xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_dev.c (revision 42249ef2)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_dev.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "bcm_osal.h"
35 #include "reg_addr.h"
36 #include "ecore_gtt_reg_addr.h"
37 #include "ecore.h"
38 #include "ecore_chain.h"
39 #include "ecore_status.h"
40 #include "ecore_hw.h"
41 #include "ecore_rt_defs.h"
42 #include "ecore_init_ops.h"
43 #include "ecore_int.h"
44 #include "ecore_cxt.h"
45 #include "ecore_spq.h"
46 #include "ecore_init_fw_funcs.h"
47 #include "ecore_sp_commands.h"
48 #include "ecore_dev_api.h"
49 #include "ecore_sriov.h"
50 #include "ecore_vf.h"
51 #include "ecore_ll2.h"
52 #include "ecore_fcoe.h"
53 #include "ecore_iscsi.h"
54 #include "ecore_ooo.h"
55 #include "ecore_mcp.h"
56 #include "ecore_hw_defs.h"
57 #include "mcp_public.h"
58 #include "ecore_rdma.h"
59 #include "ecore_iro.h"
60 #include "nvm_cfg.h"
61 #include "ecore_dev_api.h"
62 #include "ecore_dcbx.h"
63 #include "pcics_reg_driver.h"
64 #include "ecore_l2.h"
65 #ifndef LINUX_REMOVE
66 #include "ecore_tcp_ip.h"
67 #endif
68 
69 #ifdef _NTDDK_
70 #pragma warning(push)
71 #pragma warning(disable : 28167)
72 #pragma warning(disable : 28123)
73 #endif
74 
75 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
76  * registers involved are not split and thus configuration is a race where
77  * some of the PFs configuration might be lost.
78  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
79  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
80  * there's more than a single compiled ecore component in system].
81  */
82 static osal_spinlock_t qm_lock;
83 static u32 qm_lock_ref_cnt;
84 
85 void ecore_set_ilt_page_size(struct ecore_dev *p_dev, u8 ilt_page_size)
86 {
87 	p_dev->ilt_page_size = ilt_page_size;
88 }
89 
90 /******************** Doorbell Recovery *******************/
91 /* The doorbell recovery mechanism consists of a list of entries which represent
92  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
93  * entity needs to register with the mechanism and provide the parameters
94  * describing it's doorbell, including a location where last used doorbell data
95  * can be found. The doorbell execute function will traverse the list and
96  * doorbell all of the registered entries.
97  */
98 struct ecore_db_recovery_entry {
99 	osal_list_entry_t	list_entry;
100 	void OSAL_IOMEM		*db_addr;
101 	void			*db_data;
102 	enum ecore_db_rec_width	db_width;
103 	enum ecore_db_rec_space	db_space;
104 	u8			hwfn_idx;
105 };
106 
107 /* display a single doorbell recovery entry */
108 static void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
109 				struct ecore_db_recovery_entry *db_entry,
110 				char *action)
111 {
112 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
113 		   action, db_entry, db_entry->db_addr, db_entry->db_data,
114 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
115 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
116 		   db_entry->hwfn_idx);
117 }
118 
119 /* doorbell address sanity (address within doorbell bar range) */
120 static bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
121 			 void *db_data)
122 {
123 	/* make sure doorbell address  is within the doorbell bar */
124 	if (db_addr < p_dev->doorbells || (u8 *)db_addr >
125 			(u8 *)p_dev->doorbells + p_dev->db_size) {
126 		OSAL_WARN(true,
127 			  "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
128 			  db_addr, p_dev->doorbells,
129 			  (u8 *)p_dev->doorbells + p_dev->db_size);
130 		return false;
131 	}
132 
133 	/* make sure doorbell data pointer is not null */
134 	if (!db_data) {
135 		OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
136 		return false;
137 	}
138 
139 	return true;
140 }
141 
142 /* find hwfn according to the doorbell address */
143 static struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
144 					  void OSAL_IOMEM *db_addr)
145 {
146 	struct ecore_hwfn *p_hwfn;
147 
148 	/* in CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
149 	if (ECORE_IS_CMT(p_dev))
150 		p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
151 			&p_dev->hwfns[0] : &p_dev->hwfns[1];
152 	else
153 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
154 
155 	return p_hwfn;
156 }
157 
158 /* add a new entry to the doorbell recovery mechanism */
159 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
160 					   void OSAL_IOMEM *db_addr,
161 					   void *db_data,
162 					   enum ecore_db_rec_width db_width,
163 					   enum ecore_db_rec_space db_space)
164 {
165 	struct ecore_db_recovery_entry *db_entry;
166 	struct ecore_hwfn *p_hwfn;
167 
168 	/* shortcircuit VFs, for now */
169 	if (IS_VF(p_dev)) {
170 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
171 		return ECORE_SUCCESS;
172 	}
173 
174 	/* sanitize doorbell address */
175 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
176 		return ECORE_INVAL;
177 
178 	/* obtain hwfn from doorbell address */
179 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
180 
181 	/* create entry */
182 	db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
183 	if (!db_entry) {
184 		DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
185 		return ECORE_NOMEM;
186 	}
187 
188 	/* populate entry */
189 	db_entry->db_addr = db_addr;
190 	db_entry->db_data = db_data;
191 	db_entry->db_width = db_width;
192 	db_entry->db_space = db_space;
193 	db_entry->hwfn_idx = p_hwfn->my_id;
194 
195 	/* display */
196 	ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
197 
198 	/* protect the list */
199 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
200 	OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
201 			    &p_hwfn->db_recovery_info.list);
202 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
203 
204 	return ECORE_SUCCESS;
205 }
206 
207 /* remove an entry from the doorbell recovery mechanism */
208 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
209 					   void OSAL_IOMEM *db_addr,
210 					   void *db_data)
211 {
212 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
213 	enum _ecore_status_t rc = ECORE_INVAL;
214 	struct ecore_hwfn *p_hwfn;
215 
216 	/* shortcircuit VFs, for now */
217 	if (IS_VF(p_dev)) {
218 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
219 		return ECORE_SUCCESS;
220 	}
221 
222 	/* sanitize doorbell address */
223 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
224 		return ECORE_INVAL;
225 
226 	/* obtain hwfn from doorbell address */
227 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
228 
229 	/* protect the list */
230 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
231 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
232 				 &p_hwfn->db_recovery_info.list,
233 				 list_entry,
234 				 struct ecore_db_recovery_entry) {
235 
236 		/* search according to db_data addr since db_addr is not unique (roce) */
237 		if (db_entry->db_data == db_data) {
238 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
239 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
240 					       &p_hwfn->db_recovery_info.list);
241 			rc = ECORE_SUCCESS;
242 			break;
243 		}
244 	}
245 
246 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
247 
248 	if (rc == ECORE_INVAL) {
249 		/*OSAL_WARN(true,*/
250 		DP_NOTICE(p_hwfn, false,
251 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
252 			  db_data, db_addr);
253 	} else
254 		OSAL_FREE(p_dev, db_entry);
255 
256 	return rc;
257 }
258 
259 /* initialize the doorbell recovery mechanism */
260 static enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
261 {
262 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
263 
264 	/* make sure db_size was set in p_dev */
265 	if (!p_hwfn->p_dev->db_size) {
266 		DP_ERR(p_hwfn->p_dev, "db_size not set\n");
267 		return ECORE_INVAL;
268 	}
269 
270 	OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
271 #ifdef CONFIG_ECORE_LOCK_ALLOC
272 	if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock))
273 		return ECORE_NOMEM;
274 #endif
275 	OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
276 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
277 
278 	return ECORE_SUCCESS;
279 }
280 
281 /* destroy the doorbell recovery mechanism */
282 static void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
283 {
284 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
285 
286 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
287 	if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
288 		DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
289 		while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
290 			db_entry = OSAL_LIST_FIRST_ENTRY(&p_hwfn->db_recovery_info.list,
291 							 struct ecore_db_recovery_entry,
292 							 list_entry);
293 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
294 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
295 					       &p_hwfn->db_recovery_info.list);
296 			OSAL_FREE(p_hwfn->p_dev, db_entry);
297 		}
298 	}
299 #ifdef CONFIG_ECORE_LOCK_ALLOC
300 	OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
301 #endif
302 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
303 }
304 
305 /* print the content of the doorbell recovery mechanism */
306 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
307 {
308 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
309 
310 	DP_NOTICE(p_hwfn, false,
311 		  "Dispalying doorbell recovery database. Counter was %d\n",
312 		  p_hwfn->db_recovery_info.db_recovery_counter);
313 
314 	/* protect the list */
315 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
316 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
317 				 &p_hwfn->db_recovery_info.list,
318 				 list_entry,
319 				 struct ecore_db_recovery_entry) {
320 		ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
321 	}
322 
323 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
324 }
325 
326 /* ring the doorbell of a single doorbell recovery entry */
327 static void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
328 			    struct ecore_db_recovery_entry *db_entry,
329 			    enum ecore_db_rec_exec db_exec)
330 {
331 	if (db_exec != DB_REC_ONCE) {
332 		/* Print according to width */
333 		if (db_entry->db_width == DB_REC_WIDTH_32B)
334 			DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
335 				   "%s doorbell address %p data %x\n",
336 				   db_exec == DB_REC_DRY_RUN ?
337 				   "would have rung" : "ringing",
338 				   db_entry->db_addr,
339 				   *(u32 *)db_entry->db_data);
340 		else
341 			DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
342 				   "%s doorbell address %p data %llx\n",
343 				   db_exec == DB_REC_DRY_RUN ?
344 				   "would have rung" : "ringing",
345 				   db_entry->db_addr,
346 				   (unsigned long long)*(u64 *)(db_entry->db_data));
347 	}
348 
349 	/* Sanity */
350 	if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
351 				 db_entry->db_data))
352 		return;
353 
354 	/* Flush the write combined buffer. Since there are multiple doorbelling
355 	 * entities using the same address, if we don't flush, a transaction
356 	 * could be lost.
357 	 */
358 	OSAL_WMB(p_hwfn->p_dev);
359 
360 	/* Ring the doorbell */
361 	if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
362 		if (db_entry->db_width == DB_REC_WIDTH_32B)
363 			DIRECT_REG_WR(p_hwfn, db_entry->db_addr, *(u32 *)(db_entry->db_data));
364 		else
365 			DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, *(u64 *)(db_entry->db_data));
366 	}
367 
368 	/* Flush the write combined buffer. Next doorbell may come from a
369 	 * different entity to the same address...
370 	 */
371 	OSAL_WMB(p_hwfn->p_dev);
372 }
373 
374 /* traverse the doorbell recovery entry list and ring all the doorbells */
375 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
376 			       enum ecore_db_rec_exec db_exec)
377 {
378 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
379 
380 	if (db_exec != DB_REC_ONCE) {
381 		DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
382 			  p_hwfn->db_recovery_info.db_recovery_counter);
383 
384 		/* track amount of times recovery was executed */
385 		p_hwfn->db_recovery_info.db_recovery_counter++;
386 	}
387 
388 	/* protect the list */
389 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
390 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
391 				 &p_hwfn->db_recovery_info.list,
392 				 list_entry,
393 				 struct ecore_db_recovery_entry) {
394 		ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
395 		if (db_exec == DB_REC_ONCE)
396 			break;
397 	}
398 
399 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
400 }
401 /******************** Doorbell Recovery end ****************/
402 
403 /********************************** NIG LLH ***********************************/
404 
405 enum ecore_llh_filter_type {
406 	ECORE_LLH_FILTER_TYPE_MAC,
407 	ECORE_LLH_FILTER_TYPE_PROTOCOL,
408 };
409 
410 struct ecore_llh_mac_filter {
411 	u8 addr[ETH_ALEN];
412 };
413 
414 struct ecore_llh_protocol_filter {
415 	enum ecore_llh_prot_filter_type_t type;
416 	u16 source_port_or_eth_type;
417 	u16 dest_port;
418 };
419 
420 union ecore_llh_filter {
421 	struct ecore_llh_mac_filter mac;
422 	struct ecore_llh_protocol_filter protocol;
423 };
424 
425 struct ecore_llh_filter_info {
426 	bool b_enabled;
427 	u32 ref_cnt;
428 	enum ecore_llh_filter_type type;
429 	union ecore_llh_filter filter;
430 };
431 
432 struct ecore_llh_info {
433 	/* Number of LLH filters banks */
434 	u8 num_ppfid;
435 
436 #define MAX_NUM_PPFID	8
437 	u8 ppfid_array[MAX_NUM_PPFID];
438 
439 	/* Array of filters arrays:
440 	 * "num_ppfid" elements of filters banks, where each is an array of
441 	 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
442 	 */
443 	struct ecore_llh_filter_info **pp_filters;
444 };
445 
446 static void ecore_llh_free(struct ecore_dev *p_dev)
447 {
448 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
449 	u32 i;
450 
451 	if (p_llh_info != OSAL_NULL) {
452 		if (p_llh_info->pp_filters != OSAL_NULL) {
453 			for (i = 0; i < p_llh_info->num_ppfid; i++)
454 				OSAL_FREE(p_dev, p_llh_info->pp_filters[i]);
455 		}
456 
457 		OSAL_FREE(p_dev, p_llh_info->pp_filters);
458 	}
459 
460 	OSAL_FREE(p_dev, p_llh_info);
461 	p_dev->p_llh_info = OSAL_NULL;
462 }
463 
464 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev)
465 {
466 	struct ecore_llh_info *p_llh_info;
467 	u32 size; u8 i;
468 
469 	p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info));
470 	if (!p_llh_info)
471 		return ECORE_NOMEM;
472 	p_dev->p_llh_info = p_llh_info;
473 
474 	for (i = 0; i < MAX_NUM_PPFID; i++) {
475 		if (!(p_dev->ppfid_bitmap & (0x1 << i)))
476 			continue;
477 
478 		p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
479 		DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n",
480 			   p_llh_info->num_ppfid, i);
481 		p_llh_info->num_ppfid++;
482 	}
483 
484 	size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
485 	p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size);
486 	if (!p_llh_info->pp_filters)
487 		return ECORE_NOMEM;
488 
489 	size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
490 	       sizeof(**p_llh_info->pp_filters);
491 	for (i = 0; i < p_llh_info->num_ppfid; i++) {
492 		p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL,
493 							size);
494 		if (!p_llh_info->pp_filters[i])
495 			return ECORE_NOMEM;
496 	}
497 
498 	return ECORE_SUCCESS;
499 }
500 
501 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev,
502 						    u8 ppfid, u8 filter_idx,
503 						    const char *action)
504 {
505 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
506 
507 	if (ppfid >= p_llh_info->num_ppfid) {
508 		DP_NOTICE(p_dev, false,
509 			  "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
510 			  action, ppfid, p_llh_info->num_ppfid);
511 		return ECORE_INVAL;
512 	}
513 
514 	if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
515 		DP_NOTICE(p_dev, false,
516 			  "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
517 			  action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
518 		return ECORE_INVAL;
519 	}
520 
521 	return ECORE_SUCCESS;
522 }
523 
524 #define ECORE_LLH_INVALID_FILTER_IDX	0xff
525 
526 static enum _ecore_status_t
527 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid,
528 			       union ecore_llh_filter *p_filter,
529 			       u8 *p_filter_idx)
530 {
531 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
532 	struct ecore_llh_filter_info *p_filters;
533 	enum _ecore_status_t rc;
534 	u8 i;
535 
536 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search");
537 	if (rc != ECORE_SUCCESS)
538 		return rc;
539 
540 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
541 
542 	p_filters = p_llh_info->pp_filters[ppfid];
543 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
544 		if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter,
545 				 sizeof(*p_filter))) {
546 			*p_filter_idx = i;
547 			break;
548 		}
549 	}
550 
551 	return ECORE_SUCCESS;
552 }
553 
554 static enum _ecore_status_t
555 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid,
556 			      u8 *p_filter_idx)
557 {
558 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
559 	struct ecore_llh_filter_info *p_filters;
560 	enum _ecore_status_t rc;
561 	u8 i;
562 
563 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx");
564 	if (rc != ECORE_SUCCESS)
565 		return rc;
566 
567 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
568 
569 	p_filters = p_llh_info->pp_filters[ppfid];
570 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
571 		if (!p_filters[i].b_enabled) {
572 			*p_filter_idx = i;
573 			break;
574 		}
575 	}
576 
577 	return ECORE_SUCCESS;
578 }
579 
580 static enum _ecore_status_t
581 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx,
582 			      enum ecore_llh_filter_type type,
583 			      union ecore_llh_filter *p_filter, u32 *p_ref_cnt)
584 {
585 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
586 	struct ecore_llh_filter_info *p_filters;
587 	enum _ecore_status_t rc;
588 
589 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add");
590 	if (rc != ECORE_SUCCESS)
591 		return rc;
592 
593 	p_filters = p_llh_info->pp_filters[ppfid];
594 	if (!p_filters[filter_idx].ref_cnt) {
595 		p_filters[filter_idx].b_enabled = true;
596 		p_filters[filter_idx].type = type;
597 		OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter,
598 			    sizeof(p_filters[filter_idx].filter));
599 	}
600 
601 	*p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
602 
603 	return ECORE_SUCCESS;
604 }
605 
606 static enum _ecore_status_t
607 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid,
608 			    enum ecore_llh_filter_type type,
609 			    union ecore_llh_filter *p_filter,
610 			    u8 *p_filter_idx, u32 *p_ref_cnt)
611 {
612 	enum _ecore_status_t rc;
613 
614 	/* Check if the same filter already exist */
615 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
616 					    p_filter_idx);
617 	if (rc != ECORE_SUCCESS)
618 		return rc;
619 
620 	/* Find a new entry in case of a new filter */
621 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
622 		rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx);
623 		if (rc != ECORE_SUCCESS)
624 			return rc;
625 	}
626 
627 	/* No free entry was found */
628 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
629 		DP_NOTICE(p_dev, false,
630 			  "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
631 			  ppfid);
632 		return ECORE_NORESOURCES;
633 	}
634 
635 	return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type,
636 					     p_filter, p_ref_cnt);
637 }
638 
639 static enum _ecore_status_t
640 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
641 				 u8 filter_idx, u32 *p_ref_cnt)
642 {
643 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
644 	struct ecore_llh_filter_info *p_filters;
645 	enum _ecore_status_t rc;
646 
647 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove");
648 	if (rc != ECORE_SUCCESS)
649 		return rc;
650 
651 	p_filters = p_llh_info->pp_filters[ppfid];
652 	if (!p_filters[filter_idx].ref_cnt) {
653 		DP_NOTICE(p_dev, false,
654 			  "LLH shadow: trying to remove a filter with ref_cnt=0\n");
655 		return ECORE_INVAL;
656 	}
657 
658 	*p_ref_cnt = --p_filters[filter_idx].ref_cnt;
659 	if (!p_filters[filter_idx].ref_cnt)
660 		OSAL_MEM_ZERO(&p_filters[filter_idx],
661 			      sizeof(p_filters[filter_idx]));
662 
663 	return ECORE_SUCCESS;
664 }
665 
666 static enum _ecore_status_t
667 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
668 			       union ecore_llh_filter *p_filter,
669 			       u8 *p_filter_idx, u32 *p_ref_cnt)
670 {
671 	enum _ecore_status_t rc;
672 
673 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
674 					    p_filter_idx);
675 	if (rc != ECORE_SUCCESS)
676 		return rc;
677 
678 	/* No matching filter was found */
679 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
680 		DP_NOTICE(p_dev, false,
681 			  "Failed to find a filter in the LLH shadow\n");
682 		return ECORE_INVAL;
683 	}
684 
685 	return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx,
686 						p_ref_cnt);
687 }
688 
689 static enum _ecore_status_t
690 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid)
691 {
692 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
693 	struct ecore_llh_filter_info *p_filters;
694 	enum _ecore_status_t rc;
695 
696 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all");
697 	if (rc != ECORE_SUCCESS)
698 		return rc;
699 
700 	p_filters = p_llh_info->pp_filters[ppfid];
701 	OSAL_MEM_ZERO(p_filters,
702 		      NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters));
703 
704 	return ECORE_SUCCESS;
705 }
706 
707 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev,
708 					    u8 rel_ppfid, u8 *p_abs_ppfid)
709 {
710 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
711 
712 	if (rel_ppfid >= p_llh_info->num_ppfid) {
713 		DP_NOTICE(p_dev, false,
714 			  "rel_ppfid %d is not valid, available indices are 0..%hhd\n",
715 			  rel_ppfid, (u8)(p_llh_info->num_ppfid - 1));
716 		return ECORE_INVAL;
717 	}
718 
719 	*p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid];
720 
721 	return ECORE_SUCCESS;
722 }
723 
724 static enum _ecore_status_t
725 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
726 {
727 	struct ecore_dev *p_dev = p_hwfn->p_dev;
728 	enum ecore_eng eng;
729 	u8 ppfid;
730 	enum _ecore_status_t rc;
731 
732 	rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt);
733 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
734 		DP_NOTICE(p_hwfn, false,
735 			  "Failed to get the engine affinity configuration\n");
736 		return rc;
737 	}
738 
739 	/* RoCE PF is bound to a single engine */
740 	if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
741 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
742 		rc = ecore_llh_set_roce_affinity(p_dev, eng);
743 		if (rc != ECORE_SUCCESS) {
744 			DP_NOTICE(p_dev, false,
745 				  "Failed to set the RoCE engine affinity\n");
746 			return rc;
747 		}
748 
749 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
750 			   "LLH: Set the engine affinity of RoCE packets as %d\n",
751 			   eng);
752 	}
753 
754 	/* Storage PF is bound to a single engine while L2 PF uses both */
755 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
756 	    ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
757 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
758 	else /* L2_PERSONALITY */
759 		eng = ECORE_BOTH_ENG;
760 
761 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
762 		rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
763 		if (rc != ECORE_SUCCESS) {
764 			DP_NOTICE(p_dev, false,
765 				  "Failed to set the engine affinity of ppfid %d\n",
766 				  ppfid);
767 			return rc;
768 		}
769 	}
770 
771 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
772 		   "LLH: Set the engine affinity of non-RoCE packets as %d\n",
773 		   eng);
774 
775 	return ECORE_SUCCESS;
776 }
777 
778 static enum _ecore_status_t
779 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
780 			   bool avoid_eng_affin)
781 {
782 	struct ecore_dev *p_dev = p_hwfn->p_dev;
783 	enum _ecore_status_t rc;
784 
785 	/* Backwards compatible mode:
786 	 * - RoCE packets     - Use engine 0.
787 	 * - Non-RoCE packets - Use connection based classification for L2 PFs,
788 	 *                      and engine 0 otherwise.
789 	 */
790 	if (avoid_eng_affin) {
791 		enum ecore_eng eng;
792 		u8 ppfid;
793 
794 		if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
795 			eng = ECORE_ENG0;
796 			rc = ecore_llh_set_roce_affinity(p_dev, eng);
797 			if (rc != ECORE_SUCCESS) {
798 				DP_NOTICE(p_dev, false,
799 					  "Failed to set the RoCE engine affinity\n");
800 				return rc;
801 			}
802 
803 			DP_VERBOSE(p_dev, ECORE_MSG_SP,
804 				   "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n",
805 				   eng);
806 		}
807 
808 		eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
809 		       ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0
810 							   : ECORE_BOTH_ENG;
811 		for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
812 			rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
813 			if (rc != ECORE_SUCCESS) {
814 				DP_NOTICE(p_dev, false,
815 					  "Failed to set the engine affinity of ppfid %d\n",
816 					  ppfid);
817 				return rc;
818 			}
819 		}
820 
821 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
822 			   "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n",
823 			   eng);
824 
825 		return ECORE_SUCCESS;
826 	}
827 
828 	return __ecore_llh_set_engine_affin(p_hwfn, p_ptt);
829 }
830 
831 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn,
832 						 struct ecore_ptt *p_ptt,
833 						 bool avoid_eng_affin)
834 {
835 	struct ecore_dev *p_dev = p_hwfn->p_dev;
836 	u8 ppfid, abs_ppfid;
837 	enum _ecore_status_t rc;
838 
839 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
840 		u32 addr;
841 
842 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
843 		if (rc != ECORE_SUCCESS)
844 			return rc;
845 
846 		addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
847 		ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
848 	}
849 
850 	if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
851 	    !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) {
852 		rc = ecore_llh_add_mac_filter(p_dev, 0,
853 					      p_hwfn->hw_info.hw_mac_addr);
854 		if (rc != ECORE_SUCCESS)
855 			DP_NOTICE(p_dev, false,
856 				  "Failed to add an LLH filter with the primary MAC\n");
857 	}
858 
859 	if (ECORE_IS_CMT(p_dev)) {
860 		rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin);
861 		if (rc != ECORE_SUCCESS)
862 			return rc;
863 	}
864 
865 	return ECORE_SUCCESS;
866 }
867 
868 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev)
869 {
870 	return p_dev->p_llh_info->num_ppfid;
871 }
872 
873 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev)
874 {
875 	return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0;
876 }
877 
878 /* TBD - should be removed when these definitions are available in reg_addr.h */
879 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK		0x3
880 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT		0
881 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK		0x3
882 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT	2
883 
884 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev,
885 						  u8 ppfid, enum ecore_eng eng)
886 {
887 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
888 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
889 	u32 addr, val, eng_sel;
890 	enum _ecore_status_t rc = ECORE_SUCCESS;
891 	u8 abs_ppfid;
892 
893 	if (p_ptt == OSAL_NULL)
894 		return ECORE_AGAIN;
895 
896 	if (!ECORE_IS_CMT(p_dev))
897 		goto out;
898 
899 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
900 	if (rc != ECORE_SUCCESS)
901 		goto out;
902 
903 	switch (eng) {
904 	case ECORE_ENG0:
905 		eng_sel = 0;
906 		break;
907 	case ECORE_ENG1:
908 		eng_sel = 1;
909 		break;
910 	case ECORE_BOTH_ENG:
911 		eng_sel = 2;
912 		break;
913 	default:
914 		DP_NOTICE(p_dev, false,
915 			  "Invalid affinity value for ppfid [%d]\n", eng);
916 		rc = ECORE_INVAL;
917 		goto out;
918 	}
919 
920 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
921 	val = ecore_rd(p_hwfn, p_ptt, addr);
922 	SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
923 	ecore_wr(p_hwfn, p_ptt, addr, val);
924 
925 	/* The iWARP affinity is set as the affinity of ppfid 0 */
926 	if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn))
927 		p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0;
928 out:
929 	ecore_ptt_release(p_hwfn, p_ptt);
930 
931 	return rc;
932 }
933 
934 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev,
935 						 enum ecore_eng eng)
936 {
937 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
938 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
939 	u32 addr, val, eng_sel;
940 	enum _ecore_status_t rc = ECORE_SUCCESS;
941 	u8 ppfid, abs_ppfid;
942 
943 	if (p_ptt == OSAL_NULL)
944 		return ECORE_AGAIN;
945 
946 	if (!ECORE_IS_CMT(p_dev))
947 		goto out;
948 
949 	switch (eng) {
950 	case ECORE_ENG0:
951 		eng_sel = 0;
952 		break;
953 	case ECORE_ENG1:
954 		eng_sel = 1;
955 		break;
956 	case ECORE_BOTH_ENG:
957 		eng_sel = 2;
958 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
959 			 0xf /* QP bit 15 */);
960 		break;
961 	default:
962 		DP_NOTICE(p_dev, false,
963 			  "Invalid affinity value for RoCE [%d]\n", eng);
964 		rc = ECORE_INVAL;
965 		goto out;
966 	}
967 
968 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
969 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
970 		if (rc != ECORE_SUCCESS)
971 			goto out;
972 
973 		addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
974 		val = ecore_rd(p_hwfn, p_ptt, addr);
975 		SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
976 		ecore_wr(p_hwfn, p_ptt, addr, val);
977 	}
978 out:
979 	ecore_ptt_release(p_hwfn, p_ptt);
980 
981 	return rc;
982 }
983 
984 struct ecore_llh_filter_e4_details {
985 	u64 value;
986 	u32 mode;
987 	u32 protocol_type;
988 	u32 hdr_sel;
989 	u32 enable;
990 };
991 
992 static enum _ecore_status_t
993 ecore_llh_access_filter_e4(struct ecore_hwfn *p_hwfn,
994 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx,
995 			   struct ecore_llh_filter_e4_details *p_details,
996 			   bool b_write_access)
997 {
998 	u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
999 	struct ecore_dmae_params params;
1000 	enum _ecore_status_t rc;
1001 	u32 addr;
1002 
1003 	/* The NIG/LLH registers that are accessed in this function have only 16
1004 	 * rows which are exposed to a PF. I.e. only the 16 filters of its
1005 	 * default ppfid
1006 	 * Accessing filters of other ppfids requires pretending to other PFs,
1007 	 * and thus the usage of the ecore_ppfid_rd/wr() functions.
