xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_dev.c (revision c1d255d3)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_dev.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "bcm_osal.h"
35 #include "reg_addr.h"
36 #include "ecore_gtt_reg_addr.h"
37 #include "ecore.h"
38 #include "ecore_chain.h"
39 #include "ecore_status.h"
40 #include "ecore_hw.h"
41 #include "ecore_rt_defs.h"
42 #include "ecore_init_ops.h"
43 #include "ecore_int.h"
44 #include "ecore_cxt.h"
45 #include "ecore_spq.h"
46 #include "ecore_init_fw_funcs.h"
47 #include "ecore_sp_commands.h"
48 #include "ecore_dev_api.h"
49 #include "ecore_sriov.h"
50 #include "ecore_vf.h"
51 #include "ecore_ll2.h"
52 #include "ecore_fcoe.h"
53 #include "ecore_iscsi.h"
54 #include "ecore_ooo.h"
55 #include "ecore_mcp.h"
56 #include "ecore_hw_defs.h"
57 #include "mcp_public.h"
58 #include "ecore_rdma.h"
59 #include "ecore_iro.h"
60 #include "nvm_cfg.h"
61 #include "ecore_dev_api.h"
62 #include "ecore_dcbx.h"
63 #include "pcics_reg_driver.h"
64 #include "ecore_l2.h"
65 #ifndef LINUX_REMOVE
66 #include "ecore_tcp_ip.h"
67 #endif
68 
69 #ifdef _NTDDK_
70 #pragma warning(push)
71 #pragma warning(disable : 28167)
72 #pragma warning(disable : 28123)
73 #endif
74 
75 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
76  * registers involved are not split and thus configuration is a race where
77  * some of the PFs configuration might be lost.
78  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
79  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
80  * there's more than a single compiled ecore component in system].
81  */
82 static osal_spinlock_t qm_lock;
83 static u32 qm_lock_ref_cnt;
84 
85 void ecore_set_ilt_page_size(struct ecore_dev *p_dev, u8 ilt_page_size)
86 {
87 	p_dev->ilt_page_size = ilt_page_size;
88 }
89 
90 /******************** Doorbell Recovery *******************/
91 /* The doorbell recovery mechanism consists of a list of entries which represent
92  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
93  * entity needs to register with the mechanism and provide the parameters
94  * describing it's doorbell, including a location where last used doorbell data
95  * can be found. The doorbell execute function will traverse the list and
96  * doorbell all of the registered entries.
97  */
98 struct ecore_db_recovery_entry {
99 	osal_list_entry_t	list_entry;
100 	void OSAL_IOMEM		*db_addr;
101 	void			*db_data;
102 	enum ecore_db_rec_width	db_width;
103 	enum ecore_db_rec_space	db_space;
104 	u8			hwfn_idx;
105 };
106 
107 /* display a single doorbell recovery entry */
108 static void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
109 				struct ecore_db_recovery_entry *db_entry,
110 				char *action)
111 {
112 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
113 		   action, db_entry, db_entry->db_addr, db_entry->db_data,
114 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
115 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
116 		   db_entry->hwfn_idx);
117 }
118 
119 /* doorbell address sanity (address within doorbell bar range) */
120 static bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
121 			 void *db_data)
122 {
123 	/* make sure doorbell address  is within the doorbell bar */
124 	if (db_addr < p_dev->doorbells || (u8 *)db_addr >
125 			(u8 *)p_dev->doorbells + p_dev->db_size) {
126 		OSAL_WARN(true,
127 			  "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
128 			  db_addr, p_dev->doorbells,
129 			  (u8 *)p_dev->doorbells + p_dev->db_size);
130 		return false;
131 	}
132 
133 	/* make sure doorbell data pointer is not null */
134 	if (!db_data) {
135 		OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
136 		return false;
137 	}
138 
139 	return true;
140 }
141 
142 /* find hwfn according to the doorbell address */
143 static struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
144 					  void OSAL_IOMEM *db_addr)
145 {
146 	struct ecore_hwfn *p_hwfn;
147 
148 	/* in CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
149 	if (ECORE_IS_CMT(p_dev))
150 		p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
151 			&p_dev->hwfns[0] : &p_dev->hwfns[1];
152 	else
153 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
154 
155 	return p_hwfn;
156 }
157 
158 /* add a new entry to the doorbell recovery mechanism */
159 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
160 					   void OSAL_IOMEM *db_addr,
161 					   void *db_data,
162 					   enum ecore_db_rec_width db_width,
163 					   enum ecore_db_rec_space db_space)
164 {
165 	struct ecore_db_recovery_entry *db_entry;
166 	struct ecore_hwfn *p_hwfn;
167 
168 	/* shortcircuit VFs, for now */
169 	if (IS_VF(p_dev)) {
170 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
171 		return ECORE_SUCCESS;
172 	}
173 
174 	/* sanitize doorbell address */
175 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
176 		return ECORE_INVAL;
177 
178 	/* obtain hwfn from doorbell address */
179 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
180 
181 	/* create entry */
182 	db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
183 	if (!db_entry) {
184 		DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
185 		return ECORE_NOMEM;
186 	}
187 
188 	/* populate entry */
189 	db_entry->db_addr = db_addr;
190 	db_entry->db_data = db_data;
191 	db_entry->db_width = db_width;
192 	db_entry->db_space = db_space;
193 	db_entry->hwfn_idx = p_hwfn->my_id;
194 
195 	/* display */
196 	ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
197 
198 	/* protect the list */
199 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
200 	OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
201 			    &p_hwfn->db_recovery_info.list);
202 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
203 
204 	return ECORE_SUCCESS;
205 }
206 
207 /* remove an entry from the doorbell recovery mechanism */
208 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
209 					   void OSAL_IOMEM *db_addr,
210 					   void *db_data)
211 {
212 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
213 	enum _ecore_status_t rc = ECORE_INVAL;
214 	struct ecore_hwfn *p_hwfn;
215 
216 	/* shortcircuit VFs, for now */
217 	if (IS_VF(p_dev)) {
218 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
219 		return ECORE_SUCCESS;
220 	}
221 
222 	/* sanitize doorbell address */
223 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
224 		return ECORE_INVAL;
225 
226 	/* obtain hwfn from doorbell address */
227 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
228 
229 	/* protect the list */
230 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
231 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
232 				 &p_hwfn->db_recovery_info.list,
233 				 list_entry,
234 				 struct ecore_db_recovery_entry) {
235 		/* search according to db_data addr since db_addr is not unique (roce) */
236 		if (db_entry->db_data == db_data) {
237 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
238 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
239 					       &p_hwfn->db_recovery_info.list);
240 			rc = ECORE_SUCCESS;
241 			break;
242 		}
243 	}
244 
245 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
246 
247 	if (rc == ECORE_INVAL) {
248 		/*OSAL_WARN(true,*/
249 		DP_NOTICE(p_hwfn, false,
250 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
251 			  db_data, db_addr);
252 	} else
253 		OSAL_FREE(p_dev, db_entry);
254 
255 	return rc;
256 }
257 
258 /* initialize the doorbell recovery mechanism */
259 static enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
260 {
261 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
262 
263 	/* make sure db_size was set in p_dev */
264 	if (!p_hwfn->p_dev->db_size) {
265 		DP_ERR(p_hwfn->p_dev, "db_size not set\n");
266 		return ECORE_INVAL;
267 	}
268 
269 	OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
270 #ifdef CONFIG_ECORE_LOCK_ALLOC
271 	if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock))
272 		return ECORE_NOMEM;
273 #endif
274 	OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
275 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
276 
277 	return ECORE_SUCCESS;
278 }
279 
280 /* destroy the doorbell recovery mechanism */
281 static void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
282 {
283 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
284 
285 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
286 	if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
287 		DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
288 		while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
289 			db_entry = OSAL_LIST_FIRST_ENTRY(&p_hwfn->db_recovery_info.list,
290 							 struct ecore_db_recovery_entry,
291 							 list_entry);
292 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
293 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
294 					       &p_hwfn->db_recovery_info.list);
295 			OSAL_FREE(p_hwfn->p_dev, db_entry);
296 		}
297 	}
298 #ifdef CONFIG_ECORE_LOCK_ALLOC
299 	OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
300 #endif
301 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
302 }
303 
304 /* print the content of the doorbell recovery mechanism */
305 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
306 {
307 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
308 
309 	DP_NOTICE(p_hwfn, false,
310 		  "Dispalying doorbell recovery database. Counter was %d\n",
311 		  p_hwfn->db_recovery_info.db_recovery_counter);
312 
313 	/* protect the list */
314 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
315 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
316 				 &p_hwfn->db_recovery_info.list,
317 				 list_entry,
318 				 struct ecore_db_recovery_entry) {
319 		ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
320 	}
321 
322 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
323 }
324 
325 /* ring the doorbell of a single doorbell recovery entry */
326 static void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
327 			    struct ecore_db_recovery_entry *db_entry,
328 			    enum ecore_db_rec_exec db_exec)
329 {
330 	if (db_exec != DB_REC_ONCE) {
331 		/* Print according to width */
332 		if (db_entry->db_width == DB_REC_WIDTH_32B)
333 			DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
334 				   "%s doorbell address %p data %x\n",
335 				   db_exec == DB_REC_DRY_RUN ?
336 				   "would have rung" : "ringing",
337 				   db_entry->db_addr,
338 				   *(u32 *)db_entry->db_data);
339 		else
340 			DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
341 				   "%s doorbell address %p data %llx\n",
342 				   db_exec == DB_REC_DRY_RUN ?
343 				   "would have rung" : "ringing",
344 				   db_entry->db_addr,
345 				   (unsigned long long)*(u64 *)(db_entry->db_data));
346 	}
347 
348 	/* Sanity */
349 	if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
350 				 db_entry->db_data))
351 		return;
352 
353 	/* Flush the write combined buffer. Since there are multiple doorbelling
354 	 * entities using the same address, if we don't flush, a transaction
355 	 * could be lost.
356 	 */
357 	OSAL_WMB(p_hwfn->p_dev);
358 
359 	/* Ring the doorbell */
360 	if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
361 		if (db_entry->db_width == DB_REC_WIDTH_32B)
362 			DIRECT_REG_WR(p_hwfn, db_entry->db_addr, *(u32 *)(db_entry->db_data));
363 		else
364 			DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, *(u64 *)(db_entry->db_data));
365 	}
366 
367 	/* Flush the write combined buffer. Next doorbell may come from a
368 	 * different entity to the same address...
369 	 */
370 	OSAL_WMB(p_hwfn->p_dev);
371 }
372 
373 /* traverse the doorbell recovery entry list and ring all the doorbells */
374 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
375 			       enum ecore_db_rec_exec db_exec)
376 {
377 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
378 
379 	if (db_exec != DB_REC_ONCE) {
380 		DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
381 			  p_hwfn->db_recovery_info.db_recovery_counter);
382 
383 		/* track amount of times recovery was executed */
384 		p_hwfn->db_recovery_info.db_recovery_counter++;
385 	}
386 
387 	/* protect the list */
388 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
389 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
390 				 &p_hwfn->db_recovery_info.list,
391 				 list_entry,
392 				 struct ecore_db_recovery_entry) {
393 		ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
394 		if (db_exec == DB_REC_ONCE)
395 			break;
396 	}
397 
398 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
399 }
400 /******************** Doorbell Recovery end ****************/
401 
402 /********************************** NIG LLH ***********************************/
403 
404 enum ecore_llh_filter_type {
405 	ECORE_LLH_FILTER_TYPE_MAC,
406 	ECORE_LLH_FILTER_TYPE_PROTOCOL,
407 };
408 
409 struct ecore_llh_mac_filter {
410 	u8 addr[ETH_ALEN];
411 };
412 
413 struct ecore_llh_protocol_filter {
414 	enum ecore_llh_prot_filter_type_t type;
415 	u16 source_port_or_eth_type;
416 	u16 dest_port;
417 };
418 
419 union ecore_llh_filter {
420 	struct ecore_llh_mac_filter mac;
421 	struct ecore_llh_protocol_filter protocol;
422 };
423 
424 struct ecore_llh_filter_info {
425 	bool b_enabled;
426 	u32 ref_cnt;
427 	enum ecore_llh_filter_type type;
428 	union ecore_llh_filter filter;
429 };
430 
431 struct ecore_llh_info {
432 	/* Number of LLH filters banks */
433 	u8 num_ppfid;
434 
435 #define MAX_NUM_PPFID	8
436 	u8 ppfid_array[MAX_NUM_PPFID];
437 
438 	/* Array of filters arrays:
439 	 * "num_ppfid" elements of filters banks, where each is an array of
440 	 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
441 	 */
442 	struct ecore_llh_filter_info **pp_filters;
443 };
444 
445 static void ecore_llh_free(struct ecore_dev *p_dev)
446 {
447 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
448 	u32 i;
449 
450 	if (p_llh_info != OSAL_NULL) {
451 		if (p_llh_info->pp_filters != OSAL_NULL) {
452 			for (i = 0; i < p_llh_info->num_ppfid; i++)
453 				OSAL_FREE(p_dev, p_llh_info->pp_filters[i]);
454 		}
455 
456 		OSAL_FREE(p_dev, p_llh_info->pp_filters);
457 	}
458 
459 	OSAL_FREE(p_dev, p_llh_info);
460 	p_dev->p_llh_info = OSAL_NULL;
461 }
462 
463 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev)
464 {
465 	struct ecore_llh_info *p_llh_info;
466 	u32 size; u8 i;
467 
468 	p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info));
469 	if (!p_llh_info)
470 		return ECORE_NOMEM;
471 	p_dev->p_llh_info = p_llh_info;
472 
473 	for (i = 0; i < MAX_NUM_PPFID; i++) {
474 		if (!(p_dev->ppfid_bitmap & (0x1 << i)))
475 			continue;
476 
477 		p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
478 		DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n",
479 			   p_llh_info->num_ppfid, i);
480 		p_llh_info->num_ppfid++;
481 	}
482 
483 	size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
484 	p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size);
485 	if (!p_llh_info->pp_filters)
486 		return ECORE_NOMEM;
487 
488 	size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
489 	       sizeof(**p_llh_info->pp_filters);
490 	for (i = 0; i < p_llh_info->num_ppfid; i++) {
491 		p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL,
492 							size);
493 		if (!p_llh_info->pp_filters[i])
494 			return ECORE_NOMEM;
495 	}
496 
497 	return ECORE_SUCCESS;
498 }
499 
500 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev,
501 						    u8 ppfid, u8 filter_idx,
502 						    const char *action)
503 {
504 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
505 
506 	if (ppfid >= p_llh_info->num_ppfid) {
507 		DP_NOTICE(p_dev, false,
508 			  "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
509 			  action, ppfid, p_llh_info->num_ppfid);
510 		return ECORE_INVAL;
511 	}
512 
513 	if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
514 		DP_NOTICE(p_dev, false,
515 			  "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
516 			  action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
517 		return ECORE_INVAL;
518 	}
519 
520 	return ECORE_SUCCESS;
521 }
522 
523 #define ECORE_LLH_INVALID_FILTER_IDX	0xff
524 
525 static enum _ecore_status_t
526 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid,
527 			       union ecore_llh_filter *p_filter,
528 			       u8 *p_filter_idx)
529 {
530 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
531 	struct ecore_llh_filter_info *p_filters;
532 	enum _ecore_status_t rc;
533 	u8 i;
534 
535 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search");
536 	if (rc != ECORE_SUCCESS)
537 		return rc;
538 
539 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
540 
541 	p_filters = p_llh_info->pp_filters[ppfid];
542 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
543 		if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter,
544 				 sizeof(*p_filter))) {
545 			*p_filter_idx = i;
546 			break;
547 		}
548 	}
549 
550 	return ECORE_SUCCESS;
551 }
552 
553 static enum _ecore_status_t
554 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid,
555 			      u8 *p_filter_idx)
556 {
557 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
558 	struct ecore_llh_filter_info *p_filters;
559 	enum _ecore_status_t rc;
560 	u8 i;
561 
562 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx");
563 	if (rc != ECORE_SUCCESS)
564 		return rc;
565 
566 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
567 
568 	p_filters = p_llh_info->pp_filters[ppfid];
569 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
570 		if (!p_filters[i].b_enabled) {
571 			*p_filter_idx = i;
572 			break;
573 		}
574 	}
575 
576 	return ECORE_SUCCESS;
577 }
578 
579 static enum _ecore_status_t
580 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx,
581 			      enum ecore_llh_filter_type type,
582 			      union ecore_llh_filter *p_filter, u32 *p_ref_cnt)
583 {
584 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
585 	struct ecore_llh_filter_info *p_filters;
586 	enum _ecore_status_t rc;
587 
588 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add");
589 	if (rc != ECORE_SUCCESS)
590 		return rc;
591 
592 	p_filters = p_llh_info->pp_filters[ppfid];
593 	if (!p_filters[filter_idx].ref_cnt) {
594 		p_filters[filter_idx].b_enabled = true;
595 		p_filters[filter_idx].type = type;
596 		OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter,
597 			    sizeof(p_filters[filter_idx].filter));
598 	}
599 
600 	*p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
601 
602 	return ECORE_SUCCESS;
603 }
604 
605 static enum _ecore_status_t
606 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid,
607 			    enum ecore_llh_filter_type type,
608 			    union ecore_llh_filter *p_filter,
609 			    u8 *p_filter_idx, u32 *p_ref_cnt)
610 {
611 	enum _ecore_status_t rc;
612 
613 	/* Check if the same filter already exist */
614 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
615 					    p_filter_idx);
616 	if (rc != ECORE_SUCCESS)
617 		return rc;
618 
619 	/* Find a new entry in case of a new filter */
620 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
621 		rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx);
622 		if (rc != ECORE_SUCCESS)
623 			return rc;
624 	}
625 
626 	/* No free entry was found */
627 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
628 		DP_NOTICE(p_dev, false,
629 			  "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
630 			  ppfid);
631 		return ECORE_NORESOURCES;
632 	}
633 
634 	return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type,
635 					     p_filter, p_ref_cnt);
636 }
637 
638 static enum _ecore_status_t
639 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
640 				 u8 filter_idx, u32 *p_ref_cnt)
641 {
642 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
643 	struct ecore_llh_filter_info *p_filters;
644 	enum _ecore_status_t rc;
645 
646 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove");
647 	if (rc != ECORE_SUCCESS)
648 		return rc;
649 
650 	p_filters = p_llh_info->pp_filters[ppfid];
651 	if (!p_filters[filter_idx].ref_cnt) {
652 		DP_NOTICE(p_dev, false,
653 			  "LLH shadow: trying to remove a filter with ref_cnt=0\n");
654 		return ECORE_INVAL;
655 	}
656 
657 	*p_ref_cnt = --p_filters[filter_idx].ref_cnt;
658 	if (!p_filters[filter_idx].ref_cnt)
659 		OSAL_MEM_ZERO(&p_filters[filter_idx],
660 			      sizeof(p_filters[filter_idx]));
661 
662 	return ECORE_SUCCESS;
663 }
664 
665 static enum _ecore_status_t
666 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
667 			       union ecore_llh_filter *p_filter,
668 			       u8 *p_filter_idx, u32 *p_ref_cnt)
669 {
670 	enum _ecore_status_t rc;
671 
672 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
673 					    p_filter_idx);
674 	if (rc != ECORE_SUCCESS)
675 		return rc;
676 
677 	/* No matching filter was found */
678 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
679 		DP_NOTICE(p_dev, false,
680 			  "Failed to find a filter in the LLH shadow\n");
681 		return ECORE_INVAL;
682 	}
683 
684 	return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx,
685 						p_ref_cnt);
686 }
687 
688 static enum _ecore_status_t
689 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid)
690 {
691 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
692 	struct ecore_llh_filter_info *p_filters;
693 	enum _ecore_status_t rc;
694 
695 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all");
696 	if (rc != ECORE_SUCCESS)
697 		return rc;
698 
699 	p_filters = p_llh_info->pp_filters[ppfid];
700 	OSAL_MEM_ZERO(p_filters,
701 		      NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters));
702 
703 	return ECORE_SUCCESS;
704 }
705 
706 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev,
707 					    u8 rel_ppfid, u8 *p_abs_ppfid)
708 {
709 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
710 
711 	if (rel_ppfid >= p_llh_info->num_ppfid) {
712 		DP_NOTICE(p_dev, false,
713 			  "rel_ppfid %d is not valid, available indices are 0..%hhd\n",
714 			  rel_ppfid, (u8)(p_llh_info->num_ppfid - 1));
715 		return ECORE_INVAL;
716 	}
717 
718 	*p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid];
719 
720 	return ECORE_SUCCESS;
721 }
722 
723 static enum _ecore_status_t
724 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
725 {
726 	struct ecore_dev *p_dev = p_hwfn->p_dev;
727 	enum ecore_eng eng;
728 	u8 ppfid;
729 	enum _ecore_status_t rc;
730 
731 	rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt);
732 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
733 		DP_NOTICE(p_hwfn, false,
734 			  "Failed to get the engine affinity configuration\n");
735 		return rc;
736 	}
737 
738 	/* RoCE PF is bound to a single engine */
739 	if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
740 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
741 		rc = ecore_llh_set_roce_affinity(p_dev, eng);
742 		if (rc != ECORE_SUCCESS) {
743 			DP_NOTICE(p_dev, false,
744 				  "Failed to set the RoCE engine affinity\n");
745 			return rc;
746 		}
747 
748 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
749 			   "LLH: Set the engine affinity of RoCE packets as %d\n",
750 			   eng);
751 	}
752 
753 	/* Storage PF is bound to a single engine while L2 PF uses both */
754 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
755 	    ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
756 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
757 	else /* L2_PERSONALITY */
758 		eng = ECORE_BOTH_ENG;
759 
760 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
761 		rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
762 		if (rc != ECORE_SUCCESS) {
763 			DP_NOTICE(p_dev, false,
764 				  "Failed to set the engine affinity of ppfid %d\n",
765 				  ppfid);
766 			return rc;
767 		}
768 	}
769 
770 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
771 		   "LLH: Set the engine affinity of non-RoCE packets as %d\n",
772 		   eng);
773 
774 	return ECORE_SUCCESS;
775 }
776 
777 static enum _ecore_status_t
778 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
779 			   bool avoid_eng_affin)
780 {
781 	struct ecore_dev *p_dev = p_hwfn->p_dev;
782 	enum _ecore_status_t rc;
783 
784 	/* Backwards compatible mode:
785 	 * - RoCE packets     - Use engine 0.
786 	 * - Non-RoCE packets - Use connection based classification for L2 PFs,
787 	 *                      and engine 0 otherwise.
788 	 */
789 	if (avoid_eng_affin) {
790 		enum ecore_eng eng;
791 		u8 ppfid;
792 
793 		if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
794 			eng = ECORE_ENG0;
795 			rc = ecore_llh_set_roce_affinity(p_dev, eng);
796 			if (rc != ECORE_SUCCESS) {
797 				DP_NOTICE(p_dev, false,
798 					  "Failed to set the RoCE engine affinity\n");
799 				return rc;
800 			}
801 
802 			DP_VERBOSE(p_dev, ECORE_MSG_SP,
803 				   "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n",
804 				   eng);
805 		}
806 
807 		eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
808 		       ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0
809 							   : ECORE_BOTH_ENG;
810 		for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
811 			rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
812 			if (rc != ECORE_SUCCESS) {
813 				DP_NOTICE(p_dev, false,
814 					  "Failed to set the engine affinity of ppfid %d\n",
815 					  ppfid);
816 				return rc;
817 			}
818 		}
819 
820 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
821 			   "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n",
822 			   eng);
823 
824 		return ECORE_SUCCESS;
825 	}
826 
827 	return __ecore_llh_set_engine_affin(p_hwfn, p_ptt);
828 }
829 
830 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn,
831 						 struct ecore_ptt *p_ptt,
832 						 bool avoid_eng_affin)
833 {
834 	struct ecore_dev *p_dev = p_hwfn->p_dev;
835 	u8 ppfid, abs_ppfid;
836 	enum _ecore_status_t rc;
837 
838 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
839 		u32 addr;
840 
841 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
842 		if (rc != ECORE_SUCCESS)
843 			return rc;
844 
845 		addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
846 		ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
847 	}
848 
849 	if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
850 	    !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) {
851 		rc = ecore_llh_add_mac_filter(p_dev, 0,
852 					      p_hwfn->hw_info.hw_mac_addr);
853 		if (rc != ECORE_SUCCESS)
854 			DP_NOTICE(p_dev, false,
855 				  "Failed to add an LLH filter with the primary MAC\n");
856 	}
857 
858 	if (ECORE_IS_CMT(p_dev)) {
859 		rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin);
860 		if (rc != ECORE_SUCCESS)
861 			return rc;
862 	}
863 
864 	return ECORE_SUCCESS;
865 }
866 
867 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev)
868 {
869 	return p_dev->p_llh_info->num_ppfid;
870 }
871 
872 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev)
873 {
874 	return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0;
875 }
876 
877 /* TBD - should be removed when these definitions are available in reg_addr.h */
878 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK		0x3
879 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT		0
880 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK		0x3
881 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT	2
882 
883 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev,
884 						  u8 ppfid, enum ecore_eng eng)
885 {
886 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
887 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
888 	u32 addr, val, eng_sel;
889 	enum _ecore_status_t rc = ECORE_SUCCESS;
890 	u8 abs_ppfid;
891 
892 	if (p_ptt == OSAL_NULL)
893 		return ECORE_AGAIN;
894 
895 	if (!ECORE_IS_CMT(p_dev))
896 		goto out;
897 
898 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
899 	if (rc != ECORE_SUCCESS)
900 		goto out;
901 
902 	switch (eng) {
903 	case ECORE_ENG0:
904 		eng_sel = 0;
905 		break;
906 	case ECORE_ENG1:
907 		eng_sel = 1;
908 		break;
909 	case ECORE_BOTH_ENG:
910 		eng_sel = 2;
911 		break;
912 	default:
913 		DP_NOTICE(p_dev, false,
914 			  "Invalid affinity value for ppfid [%d]\n", eng);
915 		rc = ECORE_INVAL;
916 		goto out;
917 	}
918 
919 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
920 	val = ecore_rd(p_hwfn, p_ptt, addr);
921 	SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
922 	ecore_wr(p_hwfn, p_ptt, addr, val);
923 
924 	/* The iWARP affinity is set as the affinity of ppfid 0 */
925 	if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn))
926 		p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0;
927 out:
928 	ecore_ptt_release(p_hwfn, p_ptt);
929 
930 	return rc;
931 }
932 
933 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev,
934 						 enum ecore_eng eng)
935 {
936 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
937 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
938 	u32 addr, val, eng_sel;
939 	enum _ecore_status_t rc = ECORE_SUCCESS;
940 	u8 ppfid, abs_ppfid;
941 
942 	if (p_ptt == OSAL_NULL)
943 		return ECORE_AGAIN;
944 
945 	if (!ECORE_IS_CMT(p_dev))
946 		goto out;
947 
948 	switch (eng) {
949 	case ECORE_ENG0:
950 		eng_sel = 0;
951 		break;
952 	case ECORE_ENG1:
953 		eng_sel = 1;
954 		break;
955 	case ECORE_BOTH_ENG:
956 		eng_sel = 2;
957 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
958 			 0xf /* QP bit 15 */);
959 		break;
960 	default:
961 		DP_NOTICE(p_dev, false,
962 			  "Invalid affinity value for RoCE [%d]\n", eng);
963 		rc = ECORE_INVAL;
964 		goto out;
965 	}
966 
967 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
968 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
969 		if (rc != ECORE_SUCCESS)
970 			goto out;
971 
972 		addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
973 		val = ecore_rd(p_hwfn, p_ptt, addr);
974 		SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
975 		ecore_wr(p_hwfn, p_ptt, addr, val);
976 	}
977 out:
978 	ecore_ptt_release(p_hwfn, p_ptt);
979 
980 	return rc;
981 }
982 
983 struct ecore_llh_filter_e4_details {
984 	u64 value;
985 	u32 mode;
986 	u32 protocol_type;
987 	u32 hdr_sel;
988 	u32 enable;
989 };
990 
991 static enum _ecore_status_t
992 ecore_llh_access_filter_e4(struct ecore_hwfn *p_hwfn,
993 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx,
994 			   struct ecore_llh_filter_e4_details *p_details,
995 			   bool b_write_access)
996 {
997 	u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
998 	struct ecore_dmae_params params;
999 	enum _ecore_status_t rc;
1000 	u32 addr;
1001 
1002 	/* The NIG/LLH registers that are accessed in this function have only 16
1003 	 * rows which are exposed to a PF. I.e. only the 16 filters of its
1004 	 * default ppfid
1005 	 * Accessing filters of other ppfids requires pretending to other PFs,
1006 	 * and thus the usage of the ecore_ppfid_rd/wr() functions.
