			    cp ? cp : "",
5035 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
5036 			    scp ? scp : "");
5037 		}
5038 	}
5039 	if (report || bootverbose) {
5040 		printf(" at device %d.%d (no driver attached)\n",
5041 		    pci_get_slot(child), pci_get_function(child));
5042 	}
5043 	pci_cfg_save(child, device_get_ivars(child), 1);
5044 }
5045 
5046 void
5047 pci_child_detached(device_t dev, device_t child)
5048 {
5049 	struct pci_devinfo *dinfo;
5050 	struct resource_list *rl;
5051 
5052 	dinfo = device_get_ivars(child);
5053 	rl = &dinfo->resources;
5054 
5055 	/*
5056 	 * Have to deallocate IRQs before releasing any MSI messages and
5057 	 * have to release MSI messages before deallocating any memory
5058 	 * BARs.
5059 	 */
5060 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
5061 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
5062 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
5063 		if (dinfo->cfg.msi.msi_alloc != 0)
5064 			pci_printf(&dinfo->cfg, "Device leaked %d MSI "
5065 			    "vectors\n", dinfo->cfg.msi.msi_alloc);
5066 		else
5067 			pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
5068 			    "vectors\n", dinfo->cfg.msix.msix_alloc);
5069 		(void)pci_release_msi(child);
5070 	}
5071 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
5072 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
5073 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
5074 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
5075 #ifdef PCI_RES_BUS
5076 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5077 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5078 #endif
5079 
5080 	pci_cfg_save(child, dinfo, 1);
5081 }
5082 
5083 /*
5084  * Parse the PCI device database, if loaded, and return a pointer to a
5085  * description of the device.
5086  *
5087  * The database is flat text formatted as follows:
5088  *
5089  * Any line not in a valid format is ignored.
5090  * Lines are terminated with newline '\n' characters.
5091  *
5092  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5093  * the vendor name.
5094  *
5095  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5096  * - devices cannot be listed without a corresponding VENDOR line.
5097  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5098  * another TAB, then the device name.
5099  */
5100 
5101 /*
5102  * Assuming (ptr) points to the beginning of a line in the database,
5103  * return the vendor or device and description of the next entry.
5104  * The value of (vendor) or (device) inappropriate for the entry type
5105  * is set to -1.  Returns nonzero at the end of the database.
5106  *
5107  * Note that this is slightly unrobust in the face of corrupt data;
5108  * we attempt to safeguard against this by spamming the end of the
5109  * database with a newline when we initialise.
5110  */
5111 static int
5112 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5113 {
5114 	char	*cp = *ptr;
5115 	int	left;
5116 
5117 	*device = -1;
5118 	*vendor = -1;
5119 	**desc = '\0';
5120 	for (;;) {
5121 		left = pci_vendordata_size - (cp - pci_vendordata);
5122 		if (left <= 0) {
5123 			*ptr = cp;
5124 			return(1);
5125 		}
5126 
5127 		/* vendor entry? */
5128 		if (*cp != '\t' &&
5129 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5130 			break;
5131 		/* device entry? */
5132 		if (*cp == '\t' &&
5133 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5134 			break;
5135 
5136 		/* skip to next line */
5137 		while (*cp != '\n' && left > 0) {
5138 			cp++;
5139 			left--;
5140 		}
5141 		if (*cp == '\n') {
5142 			cp++;
5143 			left--;
5144 		}
5145 	}
5146 	/* skip to next line */
5147 	while (*cp != '\n' && left > 0) {
5148 		cp++;
5149 		left--;
5150 	}
5151 	if (*cp == '\n' && left > 0)
5152 		cp++;
5153 	*ptr = cp;
5154 	return(0);
5155 }
5156 
5157 static char *
5158 pci_describe_device(device_t dev)
5159 {
5160 	int	vendor, device;
5161 	char	*desc, *vp, *dp, *line;
5162 
5163 	desc = vp = dp = NULL;
5164 
5165 	/*
5166 	 * If we have no vendor data, we can't do anything.
5167 	 */
5168 	if (pci_vendordata == NULL)
5169 		goto out;
5170 
5171 	/*
5172 	 * Scan the vendor data looking for this device
5173 	 */
5174 	line = pci_vendordata;
5175 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5176 		goto out;
5177 	for (;;) {
5178 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5179 			goto out;
5180 		if (vendor == pci_get_vendor(dev))
5181 			break;
5182 	}
5183 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5184 		goto out;
5185 	for (;;) {
5186 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5187 			*dp = 0;
5188 			break;
5189 		}
5190 		if (vendor != -1) {
5191 			*dp = 0;
5192 			break;
5193 		}
5194 		if (device == pci_get_device(dev))
5195 			break;
5196 	}
5197 	if (dp[0] == '\0')
5198 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5199 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5200 	    NULL)
5201 		sprintf(desc, "%s, %s", vp, dp);
5202 out:
5203 	if (vp != NULL)
5204 		free(vp, M_DEVBUF);
5205 	if (dp != NULL)
5206 		free(dp, M_DEVBUF);
5207 	return(desc);
5208 }
5209 
5210 int
5211 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5212 {
5213 	struct pci_devinfo *dinfo;
5214 	pcicfgregs *cfg;
5215 
5216 	dinfo = device_get_ivars(child);
5217 	cfg = &dinfo->cfg;
5218 
5219 	switch (which) {
5220 	case PCI_IVAR_ETHADDR:
5221 		/*
5222 		 * The generic accessor doesn't deal with failure, so
5223 		 * we set the return value, then return an error.