1008 	 */
1009 
1010 	/* Filter enable - should be done first when removing a filter */
1011 	if (b_write_access && !p_details->enable) {
1012 		addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1013 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1014 			       p_details->enable);
1015 	}
1016 
1017 	/* Filter value */
1018 	addr = NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 + 2 * filter_idx * 0x4;
1019 	OSAL_MEMSET(&params, 0, sizeof(params));
1020 
1021 	if (b_write_access) {
1022 		params.flags = ECORE_DMAE_FLAG_PF_DST;
1023 		params.dst_pfid = pfid;
1024 		rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
1025 					 (u64)(osal_uintptr_t)&p_details->value,
1026 					 addr, 2 /* size_in_dwords */, &params);
1027 	} else {
1028 		params.flags = ECORE_DMAE_FLAG_PF_SRC |
1029 			       ECORE_DMAE_FLAG_COMPLETION_DST;
1030 		params.src_pfid = pfid;
1031 		rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr,
1032 					 (u64)(osal_uintptr_t)&p_details->value,
1033 					 2 /* size_in_dwords */, &params);
1034 	}
1035 
1036 	if (rc != ECORE_SUCCESS)
1037 		return rc;
1038 
1039 	/* Filter mode */
1040 	addr = NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 + filter_idx * 0x4;
1041 	if (b_write_access)
1042 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode);
1043 	else
1044 		p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1045 						 addr);
1046 
1047 	/* Filter protocol type */
1048 	addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 + filter_idx * 0x4;
1049 	if (b_write_access)
1050 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1051 			       p_details->protocol_type);
1052 	else
1053 		p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt,
1054 							  abs_ppfid, addr);
1055 
1056 	/* Filter header select */
1057 	addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL_BB_K2 + filter_idx * 0x4;
1058 	if (b_write_access)
1059 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1060 			       p_details->hdr_sel);
1061 	else
1062 		p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1063 						    addr);
1064 
1065 	/* Filter enable - should be done last when adding a filter */
1066 	if (!b_write_access || p_details->enable) {
1067 		addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1068 		if (b_write_access)
1069 			ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1070 				       p_details->enable);
1071 		else
1072 			p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt,
1073 							   abs_ppfid, addr);
1074 	}
1075 
1076 	return ECORE_SUCCESS;
1077 }
1078 
1079 static enum _ecore_status_t
1080 ecore_llh_add_filter_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1081 			u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type,
1082 			u32 high, u32 low)
1083 {
1084 	struct ecore_llh_filter_e4_details filter_details;
1085 
1086 	filter_details.enable = 1;
1087 	filter_details.value = ((u64)high << 32) | low;
1088 	filter_details.hdr_sel = 0;
1089 	filter_details.protocol_type = filter_prot_type;
1090 	filter_details.mode = filter_prot_type ?
1091 			      1 : /* protocol-based classification */
1092 			      0;  /* MAC-address based classification */
1093 
1094 	return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1095 					  &filter_details,
1096 					  true /* write access */);
1097 }
1098 
1099 static enum _ecore_status_t
1100 ecore_llh_remove_filter_e4(struct ecore_hwfn *p_hwfn,
1101 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
1102 {
1103 	struct ecore_llh_filter_e4_details filter_details;
1104 
1105 	OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1106 
1107 	return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1108 					  &filter_details,
1109 					  true /* write access */);
1110 }
1111 
1112 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1113  * Should be removed when the function is implemented.
1114  */
1115 static enum _ecore_status_t
1116 ecore_llh_add_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1117 			struct ecore_ptt OSAL_UNUSED *p_ptt,
1118 			u8 OSAL_UNUSED abs_ppfid, u8 OSAL_UNUSED filter_idx,
1119 			u8 OSAL_UNUSED filter_prot_type, u32 OSAL_UNUSED high,
1120 			u32 OSAL_UNUSED low)
1121 {
1122 	ECORE_E5_MISSING_CODE;
1123 
1124 	return ECORE_NOTIMPL;
1125 }
1126 
1127 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1128  * Should be removed when the function is implemented.
1129  */
1130 static enum _ecore_status_t
1131 ecore_llh_remove_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1132 			   struct ecore_ptt OSAL_UNUSED *p_ptt,
1133 			   u8 OSAL_UNUSED abs_ppfid,
1134 			   u8 OSAL_UNUSED filter_idx)
1135 {
1136 	ECORE_E5_MISSING_CODE;
1137 
1138 	return ECORE_NOTIMPL;
1139 }
1140 
1141 static enum _ecore_status_t
1142 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1143 		     u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high,
1144 		     u32 low)
1145 {
1146 	if (ECORE_IS_E4(p_hwfn->p_dev))
1147 		return ecore_llh_add_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1148 					       filter_idx, filter_prot_type,
1149 					       high, low);
1150 	else /* E5 */
1151 		return ecore_llh_add_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1152 					       filter_idx, filter_prot_type,
1153 					       high, low);
1154 }
1155 
1156 static enum _ecore_status_t
1157 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1158 			u8 abs_ppfid, u8 filter_idx)
1159 {
1160 	if (ECORE_IS_E4(p_hwfn->p_dev))
1161 		return ecore_llh_remove_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1162 						  filter_idx);
1163 	else /* E5 */
1164 		return ecore_llh_remove_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1165 						  filter_idx);
1166 }
1167 
1168 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1169 					      u8 mac_addr[ETH_ALEN])
1170 {
1171 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1172 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1173 	union ecore_llh_filter filter;
1174 	u8 filter_idx, abs_ppfid;
1175 	u32 high, low, ref_cnt;
1176 	enum _ecore_status_t rc = ECORE_SUCCESS;
1177 
1178 	if (p_ptt == OSAL_NULL)
1179 		return ECORE_AGAIN;
1180 
1181 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1182 		goto out;
1183 
1184 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1185 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1186 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1187 					 ECORE_LLH_FILTER_TYPE_MAC,
1188 					 &filter, &filter_idx, &ref_cnt);
1189 	if (rc != ECORE_SUCCESS)
1190 		goto err;
1191 
1192 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1193 	if (rc != ECORE_SUCCESS)
1194 		goto err;
1195 
1196 	/* Configure the LLH only in case of a new the filter */
1197 	if (ref_cnt == 1) {
1198 		high = mac_addr[1] | (mac_addr[0] << 8);
1199 		low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1200 		      (mac_addr[2] << 24);
1201 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1202 					  0, high, low);
1203 		if (rc != ECORE_SUCCESS)
1204 			goto err;
1205 	}
1206 
1207 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1208 		   "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1209 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1210 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1211 		   ref_cnt);
1212 
1213 	goto out;
1214 
1215 err:
1216 	DP_NOTICE(p_dev, false,
1217 		  "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n",
1218 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1219 		  mac_addr[4], mac_addr[5], ppfid);
1220 out:
1221 	ecore_ptt_release(p_hwfn, p_ptt);
1222 
1223 	return rc;
1224 }
1225 
1226 static enum _ecore_status_t
1227 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev,
1228 				    enum ecore_llh_prot_filter_type_t type,
1229 				    u16 source_port_or_eth_type, u16 dest_port,
1230 				    u8 *str, osal_size_t str_len)
1231 {
1232 	switch (type) {
1233 	case ECORE_LLH_FILTER_ETHERTYPE:
1234 		OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x",
1235 			      source_port_or_eth_type);
1236 		break;
1237 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1238 		OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x",
1239 			      source_port_or_eth_type);
1240 		break;
1241 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1242 		OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x",
1243 			      source_port_or_eth_type);
1244 		break;
1245 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1246 		OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port);
1247 		break;
1248 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1249 		OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port);
1250 		break;
1251 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1252 		OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1253 			      source_port_or_eth_type, dest_port);
1254 		break;
1255 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1256 		OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1257 			      source_port_or_eth_type, dest_port);
1258 		break;
1259 	default:
1260 		DP_NOTICE(p_dev, true,
1261 			  "Non valid LLH protocol filter type %d\n", type);
1262 		return ECORE_INVAL;
1263 	}
1264 
1265 	return ECORE_SUCCESS;
1266 }
1267 
1268 static enum _ecore_status_t
1269 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev,
1270 				  enum ecore_llh_prot_filter_type_t type,
1271 				  u16 source_port_or_eth_type, u16 dest_port,
1272 				  u32 *p_high, u32 *p_low)
1273 {
1274 	*p_high = 0;
1275 	*p_low = 0;
1276 
1277 	switch (type) {
1278 	case ECORE_LLH_FILTER_ETHERTYPE:
1279 		*p_high = source_port_or_eth_type;
1280 		break;
1281 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1282 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1283 		*p_low = source_port_or_eth_type << 16;
1284 		break;
1285 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1286 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1287 		*p_low = dest_port;
1288 		break;
1289 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1290 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1291 		*p_low = (source_port_or_eth_type << 16) | dest_port;
1292 		break;
1293 	default:
1294 		DP_NOTICE(p_dev, true,
1295 			  "Non valid LLH protocol filter type %d\n", type);
1296 		return ECORE_INVAL;
1297 	}
1298 
1299 	return ECORE_SUCCESS;
1300 }
1301 
1302 enum _ecore_status_t
1303 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1304 			      enum ecore_llh_prot_filter_type_t type,
1305 			      u16 source_port_or_eth_type, u16 dest_port)
1306 {
1307 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1308 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1309 	u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1310 	union ecore_llh_filter filter;
1311 	u32 high, low, ref_cnt;
1312 	enum _ecore_status_t rc = ECORE_SUCCESS;
1313 
1314 	if (p_ptt == OSAL_NULL)
1315 		return ECORE_AGAIN;
1316 
1317 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1318 		goto out;
1319 
1320 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1321 						 source_port_or_eth_type,
1322 						 dest_port, str, sizeof(str));
1323 	if (rc != ECORE_SUCCESS)
1324 		goto err;
1325 
1326 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1327 	filter.protocol.type = type;
1328 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1329 	filter.protocol.dest_port = dest_port;
1330 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1331 					 ECORE_LLH_FILTER_TYPE_PROTOCOL,
1332 					 &filter, &filter_idx, &ref_cnt);
1333 	if (rc != ECORE_SUCCESS)
1334 		goto err;
1335 
1336 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1337 	if (rc != ECORE_SUCCESS)
1338 		goto err;
1339 
1340 	/* Configure the LLH only in case of a new the filter */
1341 	if (ref_cnt == 1) {
1342 		rc = ecore_llh_protocol_filter_to_hilo(p_dev, type,
1343 						       source_port_or_eth_type,
1344 						       dest_port, &high, &low);
1345 		if (rc != ECORE_SUCCESS)
1346 			goto err;
1347 
1348 		type_bitmap = 0x1 << type;
1349 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1350 					  type_bitmap, high, low);
1351 		if (rc != ECORE_SUCCESS)
1352 			goto err;
1353 	}
1354 
1355 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1356 		   "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1357 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1358 
1359 	goto out;
1360 
1361 err:
1362 	DP_NOTICE(p_hwfn, false,
1363 		  "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1364 		  str, ppfid);
1365 out:
1366 	ecore_ptt_release(p_hwfn, p_ptt);
1367 
1368 	return rc;
1369 }
1370 
1371 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1372 				 u8 mac_addr[ETH_ALEN])
1373 {
1374 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1375 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1376 	union ecore_llh_filter filter;
1377 	u8 filter_idx, abs_ppfid;
1378 	enum _ecore_status_t rc = ECORE_SUCCESS;
1379 	u32 ref_cnt;
1380 
1381 	if (p_ptt == OSAL_NULL)
1382 		return;
1383 
1384 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1385 		goto out;
1386 
1387 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1388 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1389 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1390 					    &ref_cnt);
1391 	if (rc != ECORE_SUCCESS)
1392 		goto err;
1393 
1394 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1395 	if (rc != ECORE_SUCCESS)
1396 		goto err;
1397 
1398 	/* Remove from the LLH in case the filter is not in use */
1399 	if (!ref_cnt) {
1400 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1401 					     filter_idx);
1402 		if (rc != ECORE_SUCCESS)
1403 			goto err;
1404 	}
1405 
1406 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1407 		   "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1408 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1409 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1410 		   ref_cnt);
1411 
1412 	goto out;
1413 
1414 err:
1415 	DP_NOTICE(p_dev, false,
1416 		  "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n",
1417 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1418 		  mac_addr[4], mac_addr[5], ppfid);
1419 out:
1420 	ecore_ptt_release(p_hwfn, p_ptt);
1421 }
1422 
1423 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1424 				      enum ecore_llh_prot_filter_type_t type,
1425 				      u16 source_port_or_eth_type,
1426 				      u16 dest_port)
1427 {
1428 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1429 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1430 	u8 filter_idx, abs_ppfid, str[32];
1431 	union ecore_llh_filter filter;
1432 	enum _ecore_status_t rc = ECORE_SUCCESS;
1433 	u32 ref_cnt;
1434 
1435 	if (p_ptt == OSAL_NULL)
1436 		return;
1437 
1438 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1439 		goto out;
1440 
1441 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1442 						 source_port_or_eth_type,
1443 						 dest_port, str, sizeof(str));
1444 	if (rc != ECORE_SUCCESS)
1445 		goto err;
1446 
1447 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1448 	filter.protocol.type = type;
1449 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1450 	filter.protocol.dest_port = dest_port;
1451 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1452 					    &ref_cnt);
1453 	if (rc != ECORE_SUCCESS)
1454 		goto err;
1455 
1456 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1457 	if (rc != ECORE_SUCCESS)
1458 		goto err;
1459 
1460 	/* Remove from the LLH in case the filter is not in use */
1461 	if (!ref_cnt) {
1462 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1463 					     filter_idx);
1464 		if (rc != ECORE_SUCCESS)
1465 			goto err;
1466 	}
1467 
1468 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1469 		   "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1470 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1471 
1472 	goto out;
1473 
1474 err:
1475 	DP_NOTICE(p_dev, false,
1476 		  "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1477 		  str, ppfid);
1478 out:
1479 	ecore_ptt_release(p_hwfn, p_ptt);
1480 }
1481 
1482 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid)
1483 {
1484 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1485 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1486 	u8 filter_idx, abs_ppfid;
1487 	enum _ecore_status_t rc = ECORE_SUCCESS;
1488 
1489 	if (p_ptt == OSAL_NULL)
1490 		return;
1491 
1492 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1493 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1494 		goto out;
1495 
1496 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1497 	if (rc != ECORE_SUCCESS)
1498 		goto out;
1499 
1500 	rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid);
1501 	if (rc != ECORE_SUCCESS)
1502 		goto out;
1503 
1504 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1505 	     filter_idx++) {
1506 		if (ECORE_IS_E4(p_dev))
1507 			rc = ecore_llh_remove_filter_e4(p_hwfn, p_ptt,
1508 							abs_ppfid, filter_idx);
1509 		else /* E5 */
1510 			rc = ecore_llh_remove_filter_e5(p_hwfn, p_ptt,
1511 							abs_ppfid, filter_idx);
1512 		if (rc != ECORE_SUCCESS)
1513 			goto out;
1514 	}
1515 out:
1516 	ecore_ptt_release(p_hwfn, p_ptt);
1517 }
1518 
1519 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev)
1520 {
1521 	u8 ppfid;
1522 
1523 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1524 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1525 		return;
1526 
1527 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++)
1528 		ecore_llh_clear_ppfid_filters(p_dev, ppfid);
1529 }
1530 
1531 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn,
1532 					 struct ecore_ptt *p_ptt, u32 addr,
1533 					 u32 val)
1534 {
1535 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1536 	u8 ppfid, abs_ppfid;
1537 	enum _ecore_status_t rc;
1538 
1539 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1540 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1541 		if (rc != ECORE_SUCCESS)
1542 			return rc;
1543 
1544 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val);
1545 	}
1546 
1547 	return ECORE_SUCCESS;
1548 }
1549 
1550 static enum _ecore_status_t
1551 ecore_llh_dump_ppfid_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1552 			u8 ppfid)
1553 {
1554 	struct ecore_llh_filter_e4_details filter_details;
1555 	u8 abs_ppfid, filter_idx;
1556 	u32 addr;
1557 	enum _ecore_status_t rc;
1558 
1559 	rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid);
1560 	if (rc != ECORE_SUCCESS)
1561 		return rc;
1562 
1563 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
1564 	DP_NOTICE(p_hwfn, false,
1565 		  "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n",
1566 		  p_hwfn->rel_pf_id, ppfid, abs_ppfid,
1567 		  ecore_rd(p_hwfn, p_ptt, addr));
1568 
1569 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1570 	     filter_idx++) {
1571 		OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1572 		rc =  ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1573 						 filter_idx, &filter_details,
1574 						 false /* read access */);
1575 		if (rc != ECORE_SUCCESS)
1576 			return rc;
1577 
1578 		DP_NOTICE(p_hwfn, false,
1579 			  "filter %2hhd: enable %d, value 0x%016llx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n",
1580 			  filter_idx, filter_details.enable,
1581 			  (unsigned long long)filter_details.value, filter_details.mode,
1582 			  filter_details.protocol_type, filter_details.hdr_sel);
1583 	}
1584 
1585 	return ECORE_SUCCESS;
1586 }
1587 
1588 static enum _ecore_status_t
1589 ecore_llh_dump_ppfid_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1590 			struct ecore_ptt OSAL_UNUSED *p_ptt,
1591 			u8 OSAL_UNUSED ppfid)
1592 {
1593 	ECORE_E5_MISSING_CODE;
1594 
1595 	return ECORE_NOTIMPL;
1596 }
1597 
1598 enum _ecore_status_t ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid)
1599 {
1600 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1601 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1602 	enum _ecore_status_t rc;
1603 
1604 	if (p_ptt == OSAL_NULL)
1605 		return ECORE_AGAIN;
1606 
1607 	if (ECORE_IS_E4(p_dev))
1608 		rc = ecore_llh_dump_ppfid_e4(p_hwfn, p_ptt, ppfid);
1609 	else /* E5 */
1610 		rc = ecore_llh_dump_ppfid_e5(p_hwfn, p_ptt, ppfid);
1611 
1612 	ecore_ptt_release(p_hwfn, p_ptt);
1613 
1614 	return rc;
1615 }
1616 
1617 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev)
1618 {
1619 	u8 ppfid;
1620 	enum _ecore_status_t rc;
1621 
1622 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1623 		rc = ecore_llh_dump_ppfid(p_dev, ppfid);
1624 		if (rc != ECORE_SUCCESS)
1625 			return rc;
1626 	}
1627 
1628 	return ECORE_SUCCESS;
1629 }
1630 
1631 /******************************* NIG LLH - End ********************************/
1632 
1633 /* Configurable */
1634 #define ECORE_MIN_DPIS		(4)  /* The minimal number of DPIs required to
1635 				      * load the driver. The number was
1636 				      * arbitrarily set.
1637 				      */
1638 
1639 /* Derived */
1640 #define ECORE_MIN_PWM_REGION	(ECORE_WID_SIZE * ECORE_MIN_DPIS)
1641 
1642 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
1643 			     struct ecore_ptt *p_ptt,
1644 			     enum BAR_ID bar_id)
1645 {
1646 	u32 bar_reg = (bar_id == BAR_ID_0 ?
1647 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1648 	u32 val;
1649 
1650 	if (IS_VF(p_hwfn->p_dev))
1651 		return ecore_vf_hw_bar_size(p_hwfn, bar_id);
1652 
1653 	val = ecore_rd(p_hwfn, p_ptt, bar_reg);
1654 	if (val)
1655 		return 1 << (val + 15);
1656 
1657 	/* The above registers were updated in the past only in CMT mode. Since
1658 	 * they were found to be useful MFW started updating them from 8.7.7.0.
1659 	 * In older MFW versions they are set to 0 which means disabled.