1007 	 */
1008 
1009 	/* Filter enable - should be done first when removing a filter */
1010 	if (b_write_access && !p_details->enable) {
1011 		addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1012 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1013 			       p_details->enable);
1014 	}
1015 
1016 	/* Filter value */
1017 	addr = NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 + 2 * filter_idx * 0x4;
1018 	OSAL_MEMSET(&params, 0, sizeof(params));
1019 
1020 	if (b_write_access) {
1021 		params.flags = ECORE_DMAE_FLAG_PF_DST;
1022 		params.dst_pfid = pfid;
1023 		rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
1024 					 (u64)(osal_uintptr_t)&p_details->value,
1025 					 addr, 2 /* size_in_dwords */, &params);
1026 	} else {
1027 		params.flags = ECORE_DMAE_FLAG_PF_SRC |
1028 			       ECORE_DMAE_FLAG_COMPLETION_DST;
1029 		params.src_pfid = pfid;
1030 		rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr,
1031 					 (u64)(osal_uintptr_t)&p_details->value,
1032 					 2 /* size_in_dwords */, &params);
1033 	}
1034 
1035 	if (rc != ECORE_SUCCESS)
1036 		return rc;
1037 
1038 	/* Filter mode */
1039 	addr = NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 + filter_idx * 0x4;
1040 	if (b_write_access)
1041 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode);
1042 	else
1043 		p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1044 						 addr);
1045 
1046 	/* Filter protocol type */
1047 	addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 + filter_idx * 0x4;
1048 	if (b_write_access)
1049 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1050 			       p_details->protocol_type);
1051 	else
1052 		p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt,
1053 							  abs_ppfid, addr);
1054 
1055 	/* Filter header select */
1056 	addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL_BB_K2 + filter_idx * 0x4;
1057 	if (b_write_access)
1058 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1059 			       p_details->hdr_sel);
1060 	else
1061 		p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1062 						    addr);
1063 
1064 	/* Filter enable - should be done last when adding a filter */
1065 	if (!b_write_access || p_details->enable) {
1066 		addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1067 		if (b_write_access)
1068 			ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1069 				       p_details->enable);
1070 		else
1071 			p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt,
1072 							   abs_ppfid, addr);
1073 	}
1074 
1075 	return ECORE_SUCCESS;
1076 }
1077 
1078 static enum _ecore_status_t
1079 ecore_llh_add_filter_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1080 			u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type,
1081 			u32 high, u32 low)
1082 {
1083 	struct ecore_llh_filter_e4_details filter_details;
1084 
1085 	filter_details.enable = 1;
1086 	filter_details.value = ((u64)high << 32) | low;
1087 	filter_details.hdr_sel = 0;
1088 	filter_details.protocol_type = filter_prot_type;
1089 	filter_details.mode = filter_prot_type ?
1090 			      1 : /* protocol-based classification */
1091 			      0;  /* MAC-address based classification */
1092 
1093 	return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1094 					  &filter_details,
1095 					  true /* write access */);
1096 }
1097 
1098 static enum _ecore_status_t
1099 ecore_llh_remove_filter_e4(struct ecore_hwfn *p_hwfn,
1100 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
1101 {
1102 	struct ecore_llh_filter_e4_details filter_details;
1103 
1104 	OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1105 
1106 	return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1107 					  &filter_details,
1108 					  true /* write access */);
1109 }
1110 
1111 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1112  * Should be removed when the function is implemented.
1113  */
1114 static enum _ecore_status_t
1115 ecore_llh_add_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1116 			struct ecore_ptt OSAL_UNUSED *p_ptt,
1117 			u8 OSAL_UNUSED abs_ppfid, u8 OSAL_UNUSED filter_idx,
1118 			u8 OSAL_UNUSED filter_prot_type, u32 OSAL_UNUSED high,
1119 			u32 OSAL_UNUSED low)
1120 {
1121 	ECORE_E5_MISSING_CODE;
1122 
1123 	return ECORE_NOTIMPL;
1124 }
1125 
1126 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1127  * Should be removed when the function is implemented.
1128  */
1129 static enum _ecore_status_t
1130 ecore_llh_remove_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1131 			   struct ecore_ptt OSAL_UNUSED *p_ptt,
1132 			   u8 OSAL_UNUSED abs_ppfid,
1133 			   u8 OSAL_UNUSED filter_idx)
1134 {
1135 	ECORE_E5_MISSING_CODE;
1136 
1137 	return ECORE_NOTIMPL;
1138 }
1139 
1140 static enum _ecore_status_t
1141 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1142 		     u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high,
1143 		     u32 low)
1144 {
1145 	if (ECORE_IS_E4(p_hwfn->p_dev))
1146 		return ecore_llh_add_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1147 					       filter_idx, filter_prot_type,
1148 					       high, low);
1149 	else /* E5 */
1150 		return ecore_llh_add_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1151 					       filter_idx, filter_prot_type,
1152 					       high, low);
1153 }
1154 
1155 static enum _ecore_status_t
1156 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1157 			u8 abs_ppfid, u8 filter_idx)
1158 {
1159 	if (ECORE_IS_E4(p_hwfn->p_dev))
1160 		return ecore_llh_remove_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1161 						  filter_idx);
1162 	else /* E5 */
1163 		return ecore_llh_remove_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1164 						  filter_idx);
1165 }
1166 
1167 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1168 					      u8 mac_addr[ETH_ALEN])
1169 {
1170 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1171 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1172 	union ecore_llh_filter filter;
1173 	u8 filter_idx, abs_ppfid;
1174 	u32 high, low, ref_cnt;
1175 	enum _ecore_status_t rc = ECORE_SUCCESS;
1176 
1177 	if (p_ptt == OSAL_NULL)
1178 		return ECORE_AGAIN;
1179 
1180 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1181 		goto out;
1182 
1183 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1184 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1185 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1186 					 ECORE_LLH_FILTER_TYPE_MAC,
1187 					 &filter, &filter_idx, &ref_cnt);
1188 	if (rc != ECORE_SUCCESS)
1189 		goto err;
1190 
1191 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1192 	if (rc != ECORE_SUCCESS)
1193 		goto err;
1194 
1195 	/* Configure the LLH only in case of a new the filter */
1196 	if (ref_cnt == 1) {
1197 		high = mac_addr[1] | (mac_addr[0] << 8);
1198 		low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1199 		      (mac_addr[2] << 24);
1200 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1201 					  0, high, low);
1202 		if (rc != ECORE_SUCCESS)
1203 			goto err;
1204 	}
1205 
1206 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1207 		   "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1208 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1209 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1210 		   ref_cnt);
1211 
1212 	goto out;
1213 
1214 err:
1215 	DP_NOTICE(p_dev, false,
1216 		  "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n",
1217 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1218 		  mac_addr[4], mac_addr[5], ppfid);
1219 out:
1220 	ecore_ptt_release(p_hwfn, p_ptt);
1221 
1222 	return rc;
1223 }
1224 
1225 static enum _ecore_status_t
1226 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev,
1227 				    enum ecore_llh_prot_filter_type_t type,
1228 				    u16 source_port_or_eth_type, u16 dest_port,
1229 				    u8 *str, osal_size_t str_len)
1230 {
1231 	switch (type) {
1232 	case ECORE_LLH_FILTER_ETHERTYPE:
1233 		OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x",
1234 			      source_port_or_eth_type);
1235 		break;
1236 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1237 		OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x",
1238 			      source_port_or_eth_type);
1239 		break;
1240 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1241 		OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x",
1242 			      source_port_or_eth_type);
1243 		break;
1244 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1245 		OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port);
1246 		break;
1247 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1248 		OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port);
1249 		break;
1250 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1251 		OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1252 			      source_port_or_eth_type, dest_port);
1253 		break;
1254 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1255 		OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1256 			      source_port_or_eth_type, dest_port);
1257 		break;
1258 	default:
1259 		DP_NOTICE(p_dev, true,
1260 			  "Non valid LLH protocol filter type %d\n", type);
1261 		return ECORE_INVAL;
1262 	}
1263 
1264 	return ECORE_SUCCESS;
1265 }
1266 
1267 static enum _ecore_status_t
1268 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev,
1269 				  enum ecore_llh_prot_filter_type_t type,
1270 				  u16 source_port_or_eth_type, u16 dest_port,
1271 				  u32 *p_high, u32 *p_low)
1272 {
1273 	*p_high = 0;
1274 	*p_low = 0;
1275 
1276 	switch (type) {
1277 	case ECORE_LLH_FILTER_ETHERTYPE:
1278 		*p_high = source_port_or_eth_type;
1279 		break;
1280 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1281 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1282 		*p_low = source_port_or_eth_type << 16;
1283 		break;
1284 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1285 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1286 		*p_low = dest_port;
1287 		break;
1288 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1289 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1290 		*p_low = (source_port_or_eth_type << 16) | dest_port;
1291 		break;
1292 	default:
1293 		DP_NOTICE(p_dev, true,
1294 			  "Non valid LLH protocol filter type %d\n", type);
1295 		return ECORE_INVAL;
1296 	}
1297 
1298 	return ECORE_SUCCESS;
1299 }
1300 
1301 enum _ecore_status_t
1302 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1303 			      enum ecore_llh_prot_filter_type_t type,
1304 			      u16 source_port_or_eth_type, u16 dest_port)
1305 {
1306 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1307 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1308 	u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1309 	union ecore_llh_filter filter;
1310 	u32 high, low, ref_cnt;
1311 	enum _ecore_status_t rc = ECORE_SUCCESS;
1312 
1313 	if (p_ptt == OSAL_NULL)
1314 		return ECORE_AGAIN;
1315 
1316 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1317 		goto out;
1318 
1319 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1320 						 source_port_or_eth_type,
1321 						 dest_port, str, sizeof(str));
1322 	if (rc != ECORE_SUCCESS)
1323 		goto err;
1324 
1325 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1326 	filter.protocol.type = type;
1327 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1328 	filter.protocol.dest_port = dest_port;
1329 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1330 					 ECORE_LLH_FILTER_TYPE_PROTOCOL,
1331 					 &filter, &filter_idx, &ref_cnt);
1332 	if (rc != ECORE_SUCCESS)
1333 		goto err;
1334 
1335 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1336 	if (rc != ECORE_SUCCESS)
1337 		goto err;
1338 
1339 	/* Configure the LLH only in case of a new the filter */
1340 	if (ref_cnt == 1) {
1341 		rc = ecore_llh_protocol_filter_to_hilo(p_dev, type,
1342 						       source_port_or_eth_type,
1343 						       dest_port, &high, &low);
1344 		if (rc != ECORE_SUCCESS)
1345 			goto err;
1346 
1347 		type_bitmap = 0x1 << type;
1348 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1349 					  type_bitmap, high, low);
1350 		if (rc != ECORE_SUCCESS)
1351 			goto err;
1352 	}
1353 
1354 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1355 		   "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1356 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1357 
1358 	goto out;
1359 
1360 err:
1361 	DP_NOTICE(p_hwfn, false,
1362 		  "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1363 		  str, ppfid);
1364 out:
1365 	ecore_ptt_release(p_hwfn, p_ptt);
1366 
1367 	return rc;
1368 }
1369 
1370 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1371 				 u8 mac_addr[ETH_ALEN])
1372 {
1373 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1374 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1375 	union ecore_llh_filter filter;
1376 	u8 filter_idx, abs_ppfid;
1377 	enum _ecore_status_t rc = ECORE_SUCCESS;
1378 	u32 ref_cnt;
1379 
1380 	if (p_ptt == OSAL_NULL)
1381 		return;
1382 
1383 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1384 		goto out;
1385 
1386 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1387 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1388 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1389 					    &ref_cnt);
1390 	if (rc != ECORE_SUCCESS)
1391 		goto err;
1392 
1393 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1394 	if (rc != ECORE_SUCCESS)
1395 		goto err;
1396 
1397 	/* Remove from the LLH in case the filter is not in use */
1398 	if (!ref_cnt) {
1399 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1400 					     filter_idx);
1401 		if (rc != ECORE_SUCCESS)
1402 			goto err;
1403 	}
1404 
1405 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1406 		   "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1407 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1408 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1409 		   ref_cnt);
1410 
1411 	goto out;
1412 
1413 err:
1414 	DP_NOTICE(p_dev, false,
1415 		  "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n",
1416 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1417 		  mac_addr[4], mac_addr[5], ppfid);
1418 out:
1419 	ecore_ptt_release(p_hwfn, p_ptt);
1420 }
1421 
1422 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1423 				      enum ecore_llh_prot_filter_type_t type,
1424 				      u16 source_port_or_eth_type,
1425 				      u16 dest_port)
1426 {
1427 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1428 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1429 	u8 filter_idx, abs_ppfid, str[32];
1430 	union ecore_llh_filter filter;
1431 	enum _ecore_status_t rc = ECORE_SUCCESS;
1432 	u32 ref_cnt;
1433 
1434 	if (p_ptt == OSAL_NULL)
1435 		return;
1436 
1437 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1438 		goto out;
1439 
1440 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1441 						 source_port_or_eth_type,
1442 						 dest_port, str, sizeof(str));
1443 	if (rc != ECORE_SUCCESS)
1444 		goto err;
1445 
1446 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1447 	filter.protocol.type = type;
1448 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1449 	filter.protocol.dest_port = dest_port;
1450 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1451 					    &ref_cnt);
1452 	if (rc != ECORE_SUCCESS)
1453 		goto err;
1454 
1455 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1456 	if (rc != ECORE_SUCCESS)
1457 		goto err;
1458 
1459 	/* Remove from the LLH in case the filter is not in use */
1460 	if (!ref_cnt) {
1461 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1462 					     filter_idx);
1463 		if (rc != ECORE_SUCCESS)
1464 			goto err;
1465 	}
1466 
1467 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1468 		   "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1469 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1470 
1471 	goto out;
1472 
1473 err:
1474 	DP_NOTICE(p_dev, false,
1475 		  "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1476 		  str, ppfid);
1477 out:
1478 	ecore_ptt_release(p_hwfn, p_ptt);
1479 }
1480 
1481 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid)
1482 {
1483 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1484 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1485 	u8 filter_idx, abs_ppfid;
1486 	enum _ecore_status_t rc = ECORE_SUCCESS;
1487 
1488 	if (p_ptt == OSAL_NULL)
1489 		return;
1490 
1491 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1492 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1493 		goto out;
1494 
1495 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1496 	if (rc != ECORE_SUCCESS)
1497 		goto out;
1498 
1499 	rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid);
1500 	if (rc != ECORE_SUCCESS)
1501 		goto out;
1502 
1503 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1504 	     filter_idx++) {
1505 		if (ECORE_IS_E4(p_dev))
1506 			rc = ecore_llh_remove_filter_e4(p_hwfn, p_ptt,
1507 							abs_ppfid, filter_idx);
1508 		else /* E5 */
1509 			rc = ecore_llh_remove_filter_e5(p_hwfn, p_ptt,
1510 							abs_ppfid, filter_idx);
1511 		if (rc != ECORE_SUCCESS)
1512 			goto out;
1513 	}
1514 out:
1515 	ecore_ptt_release(p_hwfn, p_ptt);
1516 }
1517 
1518 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev)
1519 {
1520 	u8 ppfid;
1521 
1522 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1523 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1524 		return;
1525 
1526 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++)
1527 		ecore_llh_clear_ppfid_filters(p_dev, ppfid);
1528 }
1529 
1530 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn,
1531 					 struct ecore_ptt *p_ptt, u32 addr,
1532 					 u32 val)
1533 {
1534 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1535 	u8 ppfid, abs_ppfid;
1536 	enum _ecore_status_t rc;
1537 
1538 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1539 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1540 		if (rc != ECORE_SUCCESS)
1541 			return rc;
1542 
1543 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val);
1544 	}
1545 
1546 	return ECORE_SUCCESS;
1547 }
1548 
1549 static enum _ecore_status_t
1550 ecore_llh_dump_ppfid_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1551 			u8 ppfid)
1552 {
1553 	struct ecore_llh_filter_e4_details filter_details;
1554 	u8 abs_ppfid, filter_idx;
1555 	u32 addr;
1556 	enum _ecore_status_t rc;
1557 
1558 	rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid);
1559 	if (rc != ECORE_SUCCESS)
1560 		return rc;
1561 
1562 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
1563 	DP_NOTICE(p_hwfn, false,
1564 		  "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n",
1565 		  p_hwfn->rel_pf_id, ppfid, abs_ppfid,
1566 		  ecore_rd(p_hwfn, p_ptt, addr));
1567 
1568 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1569 	     filter_idx++) {
1570 		OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1571 		rc =  ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1572 						 filter_idx, &filter_details,
1573 						 false /* read access */);
1574 		if (rc != ECORE_SUCCESS)
1575 			return rc;
1576 
1577 		DP_NOTICE(p_hwfn, false,
1578 			  "filter %2hhd: enable %d, value 0x%016llx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n",
1579 			  filter_idx, filter_details.enable,
1580 			  (unsigned long long)filter_details.value, filter_details.mode,
1581 			  filter_details.protocol_type, filter_details.hdr_sel);
1582 	}
1583 
1584 	return ECORE_SUCCESS;
1585 }
1586 
1587 static enum _ecore_status_t
1588 ecore_llh_dump_ppfid_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1589 			struct ecore_ptt OSAL_UNUSED *p_ptt,
1590 			u8 OSAL_UNUSED ppfid)
1591 {
1592 	ECORE_E5_MISSING_CODE;
1593 
1594 	return ECORE_NOTIMPL;
1595 }
1596 
1597 enum _ecore_status_t ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid)
1598 {
1599 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1600 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1601 	enum _ecore_status_t rc;
1602 
1603 	if (p_ptt == OSAL_NULL)
1604 		return ECORE_AGAIN;
1605 
1606 	if (ECORE_IS_E4(p_dev))
1607 		rc = ecore_llh_dump_ppfid_e4(p_hwfn, p_ptt, ppfid);
1608 	else /* E5 */
1609 		rc = ecore_llh_dump_ppfid_e5(p_hwfn, p_ptt, ppfid);
1610 
1611 	ecore_ptt_release(p_hwfn, p_ptt);
1612 
1613 	return rc;
1614 }
1615 
1616 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev)
1617 {
1618 	u8 ppfid;
1619 	enum _ecore_status_t rc;
1620 
1621 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1622 		rc = ecore_llh_dump_ppfid(p_dev, ppfid);
1623 		if (rc != ECORE_SUCCESS)
1624 			return rc;
1625 	}
1626 
1627 	return ECORE_SUCCESS;
1628 }
1629 
1630 /******************************* NIG LLH - End ********************************/
1631 
1632 /* Configurable */
1633 #define ECORE_MIN_DPIS		(4)  /* The minimal number of DPIs required to
1634 				      * load the driver. The number was
1635 				      * arbitrarily set.
1636 				      */
1637 
1638 /* Derived */
1639 #define ECORE_MIN_PWM_REGION	(ECORE_WID_SIZE * ECORE_MIN_DPIS)
1640 
1641 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
1642 			     struct ecore_ptt *p_ptt,
1643 			     enum BAR_ID bar_id)
1644 {
1645 	u32 bar_reg = (bar_id == BAR_ID_0 ?
1646 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1647 	u32 val;
1648 
1649 	if (IS_VF(p_hwfn->p_dev))
1650 		return ecore_vf_hw_bar_size(p_hwfn, bar_id);
1651 
1652 	val = ecore_rd(p_hwfn, p_ptt, bar_reg);
1653 	if (val)
1654 		return 1 << (val + 15);
1655 
1656 	/* The above registers were updated in the past only in CMT mode. Since
1657 	 * they were found to be useful MFW started updating them from 8.7.7.0.
1658 	 * In older MFW versions they are set to 0 which means disabled.