5224 		 */
5225 		*((uint8_t **) result) = NULL;
5226 		return (EINVAL);
5227 	case PCI_IVAR_SUBVENDOR:
5228 		*result = cfg->subvendor;
5229 		break;
5230 	case PCI_IVAR_SUBDEVICE:
5231 		*result = cfg->subdevice;
5232 		break;
5233 	case PCI_IVAR_VENDOR:
5234 		*result = cfg->vendor;
5235 		break;
5236 	case PCI_IVAR_DEVICE:
5237 		*result = cfg->device;
5238 		break;
5239 	case PCI_IVAR_DEVID:
5240 		*result = (cfg->device << 16) | cfg->vendor;
5241 		break;
5242 	case PCI_IVAR_CLASS:
5243 		*result = cfg->baseclass;
5244 		break;
5245 	case PCI_IVAR_SUBCLASS:
5246 		*result = cfg->subclass;
5247 		break;
5248 	case PCI_IVAR_PROGIF:
5249 		*result = cfg->progif;
5250 		break;
5251 	case PCI_IVAR_REVID:
5252 		*result = cfg->revid;
5253 		break;
5254 	case PCI_IVAR_INTPIN:
5255 		*result = cfg->intpin;
5256 		break;
5257 	case PCI_IVAR_IRQ:
5258 		*result = cfg->intline;
5259 		break;
5260 	case PCI_IVAR_DOMAIN:
5261 		*result = cfg->domain;
5262 		break;
5263 	case PCI_IVAR_BUS:
5264 		*result = cfg->bus;
5265 		break;
5266 	case PCI_IVAR_SLOT:
5267 		*result = cfg->slot;
5268 		break;
5269 	case PCI_IVAR_FUNCTION:
5270 		*result = cfg->func;
5271 		break;
5272 	case PCI_IVAR_CMDREG:
5273 		*result = cfg->cmdreg;
5274 		break;
5275 	case PCI_IVAR_CACHELNSZ:
5276 		*result = cfg->cachelnsz;
5277 		break;
5278 	case PCI_IVAR_MINGNT:
5279 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5280 			*result = -1;
5281 			return (EINVAL);
5282 		}
5283 		*result = cfg->mingnt;
5284 		break;
5285 	case PCI_IVAR_MAXLAT:
5286 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5287 			*result = -1;
5288 			return (EINVAL);
5289 		}
5290 		*result = cfg->maxlat;
5291 		break;
5292 	case PCI_IVAR_LATTIMER:
5293 		*result = cfg->lattimer;
5294 		break;
5295 	default:
5296 		return (ENOENT);
5297 	}
5298 	return (0);
5299 }
5300 
5301 int
5302 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5303 {
5304 	struct pci_devinfo *dinfo;
5305 
5306 	dinfo = device_get_ivars(child);
5307 
5308 	switch (which) {
5309 	case PCI_IVAR_INTPIN:
5310 		dinfo->cfg.intpin = value;
5311 		return (0);
5312 	case PCI_IVAR_ETHADDR:
5313 	case PCI_IVAR_SUBVENDOR:
5314 	case PCI_IVAR_SUBDEVICE:
5315 	case PCI_IVAR_VENDOR:
5316 	case PCI_IVAR_DEVICE:
5317 	case PCI_IVAR_DEVID:
5318 	case PCI_IVAR_CLASS:
5319 	case PCI_IVAR_SUBCLASS:
5320 	case PCI_IVAR_PROGIF:
5321 	case PCI_IVAR_REVID:
5322 	case PCI_IVAR_IRQ:
5323 	case PCI_IVAR_DOMAIN:
5324 	case PCI_IVAR_BUS:
5325 	case PCI_IVAR_SLOT:
5326 	case PCI_IVAR_FUNCTION:
5327 		return (EINVAL);	/* disallow for now */
5328 
5329 	default:
5330 		return (ENOENT);
5331 	}
5332 }
5333 
5334 #include "opt_ddb.h"
5335 #ifdef DDB
5336 #include <ddb/ddb.h>
5337 #include <sys/cons.h>
5338 
5339 /*
5340  * List resources based on pci map registers, used for within ddb
5341  */
5342 
5343 DB_SHOW_COMMAND(pciregs, db_pci_dump)
5344 {
5345 	struct pci_devinfo *dinfo;
5346 	struct devlist *devlist_head;
5347 	struct pci_conf *p;
5348 	const char *name;
5349 	int i, error, none_count;
5350 
5351 	none_count = 0;
5352 	/* get the head of the device queue */
5353 	devlist_head = &pci_devq;
5354 
5355 	/*
5356 	 * Go through the list of devices and print out devices
5357 	 */
5358 	for (error = 0, i = 0,
5359 	     dinfo = STAILQ_FIRST(devlist_head);
5360 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5361 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5362 		/* Populate pd_name and pd_unit */
5363 		name = NULL;
5364 		if (dinfo->cfg.dev)
5365 			name = device_get_name(dinfo->cfg.dev);
5366 
5367 		p = &dinfo->conf;
5368 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5369 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5370 			(name && *name) ? name : "none",
5371 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5372 			none_count++,
5373 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5374 			p->pc_sel.pc_func, (p->pc_class << 16) |
5375 			(p->pc_subclass << 8) | p->pc_progif,
5376 			(p->pc_subdevice << 16) | p->pc_subvendor,
5377 			(p->pc_device << 16) | p->pc_vendor,
5378 			p->pc_revid, p->pc_hdr);
5379 	}
5380 }
5381 #endif /* DDB */
5382 
5383 struct resource *
5384 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5385     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5386     u_int flags)
5387 {
5388 	struct pci_devinfo *dinfo = device_get_ivars(child);
5389 	struct resource_list *rl = &dinfo->resources;
5390 	struct resource *res;
5391 	struct pci_map *pm;
5392 	uint16_t cmd;
5393 	pci_addr_t map, testval;
5394 	int mapsize;
5395 
5396 	res = NULL;
5397 
5398 	/* If rid is managed by EA, ignore it */
5399 	if (pci_ea_is_enabled(child, *rid))
5400 		goto out;
5401 
5402 	pm = pci_find_bar(child, *rid);
5403 	if (pm != NULL) {
5404 		/* This is a BAR that we failed to allocate earlier. */
5405 		mapsize = pm->pm_size;
5406 		map = pm->pm_value;
5407 	} else {
5408 		/*
5409 		 * Weed out the bogons, and figure out how large the
5410 		 * BAR/map is.  BARs that read back 0 here are bogus
5411 		 * and unimplemented.  Note: atapci in legacy mode are
5412 		 * special and handled elsewhere in the code.  If you
5413 		 * have a atapci device in legacy mode and it fails
5414 		 * here, that other code is broken.
5415 		 */
5416 		pci_read_bar(child, *rid, &map, &testval, NULL);
5417 
5418 		/*
5419 		 * Determine the size of the BAR and ignore BARs with a size
5420 		 * of 0.  Device ROM BARs use a different mask value.
5421 		 */
5422 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5423 			mapsize = pci_romsize(testval);
5424 		else
5425 			mapsize = pci_mapsize(testval);
5426 		if (mapsize == 0)
5427 			goto out;
5428 		pm = pci_add_bar(child, *rid, map, mapsize);
5429 	}
5430 
5431 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5432 		if (type != SYS_RES_MEMORY) {
5433 			if (bootverbose)
5434 				device_printf(dev,
5435 				    "child %s requested type %d for rid %#x,"
5436 				    " but the BAR says it is an memio\n",
5437 				    device_get_nameunit(child), type, *rid);
5438 			goto out;
5439 		}
5440 	} else {
5441 		if (type != SYS_RES_IOPORT) {
5442 			if (bootverbose)
5443 				device_printf(dev,
5444 				    "child %s requested type %d for rid %#x,"
5445 				    " but the BAR says it is an ioport\n",
5446 				    device_get_nameunit(child), type, *rid);
5447 			goto out;
5448 		}
5449 	}
5450 
5451 	/*
5452 	 * For real BARs, we need to override the size that
5453 	 * the driver requests, because that's what the BAR
5454 	 * actually uses and we would otherwise have a
5455 	 * situation where we might allocate the excess to
5456 	 * another driver, which won't work.