1660 	 */
1661 	if (ECORE_IS_CMT(p_hwfn->p_dev)) {
1662 		DP_INFO(p_hwfn,
1663 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1664 		return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1665 	} else {
1666 		DP_INFO(p_hwfn,
1667 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1668 		return 512 * 1024;
1669 	}
1670 }
1671 
1672 void ecore_init_dp(struct ecore_dev	*p_dev,
1673 		   u32			dp_module,
1674 		   u8			dp_level,
1675 		   void		 *dp_ctx)
1676 {
1677 	u32 i;
1678 
1679 	p_dev->dp_level = dp_level;
1680 	p_dev->dp_module = dp_module;
1681 	p_dev->dp_ctx = dp_ctx;
1682 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1683 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1684 
1685 		p_hwfn->dp_level = dp_level;
1686 		p_hwfn->dp_module = dp_module;
1687 		p_hwfn->dp_ctx = dp_ctx;
1688 	}
1689 }
1690 
1691 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev)
1692 {
1693 	u8 i;
1694 
1695 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1696 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1697 
1698 		p_hwfn->p_dev = p_dev;
1699 		p_hwfn->my_id = i;
1700 		p_hwfn->b_active = false;
1701 
1702 #ifdef CONFIG_ECORE_LOCK_ALLOC
1703 		if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock))
1704 			goto handle_err;
1705 #endif
1706 		OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock);
1707 	}
1708 
1709 	/* hwfn 0 is always active */
1710 	p_dev->hwfns[0].b_active = true;
1711 
1712 	/* set the default cache alignment to 128 (may be overridden later) */
1713 	p_dev->cache_shift = 7;
1714 
1715 	p_dev->ilt_page_size = ECORE_DEFAULT_ILT_PAGE_SIZE;
1716 
1717 	return ECORE_SUCCESS;
1718 #ifdef CONFIG_ECORE_LOCK_ALLOC
1719 handle_err:
1720 	while (--i) {
1721 		struct ecore_hwfn *p_hwfn = OSAL_NULL;
1722 
1723 		p_hwfn = &p_dev->hwfns[i];
1724 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
1725 	}
1726 	return ECORE_NOMEM;
1727 #endif
1728 }
1729 
1730 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
1731 {
1732 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1733 
1734 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
1735 	qm_info->qm_pq_params = OSAL_NULL;
1736 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
1737 	qm_info->qm_vport_params = OSAL_NULL;
1738 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
1739 	qm_info->qm_port_params = OSAL_NULL;
1740 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
1741 	qm_info->wfq_data = OSAL_NULL;
1742 }
1743 
1744 void ecore_resc_free(struct ecore_dev *p_dev)
1745 {
1746 	int i;
1747 
1748 	if (IS_VF(p_dev)) {
1749 		for_each_hwfn(p_dev, i)
1750 			ecore_l2_free(&p_dev->hwfns[i]);
1751 		return;
1752 	}
1753 
1754 	OSAL_FREE(p_dev, p_dev->fw_data);
1755 	p_dev->fw_data = OSAL_NULL;
1756 
1757 	OSAL_FREE(p_dev, p_dev->reset_stats);
1758 	p_dev->reset_stats = OSAL_NULL;
1759 
1760 	ecore_llh_free(p_dev);
1761 
1762 	for_each_hwfn(p_dev, i) {
1763 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1764 
1765 		ecore_cxt_mngr_free(p_hwfn);
1766 		ecore_qm_info_free(p_hwfn);
1767 		ecore_spq_free(p_hwfn);
1768 		ecore_eq_free(p_hwfn);
1769 		ecore_consq_free(p_hwfn);
1770 		ecore_int_free(p_hwfn);
1771 #ifdef CONFIG_ECORE_LL2
1772 		ecore_ll2_free(p_hwfn);
1773 #endif
1774 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1775 			ecore_fcoe_free(p_hwfn);
1776 
1777 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1778 			ecore_iscsi_free(p_hwfn);
1779 			ecore_ooo_free(p_hwfn);
1780 		}
1781 
1782 #ifdef CONFIG_ECORE_ROCE
1783 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1784 			ecore_rdma_info_free(p_hwfn);
1785 #endif
1786 		ecore_iov_free(p_hwfn);
1787 		ecore_l2_free(p_hwfn);
1788 		ecore_dmae_info_free(p_hwfn);
1789 		ecore_dcbx_info_free(p_hwfn);
1790 		/* @@@TBD Flush work-queue ?*/
1791 
1792 		/* destroy doorbell recovery mechanism */
1793 		ecore_db_recovery_teardown(p_hwfn);
1794 	}
1795 }
1796 
1797 /******************** QM initialization *******************/
1798 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
1799 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
1800 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
1801 
1802 /* determines the physical queue flags for a given PF. */
1803 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
1804 {
1805 	u32 flags;
1806 
1807 	/* common flags */
1808 	flags = PQ_FLAGS_LB;
1809 
1810 	/* feature flags */
1811 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
1812 		flags |= PQ_FLAGS_VFS;
1813 	if (IS_ECORE_DCQCN(p_hwfn))
1814 		flags |= PQ_FLAGS_RLS;
1815 
1816 	/* protocol flags */
1817 	switch (p_hwfn->hw_info.personality) {
1818 	case ECORE_PCI_ETH:
1819 		flags |= PQ_FLAGS_MCOS;
1820 		break;
1821 	case ECORE_PCI_FCOE:
1822 		flags |= PQ_FLAGS_OFLD;
1823 		break;
1824 	case ECORE_PCI_ISCSI:
1825 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1826 		break;
1827 	case ECORE_PCI_ETH_ROCE:
1828 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1829 		break;
1830 	case ECORE_PCI_ETH_IWARP:
1831 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1832 		break;
1833 	default:
1834 		DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
1835 		return 0;
1836 	}
1837 
1838 	return flags;
1839 }
1840 
1841 
1842 /* Getters for resource amounts necessary for qm initialization */
1843 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
1844 {
1845 	return p_hwfn->hw_info.num_hw_tc;
1846 }
1847 
1848 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
1849 {
1850 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
1851 }
1852 
1853 #define NUM_DEFAULT_RLS 1
1854 
1855 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
1856 {
1857 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
1858 
1859 	/* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
1860 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
1861 				     (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
1862 						     ROCE_DCQCN_RP_MAX_QPS));
1863 
1864 	/* make sure after we reserve the default and VF rls we'll have something left */
1865 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
1866 		if (IS_ECORE_DCQCN(p_hwfn))
1867 			DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
1868 		return 0;
1869 	}
1870 
1871 	/* subtract rls necessary for VFs and one default one for the PF */
1872 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1873 
1874 	return num_pf_rls;
1875 }
1876 
1877 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
1878 {
1879 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1880 
1881 	/* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
1882 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1883 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
1884 }
1885 
1886 /* calc amount of PQs according to the requested flags */
1887 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
1888 {
1889 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1890 
1891 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1892 	       (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
1893 	       (!!(PQ_FLAGS_LB & pq_flags)) +
1894 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
1895 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
1896 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
1897 	       (!!(PQ_FLAGS_LLT & pq_flags)) +
1898 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
1899 }
1900 
1901 /* initialize the top level QM params */
1902 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
1903 {
1904 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1905 	bool four_port;
1906 
1907 	/* pq and vport bases for this PF */
1908 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
1909 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
1910 
1911 	/* rate limiting and weighted fair queueing are always enabled */
1912 	qm_info->vport_rl_en = 1;
1913 	qm_info->vport_wfq_en = 1;
1914 
1915 	/* TC config is different for AH 4 port */
1916 	four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1917 
1918 	/* in AH 4 port we have fewer TCs per port */
1919 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
1920 
1921 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
1922 	if (!qm_info->ooo_tc)
1923 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
1924 }
1925 
1926 /* initialize qm vport params */
1927 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
1928 {
1929 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1930 	u8 i;
1931 
1932 	/* all vports participate in weighted fair queueing */
1933 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
1934 		qm_info->qm_vport_params[i].vport_wfq = 1;
1935 }
1936 
1937 /* initialize qm port params */
1938 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
1939 {
1940 	/* Initialize qm port parameters */
1941 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
1942 
1943 	/* indicate how ooo and high pri traffic is dealt with */
1944 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1945 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
1946 
1947 	for (i = 0; i < num_ports; i++) {
1948 		struct init_qm_port_params *p_qm_port =
1949 			&p_hwfn->qm_info.qm_port_params[i];
1950 
1951 		p_qm_port->active = 1;
1952 		p_qm_port->active_phys_tcs = active_phys_tcs;
1953 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
1954 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
1955 	}
1956 }
1957 
1958 /* Reset the params which must be reset for qm init. QM init may be called as
1959  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1960  * params may be affected by the init but would simply recalculate to the same
1961  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1962  * affected as these amounts stay the same.
1963  */
1964 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
1965 {
1966 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1967 
1968 	qm_info->num_pqs = 0;
1969 	qm_info->num_vports = 0;
1970 	qm_info->num_pf_rls = 0;
1971 	qm_info->num_vf_pqs = 0;
1972 	qm_info->first_vf_pq = 0;
1973 	qm_info->first_mcos_pq = 0;
1974 	qm_info->first_rl_pq = 0;
1975 }
1976 
1977 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
1978 {
1979 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1980 
1981 	qm_info->num_vports++;
1982 
1983 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1984 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
1985 }
1986 
1987 /* initialize a single pq and manage qm_info resources accounting.
1988  * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
1989  * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
1990  */
1991 
1992 /* flags for pq init */
1993 #define PQ_INIT_SHARE_VPORT	(1 << 0)
1994 #define PQ_INIT_PF_RL		(1 << 1)
1995 #define PQ_INIT_VF_RL		(1 << 2)
1996 
1997 /* defines for pq init */
1998 #define PQ_INIT_DEFAULT_WRR_GROUP	1
1999 #define PQ_INIT_DEFAULT_TC		0
2000 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
2001 
2002 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
2003 			     struct ecore_qm_info *qm_info,
2004 			     u8 tc, u32 pq_init_flags)
2005 {
2006 	u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
2007 
2008 	if (pq_idx > max_pq)
2009 		DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
2010 
2011 	/* init pq params */
2012 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
2013 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
2014 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
2015 	qm_info->qm_pq_params[pq_idx].rl_valid =
2016 		(pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
2017 
2018 	/* qm params accounting */
2019 	qm_info->num_pqs++;
2020 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
2021 		qm_info->num_vports++;
2022 
2023 	if (pq_init_flags & PQ_INIT_PF_RL)
2024 		qm_info->num_pf_rls++;
2025 
2026 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
2027 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
2028 
2029 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
2030 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
2031 }
2032 
2033 /* get pq index according to PQ_FLAGS */
2034 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
2035 					     u32 pq_flags)
2036 {
2037 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2038 
2039 	/* Can't have multiple flags set here */
2040 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
2041 		goto err;
2042 
2043 	switch (pq_flags) {
2044 	case PQ_FLAGS_RLS:
2045 		return &qm_info->first_rl_pq;
2046 	case PQ_FLAGS_MCOS:
2047 		return &qm_info->first_mcos_pq;
2048 	case PQ_FLAGS_LB:
2049 		return &qm_info->pure_lb_pq;
2050 	case PQ_FLAGS_OOO:
2051 		return &qm_info->ooo_pq;
2052 	case PQ_FLAGS_ACK:
2053 		return &qm_info->pure_ack_pq;
2054 	case PQ_FLAGS_OFLD:
2055 		return &qm_info->offload_pq;
2056 	case PQ_FLAGS_LLT:
2057 		return &qm_info->low_latency_pq;
2058 	case PQ_FLAGS_VFS:
2059 		return &qm_info->first_vf_pq;
2060 	default:
2061 		goto err;
2062 	}
2063 
2064 err:
2065 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
2066 	return OSAL_NULL;
2067 }
2068 
2069 /* save pq index in qm info */
2070 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
2071 				  u32 pq_flags, u16 pq_val)
2072 {
2073 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2074 
2075 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
2076 }
2077 
2078 /* get tx pq index, with the PQ TX base already set (ready for context init) */
2079 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
2080 {
2081 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2082 
2083 	return *base_pq_idx + CM_TX_PQ_BASE;
2084 }
2085 
2086 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
2087 {
2088 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
2089 
2090 	if (tc > max_tc)
2091 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
2092 
2093 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
2094 }
2095 
2096 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
2097 {
2098 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
2099 
2100 	if (vf > max_vf)
2101 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
2102 
2103 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
2104 }
2105 
2106 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
2107 {
2108 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
2109 
2110 	if (rl > max_rl)
2111 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
2112 
2113 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
2114 }
2115 
2116 /* Functions for creating specific types of pqs */
2117 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
2118 {
2119 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2120 
2121 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
2122 		return;
2123 
2124 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
2125 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
2126 }
2127 
2128 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
2129 {
2130 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2131 
2132 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
2133 		return;
2134 
2135 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
2136 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
2137 }
2138 
2139 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
2140 {
2141 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2142 
2143 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
2144 		return;
2145 
2146 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
2147 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2148 }
2149 
2150 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
2151 {
2152 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2153 
2154 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
2155 		return;
2156 
2157 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
2158 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2159 }
2160 
2161 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
2162 {
2163 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2164 
2165 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
2166 		return;
2167 
2168 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
2169 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2170 }
2171 
2172 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
2173 {
2174 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2175 	u8 tc_idx;
2176 
2177 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
2178 		return;
2179 
2180 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
2181 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
2182 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
2183 }
2184 
2185 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
2186 {
2187 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2188 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
2189 
2190 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
2191 		return;
2192 
2193 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
2194 	qm_info->num_vf_pqs = num_vfs;
2195 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
2196 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
2197 }
2198 
2199 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
2200 {
2201 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
2202 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2203 
2204 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
2205 		return;
2206 
2207 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
2208 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
2209 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
2210 }
2211 
2212 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
2213 {
2214 	/* rate limited pqs, must come first (FW assumption) */
2215 	ecore_init_qm_rl_pqs(p_hwfn);
2216 
2217 	/* pqs for multi cos */
2218 	ecore_init_qm_mcos_pqs(p_hwfn);
2219 
2220 	/* pure loopback pq */
2221 	ecore_init_qm_lb_pq(p_hwfn);
2222 
2223 	/* out of order pq */
2224 	ecore_init_qm_ooo_pq(p_hwfn);
2225 
2226 	/* pure ack pq */
2227 	ecore_init_qm_pure_ack_pq(p_hwfn);
2228 
2229 	/* pq for offloaded protocol */
2230 	ecore_init_qm_offload_pq(p_hwfn);
2231 
2232 	/* low latency pq */
2233 	ecore_init_qm_low_latency_pq(p_hwfn);
2234 
2235 	/* done sharing vports */
2236 	ecore_init_qm_advance_vport(p_hwfn);
2237 
2238 	/* pqs for vfs */
2239 	ecore_init_qm_vf_pqs(p_hwfn);
2240 }
2241 
2242 /* compare values of getters against resources amounts */
2243 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
2244 {
2245 	if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
2246 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
2247 		return ECORE_INVAL;
2248 	}
2249 
2250 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
2251 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
2252 		return ECORE_INVAL;
2253 	}
2254 
2255 	return ECORE_SUCCESS;
2256 }
2257 
2258 /*
2259  * Function for verbose printing of the qm initialization results
2260  */
2261 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
2262 {
2263 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2264 	struct init_qm_vport_params *vport;
2265 	struct init_qm_port_params *port;
2266 	struct init_qm_pq_params *pq;
2267 	int i, tc;
2268 
2269 	/* top level params */
2270 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
2271 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
2272 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2273 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2274 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2275 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
2276 
2277 	/* port table */
2278 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
2279 		port = &(qm_info->qm_port_params[i]);
2280 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2281 			   i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
2282 	}
2283 
2284 	/* vport table */
2285 	for (i = 0; i < qm_info->num_vports; i++) {
2286 		vport = &(qm_info->qm_vport_params[i]);
2287 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
2288 			   qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
2289 		for (tc = 0; tc < NUM_OF_TCS; tc++)
2290 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
2291 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
2292 	}
2293 
2294 	/* pq table */
2295 	for (i = 0; i < qm_info->num_pqs; i++) {
2296 		pq = &(qm_info->qm_pq_params[i]);
2297 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
2298 			   qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
2299 	}
2300 }
2301 
2302 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
2303 {
2304 	/* reset params required for init run */
2305 	ecore_init_qm_reset_params(p_hwfn);
2306 
2307 	/* init QM top level params */
2308 	ecore_init_qm_params(p_hwfn);
2309 
2310 	/* init QM port params */
2311 	ecore_init_qm_port_params(p_hwfn);
2312 
2313 	/* init QM vport params */
2314 	ecore_init_qm_vport_params(p_hwfn);
2315 
2316 	/* init QM physical queue params */
2317 	ecore_init_qm_pq_params(p_hwfn);
2318 
2319 	/* display all that init */
2320 	ecore_dp_init_qm_params(p_hwfn);
2321 }
2322 
2323 /* This function reconfigures the QM pf on the fly.
2324  * For this purpose we:
2325  * 1. reconfigure the QM database
2326  * 2. set new values to runtime array
2327  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2328  * 4. activate init tool in QM_PF stage
2329  * 5. send an sdm_qm_cmd through rbc interface to release the QM
2330  */
2331 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
2332 				     struct ecore_ptt *p_ptt)
2333 {
2334 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2335 	bool b_rc;
2336 	enum _ecore_status_t rc;
2337 
2338 	/* initialize ecore's qm data structure */
2339 	ecore_init_qm_info(p_hwfn);
2340 
2341 	/* stop PF's qm queues */
2342 	OSAL_SPIN_LOCK(&qm_lock);
2343 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2344 				      qm_info->start_pq, qm_info->num_pqs);
2345 	OSAL_SPIN_UNLOCK(&qm_lock);
2346 	if (!b_rc)
2347 		return ECORE_INVAL;
2348 
2349 	/* clear the QM_PF runtime phase leftovers from previous init */
2350 	ecore_init_clear_rt_data(p_hwfn);
2351 
2352 	/* prepare QM portion of runtime array */
2353 	ecore_qm_init_pf(p_hwfn, p_ptt, false);
2354 
2355 	/* activate init tool on runtime array */
2356 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2357 			    p_hwfn->hw_info.hw_mode);
2358 	if (rc != ECORE_SUCCESS)
2359 		return rc;
2360 
2361 	/* start PF's qm queues */
2362 	OSAL_SPIN_LOCK(&qm_lock);
2363 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2364 				      qm_info->start_pq, qm_info->num_pqs);
2365 	OSAL_SPIN_UNLOCK(&qm_lock);
2366 	if (!b_rc)
2367 		return ECORE_INVAL;
2368 
2369 	return ECORE_SUCCESS;
2370 }
2371 
2372 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
2373 {
2374 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2375 	enum _ecore_status_t rc;
2376 
2377 	rc = ecore_init_qm_sanity(p_hwfn);
2378 	if (rc != ECORE_SUCCESS)
2379 		goto alloc_err;
2380 
2381 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2382 					    sizeof(struct init_qm_pq_params) *
2383 					    ecore_init_qm_get_num_pqs(p_hwfn));
2384 	if (!qm_info->qm_pq_params)
2385 		goto alloc_err;
2386 
2387 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2388 					       sizeof(struct init_qm_vport_params) *
2389 					       ecore_init_qm_get_num_vports(p_hwfn));
2390 	if (!qm_info->qm_vport_params)
2391 		goto alloc_err;
2392 
2393 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2394 					      sizeof(struct init_qm_port_params) *
2395 					      p_hwfn->p_dev->num_ports_in_engine);
2396 	if (!qm_info->qm_port_params)
2397 		goto alloc_err;
2398 
2399 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2400 					sizeof(struct ecore_wfq_data) *
2401 					ecore_init_qm_get_num_vports(p_hwfn));
2402 	if (!qm_info->wfq_data)
2403 		goto alloc_err;
2404 
2405 	return ECORE_SUCCESS;
2406 
2407 alloc_err:
2408 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
2409 	ecore_qm_info_free(p_hwfn);
2410 	return ECORE_NOMEM;
2411 }
2412 /******************** End QM initialization ***************/
2413 
2414 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
2415 {
2416 	u32 rdma_tasks, excess_tasks;
2417 	u32 line_count;
2418 	enum _ecore_status_t rc = ECORE_SUCCESS;
2419 	int i;
2420 
2421 	if (IS_VF(p_dev)) {
2422 		for_each_hwfn(p_dev, i) {
2423 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
2424 			if (rc != ECORE_SUCCESS)
2425 				return rc;
2426 		}
2427 		return rc;
2428 	}
2429 
2430 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2431 				     sizeof(*p_dev->fw_data));
2432 	if (!p_dev->fw_data)
2433 		return ECORE_NOMEM;
2434 
2435 	for_each_hwfn(p_dev, i) {
2436 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2437 		u32 n_eqes, num_cons;
2438 
2439 		/* initialize the doorbell recovery mechanism */
2440 		rc = ecore_db_recovery_setup(p_hwfn);
2441 		if (rc)
2442 			goto alloc_err;
2443 
2444 		/* First allocate the context manager structure */
2445 		rc = ecore_cxt_mngr_alloc(p_hwfn);
2446 		if (rc)
2447 			goto alloc_err;
2448 
2449 		/* Set the HW cid/tid numbers (in the context manager)
2450 		 * Must be done prior to any further computations.
2451 		 */
2452 		rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2453 		if (rc)
2454 			goto alloc_err;
2455 
2456 		rc = ecore_alloc_qm_data(p_hwfn);
2457 		if (rc)
2458 			goto alloc_err;
2459 
2460 		/* init qm info */
2461 		ecore_init_qm_info(p_hwfn);
2462 
2463 		/* Compute the ILT client partition */
2464 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2465 		if (rc) {
2466 			DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
2467 			/* In case there are not enough ILT lines we reduce the
2468 			 * number of RDMA tasks and re-compute.
2469 			 */
2470 			excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
2471 					p_hwfn, line_count);
2472 			if (!excess_tasks)
2473 				goto alloc_err;
2474 
2475 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2476 			rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
2477 			if (rc)
2478 				goto alloc_err;
2479 
2480 			rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2481 			if (rc) {
2482 				DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
2483 				       line_count);
2484 
2485 				goto alloc_err;
2486 			}
2487 		}
2488 
2489 		/* CID map / ILT shadow table / T2
2490 		 * The talbes sizes are determined by the computations above
2491 		 */
2492 		rc = ecore_cxt_tables_alloc(p_hwfn);
2493 		if (rc)
2494 			goto alloc_err;
2495 
2496 		/* SPQ, must follow ILT because initializes SPQ context */
2497 		rc = ecore_spq_alloc(p_hwfn);
2498 		if (rc)
2499 			goto alloc_err;
2500 
2501 		/* SP status block allocation */
2502 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2503 							   RESERVED_PTT_DPC);
2504 
2505 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2506 		if (rc)
2507 			goto alloc_err;
2508 
2509 		rc = ecore_iov_alloc(p_hwfn);
2510 		if (rc)
2511 			goto alloc_err;
2512 
2513 		/* EQ */
2514 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
2515 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2516 			u32 n_srq = ecore_cxt_get_total_srq_count(p_hwfn);
2517 
2518 			/* Calculate the EQ size
2519 			 * ---------------------
2520 			 * Each ICID may generate up to one event at a time i.e.
2521 			 * the event must be handled/cleared before a new one
2522 			 * can be generated. We calculate the sum of events per
2523 			 * protocol and create an EQ deep enough to handle the
2524 			 * worst case:
2525 			 * - Core - according to SPQ.
2526 			 * - RoCE - per QP there are a couple of ICIDs, one
2527 			 *	  responder and one requester, each can
2528 			 *	  generate max 2 EQE (err+qp_destroyed) =>
2529 			 *	  n_eqes_qp = 4 * n_qp.
2530 			 *	  Each CQ can generate an EQE. There are 2 CQs
2531 			 *	  per QP => n_eqes_cq = 2 * n_qp.
2532 			 *	  Hence the RoCE total is 6 * n_qp or
2533 			 *	  3 * num_cons.
2534 			 *	  On top of that one eqe shoule be added for
2535 			 *	  each XRC SRQ and SRQ.
2536 			 * - iWARP - can generate three async per QP (error
2537 			 *	  detected and qp in error) and an
2538 			 	  additional error per CQ. 4* num_cons.
2539 			 	  On top of that one eqe shoule be added for
2540 			 *	  each SRQ and XRC SRQ.
2541 			 * - ENet - There can be up to two events per VF. One
2542 			 *	  for VF-PF channel and another for VF FLR
2543 			 *	  initial cleanup. The number of VFs is
2544 			 *	  bounded by MAX_NUM_VFS_BB, and is much
2545 			 *	  smaller than RoCE's so we avoid exact
2546 			 *	  calculation.
2547 			 */
2548 			if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
2549 				num_cons = ecore_cxt_get_proto_cid_count(
2550 					p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
2551 				num_cons *= 3;
2552 			} else {
2553 				num_cons = ecore_cxt_get_proto_cid_count(
2554 						p_hwfn, PROTOCOLID_IWARP,
2555 						OSAL_NULL);
2556 				num_cons *= 4;
2557 			}
2558 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq;
2559 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2560 			num_cons = ecore_cxt_get_proto_cid_count(
2561 					p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
2562 			n_eqes += 2 * num_cons;
2563 		}
2564 
2565 		if (n_eqes > 0xFF00) {
2566 			DP_ERR(p_hwfn, "EQs maxing out at 0xFF00 elements\n");
2567 			n_eqes = 0xFF00;
2568 		}
2569 
2570 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
2571 		if (rc)
2572 			goto alloc_err;
2573 
2574 		rc = ecore_consq_alloc(p_hwfn);
2575 		if (rc)
2576 			goto alloc_err;
2577 
2578 		rc = ecore_l2_alloc(p_hwfn);
2579 		if (rc != ECORE_SUCCESS)
2580 			goto alloc_err;
2581 
2582 #ifdef CONFIG_ECORE_LL2
2583 		if (p_hwfn->using_ll2) {
2584 			rc = ecore_ll2_alloc(p_hwfn);
2585 			if (rc)
2586 				goto alloc_err;
2587 		}
2588 #endif
2589 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
2590 			rc = ecore_fcoe_alloc(p_hwfn);
2591 			if (rc)
2592 				goto alloc_err;
2593 		}
2594 
2595 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2596 			rc = ecore_iscsi_alloc(p_hwfn);
2597 			if (rc)
2598 				goto alloc_err;
2599 
2600 			rc = ecore_ooo_alloc(p_hwfn);
2601 			if (rc)
2602 				goto alloc_err;
2603 		}
2604 #ifdef CONFIG_ECORE_ROCE
2605 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2606 			rc = ecore_rdma_info_alloc(p_hwfn);
2607 			if (rc)
2608 				goto alloc_err;
2609 		}
2610 #endif
2611 
2612 		/* DMA info initialization */
2613 		rc = ecore_dmae_info_alloc(p_hwfn);
2614 		if (rc) {
2615 			DP_NOTICE(p_hwfn, false,
2616 				  "Failed to allocate memory for dmae_info structure\n");
2617 			goto alloc_err;
2618 		}
2619 
2620 		/* DCBX initialization */
2621 		rc = ecore_dcbx_info_alloc(p_hwfn);
2622 		if (rc) {
2623 			DP_NOTICE(p_hwfn, false,
2624 				  "Failed to allocate memory for dcbx structure\n");
2625 			goto alloc_err;
2626 		}
2627 	}
2628 
2629 	rc = ecore_llh_alloc(p_dev);
2630 	if (rc != ECORE_SUCCESS) {
2631 		DP_NOTICE(p_dev, false,
2632 			  "Failed to allocate memory for the llh_info structure\n");
2633 		goto alloc_err;
2634 	}
2635 
2636 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2637 					 sizeof(*p_dev->reset_stats));
2638 	if (!p_dev->reset_stats) {
2639 		DP_NOTICE(p_dev, false,
2640 			  "Failed to allocate reset statistics\n");
2641 		goto alloc_no_mem;
2642 	}
2643 
2644 	return ECORE_SUCCESS;
2645 
2646 alloc_no_mem:
2647 	rc = ECORE_NOMEM;
2648 alloc_err:
2649 	ecore_resc_free(p_dev);
2650 	return rc;
2651 }
2652 
2653 void ecore_resc_setup(struct ecore_dev *p_dev)
2654 {
2655 	int i;
2656 
2657 	if (IS_VF(p_dev)) {
2658 		for_each_hwfn(p_dev, i)
2659 			ecore_l2_setup(&p_dev->hwfns[i]);
2660 		return;
2661 	}
2662 
2663 	for_each_hwfn(p_dev, i) {
2664 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2665 
2666 		ecore_cxt_mngr_setup(p_hwfn);
2667 		ecore_spq_setup(p_hwfn);
2668 		ecore_eq_setup(p_hwfn);
2669 		ecore_consq_setup(p_hwfn);
2670 
2671 		/* Read shadow of current MFW mailbox */
2672 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2673 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2674 			    p_hwfn->mcp_info->mfw_mb_cur,
2675 			    p_hwfn->mcp_info->mfw_mb_length);
2676 
2677 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2678 
2679 		ecore_l2_setup(p_hwfn);
2680 		ecore_iov_setup(p_hwfn);
2681 #ifdef CONFIG_ECORE_LL2
2682 		if (p_hwfn->using_ll2)
2683 			ecore_ll2_setup(p_hwfn);
2684 #endif
2685 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2686 			ecore_fcoe_setup(p_hwfn);
2687 
2688 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2689 			ecore_iscsi_setup(p_hwfn);
2690 			ecore_ooo_setup(p_hwfn);
2691 		}
2692 	}
2693 }
2694 
2695 #define FINAL_CLEANUP_POLL_CNT	(100)
2696 #define FINAL_CLEANUP_POLL_TIME	(10)
2697 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
2698 					 struct ecore_ptt *p_ptt,
2699 					 u16 id, bool is_vf)
2700 {
2701 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2702 	enum _ecore_status_t rc = ECORE_TIMEOUT;
2703 
2704 #ifndef ASIC_ONLY
2705 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
2706 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2707 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
2708 		return ECORE_SUCCESS;
2709 	}
2710 #endif
2711 
2712 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
2713 	       USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2714 
2715 	if (is_vf)
2716 		id += 0x10;
2717 
2718 	command |= X_FINAL_CLEANUP_AGG_INT <<
2719 		   SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2720 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2721 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2722 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2723 
2724 	/* Make sure notification is not set before initiating final cleanup */
2725 	if (REG_RD(p_hwfn, addr)) {
2726 		DP_NOTICE(p_hwfn, false,
2727 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2728 		REG_WR(p_hwfn, addr, 0);
2729 	}
2730 
2731 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
2732 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2733 		   id, command);
2734 
2735 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2736 
2737 	/* Poll until completion */
2738 	while (!REG_RD(p_hwfn, addr) && count--)
2739 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
2740 
2741 	if (REG_RD(p_hwfn, addr))
2742 		rc = ECORE_SUCCESS;
2743 	else
2744 		DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
2745 
2746 	/* Cleanup afterwards */
2747 	REG_WR(p_hwfn, addr, 0);
2748 
2749 	return rc;
2750 }
2751 
2752 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
2753 {
2754 	int hw_mode = 0;
2755 
2756 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
2757 		hw_mode |= 1 << MODE_BB;
2758 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
2759 		hw_mode |= 1 << MODE_K2;
2760 	} else if (ECORE_IS_E5(p_hwfn->p_dev)) {
2761 		hw_mode |= 1 << MODE_E5;
2762 	} else {
2763 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
2764 			  p_hwfn->p_dev->type);
2765 		return ECORE_INVAL;
2766 	}
2767 
2768 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
2769 	switch (p_hwfn->p_dev->num_ports_in_engine) {
2770 	case 1:
2771 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2772 		break;
2773 	case 2:
2774 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2775 		break;
2776 	case 4:
2777 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2778 		break;
2779 	default:
2780 		DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
2781 			  p_hwfn->p_dev->num_ports_in_engine);
2782 		return ECORE_INVAL;
2783 	}
2784 
2785 	if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS,
2786 			  &p_hwfn->p_dev->mf_bits))
2787 		hw_mode |= 1 << MODE_MF_SD;
2788 	else
2789 		hw_mode |= 1 << MODE_MF_SI;
2790 
2791 #ifndef ASIC_ONLY
2792 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2793 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2794 			hw_mode |= 1 << MODE_FPGA;
2795 		} else {
2796 			if (p_hwfn->p_dev->b_is_emul_full)
2797 				hw_mode |= 1 << MODE_EMUL_FULL;
2798 			else
2799 				hw_mode |= 1 << MODE_EMUL_REDUCED;
2800 		}
2801 	} else
2802 #endif
2803 	hw_mode |= 1 << MODE_ASIC;
2804 
2805 	if (ECORE_IS_CMT(p_hwfn->p_dev))
2806 		hw_mode |= 1 << MODE_100G;
2807 
2808 	p_hwfn->hw_info.hw_mode = hw_mode;
2809 
2810 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
2811 		   "Configuring function for hw_mode: 0x%08x\n",
2812 		   p_hwfn->hw_info.hw_mode);
2813 
2814 	return ECORE_SUCCESS;
2815 }
2816 
2817 #ifndef ASIC_ONLY
2818 /* MFW-replacement initializations for non-ASIC */
2819 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
2820 					       struct ecore_ptt *p_ptt)
2821 {
2822 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2823 	u32 pl_hv = 1;
2824 	int i;
2825 
2826 	if (CHIP_REV_IS_EMUL(p_dev)) {
2827 		if (ECORE_IS_AH(p_dev))
2828 			pl_hv |= 0x600;
2829 		else if (ECORE_IS_E5(p_dev))
2830 			ECORE_E5_MISSING_CODE;
2831 	}
2832 
2833 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
2834 
2835 	if (CHIP_REV_IS_EMUL(p_dev) &&
2836 	    (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
2837 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
2838 			 0x3ffffff);
2839 
2840 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
2841 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
2842 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
2843 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
2844 
2845 	if (CHIP_REV_IS_EMUL(p_dev)) {
2846 		if (ECORE_IS_AH(p_dev)) {
2847 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
2848 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
2849 				 (p_dev->num_ports_in_engine >> 1));
2850 
2851 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
2852 				 p_dev->num_ports_in_engine == 4 ? 0 : 3);
2853 		} else if (ECORE_IS_E5(p_dev)) {
2854 			ECORE_E5_MISSING_CODE;
2855 		}
2856 
2857 		/* Poll on RBC */
2858 		ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
2859 		for (i = 0; i < 100; i++) {
2860 			OSAL_UDELAY(50);
2861 			if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
2862 				break;
2863 		}
2864 		if (i == 100)
2865 			DP_NOTICE(p_hwfn, true,
2866 				  "RBC done failed to complete in PSWRQ2\n");
2867 	}
2868 
2869 	return ECORE_SUCCESS;
2870 }
2871 #endif
2872 
2873 /* Init run time data for all PFs and their VFs on an engine.