1659 	 */
1660 	if (ECORE_IS_CMT(p_hwfn->p_dev)) {
1661 		DP_INFO(p_hwfn,
1662 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1663 		return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1664 	} else {
1665 		DP_INFO(p_hwfn,
1666 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1667 		return 512 * 1024;
1668 	}
1669 }
1670 
1671 void ecore_init_dp(struct ecore_dev	*p_dev,
1672 		   u32			dp_module,
1673 		   u8			dp_level,
1674 		   void		 *dp_ctx)
1675 {
1676 	u32 i;
1677 
1678 	p_dev->dp_level = dp_level;
1679 	p_dev->dp_module = dp_module;
1680 	p_dev->dp_ctx = dp_ctx;
1681 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1682 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1683 
1684 		p_hwfn->dp_level = dp_level;
1685 		p_hwfn->dp_module = dp_module;
1686 		p_hwfn->dp_ctx = dp_ctx;
1687 	}
1688 }
1689 
1690 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev)
1691 {
1692 	u8 i;
1693 
1694 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1695 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1696 
1697 		p_hwfn->p_dev = p_dev;
1698 		p_hwfn->my_id = i;
1699 		p_hwfn->b_active = false;
1700 
1701 #ifdef CONFIG_ECORE_LOCK_ALLOC
1702 		if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock))
1703 			goto handle_err;
1704 #endif
1705 		OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock);
1706 	}
1707 
1708 	/* hwfn 0 is always active */
1709 	p_dev->hwfns[0].b_active = true;
1710 
1711 	/* set the default cache alignment to 128 (may be overridden later) */
1712 	p_dev->cache_shift = 7;
1713 
1714 	p_dev->ilt_page_size = ECORE_DEFAULT_ILT_PAGE_SIZE;
1715 
1716 	return ECORE_SUCCESS;
1717 #ifdef CONFIG_ECORE_LOCK_ALLOC
1718 handle_err:
1719 	while (--i) {
1720 		struct ecore_hwfn *p_hwfn = OSAL_NULL;
1721 
1722 		p_hwfn = &p_dev->hwfns[i];
1723 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
1724 	}
1725 	return ECORE_NOMEM;
1726 #endif
1727 }
1728 
1729 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
1730 {
1731 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1732 
1733 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
1734 	qm_info->qm_pq_params = OSAL_NULL;
1735 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
1736 	qm_info->qm_vport_params = OSAL_NULL;
1737 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
1738 	qm_info->qm_port_params = OSAL_NULL;
1739 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
1740 	qm_info->wfq_data = OSAL_NULL;
1741 }
1742 
1743 void ecore_resc_free(struct ecore_dev *p_dev)
1744 {
1745 	int i;
1746 
1747 	if (IS_VF(p_dev)) {
1748 		for_each_hwfn(p_dev, i)
1749 			ecore_l2_free(&p_dev->hwfns[i]);
1750 		return;
1751 	}
1752 
1753 	OSAL_FREE(p_dev, p_dev->fw_data);
1754 	p_dev->fw_data = OSAL_NULL;
1755 
1756 	OSAL_FREE(p_dev, p_dev->reset_stats);
1757 	p_dev->reset_stats = OSAL_NULL;
1758 
1759 	ecore_llh_free(p_dev);
1760 
1761 	for_each_hwfn(p_dev, i) {
1762 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1763 
1764 		ecore_cxt_mngr_free(p_hwfn);
1765 		ecore_qm_info_free(p_hwfn);
1766 		ecore_spq_free(p_hwfn);
1767 		ecore_eq_free(p_hwfn);
1768 		ecore_consq_free(p_hwfn);
1769 		ecore_int_free(p_hwfn);
1770 #ifdef CONFIG_ECORE_LL2
1771 		ecore_ll2_free(p_hwfn);
1772 #endif
1773 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1774 			ecore_fcoe_free(p_hwfn);
1775 
1776 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1777 			ecore_iscsi_free(p_hwfn);
1778 			ecore_ooo_free(p_hwfn);
1779 		}
1780 
1781 #ifdef CONFIG_ECORE_ROCE
1782 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1783 			ecore_rdma_info_free(p_hwfn);
1784 #endif
1785 		ecore_iov_free(p_hwfn);
1786 		ecore_l2_free(p_hwfn);
1787 		ecore_dmae_info_free(p_hwfn);
1788 		ecore_dcbx_info_free(p_hwfn);
1789 		/* @@@TBD Flush work-queue ?*/
1790 
1791 		/* destroy doorbell recovery mechanism */
1792 		ecore_db_recovery_teardown(p_hwfn);
1793 	}
1794 }
1795 
1796 /******************** QM initialization *******************/
1797 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
1798 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
1799 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
1800 
1801 /* determines the physical queue flags for a given PF. */
1802 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
1803 {
1804 	u32 flags;
1805 
1806 	/* common flags */
1807 	flags = PQ_FLAGS_LB;
1808 
1809 	/* feature flags */
1810 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
1811 		flags |= PQ_FLAGS_VFS;
1812 	if (IS_ECORE_DCQCN(p_hwfn))
1813 		flags |= PQ_FLAGS_RLS;
1814 
1815 	/* protocol flags */
1816 	switch (p_hwfn->hw_info.personality) {
1817 	case ECORE_PCI_ETH:
1818 		flags |= PQ_FLAGS_MCOS;
1819 		break;
1820 	case ECORE_PCI_FCOE:
1821 		flags |= PQ_FLAGS_OFLD;
1822 		break;
1823 	case ECORE_PCI_ISCSI:
1824 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1825 		break;
1826 	case ECORE_PCI_ETH_ROCE:
1827 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1828 		break;
1829 	case ECORE_PCI_ETH_IWARP:
1830 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1831 		break;
1832 	default:
1833 		DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
1834 		return 0;
1835 	}
1836 
1837 	return flags;
1838 }
1839 
1840 /* Getters for resource amounts necessary for qm initialization */
1841 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
1842 {
1843 	return p_hwfn->hw_info.num_hw_tc;
1844 }
1845 
1846 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
1847 {
1848 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
1849 }
1850 
1851 #define NUM_DEFAULT_RLS 1
1852 
1853 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
1854 {
1855 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
1856 
1857 	/* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
1858 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
1859 				     (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
1860 						     ROCE_DCQCN_RP_MAX_QPS));
1861 
1862 	/* make sure after we reserve the default and VF rls we'll have something left */
1863 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
1864 		if (IS_ECORE_DCQCN(p_hwfn))
1865 			DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
1866 		return 0;
1867 	}
1868 
1869 	/* subtract rls necessary for VFs and one default one for the PF */
1870 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1871 
1872 	return num_pf_rls;
1873 }
1874 
1875 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
1876 {
1877 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1878 
1879 	/* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
1880 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1881 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
1882 }
1883 
1884 /* calc amount of PQs according to the requested flags */
1885 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
1886 {
1887 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1888 
1889 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1890 	       (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
1891 	       (!!(PQ_FLAGS_LB & pq_flags)) +
1892 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
1893 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
1894 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
1895 	       (!!(PQ_FLAGS_LLT & pq_flags)) +
1896 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
1897 }
1898 
1899 /* initialize the top level QM params */
1900 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
1901 {
1902 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1903 	bool four_port;
1904 
1905 	/* pq and vport bases for this PF */
1906 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
1907 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
1908 
1909 	/* rate limiting and weighted fair queueing are always enabled */
1910 	qm_info->vport_rl_en = 1;
1911 	qm_info->vport_wfq_en = 1;
1912 
1913 	/* TC config is different for AH 4 port */
1914 	four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1915 
1916 	/* in AH 4 port we have fewer TCs per port */
1917 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
1918 
1919 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
1920 	if (!qm_info->ooo_tc)
1921 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
1922 }
1923 
1924 /* initialize qm vport params */
1925 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
1926 {
1927 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1928 	u8 i;
1929 
1930 	/* all vports participate in weighted fair queueing */
1931 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
1932 		qm_info->qm_vport_params[i].vport_wfq = 1;
1933 }
1934 
1935 /* initialize qm port params */
1936 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
1937 {
1938 	/* Initialize qm port parameters */
1939 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
1940 
1941 	/* indicate how ooo and high pri traffic is dealt with */
1942 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1943 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
1944 
1945 	for (i = 0; i < num_ports; i++) {
1946 		struct init_qm_port_params *p_qm_port =
1947 			&p_hwfn->qm_info.qm_port_params[i];
1948 
1949 		p_qm_port->active = 1;
1950 		p_qm_port->active_phys_tcs = active_phys_tcs;
1951 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
1952 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
1953 	}
1954 }
1955 
1956 /* Reset the params which must be reset for qm init. QM init may be called as
1957  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1958  * params may be affected by the init but would simply recalculate to the same
1959  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1960  * affected as these amounts stay the same.
1961  */
1962 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
1963 {
1964 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1965 
1966 	qm_info->num_pqs = 0;
1967 	qm_info->num_vports = 0;
1968 	qm_info->num_pf_rls = 0;
1969 	qm_info->num_vf_pqs = 0;
1970 	qm_info->first_vf_pq = 0;
1971 	qm_info->first_mcos_pq = 0;
1972 	qm_info->first_rl_pq = 0;
1973 }
1974 
1975 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
1976 {
1977 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1978 
1979 	qm_info->num_vports++;
1980 
1981 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1982 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
1983 }
1984 
1985 /* initialize a single pq and manage qm_info resources accounting.
1986  * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
1987  * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
1988  */
1989 
1990 /* flags for pq init */
1991 #define PQ_INIT_SHARE_VPORT	(1 << 0)
1992 #define PQ_INIT_PF_RL		(1 << 1)
1993 #define PQ_INIT_VF_RL		(1 << 2)
1994 
1995 /* defines for pq init */
1996 #define PQ_INIT_DEFAULT_WRR_GROUP	1
1997 #define PQ_INIT_DEFAULT_TC		0
1998 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
1999 
2000 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
2001 			     struct ecore_qm_info *qm_info,
2002 			     u8 tc, u32 pq_init_flags)
2003 {
2004 	u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
2005 
2006 	if (pq_idx > max_pq)
2007 		DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
2008 
2009 	/* init pq params */
2010 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
2011 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
2012 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
2013 	qm_info->qm_pq_params[pq_idx].rl_valid =
2014 		(pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
2015 
2016 	/* qm params accounting */
2017 	qm_info->num_pqs++;
2018 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
2019 		qm_info->num_vports++;
2020 
2021 	if (pq_init_flags & PQ_INIT_PF_RL)
2022 		qm_info->num_pf_rls++;
2023 
2024 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
2025 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
2026 
2027 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
2028 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
2029 }
2030 
2031 /* get pq index according to PQ_FLAGS */
2032 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
2033 					     u32 pq_flags)
2034 {
2035 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2036 
2037 	/* Can't have multiple flags set here */
2038 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
2039 		goto err;
2040 
2041 	switch (pq_flags) {
2042 	case PQ_FLAGS_RLS:
2043 		return &qm_info->first_rl_pq;
2044 	case PQ_FLAGS_MCOS:
2045 		return &qm_info->first_mcos_pq;
2046 	case PQ_FLAGS_LB:
2047 		return &qm_info->pure_lb_pq;
2048 	case PQ_FLAGS_OOO:
2049 		return &qm_info->ooo_pq;
2050 	case PQ_FLAGS_ACK:
2051 		return &qm_info->pure_ack_pq;
2052 	case PQ_FLAGS_OFLD:
2053 		return &qm_info->offload_pq;
2054 	case PQ_FLAGS_LLT:
2055 		return &qm_info->low_latency_pq;
2056 	case PQ_FLAGS_VFS:
2057 		return &qm_info->first_vf_pq;
2058 	default:
2059 		goto err;
2060 	}
2061 
2062 err:
2063 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
2064 	return OSAL_NULL;
2065 }
2066 
2067 /* save pq index in qm info */
2068 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
2069 				  u32 pq_flags, u16 pq_val)
2070 {
2071 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2072 
2073 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
2074 }
2075 
2076 /* get tx pq index, with the PQ TX base already set (ready for context init) */
2077 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
2078 {
2079 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2080 
2081 	return *base_pq_idx + CM_TX_PQ_BASE;
2082 }
2083 
2084 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
2085 {
2086 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
2087 
2088 	if (tc > max_tc)
2089 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
2090 
2091 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
2092 }
2093 
2094 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
2095 {
2096 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
2097 
2098 	if (vf > max_vf)
2099 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
2100 
2101 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
2102 }
2103 
2104 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
2105 {
2106 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
2107 
2108 	if (rl > max_rl)
2109 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
2110 
2111 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
2112 }
2113 
2114 /* Functions for creating specific types of pqs */
2115 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
2116 {
2117 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2118 
2119 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
2120 		return;
2121 
2122 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
2123 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
2124 }
2125 
2126 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
2127 {
2128 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2129 
2130 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
2131 		return;
2132 
2133 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
2134 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
2135 }
2136 
2137 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
2138 {
2139 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2140 
2141 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
2142 		return;
2143 
2144 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
2145 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2146 }
2147 
2148 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
2149 {
2150 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2151 
2152 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
2153 		return;
2154 
2155 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
2156 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2157 }
2158 
2159 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
2160 {
2161 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2162 
2163 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
2164 		return;
2165 
2166 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
2167 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2168 }
2169 
2170 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
2171 {
2172 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2173 	u8 tc_idx;
2174 
2175 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
2176 		return;
2177 
2178 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
2179 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
2180 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
2181 }
2182 
2183 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
2184 {
2185 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2186 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
2187 
2188 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
2189 		return;
2190 
2191 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
2192 	qm_info->num_vf_pqs = num_vfs;
2193 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
2194 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
2195 }
2196 
2197 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
2198 {
2199 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
2200 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2201 
2202 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
2203 		return;
2204 
2205 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
2206 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
2207 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
2208 }
2209 
2210 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
2211 {
2212 	/* rate limited pqs, must come first (FW assumption) */
2213 	ecore_init_qm_rl_pqs(p_hwfn);
2214 
2215 	/* pqs for multi cos */
2216 	ecore_init_qm_mcos_pqs(p_hwfn);
2217 
2218 	/* pure loopback pq */
2219 	ecore_init_qm_lb_pq(p_hwfn);
2220 
2221 	/* out of order pq */
2222 	ecore_init_qm_ooo_pq(p_hwfn);
2223 
2224 	/* pure ack pq */
2225 	ecore_init_qm_pure_ack_pq(p_hwfn);
2226 
2227 	/* pq for offloaded protocol */
2228 	ecore_init_qm_offload_pq(p_hwfn);
2229 
2230 	/* low latency pq */
2231 	ecore_init_qm_low_latency_pq(p_hwfn);
2232 
2233 	/* done sharing vports */
2234 	ecore_init_qm_advance_vport(p_hwfn);
2235 
2236 	/* pqs for vfs */
2237 	ecore_init_qm_vf_pqs(p_hwfn);
2238 }
2239 
2240 /* compare values of getters against resources amounts */
2241 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
2242 {
2243 	if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
2244 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
2245 		return ECORE_INVAL;
2246 	}
2247 
2248 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
2249 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
2250 		return ECORE_INVAL;
2251 	}
2252 
2253 	return ECORE_SUCCESS;
2254 }
2255 
2256 /*
2257  * Function for verbose printing of the qm initialization results
2258  */
2259 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
2260 {
2261 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2262 	struct init_qm_vport_params *vport;
2263 	struct init_qm_port_params *port;
2264 	struct init_qm_pq_params *pq;
2265 	int i, tc;
2266 
2267 	/* top level params */
2268 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
2269 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
2270 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2271 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2272 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2273 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
2274 
2275 	/* port table */
2276 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
2277 		port = &(qm_info->qm_port_params[i]);
2278 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2279 			   i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
2280 	}
2281 
2282 	/* vport table */
2283 	for (i = 0; i < qm_info->num_vports; i++) {
2284 		vport = &(qm_info->qm_vport_params[i]);
2285 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
2286 			   qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
2287 		for (tc = 0; tc < NUM_OF_TCS; tc++)
2288 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
2289 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
2290 	}
2291 
2292 	/* pq table */
2293 	for (i = 0; i < qm_info->num_pqs; i++) {
2294 		pq = &(qm_info->qm_pq_params[i]);
2295 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
2296 			   qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
2297 	}
2298 }
2299 
2300 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
2301 {
2302 	/* reset params required for init run */
2303 	ecore_init_qm_reset_params(p_hwfn);
2304 
2305 	/* init QM top level params */
2306 	ecore_init_qm_params(p_hwfn);
2307 
2308 	/* init QM port params */
2309 	ecore_init_qm_port_params(p_hwfn);
2310 
2311 	/* init QM vport params */
2312 	ecore_init_qm_vport_params(p_hwfn);
2313 
2314 	/* init QM physical queue params */
2315 	ecore_init_qm_pq_params(p_hwfn);
2316 
2317 	/* display all that init */
2318 	ecore_dp_init_qm_params(p_hwfn);
2319 }
2320 
2321 /* This function reconfigures the QM pf on the fly.
2322  * For this purpose we:
2323  * 1. reconfigure the QM database
2324  * 2. set new values to runtime array
2325  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2326  * 4. activate init tool in QM_PF stage
2327  * 5. send an sdm_qm_cmd through rbc interface to release the QM
2328  */
2329 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
2330 				     struct ecore_ptt *p_ptt)
2331 {
2332 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2333 	bool b_rc;
2334 	enum _ecore_status_t rc;
2335 
2336 	/* initialize ecore's qm data structure */
2337 	ecore_init_qm_info(p_hwfn);
2338 
2339 	/* stop PF's qm queues */
2340 	OSAL_SPIN_LOCK(&qm_lock);
2341 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2342 				      qm_info->start_pq, qm_info->num_pqs);
2343 	OSAL_SPIN_UNLOCK(&qm_lock);
2344 	if (!b_rc)
2345 		return ECORE_INVAL;
2346 
2347 	/* clear the QM_PF runtime phase leftovers from previous init */
2348 	ecore_init_clear_rt_data(p_hwfn);
2349 
2350 	/* prepare QM portion of runtime array */
2351 	ecore_qm_init_pf(p_hwfn, p_ptt, false);
2352 
2353 	/* activate init tool on runtime array */
2354 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2355 			    p_hwfn->hw_info.hw_mode);
2356 	if (rc != ECORE_SUCCESS)
2357 		return rc;
2358 
2359 	/* start PF's qm queues */
2360 	OSAL_SPIN_LOCK(&qm_lock);
2361 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2362 				      qm_info->start_pq, qm_info->num_pqs);
2363 	OSAL_SPIN_UNLOCK(&qm_lock);
2364 	if (!b_rc)
2365 		return ECORE_INVAL;
2366 
2367 	return ECORE_SUCCESS;
2368 }
2369 
2370 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
2371 {
2372 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2373 	enum _ecore_status_t rc;
2374 
2375 	rc = ecore_init_qm_sanity(p_hwfn);
2376 	if (rc != ECORE_SUCCESS)
2377 		goto alloc_err;
2378 
2379 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2380 					    sizeof(struct init_qm_pq_params) *
2381 					    ecore_init_qm_get_num_pqs(p_hwfn));
2382 	if (!qm_info->qm_pq_params)
2383 		goto alloc_err;
2384 
2385 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2386 					       sizeof(struct init_qm_vport_params) *
2387 					       ecore_init_qm_get_num_vports(p_hwfn));
2388 	if (!qm_info->qm_vport_params)
2389 		goto alloc_err;
2390 
2391 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2392 					      sizeof(struct init_qm_port_params) *
2393 					      p_hwfn->p_dev->num_ports_in_engine);
2394 	if (!qm_info->qm_port_params)
2395 		goto alloc_err;
2396 
2397 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2398 					sizeof(struct ecore_wfq_data) *
2399 					ecore_init_qm_get_num_vports(p_hwfn));
2400 	if (!qm_info->wfq_data)
2401 		goto alloc_err;
2402 
2403 	return ECORE_SUCCESS;
2404 
2405 alloc_err:
2406 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
2407 	ecore_qm_info_free(p_hwfn);
2408 	return ECORE_NOMEM;
2409 }
2410 /******************** End QM initialization ***************/
2411 
2412 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
2413 {
2414 	u32 rdma_tasks, excess_tasks;
2415 	u32 line_count;
2416 	enum _ecore_status_t rc = ECORE_SUCCESS;
2417 	int i;
2418 
2419 	if (IS_VF(p_dev)) {
2420 		for_each_hwfn(p_dev, i) {
2421 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
2422 			if (rc != ECORE_SUCCESS)
2423 				return rc;
2424 		}
2425 		return rc;
2426 	}
2427 
2428 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2429 				     sizeof(*p_dev->fw_data));
2430 	if (!p_dev->fw_data)
2431 		return ECORE_NOMEM;
2432 
2433 	for_each_hwfn(p_dev, i) {
2434 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2435 		u32 n_eqes, num_cons;
2436 
2437 		/* initialize the doorbell recovery mechanism */
2438 		rc = ecore_db_recovery_setup(p_hwfn);
2439 		if (rc)
2440 			goto alloc_err;
2441 
2442 		/* First allocate the context manager structure */
2443 		rc = ecore_cxt_mngr_alloc(p_hwfn);
2444 		if (rc)
2445 			goto alloc_err;
2446 
2447 		/* Set the HW cid/tid numbers (in the context manager)
2448 		 * Must be done prior to any further computations.
2449 		 */
2450 		rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2451 		if (rc)
2452 			goto alloc_err;
2453 
2454 		rc = ecore_alloc_qm_data(p_hwfn);
2455 		if (rc)
2456 			goto alloc_err;
2457 
2458 		/* init qm info */
2459 		ecore_init_qm_info(p_hwfn);
2460 
2461 		/* Compute the ILT client partition */
2462 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2463 		if (rc) {
2464 			DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
2465 			/* In case there are not enough ILT lines we reduce the
2466 			 * number of RDMA tasks and re-compute.
2467 			 */
2468 			excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
2469 					p_hwfn, line_count);
2470 			if (!excess_tasks)
2471 				goto alloc_err;
2472 
2473 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2474 			rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
2475 			if (rc)
2476 				goto alloc_err;
2477 
2478 			rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2479 			if (rc) {
2480 				DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
2481 				       line_count);
2482 
2483 				goto alloc_err;
2484 			}
2485 		}
2486 
2487 		/* CID map / ILT shadow table / T2
2488 		 * The talbes sizes are determined by the computations above
2489 		 */
2490 		rc = ecore_cxt_tables_alloc(p_hwfn);
2491 		if (rc)
2492 			goto alloc_err;
2493 
2494 		/* SPQ, must follow ILT because initializes SPQ context */
2495 		rc = ecore_spq_alloc(p_hwfn);
2496 		if (rc)
2497 			goto alloc_err;
2498 
2499 		/* SP status block allocation */
2500 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2501 							   RESERVED_PTT_DPC);
2502 
2503 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2504 		if (rc)
2505 			goto alloc_err;
2506 
2507 		rc = ecore_iov_alloc(p_hwfn);
2508 		if (rc)
2509 			goto alloc_err;
2510 
2511 		/* EQ */
2512 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
2513 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2514 			u32 n_srq = ecore_cxt_get_total_srq_count(p_hwfn);
2515 
2516 			/* Calculate the EQ size
2517 			 * ---------------------
2518 			 * Each ICID may generate up to one event at a time i.e.
2519 			 * the event must be handled/cleared before a new one
2520 			 * can be generated. We calculate the sum of events per
2521 			 * protocol and create an EQ deep enough to handle the
2522 			 * worst case:
2523 			 * - Core - according to SPQ.
2524 			 * - RoCE - per QP there are a couple of ICIDs, one
2525 			 *	  responder and one requester, each can
2526 			 *	  generate max 2 EQE (err+qp_destroyed) =>
2527 			 *	  n_eqes_qp = 4 * n_qp.
2528 			 *	  Each CQ can generate an EQE. There are 2 CQs
2529 			 *	  per QP => n_eqes_cq = 2 * n_qp.
2530 			 *	  Hence the RoCE total is 6 * n_qp or
2531 			 *	  3 * num_cons.
2532 			 *	  On top of that one eqe shoule be added for
2533 			 *	  each XRC SRQ and SRQ.
2534 			 * - iWARP - can generate three async per QP (error
2535 			 *	  detected and qp in error) and an
2536 			 	  additional error per CQ. 4* num_cons.
2537 			 	  On top of that one eqe shoule be added for
2538 			 *	  each SRQ and XRC SRQ.
2539 			 * - ENet - There can be up to two events per VF. One
2540 			 *	  for VF-PF channel and another for VF FLR
2541 			 *	  initial cleanup. The number of VFs is
2542 			 *	  bounded by MAX_NUM_VFS_BB, and is much
2543 			 *	  smaller than RoCE's so we avoid exact
2544 			 *	  calculation.
2545 			 */
2546 			if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
2547 				num_cons = ecore_cxt_get_proto_cid_count(
2548 					p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
2549 				num_cons *= 3;
2550 			} else {
2551 				num_cons = ecore_cxt_get_proto_cid_count(
2552 						p_hwfn, PROTOCOLID_IWARP,
2553 						OSAL_NULL);
2554 				num_cons *= 4;
2555 			}
2556 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq;
2557 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2558 			num_cons = ecore_cxt_get_proto_cid_count(
2559 					p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
2560 			n_eqes += 2 * num_cons;
2561 		}
2562 
2563 		if (n_eqes > 0xFF00) {
2564 			DP_ERR(p_hwfn, "EQs maxing out at 0xFF00 elements\n");
2565 			n_eqes = 0xFF00;
2566 		}
2567 
2568 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
2569 		if (rc)
2570 			goto alloc_err;
2571 
2572 		rc = ecore_consq_alloc(p_hwfn);
2573 		if (rc)
2574 			goto alloc_err;
2575 
2576 		rc = ecore_l2_alloc(p_hwfn);
2577 		if (rc != ECORE_SUCCESS)
2578 			goto alloc_err;
2579 
2580 #ifdef CONFIG_ECORE_LL2
2581 		if (p_hwfn->using_ll2) {
2582 			rc = ecore_ll2_alloc(p_hwfn);
2583 			if (rc)
2584 				goto alloc_err;
2585 		}
2586 #endif
2587 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
2588 			rc = ecore_fcoe_alloc(p_hwfn);
2589 			if (rc)
2590 				goto alloc_err;
2591 		}
2592 
2593 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2594 			rc = ecore_iscsi_alloc(p_hwfn);
2595 			if (rc)
2596 				goto alloc_err;
2597 
2598 			rc = ecore_ooo_alloc(p_hwfn);
2599 			if (rc)
2600 				goto alloc_err;
2601 		}
2602 #ifdef CONFIG_ECORE_ROCE
2603 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2604 			rc = ecore_rdma_info_alloc(p_hwfn);
2605 			if (rc)
2606 				goto alloc_err;
2607 		}
2608 #endif
2609 
2610 		/* DMA info initialization */
2611 		rc = ecore_dmae_info_alloc(p_hwfn);
2612 		if (rc) {
2613 			DP_NOTICE(p_hwfn, false,
2614 				  "Failed to allocate memory for dmae_info structure\n");
2615 			goto alloc_err;
2616 		}
2617 
2618 		/* DCBX initialization */
2619 		rc = ecore_dcbx_info_alloc(p_hwfn);
2620 		if (rc) {
2621 			DP_NOTICE(p_hwfn, false,
2622 				  "Failed to allocate memory for dcbx structure\n");
2623 			goto alloc_err;
2624 		}
2625 	}
2626 
2627 	rc = ecore_llh_alloc(p_dev);
2628 	if (rc != ECORE_SUCCESS) {
2629 		DP_NOTICE(p_dev, false,
2630 			  "Failed to allocate memory for the llh_info structure\n");
2631 		goto alloc_err;
2632 	}
2633 
2634 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2635 					 sizeof(*p_dev->reset_stats));
2636 	if (!p_dev->reset_stats) {
2637 		DP_NOTICE(p_dev, false,
2638 			  "Failed to allocate reset statistics\n");
2639 		goto alloc_no_mem;
2640 	}
2641 
2642 	return ECORE_SUCCESS;
2643 
2644 alloc_no_mem:
2645 	rc = ECORE_NOMEM;
2646 alloc_err:
2647 	ecore_resc_free(p_dev);
2648 	return rc;
2649 }
2650 
2651 void ecore_resc_setup(struct ecore_dev *p_dev)
2652 {
2653 	int i;
2654 
2655 	if (IS_VF(p_dev)) {
2656 		for_each_hwfn(p_dev, i)
2657 			ecore_l2_setup(&p_dev->hwfns[i]);
2658 		return;
2659 	}
2660 
2661 	for_each_hwfn(p_dev, i) {
2662 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2663 
2664 		ecore_cxt_mngr_setup(p_hwfn);
2665 		ecore_spq_setup(p_hwfn);
2666 		ecore_eq_setup(p_hwfn);
2667 		ecore_consq_setup(p_hwfn);
2668 
2669 		/* Read shadow of current MFW mailbox */
2670 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2671 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2672 			    p_hwfn->mcp_info->mfw_mb_cur,
2673 			    p_hwfn->mcp_info->mfw_mb_length);
2674 
2675 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2676 
2677 		ecore_l2_setup(p_hwfn);
2678 		ecore_iov_setup(p_hwfn);
2679 #ifdef CONFIG_ECORE_LL2
2680 		if (p_hwfn->using_ll2)
2681 			ecore_ll2_setup(p_hwfn);
2682 #endif
2683 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2684 			ecore_fcoe_setup(p_hwfn);
2685 
2686 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2687 			ecore_iscsi_setup(p_hwfn);
2688 			ecore_ooo_setup(p_hwfn);
2689 		}
2690 	}
2691 }
2692 
2693 #define FINAL_CLEANUP_POLL_CNT	(100)
2694 #define FINAL_CLEANUP_POLL_TIME	(10)
2695 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
2696 					 struct ecore_ptt *p_ptt,
2697 					 u16 id, bool is_vf)
2698 {
2699 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2700 	enum _ecore_status_t rc = ECORE_TIMEOUT;
2701 
2702 #ifndef ASIC_ONLY
2703 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
2704 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2705 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
2706 		return ECORE_SUCCESS;
2707 	}
2708 #endif
2709 
2710 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
2711 	       USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2712 
2713 	if (is_vf)
2714 		id += 0x10;
2715 
2716 	command |= X_FINAL_CLEANUP_AGG_INT <<
2717 		   SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2718 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2719 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2720 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2721 
2722 	/* Make sure notification is not set before initiating final cleanup */
2723 	if (REG_RD(p_hwfn, addr)) {
2724 		DP_NOTICE(p_hwfn, false,
2725 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2726 		REG_WR(p_hwfn, addr, 0);
2727 	}
2728 
2729 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
2730 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2731 		   id, command);
2732 
2733 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2734 
2735 	/* Poll until completion */
2736 	while (!REG_RD(p_hwfn, addr) && count--)
2737 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
2738 
2739 	if (REG_RD(p_hwfn, addr))
2740 		rc = ECORE_SUCCESS;
2741 	else
2742 		DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
2743 
2744 	/* Cleanup afterwards */
2745 	REG_WR(p_hwfn, addr, 0);
2746 
2747 	return rc;
2748 }
2749 
2750 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
2751 {
2752 	int hw_mode = 0;
2753 
2754 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
2755 		hw_mode |= 1 << MODE_BB;
2756 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
2757 		hw_mode |= 1 << MODE_K2;
2758 	} else if (ECORE_IS_E5(p_hwfn->p_dev)) {
2759 		hw_mode |= 1 << MODE_E5;
2760 	} else {
2761 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
2762 			  p_hwfn->p_dev->type);
2763 		return ECORE_INVAL;
2764 	}
2765 
2766 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
2767 	switch (p_hwfn->p_dev->num_ports_in_engine) {
2768 	case 1:
2769 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2770 		break;
2771 	case 2:
2772 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2773 		break;
2774 	case 4:
2775 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2776 		break;
2777 	default:
2778 		DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
2779 			  p_hwfn->p_dev->num_ports_in_engine);
2780 		return ECORE_INVAL;
2781 	}
2782 
2783 	if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS,
2784 			  &p_hwfn->p_dev->mf_bits))
2785 		hw_mode |= 1 << MODE_MF_SD;
2786 	else
2787 		hw_mode |= 1 << MODE_MF_SI;
2788 
2789 #ifndef ASIC_ONLY
2790 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2791 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2792 			hw_mode |= 1 << MODE_FPGA;
2793 		} else {
2794 			if (p_hwfn->p_dev->b_is_emul_full)
2795 				hw_mode |= 1 << MODE_EMUL_FULL;
2796 			else
2797 				hw_mode |= 1 << MODE_EMUL_REDUCED;
2798 		}
2799 	} else
2800 #endif
2801 	hw_mode |= 1 << MODE_ASIC;
2802 
2803 	if (ECORE_IS_CMT(p_hwfn->p_dev))
2804 		hw_mode |= 1 << MODE_100G;
2805 
2806 	p_hwfn->hw_info.hw_mode = hw_mode;
2807 
2808 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
2809 		   "Configuring function for hw_mode: 0x%08x\n",
2810 		   p_hwfn->hw_info.hw_mode);
2811 
2812 	return ECORE_SUCCESS;
2813 }
2814 
2815 #ifndef ASIC_ONLY
2816 /* MFW-replacement initializations for non-ASIC */
2817 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
2818 					       struct ecore_ptt *p_ptt)
2819 {
2820 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2821 	u32 pl_hv = 1;
2822 	int i;
2823 
2824 	if (CHIP_REV_IS_EMUL(p_dev)) {
2825 		if (ECORE_IS_AH(p_dev))
2826 			pl_hv |= 0x600;
2827 		else if (ECORE_IS_E5(p_dev))
2828 			ECORE_E5_MISSING_CODE;
2829 	}
2830 
2831 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
2832 
2833 	if (CHIP_REV_IS_EMUL(p_dev) &&
2834 	    (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
2835 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
2836 			 0x3ffffff);
2837 
2838 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
2839 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
2840 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
2841 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
2842 
2843 	if (CHIP_REV_IS_EMUL(p_dev)) {
2844 		if (ECORE_IS_AH(p_dev)) {
2845 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
2846 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
2847 				 (p_dev->num_ports_in_engine >> 1));
2848 
2849 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
2850 				 p_dev->num_ports_in_engine == 4 ? 0 : 3);
2851 		} else if (ECORE_IS_E5(p_dev)) {
2852 			ECORE_E5_MISSING_CODE;
2853 		}
2854 
2855 		/* Poll on RBC */
2856 		ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
2857 		for (i = 0; i < 100; i++) {
2858 			OSAL_UDELAY(50);
2859 			if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
2860 				break;
2861 		}
2862 		if (i == 100)
2863 			DP_NOTICE(p_hwfn, true,
2864 				  "RBC done failed to complete in PSWRQ2\n");
2865 	}
2866 
2867 	return ECORE_SUCCESS;
2868 }
2869 #endif
2870 
2871 /* Init run time data for all PFs and their VFs on an engine.