5457 	 */
5458 	count = ((pci_addr_t)1 << mapsize) * num;
5459 	if (RF_ALIGNMENT(flags) < mapsize)
5460 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5461 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5462 		flags |= RF_PREFETCHABLE;
5463 
5464 	/*
5465 	 * Allocate enough resource, and then write back the
5466 	 * appropriate BAR for that resource.
5467 	 */
5468 	resource_list_add(rl, type, *rid, start, end, count);
5469 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5470 	    count, flags & ~RF_ACTIVE);
5471 	if (res == NULL) {
5472 		resource_list_delete(rl, type, *rid);
5473 		device_printf(child,
5474 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5475 		    count, *rid, type, start, end);
5476 		goto out;
5477 	}
5478 	if (bootverbose)
5479 		device_printf(child,
5480 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5481 		    count, *rid, type, rman_get_start(res));
5482 
5483 	/* Disable decoding via the CMD register before updating the BAR */
5484 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5485 	pci_write_config(child, PCIR_COMMAND,
5486 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5487 
5488 	map = rman_get_start(res);
5489 	pci_write_bar(child, pm, map);
5490 
5491 	/* Restore the original value of the CMD register */
5492 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5493 out:
5494 	return (res);
5495 }
5496 
5497 struct resource *
5498 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5499     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5500     u_int flags)
5501 {
5502 	struct pci_devinfo *dinfo;
5503 	struct resource_list *rl;
5504 	struct resource_list_entry *rle;
5505 	struct resource *res;
5506 	pcicfgregs *cfg;
5507 
5508 	/*
5509 	 * Perform lazy resource allocation
5510 	 */
5511 	dinfo = device_get_ivars(child);
5512 	rl = &dinfo->resources;
5513 	cfg = &dinfo->cfg;
5514 	switch (type) {
5515 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
5516 	case PCI_RES_BUS:
5517 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5518 		    flags));
5519 #endif
5520 	case SYS_RES_IRQ:
5521 		/*
5522 		 * Can't alloc legacy interrupt once MSI messages have
5523 		 * been allocated.
5524 		 */
5525 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5526 		    cfg->msix.msix_alloc > 0))
5527 			return (NULL);
5528 
5529 		/*
5530 		 * If the child device doesn't have an interrupt
5531 		 * routed and is deserving of an interrupt, try to
5532 		 * assign it one.
5533 		 */
5534 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5535 		    (cfg->intpin != 0))
5536 			pci_assign_interrupt(dev, child, 0);
5537 		break;
5538 	case SYS_RES_IOPORT:
5539 	case SYS_RES_MEMORY:
5540 #ifdef NEW_PCIB
5541 		/*
5542 		 * PCI-PCI bridge I/O window resources are not BARs.
5543 		 * For those allocations just pass the request up the
5544 		 * tree.
5545 		 */
5546 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5547 			switch (*rid) {
5548 			case PCIR_IOBASEL_1:
5549 			case PCIR_MEMBASE_1:
5550 			case PCIR_PMBASEL_1:
5551 				/*
5552 				 * XXX: Should we bother creating a resource
5553 				 * list entry?
5554 				 */
5555 				return (bus_generic_alloc_resource(dev, child,
5556 				    type, rid, start, end, count, flags));
5557 			}
5558 		}
5559 #endif
5560 		/* Reserve resources for this BAR if needed. */
5561 		rle = resource_list_find(rl, type, *rid);
5562 		if (rle == NULL) {
5563 			res = pci_reserve_map(dev, child, type, rid, start, end,
5564 			    count, num, flags);
5565 			if (res == NULL)
5566 				return (NULL);
5567 		}
5568 	}
5569 	return (resource_list_alloc(rl, dev, child, type, rid,
5570 	    start, end, count, flags));
5571 }
5572 
5573 struct resource *
5574 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5575     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5576 {
5577 #ifdef PCI_IOV
5578 	struct pci_devinfo *dinfo;
5579 #endif
5580 
5581 	if (device_get_parent(child) != dev)
5582 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5583 		    type, rid, start, end, count, flags));
5584 
5585 #ifdef PCI_IOV
5586 	dinfo = device_get_ivars(child);
5587 	if (dinfo->cfg.flags & PCICFG_VF) {
5588 		switch (type) {
5589 		/* VFs can't have I/O BARs. */
5590 		case SYS_RES_IOPORT:
5591 			return (NULL);
5592 		case SYS_RES_MEMORY:
5593 			return (pci_vf_alloc_mem_resource(dev, child, rid,
5594 			    start, end, count, flags));
5595 		}
5596 
5597 		/* Fall through for other types of resource allocations. */
5598 	}
5599 #endif
5600 
5601 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5602 	    count, 1, flags));
5603 }
5604 
5605 int
5606 pci_release_resource(device_t dev, device_t child, int type, int rid,
5607     struct resource *r)
5608 {
5609 	struct pci_devinfo *dinfo;
5610 	struct resource_list *rl;
5611 	pcicfgregs *cfg;
5612 
5613 	if (device_get_parent(child) != dev)
5614 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
5615 		    type, rid, r));
5616 
5617 	dinfo = device_get_ivars(child);
5618 	cfg = &dinfo->cfg;
5619 
5620 #ifdef PCI_IOV
5621 	if (dinfo->cfg.flags & PCICFG_VF) {
5622 		switch (type) {
5623 		/* VFs can't have I/O BARs. */
5624 		case SYS_RES_IOPORT:
5625 			return (EDOOFUS);
5626 		case SYS_RES_MEMORY:
5627 			return (pci_vf_release_mem_resource(dev, child, rid,
5628 			    r));
5629 		}
5630 
5631 		/* Fall through for other types of resource allocations. */
5632 	}
5633 #endif
5634 
5635 #ifdef NEW_PCIB
5636 	/*
5637 	 * PCI-PCI bridge I/O window resources are not BARs.  For
5638 	 * those allocations just pass the request up the tree.