2874  * TBD - for VFs - Once we have parent PF info for each VF in
2875  * shmem available as CAU requires knowledge of parent PF for each VF.
2876  */
2877 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
2878 {
2879 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2880 	int i, igu_sb_id;
2881 
2882 	for_each_hwfn(p_dev, i) {
2883 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2884 		struct ecore_igu_info *p_igu_info;
2885 		struct ecore_igu_block *p_block;
2886 		struct cau_sb_entry sb_entry;
2887 
2888 		p_igu_info = p_hwfn->hw_info.p_igu_info;
2889 
2890 		for (igu_sb_id = 0;
2891 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
2892 		     igu_sb_id++) {
2893 			p_block = &p_igu_info->entry[igu_sb_id];
2894 
2895 			if (!p_block->is_pf)
2896 				continue;
2897 
2898 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
2899 						p_block->function_id,
2900 						0, 0);
2901 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2902 					 sb_entry);
2903 		}
2904 	}
2905 }
2906 
2907 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
2908 				       struct ecore_ptt *p_ptt)
2909 {
2910 	u32 val, wr_mbs, cache_line_size;
2911 
2912 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2913 	switch (val) {
2914 	case 0:
2915 		wr_mbs = 128;
2916 		break;
2917 	case 1:
2918 		wr_mbs = 256;
2919 		break;
2920 	case 2:
2921 		wr_mbs = 512;
2922 		break;
2923 	default:
2924 		DP_INFO(p_hwfn,
2925 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2926 			val);
2927 		return;
2928 	}
2929 
2930 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
2931 	switch (cache_line_size) {
2932 	case 32:
2933 		val = 0;
2934 		break;
2935 	case 64:
2936 		val = 1;
2937 		break;
2938 	case 128:
2939 		val = 2;
2940 		break;
2941 	case 256:
2942 		val = 3;
2943 		break;
2944 	default:
2945 		DP_INFO(p_hwfn,
2946 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2947 			cache_line_size);
2948 	}
2949 
2950 	if (OSAL_CACHE_LINE_SIZE > wr_mbs)
2951 		DP_INFO(p_hwfn,
2952 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2953 			OSAL_CACHE_LINE_SIZE, wr_mbs);
2954 
2955 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2956 	if (val > 0) {
2957 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2958 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2959 	}
2960 }
2961 
2962 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
2963 						 struct ecore_ptt *p_ptt,
2964 						 int hw_mode)
2965 {
2966 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2967 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2968 	u8 vf_id, max_num_vfs;
2969 	u16 num_pfs, pf_id;
2970 	u32 concrete_fid;
2971 	enum _ecore_status_t rc	= ECORE_SUCCESS;
2972 
2973 	ecore_init_cau_rt_data(p_dev);
2974 
2975 	/* Program GTT windows */
2976 	ecore_gtt_init(p_hwfn, p_ptt);
2977 
2978 #ifndef ASIC_ONLY
2979 	if (CHIP_REV_IS_EMUL(p_dev)) {
2980 		rc = ecore_hw_init_chip(p_hwfn, p_ptt);
2981 		if (rc != ECORE_SUCCESS)
2982 			return rc;
2983 	}
2984 #endif
2985 
2986 	if (p_hwfn->mcp_info) {
2987 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
2988 			qm_info->pf_rl_en = 1;
2989 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
2990 			qm_info->pf_wfq_en = 1;
2991 	}
2992 
2993 	ecore_qm_common_rt_init(p_hwfn,
2994 				p_dev->num_ports_in_engine,
2995 				qm_info->max_phys_tcs_per_port,
2996 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
2997 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
2998 				qm_info->qm_port_params);
2999 
3000 	ecore_cxt_hw_init_common(p_hwfn);
3001 
3002 	ecore_init_cache_line_size(p_hwfn, p_ptt);
3003 
3004 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn),
3005 			    hw_mode);
3006 	if (rc != ECORE_SUCCESS)
3007 		return rc;
3008 
3009 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
3010 	 * need to decide with which value, maybe runtime
3011 	 */
3012 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
3013 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
3014 
3015 	if (ECORE_IS_BB(p_dev)) {
3016 		/* Workaround clears ROCE search for all functions to prevent
3017 		 * involving non initialized function in processing ROCE packet.
3018 		 */
3019 		num_pfs = NUM_OF_ENG_PFS(p_dev);
3020 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
3021 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
3022 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3023 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3024 		}
3025 		/* pretend to original PF */
3026 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3027 	}
3028 
3029 	/* Workaround for avoiding CCFC execution error when getting packets
3030 	 * with CRC errors, and allowing instead the invoking of the FW error
3031 	 * handler.
3032 	 * This is not done inside the init tool since it currently can't
3033 	 * perform a pretending to VFs.
3034 	 */
3035 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
3036 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
3037 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
3038 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
3039 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
3040 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
3041 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
3042 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
3043 	}
3044 	/* pretend to original PF */
3045 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3046 
3047 	return rc;
3048 }
3049 
3050 #ifndef ASIC_ONLY
3051 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
3052 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
3053 
3054 #define PMEG_IF_BYTE_COUNT	8
3055 
3056 static void ecore_wr_nw_port(struct ecore_hwfn	*p_hwfn,
3057 			     struct ecore_ptt	*p_ptt,
3058 			     u32		addr,
3059 			     u64		data,
3060 			     u8			reg_type,
3061 			     u8			port)
3062 {
3063 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3064 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
3065 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
3066 		   (8 << PMEG_IF_BYTE_COUNT),
3067 		   (reg_type << 25) | (addr << 8) | port,
3068 		   (u32)((data >> 32) & 0xffffffff),
3069 		   (u32)(data & 0xffffffff));
3070 
3071 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
3072 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
3073 		  0xffff00fe) |
3074 		 (8 << PMEG_IF_BYTE_COUNT));
3075 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
3076 		 (reg_type << 25) | (addr << 8) | port);
3077 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
3078 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
3079 		 (data >> 32) & 0xffffffff);
3080 }
3081 
3082 #define XLPORT_MODE_REG	(0x20a)
3083 #define XLPORT_MAC_CONTROL (0x210)
3084 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
3085 #define XLPORT_ENABLE_REG (0x20b)
3086 
3087 #define XLMAC_CTRL (0x600)
3088 #define XLMAC_MODE (0x601)
3089 #define XLMAC_RX_MAX_SIZE (0x608)
3090 #define XLMAC_TX_CTRL (0x604)
3091 #define XLMAC_PAUSE_CTRL (0x60d)
3092 #define XLMAC_PFC_CTRL (0x60e)
3093 
3094 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
3095 				    struct ecore_ptt *p_ptt)
3096 {
3097 	u8 loopback = 0, port = p_hwfn->port_id * 2;
3098 
3099 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3100 
3101 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
3102 			 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
3103 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
3104 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
3105 			 0x40, 0, port); /*XLMAC: SOFT RESET */
3106 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
3107 			 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
3108 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
3109 			 0x3fff, 0, port); /* XLMAC: Max Size */
3110 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
3111 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
3112 			 0, port);
3113 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
3114 			 0x7c000, 0, port);
3115 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
3116 			 0x30ffffc000ULL, 0, port);
3117 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
3118 			 0, port); /* XLMAC: TX_EN, RX_EN */
3119 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
3120 			 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
3121 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
3122 			 1, 0, port); /* Enabled Parallel PFC interface */
3123 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
3124 			 0xf, 1, port); /* XLPORT port enable */
3125 }
3126 
3127 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
3128 				       struct ecore_ptt *p_ptt)
3129 {
3130 	u8 port = p_hwfn->port_id;
3131 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
3132 
3133 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3134 
3135 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
3136 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
3137 		 (port <<
3138 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
3139 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
3140 
3141 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
3142 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
3143 
3144 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
3145 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
3146 
3147 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
3148 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
3149 
3150 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
3151 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
3152 
3153 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
3154 		 (0xA <<
3155 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
3156 		 (8 <<
3157 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
3158 
3159 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
3160 		 0xa853);
3161 }
3162 
3163 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
3164 				 struct ecore_ptt *p_ptt)
3165 {
3166 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
3167 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
3168 	else /* BB */
3169 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
3170 
3171 	return;
3172 }
3173 
3174 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
3175 			       struct ecore_ptt *p_ptt,  u8 port)
3176 {
3177 	int port_offset = port ? 0x800 : 0;
3178 	u32 xmac_rxctrl	= 0;
3179 
3180 	/* Reset of XMAC */
3181 	/* FIXME: move to common start */
3182 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
3183 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
3184 	OSAL_MSLEEP(1);
3185 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3186 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
3187 
3188 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
3189 
3190 	/* Set the number of ports on the Warp Core to 10G */
3191 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
3192 
3193 	/* Soft reset of XMAC */
3194 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3195 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3196 	OSAL_MSLEEP(1);
3197 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3198 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3199 
3200 	/* FIXME: move to common end */
3201 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3202 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
3203 
3204 	/* Set Max packet size: initialize XMAC block register for port 0 */
3205 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
3206 
3207 	/* CRC append for Tx packets: init XMAC block register for port 1 */
3208 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
3209 
3210 	/* Enable TX and RX: initialize XMAC block register for port 1 */
3211 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
3212 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
3213 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
3214 			       XMAC_REG_RX_CTRL_BB + port_offset);
3215 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
3216 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
3217 }
3218 #endif
3219 
3220 static enum _ecore_status_t
3221 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
3222 		       struct ecore_ptt *p_ptt,
3223 		       u32 pwm_region_size,
3224 		       u32 n_cpus)
3225 {
3226 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
3227 	u32 min_dpis;
3228 	u32 n_wids;
3229 
3230 	/* Calculate DPI size
3231 	 * ------------------
3232 	 * The PWM region contains Doorbell Pages. The first is reserverd for
3233 	 * the kernel for, e.g, L2. The others are free to be used by non-
3234 	 * trusted applications, typically from user space. Each page, called a
3235 	 * doorbell page is sectioned into windows that allow doorbells to be
3236 	 * issued in parallel by the kernel/application. The size of such a
3237 	 * window (a.k.a. WID) is 1kB.
3238 	 * Summary:
3239 	 *    1kB WID x N WIDS = DPI page size
3240 	 *    DPI page size x N DPIs = PWM region size
3241 	 * Notes:
3242 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
3243 	 * in order to ensure that two applications won't share the same page.
3244 	 * It also must contain at least one WID per CPU to allow parallelism.
3245 	 * It also must be a power of 2, since it is stored as a bit shift.
3246 	 *
3247 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
3248 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
3249 	 * containing 4 WIDs.
3250 	 */
3251 	n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
3252 	dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
3253 	dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & ~(OSAL_PAGE_SIZE - 1);
3254 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
3255 	dpi_count = pwm_region_size / dpi_page_size;
3256 
3257 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
3258 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
3259 
3260 	/* Update hwfn */
3261 	p_hwfn->dpi_size = dpi_page_size;
3262 	p_hwfn->dpi_count = dpi_count;
3263 
3264 	/* Update registers */
3265 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
3266 
3267 	if (dpi_count < min_dpis)
3268 		return ECORE_NORESOURCES;
3269 
3270 	return ECORE_SUCCESS;
3271 }
3272 
3273 enum ECORE_ROCE_EDPM_MODE {
3274 	ECORE_ROCE_EDPM_MODE_ENABLE	= 0,
3275 	ECORE_ROCE_EDPM_MODE_FORCE_ON	= 1,
3276 	ECORE_ROCE_EDPM_MODE_DISABLE	= 2,
3277 };
3278 
3279 static enum _ecore_status_t
3280 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
3281 			      struct ecore_ptt *p_ptt)
3282 {
3283 	struct ecore_rdma_pf_params *p_rdma_pf_params;
3284 	u32 pwm_regsize, norm_regsize;
3285 	u32 non_pwm_conn, min_addr_reg1;
3286 	u32 db_bar_size, n_cpus = 1;
3287 	u32 roce_edpm_mode;
3288 	u32 pf_dems_shift;
3289 	enum _ecore_status_t rc = ECORE_SUCCESS;
3290 	u8 cond;
3291 
3292 	db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
3293 	if (ECORE_IS_CMT(p_hwfn->p_dev))
3294 		db_bar_size /= 2;
3295 
3296 	/* Calculate doorbell regions
3297 	 * -----------------------------------
3298 	 * The doorbell BAR is made of two regions. The first is called normal
3299 	 * region and the second is called PWM region. In the normal region
3300 	 * each ICID has its own set of addresses so that writing to that
3301 	 * specific address identifies the ICID. In the Process Window Mode
3302 	 * region the ICID is given in the data written to the doorbell. The
3303 	 * above per PF register denotes the offset in the doorbell BAR in which
3304 	 * the PWM region begins.
3305 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
3306 	 * non-PWM connection. The calculation below computes the total non-PWM
3307 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
3308 	 * in units of 4,096 bytes.
3309 	 */
3310 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
3311 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
3312 						     OSAL_NULL) +
3313 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
3314 						     OSAL_NULL);
3315 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, OSAL_PAGE_SIZE);
3316 	min_addr_reg1 = norm_regsize / 4096;
3317 	pwm_regsize = db_bar_size - norm_regsize;
3318 
3319 	/* Check that the normal and PWM sizes are valid */
3320 	if (db_bar_size < norm_regsize) {
3321 		DP_ERR(p_hwfn->p_dev,
3322 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
3323 		       db_bar_size, norm_regsize);
3324 		return ECORE_NORESOURCES;
3325 	}
3326 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
3327 		DP_ERR(p_hwfn->p_dev,
3328 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
3329 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
3330 		       norm_regsize);
3331 		return ECORE_NORESOURCES;
3332 	}
3333 
3334 	p_rdma_pf_params = &p_hwfn->pf_params.rdma_pf_params;
3335 
3336 	/* Calculate number of DPIs */
3337 	if (ECORE_IS_IWARP_PERSONALITY(p_hwfn))
3338 		p_rdma_pf_params->roce_edpm_mode =  ECORE_ROCE_EDPM_MODE_DISABLE;
3339 
3340 	if (p_rdma_pf_params->roce_edpm_mode <= ECORE_ROCE_EDPM_MODE_DISABLE) {
3341 		roce_edpm_mode = p_rdma_pf_params->roce_edpm_mode;
3342 	} else {
3343 		DP_ERR(p_hwfn->p_dev,
3344 		       "roce edpm mode was configured to an illegal value of %u. Resetting it to 0-Enable EDPM if BAR size is adequate\n",
3345 		       p_rdma_pf_params->roce_edpm_mode);
3346 		roce_edpm_mode = 0;
3347 	}
3348 
3349 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
3350 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
3351 		/* Either EDPM is mandatory, or we are attempting to allocate a
3352 		 * WID per CPU.
3353 		 */
3354 		n_cpus = OSAL_NUM_CPUS();
3355 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3356 	}
3357 
3358 	cond = ((rc != ECORE_SUCCESS) &&
3359 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
3360 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
3361 	if (cond || p_hwfn->dcbx_no_edpm) {
3362 		/* Either EDPM is disabled from user configuration, or it is
3363 		 * disabled via DCBx, or it is not mandatory and we failed to
3364 		 * allocated a WID per CPU.
3365 		 */
3366 		n_cpus = 1;
3367 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3368 
3369 #ifdef CONFIG_ECORE_ROCE
3370 		/* If we entered this flow due to DCBX then the DPM register is
3371 		 * already configured.
3372 		 */
3373 		if (cond)
3374 			ecore_rdma_dpm_bar(p_hwfn, p_ptt);
3375 #endif
3376 	}
3377 
3378 	p_hwfn->wid_count = (u16)n_cpus;
3379 
3380 	/* Check return codes from above calls */
3381 	if (rc != ECORE_SUCCESS) {
3382 #ifndef LINUX_REMOVE
3383 		DP_ERR(p_hwfn,
3384 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via user configuration min_dpis or by disabling EDPM via user configuration roce_edpm_mode\n",
3385 		       p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3386 		       ECORE_MIN_DPIS);
3387 #else
3388 		DP_ERR(p_hwfn,
3389 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via the module parameter min_rdma_dpis or by disabling EDPM by setting the module parameter roce_edpm to 2\n",
3390 		       p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3391 		       ECORE_MIN_DPIS);
3392 #endif
3393 		DP_ERR(p_hwfn,
3394 		       "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3395 		       norm_regsize, pwm_regsize, p_hwfn->dpi_size,
3396 		       p_hwfn->dpi_count,
3397 		       ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3398 		       "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3399 
3400 		return ECORE_NORESOURCES;
3401 	}
3402 
3403 	DP_INFO(p_hwfn,
3404 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3405 		norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
3406 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3407 		"disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3408 
3409 	/* Update hwfn */
3410 	p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
3411 						      * calculate the doorbell
3412 						      * address
3413 						      */
3414 
3415 	/* Update registers */
3416 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
3417 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
3418 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
3419 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
3420 
3421 	return ECORE_SUCCESS;
3422 }
3423 
3424 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
3425 					       struct ecore_ptt *p_ptt,
3426 					       int hw_mode)
3427 {
3428 	enum _ecore_status_t rc	= ECORE_SUCCESS;
3429 
3430 	/* In CMT the gate should be cleared by the 2nd hwfn */
3431 	if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn))
3432 		STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
3433 
3434 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
3435 			    hw_mode);
3436 	if (rc != ECORE_SUCCESS)
3437 		return rc;
3438 
3439 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
3440 
3441 #ifndef ASIC_ONLY
3442 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
3443 		return ECORE_SUCCESS;
3444 
3445 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
3446 		if (ECORE_IS_AH(p_hwfn->p_dev))
3447 			return ECORE_SUCCESS;
3448 		else if (ECORE_IS_BB(p_hwfn->p_dev))
3449 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
3450 		else /* E5 */
3451 			ECORE_E5_MISSING_CODE;
3452 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3453 		if (ECORE_IS_CMT(p_hwfn->p_dev)) {
3454 			/* Activate OPTE in CMT */
3455 			u32 val;
3456 
3457 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
3458 			val |= 0x10;
3459 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
3460 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
3461 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
3462 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
3463 			ecore_wr(p_hwfn, p_ptt,
3464 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
3465 			ecore_wr(p_hwfn, p_ptt,
3466 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
3467 			ecore_wr(p_hwfn, p_ptt,
3468 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
3469 				 0x55555555);
3470 		}
3471 
3472 		ecore_emul_link_init(p_hwfn, p_ptt);
3473 	} else {
3474 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
3475 	}
3476 #endif
3477 
3478 	return rc;
3479 }
3480 
3481 static enum _ecore_status_t
3482 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3483 		 int hw_mode, struct ecore_hw_init_params *p_params)
3484 {
3485 	u8 rel_pf_id = p_hwfn->rel_pf_id;
3486 	u32 prs_reg;
3487 	enum _ecore_status_t rc	= ECORE_SUCCESS;
3488 	u16 ctrl;
3489 	int pos;
3490 
3491 	if (p_hwfn->mcp_info) {
3492 		struct ecore_mcp_function_info *p_info;
3493 
3494 		p_info = &p_hwfn->mcp_info->func_info;
3495 		if (p_info->bandwidth_min)
3496 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
3497 
3498 		/* Update rate limit once we'll actually have a link */
3499 		p_hwfn->qm_info.pf_rl = 100000;
3500 	}
3501 	ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
3502 
3503 	ecore_int_igu_init_rt(p_hwfn);
3504 
3505 	/* Set VLAN in NIG if needed */
3506 	if (hw_mode & (1 << MODE_MF_SD)) {
3507 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
3508 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
3509 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
3510 			     p_hwfn->hw_info.ovlan);
3511 
3512 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3513 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
3514 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
3515 			     1);
3516 	}
3517 
3518 	/* Enable classification by MAC if needed */
3519 	if (hw_mode & (1 << MODE_MF_SI)) {
3520 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
3521 		STORE_RT_REG(p_hwfn,
3522 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
3523 	}
3524 
3525 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise?*/
3526 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
3527 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
3528 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
3529 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
3530 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
3531 
3532 	/* perform debug configuration when chip is out of reset */
3533 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
3534 
3535 	/* Sanity check before the PF init sequence that uses DMAE */
3536 	rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
3537 	if (rc)
3538 		return rc;
3539 
3540 	/* PF Init sequence */
3541 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
3542 	if (rc)
3543 		return rc;
3544 
3545 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
3546 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
3547 	if (rc)
3548 		return rc;
3549 
3550 	/* Pure runtime initializations - directly to the HW  */
3551 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
3552 
3553 	/* PCI relaxed ordering is generally beneficial for performance,
3554 	 * but can hurt performance or lead to instability on some setups.
3555 	 * If management FW is taking care of it go with that, otherwise
3556 	 * disable to be on the safe side.
