xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_dev.c (revision f56f82e0)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_dev.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 
35 #include "bcm_osal.h"
36 #include "reg_addr.h"
37 #include "ecore_gtt_reg_addr.h"
38 #include "ecore.h"
39 #include "ecore_chain.h"
40 #include "ecore_status.h"
41 #include "ecore_hw.h"
42 #include "ecore_rt_defs.h"
43 #include "ecore_init_ops.h"
44 #include "ecore_int.h"
45 #include "ecore_cxt.h"
46 #include "ecore_spq.h"
47 #include "ecore_init_fw_funcs.h"
48 #include "ecore_sp_commands.h"
49 #include "ecore_dev_api.h"
50 #include "ecore_sriov.h"
51 #include "ecore_vf.h"
52 #include "ecore_ll2.h"
53 #include "ecore_fcoe.h"
54 #include "ecore_iscsi.h"
55 #include "ecore_ooo.h"
56 #include "ecore_mcp.h"
57 #include "ecore_hw_defs.h"
58 #include "mcp_public.h"
59 #include "ecore_roce.h"
60 #include "ecore_iro.h"
61 #include "nvm_cfg.h"
62 #include "ecore_dev_api.h"
63 #include "ecore_dcbx.h"
64 #include "pcics_reg_driver.h"
65 #include "ecore_l2.h"
66 
67 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
68  * registers involved are not split and thus configuration is a race where
69  * some of the PFs configuration might be lost.
70  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
71  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
72  * there's more than a single compiled ecore component in system].
73  */
74 static osal_spinlock_t qm_lock;
75 static bool qm_lock_init = false;
76 
77 /* Configurable */
78 #define ECORE_MIN_DPIS		(4)  /* The minimal number of DPIs required to
79 				      * load the driver. The number was
80 				      * arbitrarily set.
81 				      */
82 
83 /* Derived */
84 #define ECORE_MIN_PWM_REGION	((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
85 
86 enum BAR_ID {
87 	BAR_ID_0,	/* used for GRC */
88 	BAR_ID_1	/* Used for doorbells */
89 };
90 
91 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
92 {
93 	u32 bar_reg = (bar_id == BAR_ID_0 ?
94 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
95 	u32 val;
96 
97 	if (IS_VF(p_hwfn->p_dev)) {
98 		/* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
99 		 * read from actual register, but we're currently not using
100 		 * it for actual doorbelling.
101 		 */
102 		return 1 << 17;
103 	}
104 
105 	val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
106 	if (val)
107 		return 1 << (val + 15);
108 
109 	/* The above registers were updated in the past only in CMT mode. Since
110 	 * they were found to be useful MFW started updating them from 8.7.7.0.
111 	 * In older MFW versions they are set to 0 which means disabled.
112 	 */
113 	if (p_hwfn->p_dev->num_hwfns > 1) {
114 		DP_NOTICE(p_hwfn, false,
115 			  "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
116 		return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
117 	} else {
118 		DP_NOTICE(p_hwfn, false,
119 			  "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
120 		return 512 * 1024;
121 	}
122 }
123 
124 void ecore_init_dp(struct ecore_dev	*p_dev,
125 		   u32			dp_module,
126 		   u8			dp_level,
127 		   void		 *dp_ctx)
128 {
129 	u32 i;
130 
131 	p_dev->dp_level = dp_level;
132 	p_dev->dp_module = dp_module;
133 	p_dev->dp_ctx = dp_ctx;
134 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
135 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
136 
137 		p_hwfn->dp_level = dp_level;
138 		p_hwfn->dp_module = dp_module;
139 		p_hwfn->dp_ctx = dp_ctx;
140 	}
141 }
142 
143 void ecore_init_struct(struct ecore_dev *p_dev)
144 {
145 	u8 i;
146 
147 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
148 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
149 
150 		p_hwfn->p_dev = p_dev;
151 		p_hwfn->my_id = i;
152 		p_hwfn->b_active = false;
153 
154 		OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
155 		OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
156 	}
157 
158 	/* hwfn 0 is always active */
159 	p_dev->hwfns[0].b_active = true;
160 
161 	/* set the default cache alignment to 128 (may be overridden later) */