2872  * TBD - for VFs - Once we have parent PF info for each VF in
2873  * shmem available as CAU requires knowledge of parent PF for each VF.
2874  */
2875 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
2876 {
2877 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2878 	int i, igu_sb_id;
2879 
2880 	for_each_hwfn(p_dev, i) {
2881 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2882 		struct ecore_igu_info *p_igu_info;
2883 		struct ecore_igu_block *p_block;
2884 		struct cau_sb_entry sb_entry;
2885 
2886 		p_igu_info = p_hwfn->hw_info.p_igu_info;
2887 
2888 		for (igu_sb_id = 0;
2889 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
2890 		     igu_sb_id++) {
2891 			p_block = &p_igu_info->entry[igu_sb_id];
2892 
2893 			if (!p_block->is_pf)
2894 				continue;
2895 
2896 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
2897 						p_block->function_id,
2898 						0, 0);
2899 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2900 					 sb_entry);
2901 		}
2902 	}
2903 }
2904 
2905 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
2906 				       struct ecore_ptt *p_ptt)
2907 {
2908 	u32 val, wr_mbs, cache_line_size;
2909 
2910 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2911 	switch (val) {
2912 	case 0:
2913 		wr_mbs = 128;
2914 		break;
2915 	case 1:
2916 		wr_mbs = 256;
2917 		break;
2918 	case 2:
2919 		wr_mbs = 512;
2920 		break;
2921 	default:
2922 		DP_INFO(p_hwfn,
2923 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2924 			val);
2925 		return;
2926 	}
2927 
2928 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
2929 	switch (cache_line_size) {
2930 	case 32:
2931 		val = 0;
2932 		break;
2933 	case 64:
2934 		val = 1;
2935 		break;
2936 	case 128:
2937 		val = 2;
2938 		break;
2939 	case 256:
2940 		val = 3;
2941 		break;
2942 	default:
2943 		DP_INFO(p_hwfn,
2944 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2945 			cache_line_size);
2946 	}
2947 
2948 	if (OSAL_CACHE_LINE_SIZE > wr_mbs)
2949 		DP_INFO(p_hwfn,
2950 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2951 			OSAL_CACHE_LINE_SIZE, wr_mbs);
2952 
2953 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2954 	if (val > 0) {
2955 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2956 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2957 	}
2958 }
2959 
2960 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
2961 						 struct ecore_ptt *p_ptt,
2962 						 int hw_mode)
2963 {
2964 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2965 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2966 	u8 vf_id, max_num_vfs;
2967 	u16 num_pfs, pf_id;
2968 	u32 concrete_fid;
2969 	enum _ecore_status_t rc	= ECORE_SUCCESS;
2970 
2971 	ecore_init_cau_rt_data(p_dev);
2972 
2973 	/* Program GTT windows */
2974 	ecore_gtt_init(p_hwfn, p_ptt);
2975 
2976 #ifndef ASIC_ONLY
2977 	if (CHIP_REV_IS_EMUL(p_dev)) {
2978 		rc = ecore_hw_init_chip(p_hwfn, p_ptt);
2979 		if (rc != ECORE_SUCCESS)
2980 			return rc;
2981 	}
2982 #endif
2983 
2984 	if (p_hwfn->mcp_info) {
2985 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
2986 			qm_info->pf_rl_en = 1;
2987 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
2988 			qm_info->pf_wfq_en = 1;
2989 	}
2990 
2991 	ecore_qm_common_rt_init(p_hwfn,
2992 				p_dev->num_ports_in_engine,
2993 				qm_info->max_phys_tcs_per_port,
2994 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
2995 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
2996 				qm_info->qm_port_params);
2997 
2998 	ecore_cxt_hw_init_common(p_hwfn);
2999 
3000 	ecore_init_cache_line_size(p_hwfn, p_ptt);
3001 
3002 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn),
3003 			    hw_mode);
3004 	if (rc != ECORE_SUCCESS)
3005 		return rc;
3006 
3007 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
3008 	 * need to decide with which value, maybe runtime
3009 	 */
3010 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
3011 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
3012 
3013 	if (ECORE_IS_BB(p_dev)) {
3014 		/* Workaround clears ROCE search for all functions to prevent
3015 		 * involving non initialized function in processing ROCE packet.
3016 		 */
3017 		num_pfs = NUM_OF_ENG_PFS(p_dev);
3018 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
3019 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
3020 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3021 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3022 		}
3023 		/* pretend to original PF */
3024 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3025 	}
3026 
3027 	/* Workaround for avoiding CCFC execution error when getting packets
3028 	 * with CRC errors, and allowing instead the invoking of the FW error
3029 	 * handler.
3030 	 * This is not done inside the init tool since it currently can't
3031 	 * perform a pretending to VFs.
3032 	 */
3033 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
3034 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
3035 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
3036 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
3037 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
3038 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
3039 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
3040 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
3041 	}
3042 	/* pretend to original PF */
3043 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3044 
3045 	return rc;
3046 }
3047 
3048 #ifndef ASIC_ONLY
3049 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
3050 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
3051 
3052 #define PMEG_IF_BYTE_COUNT	8
3053 
3054 static void ecore_wr_nw_port(struct ecore_hwfn	*p_hwfn,
3055 			     struct ecore_ptt	*p_ptt,
3056 			     u32		addr,
3057 			     u64		data,
3058 			     u8			reg_type,
3059 			     u8			port)
3060 {
3061 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3062 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
3063 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
3064 		   (8 << PMEG_IF_BYTE_COUNT),
3065 		   (reg_type << 25) | (addr << 8) | port,
3066 		   (u32)((data >> 32) & 0xffffffff),
3067 		   (u32)(data & 0xffffffff));
3068 
3069 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
3070 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
3071 		  0xffff00fe) |
3072 		 (8 << PMEG_IF_BYTE_COUNT));
3073 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
3074 		 (reg_type << 25) | (addr << 8) | port);
3075 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
3076 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
3077 		 (data >> 32) & 0xffffffff);
3078 }
3079 
3080 #define XLPORT_MODE_REG	(0x20a)
3081 #define XLPORT_MAC_CONTROL (0x210)
3082 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
3083 #define XLPORT_ENABLE_REG (0x20b)
3084 
3085 #define XLMAC_CTRL (0x600)
3086 #define XLMAC_MODE (0x601)
3087 #define XLMAC_RX_MAX_SIZE (0x608)
3088 #define XLMAC_TX_CTRL (0x604)
3089 #define XLMAC_PAUSE_CTRL (0x60d)
3090 #define XLMAC_PFC_CTRL (0x60e)
3091 
3092 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
3093 				    struct ecore_ptt *p_ptt)
3094 {
3095 	u8 loopback = 0, port = p_hwfn->port_id * 2;
3096 
3097 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3098 
3099 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
3100 			 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
3101 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
3102 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
3103 			 0x40, 0, port); /*XLMAC: SOFT RESET */
3104 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
3105 			 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
3106 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
3107 			 0x3fff, 0, port); /* XLMAC: Max Size */
3108 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
3109 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
3110 			 0, port);
3111 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
3112 			 0x7c000, 0, port);
3113 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
3114 			 0x30ffffc000ULL, 0, port);
3115 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
3116 			 0, port); /* XLMAC: TX_EN, RX_EN */
3117 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
3118 			 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
3119 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
3120 			 1, 0, port); /* Enabled Parallel PFC interface */
3121 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
3122 			 0xf, 1, port); /* XLPORT port enable */
3123 }
3124 
3125 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
3126 				       struct ecore_ptt *p_ptt)
3127 {
3128 	u8 port = p_hwfn->port_id;
3129 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
3130 
3131 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3132 
3133 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
3134 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
3135 		 (port <<
3136 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
3137 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
3138 
3139 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
3140 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
3141 
3142 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
3143 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
3144 
3145 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
3146 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
3147 
3148 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
3149 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
3150 
3151 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
3152 		 (0xA <<
3153 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
3154 		 (8 <<
3155 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
3156 
3157 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
3158 		 0xa853);
3159 }
3160 
3161 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
3162 				 struct ecore_ptt *p_ptt)
3163 {
3164 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
3165 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
3166 	else /* BB */
3167 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
3168 
3169 	return;
3170 }
3171 
3172 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
3173 			       struct ecore_ptt *p_ptt,  u8 port)
3174 {
3175 	int port_offset = port ? 0x800 : 0;
3176 	u32 xmac_rxctrl	= 0;
3177 
3178 	/* Reset of XMAC */
3179 	/* FIXME: move to common start */
3180 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
3181 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
3182 	OSAL_MSLEEP(1);
3183 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3184 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
3185 
3186 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
3187 
3188 	/* Set the number of ports on the Warp Core to 10G */
3189 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
3190 
3191 	/* Soft reset of XMAC */
3192 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3193 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3194 	OSAL_MSLEEP(1);
3195 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3196 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3197 
3198 	/* FIXME: move to common end */
3199 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3200 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
3201 
3202 	/* Set Max packet size: initialize XMAC block register for port 0 */
3203 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
3204 
3205 	/* CRC append for Tx packets: init XMAC block register for port 1 */
3206 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
3207 
3208 	/* Enable TX and RX: initialize XMAC block register for port 1 */
3209 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
3210 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
3211 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
3212 			       XMAC_REG_RX_CTRL_BB + port_offset);
3213 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
3214 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
3215 }
3216 #endif
3217 
3218 static enum _ecore_status_t
3219 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
3220 		       struct ecore_ptt *p_ptt,
3221 		       u32 pwm_region_size,
3222 		       u32 n_cpus)
3223 {
3224 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
3225 	u32 min_dpis;
3226 	u32 n_wids;
3227 
3228 	/* Calculate DPI size
3229 	 * ------------------
3230 	 * The PWM region contains Doorbell Pages. The first is reserverd for
3231 	 * the kernel for, e.g, L2. The others are free to be used by non-
3232 	 * trusted applications, typically from user space. Each page, called a
3233 	 * doorbell page is sectioned into windows that allow doorbells to be
3234 	 * issued in parallel by the kernel/application. The size of such a
3235 	 * window (a.k.a. WID) is 1kB.
3236 	 * Summary:
3237 	 *    1kB WID x N WIDS = DPI page size
3238 	 *    DPI page size x N DPIs = PWM region size
3239 	 * Notes:
3240 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
3241 	 * in order to ensure that two applications won't share the same page.
3242 	 * It also must contain at least one WID per CPU to allow parallelism.
3243 	 * It also must be a power of 2, since it is stored as a bit shift.
3244 	 *
3245 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
3246 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
3247 	 * containing 4 WIDs.
3248 	 */
3249 	n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
3250 	dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
3251 	dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & ~(OSAL_PAGE_SIZE - 1);
3252 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
3253 	dpi_count = pwm_region_size / dpi_page_size;
3254 
3255 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
3256 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
3257 
3258 	/* Update hwfn */
3259 	p_hwfn->dpi_size = dpi_page_size;
3260 	p_hwfn->dpi_count = dpi_count;
3261 
3262 	/* Update registers */
3263 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
3264 
3265 	if (dpi_count < min_dpis)
3266 		return ECORE_NORESOURCES;
3267 
3268 	return ECORE_SUCCESS;
3269 }
3270 
3271 enum ECORE_ROCE_EDPM_MODE {
3272 	ECORE_ROCE_EDPM_MODE_ENABLE	= 0,
3273 	ECORE_ROCE_EDPM_MODE_FORCE_ON	= 1,
3274 	ECORE_ROCE_EDPM_MODE_DISABLE	= 2,
3275 };
3276 
3277 static enum _ecore_status_t
3278 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
3279 			      struct ecore_ptt *p_ptt)
3280 {
3281 	struct ecore_rdma_pf_params *p_rdma_pf_params;
3282 	u32 pwm_regsize, norm_regsize;
3283 	u32 non_pwm_conn, min_addr_reg1;
3284 	u32 db_bar_size, n_cpus = 1;
3285 	u32 roce_edpm_mode;
3286 	u32 pf_dems_shift;
3287 	enum _ecore_status_t rc = ECORE_SUCCESS;
3288 	u8 cond;
3289 
3290 	db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
3291 	if (ECORE_IS_CMT(p_hwfn->p_dev))
3292 		db_bar_size /= 2;
3293 
3294 	/* Calculate doorbell regions
3295 	 * -----------------------------------
3296 	 * The doorbell BAR is made of two regions. The first is called normal
3297 	 * region and the second is called PWM region. In the normal region
3298 	 * each ICID has its own set of addresses so that writing to that
3299 	 * specific address identifies the ICID. In the Process Window Mode
3300 	 * region the ICID is given in the data written to the doorbell. The
3301 	 * above per PF register denotes the offset in the doorbell BAR in which
3302 	 * the PWM region begins.
3303 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
3304 	 * non-PWM connection. The calculation below computes the total non-PWM
3305 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
3306 	 * in units of 4,096 bytes.
3307 	 */
3308 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
3309 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
3310 						     OSAL_NULL) +
3311 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
3312 						     OSAL_NULL);
3313 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, OSAL_PAGE_SIZE);
3314 	min_addr_reg1 = norm_regsize / 4096;
3315 	pwm_regsize = db_bar_size - norm_regsize;
3316 
3317 	/* Check that the normal and PWM sizes are valid */
3318 	if (db_bar_size < norm_regsize) {
3319 		DP_ERR(p_hwfn->p_dev,
3320 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
3321 		       db_bar_size, norm_regsize);
3322 		return ECORE_NORESOURCES;
3323 	}
3324 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
3325 		DP_ERR(p_hwfn->p_dev,
3326 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
3327 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
3328 		       norm_regsize);
3329 		return ECORE_NORESOURCES;
3330 	}
3331 
3332 	p_rdma_pf_params = &p_hwfn->pf_params.rdma_pf_params;
3333 
3334 	/* Calculate number of DPIs */
3335 	if (ECORE_IS_IWARP_PERSONALITY(p_hwfn))
3336 		p_rdma_pf_params->roce_edpm_mode =  ECORE_ROCE_EDPM_MODE_DISABLE;
3337 
3338 	if (p_rdma_pf_params->roce_edpm_mode <= ECORE_ROCE_EDPM_MODE_DISABLE) {
3339 		roce_edpm_mode = p_rdma_pf_params->roce_edpm_mode;
3340 	} else {
3341 		DP_ERR(p_hwfn->p_dev,
3342 		       "roce edpm mode was configured to an illegal value of %u. Resetting it to 0-Enable EDPM if BAR size is adequate\n",
3343 		       p_rdma_pf_params->roce_edpm_mode);
3344 		roce_edpm_mode = 0;
3345 	}
3346 
3347 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
3348 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
3349 		/* Either EDPM is mandatory, or we are attempting to allocate a
3350 		 * WID per CPU.
3351 		 */
3352 		n_cpus = OSAL_NUM_CPUS();
3353 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3354 	}
3355 
3356 	cond = ((rc != ECORE_SUCCESS) &&
3357 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
3358 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
3359 	if (cond || p_hwfn->dcbx_no_edpm) {
3360 		/* Either EDPM is disabled from user configuration, or it is
3361 		 * disabled via DCBx, or it is not mandatory and we failed to
3362 		 * allocated a WID per CPU.
3363 		 */
3364 		n_cpus = 1;
3365 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3366 
3367 #ifdef CONFIG_ECORE_ROCE
3368 		/* If we entered this flow due to DCBX then the DPM register is
3369 		 * already configured.
3370 		 */
3371 		if (cond)
3372 			ecore_rdma_dpm_bar(p_hwfn, p_ptt);
3373 #endif
3374 	}
3375 
3376 	p_hwfn->wid_count = (u16)n_cpus;
3377 
3378 	/* Check return codes from above calls */
3379 	if (rc != ECORE_SUCCESS) {
3380 #ifndef LINUX_REMOVE
3381 		DP_ERR(p_hwfn,
3382 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via user configuration min_dpis or by disabling EDPM via user configuration roce_edpm_mode\n",
3383 		       p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3384 		       ECORE_MIN_DPIS);
3385 #else
3386 		DP_ERR(p_hwfn,
3387 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via the module parameter min_rdma_dpis or by disabling EDPM by setting the module parameter roce_edpm to 2\n",
3388 		       p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3389 		       ECORE_MIN_DPIS);
3390 #endif
3391 		DP_ERR(p_hwfn,
3392 		       "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3393 		       norm_regsize, pwm_regsize, p_hwfn->dpi_size,
3394 		       p_hwfn->dpi_count,
3395 		       ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3396 		       "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3397 
3398 		return ECORE_NORESOURCES;
3399 	}
3400 
3401 	DP_INFO(p_hwfn,
3402 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3403 		norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
3404 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3405 		"disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3406 
3407 	/* Update hwfn */
3408 	p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
3409 						      * calculate the doorbell
3410 						      * address
3411 						      */
3412 
3413 	/* Update registers */
3414 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
3415 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
3416 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
3417 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
3418 
3419 	return ECORE_SUCCESS;
3420 }
3421 
3422 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
3423 					       struct ecore_ptt *p_ptt,
3424 					       int hw_mode)
3425 {
3426 	enum _ecore_status_t rc	= ECORE_SUCCESS;
3427 
3428 	/* In CMT the gate should be cleared by the 2nd hwfn */
3429 	if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn))
3430 		STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
3431 
3432 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
3433 			    hw_mode);
3434 	if (rc != ECORE_SUCCESS)
3435 		return rc;
3436 
3437 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
3438 
3439 #ifndef ASIC_ONLY
3440 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
3441 		return ECORE_SUCCESS;
3442 
3443 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
3444 		if (ECORE_IS_AH(p_hwfn->p_dev))
3445 			return ECORE_SUCCESS;
3446 		else if (ECORE_IS_BB(p_hwfn->p_dev))
3447 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
3448 		else /* E5 */
3449 			ECORE_E5_MISSING_CODE;
3450 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3451 		if (ECORE_IS_CMT(p_hwfn->p_dev)) {
3452 			/* Activate OPTE in CMT */
3453 			u32 val;
3454 
3455 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
3456 			val |= 0x10;
3457 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
3458 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
3459 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
3460 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
3461 			ecore_wr(p_hwfn, p_ptt,
3462 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
3463 			ecore_wr(p_hwfn, p_ptt,
3464 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
3465 			ecore_wr(p_hwfn, p_ptt,
3466 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
3467 				 0x55555555);
3468 		}
3469 
3470 		ecore_emul_link_init(p_hwfn, p_ptt);
3471 	} else {
3472 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
3473 	}
3474 #endif
3475 
3476 	return rc;
3477 }
3478 
3479 static enum _ecore_status_t
3480 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3481 		 int hw_mode, struct ecore_hw_init_params *p_params)
3482 {
3483 	u8 rel_pf_id = p_hwfn->rel_pf_id;
3484 	u32 prs_reg;
3485 	enum _ecore_status_t rc	= ECORE_SUCCESS;
3486 	u16 ctrl;
3487 	int pos;
3488 
3489 	if (p_hwfn->mcp_info) {
3490 		struct ecore_mcp_function_info *p_info;
3491 
3492 		p_info = &p_hwfn->mcp_info->func_info;
3493 		if (p_info->bandwidth_min)
3494 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
3495 
3496 		/* Update rate limit once we'll actually have a link */
3497 		p_hwfn->qm_info.pf_rl = 100000;
3498 	}
3499 	ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
3500 
3501 	ecore_int_igu_init_rt(p_hwfn);
3502 
3503 	/* Set VLAN in NIG if needed */
3504 	if (hw_mode & (1 << MODE_MF_SD)) {
3505 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
3506 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
3507 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
3508 			     p_hwfn->hw_info.ovlan);
3509 
3510 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3511 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
3512 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
3513 			     1);
3514 	}
3515 
3516 	/* Enable classification by MAC if needed */
3517 	if (hw_mode & (1 << MODE_MF_SI)) {
3518 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
3519 		STORE_RT_REG(p_hwfn,
3520 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
3521 	}
3522 
3523 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise?*/
3524 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
3525 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
3526 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
3527 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
3528 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
3529 
3530 	/* perform debug configuration when chip is out of reset */
3531 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
3532 
3533 	/* Sanity check before the PF init sequence that uses DMAE */
3534 	rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
3535 	if (rc)
3536 		return rc;
3537 
3538 	/* PF Init sequence */
3539 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
3540 	if (rc)
3541 		return rc;
3542 
3543 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
3544 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
3545 	if (rc)
3546 		return rc;
3547 
3548 	/* Pure runtime initializations - directly to the HW  */
3549 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
3550 
3551 	/* PCI relaxed ordering is generally beneficial for performance,
3552 	 * but can hurt performance or lead to instability on some setups.
3553 	 * If management FW is taking care of it go with that, otherwise
3554 	 * disable to be on the safe side.