3557 	 */
3558 	pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
3559 	if (!pos) {
3560 		DP_NOTICE(p_hwfn, true,
3561 			  "Failed to find the PCI Express Capability structure in the PCI config space\n");
3562 		return ECORE_IO;
3563 	}
3564 
3565 	OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
3566 
3567 	if (p_params->pci_rlx_odr_mode == ECORE_ENABLE_RLX_ODR) {
3568 		ctrl |= PCI_EXP_DEVCTL_RELAX_EN;
3569 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3570 					   pos + PCI_EXP_DEVCTL, ctrl);
3571 	} else if (p_params->pci_rlx_odr_mode == ECORE_DISABLE_RLX_ODR) {
3572 		ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3573 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3574 					   pos + PCI_EXP_DEVCTL, ctrl);
3575 	} else if (ecore_mcp_rlx_odr_supported(p_hwfn)) {
3576 		DP_INFO(p_hwfn, "PCI relax ordering configured by MFW\n");
3577 	} else {
3578 		ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3579 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3580 					   pos + PCI_EXP_DEVCTL, ctrl);
3581 	}
3582 
3583 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
3584 	if (rc != ECORE_SUCCESS)
3585 		return rc;
3586 
3587 	/* Use the leading hwfn since in CMT only NIG #0 is operational */
3588 	if (IS_LEAD_HWFN(p_hwfn)) {
3589 		rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt,
3590 					  p_params->avoid_eng_affin);
3591 		if (rc != ECORE_SUCCESS)
3592 			return rc;
3593 	}
3594 
3595 	if (p_params->b_hw_start) {
3596 		/* enable interrupts */
3597 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode);
3598 		if (rc != ECORE_SUCCESS)
3599 			return rc;
3600 
3601 		/* send function start command */
3602 		rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn,
3603 				       p_params->allow_npar_tx_switch);
3604 		if (rc) {
3605 			DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
3606 			return rc;
3607 		}
3608 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3609 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3610 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3611 
3612 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3613 		{
3614 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
3615 					(1 << 2));
3616 			ecore_wr(p_hwfn, p_ptt,
3617 					PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
3618 					0x100);
3619 		}
3620 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3621 				"PRS_REG_SEARCH registers after start PFn\n");
3622 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
3623 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3624 				"PRS_REG_SEARCH_TCP: %x\n", prs_reg);
3625 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
3626 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3627 				"PRS_REG_SEARCH_UDP: %x\n", prs_reg);
3628 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
3629 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3630 				"PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
3631 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
3632 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3633 				"PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
3634 		prs_reg = ecore_rd(p_hwfn, p_ptt,
3635 				PRS_REG_SEARCH_TCP_FIRST_FRAG);
3636 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3637 				"PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
3638 				prs_reg);
3639 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3640 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3641 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3642 	}
3643 	return ECORE_SUCCESS;
3644 }
3645 
3646 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
3647 						  struct ecore_ptt *p_ptt,
3648 						  bool b_enable)
3649 {
3650 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
3651 
3652 	/* Configure the PF's internal FID_enable for master transactions */
3653 	ecore_wr(p_hwfn, p_ptt,
3654 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
3655 
3656 	/* Wait until value is set - try for 1 second every 50us */
3657 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
3658 		val = ecore_rd(p_hwfn, p_ptt,
3659 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
3660 		if (val == set_val)
3661 			break;
3662 
3663 		OSAL_UDELAY(50);
3664 	}
3665 
3666 	if (val != set_val) {
3667 		DP_NOTICE(p_hwfn, true,
3668 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
3669 		return ECORE_UNKNOWN_ERROR;
3670 	}
3671 
3672 	return ECORE_SUCCESS;
3673 }
3674 
3675 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
3676 			struct ecore_ptt *p_main_ptt)
3677 {
3678 	/* Read shadow of current MFW mailbox */
3679 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
3680 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
3681 		    p_hwfn->mcp_info->mfw_mb_cur,
3682 		    p_hwfn->mcp_info->mfw_mb_length);
3683 }
3684 
3685 static enum _ecore_status_t
3686 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn,
3687 			   struct ecore_load_req_params *p_load_req,
3688 			   struct ecore_drv_load_params *p_drv_load)
3689 {
3690 	/* Make sure that if ecore-client didn't provide inputs, all the
3691 	 * expected defaults are indeed zero.
3692 	 */
3693 	OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
3694 	OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
3695 	OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
3696 
3697 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
3698 
3699 	if (p_drv_load == OSAL_NULL)
3700 		goto out;
3701 
3702 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
3703 			       ECORE_DRV_ROLE_KDUMP :
3704 			       ECORE_DRV_ROLE_OS;
3705 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
3706 	p_load_req->override_force_load = p_drv_load->override_force_load;
3707 
3708 	/* Old MFW versions don't support timeout values other than default and
3709 	 * none, so these values are replaced according to the fall-back action.
3710 	 */
3711 
3712 	if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT ||
3713 	    p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE ||
3714 	    (p_hwfn->mcp_info->capabilities &
3715 	     FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) {
3716 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
3717 		goto out;
3718 	}
3719 
3720 	switch (p_drv_load->mfw_timeout_fallback) {
3721 	case ECORE_TO_FALLBACK_TO_NONE:
3722 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE;
3723 		break;
3724 	case ECORE_TO_FALLBACK_TO_DEFAULT:
3725 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
3726 		break;
3727 	case ECORE_TO_FALLBACK_FAIL_LOAD:
3728 		DP_NOTICE(p_hwfn, false,
3729 			  "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n",
3730 			  p_drv_load->mfw_timeout_val,
3731 			  ECORE_LOAD_REQ_LOCK_TO_DEFAULT,
3732 			  ECORE_LOAD_REQ_LOCK_TO_NONE);
3733 		return ECORE_ABORTED;
3734 	}
3735 
3736 	DP_INFO(p_hwfn,
3737 		"Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n",
3738 		p_drv_load->mfw_timeout_val,
3739 		(p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ?
3740 		"default" : "none",
3741 		p_load_req->timeout_val);
3742 out:
3743 	return ECORE_SUCCESS;
3744 }
3745 
3746 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
3747 				    struct ecore_hw_init_params *p_params)
3748 {
3749 	if (p_params->p_tunn) {
3750 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
3751 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
3752 	}
3753 
3754 	p_hwfn->b_int_enabled = 1;
3755 
3756 	return ECORE_SUCCESS;
3757 }
3758 
3759 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
3760 				   struct ecore_ptt *p_ptt)
3761 {
3762 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3763 		 1 << p_hwfn->abs_pf_id);
3764 }
3765 
3766 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
3767 				   struct ecore_hw_init_params *p_params)
3768 {
3769 	struct ecore_load_req_params load_req_params;
3770 	u32 load_code, resp, param, drv_mb_param;
3771 	bool b_default_mtu = true;
3772 	struct ecore_hwfn *p_hwfn;
3773 	enum _ecore_status_t rc = ECORE_SUCCESS, cancel_load;
3774 	u16 ether_type;
3775 	int i;
3776 
3777 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
3778 		DP_NOTICE(p_dev, false,
3779 			  "MSI mode is not supported for CMT devices\n");
3780 		return ECORE_INVAL;
3781 	}
3782 
3783 	if (IS_PF(p_dev)) {
3784 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
3785 		if (rc != ECORE_SUCCESS)
3786 			return rc;
3787 	}
3788 
3789 	for_each_hwfn(p_dev, i) {
3790 		p_hwfn = &p_dev->hwfns[i];
3791 
3792 		/* If management didn't provide a default, set one of our own */
3793 		if (!p_hwfn->hw_info.mtu) {
3794 			p_hwfn->hw_info.mtu = 1500;
3795 			b_default_mtu = false;
3796 		}
3797 
3798 		if (IS_VF(p_dev)) {
3799 			ecore_vf_start(p_hwfn, p_params);
3800 			continue;
3801 		}
3802 
3803 		rc = ecore_calc_hw_mode(p_hwfn);
3804 		if (rc != ECORE_SUCCESS)
3805 			return rc;
3806 
3807 		if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3808 						   &p_dev->mf_bits) ||
3809 				     OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING,
3810 						   &p_dev->mf_bits))) {
3811 			if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3812 					  &p_dev->mf_bits))
3813 				ether_type = ETH_P_8021Q;
3814 			else
3815 				ether_type = ETH_P_8021AD;
3816 			STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3817 				     ether_type);
3818 			STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3819 				     ether_type);
3820 			STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3821 				     ether_type);
3822 			STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3823 				     ether_type);
3824 		}
3825 
3826 		rc = ecore_fill_load_req_params(p_hwfn, &load_req_params,
3827 						p_params->p_drv_load_params);
3828 		if (rc != ECORE_SUCCESS)
3829 			return rc;
3830 
3831 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3832 					&load_req_params);
3833 		if (rc != ECORE_SUCCESS) {
3834 			DP_NOTICE(p_hwfn, false,
3835 				  "Failed sending a LOAD_REQ command\n");
3836 			return rc;
3837 		}
3838 
3839 		load_code = load_req_params.load_code;
3840 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
3841 			   "Load request was sent. Load code: 0x%x\n",
3842 			   load_code);
3843 
3844 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3845 
3846 		/* CQ75580:
3847 		 * When coming back from hibernate state, the registers from
3848 		 * which shadow is read initially are not initialized. It turns
3849 		 * out that these registers get initialized during the call to
3850 		 * ecore_mcp_load_req request. So we need to reread them here
3851 		 * to get the proper shadow register value.
3852 		 * Note: This is a workaround for the missing MFW
3853 		 * initialization. It may be removed once the implementation
3854 		 * is done.
3855 		 */
3856 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3857 
3858 		/* Only relevant for recovery:
3859 		 * Clear the indication after the LOAD_REQ command is responded
3860 		 * by the MFW.
3861 		 */
3862 		p_dev->recov_in_prog = false;
3863 
3864 		if (!qm_lock_ref_cnt) {
3865 #ifdef CONFIG_ECORE_LOCK_ALLOC
3866 			rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock);
3867 			if (rc) {
3868 				DP_ERR(p_hwfn, "qm_lock allocation failed\n");
3869 				goto qm_lock_fail;
3870 			}
3871 #endif
3872 			OSAL_SPIN_LOCK_INIT(&qm_lock);
3873 		}
3874 		++qm_lock_ref_cnt;
3875 
3876 		/* Clean up chip from previous driver if such remains exist.
3877 		 * This is not needed when the PF is the first one on the
3878 		 * engine, since afterwards we are going to init the FW.
3879 		 */
3880 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3881 			rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3882 						 p_hwfn->rel_pf_id, false);
3883 			if (rc != ECORE_SUCCESS) {
3884 				ecore_hw_err_notify(p_hwfn,
3885 						    ECORE_HW_ERR_RAMROD_FAIL);
3886 				goto load_err;
3887 			}
3888 		}
3889 
3890 		/* Log and clear previous pglue_b errors if such exist */
3891 		ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3892 
3893 		/* Enable the PF's internal FID_enable in the PXP */
3894 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3895 						  true);
3896 		if (rc != ECORE_SUCCESS)
3897 			goto load_err;
3898 
3899 		/* Clear the pglue_b was_error indication.
3900 		 * In E4 it must be done after the BME and the internal
3901 		 * FID_enable for the PF are set, since VDMs may cause the
3902 		 * indication to be set again.
3903 		 */
3904 		ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3905 
3906 		switch (load_code) {
3907 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
3908 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3909 						  p_hwfn->hw_info.hw_mode);
3910 			if (rc != ECORE_SUCCESS)
3911 				break;
3912 			/* Fall into */
3913 		case FW_MSG_CODE_DRV_LOAD_PORT:
3914 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3915 						p_hwfn->hw_info.hw_mode);
3916 			if (rc != ECORE_SUCCESS)
3917 				break;
3918 			/* Fall into */
3919 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3920 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3921 					      p_hwfn->hw_info.hw_mode,
3922 					      p_params);
3923 			break;
3924 		default:
3925 			DP_NOTICE(p_hwfn, false,
3926 				  "Unexpected load code [0x%08x]", load_code);
3927 			rc = ECORE_NOTIMPL;
3928 			break;
3929 		}
3930 
3931 		if (rc != ECORE_SUCCESS) {
3932 			DP_NOTICE(p_hwfn, false,
3933 				  "init phase failed for loadcode 0x%x (rc %d)\n",
3934 				  load_code, rc);
3935 			goto load_err;
3936 		}
3937 
3938 		rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3939 		if (rc != ECORE_SUCCESS) {
3940 			DP_NOTICE(p_hwfn, false, "Sending load done failed, rc = %d\n", rc);
3941 			if (rc == ECORE_NOMEM) {
3942 				DP_NOTICE(p_hwfn, false,
3943 					  "Sending load done was failed due to memory allocation failure\n");
3944 				goto load_err;
3945 			}
3946 			return rc;
3947 		}
3948 
3949 		/* send DCBX attention request command */
3950 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
3951 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
3952 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3953 				   DRV_MSG_CODE_SET_DCBX,
3954 				   1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
3955 				   &param);
3956 		if (rc != ECORE_SUCCESS) {
3957 			DP_NOTICE(p_hwfn, false,
3958 				  "Failed to send DCBX attention request\n");
3959 			return rc;
3960 		}
3961 
3962 		p_hwfn->hw_init_done = true;
3963 	}
3964 
3965 	if (IS_PF(p_dev)) {
3966 		/* Get pre-negotiated values for stag, bandwidth etc. */
3967 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3968 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3969 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3970 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3971 				   DRV_MSG_CODE_GET_OEM_UPDATES,
3972 				   1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3973 				   &resp, &param);
3974 		if (rc != ECORE_SUCCESS)
3975 			DP_NOTICE(p_hwfn, false,
3976 				  "Failed to send GET_OEM_UPDATES attention request\n");
3977 	}
3978 
3979 	if (IS_PF(p_dev)) {
3980 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3981 		drv_mb_param = STORM_FW_VERSION;
3982 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3983 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3984 				   drv_mb_param, &resp, &param);
3985 		if (rc != ECORE_SUCCESS)
3986 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
3987 
3988 		if (!b_default_mtu) {
3989 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3990 						      p_hwfn->hw_info.mtu);
3991 			if (rc != ECORE_SUCCESS)
3992 				DP_INFO(p_hwfn, "Failed to update default mtu\n");
3993 		}
3994 
3995 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
3996 						      p_hwfn->p_main_ptt,
3997 						      ECORE_OV_DRIVER_STATE_DISABLED);
3998 		if (rc != ECORE_SUCCESS)
3999 			DP_INFO(p_hwfn, "Failed to update driver state\n");
4000 
4001 		rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
4002 						 ECORE_OV_ESWITCH_VEB);
4003 		if (rc != ECORE_SUCCESS)
4004 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
4005 	}
4006 
4007 	return rc;
4008 
4009 load_err:
4010 	--qm_lock_ref_cnt;
4011 #ifdef CONFIG_ECORE_LOCK_ALLOC
4012 	if (!qm_lock_ref_cnt)
4013 		OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4014 qm_lock_fail:
4015 #endif
4016 	/* The MFW load lock should be released also when initialization fails.
4017 	 * If supported, use a cancel_load request to update the MFW with the
4018 	 * load failure.
4019 	 */
4020 	cancel_load = ecore_mcp_cancel_load_req(p_hwfn, p_hwfn->p_main_ptt);
4021 	if (cancel_load == ECORE_NOTIMPL) {
4022 		DP_INFO(p_hwfn,
4023 			"Send a load done request instead of cancel load\n");
4024 		ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
4025 	}
4026 	return rc;
4027 }
4028 
4029 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
4030 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
4031 				 struct ecore_hwfn *p_hwfn,
4032 				 struct ecore_ptt *p_ptt)
4033 {
4034 	int i;
4035 
4036 	/* close timers */
4037 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
4038 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
4039 	for (i = 0;
4040 	     i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
4041 	     i++) {
4042 		if ((!ecore_rd(p_hwfn, p_ptt,
4043 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
4044 		    (!ecore_rd(p_hwfn, p_ptt,
4045 			       TM_REG_PF_SCAN_ACTIVE_TASK)))
4046 			break;
4047 
4048 		/* Dependent on number of connection/tasks, possibly
4049 		 * 1ms sleep is required between polls
4050 		 */
4051 		OSAL_MSLEEP(1);
4052 	}
4053 
4054 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
4055 		return;
4056 
4057 	DP_NOTICE(p_hwfn, false,
4058 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
4059 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
4060 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
4061 }
4062 
4063 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
4064 {
4065 	int j;
4066 
4067 	for_each_hwfn(p_dev, j) {
4068 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4069 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
4070 
4071 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4072 	}
4073 }
4074 
4075 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
4076 						 struct ecore_ptt *p_ptt,
4077 						 u32 addr, u32 expected_val)
4078 {
4079 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
4080 
4081 	if (val != expected_val) {
4082 		DP_NOTICE(p_hwfn, true,
4083 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
4084 			  addr, val, expected_val);
4085 		return ECORE_UNKNOWN_ERROR;
4086 	}
4087 
4088 	return ECORE_SUCCESS;
4089 }
4090 
4091 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
4092 {
4093 	struct ecore_hwfn *p_hwfn;
4094 	struct ecore_ptt *p_ptt;
4095 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
4096 	int j;
4097 
4098 	for_each_hwfn(p_dev, j) {
4099 		p_hwfn = &p_dev->hwfns[j];
4100 		p_ptt = p_hwfn->p_main_ptt;
4101 
4102 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
4103 
4104 		if (IS_VF(p_dev)) {
4105 			ecore_vf_pf_int_cleanup(p_hwfn);
4106 			rc = ecore_vf_pf_reset(p_hwfn);
4107 			if (rc != ECORE_SUCCESS) {
4108 				DP_NOTICE(p_hwfn, true,
4109 					  "ecore_vf_pf_reset failed. rc = %d.\n",
4110 					  rc);
4111 				rc2 = ECORE_UNKNOWN_ERROR;
4112 			}
4113 			continue;
4114 		}
4115 
4116 		/* mark the hw as uninitialized... */
4117 		p_hwfn->hw_init_done = false;
4118 
4119 		/* Send unload command to MCP */
4120 		if (!p_dev->recov_in_prog) {
4121 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
4122 			if (rc != ECORE_SUCCESS) {
4123 				DP_NOTICE(p_hwfn, false,
4124 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
4125 					  rc);
4126 				rc2 = ECORE_UNKNOWN_ERROR;
4127 			}
4128 		}
4129 
4130 		OSAL_DPC_SYNC(p_hwfn);
4131 
4132 		/* After this point no MFW attentions are expected, e.g. prevent
4133 		 * race between pf stop and dcbx pf update.
4134 		 */
4135 
4136 		rc = ecore_sp_pf_stop(p_hwfn);
4137 		if (rc != ECORE_SUCCESS) {
4138 			DP_NOTICE(p_hwfn, false,
4139 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
4140 				  rc);
4141 			rc2 = ECORE_UNKNOWN_ERROR;
4142 		}
4143 
4144 		/* perform debug action after PF stop was sent */
4145 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
4146 
4147 		/* close NIG to BRB gate */
4148 		ecore_wr(p_hwfn, p_ptt,
4149 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4150 
4151 		/* close parser */
4152 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4153 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4154 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4155 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4156 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4157 
4158 		/* @@@TBD - clean transmission queues (5.b) */
4159 		/* @@@TBD - clean BTB (5.c) */
4160 
4161 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4162 
4163 		/* @@@TBD - verify DMAE requests are done (8) */
4164 
4165 		/* Disable Attention Generation */
4166 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
4167 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
4168 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
4169 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
4170 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
4171 		if (rc != ECORE_SUCCESS) {
4172 			DP_NOTICE(p_hwfn, true,
4173 				  "Failed to return IGU CAM to default\n");
4174 			rc2 = ECORE_UNKNOWN_ERROR;
4175 		}
4176 
4177 		/* Need to wait 1ms to guarantee SBs are cleared */
4178 		OSAL_MSLEEP(1);
4179 
4180 		if (!p_dev->recov_in_prog) {
4181 			ecore_verify_reg_val(p_hwfn, p_ptt,
4182 					     QM_REG_USG_CNT_PF_TX, 0);
4183 			ecore_verify_reg_val(p_hwfn, p_ptt,
4184 					     QM_REG_USG_CNT_PF_OTHER, 0);
4185 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
4186 		}
4187 
4188 		/* Disable PF in HW blocks */
4189 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
4190 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
4191 
4192 		if (IS_LEAD_HWFN(p_hwfn) &&
4193 		    OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
4194 		    !ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4195 			ecore_llh_remove_mac_filter(p_dev, 0,
4196 						    p_hwfn->hw_info.hw_mac_addr);
4197 
4198 		--qm_lock_ref_cnt;
4199 #ifdef CONFIG_ECORE_LOCK_ALLOC
4200 		if (!qm_lock_ref_cnt)
4201 			OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4202 #endif
4203 
4204 		if (!p_dev->recov_in_prog) {
4205 			rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4206 			if (rc == ECORE_NOMEM) {
4207 				DP_NOTICE(p_hwfn, false,
4208 					 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n");
4209 				rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4210 			}
4211 			if (rc != ECORE_SUCCESS) {
4212 				DP_NOTICE(p_hwfn, false,
4213 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
4214 					  rc);
4215 				rc2 = ECORE_UNKNOWN_ERROR;
4216 			}
4217 		}
4218 	} /* hwfn loop */
4219 
4220 	if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
4221 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
4222 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
4223 
4224 		 /* Clear the PF's internal FID_enable in the PXP.
4225 		  * In CMT this should only be done for first hw-function, and
4226 		  * only after all transactions have stopped for all active
4227 		  * hw-functions.
4228 		  */
4229 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
4230 						  false);
4231 		if (rc != ECORE_SUCCESS) {
4232 			DP_NOTICE(p_hwfn, true,
4233 				  "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
4234 				  rc);
4235 			rc2 = ECORE_UNKNOWN_ERROR;
4236 		}
4237 	}
4238 
4239 	return rc2;
4240 }
4241 
4242 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
4243 {
4244 	int j;
4245 
4246 	for_each_hwfn(p_dev, j) {
4247 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4248 		struct ecore_ptt *p_ptt;
4249 
4250 		if (IS_VF(p_dev)) {
4251 			ecore_vf_pf_int_cleanup(p_hwfn);
4252 			continue;
4253 		}
4254 		p_ptt = ecore_ptt_acquire(p_hwfn);
4255 		if (!p_ptt)
4256 			return ECORE_AGAIN;
4257 
4258 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
4259 
4260 		ecore_wr(p_hwfn, p_ptt,
4261 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4262 
4263 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4264 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4265 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4266 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4267 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4268 
4269 		/* @@@TBD - clean transmission queues (5.b) */
4270 		/* @@@TBD - clean BTB (5.c) */
4271 
4272 		/* @@@TBD - verify DMAE requests are done (8) */
4273 
4274 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
4275 		/* Need to wait 1ms to guarantee SBs are cleared */
4276 		OSAL_MSLEEP(1);
4277 		ecore_ptt_release(p_hwfn, p_ptt);
4278 	}
4279 
4280 	return ECORE_SUCCESS;
4281 }
4282 
4283 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
4284 {
4285 	struct ecore_ptt *p_ptt;
4286 
4287 	if (IS_VF(p_hwfn->p_dev))
4288 		return ECORE_SUCCESS;
4289 
4290 	p_ptt = ecore_ptt_acquire(p_hwfn);
4291 	if (!p_ptt)
4292 		return ECORE_AGAIN;
4293 
4294 	/* If roce info is allocated it means roce is initialized and should
4295 	 * be enabled in searcher.