162 	p_dev->cache_shift = 7;
163 }
164 
165 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
166 {
167 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
168 
169 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
170 	qm_info->qm_pq_params = OSAL_NULL;
171 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
172 	qm_info->qm_vport_params = OSAL_NULL;
173 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
174 	qm_info->qm_port_params = OSAL_NULL;
175 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
176 	qm_info->wfq_data = OSAL_NULL;
177 }
178 
179 void ecore_resc_free(struct ecore_dev *p_dev)
180 {
181 	int i;
182 
183 	if (IS_VF(p_dev)) {
184 		for_each_hwfn(p_dev, i)
185 			ecore_l2_free(&p_dev->hwfns[i]);
186 		return;
187 	}
188 
189 	OSAL_FREE(p_dev, p_dev->fw_data);
190 	p_dev->fw_data = OSAL_NULL;
191 
192 	OSAL_FREE(p_dev, p_dev->reset_stats);
193 	p_dev->reset_stats = OSAL_NULL;
194 
195 	for_each_hwfn(p_dev, i) {
196 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
197 
198 		ecore_cxt_mngr_free(p_hwfn);
199 		ecore_qm_info_free(p_hwfn);
200 		ecore_spq_free(p_hwfn);
201 		ecore_eq_free(p_hwfn);
202 		ecore_consq_free(p_hwfn);
203 		ecore_int_free(p_hwfn);
204 #ifdef CONFIG_ECORE_LL2
205 		ecore_ll2_free(p_hwfn);
206 #endif
207 #ifdef CONFIG_ECORE_FCOE
208 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
209 			ecore_fcoe_free(p_hwfn);
210 #endif
211 #ifdef CONFIG_ECORE_ISCSI
212 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
213 			ecore_iscsi_free(p_hwfn);
214 			ecore_ooo_free(p_hwfn);
215 		}
216 #endif
217 		ecore_iov_free(p_hwfn);
218 		ecore_l2_free(p_hwfn);
219 		ecore_dmae_info_free(p_hwfn);
220 		ecore_dcbx_info_free(p_hwfn);
221 		/* @@@TBD Flush work-queue ?*/
222 	}
223 }
224 
225 /******************** QM initialization *******************/
226 
227 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
228 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
229 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
230 
231 /* determines the physical queue flags for a given PF. */
232 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
233 {
234 	u32 flags;
235 
236 	/* common flags */
237 	flags = PQ_FLAGS_LB;
238 
239 	/* feature flags */
240 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
241 		flags |= PQ_FLAGS_VFS;
242 	if (IS_ECORE_DCQCN(p_hwfn))
243 		flags |= PQ_FLAGS_RLS;
244 
245 	/* protocol flags */
246 	switch (p_hwfn->hw_info.personality) {
247 	case ECORE_PCI_ETH:
248 		flags |= PQ_FLAGS_MCOS;
249 		break;
250 	case ECORE_PCI_FCOE:
251 		flags |= PQ_FLAGS_OFLD;
252 		break;
253 	case ECORE_PCI_ISCSI:
254 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
255 		break;
256 	case ECORE_PCI_ETH_ROCE:
257 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
258 		break;
259 	case ECORE_PCI_ETH_IWARP:
260 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
261 		break;
262 	default:
263 		DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
264 		return 0;
265 	}
266 
267 	return flags;
268 }
269 
270 
271 /* Getters for resource amounts necessary for qm initialization */
272 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
273 {
274 	return p_hwfn->hw_info.num_hw_tc;
275 }
276 
277 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
278 {
279 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
280 }
281 
282 #define NUM_DEFAULT_RLS 1
283 
284 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
285 {
286 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
287 
288 	/* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
289 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
290 				     (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
291 						     ROCE_DCQCN_RP_MAX_QPS));
292 
293 	/* make sure after we reserve the default and VF rls we'll have something left */
294 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
295 		if (IS_ECORE_DCQCN(p_hwfn))
296 			DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
297 		return 0;
298 	}
299 
300 	/* subtract rls necessary for VFs and one default one for the PF */