5639 	 */
5640 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5641 	    (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) {
5642 		switch (rid) {
5643 		case PCIR_IOBASEL_1:
5644 		case PCIR_MEMBASE_1:
5645 		case PCIR_PMBASEL_1:
5646 			return (bus_generic_release_resource(dev, child, type,
5647 			    rid, r));
5648 		}
5649 	}
5650 #endif
5651 
5652 	rl = &dinfo->resources;
5653 	return (resource_list_release(rl, dev, child, type, rid, r));
5654 }
5655 
5656 int
5657 pci_activate_resource(device_t dev, device_t child, int type, int rid,
5658     struct resource *r)
5659 {
5660 	struct pci_devinfo *dinfo;
5661 	int error;
5662 
5663 	error = bus_generic_activate_resource(dev, child, type, rid, r);
5664 	if (error)
5665 		return (error);
5666 
5667 	/* Enable decoding in the command register when activating BARs. */
5668 	if (device_get_parent(child) == dev) {
5669 		/* Device ROMs need their decoding explicitly enabled. */
5670 		dinfo = device_get_ivars(child);
5671 		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5672 			pci_write_bar(child, pci_find_bar(child, rid),
5673 			    rman_get_start(r) | PCIM_BIOS_ENABLE);
5674 		switch (type) {
5675 		case SYS_RES_IOPORT:
5676 		case SYS_RES_MEMORY:
5677 			error = PCI_ENABLE_IO(dev, child, type);
5678 			break;
5679 		}
5680 	}
5681 	return (error);
5682 }
5683 
5684 int
5685 pci_deactivate_resource(device_t dev, device_t child, int type,
5686     int rid, struct resource *r)
5687 {
5688 	struct pci_devinfo *dinfo;
5689 	int error;
5690 
5691 	error = bus_generic_deactivate_resource(dev, child, type, rid, r);
5692 	if (error)
5693 		return (error);
5694 
5695 	/* Disable decoding for device ROMs. */
5696 	if (device_get_parent(child) == dev) {
5697 		dinfo = device_get_ivars(child);
5698 		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5699 			pci_write_bar(child, pci_find_bar(child, rid),
5700 			    rman_get_start(r));
5701 	}
5702 	return (0);
5703 }
5704 
5705 void
5706 pci_child_deleted(device_t dev, device_t child)
5707 {
5708 	struct resource_list_entry *rle;
5709 	struct resource_list *rl;
5710 	struct pci_devinfo *dinfo;
5711 
5712 	dinfo = device_get_ivars(child);
5713 	rl = &dinfo->resources;
5714 
5715 	EVENTHANDLER_INVOKE(pci_delete_device, child);
5716 
5717 	/* Turn off access to resources we're about to free */
5718 	if (bus_child_present(child) != 0) {
5719 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5720 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5721 
5722 		pci_disable_busmaster(child);
5723 	}
5724 
5725 	/* Free all allocated resources */
5726 	STAILQ_FOREACH(rle, rl, link) {
5727 		if (rle->res) {
5728 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5729 			    resource_list_busy(rl, rle->type, rle->rid)) {
5730 				pci_printf(&dinfo->cfg,
5731 				    "Resource still owned, oops. "
5732 				    "(type=%d, rid=%d, addr=%lx)\n",
5733 				    rle->type, rle->rid,
5734 				    rman_get_start(rle->res));
5735 				bus_release_resource(child, rle->type, rle->rid,
5736 				    rle->res);
5737 			}
5738 			resource_list_unreserve(rl, dev, child, rle->type,
5739 			    rle->rid);
5740 		}
5741 	}
5742 	resource_list_free(rl);
5743 
5744 	pci_freecfg(dinfo);
5745 }
5746 
5747 void
5748 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5749 {
5750 	struct pci_devinfo *dinfo;
5751 	struct resource_list *rl;
5752 	struct resource_list_entry *rle;
5753 
5754 	if (device_get_parent(child) != dev)
5755 		return;
5756 
5757 	dinfo = device_get_ivars(child);
5758 	rl = &dinfo->resources;
5759 	rle = resource_list_find(rl, type, rid);
5760 	if (rle == NULL)
5761 		return;
5762 
5763 	if (rle->res) {
5764 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5765 		    resource_list_busy(rl, type, rid)) {
5766 			device_printf(dev, "delete_resource: "
5767 			    "Resource still owned by child, oops. "
5768 			    "(type=%d, rid=%d, addr=%jx)\n",
5769 			    type, rid, rman_get_start(rle->res));
5770 			return;
5771 		}
5772 		resource_list_unreserve(rl, dev, child, type, rid);
5773 	}
5774 	resource_list_delete(rl, type, rid);
5775 }
5776 
5777 struct resource_list *
5778 pci_get_resource_list (device_t dev, device_t child)
5779 {
5780 	struct pci_devinfo *dinfo = device_get_ivars(child);
5781 
5782 	return (&dinfo->resources);
5783 }
5784 
5785 #ifdef IOMMU
5786 bus_dma_tag_t
5787 pci_get_dma_tag(device_t bus, device_t dev)
5788 {
5789 	bus_dma_tag_t tag;
5790 	struct pci_softc *sc;
5791 
5792 	if (device_get_parent(dev) == bus) {
5793 		/* try iommu and return if it works */
5794 		tag = iommu_get_dma_tag(bus, dev);
5795 	} else
5796 		tag = NULL;
5797 	if (tag == NULL) {
5798 		sc = device_get_softc(bus);
5799 		tag = sc->sc_dma_tag;
5800 	}
5801 	return (tag);
5802 }
5803 #else
5804 bus_dma_tag_t
5805 pci_get_dma_tag(device_t bus, device_t dev)
5806 {
5807 	struct pci_softc *sc = device_get_softc(bus);
5808 
5809 	return (sc->sc_dma_tag);
5810 }
5811 #endif
5812 
5813 uint32_t
5814 pci_read_config_method(device_t dev, device_t child, int reg, int width)
5815 {
5816 	struct pci_devinfo *dinfo = device_get_ivars(child);
5817 	pcicfgregs *cfg = &dinfo->cfg;
5818 
5819 #ifdef PCI_IOV
5820 	/*
5821 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
5822 	 * emulate them here.
5823 	 */
5824 	if (cfg->flags & PCICFG_VF) {
5825 		if (reg == PCIR_VENDOR) {
5826 			switch (width) {
5827 			case 4:
5828 				return (cfg->device << 16 | cfg->vendor);
5829 			case 2:
5830 				return (cfg->vendor);
5831 			case 1:
5832 				return (cfg->vendor & 0xff);
5833 			default:
5834 				return (0xffffffff);
5835 			}
5836 		} else if (reg == PCIR_DEVICE) {
5837 			switch (width) {
5838 			/* Note that an unaligned 4-byte read is an error. */
5839 			case 2:
5840 				return (cfg->device);
5841 			case 1:
5842 				return (cfg->device & 0xff);
5843 			default:
5844 				return (0xffffffff);
5845 			}
5846 		}
5847 	}
5848 #endif
5849 
5850 	return (PCIB_READ_CONFIG(device_get_parent(dev),
5851 	    cfg->bus, cfg->slot, cfg->func, reg, width));
5852 }
5853 
5854 void
5855 pci_write_config_method(device_t dev, device_t child, int reg,
5856     uint32_t val, int width)
5857 {
5858 	struct pci_devinfo *dinfo = device_get_ivars(child);
5859 	pcicfgregs *cfg = &dinfo->cfg;
5860 
5861 	PCIB_WRITE_CONFIG(device_get_parent(dev),
5862 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
5863 }
5864 
5865 int
5866 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
5867 {
5868 
5869 	sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
5870 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
5871 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
5872 	return (0);
5873 }
5874 
5875 int
5876 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
5877 {
5878 	struct pci_devinfo *dinfo;
5879 	pcicfgregs *cfg;
5880 
5881 	dinfo = device_get_ivars(child);
5882 	cfg = &dinfo->cfg;
5883 	sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
5884 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
5885 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
5886 	    cfg->progif);
5887 	return (0);
5888 }
5889 
5890 int
5891 pci_assign_interrupt_method(device_t dev, device_t child)
5892 {
5893 	struct pci_devinfo *dinfo = device_get_ivars(child);
5894 	pcicfgregs *cfg = &dinfo->cfg;
5895 
5896 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
5897 	    cfg->intpin));
5898 }
5899 
5900 static void
5901 pci_lookup(void *arg, const char *name, device_t *dev)
5902 {
5903 	long val;
5904 	char *end;
5905 	int domain, bus, slot, func;
5906 
5907 	if (*dev != NULL)
5908 		return;
5909 
5910 	/*
5911 	 * Accept pciconf-style selectors of either pciD:B:S:F or
5912 	 * pciB:S:F.  In the latter case, the domain is assumed to
5913 	 * be zero.