4296 	 */
4297 	if (p_hwfn->p_rdma_info &&
4298 	    p_hwfn->p_rdma_info->active &&
4299 	    p_hwfn->b_rdma_enabled_in_prs)
4300 		ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
4301 
4302 	/* Re-open incoming traffic */
4303 	ecore_wr(p_hwfn, p_ptt,
4304 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
4305 	ecore_ptt_release(p_hwfn, p_ptt);
4306 
4307 	return ECORE_SUCCESS;
4308 }
4309 
4310 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev, u32 reg_idx,
4311 					u32 pattern_size, u32 crc)
4312 {
4313 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4314 	enum _ecore_status_t rc = ECORE_SUCCESS;
4315 	struct ecore_ptt *p_ptt;
4316 	u32 reg_len = 0;
4317 	u32 reg_crc = 0;
4318 
4319 	p_ptt = ecore_ptt_acquire(p_hwfn);
4320 	if (!p_ptt)
4321 		return ECORE_AGAIN;
4322 
4323 	/* Get length and CRC register offsets */
4324 	switch (reg_idx)
4325 	{
4326 	case 0:
4327 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
4328 				WOL_REG_ACPI_PAT_0_LEN_K2_E5;
4329 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
4330 				WOL_REG_ACPI_PAT_0_CRC_K2_E5;
4331 		break;
4332 	case 1:
4333 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
4334 				WOL_REG_ACPI_PAT_1_LEN_K2_E5;
4335 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
4336 				WOL_REG_ACPI_PAT_1_CRC_K2_E5;
4337 		break;
4338 	case 2:
4339 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
4340 				WOL_REG_ACPI_PAT_2_LEN_K2_E5;
4341 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
4342 				WOL_REG_ACPI_PAT_2_CRC_K2_E5;
4343 		break;
4344 	case 3:
4345 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
4346 				WOL_REG_ACPI_PAT_3_LEN_K2_E5;
4347 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
4348 				WOL_REG_ACPI_PAT_3_CRC_K2_E5;
4349 		break;
4350 	case 4:
4351 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
4352 				WOL_REG_ACPI_PAT_4_LEN_K2_E5;
4353 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
4354 				WOL_REG_ACPI_PAT_4_CRC_K2_E5;
4355 		break;
4356 	case 5:
4357 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
4358 				WOL_REG_ACPI_PAT_5_LEN_K2_E5;
4359 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
4360 				WOL_REG_ACPI_PAT_5_CRC_K2_E5;
4361 		break;
4362 	case 6:
4363 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
4364 				WOL_REG_ACPI_PAT_6_LEN_K2_E5;
4365 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
4366 				WOL_REG_ACPI_PAT_6_CRC_K2_E5;
4367 		break;
4368 	case 7:
4369 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
4370 				WOL_REG_ACPI_PAT_7_LEN_K2_E5;
4371 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
4372 				WOL_REG_ACPI_PAT_7_CRC_K2_E5;
4373 		break;
4374 	default:
4375 		rc = ECORE_UNKNOWN_ERROR;
4376 		goto out;
4377 	}
4378 
4379 	/* Allign pattern size to 4 */
4380 	while (pattern_size % 4)
4381 		pattern_size++;
4382 
4383 	/* Write pattern length and crc value */
4384 	if (ECORE_IS_BB(p_dev)) {
4385 		rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4386 		if (rc != ECORE_SUCCESS) {
4387 			DP_NOTICE(p_hwfn, false,
4388 				  "Failed to update the ACPI pattern length\n");
4389 			return rc;
4390 		}
4391 
4392 		rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_crc, crc);
4393 		if (rc != ECORE_SUCCESS) {
4394 			DP_NOTICE(p_hwfn, false,
4395 				  "Failed to update the ACPI pattern crc value\n");
4396 			return rc;
4397 		}
4398 	} else {
4399 		ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4400 		ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_crc, crc);
4401 	}
4402 
4403 	DP_INFO(p_dev,
4404 		"ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
4405 		"reg_len[0x%x=0x%x]\n",
4406 		reg_idx, reg_crc, crc, reg_len, pattern_size);
4407 out:
4408 	 ecore_ptt_release(p_hwfn, p_ptt);
4409 
4410 	return rc;
4411 }
4412 
4413 void ecore_wol_buffer_clear(struct ecore_hwfn *p_hwfn,
4414 			    struct ecore_ptt *p_ptt)
4415 {
4416 	const u32 wake_buffer_clear_offset =
4417 		ECORE_IS_BB(p_hwfn->p_dev) ?
4418 		NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
4419 
4420 	DP_INFO(p_hwfn->p_dev,
4421 		"ecore_wol_buffer_clear: reset "
4422 		"REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
4423 		wake_buffer_clear_offset);
4424 
4425 	if (ECORE_IS_BB(p_hwfn->p_dev)) {
4426 		ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4427 		ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4428 	} else {
4429 		ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4430 		ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4431 	}
4432 }
4433 
4434 enum _ecore_status_t ecore_get_wake_info(struct ecore_hwfn *p_hwfn,
4435 					 struct ecore_ptt *p_ptt,
4436 					 struct ecore_wake_info *wake_info)
4437 {
4438 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4439 	u32 *buf = OSAL_NULL;
4440 	u32 i    = 0;
4441 	const u32 reg_wake_buffer_offest =
4442 		ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
4443 			WOL_REG_WAKE_BUFFER_K2_E5;
4444 
4445 	wake_info->wk_info    = ecore_rd(p_hwfn, p_ptt,
4446 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
4447 				WOL_REG_WAKE_INFO_K2_E5);
4448 	wake_info->wk_details = ecore_rd(p_hwfn, p_ptt,
4449 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
4450 				WOL_REG_WAKE_DETAILS_K2_E5);
4451 	wake_info->wk_pkt_len = ecore_rd(p_hwfn, p_ptt,
4452 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
4453 				WOL_REG_WAKE_PKT_LEN_K2_E5);
4454 
4455 	DP_INFO(p_dev,
4456 		"ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
4457 		"REG_WAKE_DETAILS=0x%08x "
4458 		"REG_WAKE_PKT_LEN=0x%08x\n",
4459 		wake_info->wk_info,
4460 		wake_info->wk_details,
4461 		wake_info->wk_pkt_len);
4462 
4463 	buf = (u32 *)wake_info->wk_buffer;
4464 
4465 	for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
4466 	{
4467 		if ((i*sizeof(u32)) >=  sizeof(wake_info->wk_buffer))
4468 		{
4469 			DP_INFO(p_dev,
4470 				"ecore_get_wake_info: i index to 0 high=%d\n",
4471 				 i);
4472 			break;
4473 		}
4474 		buf[i] = ecore_rd(p_hwfn, p_ptt,
4475 				  reg_wake_buffer_offest + (i * sizeof(u32)));
4476 		DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
4477 			i, buf[i]);
4478 	}
4479 
4480 	ecore_wol_buffer_clear(p_hwfn, p_ptt);
4481 
4482 	return ECORE_SUCCESS;
4483 }
4484 
4485 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
4486 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
4487 {
4488 	ecore_ptt_pool_free(p_hwfn);
4489 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
4490 	p_hwfn->hw_info.p_igu_info = OSAL_NULL;
4491 }
4492 
4493 /* Setup bar access */
4494 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
4495 {
4496 	/* clear indirect access */
4497 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
4498 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4499 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
4500 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4501 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
4502 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4503 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
4504 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4505 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
4506 	} else {
4507 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4508 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
4509 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4510 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
4511 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4512 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
4513 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4514 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
4515 	}
4516 
4517 	/* Clean previous pglue_b errors if such exist */
4518 	ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
4519 
4520 	/* enable internal target-read */
4521 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4522 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
4523 }
4524 
4525 static void get_function_id(struct ecore_hwfn *p_hwfn)
4526 {
4527 	/* ME Register */
4528 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
4529 						  PXP_PF_ME_OPAQUE_ADDR);
4530 
4531 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
4532 
4533 	/* Bits 16-19 from the ME registers are the pf_num */
4534 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
4535 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4536 				      PXP_CONCRETE_FID_PFID);
4537 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4538 				    PXP_CONCRETE_FID_PORT);
4539 
4540 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4541 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
4542 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
4543 }
4544 
4545 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
4546 {
4547 	u32 *feat_num = p_hwfn->hw_info.feat_num;
4548 	struct ecore_sb_cnt_info sb_cnt;
4549 	u32 non_l2_sbs = 0;
4550 
4551 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
4552 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
4553 
4554 #ifdef CONFIG_ECORE_ROCE
4555 	/* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
4556 	 * status blocks equally between L2 / RoCE but with consideration as
4557 	 * to how many l2 queues / cnqs we have
4558 	 */
4559 	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
4560 #ifndef __EXTRACT__LINUX__THROW__
4561 		u32 max_cnqs;
4562 #endif
4563 
4564 		feat_num[ECORE_RDMA_CNQ] =
4565 			OSAL_MIN_T(u32,
4566 				   sb_cnt.cnt / 2,
4567 				   RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
4568 
4569 #ifndef __EXTRACT__LINUX__THROW__
4570 		/* Upper layer might require less */
4571 		max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
4572 		if (max_cnqs) {
4573 			if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
4574 				max_cnqs = 0;
4575 			feat_num[ECORE_RDMA_CNQ] =
4576 				OSAL_MIN_T(u32,
4577 					   feat_num[ECORE_RDMA_CNQ],
4578 					   max_cnqs);
4579 		}
4580 #endif
4581 
4582 		non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
4583 	}
4584 #endif
4585 
4586 	/* L2 Queues require each: 1 status block. 1 L2 queue */
4587 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
4588 		/* Start by allocating VF queues, then PF's */
4589 		feat_num[ECORE_VF_L2_QUE] =
4590 			OSAL_MIN_T(u32,
4591 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
4592 				   sb_cnt.iov_cnt);
4593 		feat_num[ECORE_PF_L2_QUE] =
4594 			OSAL_MIN_T(u32,
4595 				   sb_cnt.cnt - non_l2_sbs,
4596 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
4597 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
4598 	}
4599 
4600 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4601 		feat_num[ECORE_FCOE_CQ] =
4602 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4603 							     ECORE_CMDQS_CQS));
4604 
4605 	if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
4606 		feat_num[ECORE_ISCSI_CQ] =
4607 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4608 							     ECORE_CMDQS_CQS));
4609 
4610 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4611 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
4612 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
4613 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
4614 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
4615 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
4616 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
4617 		   (int)sb_cnt.cnt);
4618 }
4619 
4620 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
4621 {
4622 	switch (res_id) {
4623 	case ECORE_L2_QUEUE:
4624 		return "L2_QUEUE";
4625 	case ECORE_VPORT:
4626 		return "VPORT";
4627 	case ECORE_RSS_ENG:
4628 		return "RSS_ENG";
4629 	case ECORE_PQ:
4630 		return "PQ";
4631 	case ECORE_RL:
4632 		return "RL";
4633 	case ECORE_MAC:
4634 		return "MAC";
4635 	case ECORE_VLAN:
4636 		return "VLAN";
4637 	case ECORE_RDMA_CNQ_RAM:
4638 		return "RDMA_CNQ_RAM";
4639 	case ECORE_ILT:
4640 		return "ILT";
4641 	case ECORE_LL2_QUEUE:
4642 		return "LL2_QUEUE";
4643 	case ECORE_CMDQS_CQS:
4644 		return "CMDQS_CQS";
4645 	case ECORE_RDMA_STATS_QUEUE:
4646 		return "RDMA_STATS_QUEUE";
4647 	case ECORE_BDQ:
4648 		return "BDQ";
4649 	case ECORE_SB:
4650 		return "SB";
4651 	default:
4652 		return "UNKNOWN_RESOURCE";
4653 	}
4654 }
4655 
4656 static enum _ecore_status_t
4657 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4658 			      struct ecore_ptt *p_ptt,
4659 			      enum ecore_resources res_id,
4660 			      u32 resc_max_val,
4661 			      u32 *p_mcp_resp)
4662 {
4663 	enum _ecore_status_t rc;
4664 
4665 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
4666 					resc_max_val, p_mcp_resp);
4667 	if (rc != ECORE_SUCCESS) {
4668 		DP_NOTICE(p_hwfn, false,
4669 			  "MFW response failure for a max value setting of resource %d [%s]\n",
4670 			  res_id, ecore_hw_get_resc_name(res_id));
4671 		return rc;
4672 	}
4673 
4674 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
4675 		DP_INFO(p_hwfn,
4676 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
4677 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
4678 
4679 	return ECORE_SUCCESS;
4680 }
4681 
4682 static enum _ecore_status_t
4683 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4684 			    struct ecore_ptt *p_ptt)
4685 {
4686 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4687 	u32 resc_max_val, mcp_resp;
4688 	u8 res_id;
4689 	enum _ecore_status_t rc;
4690 
4691 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4692 		switch (res_id) {
4693 		case ECORE_LL2_QUEUE:
4694 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
4695 			break;
4696 		case ECORE_RDMA_CNQ_RAM:
4697 			/* No need for a case for ECORE_CMDQS_CQS since
4698 			 * CNQ/CMDQS are the same resource.
4699 			 */
4700 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
4701 			break;
4702 		case ECORE_RDMA_STATS_QUEUE:
4703 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
4704 					    : RDMA_NUM_STATISTIC_COUNTERS_BB;
4705 			break;
4706 		case ECORE_BDQ:
4707 			resc_max_val = BDQ_NUM_RESOURCES;
4708 			break;
4709 		default:
4710 			continue;
4711 		}
4712 
4713 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
4714 						   resc_max_val, &mcp_resp);
4715 		if (rc != ECORE_SUCCESS)
4716 			return rc;
4717 
4718 		/* There's no point to continue to the next resource if the
4719 		 * command is not supported by the MFW.
4720 		 * We do continue if the command is supported but the resource
4721 		 * is unknown to the MFW. Such a resource will be later
4722 		 * configured with the default allocation values.
4723 		 */
4724 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
4725 			return ECORE_NOTIMPL;
4726 	}
4727 
4728 	return ECORE_SUCCESS;
4729 }
4730 
4731 static
4732 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
4733 					    enum ecore_resources res_id,
4734 					    u32 *p_resc_num, u32 *p_resc_start)
4735 {
4736 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
4737 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4738 
4739 	switch (res_id) {
4740 	case ECORE_L2_QUEUE:
4741 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
4742 				      MAX_NUM_L2_QUEUES_BB) / num_funcs;
4743 		break;
4744 	case ECORE_VPORT:
4745 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
4746 				      MAX_NUM_VPORTS_BB) / num_funcs;
4747 		break;
4748 	case ECORE_RSS_ENG:
4749 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
4750 				      ETH_RSS_ENGINE_NUM_BB) / num_funcs;
4751 		break;
4752 	case ECORE_PQ:
4753 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
4754 				      MAX_QM_TX_QUEUES_BB) / num_funcs;
4755 		*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
4756 		break;
4757 	case ECORE_RL:
4758 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
4759 		break;
4760 	case ECORE_MAC:
4761 	case ECORE_VLAN:
4762 		/* Each VFC resource can accommodate both a MAC and a VLAN */
4763 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
4764 		break;
4765 	case ECORE_ILT:
4766 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
4767 				      PXP_NUM_ILT_RECORDS_BB) / num_funcs;
4768 		break;
4769 	case ECORE_LL2_QUEUE:
4770 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
4771 		break;
4772 	case ECORE_RDMA_CNQ_RAM:
4773 	case ECORE_CMDQS_CQS:
4774 		/* CNQ/CMDQS are the same resource */
4775 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
4776 		break;
4777 	case ECORE_RDMA_STATS_QUEUE:
4778 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
4779 				      RDMA_NUM_STATISTIC_COUNTERS_BB) /
4780 			      num_funcs;
4781 		break;
4782 	case ECORE_BDQ:
4783 		if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
4784 		    p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
4785 			*p_resc_num = 0;
4786 		else
4787 			*p_resc_num = 1;
4788 		break;
4789 	case ECORE_SB:
4790 		/* Since we want its value to reflect whether MFW supports
4791 		 * the new scheme, have a default of 0.
4792 		 */
4793 		*p_resc_num = 0;
4794 		break;
4795 	default:
4796 		return ECORE_INVAL;
4797 	}
4798 
4799 	switch (res_id) {
4800 	case ECORE_BDQ:
4801 		if (!*p_resc_num)
4802 			*p_resc_start = 0;
4803 		else if (p_hwfn->p_dev->num_ports_in_engine == 4)
4804 			*p_resc_start = p_hwfn->port_id;
4805 		else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
4806 			*p_resc_start = p_hwfn->port_id;
4807 		else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
4808 			*p_resc_start = p_hwfn->port_id + 2;
4809 		break;
4810 	default:
4811 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
4812 		break;
4813 	}
4814 
4815 	return ECORE_SUCCESS;
4816 }
4817 
4818 static enum _ecore_status_t
4819 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
4820 			 bool drv_resc_alloc)
4821 {
4822 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
4823 	u32 mcp_resp, *p_resc_num, *p_resc_start;
4824 	enum _ecore_status_t rc;
4825 
4826 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
4827 	p_resc_start = &RESC_START(p_hwfn, res_id);
4828 
4829 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
4830 				    &dflt_resc_start);
4831 	if (rc != ECORE_SUCCESS) {
4832 		DP_ERR(p_hwfn,
4833 		       "Failed to get default amount for resource %d [%s]\n",
4834 			res_id, ecore_hw_get_resc_name(res_id));
4835 		return rc;
4836 	}
4837 
4838 #ifndef ASIC_ONLY
4839 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4840 		*p_resc_num = dflt_resc_num;
4841 		*p_resc_start = dflt_resc_start;
4842 		goto out;
4843 	}
4844 #endif
4845 
4846 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
4847 				     &mcp_resp, p_resc_num, p_resc_start);
4848 	if (rc != ECORE_SUCCESS) {
4849 		DP_NOTICE(p_hwfn, false,
4850 			  "MFW response failure for an allocation request for resource %d [%s]\n",
4851 			  res_id, ecore_hw_get_resc_name(res_id));
4852 		return rc;
4853 	}
4854 
4855 	/* Default driver values are applied in the following cases:
4856 	 * - The resource allocation MB command is not supported by the MFW
4857 	 * - There is an internal error in the MFW while processing the request
4858 	 * - The resource ID is unknown to the MFW
4859 	 */
4860 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
4861 		DP_INFO(p_hwfn,
4862 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
4863 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
4864 			dflt_resc_num, dflt_resc_start);
4865 		*p_resc_num = dflt_resc_num;
4866 		*p_resc_start = dflt_resc_start;
4867 		goto out;
4868 	}
4869 
4870 	if ((*p_resc_num != dflt_resc_num ||
4871 	     *p_resc_start != dflt_resc_start) &&
4872 	    res_id != ECORE_SB) {
4873 		DP_INFO(p_hwfn,
4874 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
4875 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
4876 			*p_resc_start, dflt_resc_num, dflt_resc_start,
4877 			drv_resc_alloc ? " - Applying default values" : "");
4878 		if (drv_resc_alloc) {
4879 			*p_resc_num = dflt_resc_num;
4880 			*p_resc_start = dflt_resc_start;
4881 		}
4882 	}
4883 out:
4884 	/* PQs have to divide by 8 [that's the HW granularity].
4885 	 * Reduce number so it would fit.
4886 	 */
4887 	if ((res_id == ECORE_PQ) &&
4888 	    ((*p_resc_num % 8) || (*p_resc_start % 8))) {
4889 		DP_INFO(p_hwfn,
4890 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
4891 			*p_resc_num, (*p_resc_num) & ~0x7,
4892 			*p_resc_start, (*p_resc_start) & ~0x7);
4893 		*p_resc_num &= ~0x7;
4894 		*p_resc_start &= ~0x7;
4895 	}
4896 
4897 	return ECORE_SUCCESS;
4898 }
4899 
4900 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
4901 						   bool drv_resc_alloc)
4902 {
4903 	enum _ecore_status_t rc;
4904 	u8 res_id;
4905 
4906 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4907 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
4908 		if (rc != ECORE_SUCCESS)
4909 			return rc;
4910 	}
4911 
4912 	return ECORE_SUCCESS;
4913 }
4914 
4915 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn,
4916 						      struct ecore_ptt *p_ptt)
4917 {
4918 	u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn);
4919 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4920 	enum _ecore_status_t rc;
4921 
4922 	rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
4923 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL)
4924 		return rc;
4925 	else if (rc == ECORE_NOTIMPL)
4926 		p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4927 
4928 	if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
4929 		DP_INFO(p_hwfn,
4930 			"Fix the PPFID bitmap to inculde the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
4931 			native_ppfid_idx, p_dev->ppfid_bitmap);
4932 		p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4933 	}
4934 
4935 	return ECORE_SUCCESS;
4936 }
4937 
4938 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
4939 					      struct ecore_ptt *p_ptt,
4940 					      bool drv_resc_alloc)
4941 {
4942 	struct ecore_resc_unlock_params resc_unlock_params;
4943 	struct ecore_resc_lock_params resc_lock_params;
4944 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4945 	u8 res_id;
4946 	enum _ecore_status_t rc;
4947 #ifndef ASIC_ONLY
4948 	u32 *resc_start = p_hwfn->hw_info.resc_start;
4949 	u32 *resc_num = p_hwfn->hw_info.resc_num;
4950 	/* For AH, an equal share of the ILT lines between the maximal number of
4951 	 * PFs is not enough for RoCE. This would be solved by the future
4952 	 * resource allocation scheme, but isn't currently present for
4953 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
4954 	 * to work - the BB number of ILT lines divided by its max PFs number.
4955 	 */
4956 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
4957 #endif
4958 
4959 	/* Setting the max values of the soft resources and the following
4960 	 * resources allocation queries should be atomic. Since several PFs can
4961 	 * run in parallel - a resource lock is needed.
4962 	 * If either the resource lock or resource set value commands are not
4963 	 * supported - skip the the max values setting, release the lock if
4964 	 * needed, and proceed to the queries. Other failures, including a
4965 	 * failure to acquire the lock, will cause this function to fail.
4966 	 * Old drivers that don't acquire the lock can run in parallel, and
4967 	 * their allocation values won't be affected by the updated max values.
4968 	 */
4969 
4970 	ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
4971 					 ECORE_RESC_LOCK_RESC_ALLOC, false);
4972 
4973 	/* Changes on top of the default values to accommodate parallel attempts
4974 	 * of several PFs.
4975 	 * [10 x 10 msec by default ==> 20 x 50 msec]
4976 	 */
4977 	resc_lock_params.retry_num *= 2;
4978 	resc_lock_params.retry_interval *= 5;
4979 
4980 	rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
4981 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4982 		return rc;
4983 	} else if (rc == ECORE_NOTIMPL) {
4984 		DP_INFO(p_hwfn,
4985 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
4986 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
4987 		DP_NOTICE(p_hwfn, false,
4988 			  "Failed to acquire the resource lock for the resource allocation commands\n");
4989 		return ECORE_BUSY;
4990 	} else {
4991 		rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
4992 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4993 			DP_NOTICE(p_hwfn, false,
4994 				  "Failed to set the max values of the soft resources\n");
4995 			goto unlock_and_exit;
4996 		} else if (rc == ECORE_NOTIMPL) {
4997 			DP_INFO(p_hwfn,
4998 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
4999 			rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5000 						   &resc_unlock_params);
5001 			if (rc != ECORE_SUCCESS)
5002 				DP_INFO(p_hwfn,
5003 					"Failed to release the resource lock for the resource allocation commands\n");
5004 		}
5005 	}
5006 
5007 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
5008 	if (rc != ECORE_SUCCESS)
5009 		goto unlock_and_exit;
5010 
5011 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
5012 		rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5013 					   &resc_unlock_params);
5014 		if (rc != ECORE_SUCCESS)
5015 			DP_INFO(p_hwfn,
5016 				"Failed to release the resource lock for the resource allocation commands\n");
5017 	}
5018 
5019 	/* PPFID bitmap */
5020 	if (IS_LEAD_HWFN(p_hwfn)) {
5021 		rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
5022 		if (rc != ECORE_SUCCESS)
5023 			return rc;
5024 	}
5025 
5026 #ifndef ASIC_ONLY
5027 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
5028 		/* Reduced build contains less PQs */
5029 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
5030 			resc_num[ECORE_PQ] = 32;
5031 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
5032 					       p_hwfn->enabled_func_idx;
5033 		}
5034 
5035 		/* For AH emulation, since we have a possible maximal number of
5036 		 * 16 enabled PFs, in case there are not enough ILT lines -
5037 		 * allocate only first PF as RoCE and have all the other ETH
5038 		 * only with less ILT lines.
5039 		 */
5040 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
5041 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
5042 							 resc_num[ECORE_ILT],
5043 							 roce_min_ilt_lines);
5044 	}
5045 
5046 	/* Correct the common ILT calculation if PF0 has more */
5047 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
5048 	    p_hwfn->p_dev->b_is_emul_full &&
5049 	    p_hwfn->rel_pf_id &&
5050 	    resc_num[ECORE_ILT] < roce_min_ilt_lines)
5051 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
5052 					 resc_num[ECORE_ILT];
5053 #endif
5054 
5055 	/* Sanity for ILT */
5056 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
5057 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
5058 		DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
5059 			  RESC_START(p_hwfn, ECORE_ILT),
5060 			  RESC_END(p_hwfn, ECORE_ILT) - 1);
5061 		return ECORE_INVAL;
5062 	}
5063 
5064 	/* This will also learn the number of SBs from MFW */
5065 	if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
5066 		return ECORE_INVAL;
5067 
5068 	ecore_hw_set_feat(p_hwfn);
5069 
5070 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5071 		   "The numbers for each resource are:\n");
5072 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
5073 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
5074 			   ecore_hw_get_resc_name(res_id),
5075 			   RESC_NUM(p_hwfn, res_id),
5076 			   RESC_START(p_hwfn, res_id));
5077 
5078 	return ECORE_SUCCESS;
5079 
5080 unlock_and_exit:
5081 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
5082 		ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5083 				      &resc_unlock_params);
5084 	return rc;
5085 }
5086 
5087 static enum _ecore_status_t
5088 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
5089 		      struct ecore_ptt *p_ptt,
5090 		      struct ecore_hw_prepare_params *p_params)
5091 {
5092 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
5093 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
5094 	struct ecore_mcp_link_capabilities *p_caps;
5095 	struct ecore_mcp_link_params *link;
5096 	enum _ecore_status_t rc;
5097 	u32 dcbx_mode;  /* __LINUX__THROW__ */
5098 
5099 	/* Read global nvm_cfg address */
5100 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
5101 
5102 	/* Verify MCP has initialized it */
5103 	if (!nvm_cfg_addr) {
5104 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
5105 		if (p_params->b_relaxed_probe)
5106 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
5107 		return ECORE_INVAL;
5108 	}
5109 
5110 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
5111 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
5112 
5113 	addr = MCP_REG_SCRATCH  + nvm_cfg1_offset +
5114 		   OFFSETOF(struct nvm_cfg1, glob) +
5115 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
5116 
5117 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
5118 
5119 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
5120 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
5121 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
5122 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
5123 		break;
5124 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
5125 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
5126 		break;
5127 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
5128 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
5129 		break;
5130 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
5131 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
5132 		break;
5133 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
5134 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
5135 		break;
5136 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
5137 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
5138 		break;
5139 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
5140 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
5141 		break;
5142 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
5143 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
5144 		break;
5145 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
5146 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
5147 		break;
5148 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
5149 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
5150 		break;
5151 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
5152 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
5153 		break;
5154 	default:
5155 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
5156 			  core_cfg);
5157 		break;
5158 	}
5159 
5160 #ifndef __EXTRACT__LINUX__THROW__
5161 	/* Read DCBX configuration */
5162 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5163 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5164 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
5165 			     port_cfg_addr +
5166 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
5167 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
5168 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
5169 	switch (dcbx_mode) {
5170 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
5171 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
5172 		break;
5173 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
5174 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
5175 		break;
5176 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
5177 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
5178 		break;
5179 	default:
5180 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
5181 	}
5182 #endif
5183 
5184 	/* Read default link configuration */
5185 	link = &p_hwfn->mcp_info->link_input;
5186 	p_caps = &p_hwfn->mcp_info->link_capabilities;
5187 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5188 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5189 	link_temp = ecore_rd(p_hwfn, p_ptt,
5190 			     port_cfg_addr +
5191 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
5192 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
5193 	link->speed.advertised_speeds = link_temp;
5194 	p_caps->speed_capabilities = link->speed.advertised_speeds;
5195 
5196 	link_temp = ecore_rd(p_hwfn, p_ptt,
5197 				 port_cfg_addr +
5198 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
5199 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
5200 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
5201 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
5202 		link->speed.autoneg = true;
5203 		break;
5204 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
5205 		link->speed.forced_speed = 1000;
5206 		break;
5207 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
5208 		link->speed.forced_speed = 10000;
5209 		break;
5210 	case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
5211 		link->speed.forced_speed = 20000;
5212 		break;
5213 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
5214 		link->speed.forced_speed = 25000;
5215 		break;
5216 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
5217 		link->speed.forced_speed = 40000;
5218 		break;
5219 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
5220 		link->speed.forced_speed = 50000;
5221 		break;
5222 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
5223 		link->speed.forced_speed = 100000;
5224 		break;
5225 	default:
5226 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
5227 			  link_temp);
5228 	}
5229 
5230 	p_caps->default_speed = link->speed.forced_speed; /* __LINUX__THROW__ */
5231 	p_caps->default_speed_autoneg = link->speed.autoneg;
5232 
5233 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
5234 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
5235 	link->pause.autoneg = !!(link_temp &
5236 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
5237 	link->pause.forced_rx = !!(link_temp &
5238 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
5239 	link->pause.forced_tx = !!(link_temp &
5240 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
5241 	link->loopback_mode = 0;
5242 
5243 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
5244 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
5245 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
5246 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
5247 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
5248 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
5249 		link->eee.enable = true;
5250 		switch (link_temp) {
5251 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
5252 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
5253 			link->eee.enable = false;
5254 			break;
5255 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
5256 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
5257 			break;
5258 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
5259 			p_caps->eee_lpi_timer =
5260 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
5261 			break;
5262 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
5263 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
5264 			break;
5265 		}
5266 
5267 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
5268 		link->eee.tx_lpi_enable = link->eee.enable;
5269 		link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
5270 	} else {
5271 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
5272 	}
5273 
5274 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5275 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
5276 		   link->speed.forced_speed, link->speed.advertised_speeds,
5277 		   link->speed.autoneg, link->pause.autoneg,
5278 		   p_caps->default_eee, p_caps->eee_lpi_timer);
5279 
5280 	/* Read Multi-function information from shmem */
5281 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5282 		   OFFSETOF(struct nvm_cfg1, glob) +
5283 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
5284 
5285 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
5286 
5287 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
5288 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
5289 
5290 	switch (mf_mode) {
5291 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5292 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
5293 		break;
5294 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5295 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5296 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5297 					 1 << ECORE_MF_UFP_SPECIFIC |
5298 					 1 << ECORE_MF_8021Q_TAGGING;
5299 		break;
5300 	case NVM_CFG1_GLOB_MF_MODE_BD:
5301 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5302 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5303 					 1 << ECORE_MF_8021AD_TAGGING;
5304 		break;
5305 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5306 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5307 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5308 					 1 << ECORE_MF_LL2_NON_UNICAST |
5309 					 1 << ECORE_MF_INTER_PF_SWITCH |
5310 					 1 << ECORE_MF_DISABLE_ARFS;
5311 		break;
5312 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5313 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5314 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5315 					 1 << ECORE_MF_LL2_NON_UNICAST;
5316 		if (ECORE_IS_BB(p_hwfn->p_dev))
5317 			p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
5318 		break;
5319 	}
5320 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
5321 		p_hwfn->p_dev->mf_bits);
5322 
5323 	if (ECORE_IS_CMT(p_hwfn->p_dev))
5324 		p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
5325 
5326 #ifndef __EXTRACT__LINUX__THROW__
5327 	/* It's funny since we have another switch, but it's easier
5328 	 * to throw this away in linux this way. Long term, it might be
5329 	 * better to have have getters for needed ECORE_MF_* fields,
5330 	 * convert client code and eliminate this.