3555 	 */
3556 	pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
3557 	if (!pos) {
3558 		DP_NOTICE(p_hwfn, true,
3559 			  "Failed to find the PCI Express Capability structure in the PCI config space\n");
3560 		return ECORE_IO;
3561 	}
3562 
3563 	OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
3564 
3565 	if (p_params->pci_rlx_odr_mode == ECORE_ENABLE_RLX_ODR) {
3566 		ctrl |= PCI_EXP_DEVCTL_RELAX_EN;
3567 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3568 					   pos + PCI_EXP_DEVCTL, ctrl);
3569 	} else if (p_params->pci_rlx_odr_mode == ECORE_DISABLE_RLX_ODR) {
3570 		ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3571 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3572 					   pos + PCI_EXP_DEVCTL, ctrl);
3573 	} else if (ecore_mcp_rlx_odr_supported(p_hwfn)) {
3574 		DP_INFO(p_hwfn, "PCI relax ordering configured by MFW\n");
3575 	} else {
3576 		ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3577 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3578 					   pos + PCI_EXP_DEVCTL, ctrl);
3579 	}
3580 
3581 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
3582 	if (rc != ECORE_SUCCESS)
3583 		return rc;
3584 
3585 	/* Use the leading hwfn since in CMT only NIG #0 is operational */
3586 	if (IS_LEAD_HWFN(p_hwfn)) {
3587 		rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt,
3588 					  p_params->avoid_eng_affin);
3589 		if (rc != ECORE_SUCCESS)
3590 			return rc;
3591 	}
3592 
3593 	if (p_params->b_hw_start) {
3594 		/* enable interrupts */
3595 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode);
3596 		if (rc != ECORE_SUCCESS)
3597 			return rc;
3598 
3599 		/* send function start command */
3600 		rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn,
3601 				       p_params->allow_npar_tx_switch);
3602 		if (rc) {
3603 			DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
3604 			return rc;
3605 		}
3606 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3607 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3608 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3609 
3610 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3611 		{
3612 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
3613 					(1 << 2));
3614 			ecore_wr(p_hwfn, p_ptt,
3615 					PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
3616 					0x100);
3617 		}
3618 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3619 				"PRS_REG_SEARCH registers after start PFn\n");
3620 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
3621 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3622 				"PRS_REG_SEARCH_TCP: %x\n", prs_reg);
3623 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
3624 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3625 				"PRS_REG_SEARCH_UDP: %x\n", prs_reg);
3626 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
3627 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3628 				"PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
3629 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
3630 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3631 				"PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
3632 		prs_reg = ecore_rd(p_hwfn, p_ptt,
3633 				PRS_REG_SEARCH_TCP_FIRST_FRAG);
3634 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3635 				"PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
3636 				prs_reg);
3637 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3638 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3639 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3640 	}
3641 	return ECORE_SUCCESS;
3642 }
3643 
3644 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
3645 						  struct ecore_ptt *p_ptt,
3646 						  bool b_enable)
3647 {
3648 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
3649 
3650 	/* Configure the PF's internal FID_enable for master transactions */
3651 	ecore_wr(p_hwfn, p_ptt,
3652 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
3653 
3654 	/* Wait until value is set - try for 1 second every 50us */
3655 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
3656 		val = ecore_rd(p_hwfn, p_ptt,
3657 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
3658 		if (val == set_val)
3659 			break;
3660 
3661 		OSAL_UDELAY(50);
3662 	}
3663 
3664 	if (val != set_val) {
3665 		DP_NOTICE(p_hwfn, true,
3666 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
3667 		return ECORE_UNKNOWN_ERROR;
3668 	}
3669 
3670 	return ECORE_SUCCESS;
3671 }
3672 
3673 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
3674 			struct ecore_ptt *p_main_ptt)
3675 {
3676 	/* Read shadow of current MFW mailbox */
3677 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
3678 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
3679 		    p_hwfn->mcp_info->mfw_mb_cur,
3680 		    p_hwfn->mcp_info->mfw_mb_length);
3681 }
3682 
3683 static enum _ecore_status_t
3684 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn,
3685 			   struct ecore_load_req_params *p_load_req,
3686 			   struct ecore_drv_load_params *p_drv_load)
3687 {
3688 	/* Make sure that if ecore-client didn't provide inputs, all the
3689 	 * expected defaults are indeed zero.
3690 	 */
3691 	OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
3692 	OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
3693 	OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
3694 
3695 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
3696 
3697 	if (p_drv_load == OSAL_NULL)
3698 		goto out;
3699 
3700 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
3701 			       ECORE_DRV_ROLE_KDUMP :
3702 			       ECORE_DRV_ROLE_OS;
3703 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
3704 	p_load_req->override_force_load = p_drv_load->override_force_load;
3705 
3706 	/* Old MFW versions don't support timeout values other than default and
3707 	 * none, so these values are replaced according to the fall-back action.
3708 	 */
3709 
3710 	if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT ||
3711 	    p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE ||
3712 	    (p_hwfn->mcp_info->capabilities &
3713 	     FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) {
3714 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
3715 		goto out;
3716 	}
3717 
3718 	switch (p_drv_load->mfw_timeout_fallback) {
3719 	case ECORE_TO_FALLBACK_TO_NONE:
3720 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE;
3721 		break;
3722 	case ECORE_TO_FALLBACK_TO_DEFAULT:
3723 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
3724 		break;
3725 	case ECORE_TO_FALLBACK_FAIL_LOAD:
3726 		DP_NOTICE(p_hwfn, false,
3727 			  "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n",
3728 			  p_drv_load->mfw_timeout_val,
3729 			  ECORE_LOAD_REQ_LOCK_TO_DEFAULT,
3730 			  ECORE_LOAD_REQ_LOCK_TO_NONE);
3731 		return ECORE_ABORTED;
3732 	}
3733 
3734 	DP_INFO(p_hwfn,
3735 		"Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n",
3736 		p_drv_load->mfw_timeout_val,
3737 		(p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ?
3738 		"default" : "none",
3739 		p_load_req->timeout_val);
3740 out:
3741 	return ECORE_SUCCESS;
3742 }
3743 
3744 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
3745 				    struct ecore_hw_init_params *p_params)
3746 {
3747 	if (p_params->p_tunn) {
3748 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
3749 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
3750 	}
3751 
3752 	p_hwfn->b_int_enabled = 1;
3753 
3754 	return ECORE_SUCCESS;
3755 }
3756 
3757 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
3758 				   struct ecore_ptt *p_ptt)
3759 {
3760 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3761 		 1 << p_hwfn->abs_pf_id);
3762 }
3763 
3764 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
3765 				   struct ecore_hw_init_params *p_params)
3766 {
3767 	struct ecore_load_req_params load_req_params;
3768 	u32 load_code, resp, param, drv_mb_param;
3769 	bool b_default_mtu = true;
3770 	struct ecore_hwfn *p_hwfn;
3771 	enum _ecore_status_t rc = ECORE_SUCCESS, cancel_load;
3772 	u16 ether_type;
3773 	int i;
3774 
3775 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
3776 		DP_NOTICE(p_dev, false,
3777 			  "MSI mode is not supported for CMT devices\n");
3778 		return ECORE_INVAL;
3779 	}
3780 
3781 	if (IS_PF(p_dev)) {
3782 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
3783 		if (rc != ECORE_SUCCESS)
3784 			return rc;
3785 	}
3786 
3787 	for_each_hwfn(p_dev, i) {
3788 		p_hwfn = &p_dev->hwfns[i];
3789 
3790 		/* If management didn't provide a default, set one of our own */
3791 		if (!p_hwfn->hw_info.mtu) {
3792 			p_hwfn->hw_info.mtu = 1500;
3793 			b_default_mtu = false;
3794 		}
3795 
3796 		if (IS_VF(p_dev)) {
3797 			ecore_vf_start(p_hwfn, p_params);
3798 			continue;
3799 		}
3800 
3801 		rc = ecore_calc_hw_mode(p_hwfn);
3802 		if (rc != ECORE_SUCCESS)
3803 			return rc;
3804 
3805 		if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3806 						   &p_dev->mf_bits) ||
3807 				     OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING,
3808 						   &p_dev->mf_bits))) {
3809 			if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3810 					  &p_dev->mf_bits))
3811 				ether_type = ETH_P_8021Q;
3812 			else
3813 				ether_type = ETH_P_8021AD;
3814 			STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3815 				     ether_type);
3816 			STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3817 				     ether_type);
3818 			STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3819 				     ether_type);
3820 			STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3821 				     ether_type);
3822 		}
3823 
3824 		rc = ecore_fill_load_req_params(p_hwfn, &load_req_params,
3825 						p_params->p_drv_load_params);
3826 		if (rc != ECORE_SUCCESS)
3827 			return rc;
3828 
3829 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3830 					&load_req_params);
3831 		if (rc != ECORE_SUCCESS) {
3832 			DP_NOTICE(p_hwfn, false,
3833 				  "Failed sending a LOAD_REQ command\n");
3834 			return rc;
3835 		}
3836 
3837 		load_code = load_req_params.load_code;
3838 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
3839 			   "Load request was sent. Load code: 0x%x\n",
3840 			   load_code);
3841 
3842 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3843 
3844 		/* CQ75580:
3845 		 * When coming back from hibernate state, the registers from
3846 		 * which shadow is read initially are not initialized. It turns
3847 		 * out that these registers get initialized during the call to
3848 		 * ecore_mcp_load_req request. So we need to reread them here
3849 		 * to get the proper shadow register value.
3850 		 * Note: This is a workaround for the missing MFW
3851 		 * initialization. It may be removed once the implementation
3852 		 * is done.
3853 		 */
3854 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3855 
3856 		/* Only relevant for recovery:
3857 		 * Clear the indication after the LOAD_REQ command is responded
3858 		 * by the MFW.
3859 		 */
3860 		p_dev->recov_in_prog = false;
3861 
3862 		if (!qm_lock_ref_cnt) {
3863 #ifdef CONFIG_ECORE_LOCK_ALLOC
3864 			rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock);
3865 			if (rc) {
3866 				DP_ERR(p_hwfn, "qm_lock allocation failed\n");
3867 				goto qm_lock_fail;
3868 			}
3869 #endif
3870 			OSAL_SPIN_LOCK_INIT(&qm_lock);
3871 		}
3872 		++qm_lock_ref_cnt;
3873 
3874 		/* Clean up chip from previous driver if such remains exist.
3875 		 * This is not needed when the PF is the first one on the
3876 		 * engine, since afterwards we are going to init the FW.
3877 		 */
3878 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3879 			rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3880 						 p_hwfn->rel_pf_id, false);
3881 			if (rc != ECORE_SUCCESS) {
3882 				ecore_hw_err_notify(p_hwfn,
3883 						    ECORE_HW_ERR_RAMROD_FAIL);
3884 				goto load_err;
3885 			}
3886 		}
3887 
3888 		/* Log and clear previous pglue_b errors if such exist */
3889 		ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3890 
3891 		/* Enable the PF's internal FID_enable in the PXP */
3892 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3893 						  true);
3894 		if (rc != ECORE_SUCCESS)
3895 			goto load_err;
3896 
3897 		/* Clear the pglue_b was_error indication.
3898 		 * In E4 it must be done after the BME and the internal
3899 		 * FID_enable for the PF are set, since VDMs may cause the
3900 		 * indication to be set again.
3901 		 */
3902 		ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3903 
3904 		switch (load_code) {
3905 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
3906 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3907 						  p_hwfn->hw_info.hw_mode);
3908 			if (rc != ECORE_SUCCESS)
3909 				break;
3910 			/* Fall into */
3911 		case FW_MSG_CODE_DRV_LOAD_PORT:
3912 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3913 						p_hwfn->hw_info.hw_mode);
3914 			if (rc != ECORE_SUCCESS)
3915 				break;
3916 			/* Fall into */
3917 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3918 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3919 					      p_hwfn->hw_info.hw_mode,
3920 					      p_params);
3921 			break;
3922 		default:
3923 			DP_NOTICE(p_hwfn, false,
3924 				  "Unexpected load code [0x%08x]", load_code);
3925 			rc = ECORE_NOTIMPL;
3926 			break;
3927 		}
3928 
3929 		if (rc != ECORE_SUCCESS) {
3930 			DP_NOTICE(p_hwfn, false,
3931 				  "init phase failed for loadcode 0x%x (rc %d)\n",
3932 				  load_code, rc);
3933 			goto load_err;
3934 		}
3935 
3936 		rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3937 		if (rc != ECORE_SUCCESS) {
3938 			DP_NOTICE(p_hwfn, false, "Sending load done failed, rc = %d\n", rc);
3939 			if (rc == ECORE_NOMEM) {
3940 				DP_NOTICE(p_hwfn, false,
3941 					  "Sending load done was failed due to memory allocation failure\n");
3942 				goto load_err;
3943 			}
3944 			return rc;
3945 		}
3946 
3947 		/* send DCBX attention request command */
3948 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
3949 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
3950 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3951 				   DRV_MSG_CODE_SET_DCBX,
3952 				   1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
3953 				   &param);
3954 		if (rc != ECORE_SUCCESS) {
3955 			DP_NOTICE(p_hwfn, false,
3956 				  "Failed to send DCBX attention request\n");
3957 			return rc;
3958 		}
3959 
3960 		p_hwfn->hw_init_done = true;
3961 	}
3962 
3963 	if (IS_PF(p_dev)) {
3964 		/* Get pre-negotiated values for stag, bandwidth etc. */
3965 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3966 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3967 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3968 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3969 				   DRV_MSG_CODE_GET_OEM_UPDATES,
3970 				   1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3971 				   &resp, &param);
3972 		if (rc != ECORE_SUCCESS)
3973 			DP_NOTICE(p_hwfn, false,
3974 				  "Failed to send GET_OEM_UPDATES attention request\n");
3975 	}
3976 
3977 	if (IS_PF(p_dev)) {
3978 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3979 		drv_mb_param = STORM_FW_VERSION;
3980 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3981 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3982 				   drv_mb_param, &resp, &param);
3983 		if (rc != ECORE_SUCCESS)
3984 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
3985 
3986 		if (!b_default_mtu) {
3987 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3988 						      p_hwfn->hw_info.mtu);
3989 			if (rc != ECORE_SUCCESS)
3990 				DP_INFO(p_hwfn, "Failed to update default mtu\n");
3991 		}
3992 
3993 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
3994 						      p_hwfn->p_main_ptt,
3995 						      ECORE_OV_DRIVER_STATE_DISABLED);
3996 		if (rc != ECORE_SUCCESS)
3997 			DP_INFO(p_hwfn, "Failed to update driver state\n");
3998 
3999 		rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
4000 						 ECORE_OV_ESWITCH_VEB);
4001 		if (rc != ECORE_SUCCESS)
4002 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
4003 	}
4004 
4005 	return rc;
4006 
4007 load_err:
4008 	--qm_lock_ref_cnt;
4009 #ifdef CONFIG_ECORE_LOCK_ALLOC
4010 	if (!qm_lock_ref_cnt)
4011 		OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4012 qm_lock_fail:
4013 #endif
4014 	/* The MFW load lock should be released also when initialization fails.
4015 	 * If supported, use a cancel_load request to update the MFW with the
4016 	 * load failure.
4017 	 */
4018 	cancel_load = ecore_mcp_cancel_load_req(p_hwfn, p_hwfn->p_main_ptt);
4019 	if (cancel_load == ECORE_NOTIMPL) {
4020 		DP_INFO(p_hwfn,
4021 			"Send a load done request instead of cancel load\n");
4022 		ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
4023 	}
4024 	return rc;
4025 }
4026 
4027 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
4028 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
4029 				 struct ecore_hwfn *p_hwfn,
4030 				 struct ecore_ptt *p_ptt)
4031 {
4032 	int i;
4033 
4034 	/* close timers */
4035 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
4036 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
4037 	for (i = 0;
4038 	     i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
4039 	     i++) {
4040 		if ((!ecore_rd(p_hwfn, p_ptt,
4041 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
4042 		    (!ecore_rd(p_hwfn, p_ptt,
4043 			       TM_REG_PF_SCAN_ACTIVE_TASK)))
4044 			break;
4045 
4046 		/* Dependent on number of connection/tasks, possibly
4047 		 * 1ms sleep is required between polls
4048 		 */
4049 		OSAL_MSLEEP(1);
4050 	}
4051 
4052 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
4053 		return;
4054 
4055 	DP_NOTICE(p_hwfn, false,
4056 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
4057 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
4058 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
4059 }
4060 
4061 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
4062 {
4063 	int j;
4064 
4065 	for_each_hwfn(p_dev, j) {
4066 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4067 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
4068 
4069 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4070 	}
4071 }
4072 
4073 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
4074 						 struct ecore_ptt *p_ptt,
4075 						 u32 addr, u32 expected_val)
4076 {
4077 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
4078 
4079 	if (val != expected_val) {
4080 		DP_NOTICE(p_hwfn, true,
4081 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
4082 			  addr, val, expected_val);
4083 		return ECORE_UNKNOWN_ERROR;
4084 	}
4085 
4086 	return ECORE_SUCCESS;
4087 }
4088 
4089 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
4090 {
4091 	struct ecore_hwfn *p_hwfn;
4092 	struct ecore_ptt *p_ptt;
4093 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
4094 	int j;
4095 
4096 	for_each_hwfn(p_dev, j) {
4097 		p_hwfn = &p_dev->hwfns[j];
4098 		p_ptt = p_hwfn->p_main_ptt;
4099 
4100 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
4101 
4102 		if (IS_VF(p_dev)) {
4103 			ecore_vf_pf_int_cleanup(p_hwfn);
4104 			rc = ecore_vf_pf_reset(p_hwfn);
4105 			if (rc != ECORE_SUCCESS) {
4106 				DP_NOTICE(p_hwfn, true,
4107 					  "ecore_vf_pf_reset failed. rc = %d.\n",
4108 					  rc);
4109 				rc2 = ECORE_UNKNOWN_ERROR;
4110 			}
4111 			continue;
4112 		}
4113 
4114 		/* mark the hw as uninitialized... */
4115 		p_hwfn->hw_init_done = false;
4116 
4117 		/* Send unload command to MCP */
4118 		if (!p_dev->recov_in_prog) {
4119 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
4120 			if (rc != ECORE_SUCCESS) {
4121 				DP_NOTICE(p_hwfn, false,
4122 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
4123 					  rc);
4124 				rc2 = ECORE_UNKNOWN_ERROR;
4125 			}
4126 		}
4127 
4128 		OSAL_DPC_SYNC(p_hwfn);
4129 
4130 		/* After this point no MFW attentions are expected, e.g. prevent
4131 		 * race between pf stop and dcbx pf update.
4132 		 */
4133 
4134 		rc = ecore_sp_pf_stop(p_hwfn);
4135 		if (rc != ECORE_SUCCESS) {
4136 			DP_NOTICE(p_hwfn, false,
4137 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
4138 				  rc);
4139 			rc2 = ECORE_UNKNOWN_ERROR;
4140 		}
4141 
4142 		/* perform debug action after PF stop was sent */
4143 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
4144 
4145 		/* close NIG to BRB gate */
4146 		ecore_wr(p_hwfn, p_ptt,
4147 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4148 
4149 		/* close parser */
4150 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4151 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4152 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4153 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4154 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4155 
4156 		/* @@@TBD - clean transmission queues (5.b) */
4157 		/* @@@TBD - clean BTB (5.c) */
4158 
4159 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4160 
4161 		/* @@@TBD - verify DMAE requests are done (8) */
4162 
4163 		/* Disable Attention Generation */
4164 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
4165 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
4166 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
4167 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
4168 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
4169 		if (rc != ECORE_SUCCESS) {
4170 			DP_NOTICE(p_hwfn, true,
4171 				  "Failed to return IGU CAM to default\n");
4172 			rc2 = ECORE_UNKNOWN_ERROR;
4173 		}
4174 
4175 		/* Need to wait 1ms to guarantee SBs are cleared */
4176 		OSAL_MSLEEP(1);
4177 
4178 		if (!p_dev->recov_in_prog) {
4179 			ecore_verify_reg_val(p_hwfn, p_ptt,
4180 					     QM_REG_USG_CNT_PF_TX, 0);
4181 			ecore_verify_reg_val(p_hwfn, p_ptt,
4182 					     QM_REG_USG_CNT_PF_OTHER, 0);
4183 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
4184 		}
4185 
4186 		/* Disable PF in HW blocks */
4187 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
4188 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
4189 
4190 		if (IS_LEAD_HWFN(p_hwfn) &&
4191 		    OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
4192 		    !ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4193 			ecore_llh_remove_mac_filter(p_dev, 0,
4194 						    p_hwfn->hw_info.hw_mac_addr);
4195 
4196 		--qm_lock_ref_cnt;
4197 #ifdef CONFIG_ECORE_LOCK_ALLOC
4198 		if (!qm_lock_ref_cnt)
4199 			OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4200 #endif
4201 
4202 		if (!p_dev->recov_in_prog) {
4203 			rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4204 			if (rc == ECORE_NOMEM) {
4205 				DP_NOTICE(p_hwfn, false,
4206 					 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n");
4207 				rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4208 			}
4209 			if (rc != ECORE_SUCCESS) {
4210 				DP_NOTICE(p_hwfn, false,
4211 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
4212 					  rc);
4213 				rc2 = ECORE_UNKNOWN_ERROR;
4214 			}
4215 		}
4216 	} /* hwfn loop */
4217 
4218 	if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
4219 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
4220 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
4221 
4222 		 /* Clear the PF's internal FID_enable in the PXP.
4223 		  * In CMT this should only be done for first hw-function, and
4224 		  * only after all transactions have stopped for all active
4225 		  * hw-functions.
4226 		  */
4227 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
4228 						  false);
4229 		if (rc != ECORE_SUCCESS) {
4230 			DP_NOTICE(p_hwfn, true,
4231 				  "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
4232 				  rc);
4233 			rc2 = ECORE_UNKNOWN_ERROR;
4234 		}
4235 	}
4236 
4237 	return rc2;
4238 }
4239 
4240 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
4241 {
4242 	int j;
4243 
4244 	for_each_hwfn(p_dev, j) {
4245 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4246 		struct ecore_ptt *p_ptt;
4247 
4248 		if (IS_VF(p_dev)) {
4249 			ecore_vf_pf_int_cleanup(p_hwfn);
4250 			continue;
4251 		}
4252 		p_ptt = ecore_ptt_acquire(p_hwfn);
4253 		if (!p_ptt)
4254 			return ECORE_AGAIN;
4255 
4256 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
4257 
4258 		ecore_wr(p_hwfn, p_ptt,
4259 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4260 
4261 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4262 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4263 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4264 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4265 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4266 
4267 		/* @@@TBD - clean transmission queues (5.b) */
4268 		/* @@@TBD - clean BTB (5.c) */
4269 
4270 		/* @@@TBD - verify DMAE requests are done (8) */
4271 
4272 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
4273 		/* Need to wait 1ms to guarantee SBs are cleared */
4274 		OSAL_MSLEEP(1);
4275 		ecore_ptt_release(p_hwfn, p_ptt);
4276 	}
4277 
4278 	return ECORE_SUCCESS;
4279 }
4280 
4281 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
4282 {
4283 	struct ecore_ptt *p_ptt;
4284 
4285 	if (IS_VF(p_hwfn->p_dev))
4286 		return ECORE_SUCCESS;
4287 
4288 	p_ptt = ecore_ptt_acquire(p_hwfn);
4289 	if (!p_ptt)
4290 		return ECORE_AGAIN;
4291 
4292 	/* If roce info is allocated it means roce is initialized and should
4293 	 * be enabled in searcher.