5914 	 */
5915 	if (strncmp(name, "pci", 3) != 0)
5916 		return;
5917 	val = strtol(name + 3, &end, 10);
5918 	if (val < 0 || val > INT_MAX || *end != ':')
5919 		return;
5920 	domain = val;
5921 	val = strtol(end + 1, &end, 10);
5922 	if (val < 0 || val > INT_MAX || *end != ':')
5923 		return;
5924 	bus = val;
5925 	val = strtol(end + 1, &end, 10);
5926 	if (val < 0 || val > INT_MAX)
5927 		return;
5928 	slot = val;
5929 	if (*end == ':') {
5930 		val = strtol(end + 1, &end, 10);
5931 		if (val < 0 || val > INT_MAX || *end != '\0')
5932 			return;
5933 		func = val;
5934 	} else if (*end == '\0') {
5935 		func = slot;
5936 		slot = bus;
5937 		bus = domain;
5938 		domain = 0;
5939 	} else
5940 		return;
5941 
5942 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
5943 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
5944 		return;
5945 
5946 	*dev = pci_find_dbsf(domain, bus, slot, func);
5947 }
5948 
5949 static int
5950 pci_modevent(module_t mod, int what, void *arg)
5951 {
5952 	static struct cdev *pci_cdev;
5953 	static eventhandler_tag tag;
5954 
5955 	switch (what) {
5956 	case MOD_LOAD:
5957 		STAILQ_INIT(&pci_devq);
5958 		pci_generation = 0;
5959 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
5960 		    "pci");
5961 		pci_load_vendor_data();
5962 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
5963 		    1000);
5964 		break;
5965 
5966 	case MOD_UNLOAD:
5967 		if (tag != NULL)
5968 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
5969 		destroy_dev(pci_cdev);
5970 		break;
5971 	}
5972 
5973 	return (0);
5974 }
5975 
5976 static void
5977 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
5978 {
5979 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
5980 	struct pcicfg_pcie *cfg;
5981 	int version, pos;
5982 
5983 	cfg = &dinfo->cfg.pcie;
5984 	pos = cfg->pcie_location;
5985 
5986 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
5987 
5988 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
5989 
5990 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5991 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
5992 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
5993 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
5994 
5995 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5996 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
5997 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
5998 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
5999 
6000 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6001 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6002 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
6003 
6004 	if (version > 1) {
6005 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
6006 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
6007 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
6008 	}
6009 #undef WREG
6010 }
6011 
6012 static void
6013 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
6014 {
6015 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
6016 	    dinfo->cfg.pcix.pcix_command,  2);
6017 }
6018 
6019 void
6020 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
6021 {
6022 
6023 	/*
6024 	 * Restore the device to full power mode.  We must do this
6025 	 * before we restore the registers because moving from D3 to
6026 	 * D0 will cause the chip's BARs and some other registers to
6027 	 * be reset to some unknown power on reset values.  Cut down
6028 	 * the noise on boot by doing nothing if we are already in
6029 	 * state D0.
6030 	 */
6031 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
6032 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6033 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
6034 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
6035 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
6036 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
6037 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
6038 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
6039 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6040 	case PCIM_HDRTYPE_NORMAL:
6041 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
6042 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
6043 		break;
6044 	case PCIM_HDRTYPE_BRIDGE:
6045 		pci_write_config(dev, PCIR_SECLAT_1,
6046 		    dinfo->cfg.bridge.br_seclat, 1);
6047 		pci_write_config(dev, PCIR_SUBBUS_1,
6048 		    dinfo->cfg.bridge.br_subbus, 1);
6049 		pci_write_config(dev, PCIR_SECBUS_1,
6050 		    dinfo->cfg.bridge.br_secbus, 1);
6051 		pci_write_config(dev, PCIR_PRIBUS_1,
6052 		    dinfo->cfg.bridge.br_pribus, 1);
6053 		pci_write_config(dev, PCIR_BRIDGECTL_1,
6054 		    dinfo->cfg.bridge.br_control, 2);
6055 		break;
6056 	case PCIM_HDRTYPE_CARDBUS:
6057 		pci_write_config(dev, PCIR_SECLAT_2,
6058 		    dinfo->cfg.bridge.br_seclat, 1);
6059 		pci_write_config(dev, PCIR_SUBBUS_2,
6060 		    dinfo->cfg.bridge.br_subbus, 1);
6061 		pci_write_config(dev, PCIR_SECBUS_2,
6062 		    dinfo->cfg.bridge.br_secbus, 1);
6063 		pci_write_config(dev, PCIR_PRIBUS_2,
6064 		    dinfo->cfg.bridge.br_pribus, 1);
6065 		pci_write_config(dev, PCIR_BRIDGECTL_2,
6066 		    dinfo->cfg.bridge.br_control, 2);
6067 		break;
6068 	}
6069 	pci_restore_bars(dev);
6070 
6071 	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
6072 		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
6073 
6074 	/*
6075 	 * Restore extended capabilities for PCI-Express and PCI-X
6076 	 */
6077 	if (dinfo->cfg.pcie.pcie_location != 0)
6078 		pci_cfg_restore_pcie(dev, dinfo);
6079 	if (dinfo->cfg.pcix.pcix_location != 0)
6080 		pci_cfg_restore_pcix(dev, dinfo);
6081 
6082 	/* Restore MSI and MSI-X configurations if they are present. */
6083 	if (dinfo->cfg.msi.msi_location != 0)
6084 		pci_resume_msi(dev);
6085 	if (dinfo->cfg.msix.msix_location != 0)
6086 		pci_resume_msix(dev);
6087 
6088 #ifdef PCI_IOV
6089 	if (dinfo->cfg.iov != NULL)
6090 		pci_iov_cfg_restore(dev, dinfo);
6091 #endif
6092 }
6093 
6094 static void
6095 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6096 {
6097 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
6098 	struct pcicfg_pcie *cfg;
6099 	int version, pos;
6100 
6101 	cfg = &dinfo->cfg.pcie;
6102 	pos = cfg->pcie_location;
6103 
6104 	cfg->pcie_flags = RREG(PCIER_FLAGS);
6105 
6106 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6107 
6108 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6109 
6110 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6111 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6112 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6113 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6114 
6115 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6116 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6117 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6118 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6119 
6120 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6121 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6122 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6123 
6124 	if (version > 1) {
6125 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6126 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6127 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6128 	}
6129 #undef RREG
6130 }
6131 
6132 static void
6133 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6134 {
6135 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6136 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6137 }
6138 
6139 void
6140 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6141 {
6142 	uint32_t cls;
6143 	int ps;
6144 
6145 	/*
6146 	 * Some drivers apparently write to these registers w/o updating our
6147 	 * cached copy.  No harm happens if we update the copy, so do so here
6148 	 * so we can restore them.  The COMMAND register is modified by the
6149 	 * bus w/o updating the cache.  This should represent the normally
6150 	 * writable portion of the 'defined' part of type 0/1/2 headers.