5331 	 */
5332 	switch (mf_mode) {
5333 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5334 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
5335 		break;
5336 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5337 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
5338 		break;
5339 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5340 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
5341 		break;
5342 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5343 		p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
5344 		break;
5345 	}
5346 #endif
5347 
5348 	/* Read Multi-function information from shmem */
5349 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5350 		   OFFSETOF(struct nvm_cfg1, glob) +
5351 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
5352 
5353 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
5354 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
5355 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
5356 				 &p_hwfn->hw_info.device_capabilities);
5357 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
5358 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
5359 				 &p_hwfn->hw_info.device_capabilities);
5360 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
5361 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
5362 				 &p_hwfn->hw_info.device_capabilities);
5363 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
5364 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
5365 				 &p_hwfn->hw_info.device_capabilities);
5366 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
5367 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
5368 				 &p_hwfn->hw_info.device_capabilities);
5369 
5370 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
5371 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5372 		rc = ECORE_SUCCESS;
5373 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5374 	}
5375 
5376 	return rc;
5377 }
5378 
5379 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
5380 				struct ecore_ptt *p_ptt)
5381 {
5382 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
5383 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
5384 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5385 
5386 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
5387 
5388 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
5389 	 * in the other bits are selected.
5390 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
5391 	 * '0' only for enabled functions (function 0 always exists and
5392 	 * enabled).
5393 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
5394 	 * the number of functions for both hwfns is learnt from the same bits.
5395 	 */
5396 	reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
5397 
5398 	if (reg_function_hide & 0x1) {
5399 		if (ECORE_IS_BB(p_dev)) {
5400 			if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
5401 				num_funcs = 0;
5402 				eng_mask = 0xaaaa;
5403 			} else {
5404 				num_funcs = 1;
5405 				eng_mask = 0x5554;
5406 			}
5407 		} else {
5408 			num_funcs = 1;
5409 			eng_mask = 0xfffe;
5410 		}
5411 
5412 		/* Get the number of the enabled functions on the engine */
5413 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
5414 		while (tmp) {
5415 			if (tmp & 0x1)
5416 				num_funcs++;
5417 			tmp >>= 0x1;
5418 		}
5419 
5420 		/* Get the PF index within the enabled functions */
5421 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
5422 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
5423 		while (tmp) {
5424 			if (tmp & 0x1)
5425 				enabled_func_idx--;
5426 			tmp >>= 0x1;
5427 		}
5428 	}
5429 
5430 	p_hwfn->num_funcs_on_engine = num_funcs;
5431 	p_hwfn->enabled_func_idx = enabled_func_idx;
5432 
5433 #ifndef ASIC_ONLY
5434 	if (CHIP_REV_IS_FPGA(p_dev)) {
5435 		DP_NOTICE(p_hwfn, false,
5436 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
5437 		p_hwfn->num_funcs_on_engine = 4;
5438 	}
5439 #endif
5440 
5441 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5442 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
5443 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
5444 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
5445 }
5446 
5447 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
5448 				      struct ecore_ptt *p_ptt)
5449 {
5450 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5451 	u32 port_mode;
5452 
5453 #ifndef ASIC_ONLY
5454 	/* Read the port mode */
5455 	if (CHIP_REV_IS_FPGA(p_dev))
5456 		port_mode = 4;
5457 	else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev))
5458 		/* In CMT on emulation, assume 1 port */
5459 		port_mode = 1;
5460 	else
5461 #endif
5462 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
5463 
5464 	if (port_mode < 3) {
5465 		p_dev->num_ports_in_engine = 1;
5466 	} else if (port_mode <= 5) {
5467 		p_dev->num_ports_in_engine = 2;
5468 	} else {
5469 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
5470 			  p_dev->num_ports_in_engine);
5471 
5472 		/* Default num_ports_in_engine to something */
5473 		p_dev->num_ports_in_engine = 1;
5474 	}
5475 }
5476 
5477 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
5478 					 struct ecore_ptt *p_ptt)
5479 {
5480 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5481 	u32 port;
5482 	int i;
5483 
5484 	p_dev->num_ports_in_engine = 0;
5485 
5486 #ifndef ASIC_ONLY
5487 	if (CHIP_REV_IS_EMUL(p_dev)) {
5488 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5489 		switch ((port & 0xf000) >> 12) {
5490 		case 1:
5491 			p_dev->num_ports_in_engine = 1;
5492 			break;
5493 		case 3:
5494 			p_dev->num_ports_in_engine = 2;
5495 			break;
5496 		case 0xf:
5497 			p_dev->num_ports_in_engine = 4;
5498 			break;
5499 		default:
5500 			DP_NOTICE(p_hwfn, false,
5501 				  "Unknown port mode in ECO_RESERVED %08x\n",
5502 				  port);
5503 		}
5504 	} else
5505 #endif
5506 	for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
5507 		port = ecore_rd(p_hwfn, p_ptt,
5508 				CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
5509 		if (port & 1)
5510 			p_dev->num_ports_in_engine++;
5511 	}
5512 
5513 	if (!p_dev->num_ports_in_engine) {
5514 		DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
5515 
5516 		/* Default num_ports_in_engine to something */
5517 		p_dev->num_ports_in_engine = 1;
5518 	}
5519 }
5520 
5521 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5522 				   struct ecore_ptt *p_ptt)
5523 {
5524 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5525 
5526 	/* Determine the number of ports per engine */
5527 	if (ECORE_IS_BB(p_dev))
5528 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
5529 	else
5530 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
5531 
5532 	/* Get the total number of ports of the device */
5533 	if (ECORE_IS_CMT(p_dev)) {
5534 		/* In CMT there is always only one port */
5535 		p_dev->num_ports = 1;
5536 #ifndef ASIC_ONLY
5537 	} else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) {
5538 		p_dev->num_ports = p_dev->num_ports_in_engine *
5539 				   ecore_device_num_engines(p_dev);
5540 #endif
5541 	} else {
5542 		u32 addr, global_offsize, global_addr;
5543 
5544 		addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
5545 					    PUBLIC_GLOBAL);
5546 		global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
5547 		global_addr = SECTION_ADDR(global_offsize, 0);
5548 		addr = global_addr + OFFSETOF(struct public_global, max_ports);
5549 		p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
5550 	}
5551 }
5552 
5553 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
5554 				   struct ecore_ptt *p_ptt)
5555 {
5556 	struct ecore_mcp_link_capabilities *p_caps;
5557 	u32 eee_status;
5558 
5559 	p_caps = &p_hwfn->mcp_info->link_capabilities;
5560 	if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
5561 		return;
5562 
5563 	p_caps->eee_speed_caps = 0;
5564 	eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
5565 			      OFFSETOF(struct public_port, eee_status));
5566 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
5567 			EEE_SUPPORTED_SPEED_OFFSET;
5568 	if (eee_status & EEE_1G_SUPPORTED)
5569 		p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
5570 	if (eee_status & EEE_10G_ADV)
5571 		p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
5572 }
5573 
5574 static enum _ecore_status_t
5575 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
5576 		  enum ecore_pci_personality personality,
5577 		  struct ecore_hw_prepare_params *p_params)
5578 {
5579 	bool drv_resc_alloc = p_params->drv_resc_alloc;
5580 	enum _ecore_status_t rc;
5581 
5582 	/* Since all information is common, only first hwfns should do this */
5583 	if (IS_LEAD_HWFN(p_hwfn)) {
5584 		rc = ecore_iov_hw_info(p_hwfn);
5585 		if (rc != ECORE_SUCCESS) {
5586 			if (p_params->b_relaxed_probe)
5587 				p_params->p_relaxed_res =
5588 						ECORE_HW_PREPARE_BAD_IOV;
5589 			else
5590 				return rc;
5591 		}
5592 	}
5593 
5594 	if (IS_LEAD_HWFN(p_hwfn))
5595 		ecore_hw_info_port_num(p_hwfn, p_ptt);
5596 
5597 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
5598 
5599 #ifndef ASIC_ONLY
5600 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
5601 #endif
5602 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
5603 	if (rc != ECORE_SUCCESS)
5604 		return rc;
5605 #ifndef ASIC_ONLY
5606 	}
5607 #endif
5608 
5609 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
5610 	if (rc != ECORE_SUCCESS) {
5611 		if (p_params->b_relaxed_probe)
5612 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
5613 		else
5614 			return rc;
5615 	}
5616 
5617 #ifndef ASIC_ONLY
5618 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
5619 #endif
5620 	OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
5621 		    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
5622 #ifndef ASIC_ONLY
5623 	} else {
5624 		static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
5625 
5626 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
5627 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
5628 	}
5629 #endif
5630 
5631 	if (ecore_mcp_is_init(p_hwfn)) {
5632 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
5633 			p_hwfn->hw_info.ovlan =
5634 				p_hwfn->mcp_info->func_info.ovlan;
5635 
5636 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
5637 
5638 		ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
5639 
5640 		ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
5641 	}
5642 
5643 	if (personality != ECORE_PCI_DEFAULT) {
5644 		p_hwfn->hw_info.personality = personality;
5645 	} else if (ecore_mcp_is_init(p_hwfn)) {
5646 		enum ecore_pci_personality protocol;
5647 
5648 		protocol = p_hwfn->mcp_info->func_info.protocol;
5649 		p_hwfn->hw_info.personality = protocol;
5650 	}
5651 
5652 #ifndef ASIC_ONLY
5653 	/* To overcome ILT lack for emulation, until at least until we'll have
5654 	 * a definite answer from system about it, allow only PF0 to be RoCE.
5655 	 */
5656 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
5657 		if (!p_hwfn->rel_pf_id)
5658 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
5659 		else
5660 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
5661 	}
5662 #endif
5663 
5664 	/* although in BB some constellations may support more than 4 tcs,
5665 	 * that can result in performance penalty in some cases. 4
5666 	 * represents a good tradeoff between performance and flexibility.
5667 	 */
5668 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
5669 
5670 	/* start out with a single active tc. This can be increased either
5671 	 * by dcbx negotiation or by upper layer driver
5672 	 */
5673 	p_hwfn->hw_info.num_active_tc = 1;
5674 
5675 	ecore_get_num_funcs(p_hwfn, p_ptt);
5676 
5677 	if (ecore_mcp_is_init(p_hwfn))
5678 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
5679 
5680 	/* In case of forcing the driver's default resource allocation, calling
5681 	 * ecore_hw_get_resc() should come after initializing the personality
5682 	 * and after getting the number of functions, since the calculation of
5683 	 * the resources/features depends on them.
5684 	 * This order is not harmful if not forcing.
5685 	 */
5686 	rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
5687 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5688 		rc = ECORE_SUCCESS;
5689 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5690 	}
5691 
5692 	return rc;
5693 }
5694 
5695 #define ECORE_MAX_DEVICE_NAME_LEN	(8)
5696 
5697 void ecore_get_dev_name(struct ecore_dev *p_dev, u8 *name, u8 max_chars)
5698 {
5699 	u8 n;
5700 
5701 	n = OSAL_MIN_T(u8, max_chars, ECORE_MAX_DEVICE_NAME_LEN);
5702 	OSAL_SNPRINTF(name, n, "%s %c%d", ECORE_IS_BB(p_dev) ? "BB" : "AH",
5703 		      'A' + p_dev->chip_rev, (int)p_dev->chip_metal);
5704 }
5705 
5706 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
5707 					       struct ecore_ptt *p_ptt)
5708 {
5709 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5710 	u16 device_id_mask;
5711 	u32 tmp;
5712 
5713 	/* Read Vendor Id / Device Id */
5714 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
5715 				  &p_dev->vendor_id);
5716 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
5717 				  &p_dev->device_id);
5718 
5719 	/* Determine type */
5720 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
5721 	switch (device_id_mask) {
5722 	case ECORE_DEV_ID_MASK_BB:
5723 		p_dev->type = ECORE_DEV_TYPE_BB;
5724 		break;
5725 	case ECORE_DEV_ID_MASK_AH:
5726 		p_dev->type = ECORE_DEV_TYPE_AH;
5727 		break;
5728 	case ECORE_DEV_ID_MASK_E5:
5729 		p_dev->type = ECORE_DEV_TYPE_E5;
5730 		break;
5731 	default:
5732 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
5733 			  p_dev->device_id);
5734 		return ECORE_ABORTED;
5735 	}
5736 
5737 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
5738 	p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
5739 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
5740 	p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
5741 
5742 	/* Learn number of HW-functions */
5743 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
5744 
5745 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
5746 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
5747 		p_dev->num_hwfns = 2;
5748 	} else {
5749 		p_dev->num_hwfns = 1;
5750 	}
5751 
5752 #ifndef ASIC_ONLY
5753 	if (CHIP_REV_IS_EMUL(p_dev)) {
5754 		/* For some reason we have problems with this register
5755 		 * in B0 emulation; Simply assume no CMT
5756 		 */
5757 		DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
5758 		p_dev->num_hwfns = 1;
5759 	}
5760 #endif
5761 
5762 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
5763 	p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
5764 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
5765 	p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
5766 
5767 	DP_INFO(p_dev->hwfns,
5768 		"Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
5769 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
5770 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
5771 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
5772 		p_dev->chip_metal);
5773 
5774 	if (ECORE_IS_BB_A0(p_dev)) {
5775 		DP_NOTICE(p_dev->hwfns, false,
5776 			  "The chip type/rev (BB A0) is not supported!\n");
5777 		return ECORE_ABORTED;
5778 	}
5779 
5780 #ifndef ASIC_ONLY
5781 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
5782 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
5783 
5784 	if (CHIP_REV_IS_EMUL(p_dev)) {
5785 		tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5786 		if (tmp & (1 << 29)) {
5787 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
5788 			p_dev->b_is_emul_full = true;
5789 		} else {
5790 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
5791 		}
5792 	}
5793 #endif
5794 
5795 	return ECORE_SUCCESS;
5796 }
5797 
5798 #ifndef LINUX_REMOVE
5799 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
5800 {
5801 	int j;
5802 
5803 	if (IS_VF(p_dev))
5804 		return;
5805 
5806 	for_each_hwfn(p_dev, j) {
5807 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5808 
5809 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
5810 
5811 		p_hwfn->hw_init_done = false;
5812 
5813 		ecore_ptt_invalidate(p_hwfn);
5814 	}
5815 }
5816 
5817 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
5818 {
5819 	int j = 0;
5820 
5821 	if (IS_VF(p_dev))
5822 		return;
5823 
5824 	for_each_hwfn(p_dev, j) {
5825 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5826 		struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
5827 
5828 		ecore_hw_hwfn_prepare(p_hwfn);
5829 
5830 		if (!p_ptt)
5831 			DP_NOTICE(p_hwfn, false, "ptt acquire failed\n");
5832 		else {
5833 			ecore_load_mcp_offsets(p_hwfn, p_ptt);
5834 			ecore_ptt_release(p_hwfn, p_ptt);
5835 		}
5836 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
5837 	}
5838 }
5839 
5840 #endif
5841 
5842 static enum _ecore_status_t
5843 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
5844 			void OSAL_IOMEM *p_doorbells, u64 db_phys_addr,
5845 			struct ecore_hw_prepare_params *p_params)
5846 {
5847 	struct ecore_mdump_retain_data mdump_retain;
5848 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5849 	struct ecore_mdump_info mdump_info;
5850 	enum _ecore_status_t rc = ECORE_SUCCESS;
5851 
5852 	/* Split PCI bars evenly between hwfns */
5853 	p_hwfn->regview = p_regview;
5854 	p_hwfn->doorbells = p_doorbells;
5855 	p_hwfn->db_phys_addr = db_phys_addr;
5856 
5857 #ifndef LINUX_REMOVE
5858        p_hwfn->reg_offset = (u8 *)p_hwfn->regview - (u8 *)p_hwfn->p_dev->regview;
5859        p_hwfn->db_offset = (u8 *)p_hwfn->doorbells - (u8 *)p_hwfn->p_dev->doorbells;
5860 #endif
5861 
5862 	if (IS_VF(p_dev))
5863 		return ecore_vf_hw_prepare(p_hwfn);
5864 
5865 	/* Validate that chip access is feasible */
5866 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
5867 		DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
5868 		if (p_params->b_relaxed_probe)
5869 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
5870 		return ECORE_INVAL;
5871 	}
5872 
5873 	get_function_id(p_hwfn);
5874 
5875 	/* Allocate PTT pool */
5876 	rc = ecore_ptt_pool_alloc(p_hwfn);
5877 	if (rc) {
5878 		DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n");
5879 		if (p_params->b_relaxed_probe)
5880 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5881 		goto err0;
5882 	}
5883 
5884 	/* Allocate the main PTT */
5885 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
5886 
5887 	/* First hwfn learns basic information, e.g., number of hwfns */
5888 	if (!p_hwfn->my_id) {
5889 		rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
5890 		if (rc != ECORE_SUCCESS) {
5891 			if (p_params->b_relaxed_probe)
5892 				p_params->p_relaxed_res =
5893 					ECORE_HW_PREPARE_FAILED_DEV;
5894 			goto err1;
5895 		}
5896 	}
5897 
5898 	ecore_hw_hwfn_prepare(p_hwfn);
5899 
5900 	/* Initialize MCP structure */
5901 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
5902 	if (rc) {
5903 		DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n");
5904 		if (p_params->b_relaxed_probe)
5905 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5906 		goto err1;
5907 	}
5908 
5909 	/* Read the device configuration information from the HW and SHMEM */
5910 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
5911 			       p_params->personality, p_params);
5912 	if (rc) {
5913 		DP_NOTICE(p_hwfn, false, "Failed to get HW information\n");
5914 		goto err2;
5915 	}
5916 
5917 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
5918 	 * called, since among others it sets the ports number in an engine.
5919 	 */
5920 	if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
5921 	    !p_dev->recov_in_prog) {
5922 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
5923 		if (rc != ECORE_SUCCESS)
5924 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
5925 	}
5926 
5927 	/* Check if mdump logs/data are present and update the epoch value */
5928 	if (IS_LEAD_HWFN(p_hwfn)) {
5929 #ifndef ASIC_ONLY
5930 		if (!CHIP_REV_IS_EMUL(p_dev)) {
5931 #endif
5932 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
5933 					      &mdump_info);
5934 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
5935 			DP_NOTICE(p_hwfn, false,
5936 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
5937 
5938 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
5939 						&mdump_retain);
5940 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
5941 			DP_NOTICE(p_hwfn, false,
5942 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
5943 				  mdump_retain.epoch, mdump_retain.pf,
5944 				  mdump_retain.status);
5945 
5946 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
5947 					   p_params->epoch);
5948 #ifndef ASIC_ONLY
5949 		}
5950 #endif
5951 	}
5952 
5953 	/* Allocate the init RT array and initialize the init-ops engine */
5954 	rc = ecore_init_alloc(p_hwfn);
5955 	if (rc) {
5956 		DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n");
5957 		if (p_params->b_relaxed_probe)
5958 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5959 		goto err2;
5960 	}
5961 
5962 #ifndef ASIC_ONLY
5963 	if (CHIP_REV_IS_FPGA(p_dev)) {
5964 		DP_NOTICE(p_hwfn, false,
5965 			  "FPGA: workaround; Prevent DMAE parities\n");
5966 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
5967 			 7);
5968 
5969 		DP_NOTICE(p_hwfn, false,
5970 			  "FPGA: workaround: Set VF bar0 size\n");
5971 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5972 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
5973 	}
5974 #endif
5975 
5976 	return rc;
5977 err2:
5978 	if (IS_LEAD_HWFN(p_hwfn))
5979 		ecore_iov_free_hw_info(p_dev);
5980 	ecore_mcp_free(p_hwfn);
5981 err1:
5982 	ecore_hw_hwfn_free(p_hwfn);
5983 err0:
5984 	return rc;
5985 }
5986 
5987 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
5988 				      struct ecore_hw_prepare_params *p_params)
5989 {
5990 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5991 	enum _ecore_status_t rc;
5992 
5993 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
5994 	p_dev->allow_mdump = p_params->allow_mdump;
5995 
5996 	if (p_params->b_relaxed_probe)
5997 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
5998 
5999 	/* Store the precompiled init data ptrs */
6000 	if (IS_PF(p_dev))
6001 		ecore_init_iro_array(p_dev);
6002 
6003 	/* Initialize the first hwfn - will learn number of hwfns */
6004 	rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview,
6005 				     p_dev->doorbells, p_dev->db_phys_addr,
6006 				     p_params);
6007 	if (rc != ECORE_SUCCESS)
6008 		return rc;
6009 
6010 	p_params->personality = p_hwfn->hw_info.personality;
6011 
6012 	/* initilalize 2nd hwfn if necessary */
6013 	if (ECORE_IS_CMT(p_dev)) {
6014 		void OSAL_IOMEM *p_regview, *p_doorbell;
6015 		u8 OSAL_IOMEM *addr;
6016 		u64 db_phys_addr;
6017 		u32 offset;
6018 
6019 		/* adjust bar offset for second engine */
6020 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6021 					   BAR_ID_0) / 2;
6022 		addr = (u8 OSAL_IOMEM *)p_dev->regview + offset;
6023 		p_regview = (void OSAL_IOMEM *)addr;
6024 
6025 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6026 					   BAR_ID_1) / 2;
6027 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset;
6028 		p_doorbell = (void OSAL_IOMEM *)addr;
6029 		db_phys_addr = p_dev->db_phys_addr + offset;
6030 
6031 		/* prepare second hw function */
6032 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
6033 					     p_doorbell, db_phys_addr,
6034 					     p_params);
6035 
6036 		/* in case of error, need to free the previously
6037 		 * initiliazed hwfn 0.
6038 		 */
6039 		if (rc != ECORE_SUCCESS) {
6040 			if (p_params->b_relaxed_probe)
6041 				p_params->p_relaxed_res =
6042 						ECORE_HW_PREPARE_FAILED_ENG2;
6043 
6044 			if (IS_PF(p_dev)) {
6045 				ecore_init_free(p_hwfn);
6046 				ecore_mcp_free(p_hwfn);
6047 				ecore_hw_hwfn_free(p_hwfn);
6048 			} else {
6049 				DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n");
6050 			}
6051 			return rc;
6052 		}
6053 	}
6054 
6055 	return rc;
6056 }
6057 
6058 void ecore_hw_remove(struct ecore_dev *p_dev)
6059 {
6060 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
6061 	int i;
6062 
6063 	if (IS_PF(p_dev))
6064 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
6065 						 ECORE_OV_DRIVER_STATE_NOT_LOADED);
6066 
6067 	for_each_hwfn(p_dev, i) {
6068 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6069 
6070 		if (IS_VF(p_dev)) {
6071 			ecore_vf_pf_release(p_hwfn);
6072 			continue;
6073 		}
6074 
6075 		ecore_init_free(p_hwfn);
6076 		ecore_hw_hwfn_free(p_hwfn);
6077 		ecore_mcp_free(p_hwfn);
6078 
6079 #ifdef CONFIG_ECORE_LOCK_ALLOC
6080 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
6081 #endif
6082 	}
6083 
6084 	ecore_iov_free_hw_info(p_dev);
6085 }
6086 
6087 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
6088 				      struct ecore_chain *p_chain)
6089 {
6090 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
6091 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
6092 	struct ecore_chain_next *p_next;
6093 	u32 size, i;
6094 
6095 	if (!p_virt)
6096 		return;
6097 
6098 	size = p_chain->elem_size * p_chain->usable_per_page;
6099 
6100 	for (i = 0; i < p_chain->page_cnt; i++) {
6101 		if (!p_virt)
6102 			break;
6103 
6104 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
6105 		p_virt_next = p_next->next_virt;
6106 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
6107 
6108 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
6109 				       ECORE_CHAIN_PAGE_SIZE);
6110 
6111 		p_virt = p_virt_next;
6112 		p_phys = p_phys_next;
6113 	}
6114 }
6115 
6116 static void ecore_chain_free_single(struct ecore_dev *p_dev,
6117 				    struct ecore_chain *p_chain)
6118 {
6119 	if (!p_chain->p_virt_addr)
6120 		return;
6121 
6122 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
6123 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
6124 }
6125 
6126 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
6127 				 struct ecore_chain *p_chain)
6128 {
6129 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
6130 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
6131 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
6132 
6133 	if (!pp_virt_addr_tbl)
6134 		return;
6135 
6136 	if (!p_pbl_virt)
6137 		goto out;
6138 
6139 	for (i = 0; i < page_cnt; i++) {
6140 		if (!pp_virt_addr_tbl[i])
6141 			break;
6142 
6143 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
6144 				       *(dma_addr_t *)p_pbl_virt,
6145 				       ECORE_CHAIN_PAGE_SIZE);
6146 
6147 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6148 	}
6149 
6150 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6151 
6152 	if (!p_chain->b_external_pbl) {
6153 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
6154 				       p_chain->pbl_sp.p_phys_table, pbl_size);
6155 	}
6156 out:
6157 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
6158 	p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
6159 }
6160 
6161 void ecore_chain_free(struct ecore_dev *p_dev,
6162 		      struct ecore_chain *p_chain)
6163 {
6164 	switch (p_chain->mode) {
6165 	case ECORE_CHAIN_MODE_NEXT_PTR:
6166 		ecore_chain_free_next_ptr(p_dev, p_chain);
6167 		break;
6168 	case ECORE_CHAIN_MODE_SINGLE:
6169 		ecore_chain_free_single(p_dev, p_chain);
6170 		break;
6171 	case ECORE_CHAIN_MODE_PBL:
6172 		ecore_chain_free_pbl(p_dev, p_chain);
6173 		break;
6174 	}
6175 }
6176 
6177 static enum _ecore_status_t
6178 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
6179 			       enum ecore_chain_cnt_type cnt_type,
6180 			       osal_size_t elem_size, u32 page_cnt)
6181 {
6182 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
6183 
6184 	/* The actual chain size can be larger than the maximal possible value
6185 	 * after rounding up the requested elements number to pages, and after
6186 	 * taking into acount the unusuable elements (next-ptr elements).