4294 	 */
4295 	if (p_hwfn->p_rdma_info &&
4296 	    p_hwfn->p_rdma_info->active &&
4297 	    p_hwfn->b_rdma_enabled_in_prs)
4298 		ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
4299 
4300 	/* Re-open incoming traffic */
4301 	ecore_wr(p_hwfn, p_ptt,
4302 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
4303 	ecore_ptt_release(p_hwfn, p_ptt);
4304 
4305 	return ECORE_SUCCESS;
4306 }
4307 
4308 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev, u32 reg_idx,
4309 					u32 pattern_size, u32 crc)
4310 {
4311 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4312 	enum _ecore_status_t rc = ECORE_SUCCESS;
4313 	struct ecore_ptt *p_ptt;
4314 	u32 reg_len = 0;
4315 	u32 reg_crc = 0;
4316 
4317 	p_ptt = ecore_ptt_acquire(p_hwfn);
4318 	if (!p_ptt)
4319 		return ECORE_AGAIN;
4320 
4321 	/* Get length and CRC register offsets */
4322 	switch (reg_idx)
4323 	{
4324 	case 0:
4325 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
4326 				WOL_REG_ACPI_PAT_0_LEN_K2_E5;
4327 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
4328 				WOL_REG_ACPI_PAT_0_CRC_K2_E5;
4329 		break;
4330 	case 1:
4331 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
4332 				WOL_REG_ACPI_PAT_1_LEN_K2_E5;
4333 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
4334 				WOL_REG_ACPI_PAT_1_CRC_K2_E5;
4335 		break;
4336 	case 2:
4337 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
4338 				WOL_REG_ACPI_PAT_2_LEN_K2_E5;
4339 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
4340 				WOL_REG_ACPI_PAT_2_CRC_K2_E5;
4341 		break;
4342 	case 3:
4343 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
4344 				WOL_REG_ACPI_PAT_3_LEN_K2_E5;
4345 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
4346 				WOL_REG_ACPI_PAT_3_CRC_K2_E5;
4347 		break;
4348 	case 4:
4349 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
4350 				WOL_REG_ACPI_PAT_4_LEN_K2_E5;
4351 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
4352 				WOL_REG_ACPI_PAT_4_CRC_K2_E5;
4353 		break;
4354 	case 5:
4355 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
4356 				WOL_REG_ACPI_PAT_5_LEN_K2_E5;
4357 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
4358 				WOL_REG_ACPI_PAT_5_CRC_K2_E5;
4359 		break;
4360 	case 6:
4361 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
4362 				WOL_REG_ACPI_PAT_6_LEN_K2_E5;
4363 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
4364 				WOL_REG_ACPI_PAT_6_CRC_K2_E5;
4365 		break;
4366 	case 7:
4367 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
4368 				WOL_REG_ACPI_PAT_7_LEN_K2_E5;
4369 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
4370 				WOL_REG_ACPI_PAT_7_CRC_K2_E5;
4371 		break;
4372 	default:
4373 		rc = ECORE_UNKNOWN_ERROR;
4374 		goto out;
4375 	}
4376 
4377 	/* Allign pattern size to 4 */
4378 	while (pattern_size % 4)
4379 		pattern_size++;
4380 
4381 	/* Write pattern length and crc value */
4382 	if (ECORE_IS_BB(p_dev)) {
4383 		rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4384 		if (rc != ECORE_SUCCESS) {
4385 			DP_NOTICE(p_hwfn, false,
4386 				  "Failed to update the ACPI pattern length\n");
4387 			return rc;
4388 		}
4389 
4390 		rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_crc, crc);
4391 		if (rc != ECORE_SUCCESS) {
4392 			DP_NOTICE(p_hwfn, false,
4393 				  "Failed to update the ACPI pattern crc value\n");
4394 			return rc;
4395 		}
4396 	} else {
4397 		ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4398 		ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_crc, crc);
4399 	}
4400 
4401 	DP_INFO(p_dev,
4402 		"ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
4403 		"reg_len[0x%x=0x%x]\n",
4404 		reg_idx, reg_crc, crc, reg_len, pattern_size);
4405 out:
4406 	 ecore_ptt_release(p_hwfn, p_ptt);
4407 
4408 	return rc;
4409 }
4410 
4411 void ecore_wol_buffer_clear(struct ecore_hwfn *p_hwfn,
4412 			    struct ecore_ptt *p_ptt)
4413 {
4414 	const u32 wake_buffer_clear_offset =
4415 		ECORE_IS_BB(p_hwfn->p_dev) ?
4416 		NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
4417 
4418 	DP_INFO(p_hwfn->p_dev,
4419 		"ecore_wol_buffer_clear: reset "
4420 		"REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
4421 		wake_buffer_clear_offset);
4422 
4423 	if (ECORE_IS_BB(p_hwfn->p_dev)) {
4424 		ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4425 		ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4426 	} else {
4427 		ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4428 		ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4429 	}
4430 }
4431 
4432 enum _ecore_status_t ecore_get_wake_info(struct ecore_hwfn *p_hwfn,
4433 					 struct ecore_ptt *p_ptt,
4434 					 struct ecore_wake_info *wake_info)
4435 {
4436 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4437 	u32 *buf = OSAL_NULL;
4438 	u32 i    = 0;
4439 	const u32 reg_wake_buffer_offest =
4440 		ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
4441 			WOL_REG_WAKE_BUFFER_K2_E5;
4442 
4443 	wake_info->wk_info    = ecore_rd(p_hwfn, p_ptt,
4444 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
4445 				WOL_REG_WAKE_INFO_K2_E5);
4446 	wake_info->wk_details = ecore_rd(p_hwfn, p_ptt,
4447 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
4448 				WOL_REG_WAKE_DETAILS_K2_E5);
4449 	wake_info->wk_pkt_len = ecore_rd(p_hwfn, p_ptt,
4450 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
4451 				WOL_REG_WAKE_PKT_LEN_K2_E5);
4452 
4453 	DP_INFO(p_dev,
4454 		"ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
4455 		"REG_WAKE_DETAILS=0x%08x "
4456 		"REG_WAKE_PKT_LEN=0x%08x\n",
4457 		wake_info->wk_info,
4458 		wake_info->wk_details,
4459 		wake_info->wk_pkt_len);
4460 
4461 	buf = (u32 *)wake_info->wk_buffer;
4462 
4463 	for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
4464 	{
4465 		if ((i*sizeof(u32)) >=  sizeof(wake_info->wk_buffer))
4466 		{
4467 			DP_INFO(p_dev,
4468 				"ecore_get_wake_info: i index to 0 high=%d\n",
4469 				 i);
4470 			break;
4471 		}
4472 		buf[i] = ecore_rd(p_hwfn, p_ptt,
4473 				  reg_wake_buffer_offest + (i * sizeof(u32)));
4474 		DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
4475 			i, buf[i]);
4476 	}
4477 
4478 	ecore_wol_buffer_clear(p_hwfn, p_ptt);
4479 
4480 	return ECORE_SUCCESS;
4481 }
4482 
4483 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
4484 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
4485 {
4486 	ecore_ptt_pool_free(p_hwfn);
4487 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
4488 	p_hwfn->hw_info.p_igu_info = OSAL_NULL;
4489 }
4490 
4491 /* Setup bar access */
4492 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
4493 {
4494 	/* clear indirect access */
4495 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
4496 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4497 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
4498 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4499 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
4500 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4501 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
4502 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4503 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
4504 	} else {
4505 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4506 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
4507 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4508 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
4509 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4510 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
4511 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4512 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
4513 	}
4514 
4515 	/* Clean previous pglue_b errors if such exist */
4516 	ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
4517 
4518 	/* enable internal target-read */
4519 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4520 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
4521 }
4522 
4523 static void get_function_id(struct ecore_hwfn *p_hwfn)
4524 {
4525 	/* ME Register */
4526 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
4527 						  PXP_PF_ME_OPAQUE_ADDR);
4528 
4529 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
4530 
4531 	/* Bits 16-19 from the ME registers are the pf_num */
4532 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
4533 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4534 				      PXP_CONCRETE_FID_PFID);
4535 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4536 				    PXP_CONCRETE_FID_PORT);
4537 
4538 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4539 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
4540 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
4541 }
4542 
4543 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
4544 {
4545 	u32 *feat_num = p_hwfn->hw_info.feat_num;
4546 	struct ecore_sb_cnt_info sb_cnt;
4547 	u32 non_l2_sbs = 0;
4548 
4549 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
4550 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
4551 
4552 #ifdef CONFIG_ECORE_ROCE
4553 	/* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
4554 	 * status blocks equally between L2 / RoCE but with consideration as
4555 	 * to how many l2 queues / cnqs we have
4556 	 */
4557 	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
4558 #ifndef __EXTRACT__LINUX__THROW__
4559 		u32 max_cnqs;
4560 #endif
4561 
4562 		feat_num[ECORE_RDMA_CNQ] =
4563 			OSAL_MIN_T(u32,
4564 				   sb_cnt.cnt / 2,
4565 				   RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
4566 
4567 #ifndef __EXTRACT__LINUX__THROW__
4568 		/* Upper layer might require less */
4569 		max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
4570 		if (max_cnqs) {
4571 			if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
4572 				max_cnqs = 0;
4573 			feat_num[ECORE_RDMA_CNQ] =
4574 				OSAL_MIN_T(u32,
4575 					   feat_num[ECORE_RDMA_CNQ],
4576 					   max_cnqs);
4577 		}
4578 #endif
4579 
4580 		non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
4581 	}
4582 #endif
4583 
4584 	/* L2 Queues require each: 1 status block. 1 L2 queue */
4585 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
4586 		/* Start by allocating VF queues, then PF's */
4587 		feat_num[ECORE_VF_L2_QUE] =
4588 			OSAL_MIN_T(u32,
4589 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
4590 				   sb_cnt.iov_cnt);
4591 		feat_num[ECORE_PF_L2_QUE] =
4592 			OSAL_MIN_T(u32,
4593 				   sb_cnt.cnt - non_l2_sbs,
4594 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
4595 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
4596 	}
4597 
4598 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4599 		feat_num[ECORE_FCOE_CQ] =
4600 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4601 							     ECORE_CMDQS_CQS));
4602 
4603 	if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
4604 		feat_num[ECORE_ISCSI_CQ] =
4605 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4606 							     ECORE_CMDQS_CQS));
4607 
4608 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4609 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
4610 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
4611 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
4612 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
4613 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
4614 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
4615 		   (int)sb_cnt.cnt);
4616 }
4617 
4618 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
4619 {
4620 	switch (res_id) {
4621 	case ECORE_L2_QUEUE:
4622 		return "L2_QUEUE";
4623 	case ECORE_VPORT:
4624 		return "VPORT";
4625 	case ECORE_RSS_ENG:
4626 		return "RSS_ENG";
4627 	case ECORE_PQ:
4628 		return "PQ";
4629 	case ECORE_RL:
4630 		return "RL";
4631 	case ECORE_MAC:
4632 		return "MAC";
4633 	case ECORE_VLAN:
4634 		return "VLAN";
4635 	case ECORE_RDMA_CNQ_RAM:
4636 		return "RDMA_CNQ_RAM";
4637 	case ECORE_ILT:
4638 		return "ILT";
4639 	case ECORE_LL2_QUEUE:
4640 		return "LL2_QUEUE";
4641 	case ECORE_CMDQS_CQS:
4642 		return "CMDQS_CQS";
4643 	case ECORE_RDMA_STATS_QUEUE:
4644 		return "RDMA_STATS_QUEUE";
4645 	case ECORE_BDQ:
4646 		return "BDQ";
4647 	case ECORE_SB:
4648 		return "SB";
4649 	default:
4650 		return "UNKNOWN_RESOURCE";
4651 	}
4652 }
4653 
4654 static enum _ecore_status_t
4655 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4656 			      struct ecore_ptt *p_ptt,
4657 			      enum ecore_resources res_id,
4658 			      u32 resc_max_val,
4659 			      u32 *p_mcp_resp)
4660 {
4661 	enum _ecore_status_t rc;
4662 
4663 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
4664 					resc_max_val, p_mcp_resp);
4665 	if (rc != ECORE_SUCCESS) {
4666 		DP_NOTICE(p_hwfn, false,
4667 			  "MFW response failure for a max value setting of resource %d [%s]\n",
4668 			  res_id, ecore_hw_get_resc_name(res_id));
4669 		return rc;
4670 	}
4671 
4672 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
4673 		DP_INFO(p_hwfn,
4674 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
4675 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
4676 
4677 	return ECORE_SUCCESS;
4678 }
4679 
4680 static enum _ecore_status_t
4681 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4682 			    struct ecore_ptt *p_ptt)
4683 {
4684 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4685 	u32 resc_max_val, mcp_resp;
4686 	u8 res_id;
4687 	enum _ecore_status_t rc;
4688 
4689 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4690 		switch (res_id) {
4691 		case ECORE_LL2_QUEUE:
4692 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
4693 			break;
4694 		case ECORE_RDMA_CNQ_RAM:
4695 			/* No need for a case for ECORE_CMDQS_CQS since
4696 			 * CNQ/CMDQS are the same resource.
4697 			 */
4698 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
4699 			break;
4700 		case ECORE_RDMA_STATS_QUEUE:
4701 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
4702 					    : RDMA_NUM_STATISTIC_COUNTERS_BB;
4703 			break;
4704 		case ECORE_BDQ:
4705 			resc_max_val = BDQ_NUM_RESOURCES;
4706 			break;
4707 		default:
4708 			continue;
4709 		}
4710 
4711 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
4712 						   resc_max_val, &mcp_resp);
4713 		if (rc != ECORE_SUCCESS)
4714 			return rc;
4715 
4716 		/* There's no point to continue to the next resource if the
4717 		 * command is not supported by the MFW.
4718 		 * We do continue if the command is supported but the resource
4719 		 * is unknown to the MFW. Such a resource will be later
4720 		 * configured with the default allocation values.
4721 		 */
4722 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
4723 			return ECORE_NOTIMPL;
4724 	}
4725 
4726 	return ECORE_SUCCESS;
4727 }
4728 
4729 static
4730 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
4731 					    enum ecore_resources res_id,
4732 					    u32 *p_resc_num, u32 *p_resc_start)
4733 {
4734 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
4735 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4736 
4737 	switch (res_id) {
4738 	case ECORE_L2_QUEUE:
4739 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
4740 				      MAX_NUM_L2_QUEUES_BB) / num_funcs;
4741 		break;
4742 	case ECORE_VPORT:
4743 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
4744 				      MAX_NUM_VPORTS_BB) / num_funcs;
4745 		break;
4746 	case ECORE_RSS_ENG:
4747 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
4748 				      ETH_RSS_ENGINE_NUM_BB) / num_funcs;
4749 		break;
4750 	case ECORE_PQ:
4751 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
4752 				      MAX_QM_TX_QUEUES_BB) / num_funcs;
4753 		*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
4754 		break;
4755 	case ECORE_RL:
4756 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
4757 		break;
4758 	case ECORE_MAC:
4759 	case ECORE_VLAN:
4760 		/* Each VFC resource can accommodate both a MAC and a VLAN */
4761 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
4762 		break;
4763 	case ECORE_ILT:
4764 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
4765 				      PXP_NUM_ILT_RECORDS_BB) / num_funcs;
4766 		break;
4767 	case ECORE_LL2_QUEUE:
4768 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
4769 		break;
4770 	case ECORE_RDMA_CNQ_RAM:
4771 	case ECORE_CMDQS_CQS:
4772 		/* CNQ/CMDQS are the same resource */
4773 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
4774 		break;
4775 	case ECORE_RDMA_STATS_QUEUE:
4776 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
4777 				      RDMA_NUM_STATISTIC_COUNTERS_BB) /
4778 			      num_funcs;
4779 		break;
4780 	case ECORE_BDQ:
4781 		if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
4782 		    p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
4783 			*p_resc_num = 0;
4784 		else
4785 			*p_resc_num = 1;
4786 		break;
4787 	case ECORE_SB:
4788 		/* Since we want its value to reflect whether MFW supports
4789 		 * the new scheme, have a default of 0.
4790 		 */
4791 		*p_resc_num = 0;
4792 		break;
4793 	default:
4794 		return ECORE_INVAL;
4795 	}
4796 
4797 	switch (res_id) {
4798 	case ECORE_BDQ:
4799 		if (!*p_resc_num)
4800 			*p_resc_start = 0;
4801 		else if (p_hwfn->p_dev->num_ports_in_engine == 4)
4802 			*p_resc_start = p_hwfn->port_id;
4803 		else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
4804 			*p_resc_start = p_hwfn->port_id;
4805 		else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
4806 			*p_resc_start = p_hwfn->port_id + 2;
4807 		break;
4808 	default:
4809 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
4810 		break;
4811 	}
4812 
4813 	return ECORE_SUCCESS;
4814 }
4815 
4816 static enum _ecore_status_t
4817 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
4818 			 bool drv_resc_alloc)
4819 {
4820 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
4821 	u32 mcp_resp, *p_resc_num, *p_resc_start;
4822 	enum _ecore_status_t rc;
4823 
4824 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
4825 	p_resc_start = &RESC_START(p_hwfn, res_id);
4826 
4827 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
4828 				    &dflt_resc_start);
4829 	if (rc != ECORE_SUCCESS) {
4830 		DP_ERR(p_hwfn,
4831 		       "Failed to get default amount for resource %d [%s]\n",
4832 			res_id, ecore_hw_get_resc_name(res_id));
4833 		return rc;
4834 	}
4835 
4836 #ifndef ASIC_ONLY
4837 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4838 		*p_resc_num = dflt_resc_num;
4839 		*p_resc_start = dflt_resc_start;
4840 		goto out;
4841 	}
4842 #endif
4843 
4844 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
4845 				     &mcp_resp, p_resc_num, p_resc_start);
4846 	if (rc != ECORE_SUCCESS) {
4847 		DP_NOTICE(p_hwfn, false,
4848 			  "MFW response failure for an allocation request for resource %d [%s]\n",
4849 			  res_id, ecore_hw_get_resc_name(res_id));
4850 		return rc;
4851 	}
4852 
4853 	/* Default driver values are applied in the following cases:
4854 	 * - The resource allocation MB command is not supported by the MFW
4855 	 * - There is an internal error in the MFW while processing the request
4856 	 * - The resource ID is unknown to the MFW
4857 	 */
4858 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
4859 		DP_INFO(p_hwfn,
4860 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
4861 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
4862 			dflt_resc_num, dflt_resc_start);
4863 		*p_resc_num = dflt_resc_num;
4864 		*p_resc_start = dflt_resc_start;
4865 		goto out;
4866 	}
4867 
4868 	if ((*p_resc_num != dflt_resc_num ||
4869 	     *p_resc_start != dflt_resc_start) &&
4870 	    res_id != ECORE_SB) {
4871 		DP_INFO(p_hwfn,
4872 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
4873 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
4874 			*p_resc_start, dflt_resc_num, dflt_resc_start,
4875 			drv_resc_alloc ? " - Applying default values" : "");
4876 		if (drv_resc_alloc) {
4877 			*p_resc_num = dflt_resc_num;
4878 			*p_resc_start = dflt_resc_start;
4879 		}
4880 	}
4881 out:
4882 	/* PQs have to divide by 8 [that's the HW granularity].
4883 	 * Reduce number so it would fit.
4884 	 */
4885 	if ((res_id == ECORE_PQ) &&
4886 	    ((*p_resc_num % 8) || (*p_resc_start % 8))) {
4887 		DP_INFO(p_hwfn,
4888 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
4889 			*p_resc_num, (*p_resc_num) & ~0x7,
4890 			*p_resc_start, (*p_resc_start) & ~0x7);
4891 		*p_resc_num &= ~0x7;
4892 		*p_resc_start &= ~0x7;
4893 	}
4894 
4895 	return ECORE_SUCCESS;
4896 }
4897 
4898 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
4899 						   bool drv_resc_alloc)
4900 {
4901 	enum _ecore_status_t rc;
4902 	u8 res_id;
4903 
4904 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4905 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
4906 		if (rc != ECORE_SUCCESS)
4907 			return rc;
4908 	}
4909 
4910 	return ECORE_SUCCESS;
4911 }
4912 
4913 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn,
4914 						      struct ecore_ptt *p_ptt)
4915 {
4916 	u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn);
4917 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4918 	enum _ecore_status_t rc;
4919 
4920 	rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
4921 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL)
4922 		return rc;
4923 	else if (rc == ECORE_NOTIMPL)
4924 		p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4925 
4926 	if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
4927 		DP_INFO(p_hwfn,
4928 			"Fix the PPFID bitmap to inculde the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
4929 			native_ppfid_idx, p_dev->ppfid_bitmap);
4930 		p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4931 	}
4932 
4933 	return ECORE_SUCCESS;
4934 }
4935 
4936 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
4937 					      struct ecore_ptt *p_ptt,
4938 					      bool drv_resc_alloc)
4939 {
4940 	struct ecore_resc_unlock_params resc_unlock_params;
4941 	struct ecore_resc_lock_params resc_lock_params;
4942 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4943 	u8 res_id;
4944 	enum _ecore_status_t rc;
4945 #ifndef ASIC_ONLY
4946 	u32 *resc_start = p_hwfn->hw_info.resc_start;
4947 	u32 *resc_num = p_hwfn->hw_info.resc_num;
4948 	/* For AH, an equal share of the ILT lines between the maximal number of
4949 	 * PFs is not enough for RoCE. This would be solved by the future
4950 	 * resource allocation scheme, but isn't currently present for
4951 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
4952 	 * to work - the BB number of ILT lines divided by its max PFs number.
4953 	 */
4954 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
4955 #endif
4956 
4957 	/* Setting the max values of the soft resources and the following
4958 	 * resources allocation queries should be atomic. Since several PFs can
4959 	 * run in parallel - a resource lock is needed.
4960 	 * If either the resource lock or resource set value commands are not
4961 	 * supported - skip the the max values setting, release the lock if
4962 	 * needed, and proceed to the queries. Other failures, including a
4963 	 * failure to acquire the lock, will cause this function to fail.
4964 	 * Old drivers that don't acquire the lock can run in parallel, and
4965 	 * their allocation values won't be affected by the updated max values.
4966 	 */
4967 
4968 	ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
4969 					 ECORE_RESC_LOCK_RESC_ALLOC, false);
4970 
4971 	/* Changes on top of the default values to accommodate parallel attempts
4972 	 * of several PFs.
4973 	 * [10 x 10 msec by default ==> 20 x 50 msec]
4974 	 */
4975 	resc_lock_params.retry_num *= 2;
4976 	resc_lock_params.retry_interval *= 5;
4977 
4978 	rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
4979 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4980 		return rc;
4981 	} else if (rc == ECORE_NOTIMPL) {
4982 		DP_INFO(p_hwfn,
4983 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
4984 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
4985 		DP_NOTICE(p_hwfn, false,
4986 			  "Failed to acquire the resource lock for the resource allocation commands\n");
4987 		return ECORE_BUSY;
4988 	} else {
4989 		rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
4990 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4991 			DP_NOTICE(p_hwfn, false,
4992 				  "Failed to set the max values of the soft resources\n");
4993 			goto unlock_and_exit;
4994 		} else if (rc == ECORE_NOTIMPL) {
4995 			DP_INFO(p_hwfn,
4996 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
4997 			rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4998 						   &resc_unlock_params);
4999 			if (rc != ECORE_SUCCESS)
5000 				DP_INFO(p_hwfn,
5001 					"Failed to release the resource lock for the resource allocation commands\n");
5002 		}
5003 	}
5004 
5005 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
5006 	if (rc != ECORE_SUCCESS)
5007 		goto unlock_and_exit;
5008 
5009 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
5010 		rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5011 					   &resc_unlock_params);
5012 		if (rc != ECORE_SUCCESS)
5013 			DP_INFO(p_hwfn,
5014 				"Failed to release the resource lock for the resource allocation commands\n");
5015 	}
5016 
5017 	/* PPFID bitmap */
5018 	if (IS_LEAD_HWFN(p_hwfn)) {
5019 		rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
5020 		if (rc != ECORE_SUCCESS)
5021 			return rc;
5022 	}
5023 
5024 #ifndef ASIC_ONLY
5025 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
5026 		/* Reduced build contains less PQs */
5027 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
5028 			resc_num[ECORE_PQ] = 32;
5029 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
5030 					       p_hwfn->enabled_func_idx;
5031 		}
5032 
5033 		/* For AH emulation, since we have a possible maximal number of
5034 		 * 16 enabled PFs, in case there are not enough ILT lines -
5035 		 * allocate only first PF as RoCE and have all the other ETH
5036 		 * only with less ILT lines.
5037 		 */
5038 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
5039 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
5040 							 resc_num[ECORE_ILT],
5041 							 roce_min_ilt_lines);
5042 	}
5043 
5044 	/* Correct the common ILT calculation if PF0 has more */
5045 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
5046 	    p_hwfn->p_dev->b_is_emul_full &&
5047 	    p_hwfn->rel_pf_id &&
5048 	    resc_num[ECORE_ILT] < roce_min_ilt_lines)
5049 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
5050 					 resc_num[ECORE_ILT];
5051 #endif
5052 
5053 	/* Sanity for ILT */
5054 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
5055 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
5056 		DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
5057 			  RESC_START(p_hwfn, ECORE_ILT),
5058 			  RESC_END(p_hwfn, ECORE_ILT) - 1);
5059 		return ECORE_INVAL;
5060 	}
5061 
5062 	/* This will also learn the number of SBs from MFW */
5063 	if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
5064 		return ECORE_INVAL;
5065 
5066 	ecore_hw_set_feat(p_hwfn);
5067 
5068 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5069 		   "The numbers for each resource are:\n");
5070 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
5071 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
5072 			   ecore_hw_get_resc_name(res_id),
5073 			   RESC_NUM(p_hwfn, res_id),
5074 			   RESC_START(p_hwfn, res_id));
5075 
5076 	return ECORE_SUCCESS;
5077 
5078 unlock_and_exit:
5079 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
5080 		ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5081 				      &resc_unlock_params);
5082 	return rc;
5083 }
5084 
5085 static enum _ecore_status_t
5086 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
5087 		      struct ecore_ptt *p_ptt,
5088 		      struct ecore_hw_prepare_params *p_params)
5089 {
5090 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
5091 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
5092 	struct ecore_mcp_link_capabilities *p_caps;
5093 	struct ecore_mcp_link_params *link;
5094 	enum _ecore_status_t rc;
5095 	u32 dcbx_mode;  /* __LINUX__THROW__ */
5096 
5097 	/* Read global nvm_cfg address */
5098 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
5099 
5100 	/* Verify MCP has initialized it */
5101 	if (!nvm_cfg_addr) {
5102 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
5103 		if (p_params->b_relaxed_probe)
5104 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
5105 		return ECORE_INVAL;
5106 	}
5107 
5108 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
5109 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
5110 
5111 	addr = MCP_REG_SCRATCH  + nvm_cfg1_offset +
5112 		   OFFSETOF(struct nvm_cfg1, glob) +
5113 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
5114 
5115 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
5116 
5117 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
5118 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
5119 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
5120 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
5121 		break;
5122 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
5123 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
5124 		break;
5125 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
5126 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
5127 		break;
5128 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
5129 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
5130 		break;
5131 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
5132 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
5133 		break;
5134 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
5135 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
5136 		break;
5137 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
5138 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
5139 		break;
5140 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
5141 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
5142 		break;
5143 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
5144 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
5145 		break;
5146 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
5147 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
5148 		break;
5149 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
5150 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
5151 		break;
5152 	default:
5153 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
5154 			  core_cfg);
5155 		break;
5156 	}
5157 
5158 #ifndef __EXTRACT__LINUX__THROW__
5159 	/* Read DCBX configuration */
5160 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5161 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5162 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
5163 			     port_cfg_addr +
5164 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
5165 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
5166 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
5167 	switch (dcbx_mode) {
5168 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
5169 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
5170 		break;
5171 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
5172 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
5173 		break;
5174 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
5175 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
5176 		break;
5177 	default:
5178 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
5179 	}
5180 #endif
5181 
5182 	/* Read default link configuration */
5183 	link = &p_hwfn->mcp_info->link_input;
5184 	p_caps = &p_hwfn->mcp_info->link_capabilities;
5185 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5186 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5187 	link_temp = ecore_rd(p_hwfn, p_ptt,
5188 			     port_cfg_addr +
5189 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
5190 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
5191 	link->speed.advertised_speeds = link_temp;
5192 	p_caps->speed_capabilities = link->speed.advertised_speeds;
5193 
5194 	link_temp = ecore_rd(p_hwfn, p_ptt,
5195 				 port_cfg_addr +
5196 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
5197 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
5198 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
5199 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
5200 		link->speed.autoneg = true;
5201 		break;
5202 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
5203 		link->speed.forced_speed = 1000;
5204 		break;
5205 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
5206 		link->speed.forced_speed = 10000;
5207 		break;
5208 	case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
5209 		link->speed.forced_speed = 20000;
5210 		break;
5211 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
5212 		link->speed.forced_speed = 25000;
5213 		break;
5214 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
5215 		link->speed.forced_speed = 40000;
5216 		break;
5217 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
5218 		link->speed.forced_speed = 50000;
5219 		break;
5220 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
5221 		link->speed.forced_speed = 100000;
5222 		break;
5223 	default:
5224 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
5225 			  link_temp);
5226 	}
5227 
5228 	p_caps->default_speed = link->speed.forced_speed; /* __LINUX__THROW__ */
5229 	p_caps->default_speed_autoneg = link->speed.autoneg;
5230 
5231 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
5232 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
5233 	link->pause.autoneg = !!(link_temp &
5234 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
5235 	link->pause.forced_rx = !!(link_temp &
5236 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
5237 	link->pause.forced_tx = !!(link_temp &
5238 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
5239 	link->loopback_mode = 0;
5240 
5241 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
5242 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
5243 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
5244 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
5245 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
5246 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
5247 		link->eee.enable = true;
5248 		switch (link_temp) {
5249 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
5250 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
5251 			link->eee.enable = false;
5252 			break;
5253 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
5254 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
5255 			break;
5256 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
5257 			p_caps->eee_lpi_timer =
5258 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
5259 			break;
5260 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
5261 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
5262 			break;
5263 		}
5264 
5265 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
5266 		link->eee.tx_lpi_enable = link->eee.enable;
5267 		link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
5268 	} else {
5269 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
5270 	}
5271 
5272 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5273 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
5274 		   link->speed.forced_speed, link->speed.advertised_speeds,
5275 		   link->speed.autoneg, link->pause.autoneg,
5276 		   p_caps->default_eee, p_caps->eee_lpi_timer);
5277 
5278 	/* Read Multi-function information from shmem */
5279 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5280 		   OFFSETOF(struct nvm_cfg1, glob) +
5281 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
5282 
5283 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
5284 
5285 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
5286 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
5287 
5288 	switch (mf_mode) {
5289 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5290 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
5291 		break;
5292 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5293 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5294 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5295 					 1 << ECORE_MF_UFP_SPECIFIC |
5296 					 1 << ECORE_MF_8021Q_TAGGING;
5297 		break;
5298 	case NVM_CFG1_GLOB_MF_MODE_BD:
5299 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5300 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5301 					 1 << ECORE_MF_8021AD_TAGGING;
5302 		break;
5303 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5304 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5305 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5306 					 1 << ECORE_MF_LL2_NON_UNICAST |
5307 					 1 << ECORE_MF_INTER_PF_SWITCH |
5308 					 1 << ECORE_MF_DISABLE_ARFS;
5309 		break;
5310 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5311 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5312 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5313 					 1 << ECORE_MF_LL2_NON_UNICAST;
5314 		if (ECORE_IS_BB(p_hwfn->p_dev))
5315 			p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
5316 		break;
5317 	}
5318 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
5319 		p_hwfn->p_dev->mf_bits);
5320 
5321 	if (ECORE_IS_CMT(p_hwfn->p_dev))
5322 		p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
5323 
5324 #ifndef __EXTRACT__LINUX__THROW__
5325 	/* It's funny since we have another switch, but it's easier
5326 	 * to throw this away in linux this way. Long term, it might be
5327 	 * better to have have getters for needed ECORE_MF_* fields,
5328 	 * convert client code and eliminate this.