6151 	 */
6152 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6153 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6154 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6155 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6156 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6157 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6158 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6159 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6160 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6161 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6162 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6163 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6164 	case PCIM_HDRTYPE_NORMAL:
6165 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6166 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6167 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6168 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6169 		break;
6170 	case PCIM_HDRTYPE_BRIDGE:
6171 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6172 		    PCIR_SECLAT_1, 1);
6173 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6174 		    PCIR_SUBBUS_1, 1);
6175 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6176 		    PCIR_SECBUS_1, 1);
6177 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6178 		    PCIR_PRIBUS_1, 1);
6179 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6180 		    PCIR_BRIDGECTL_1, 2);
6181 		break;
6182 	case PCIM_HDRTYPE_CARDBUS:
6183 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6184 		    PCIR_SECLAT_2, 1);
6185 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6186 		    PCIR_SUBBUS_2, 1);
6187 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6188 		    PCIR_SECBUS_2, 1);
6189 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6190 		    PCIR_PRIBUS_2, 1);
6191 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6192 		    PCIR_BRIDGECTL_2, 2);
6193 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6194 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6195 		break;
6196 	}
6197 
6198 	if (dinfo->cfg.pcie.pcie_location != 0)
6199 		pci_cfg_save_pcie(dev, dinfo);
6200 
6201 	if (dinfo->cfg.pcix.pcix_location != 0)
6202 		pci_cfg_save_pcix(dev, dinfo);
6203 
6204 #ifdef PCI_IOV
6205 	if (dinfo->cfg.iov != NULL)
6206 		pci_iov_cfg_save(dev, dinfo);
6207 #endif
6208 
6209 	/*
6210 	 * don't set the state for display devices, base peripherals and
6211 	 * memory devices since bad things happen when they are powered down.
6212 	 * We should (a) have drivers that can easily detach and (b) use
6213 	 * generic drivers for these devices so that some device actually
6214 	 * attaches.  We need to make sure that when we implement (a) we don't
6215 	 * power the device down on a reattach.
6216 	 */
6217 	cls = pci_get_class(dev);
6218 	if (!setstate)
6219 		return;
6220 	switch (pci_do_power_nodriver)
6221 	{
6222 		case 0:		/* NO powerdown at all */
6223 			return;
6224 		case 1:		/* Conservative about what to power down */
6225 			if (cls == PCIC_STORAGE)
6226 				return;
6227 			/*FALLTHROUGH*/
6228 		case 2:		/* Aggressive about what to power down */
6229 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6230 			    cls == PCIC_BASEPERIPH)
6231 				return;
6232 			/*FALLTHROUGH*/
6233 		case 3:		/* Power down everything */
6234 			break;
6235 	}
6236 	/*
6237 	 * PCI spec says we can only go into D3 state from D0 state.
6238 	 * Transition from D[12] into D0 before going to D3 state.
6239 	 */
6240 	ps = pci_get_powerstate(dev);
6241 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6242 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6243 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6244 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6245 }
6246 
6247 /* Wrapper APIs suitable for device driver use. */
6248 void
6249 pci_save_state(device_t dev)
6250 {
6251 	struct pci_devinfo *dinfo;
6252 
6253 	dinfo = device_get_ivars(dev);
6254 	pci_cfg_save(dev, dinfo, 0);
6255 }
6256 
6257 void
6258 pci_restore_state(device_t dev)
6259 {
6260 	struct pci_devinfo *dinfo;
6261 
6262 	dinfo = device_get_ivars(dev);
6263 	pci_cfg_restore(dev, dinfo);
6264 }
6265 
6266 static int
6267 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6268     uintptr_t *id)
6269 {
6270 
6271 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6272 }
6273 
6274 /* Find the upstream port of a given PCI device in a root complex. */
6275 device_t
6276 pci_find_pcie_root_port(device_t dev)
6277 {
6278 	struct pci_devinfo *dinfo;
6279 	devclass_t pci_class;
6280 	device_t pcib, bus;
6281 
6282 	pci_class = devclass_find("pci");
6283 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6284 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6285 
6286 	/*
6287 	 * Walk the bridge hierarchy until we find a PCI-e root
6288 	 * port or a non-PCI device.
6289 	 */
6290 	for (;;) {
6291 		bus = device_get_parent(dev);
6292 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6293 		    device_get_nameunit(dev)));
6294 
6295 		pcib = device_get_parent(bus);
6296 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6297 		    device_get_nameunit(bus)));
6298 
6299 		/*
6300 		 * pcib's parent must be a PCI bus for this to be a
6301 		 * PCI-PCI bridge.
6302 		 */
6303 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6304 			return (NULL);
6305 
6306 		dinfo = device_get_ivars(pcib);
6307 		if (dinfo->cfg.pcie.pcie_location != 0 &&
6308 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6309 			return (pcib);
6310 
6311 		dev = pcib;
6312 	}
6313 }
6314 
6315 /*
6316  * Wait for pending transactions to complete on a PCI-express function.
6317  *
6318  * The maximum delay is specified in milliseconds in max_delay.  Note
6319  * that this function may sleep.
6320  *
6321  * Returns true if the function is idle and false if the timeout is
6322  * exceeded.  If dev is not a PCI-express function, this returns true.