301 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
302 
303 	return num_pf_rls;
304 }
305 
306 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
307 {
308 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
309 
310 	/* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
311 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
312 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
313 }
314 
315 /* calc amount of PQs according to the requested flags */
316 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
317 {
318 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
319 
320 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
321 	       (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
322 	       (!!(PQ_FLAGS_LB & pq_flags)) +
323 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
324 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
325 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
326 	       (!!(PQ_FLAGS_LLT & pq_flags)) +
327 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
328 }
329 
330 /* initialize the top level QM params */
331 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
332 {
333 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
334 	bool four_port;
335 
336 	/* pq and vport bases for this PF */
337 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
338 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
339 
340 	/* rate limiting and weighted fair queueing are always enabled */
341 	qm_info->vport_rl_en = 1;
342 	qm_info->vport_wfq_en = 1;
343 
344 	/* TC config is different for AH 4 port */
345 	four_port = p_hwfn->p_dev->num_ports_in_engines == MAX_NUM_PORTS_K2;
346 
347 	/* in AH 4 port we have fewer TCs per port */
348 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
349 
350 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
351 	if (!qm_info->ooo_tc)
352 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
353 }
354 
355 /* initialize qm vport params */
356 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
357 {
358 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
359 	u8 i;
360 
361 	/* all vports participate in weighted fair queueing */
362 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
363 		qm_info->qm_vport_params[i].vport_wfq = 1;
364 }
365 
366 /* initialize qm port params */
367 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
368 {
369 	/* Initialize qm port parameters */
370 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engines;
371 
372 	/* indicate how ooo and high pri traffic is dealt with */
373 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
374 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
375 
376 	for (i = 0; i < num_ports; i++) {
377 		struct init_qm_port_params *p_qm_port =
378 			&p_hwfn->qm_info.qm_port_params[i];
379 
380 		p_qm_port->active = 1;
381 		p_qm_port->active_phys_tcs = active_phys_tcs;
382 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
383 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
384 	}
385 }
386 
387 /* Reset the params which must be reset for qm init. QM init may be called as
388  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
389  * params may be affected by the init but would simply recalculate to the same
390  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
391  * affected as these amounts stay the same.
392  */
393 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
394 {
395 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
396 
397 	qm_info->num_pqs = 0;
398 	qm_info->num_vports = 0;
399 	qm_info->num_pf_rls = 0;
400 	qm_info->num_vf_pqs = 0;
401 	qm_info->first_vf_pq = 0;
402 	qm_info->first_mcos_pq = 0;
403 	qm_info->first_rl_pq = 0;
404 }
405 
406 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
407 {
408 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
409 
410 	qm_info->num_vports++;
411 
412 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
413 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
414 }
415 
416 /* initialize a single pq and manage qm_info resources accounting.