5329 	 */
5330 	switch (mf_mode) {
5331 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5332 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
5333 		break;
5334 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5335 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
5336 		break;
5337 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5338 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
5339 		break;
5340 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5341 		p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
5342 		break;
5343 	}
5344 #endif
5345 
5346 	/* Read Multi-function information from shmem */
5347 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5348 		   OFFSETOF(struct nvm_cfg1, glob) +
5349 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
5350 
5351 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
5352 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
5353 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
5354 				 &p_hwfn->hw_info.device_capabilities);
5355 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
5356 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
5357 				 &p_hwfn->hw_info.device_capabilities);
5358 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
5359 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
5360 				 &p_hwfn->hw_info.device_capabilities);
5361 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
5362 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
5363 				 &p_hwfn->hw_info.device_capabilities);
5364 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
5365 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
5366 				 &p_hwfn->hw_info.device_capabilities);
5367 
5368 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
5369 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5370 		rc = ECORE_SUCCESS;
5371 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5372 	}
5373 
5374 	return rc;
5375 }
5376 
5377 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
5378 				struct ecore_ptt *p_ptt)
5379 {
5380 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
5381 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
5382 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5383 
5384 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
5385 
5386 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
5387 	 * in the other bits are selected.
5388 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
5389 	 * '0' only for enabled functions (function 0 always exists and
5390 	 * enabled).
5391 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
5392 	 * the number of functions for both hwfns is learnt from the same bits.
5393 	 */
5394 	reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
5395 
5396 	if (reg_function_hide & 0x1) {
5397 		if (ECORE_IS_BB(p_dev)) {
5398 			if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
5399 				num_funcs = 0;
5400 				eng_mask = 0xaaaa;
5401 			} else {
5402 				num_funcs = 1;
5403 				eng_mask = 0x5554;
5404 			}
5405 		} else {
5406 			num_funcs = 1;
5407 			eng_mask = 0xfffe;
5408 		}
5409 
5410 		/* Get the number of the enabled functions on the engine */
5411 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
5412 		while (tmp) {
5413 			if (tmp & 0x1)
5414 				num_funcs++;
5415 			tmp >>= 0x1;
5416 		}
5417 
5418 		/* Get the PF index within the enabled functions */
5419 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
5420 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
5421 		while (tmp) {
5422 			if (tmp & 0x1)
5423 				enabled_func_idx--;
5424 			tmp >>= 0x1;
5425 		}
5426 	}
5427 
5428 	p_hwfn->num_funcs_on_engine = num_funcs;
5429 	p_hwfn->enabled_func_idx = enabled_func_idx;
5430 
5431 #ifndef ASIC_ONLY
5432 	if (CHIP_REV_IS_FPGA(p_dev)) {
5433 		DP_NOTICE(p_hwfn, false,
5434 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
5435 		p_hwfn->num_funcs_on_engine = 4;
5436 	}
5437 #endif
5438 
5439 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5440 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
5441 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
5442 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
5443 }
5444 
5445 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
5446 				      struct ecore_ptt *p_ptt)
5447 {
5448 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5449 	u32 port_mode;
5450 
5451 #ifndef ASIC_ONLY
5452 	/* Read the port mode */
5453 	if (CHIP_REV_IS_FPGA(p_dev))
5454 		port_mode = 4;
5455 	else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev))
5456 		/* In CMT on emulation, assume 1 port */
5457 		port_mode = 1;
5458 	else
5459 #endif
5460 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
5461 
5462 	if (port_mode < 3) {
5463 		p_dev->num_ports_in_engine = 1;
5464 	} else if (port_mode <= 5) {
5465 		p_dev->num_ports_in_engine = 2;
5466 	} else {
5467 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
5468 			  p_dev->num_ports_in_engine);
5469 
5470 		/* Default num_ports_in_engine to something */
5471 		p_dev->num_ports_in_engine = 1;
5472 	}
5473 }
5474 
5475 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
5476 					 struct ecore_ptt *p_ptt)
5477 {
5478 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5479 	u32 port;
5480 	int i;
5481 
5482 	p_dev->num_ports_in_engine = 0;
5483 
5484 #ifndef ASIC_ONLY
5485 	if (CHIP_REV_IS_EMUL(p_dev)) {
5486 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5487 		switch ((port & 0xf000) >> 12) {
5488 		case 1:
5489 			p_dev->num_ports_in_engine = 1;
5490 			break;
5491 		case 3:
5492 			p_dev->num_ports_in_engine = 2;
5493 			break;
5494 		case 0xf:
5495 			p_dev->num_ports_in_engine = 4;
5496 			break;
5497 		default:
5498 			DP_NOTICE(p_hwfn, false,
5499 				  "Unknown port mode in ECO_RESERVED %08x\n",
5500 				  port);
5501 		}
5502 	} else
5503 #endif
5504 	for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
5505 		port = ecore_rd(p_hwfn, p_ptt,
5506 				CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
5507 		if (port & 1)
5508 			p_dev->num_ports_in_engine++;
5509 	}
5510 
5511 	if (!p_dev->num_ports_in_engine) {
5512 		DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
5513 
5514 		/* Default num_ports_in_engine to something */
5515 		p_dev->num_ports_in_engine = 1;
5516 	}
5517 }
5518 
5519 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5520 				   struct ecore_ptt *p_ptt)
5521 {
5522 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5523 
5524 	/* Determine the number of ports per engine */
5525 	if (ECORE_IS_BB(p_dev))
5526 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
5527 	else
5528 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
5529 
5530 	/* Get the total number of ports of the device */
5531 	if (ECORE_IS_CMT(p_dev)) {
5532 		/* In CMT there is always only one port */
5533 		p_dev->num_ports = 1;
5534 #ifndef ASIC_ONLY
5535 	} else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) {
5536 		p_dev->num_ports = p_dev->num_ports_in_engine *
5537 				   ecore_device_num_engines(p_dev);
5538 #endif
5539 	} else {
5540 		u32 addr, global_offsize, global_addr;
5541 
5542 		addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
5543 					    PUBLIC_GLOBAL);
5544 		global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
5545 		global_addr = SECTION_ADDR(global_offsize, 0);
5546 		addr = global_addr + OFFSETOF(struct public_global, max_ports);
5547 		p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
5548 	}
5549 }
5550 
5551 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
5552 				   struct ecore_ptt *p_ptt)
5553 {
5554 	struct ecore_mcp_link_capabilities *p_caps;
5555 	u32 eee_status;
5556 
5557 	p_caps = &p_hwfn->mcp_info->link_capabilities;
5558 	if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
5559 		return;
5560 
5561 	p_caps->eee_speed_caps = 0;
5562 	eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
5563 			      OFFSETOF(struct public_port, eee_status));
5564 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
5565 			EEE_SUPPORTED_SPEED_OFFSET;
5566 	if (eee_status & EEE_1G_SUPPORTED)
5567 		p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
5568 	if (eee_status & EEE_10G_ADV)
5569 		p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
5570 }
5571 
5572 static enum _ecore_status_t
5573 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
5574 		  enum ecore_pci_personality personality,
5575 		  struct ecore_hw_prepare_params *p_params)
5576 {
5577 	bool drv_resc_alloc = p_params->drv_resc_alloc;
5578 	enum _ecore_status_t rc;
5579 
5580 	/* Since all information is common, only first hwfns should do this */
5581 	if (IS_LEAD_HWFN(p_hwfn)) {
5582 		rc = ecore_iov_hw_info(p_hwfn);
5583 		if (rc != ECORE_SUCCESS) {
5584 			if (p_params->b_relaxed_probe)
5585 				p_params->p_relaxed_res =
5586 						ECORE_HW_PREPARE_BAD_IOV;
5587 			else
5588 				return rc;
5589 		}
5590 	}
5591 
5592 	if (IS_LEAD_HWFN(p_hwfn))
5593 		ecore_hw_info_port_num(p_hwfn, p_ptt);
5594 
5595 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
5596 
5597 #ifndef ASIC_ONLY
5598 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
5599 #endif
5600 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
5601 	if (rc != ECORE_SUCCESS)
5602 		return rc;
5603 #ifndef ASIC_ONLY
5604 	}
5605 #endif
5606 
5607 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
5608 	if (rc != ECORE_SUCCESS) {
5609 		if (p_params->b_relaxed_probe)
5610 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
5611 		else
5612 			return rc;
5613 	}
5614 
5615 #ifndef ASIC_ONLY
5616 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
5617 #endif
5618 	OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
5619 		    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
5620 #ifndef ASIC_ONLY
5621 	} else {
5622 		static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
5623 
5624 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
5625 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
5626 	}
5627 #endif
5628 
5629 	if (ecore_mcp_is_init(p_hwfn)) {
5630 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
5631 			p_hwfn->hw_info.ovlan =
5632 				p_hwfn->mcp_info->func_info.ovlan;
5633 
5634 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
5635 
5636 		ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
5637 
5638 		ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
5639 	}
5640 
5641 	if (personality != ECORE_PCI_DEFAULT) {
5642 		p_hwfn->hw_info.personality = personality;
5643 	} else if (ecore_mcp_is_init(p_hwfn)) {
5644 		enum ecore_pci_personality protocol;
5645 
5646 		protocol = p_hwfn->mcp_info->func_info.protocol;
5647 		p_hwfn->hw_info.personality = protocol;
5648 	}
5649 
5650 #ifndef ASIC_ONLY
5651 	/* To overcome ILT lack for emulation, until at least until we'll have
5652 	 * a definite answer from system about it, allow only PF0 to be RoCE.
5653 	 */
5654 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
5655 		if (!p_hwfn->rel_pf_id)
5656 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
5657 		else
5658 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
5659 	}
5660 #endif
5661 
5662 	/* although in BB some constellations may support more than 4 tcs,
5663 	 * that can result in performance penalty in some cases. 4
5664 	 * represents a good tradeoff between performance and flexibility.
5665 	 */
5666 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
5667 
5668 	/* start out with a single active tc. This can be increased either
5669 	 * by dcbx negotiation or by upper layer driver
5670 	 */
5671 	p_hwfn->hw_info.num_active_tc = 1;
5672 
5673 	ecore_get_num_funcs(p_hwfn, p_ptt);
5674 
5675 	if (ecore_mcp_is_init(p_hwfn))
5676 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
5677 
5678 	/* In case of forcing the driver's default resource allocation, calling
5679 	 * ecore_hw_get_resc() should come after initializing the personality
5680 	 * and after getting the number of functions, since the calculation of
5681 	 * the resources/features depends on them.
5682 	 * This order is not harmful if not forcing.
5683 	 */
5684 	rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
5685 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5686 		rc = ECORE_SUCCESS;
5687 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5688 	}
5689 
5690 	return rc;
5691 }
5692 
5693 #define ECORE_MAX_DEVICE_NAME_LEN	(8)
5694 
5695 void ecore_get_dev_name(struct ecore_dev *p_dev, u8 *name, u8 max_chars)
5696 {
5697 	u8 n;
5698 
5699 	n = OSAL_MIN_T(u8, max_chars, ECORE_MAX_DEVICE_NAME_LEN);
5700 	OSAL_SNPRINTF(name, n, "%s %c%d", ECORE_IS_BB(p_dev) ? "BB" : "AH",
5701 		      'A' + p_dev->chip_rev, (int)p_dev->chip_metal);
5702 }
5703 
5704 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
5705 					       struct ecore_ptt *p_ptt)
5706 {
5707 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5708 	u16 device_id_mask;
5709 	u32 tmp;
5710 
5711 	/* Read Vendor Id / Device Id */
5712 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
5713 				  &p_dev->vendor_id);
5714 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
5715 				  &p_dev->device_id);
5716 
5717 	/* Determine type */
5718 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
5719 	switch (device_id_mask) {
5720 	case ECORE_DEV_ID_MASK_BB:
5721 		p_dev->type = ECORE_DEV_TYPE_BB;
5722 		break;
5723 	case ECORE_DEV_ID_MASK_AH:
5724 		p_dev->type = ECORE_DEV_TYPE_AH;
5725 		break;
5726 	case ECORE_DEV_ID_MASK_E5:
5727 		p_dev->type = ECORE_DEV_TYPE_E5;
5728 		break;
5729 	default:
5730 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
5731 			  p_dev->device_id);
5732 		return ECORE_ABORTED;
5733 	}
5734 
5735 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
5736 	p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
5737 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
5738 	p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
5739 
5740 	/* Learn number of HW-functions */
5741 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
5742 
5743 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
5744 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
5745 		p_dev->num_hwfns = 2;
5746 	} else {
5747 		p_dev->num_hwfns = 1;
5748 	}
5749 
5750 #ifndef ASIC_ONLY
5751 	if (CHIP_REV_IS_EMUL(p_dev)) {
5752 		/* For some reason we have problems with this register
5753 		 * in B0 emulation; Simply assume no CMT
5754 		 */
5755 		DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
5756 		p_dev->num_hwfns = 1;
5757 	}
5758 #endif
5759 
5760 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
5761 	p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
5762 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
5763 	p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
5764 
5765 	DP_INFO(p_dev->hwfns,
5766 		"Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
5767 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
5768 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
5769 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
5770 		p_dev->chip_metal);
5771 
5772 	if (ECORE_IS_BB_A0(p_dev)) {
5773 		DP_NOTICE(p_dev->hwfns, false,
5774 			  "The chip type/rev (BB A0) is not supported!\n");
5775 		return ECORE_ABORTED;
5776 	}
5777 
5778 #ifndef ASIC_ONLY
5779 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
5780 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
5781 
5782 	if (CHIP_REV_IS_EMUL(p_dev)) {
5783 		tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5784 		if (tmp & (1 << 29)) {
5785 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
5786 			p_dev->b_is_emul_full = true;
5787 		} else {
5788 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
5789 		}
5790 	}
5791 #endif
5792 
5793 	return ECORE_SUCCESS;
5794 }
5795 
5796 #ifndef LINUX_REMOVE
5797 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
5798 {
5799 	int j;
5800 
5801 	if (IS_VF(p_dev))
5802 		return;
5803 
5804 	for_each_hwfn(p_dev, j) {
5805 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5806 
5807 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
5808 
5809 		p_hwfn->hw_init_done = false;
5810 
5811 		ecore_ptt_invalidate(p_hwfn);
5812 	}
5813 }
5814 
5815 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
5816 {
5817 	int j = 0;
5818 
5819 	if (IS_VF(p_dev))
5820 		return;
5821 
5822 	for_each_hwfn(p_dev, j) {
5823 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5824 		struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
5825 
5826 		ecore_hw_hwfn_prepare(p_hwfn);
5827 
5828 		if (!p_ptt)
5829 			DP_NOTICE(p_hwfn, false, "ptt acquire failed\n");
5830 		else {
5831 			ecore_load_mcp_offsets(p_hwfn, p_ptt);
5832 			ecore_ptt_release(p_hwfn, p_ptt);
5833 		}
5834 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
5835 	}
5836 }
5837 
5838 #endif
5839 
5840 static enum _ecore_status_t
5841 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
5842 			void OSAL_IOMEM *p_doorbells, u64 db_phys_addr,
5843 			struct ecore_hw_prepare_params *p_params)
5844 {
5845 	struct ecore_mdump_retain_data mdump_retain;
5846 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5847 	struct ecore_mdump_info mdump_info;
5848 	enum _ecore_status_t rc = ECORE_SUCCESS;
5849 
5850 	/* Split PCI bars evenly between hwfns */
5851 	p_hwfn->regview = p_regview;
5852 	p_hwfn->doorbells = p_doorbells;
5853 	p_hwfn->db_phys_addr = db_phys_addr;
5854 
5855 #ifndef LINUX_REMOVE
5856        p_hwfn->reg_offset = (u8 *)p_hwfn->regview - (u8 *)p_hwfn->p_dev->regview;
5857        p_hwfn->db_offset = (u8 *)p_hwfn->doorbells - (u8 *)p_hwfn->p_dev->doorbells;
5858 #endif
5859 
5860 	if (IS_VF(p_dev))
5861 		return ecore_vf_hw_prepare(p_hwfn);
5862 
5863 	/* Validate that chip access is feasible */
5864 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
5865 		DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
5866 		if (p_params->b_relaxed_probe)
5867 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
5868 		return ECORE_INVAL;
5869 	}
5870 
5871 	get_function_id(p_hwfn);
5872 
5873 	/* Allocate PTT pool */
5874 	rc = ecore_ptt_pool_alloc(p_hwfn);
5875 	if (rc) {
5876 		DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n");
5877 		if (p_params->b_relaxed_probe)
5878 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5879 		goto err0;
5880 	}
5881 
5882 	/* Allocate the main PTT */
5883 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
5884 
5885 	/* First hwfn learns basic information, e.g., number of hwfns */
5886 	if (!p_hwfn->my_id) {
5887 		rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
5888 		if (rc != ECORE_SUCCESS) {
5889 			if (p_params->b_relaxed_probe)
5890 				p_params->p_relaxed_res =
5891 					ECORE_HW_PREPARE_FAILED_DEV;
5892 			goto err1;
5893 		}
5894 	}
5895 
5896 	ecore_hw_hwfn_prepare(p_hwfn);
5897 
5898 	/* Initialize MCP structure */
5899 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
5900 	if (rc) {
5901 		DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n");
5902 		if (p_params->b_relaxed_probe)
5903 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5904 		goto err1;
5905 	}
5906 
5907 	/* Read the device configuration information from the HW and SHMEM */
5908 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
5909 			       p_params->personality, p_params);
5910 	if (rc) {
5911 		DP_NOTICE(p_hwfn, false, "Failed to get HW information\n");
5912 		goto err2;
5913 	}
5914 
5915 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
5916 	 * called, since among others it sets the ports number in an engine.
5917 	 */
5918 	if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
5919 	    !p_dev->recov_in_prog) {
5920 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
5921 		if (rc != ECORE_SUCCESS)
5922 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
5923 	}
5924 
5925 	/* Check if mdump logs/data are present and update the epoch value */
5926 	if (IS_LEAD_HWFN(p_hwfn)) {
5927 #ifndef ASIC_ONLY
5928 		if (!CHIP_REV_IS_EMUL(p_dev)) {
5929 #endif
5930 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
5931 					      &mdump_info);
5932 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
5933 			DP_NOTICE(p_hwfn, false,
5934 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
5935 
5936 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
5937 						&mdump_retain);
5938 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
5939 			DP_NOTICE(p_hwfn, false,
5940 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
5941 				  mdump_retain.epoch, mdump_retain.pf,
5942 				  mdump_retain.status);
5943 
5944 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
5945 					   p_params->epoch);
5946 #ifndef ASIC_ONLY
5947 		}
5948 #endif
5949 	}
5950 
5951 	/* Allocate the init RT array and initialize the init-ops engine */
5952 	rc = ecore_init_alloc(p_hwfn);
5953 	if (rc) {
5954 		DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n");
5955 		if (p_params->b_relaxed_probe)
5956 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5957 		goto err2;
5958 	}
5959 
5960 #ifndef ASIC_ONLY
5961 	if (CHIP_REV_IS_FPGA(p_dev)) {
5962 		DP_NOTICE(p_hwfn, false,
5963 			  "FPGA: workaround; Prevent DMAE parities\n");
5964 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
5965 			 7);
5966 
5967 		DP_NOTICE(p_hwfn, false,
5968 			  "FPGA: workaround: Set VF bar0 size\n");
5969 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5970 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
5971 	}
5972 #endif
5973 
5974 	return rc;
5975 err2:
5976 	if (IS_LEAD_HWFN(p_hwfn))
5977 		ecore_iov_free_hw_info(p_dev);
5978 	ecore_mcp_free(p_hwfn);
5979 err1:
5980 	ecore_hw_hwfn_free(p_hwfn);
5981 err0:
5982 	return rc;
5983 }
5984 
5985 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
5986 				      struct ecore_hw_prepare_params *p_params)
5987 {
5988 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5989 	enum _ecore_status_t rc;
5990 
5991 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
5992 	p_dev->allow_mdump = p_params->allow_mdump;
5993 
5994 	if (p_params->b_relaxed_probe)
5995 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
5996 
5997 	/* Store the precompiled init data ptrs */
5998 	if (IS_PF(p_dev))
5999 		ecore_init_iro_array(p_dev);
6000 
6001 	/* Initialize the first hwfn - will learn number of hwfns */
6002 	rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview,
6003 				     p_dev->doorbells, p_dev->db_phys_addr,
6004 				     p_params);
6005 	if (rc != ECORE_SUCCESS)
6006 		return rc;
6007 
6008 	p_params->personality = p_hwfn->hw_info.personality;
6009 
6010 	/* initilalize 2nd hwfn if necessary */
6011 	if (ECORE_IS_CMT(p_dev)) {
6012 		void OSAL_IOMEM *p_regview, *p_doorbell;
6013 		u8 OSAL_IOMEM *addr;
6014 		u64 db_phys_addr;
6015 		u32 offset;
6016 
6017 		/* adjust bar offset for second engine */
6018 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6019 					   BAR_ID_0) / 2;
6020 		addr = (u8 OSAL_IOMEM *)p_dev->regview + offset;
6021 		p_regview = (void OSAL_IOMEM *)addr;
6022 
6023 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6024 					   BAR_ID_1) / 2;
6025 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset;
6026 		p_doorbell = (void OSAL_IOMEM *)addr;
6027 		db_phys_addr = p_dev->db_phys_addr + offset;
6028 
6029 		/* prepare second hw function */
6030 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
6031 					     p_doorbell, db_phys_addr,
6032 					     p_params);
6033 
6034 		/* in case of error, need to free the previously
6035 		 * initiliazed hwfn 0.
6036 		 */
6037 		if (rc != ECORE_SUCCESS) {
6038 			if (p_params->b_relaxed_probe)
6039 				p_params->p_relaxed_res =
6040 						ECORE_HW_PREPARE_FAILED_ENG2;
6041 
6042 			if (IS_PF(p_dev)) {
6043 				ecore_init_free(p_hwfn);
6044 				ecore_mcp_free(p_hwfn);
6045 				ecore_hw_hwfn_free(p_hwfn);
6046 			} else {
6047 				DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n");
6048 			}
6049 			return rc;
6050 		}
6051 	}
6052 
6053 	return rc;
6054 }
6055 
6056 void ecore_hw_remove(struct ecore_dev *p_dev)
6057 {
6058 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
6059 	int i;
6060 
6061 	if (IS_PF(p_dev))
6062 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
6063 						 ECORE_OV_DRIVER_STATE_NOT_LOADED);
6064 
6065 	for_each_hwfn(p_dev, i) {
6066 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6067 
6068 		if (IS_VF(p_dev)) {
6069 			ecore_vf_pf_release(p_hwfn);
6070 			continue;
6071 		}
6072 
6073 		ecore_init_free(p_hwfn);
6074 		ecore_hw_hwfn_free(p_hwfn);
6075 		ecore_mcp_free(p_hwfn);
6076 
6077 #ifdef CONFIG_ECORE_LOCK_ALLOC
6078 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
6079 #endif
6080 	}
6081 
6082 	ecore_iov_free_hw_info(p_dev);
6083 }
6084 
6085 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
6086 				      struct ecore_chain *p_chain)
6087 {
6088 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
6089 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
6090 	struct ecore_chain_next *p_next;
6091 	u32 size, i;
6092 
6093 	if (!p_virt)
6094 		return;
6095 
6096 	size = p_chain->elem_size * p_chain->usable_per_page;
6097 
6098 	for (i = 0; i < p_chain->page_cnt; i++) {
6099 		if (!p_virt)
6100 			break;
6101 
6102 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
6103 		p_virt_next = p_next->next_virt;
6104 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
6105 
6106 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
6107 				       ECORE_CHAIN_PAGE_SIZE);
6108 
6109 		p_virt = p_virt_next;
6110 		p_phys = p_phys_next;
6111 	}
6112 }
6113 
6114 static void ecore_chain_free_single(struct ecore_dev *p_dev,
6115 				    struct ecore_chain *p_chain)
6116 {
6117 	if (!p_chain->p_virt_addr)
6118 		return;
6119 
6120 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
6121 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
6122 }
6123 
6124 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
6125 				 struct ecore_chain *p_chain)
6126 {
6127 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
6128 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
6129 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
6130 
6131 	if (!pp_virt_addr_tbl)
6132 		return;
6133 
6134 	if (!p_pbl_virt)
6135 		goto out;
6136 
6137 	for (i = 0; i < page_cnt; i++) {
6138 		if (!pp_virt_addr_tbl[i])
6139 			break;
6140 
6141 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
6142 				       *(dma_addr_t *)p_pbl_virt,
6143 				       ECORE_CHAIN_PAGE_SIZE);
6144 
6145 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6146 	}
6147 
6148 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6149 
6150 	if (!p_chain->b_external_pbl) {
6151 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
6152 				       p_chain->pbl_sp.p_phys_table, pbl_size);
6153 	}
6154 out:
6155 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
6156 	p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
6157 }
6158 
6159 void ecore_chain_free(struct ecore_dev *p_dev,
6160 		      struct ecore_chain *p_chain)
6161 {
6162 	switch (p_chain->mode) {
6163 	case ECORE_CHAIN_MODE_NEXT_PTR:
6164 		ecore_chain_free_next_ptr(p_dev, p_chain);
6165 		break;
6166 	case ECORE_CHAIN_MODE_SINGLE:
6167 		ecore_chain_free_single(p_dev, p_chain);
6168 		break;
6169 	case ECORE_CHAIN_MODE_PBL:
6170 		ecore_chain_free_pbl(p_dev, p_chain);
6171 		break;
6172 	}
6173 }
6174 
6175 static enum _ecore_status_t
6176 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
6177 			       enum ecore_chain_cnt_type cnt_type,
6178 			       osal_size_t elem_size, u32 page_cnt)
6179 {
6180 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
6181 
6182 	/* The actual chain size can be larger than the maximal possible value
6183 	 * after rounding up the requested elements number to pages, and after
6184 	 * taking into acount the unusuable elements (next-ptr elements).