6323  */
6324 bool
6325 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6326 {
6327 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6328 	uint16_t sta;
6329 	int cap;
6330 
6331 	cap = dinfo->cfg.pcie.pcie_location;
6332 	if (cap == 0)
6333 		return (true);
6334 
6335 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6336 	while (sta & PCIEM_STA_TRANSACTION_PND) {
6337 		if (max_delay == 0)
6338 			return (false);
6339 
6340 		/* Poll once every 100 milliseconds up to the timeout. */
6341 		if (max_delay > 100) {
6342 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6343 			max_delay -= 100;
6344 		} else {
6345 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6346 			    C_HARDCLOCK);
6347 			max_delay = 0;
6348 		}
6349 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6350 	}
6351 
6352 	return (true);
6353 }
6354 
6355 /*
6356  * Determine the maximum Completion Timeout in microseconds.
6357  *
6358  * For non-PCI-express functions this returns 0.
6359  */
6360 int
6361 pcie_get_max_completion_timeout(device_t dev)
6362 {
6363 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6364 	int cap;
6365 
6366 	cap = dinfo->cfg.pcie.pcie_location;
6367 	if (cap == 0)
6368 		return (0);
6369 
6370 	/*
6371 	 * Functions using the 1.x spec use the default timeout range of
6372 	 * 50 microseconds to 50 milliseconds.  Functions that do not
6373 	 * support programmable timeouts also use this range.
6374 	 */
6375 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6376 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6377 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6378 		return (50 * 1000);
6379 
6380 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6381 	    PCIEM_CTL2_COMP_TIMO_VAL) {
6382 	case PCIEM_CTL2_COMP_TIMO_100US:
6383 		return (100);
6384 	case PCIEM_CTL2_COMP_TIMO_10MS:
6385 		return (10 * 1000);
6386 	case PCIEM_CTL2_COMP_TIMO_55MS:
6387 		return (55 * 1000);
6388 	case PCIEM_CTL2_COMP_TIMO_210MS:
6389 		return (210 * 1000);
6390 	case PCIEM_CTL2_COMP_TIMO_900MS:
6391 		return (900 * 1000);
6392 	case PCIEM_CTL2_COMP_TIMO_3500MS:
6393 		return (3500 * 1000);
6394 	case PCIEM_CTL2_COMP_TIMO_13S:
6395 		return (13 * 1000 * 1000);
6396 	case PCIEM_CTL2_COMP_TIMO_64S:
6397 		return (64 * 1000 * 1000);
6398 	default:
6399 		return (50 * 1000);
6400 	}
6401 }
6402 
6403 void
6404 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6405 {
6406 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6407 	const char *s;
6408 	int aer;
6409 	uint32_t r, r1;
6410 	uint16_t rs;
6411 
6412 	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6413 		s = "Correctable";
6414 	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6415 		s = "Uncorrectable (Non-Fatal)";
6416 	else
6417 		s = "Uncorrectable (Fatal)";
6418 	device_printf(dev, "%s PCIe error reported by APEI\n", s);
6419 	if (aerp) {
6420 		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6421 			r = le32dec(aerp + PCIR_AER_COR_STATUS);
6422 			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6423 		} else {
6424 			r = le32dec(aerp + PCIR_AER_UC_STATUS);
6425 			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6426 		}
6427 		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6428 		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6429 			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6430 			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6431 			printf(" severity 0x%08x first %d\n",
6432 			    r, rs & 0x1f);
6433 		} else
6434 			printf("\n");
6435 	}
6436 
6437 	/* As kind of recovery just report and clear the error statuses. */
6438 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6439 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6440 		if (r != 0) {
6441 			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6442 			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6443 		}
6444 
6445 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6446 		if (r != 0) {
6447 			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6448 			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6449 		}
6450 	}
6451 	if (dinfo->cfg.pcie.pcie_location != 0) {
6452 		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6453 		    PCIER_DEVICE_STA, 2);
6454 		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6455 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6456 		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6457 			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6458 			    PCIER_DEVICE_STA, rs, 2);
6459 			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6460 		}
6461 	}
6462 }
6463 
6464 /*
6465  * Perform a Function Level Reset (FLR) on a device.
6466  *
6467  * This function first waits for any pending transactions to complete
6468  * within the timeout specified by max_delay.  If transactions are
6469  * still pending, the function will return false without attempting a
6470  * reset.
6471  *
6472  * If dev is not a PCI-express function or does not support FLR, this
6473  * function returns false.
6474  *
6475  * Note that no registers are saved or restored.  The caller is
6476  * responsible for saving and restoring any registers including
6477  * PCI-standard registers via pci_save_state() and
6478  * pci_restore_state().
6479  */
6480 bool
6481 pcie_flr(device_t dev, u_int max_delay, bool force)
6482 {
6483 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6484 	uint16_t cmd, ctl;
6485 	int compl_delay;
6486 	int cap;
6487 
6488 	cap = dinfo->cfg.pcie.pcie_location;
6489 	if (cap == 0)
6490 		return (false);
6491 
6492 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6493 		return (false);
6494 
6495 	/*
6496 	 * Disable busmastering to prevent generation of new
6497 	 * transactions while waiting for the device to go idle.  If
6498 	 * the idle timeout fails, the command register is restored
6499 	 * which will re-enable busmastering.
6500 	 */
6501 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6502 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6503 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6504 		if (!force) {
6505 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6506 			return (false);
6507 		}
6508 		pci_printf(&dinfo->cfg,
6509 		    "Resetting with transactions pending after %d ms\n",
6510 		    max_delay);
6511 
6512 		/*
6513 		 * Extend the post-FLR delay to cover the maximum
6514 		 * Completion Timeout delay of anything in flight
6515 		 * during the FLR delay.  Enforce a minimum delay of
6516 		 * at least 10ms.
6517 		 */
6518 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6519 		if (compl_delay < 10)
6520 			compl_delay = 10;
6521 	} else
6522 		compl_delay = 0;
6523 
6524 	/* Initiate the reset. */
6525 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6526 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6527 	    PCIEM_CTL_INITIATE_FLR, 2);
6528 
6529 	/* Wait for 100ms. */
6530 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6531 
6532 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6533 	    PCIEM_STA_TRANSACTION_PND)
6534 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6535 	return (true);
6536 }
6537 
6538 /*
6539  * Attempt a power-management reset by cycling the device in/out of D3
6540  * state.  PCI spec says we can only go into D3 state from D0 state.
6541  * Transition from D[12] into D0 before going to D3 state.
6542  */
6543 int
6544 pci_power_reset(device_t dev)
6545 {
6546 	int ps;
6547 
6548 	ps = pci_get_powerstate(dev);
6549 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6550 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6551 	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6552 	pci_set_powerstate(dev, ps);
6553 	return (0);
6554 }
6555 
6556 /*
6557  * Try link drop and retrain of the downstream port of upstream
6558  * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6559  * cause Conventional Hot reset of the device in the slot.