417  * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
418  * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
419  */
420 
421 /* flags for pq init */
422 #define PQ_INIT_SHARE_VPORT	(1 << 0)
423 #define PQ_INIT_PF_RL		(1 << 1)
424 #define PQ_INIT_VF_RL		(1 << 2)
425 
426 /* defines for pq init */
427 #define PQ_INIT_DEFAULT_WRR_GROUP	1
428 #define PQ_INIT_DEFAULT_TC		0
429 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
430 
431 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
432 			     struct ecore_qm_info *qm_info,
433 			     u8 tc, u32 pq_init_flags)
434 {
435 	u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
436 
437 	if (pq_idx > max_pq)
438 		DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
439 
440 	/* init pq params */
441 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
442 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
443 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
444 	qm_info->qm_pq_params[pq_idx].rl_valid =
445 		(pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
446 
447 	/* qm params accounting */
448 	qm_info->num_pqs++;
449 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
450 		qm_info->num_vports++;
451 
452 	if (pq_init_flags & PQ_INIT_PF_RL)
453 		qm_info->num_pf_rls++;
454 
455 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
456 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
457 
458 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
459 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
460 }
461 
462 /* get pq index according to PQ_FLAGS */
463 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
464 					     u32 pq_flags)
465 {
466 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
467 
468 	/* Can't have multiple flags set here */
469 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
470 		goto err;
471 
472 	switch (pq_flags) {
473 	case PQ_FLAGS_RLS:
474 		return &qm_info->first_rl_pq;
475 	case PQ_FLAGS_MCOS:
476 		return &qm_info->first_mcos_pq;
477 	case PQ_FLAGS_LB:
478 		return &qm_info->pure_lb_pq;
479 	case PQ_FLAGS_OOO:
480 		return &qm_info->ooo_pq;
481 	case PQ_FLAGS_ACK:
482 		return &qm_info->pure_ack_pq;
483 	case PQ_FLAGS_OFLD:
484 		return &qm_info->offload_pq;
485 	case PQ_FLAGS_LLT:
486 		return &qm_info->low_latency_pq;
487 	case PQ_FLAGS_VFS:
488 		return &qm_info->first_vf_pq;
489 	default:
490 		goto err;
491 	}
492 
493 err:
494 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
495 	return OSAL_NULL;
496 }
497 
498 /* save pq index in qm info */
499 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
500 				  u32 pq_flags, u16 pq_val)
501 {
502 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
503 
504 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
505 }
506 
507 /* get tx pq index, with the PQ TX base already set (ready for context init) */
508 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
509 {
510 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
511 
512 	return *base_pq_idx + CM_TX_PQ_BASE;
513 }
514 
515 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
516 {
517 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
518 
519 	if (tc > max_tc)
520 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
521 
522 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
523 }
524 
525 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
526 {
527 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
528 
529 	if (vf > max_vf)
530 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
531 
532 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
533 }
534 
535 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
536 {
537 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
538 
539 	if (rl > max_rl)
540 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
541 
542 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
543 }
544 
545 /* Functions for creating specific types of pqs */
546 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
547 {
548 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
549 
550 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
551 		return;
552 
553 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
554 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
555 }
556 
557 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
558 {
559 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
560 
561 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
562 		return;
563 
564 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
565 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
566 }
567 
568 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
569 {
570 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
571 
572 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
573 		return;
574 
575 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
576 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
577 }
578 
579 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
580 {
581 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
582 
583 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
584 		return;
585 
586 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
587 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
588 }
589 
590 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
591 {
592 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
593 
594 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
595 		return;
596 
597 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
598 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
599 }
600 
601 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
602 {
603 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
604 	u8 tc_idx;
605 
606 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
607 		return;
608 
609 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
610 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