6187 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
6188 	 * size/capacity fields are of a u32 type.
6189 	 */
6190 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
6191 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
6192 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
6193 	     chain_size > ECORE_U32_MAX)) {
6194 		DP_NOTICE(p_dev, true,
6195 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
6196 			  (unsigned long long)chain_size);
6197 		return ECORE_INVAL;
6198 	}
6199 
6200 	return ECORE_SUCCESS;
6201 }
6202 
6203 static enum _ecore_status_t
6204 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6205 {
6206 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
6207 	dma_addr_t p_phys = 0;
6208 	u32 i;
6209 
6210 	for (i = 0; i < p_chain->page_cnt; i++) {
6211 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6212 						 ECORE_CHAIN_PAGE_SIZE);
6213 		if (!p_virt) {
6214 			DP_NOTICE(p_dev, false,
6215 				  "Failed to allocate chain memory\n");
6216 			return ECORE_NOMEM;
6217 		}
6218 
6219 		if (i == 0) {
6220 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
6221 			ecore_chain_reset(p_chain);
6222 		} else {
6223 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6224 						       p_virt, p_phys);
6225 		}
6226 
6227 		p_virt_prev = p_virt;
6228 	}
6229 	/* Last page's next element should point to the beginning of the
6230 	 * chain.
6231 	 */
6232 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6233 				       p_chain->p_virt_addr,
6234 				       p_chain->p_phys_addr);
6235 
6236 	return ECORE_SUCCESS;
6237 }
6238 
6239 static enum _ecore_status_t
6240 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6241 {
6242 	dma_addr_t p_phys = 0;
6243 	void *p_virt = OSAL_NULL;
6244 
6245 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
6246 	if (!p_virt) {
6247 		DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n");
6248 		return ECORE_NOMEM;
6249 	}
6250 
6251 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
6252 	ecore_chain_reset(p_chain);
6253 
6254 	return ECORE_SUCCESS;
6255 }
6256 
6257 static enum _ecore_status_t
6258 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
6259 		      struct ecore_chain *p_chain,
6260 		      struct ecore_chain_ext_pbl *ext_pbl)
6261 {
6262 	u32 page_cnt = p_chain->page_cnt, size, i;
6263 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
6264 	void **pp_virt_addr_tbl = OSAL_NULL;
6265 	u8 *p_pbl_virt = OSAL_NULL;
6266 	void *p_virt = OSAL_NULL;
6267 
6268 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
6269 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
6270 	if (!pp_virt_addr_tbl) {
6271 		DP_NOTICE(p_dev, false,
6272 			  "Failed to allocate memory for the chain virtual addresses table\n");
6273 		return ECORE_NOMEM;
6274 	}
6275 
6276 	/* The allocation of the PBL table is done with its full size, since it
6277 	 * is expected to be successive.
6278 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
6279 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
6280 	 * should be saved to allow its freeing during the error flow.
6281 	 */
6282 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6283 
6284 	if (ext_pbl == OSAL_NULL) {
6285 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
6286 	} else {
6287 		p_pbl_virt = ext_pbl->p_pbl_virt;
6288 		p_pbl_phys = ext_pbl->p_pbl_phys;
6289 		p_chain->b_external_pbl = true;
6290 	}
6291 
6292 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
6293 				 pp_virt_addr_tbl);
6294 	if (!p_pbl_virt) {
6295 		DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n");
6296 		return ECORE_NOMEM;
6297 	}
6298 
6299 	for (i = 0; i < page_cnt; i++) {
6300 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6301 						 ECORE_CHAIN_PAGE_SIZE);
6302 		if (!p_virt) {
6303 			DP_NOTICE(p_dev, false,
6304 				  "Failed to allocate chain memory\n");
6305 			return ECORE_NOMEM;
6306 		}
6307 
6308 		if (i == 0) {
6309 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
6310 			ecore_chain_reset(p_chain);
6311 		}
6312 
6313 		/* Fill the PBL table with the physical address of the page */
6314 		*(dma_addr_t *)p_pbl_virt = p_phys;
6315 		/* Keep the virtual address of the page */
6316 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
6317 
6318 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6319 	}
6320 
6321 	return ECORE_SUCCESS;
6322 }
6323 
6324 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
6325 				       enum ecore_chain_use_mode intended_use,
6326 				       enum ecore_chain_mode mode,
6327 				       enum ecore_chain_cnt_type cnt_type,
6328 				       u32 num_elems, osal_size_t elem_size,
6329 				       struct ecore_chain *p_chain,
6330 				       struct ecore_chain_ext_pbl *ext_pbl)
6331 {
6332 	u32 page_cnt;
6333 	enum _ecore_status_t rc = ECORE_SUCCESS;
6334 
6335 	if (mode == ECORE_CHAIN_MODE_SINGLE)
6336 		page_cnt = 1;
6337 	else
6338 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
6339 
6340 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
6341 					    page_cnt);
6342 	if (rc) {
6343 		DP_NOTICE(p_dev, false,
6344 			  "Cannot allocate a chain with the given arguments:\n"
6345 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
6346 			  intended_use, mode, cnt_type, num_elems, elem_size);
6347 		return rc;
6348 	}
6349 
6350 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
6351 				mode, cnt_type, p_dev->dp_ctx);
6352 
6353 	switch (mode) {
6354 	case ECORE_CHAIN_MODE_NEXT_PTR:
6355 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
6356 		break;
6357 	case ECORE_CHAIN_MODE_SINGLE:
6358 		rc = ecore_chain_alloc_single(p_dev, p_chain);
6359 		break;
6360 	case ECORE_CHAIN_MODE_PBL:
6361 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
6362 		break;
6363 	}
6364 	if (rc)
6365 		goto nomem;
6366 
6367 	return ECORE_SUCCESS;
6368 
6369 nomem:
6370 	ecore_chain_free(p_dev, p_chain);
6371 	return rc;
6372 }
6373 
6374 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
6375 				       u16 src_id, u16 *dst_id)
6376 {
6377 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
6378 		u16 min, max;
6379 
6380 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
6381 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
6382 		DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
6383 			  src_id, min, max);
6384 
6385 		return ECORE_INVAL;
6386 	}
6387 
6388 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
6389 
6390 	return ECORE_SUCCESS;
6391 }
6392 
6393 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
6394 				    u8 src_id, u8 *dst_id)
6395 {
6396 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
6397 		u8 min, max;
6398 
6399 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
6400 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
6401 		DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
6402 			  src_id, min, max);
6403 
6404 		return ECORE_INVAL;
6405 	}
6406 
6407 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
6408 
6409 	return ECORE_SUCCESS;
6410 }
6411 
6412 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
6413 				      u8 src_id, u8 *dst_id)
6414 {
6415 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
6416 		u8 min, max;
6417 
6418 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
6419 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
6420 		DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
6421 			  src_id, min, max);
6422 
6423 		return ECORE_INVAL;
6424 	}
6425 
6426 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
6427 
6428 	return ECORE_SUCCESS;
6429 }
6430 
6431 enum _ecore_status_t
6432 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
6433 				  struct ecore_ptt *p_ptt)
6434 {
6435 	if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
6436 		ecore_wr(p_hwfn, p_ptt,
6437 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
6438 			 1 << p_hwfn->abs_pf_id / 2);
6439 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
6440 		return ECORE_SUCCESS;
6441 	} else {
6442 		DP_NOTICE(p_hwfn, false,
6443 			  "This function can't be set as default\n");
6444 		return ECORE_INVAL;
6445 	}
6446 }
6447 
6448 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
6449 					       struct ecore_ptt *p_ptt,
6450 					       u32 hw_addr, void *p_eth_qzone,
6451 					       osal_size_t eth_qzone_size,
6452 					       u8 timeset)
6453 {
6454 	struct coalescing_timeset *p_coal_timeset;
6455 
6456 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
6457 		DP_NOTICE(p_hwfn, true,
6458 			  "Coalescing configuration not enabled\n");
6459 		return ECORE_INVAL;
6460 	}
6461 
6462 	p_coal_timeset = p_eth_qzone;
6463 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
6464 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
6465 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
6466 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
6467 
6468 	return ECORE_SUCCESS;
6469 }
6470 
6471 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
6472 					      u16 rx_coal, u16 tx_coal,
6473 					      void *p_handle)
6474 {
6475 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
6476 	enum _ecore_status_t rc = ECORE_SUCCESS;
6477 	struct ecore_ptt *p_ptt;
6478 
6479 	/* TODO - Configuring a single queue's coalescing but
6480 	 * claiming all queues are abiding same configuration
6481 	 * for PF and VF both.
6482 	 */
6483 
6484 #ifdef CONFIG_ECORE_SRIOV
6485 	if (IS_VF(p_hwfn->p_dev))
6486 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
6487 						tx_coal, p_cid);
6488 #endif /* #ifdef CONFIG_ECORE_SRIOV */
6489 
6490 	p_ptt = ecore_ptt_acquire(p_hwfn);
6491 	if (!p_ptt)
6492 		return ECORE_AGAIN;
6493 
6494 	if (rx_coal) {
6495 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
6496 		if (rc)
6497 			goto out;
6498 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
6499 	}
6500 
6501 	if (tx_coal) {
6502 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
6503 		if (rc)
6504 			goto out;
6505 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
6506 	}
6507 out:
6508 	ecore_ptt_release(p_hwfn, p_ptt);
6509 
6510 	return rc;
6511 }
6512 
6513 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
6514 					    struct ecore_ptt *p_ptt,
6515 					    u16 coalesce,
6516 					    struct ecore_queue_cid *p_cid)
6517 {
6518 	struct ustorm_eth_queue_zone eth_qzone;
6519 	u8 timeset, timer_res;
6520 	u32 address;
6521 	enum _ecore_status_t rc;
6522 
6523 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6524 	if (coalesce <= 0x7F)
6525 		timer_res = 0;
6526 	else if (coalesce <= 0xFF)
6527 		timer_res = 1;
6528 	else if (coalesce <= 0x1FF)
6529 		timer_res = 2;
6530 	else {
6531 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6532 		return ECORE_INVAL;
6533 	}
6534 	timeset = (u8)(coalesce >> timer_res);
6535 
6536 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6537 				     p_cid->sb_igu_id, false);
6538 	if (rc != ECORE_SUCCESS)
6539 		goto out;
6540 
6541 	address = BAR0_MAP_REG_USDM_RAM +
6542 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6543 
6544 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6545 				sizeof(struct ustorm_eth_queue_zone), timeset);
6546 	if (rc != ECORE_SUCCESS)
6547 		goto out;
6548 
6549 out:
6550 	return rc;
6551 }
6552 
6553 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
6554 					    struct ecore_ptt *p_ptt,
6555 					    u16 coalesce,
6556 					    struct ecore_queue_cid *p_cid)
6557 {
6558 	struct xstorm_eth_queue_zone eth_qzone;
6559 	u8 timeset, timer_res;
6560 	u32 address;
6561 	enum _ecore_status_t rc;
6562 
6563 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6564 	if (coalesce <= 0x7F)
6565 		timer_res = 0;
6566 	else if (coalesce <= 0xFF)
6567 		timer_res = 1;
6568 	else if (coalesce <= 0x1FF)
6569 		timer_res = 2;
6570 	else {
6571 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6572 		return ECORE_INVAL;
6573 	}
6574 	timeset = (u8)(coalesce >> timer_res);
6575 
6576 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6577 				     p_cid->sb_igu_id, true);
6578 	if (rc != ECORE_SUCCESS)
6579 		goto out;
6580 
6581 	address = BAR0_MAP_REG_XSDM_RAM +
6582 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6583 
6584 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6585 				sizeof(struct xstorm_eth_queue_zone), timeset);
6586 out:
6587 	return rc;
6588 }
6589 
6590 /* Calculate final WFQ values for all vports and configure it.
6591  * After this configuration each vport must have
6592  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
6593  */
6594 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6595 					       struct ecore_ptt *p_ptt,
6596 					       u32 min_pf_rate)
6597 {
6598 	struct init_qm_vport_params *vport_params;
6599 	int i;
6600 
6601 	vport_params = p_hwfn->qm_info.qm_vport_params;
6602 
6603 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6604 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6605 
6606 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
6607 					    min_pf_rate;
6608 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6609 				     vport_params[i].first_tx_pq_id,
6610 				     vport_params[i].vport_wfq);
6611 	}
6612 }
6613 
6614 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
6615 
6616 {
6617 	int i;
6618 
6619 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
6620 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
6621 }
6622 
6623 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6624 					     struct ecore_ptt *p_ptt)
6625 {
6626 	struct init_qm_vport_params *vport_params;
6627 	int i;
6628 
6629 	vport_params = p_hwfn->qm_info.qm_vport_params;
6630 
6631 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6632 		ecore_init_wfq_default_param(p_hwfn);
6633 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6634 				     vport_params[i].first_tx_pq_id,
6635 				     vport_params[i].vport_wfq);
6636 	}
6637 }
6638 
6639 /* This function performs several validations for WFQ
6640  * configuration and required min rate for a given vport
6641  * 1. req_rate must be greater than one percent of min_pf_rate.
6642  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
6643  *    rates to get less than one percent of min_pf_rate.
6644  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
6645  */
6646 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
6647 						 u16 vport_id, u32 req_rate,
6648 						 u32 min_pf_rate)
6649 {
6650 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
6651 	int non_requested_count = 0, req_count = 0, i, num_vports;
6652 
6653 	num_vports = p_hwfn->qm_info.num_vports;
6654 
6655 	/* Accounting for the vports which are configured for WFQ explicitly */
6656 	for (i = 0; i < num_vports; i++) {
6657 		u32 tmp_speed;
6658 
6659 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
6660 			req_count++;
6661 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6662 			total_req_min_rate += tmp_speed;
6663 		}
6664 	}
6665 
6666 	/* Include current vport data as well */
6667 	req_count++;
6668 	total_req_min_rate += req_rate;
6669 	non_requested_count = num_vports - req_count;
6670 
6671 	/* validate possible error cases */
6672 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
6673 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6674 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6675 			   vport_id, req_rate, min_pf_rate);
6676 		return ECORE_INVAL;
6677 	}
6678 
6679 	/* TBD - for number of vports greater than 100 */
6680 	if (num_vports > ECORE_WFQ_UNIT) {
6681 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6682 			   "Number of vports is greater than %d\n",
6683 			   ECORE_WFQ_UNIT);
6684 		return ECORE_INVAL;
6685 	}
6686 
6687 	if (total_req_min_rate > min_pf_rate) {
6688 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6689 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
6690 			   total_req_min_rate, min_pf_rate);
6691 		return ECORE_INVAL;
6692 	}
6693 
6694 	/* Data left for non requested vports */
6695 	total_left_rate = min_pf_rate - total_req_min_rate;
6696 	left_rate_per_vp = total_left_rate / non_requested_count;
6697 
6698 	/* validate if non requested get < 1% of min bw */
6699 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
6700 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6701 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6702 			   left_rate_per_vp, min_pf_rate);
6703 		return ECORE_INVAL;
6704 	}
6705 
6706 	/* now req_rate for given vport passes all scenarios.
6707 	 * assign final wfq rates to all vports.
6708 	 */
6709 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
6710 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
6711 
6712 	for (i = 0; i < num_vports; i++) {
6713 		if (p_hwfn->qm_info.wfq_data[i].configured)
6714 			continue;
6715 
6716 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
6717 	}
6718 
6719 	return ECORE_SUCCESS;
6720 }
6721 
6722 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
6723 				       struct ecore_ptt *p_ptt,
6724 				       u16 vp_id, u32 rate)
6725 {
6726 	struct ecore_mcp_link_state *p_link;
6727 	int rc = ECORE_SUCCESS;
6728 
6729 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
6730 
6731 	if (!p_link->min_pf_rate) {
6732 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
6733 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
6734 		return rc;
6735 	}
6736 
6737 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
6738 
6739 	if (rc == ECORE_SUCCESS)
6740 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
6741 						   p_link->min_pf_rate);
6742 	else
6743 		DP_NOTICE(p_hwfn, false,
6744 			  "Validation failed while configuring min rate\n");
6745 
6746 	return rc;
6747 }
6748 
6749 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
6750 						   struct ecore_ptt *p_ptt,
6751 						   u32 min_pf_rate)
6752 {
6753 	bool use_wfq = false;
6754 	int rc = ECORE_SUCCESS;
6755 	u16 i;
6756 
6757 	/* Validate all pre configured vports for wfq */
6758 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6759 		u32 rate;
6760 
6761 		if (!p_hwfn->qm_info.wfq_data[i].configured)
6762 			continue;
6763 
6764 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
6765 		use_wfq = true;
6766 
6767 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
6768 		if (rc != ECORE_SUCCESS) {
6769 			DP_NOTICE(p_hwfn, false,
6770 				  "WFQ validation failed while configuring min rate\n");
6771 			break;
6772 		}
6773 	}
6774 
6775 	if (rc == ECORE_SUCCESS && use_wfq)
6776 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
6777 	else
6778 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6779 
6780 	return rc;
6781 }
6782 
6783 /* Main API for ecore clients to configure vport min rate.
6784  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
6785  * rate - Speed in Mbps needs to be assigned to a given vport.
6786  */
6787 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
6788 {
6789 	int i, rc = ECORE_INVAL;
6790 
6791 	/* TBD - for multiple hardware functions - that is 100 gig */
6792 	if (ECORE_IS_CMT(p_dev)) {
6793 		DP_NOTICE(p_dev, false,
6794 			  "WFQ configuration is not supported for this device\n");
6795 		return rc;
6796 	}
6797 
6798 	for_each_hwfn(p_dev, i) {
6799 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6800 		struct ecore_ptt *p_ptt;
6801 
6802 		p_ptt = ecore_ptt_acquire(p_hwfn);
6803 		if (!p_ptt)
6804 			return ECORE_TIMEOUT;
6805 
6806 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
6807 
6808 		if (rc != ECORE_SUCCESS) {
6809 			ecore_ptt_release(p_hwfn, p_ptt);
6810 			return rc;
6811 		}
6812 
6813 		ecore_ptt_release(p_hwfn, p_ptt);
6814 	}
6815 
6816 	return rc;
6817 }
6818 
6819 /* API to configure WFQ from mcp link change */
6820 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
6821 					   struct ecore_ptt *p_ptt,
6822 					   u32 min_pf_rate)
6823 {
6824 	int i;
6825 
6826 	/* TBD - for multiple hardware functions - that is 100 gig */
6827 	if (ECORE_IS_CMT(p_dev)) {
6828 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
6829 			   "WFQ configuration is not supported for this device\n");
6830 		return;
6831 	}
6832 
6833 	for_each_hwfn(p_dev, i) {
6834 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6835 
6836 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
6837 							min_pf_rate);
6838 	}
6839 }
6840 
6841 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
6842 				       struct ecore_ptt *p_ptt,
6843 				       struct ecore_mcp_link_state *p_link,
6844 				       u8 max_bw)
6845 {
6846 	int rc = ECORE_SUCCESS;
6847 
6848 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
6849 
6850 	if (!p_link->line_speed && (max_bw != 100))
6851 		return rc;
6852 
6853 	p_link->speed = (p_link->line_speed * max_bw) / 100;
6854 	p_hwfn->qm_info.pf_rl = p_link->speed;
6855 
6856 	/* Since the limiter also affects Tx-switched traffic, we don't want it
6857 	 * to limit such traffic in case there's no actual limit.
6858 	 * In that case, set limit to imaginary high boundary.
6859 	 */
6860 	if (max_bw == 100)
6861 		p_hwfn->qm_info.pf_rl = 100000;
6862 
6863 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
6864 			      p_hwfn->qm_info.pf_rl);
6865 
6866 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6867 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
6868 		   p_link->speed);
6869 
6870 	return rc;
6871 }
6872 
6873 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
6874 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
6875 {
6876 	int i, rc = ECORE_INVAL;
6877 
6878 	if (max_bw < 1 || max_bw > 100) {
6879 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
6880 		return rc;
6881 	}
6882 
6883 	for_each_hwfn(p_dev, i) {
6884 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6885 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6886 		struct ecore_mcp_link_state *p_link;
6887 		struct ecore_ptt *p_ptt;
6888 
6889 		p_link = &p_lead->mcp_info->link_output;
6890 
6891 		p_ptt = ecore_ptt_acquire(p_hwfn);
6892 		if (!p_ptt)
6893 			return ECORE_TIMEOUT;
6894 
6895 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
6896 							p_link, max_bw);
6897 
6898 		ecore_ptt_release(p_hwfn, p_ptt);
6899 
6900 		if (rc != ECORE_SUCCESS)
6901 			break;
6902 	}
6903 
6904 	return rc;
6905 }
6906 
6907 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
6908 				       struct ecore_ptt *p_ptt,
6909 				       struct ecore_mcp_link_state *p_link,
6910 				       u8 min_bw)
6911 {
6912 	int rc = ECORE_SUCCESS;
6913 
6914 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
6915 	p_hwfn->qm_info.pf_wfq = min_bw;
6916 
6917 	if (!p_link->line_speed)
6918 		return rc;
6919 
6920 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
6921 
6922 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
6923 
6924 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6925 		   "Configured MIN bandwidth to be %d Mb/sec\n",
6926 		   p_link->min_pf_rate);
6927 
6928 	return rc;
6929 }
6930 
6931 /* Main API to configure PF min bandwidth where bw range is [1-100] */
6932 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
6933 {
6934 	int i, rc = ECORE_INVAL;
6935 
6936 	if (min_bw < 1 || min_bw > 100) {
6937 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
6938 		return rc;
6939 	}
6940 
6941 	for_each_hwfn(p_dev, i) {
6942 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6943 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6944 		struct ecore_mcp_link_state *p_link;
6945 		struct ecore_ptt *p_ptt;
6946 
6947 		p_link = &p_lead->mcp_info->link_output;
6948 
6949 		p_ptt = ecore_ptt_acquire(p_hwfn);
6950 		if (!p_ptt)
6951 			return ECORE_TIMEOUT;
6952 
6953 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
6954 							p_link, min_bw);
6955 		if (rc != ECORE_SUCCESS) {
6956 			ecore_ptt_release(p_hwfn, p_ptt);
6957 			return rc;
6958 		}
6959 
6960 		if (p_link->min_pf_rate) {
6961 			u32 min_rate = p_link->min_pf_rate;
6962 
6963 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
6964 								     p_ptt,
6965 								     min_rate);
6966 		}
6967 
6968 		ecore_ptt_release(p_hwfn, p_ptt);
6969 	}
6970 
6971 	return rc;
6972 }
6973 
6974 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
6975 {
6976 	struct ecore_mcp_link_state *p_link;
6977 
6978 	p_link = &p_hwfn->mcp_info->link_output;
6979 
6980 	if (p_link->min_pf_rate)
6981 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6982 
6983 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
6984 		    sizeof(*p_hwfn->qm_info.wfq_data) *
6985 				p_hwfn->qm_info.num_vports);
6986 }
6987 
6988 int ecore_device_num_engines(struct ecore_dev *p_dev)
6989 {
6990 	return ECORE_IS_BB(p_dev) ? 2 : 1;
6991 }
6992 
6993 int ecore_device_num_ports(struct ecore_dev *p_dev)
6994 {
6995 	return p_dev->num_ports;
6996 }
6997 
6998 void ecore_set_fw_mac_addr(__le16 *fw_msb,
6999 			  __le16 *fw_mid,
7000 			  __le16 *fw_lsb,
7001 			  u8 *mac)
7002 {
7003 	((u8 *)fw_msb)[0] = mac[1];
7004 	((u8 *)fw_msb)[1] = mac[0];
7005 	((u8 *)fw_mid)[0] = mac[3];
7006 	((u8 *)fw_mid)[1] = mac[2];
7007 	((u8 *)fw_lsb)[0] = mac[5];
7008 	((u8 *)fw_lsb)[1] = mac[4];
7009 }
7010 
7011 void ecore_set_dev_access_enable(struct ecore_dev *p_dev, bool b_enable)
7012 {
7013 	if (p_dev->recov_in_prog != !b_enable) {
7014 		DP_INFO(p_dev, "%s access to the device\n",
7015 			b_enable ?  "Enable" : "Disable");
7016 		p_dev->recov_in_prog = !b_enable;
7017 	}
7018 }
7019 
7020 #ifdef _NTDDK_
7021 #pragma warning(pop)
7022 #endif
7023