6560  * Alternative, for PCIe, could be the secondary bus reset initiatied
6561  * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6562  */
6563 int
6564 pcie_link_reset(device_t port, int pcie_location)
6565 {
6566 	uint16_t v;
6567 
6568 	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6569 	v |= PCIEM_LINK_CTL_LINK_DIS;
6570 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6571 	pause_sbt("pcier1", mstosbt(20), 0, 0);
6572 	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6573 	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6574 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6575 	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6576 	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6577 	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6578 }
6579 
6580 static int
6581 pci_reset_post(device_t dev, device_t child)
6582 {
6583 
6584 	if (dev == device_get_parent(child))
6585 		pci_restore_state(child);
6586 	return (0);
6587 }
6588 
6589 static int
6590 pci_reset_prepare(device_t dev, device_t child)
6591 {
6592 
6593 	if (dev == device_get_parent(child))
6594 		pci_save_state(child);
6595 	return (0);
6596 }
6597 
6598 static int
6599 pci_reset_child(device_t dev, device_t child, int flags)
6600 {
6601 	int error;
6602 
6603 	if (dev == NULL || device_get_parent(child) != dev)
6604 		return (0);
6605 	if ((flags & DEVF_RESET_DETACH) != 0) {
6606 		error = device_get_state(child) == DS_ATTACHED ?
6607 		    device_detach(child) : 0;
6608 	} else {
6609 		error = BUS_SUSPEND_CHILD(dev, child);
6610 	}
6611 	if (error == 0) {
6612 		if (!pcie_flr(child, 1000, false)) {
6613 			error = BUS_RESET_PREPARE(dev, child);
6614 			if (error == 0)
6615 				pci_power_reset(child);
6616 			BUS_RESET_POST(dev, child);
6617 		}
6618 		if ((flags & DEVF_RESET_DETACH) != 0)
6619 			device_probe_and_attach(child);
6620 		else
6621 			BUS_RESUME_CHILD(dev, child);
6622 	}
6623 	return (error);
6624 }
6625 
6626 const struct pci_device_table *
6627 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6628 {
6629 	bool match;
6630 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6631 
6632 	vendor = pci_get_vendor(child);
6633 	device = pci_get_device(child);
6634 	subvendor = pci_get_subvendor(child);
6635 	subdevice = pci_get_subdevice(child);
6636 	class = pci_get_class(child);
6637 	subclass = pci_get_subclass(child);
6638 	revid = pci_get_revid(child);
6639 	while (nelt-- > 0) {
6640 		match = true;
6641 		if (id->match_flag_vendor)
6642 			match &= vendor == id->vendor;
6643 		if (id->match_flag_device)
6644 			match &= device == id->device;
6645 		if (id->match_flag_subvendor)
6646 			match &= subvendor == id->subvendor;
6647 		if (id->match_flag_subdevice)
6648 			match &= subdevice == id->subdevice;
6649 		if (id->match_flag_class)
6650 			match &= class == id->class_id;
6651 		if (id->match_flag_subclass)
6652 			match &= subclass == id->subclass;
6653 		if (id->match_flag_revid)
6654 			match &= revid == id->revid;
6655 		if (match)
6656 			return (id);
6657 		id++;
6658 	}
6659 	return (NULL);
6660 }
6661 
6662 static void
6663 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6664 {
6665 	const char *dev_name;
6666 	device_t dev;
6667 
6668 	dev = dinfo->cfg.dev;
6669 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6670 	    dinfo->cfg.slot, dinfo->cfg.func);
6671 	dev_name = device_get_name(dev);
6672 	if (dev_name != NULL)
6673 		printf(" (%s%d)", dev_name, device_get_unit(dev));
6674 }
6675 
6676 void
6677 pci_print_faulted_dev(void)
6678 {
6679 	struct pci_devinfo *dinfo;
6680 	device_t dev;
6681 	int aer, i;
6682 	uint32_t r1, r2;
6683 	uint16_t status;
6684 
6685 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6686 		dev = dinfo->cfg.dev;
6687 		status = pci_read_config(dev, PCIR_STATUS, 2);
6688 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6689 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6690 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6691 		if (status != 0) {
6692 			pci_print_faulted_dev_name(dinfo);
6693 			printf(" error 0x%04x\n", status);
6694 		}
6695 		if (dinfo->cfg.pcie.pcie_location != 0) {
6696 			status = pci_read_config(dev,
6697 			    dinfo->cfg.pcie.pcie_location +
6698 			    PCIER_DEVICE_STA, 2);
6699 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6700 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6701 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6702 				pci_print_faulted_dev_name(dinfo);
6703 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6704 				    pci_read_config(dev,
6705 				    dinfo->cfg.pcie.pcie_location +
6706 				    PCIER_DEVICE_CTL, 2),
6707 				    status);
6708 			}
6709 		}
6710 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6711 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6712 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6713 			if (r1 != 0 || r2 != 0) {
6714 				pci_print_faulted_dev_name(dinfo);
6715 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6716 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6717 				    r1, pci_read_config(dev, aer +
6718 				    PCIR_AER_UC_MASK, 4),
6719 				    pci_read_config(dev, aer +
6720 				    PCIR_AER_UC_SEVERITY, 4),
6721 				    r2, pci_read_config(dev, aer +
6722 				    PCIR_AER_COR_MASK, 4),
6723 				    pci_read_config(dev, aer +
6724 				    PCIR_AER_CAP_CONTROL, 4));
6725 				for (i = 0; i < 4; i++) {
6726 					r1 = pci_read_config(dev, aer +
6727 					    PCIR_AER_HEADER_LOG + i * 4, 4);
6728 					printf("    HL%d: 0x%08x\n", i, r1);
6729 				}
6730 			}
6731 		}
6732 	}
6733 }
6734 
6735 #ifdef DDB
6736 DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db)
6737 {
6738 
6739 	pci_print_faulted_dev();
6740 }
6741 
6742 static void
6743 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6744 {
6745 	device_t dev;
6746 	int aer;
6747 	uint32_t r;
6748 
6749 	dev = dinfo->cfg.dev;
6750 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6751 	    PCIER_DEVICE_STA, 2);
6752 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6753 	    PCIER_DEVICE_STA, r, 2);
6754 
6755 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6756 		return;
6757 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6758 	if (r != 0)
6759 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6760 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6761 	if (r != 0)
6762 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6763 }
6764 
6765 DB_COMMAND(pci_clearerr, db_pci_clearerr)
6766 {
6767 	struct pci_devinfo *dinfo;
6768 	device_t dev;
6769 	uint16_t status, status1;
6770 
6771 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6772 		dev = dinfo->cfg.dev;
6773 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
6774 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6775 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6776 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6777 		if (status1 != 0) {
6778 			status &= ~status1;
6779 			pci_write_config(dev, PCIR_STATUS, status, 2);
6780 		}
6781 		if (dinfo->cfg.pcie.pcie_location != 0)
6782 			db_clear_pcie_errors(dinfo);
6783 	}
6784 }
6785 #endif
6786