6185 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
6186 	 * size/capacity fields are of a u32 type.
6187 	 */
6188 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
6189 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
6190 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
6191 	     chain_size > ECORE_U32_MAX)) {
6192 		DP_NOTICE(p_dev, true,
6193 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
6194 			  (unsigned long long)chain_size);
6195 		return ECORE_INVAL;
6196 	}
6197 
6198 	return ECORE_SUCCESS;
6199 }
6200 
6201 static enum _ecore_status_t
6202 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6203 {
6204 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
6205 	dma_addr_t p_phys = 0;
6206 	u32 i;
6207 
6208 	for (i = 0; i < p_chain->page_cnt; i++) {
6209 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6210 						 ECORE_CHAIN_PAGE_SIZE);
6211 		if (!p_virt) {
6212 			DP_NOTICE(p_dev, false,
6213 				  "Failed to allocate chain memory\n");
6214 			return ECORE_NOMEM;
6215 		}
6216 
6217 		if (i == 0) {
6218 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
6219 			ecore_chain_reset(p_chain);
6220 		} else {
6221 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6222 						       p_virt, p_phys);
6223 		}
6224 
6225 		p_virt_prev = p_virt;
6226 	}
6227 	/* Last page's next element should point to the beginning of the
6228 	 * chain.
6229 	 */
6230 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6231 				       p_chain->p_virt_addr,
6232 				       p_chain->p_phys_addr);
6233 
6234 	return ECORE_SUCCESS;
6235 }
6236 
6237 static enum _ecore_status_t
6238 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6239 {
6240 	dma_addr_t p_phys = 0;
6241 	void *p_virt = OSAL_NULL;
6242 
6243 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
6244 	if (!p_virt) {
6245 		DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n");
6246 		return ECORE_NOMEM;
6247 	}
6248 
6249 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
6250 	ecore_chain_reset(p_chain);
6251 
6252 	return ECORE_SUCCESS;
6253 }
6254 
6255 static enum _ecore_status_t
6256 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
6257 		      struct ecore_chain *p_chain,
6258 		      struct ecore_chain_ext_pbl *ext_pbl)
6259 {
6260 	u32 page_cnt = p_chain->page_cnt, size, i;
6261 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
6262 	void **pp_virt_addr_tbl = OSAL_NULL;
6263 	u8 *p_pbl_virt = OSAL_NULL;
6264 	void *p_virt = OSAL_NULL;
6265 
6266 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
6267 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
6268 	if (!pp_virt_addr_tbl) {
6269 		DP_NOTICE(p_dev, false,
6270 			  "Failed to allocate memory for the chain virtual addresses table\n");
6271 		return ECORE_NOMEM;
6272 	}
6273 
6274 	/* The allocation of the PBL table is done with its full size, since it
6275 	 * is expected to be successive.
6276 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
6277 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
6278 	 * should be saved to allow its freeing during the error flow.
6279 	 */
6280 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6281 
6282 	if (ext_pbl == OSAL_NULL) {
6283 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
6284 	} else {
6285 		p_pbl_virt = ext_pbl->p_pbl_virt;
6286 		p_pbl_phys = ext_pbl->p_pbl_phys;
6287 		p_chain->b_external_pbl = true;
6288 	}
6289 
6290 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
6291 				 pp_virt_addr_tbl);
6292 	if (!p_pbl_virt) {
6293 		DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n");
6294 		return ECORE_NOMEM;
6295 	}
6296 
6297 	for (i = 0; i < page_cnt; i++) {
6298 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6299 						 ECORE_CHAIN_PAGE_SIZE);
6300 		if (!p_virt) {
6301 			DP_NOTICE(p_dev, false,
6302 				  "Failed to allocate chain memory\n");
6303 			return ECORE_NOMEM;
6304 		}
6305 
6306 		if (i == 0) {
6307 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
6308 			ecore_chain_reset(p_chain);
6309 		}
6310 
6311 		/* Fill the PBL table with the physical address of the page */
6312 		*(dma_addr_t *)p_pbl_virt = p_phys;
6313 		/* Keep the virtual address of the page */
6314 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
6315 
6316 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6317 	}
6318 
6319 	return ECORE_SUCCESS;
6320 }
6321 
6322 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
6323 				       enum ecore_chain_use_mode intended_use,
6324 				       enum ecore_chain_mode mode,
6325 				       enum ecore_chain_cnt_type cnt_type,
6326 				       u32 num_elems, osal_size_t elem_size,
6327 				       struct ecore_chain *p_chain,
6328 				       struct ecore_chain_ext_pbl *ext_pbl)
6329 {
6330 	u32 page_cnt;
6331 	enum _ecore_status_t rc = ECORE_SUCCESS;
6332 
6333 	if (mode == ECORE_CHAIN_MODE_SINGLE)
6334 		page_cnt = 1;
6335 	else
6336 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
6337 
6338 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
6339 					    page_cnt);
6340 	if (rc) {
6341 		DP_NOTICE(p_dev, false,
6342 			  "Cannot allocate a chain with the given arguments:\n"
6343 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
6344 			  intended_use, mode, cnt_type, num_elems, elem_size);
6345 		return rc;
6346 	}
6347 
6348 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
6349 				mode, cnt_type, p_dev->dp_ctx);
6350 
6351 	switch (mode) {
6352 	case ECORE_CHAIN_MODE_NEXT_PTR:
6353 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
6354 		break;
6355 	case ECORE_CHAIN_MODE_SINGLE:
6356 		rc = ecore_chain_alloc_single(p_dev, p_chain);
6357 		break;
6358 	case ECORE_CHAIN_MODE_PBL:
6359 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
6360 		break;
6361 	}
6362 	if (rc)
6363 		goto nomem;
6364 
6365 	return ECORE_SUCCESS;
6366 
6367 nomem:
6368 	ecore_chain_free(p_dev, p_chain);
6369 	return rc;
6370 }
6371 
6372 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
6373 				       u16 src_id, u16 *dst_id)
6374 {
6375 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
6376 		u16 min, max;
6377 
6378 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
6379 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
6380 		DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
6381 			  src_id, min, max);
6382 
6383 		return ECORE_INVAL;
6384 	}
6385 
6386 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
6387 
6388 	return ECORE_SUCCESS;
6389 }
6390 
6391 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
6392 				    u8 src_id, u8 *dst_id)
6393 {
6394 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
6395 		u8 min, max;
6396 
6397 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
6398 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
6399 		DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
6400 			  src_id, min, max);
6401 
6402 		return ECORE_INVAL;
6403 	}
6404 
6405 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
6406 
6407 	return ECORE_SUCCESS;
6408 }
6409 
6410 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
6411 				      u8 src_id, u8 *dst_id)
6412 {
6413 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
6414 		u8 min, max;
6415 
6416 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
6417 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
6418 		DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
6419 			  src_id, min, max);
6420 
6421 		return ECORE_INVAL;
6422 	}
6423 
6424 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
6425 
6426 	return ECORE_SUCCESS;
6427 }
6428 
6429 enum _ecore_status_t
6430 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
6431 				  struct ecore_ptt *p_ptt)
6432 {
6433 	if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
6434 		ecore_wr(p_hwfn, p_ptt,
6435 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
6436 			 1 << p_hwfn->abs_pf_id / 2);
6437 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
6438 		return ECORE_SUCCESS;
6439 	} else {
6440 		DP_NOTICE(p_hwfn, false,
6441 			  "This function can't be set as default\n");
6442 		return ECORE_INVAL;
6443 	}
6444 }
6445 
6446 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
6447 					       struct ecore_ptt *p_ptt,
6448 					       u32 hw_addr, void *p_eth_qzone,
6449 					       osal_size_t eth_qzone_size,
6450 					       u8 timeset)
6451 {
6452 	struct coalescing_timeset *p_coal_timeset;
6453 
6454 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
6455 		DP_NOTICE(p_hwfn, true,
6456 			  "Coalescing configuration not enabled\n");
6457 		return ECORE_INVAL;
6458 	}
6459 
6460 	p_coal_timeset = p_eth_qzone;
6461 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
6462 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
6463 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
6464 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
6465 
6466 	return ECORE_SUCCESS;
6467 }
6468 
6469 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
6470 					      u16 rx_coal, u16 tx_coal,
6471 					      void *p_handle)
6472 {
6473 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
6474 	enum _ecore_status_t rc = ECORE_SUCCESS;
6475 	struct ecore_ptt *p_ptt;
6476 
6477 	/* TODO - Configuring a single queue's coalescing but
6478 	 * claiming all queues are abiding same configuration
6479 	 * for PF and VF both.
6480 	 */
6481 
6482 #ifdef CONFIG_ECORE_SRIOV
6483 	if (IS_VF(p_hwfn->p_dev))
6484 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
6485 						tx_coal, p_cid);
6486 #endif /* #ifdef CONFIG_ECORE_SRIOV */
6487 
6488 	p_ptt = ecore_ptt_acquire(p_hwfn);
6489 	if (!p_ptt)
6490 		return ECORE_AGAIN;
6491 
6492 	if (rx_coal) {
6493 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
6494 		if (rc)
6495 			goto out;
6496 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
6497 	}
6498 
6499 	if (tx_coal) {
6500 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
6501 		if (rc)
6502 			goto out;
6503 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
6504 	}
6505 out:
6506 	ecore_ptt_release(p_hwfn, p_ptt);
6507 
6508 	return rc;
6509 }
6510 
6511 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
6512 					    struct ecore_ptt *p_ptt,
6513 					    u16 coalesce,
6514 					    struct ecore_queue_cid *p_cid)
6515 {
6516 	struct ustorm_eth_queue_zone eth_qzone;
6517 	u8 timeset, timer_res;
6518 	u32 address;
6519 	enum _ecore_status_t rc;
6520 
6521 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6522 	if (coalesce <= 0x7F)
6523 		timer_res = 0;
6524 	else if (coalesce <= 0xFF)
6525 		timer_res = 1;
6526 	else if (coalesce <= 0x1FF)
6527 		timer_res = 2;
6528 	else {
6529 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6530 		return ECORE_INVAL;
6531 	}
6532 	timeset = (u8)(coalesce >> timer_res);
6533 
6534 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6535 				     p_cid->sb_igu_id, false);
6536 	if (rc != ECORE_SUCCESS)
6537 		goto out;
6538 
6539 	address = BAR0_MAP_REG_USDM_RAM +
6540 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6541 
6542 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6543 				sizeof(struct ustorm_eth_queue_zone), timeset);
6544 	if (rc != ECORE_SUCCESS)
6545 		goto out;
6546 
6547 out:
6548 	return rc;
6549 }
6550 
6551 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
6552 					    struct ecore_ptt *p_ptt,
6553 					    u16 coalesce,
6554 					    struct ecore_queue_cid *p_cid)
6555 {
6556 	struct xstorm_eth_queue_zone eth_qzone;
6557 	u8 timeset, timer_res;
6558 	u32 address;
6559 	enum _ecore_status_t rc;
6560 
6561 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6562 	if (coalesce <= 0x7F)
6563 		timer_res = 0;
6564 	else if (coalesce <= 0xFF)
6565 		timer_res = 1;
6566 	else if (coalesce <= 0x1FF)
6567 		timer_res = 2;
6568 	else {
6569 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6570 		return ECORE_INVAL;
6571 	}
6572 	timeset = (u8)(coalesce >> timer_res);
6573 
6574 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6575 				     p_cid->sb_igu_id, true);
6576 	if (rc != ECORE_SUCCESS)
6577 		goto out;
6578 
6579 	address = BAR0_MAP_REG_XSDM_RAM +
6580 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6581 
6582 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6583 				sizeof(struct xstorm_eth_queue_zone), timeset);
6584 out:
6585 	return rc;
6586 }
6587 
6588 /* Calculate final WFQ values for all vports and configure it.
6589  * After this configuration each vport must have
6590  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
6591  */
6592 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6593 					       struct ecore_ptt *p_ptt,
6594 					       u32 min_pf_rate)
6595 {
6596 	struct init_qm_vport_params *vport_params;
6597 	int i;
6598 
6599 	vport_params = p_hwfn->qm_info.qm_vport_params;
6600 
6601 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6602 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6603 
6604 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
6605 					    min_pf_rate;
6606 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6607 				     vport_params[i].first_tx_pq_id,
6608 				     vport_params[i].vport_wfq);
6609 	}
6610 }
6611 
6612 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
6613 
6614 {
6615 	int i;
6616 
6617 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
6618 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
6619 }
6620 
6621 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6622 					     struct ecore_ptt *p_ptt)
6623 {
6624 	struct init_qm_vport_params *vport_params;
6625 	int i;
6626 
6627 	vport_params = p_hwfn->qm_info.qm_vport_params;
6628 
6629 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6630 		ecore_init_wfq_default_param(p_hwfn);
6631 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6632 				     vport_params[i].first_tx_pq_id,
6633 				     vport_params[i].vport_wfq);
6634 	}
6635 }
6636 
6637 /* This function performs several validations for WFQ
6638  * configuration and required min rate for a given vport
6639  * 1. req_rate must be greater than one percent of min_pf_rate.
6640  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
6641  *    rates to get less than one percent of min_pf_rate.
6642  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
6643  */
6644 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
6645 						 u16 vport_id, u32 req_rate,
6646 						 u32 min_pf_rate)
6647 {
6648 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
6649 	int non_requested_count = 0, req_count = 0, i, num_vports;
6650 
6651 	num_vports = p_hwfn->qm_info.num_vports;
6652 
6653 	/* Accounting for the vports which are configured for WFQ explicitly */
6654 	for (i = 0; i < num_vports; i++) {
6655 		u32 tmp_speed;
6656 
6657 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
6658 			req_count++;
6659 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6660 			total_req_min_rate += tmp_speed;
6661 		}
6662 	}
6663 
6664 	/* Include current vport data as well */
6665 	req_count++;
6666 	total_req_min_rate += req_rate;
6667 	non_requested_count = num_vports - req_count;
6668 
6669 	/* validate possible error cases */
6670 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
6671 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6672 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6673 			   vport_id, req_rate, min_pf_rate);
6674 		return ECORE_INVAL;
6675 	}
6676 
6677 	/* TBD - for number of vports greater than 100 */
6678 	if (num_vports > ECORE_WFQ_UNIT) {
6679 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6680 			   "Number of vports is greater than %d\n",
6681 			   ECORE_WFQ_UNIT);
6682 		return ECORE_INVAL;
6683 	}
6684 
6685 	if (total_req_min_rate > min_pf_rate) {
6686 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6687 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
6688 			   total_req_min_rate, min_pf_rate);
6689 		return ECORE_INVAL;
6690 	}
6691 
6692 	/* Data left for non requested vports */
6693 	total_left_rate = min_pf_rate - total_req_min_rate;
6694 	left_rate_per_vp = total_left_rate / non_requested_count;
6695 
6696 	/* validate if non requested get < 1% of min bw */
6697 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
6698 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6699 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6700 			   left_rate_per_vp, min_pf_rate);
6701 		return ECORE_INVAL;
6702 	}
6703 
6704 	/* now req_rate for given vport passes all scenarios.
6705 	 * assign final wfq rates to all vports.
6706 	 */
6707 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
6708 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
6709 
6710 	for (i = 0; i < num_vports; i++) {
6711 		if (p_hwfn->qm_info.wfq_data[i].configured)
6712 			continue;
6713 
6714 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
6715 	}
6716 
6717 	return ECORE_SUCCESS;
6718 }
6719 
6720 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
6721 				       struct ecore_ptt *p_ptt,
6722 				       u16 vp_id, u32 rate)
6723 {
6724 	struct ecore_mcp_link_state *p_link;
6725 	int rc = ECORE_SUCCESS;
6726 
6727 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
6728 
6729 	if (!p_link->min_pf_rate) {
6730 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
6731 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
6732 		return rc;
6733 	}
6734 
6735 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
6736 
6737 	if (rc == ECORE_SUCCESS)
6738 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
6739 						   p_link->min_pf_rate);
6740 	else
6741 		DP_NOTICE(p_hwfn, false,
6742 			  "Validation failed while configuring min rate\n");
6743 
6744 	return rc;
6745 }
6746 
6747 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
6748 						   struct ecore_ptt *p_ptt,
6749 						   u32 min_pf_rate)
6750 {
6751 	bool use_wfq = false;
6752 	int rc = ECORE_SUCCESS;
6753 	u16 i;
6754 
6755 	/* Validate all pre configured vports for wfq */
6756 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6757 		u32 rate;
6758 
6759 		if (!p_hwfn->qm_info.wfq_data[i].configured)
6760 			continue;
6761 
6762 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
6763 		use_wfq = true;
6764 
6765 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
6766 		if (rc != ECORE_SUCCESS) {
6767 			DP_NOTICE(p_hwfn, false,
6768 				  "WFQ validation failed while configuring min rate\n");
6769 			break;
6770 		}
6771 	}
6772 
6773 	if (rc == ECORE_SUCCESS && use_wfq)
6774 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
6775 	else
6776 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6777 
6778 	return rc;
6779 }
6780 
6781 /* Main API for ecore clients to configure vport min rate.
6782  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
6783  * rate - Speed in Mbps needs to be assigned to a given vport.
6784  */
6785 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
6786 {
6787 	int i, rc = ECORE_INVAL;
6788 
6789 	/* TBD - for multiple hardware functions - that is 100 gig */
6790 	if (ECORE_IS_CMT(p_dev)) {
6791 		DP_NOTICE(p_dev, false,
6792 			  "WFQ configuration is not supported for this device\n");
6793 		return rc;
6794 	}
6795 
6796 	for_each_hwfn(p_dev, i) {
6797 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6798 		struct ecore_ptt *p_ptt;
6799 
6800 		p_ptt = ecore_ptt_acquire(p_hwfn);
6801 		if (!p_ptt)
6802 			return ECORE_TIMEOUT;
6803 
6804 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
6805 
6806 		if (rc != ECORE_SUCCESS) {
6807 			ecore_ptt_release(p_hwfn, p_ptt);
6808 			return rc;
6809 		}
6810 
6811 		ecore_ptt_release(p_hwfn, p_ptt);
6812 	}
6813 
6814 	return rc;
6815 }
6816 
6817 /* API to configure WFQ from mcp link change */
6818 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
6819 					   struct ecore_ptt *p_ptt,
6820 					   u32 min_pf_rate)
6821 {
6822 	int i;
6823 
6824 	/* TBD - for multiple hardware functions - that is 100 gig */
6825 	if (ECORE_IS_CMT(p_dev)) {
6826 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
6827 			   "WFQ configuration is not supported for this device\n");
6828 		return;
6829 	}
6830 
6831 	for_each_hwfn(p_dev, i) {
6832 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6833 
6834 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
6835 							min_pf_rate);
6836 	}
6837 }
6838 
6839 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
6840 				       struct ecore_ptt *p_ptt,
6841 				       struct ecore_mcp_link_state *p_link,
6842 				       u8 max_bw)
6843 {
6844 	int rc = ECORE_SUCCESS;
6845 
6846 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
6847 
6848 	if (!p_link->line_speed && (max_bw != 100))
6849 		return rc;
6850 
6851 	p_link->speed = (p_link->line_speed * max_bw) / 100;
6852 	p_hwfn->qm_info.pf_rl = p_link->speed;
6853 
6854 	/* Since the limiter also affects Tx-switched traffic, we don't want it
6855 	 * to limit such traffic in case there's no actual limit.
6856 	 * In that case, set limit to imaginary high boundary.
6857 	 */
6858 	if (max_bw == 100)
6859 		p_hwfn->qm_info.pf_rl = 100000;
6860 
6861 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
6862 			      p_hwfn->qm_info.pf_rl);
6863 
6864 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6865 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
6866 		   p_link->speed);
6867 
6868 	return rc;
6869 }
6870 
6871 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
6872 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
6873 {
6874 	int i, rc = ECORE_INVAL;
6875 
6876 	if (max_bw < 1 || max_bw > 100) {
6877 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
6878 		return rc;
6879 	}
6880 
6881 	for_each_hwfn(p_dev, i) {
6882 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6883 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6884 		struct ecore_mcp_link_state *p_link;
6885 		struct ecore_ptt *p_ptt;
6886 
6887 		p_link = &p_lead->mcp_info->link_output;
6888 
6889 		p_ptt = ecore_ptt_acquire(p_hwfn);
6890 		if (!p_ptt)
6891 			return ECORE_TIMEOUT;
6892 
6893 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
6894 							p_link, max_bw);
6895 
6896 		ecore_ptt_release(p_hwfn, p_ptt);
6897 
6898 		if (rc != ECORE_SUCCESS)
6899 			break;
6900 	}
6901 
6902 	return rc;
6903 }
6904 
6905 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
6906 				       struct ecore_ptt *p_ptt,
6907 				       struct ecore_mcp_link_state *p_link,
6908 				       u8 min_bw)
6909 {
6910 	int rc = ECORE_SUCCESS;
6911 
6912 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
6913 	p_hwfn->qm_info.pf_wfq = min_bw;
6914 
6915 	if (!p_link->line_speed)
6916 		return rc;
6917 
6918 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
6919 
6920 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
6921 
6922 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6923 		   "Configured MIN bandwidth to be %d Mb/sec\n",
6924 		   p_link->min_pf_rate);
6925 
6926 	return rc;
6927 }
6928 
6929 /* Main API to configure PF min bandwidth where bw range is [1-100] */
6930 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
6931 {
6932 	int i, rc = ECORE_INVAL;
6933 
6934 	if (min_bw < 1 || min_bw > 100) {
6935 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
6936 		return rc;
6937 	}
6938 
6939 	for_each_hwfn(p_dev, i) {
6940 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6941 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6942 		struct ecore_mcp_link_state *p_link;
6943 		struct ecore_ptt *p_ptt;
6944 
6945 		p_link = &p_lead->mcp_info->link_output;
6946 
6947 		p_ptt = ecore_ptt_acquire(p_hwfn);
6948 		if (!p_ptt)
6949 			return ECORE_TIMEOUT;
6950 
6951 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
6952 							p_link, min_bw);
6953 		if (rc != ECORE_SUCCESS) {
6954 			ecore_ptt_release(p_hwfn, p_ptt);
6955 			return rc;
6956 		}
6957 
6958 		if (p_link->min_pf_rate) {
6959 			u32 min_rate = p_link->min_pf_rate;
6960 
6961 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
6962 								     p_ptt,
6963 								     min_rate);
6964 		}
6965 
6966 		ecore_ptt_release(p_hwfn, p_ptt);
6967 	}
6968 
6969 	return rc;
6970 }
6971 
6972 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
6973 {
6974 	struct ecore_mcp_link_state *p_link;
6975 
6976 	p_link = &p_hwfn->mcp_info->link_output;
6977 
6978 	if (p_link->min_pf_rate)
6979 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6980 
6981 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
6982 		    sizeof(*p_hwfn->qm_info.wfq_data) *
6983 				p_hwfn->qm_info.num_vports);
6984 }
6985 
6986 int ecore_device_num_engines(struct ecore_dev *p_dev)
6987 {
6988 	return ECORE_IS_BB(p_dev) ? 2 : 1;
6989 }
6990 
6991 int ecore_device_num_ports(struct ecore_dev *p_dev)
6992 {
6993 	return p_dev->num_ports;
6994 }
6995 
6996 void ecore_set_fw_mac_addr(__le16 *fw_msb,
6997 			  __le16 *fw_mid,
6998 			  __le16 *fw_lsb,
6999 			  u8 *mac)
7000 {
7001 	((u8 *)fw_msb)[0] = mac[1];
7002 	((u8 *)fw_msb)[1] = mac[0];
7003 	((u8 *)fw_mid)[0] = mac[3];
7004 	((u8 *)fw_mid)[1] = mac[2];
7005 	((u8 *)fw_lsb)[0] = mac[5];
7006 	((u8 *)fw_lsb)[1] = mac[4];
7007 }
7008 
7009 void ecore_set_dev_access_enable(struct ecore_dev *p_dev, bool b_enable)
7010 {
7011 	if (p_dev->recov_in_prog != !b_enable) {
7012 		DP_INFO(p_dev, "%s access to the device\n",
7013 			b_enable ?  "Enable" : "Disable");
7014 		p_dev->recov_in_prog = !b_enable;
7015 	}
7016 }
7017 
7018 #ifdef _NTDDK_
7019 #pragma warning(pop)
7020 #endif
7021