611 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
612 }
613 
614 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
615 {
616 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
617 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
618 
619 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
620 		return;
621 
622 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
623 	qm_info->num_vf_pqs = num_vfs;
624 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
625 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
626 }
627 
628 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
629 {
630 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
631 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
632 
633 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
634 		return;
635 
636 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
637 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
638 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
639 }
640 
641 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
642 {
643 	/* rate limited pqs, must come first (FW assumption) */
644 	ecore_init_qm_rl_pqs(p_hwfn);
645 
646 	/* pqs for multi cos */
647 	ecore_init_qm_mcos_pqs(p_hwfn);
648 
649 	/* pure loopback pq */
650 	ecore_init_qm_lb_pq(p_hwfn);
651 
652 	/* out of order pq */
653 	ecore_init_qm_ooo_pq(p_hwfn);
654 
655 	/* pure ack pq */
656 	ecore_init_qm_pure_ack_pq(p_hwfn);
657 
658 	/* pq for offloaded protocol */
659 	ecore_init_qm_offload_pq(p_hwfn);
660 
661 	/* low latency pq */
662 	ecore_init_qm_low_latency_pq(p_hwfn);
663 
664 	/* done sharing vports */
665 	ecore_init_qm_advance_vport(p_hwfn);
666 
667 	/* pqs for vfs */
668 	ecore_init_qm_vf_pqs(p_hwfn);
669 }
670 
671 /* compare values of getters against resources amounts */
672 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
673 {
674 	if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
675 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
676 		return ECORE_INVAL;
677 	}
678 
679 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
680 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
681 		return ECORE_INVAL;
682 	}
683 
684 	return ECORE_SUCCESS;
685 }
686 
687 /*
688  * Function for verbose printing of the qm initialization results
689  */
690 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
691 {
692 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
693 	struct init_qm_vport_params *vport;
694 	struct init_qm_port_params *port;
695 	struct init_qm_pq_params *pq;
696 	int i, tc;
697 
698 	/* top level params */
699 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
700 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
701 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
702 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
703 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
704 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
705 
706 	/* port table */
707 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engines; i++) {
708 		port = &(qm_info->qm_port_params[i]);
709 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
710 			   i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
711 	}
712 
713 	/* vport table */
714 	for (i = 0; i < qm_info->num_vports; i++) {
715 		vport = &(qm_info->qm_vport_params[i]);
716 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
717 			   qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
718 		for (tc = 0; tc < NUM_OF_TCS; tc++)
719 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
720 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
721 	}
722 
723 	/* pq table */
724 	for (i = 0; i < qm_info->num_pqs; i++) {
725 		pq = &(qm_info->qm_pq_params[i]);
726 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
727 			   qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
728 	}
729 }
730 
731 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
732 {
733 	/* reset params required for init run */
734 	ecore_init_qm_reset_params(p_hwfn);
735 
736 	/* init QM top level params */
737 	ecore_init_qm_params(p_hwfn);
738 
739 	/* init QM port params */
740 	ecore_init_qm_port_params(p_hwfn);
741 
742 	/* init QM vport params */
743 	ecore_init_qm_vport_params(p_hwfn);
744 
745 	/* init QM physical queue params */
746 	ecore_init_qm_pq_params(p_hwfn);
747 
748 	/* display all that init */
749 	ecore_dp_init_qm_params(p_hwfn);
750 }
751 
752 /* This function reconfigures the QM pf on the fly.
753  * For this purpose we:
754  * 1. reconfigure the QM database
755  * 2. set new values to runtime array
756  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
757  * 4. activate init tool in QM_PF stage
758  * 5. send an sdm_qm_cmd through rbc interface to release the QM
759  */
760 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
761 				     struct ecore_ptt *p_ptt)
762 {
763 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
764 	bool b_rc;
765 	enum _ecore_status_t rc;
766 
767 	/* initialize ecore's qm data structure */
768 	ecore_init_qm_info(p_hwfn);
769 
770 	/* stop PF's qm queues */
771 	OSAL_SPIN_LOCK(&qm_lock);
772 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
773 				      qm_info->start_pq, qm_info->num_pqs);
774 	OSAL_SPIN_UNLOCK(&qm_lock);
775 	if (!b_rc)
776 		return ECORE_INVAL;
777 
778 	/* clear the QM_PF runtime phase leftovers from previous init */
779 	ecore_init_clear_rt_data(p_hwfn);
780 
781 	/* prepare QM portion of runtime array */
782 	ecore_qm_init_pf(p_hwfn);
783 
784 	/* activate init tool on runtime array */
785 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
786 			    p_hwfn->hw_info.hw_mode);
787 	if (rc != ECORE_SUCCESS)
788 		return rc;
789 
790 	/* start PF's qm queues */
791 	OSAL_SPIN_LOCK(&qm_lock);
792 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
793 				      qm_info->start_pq, qm_info->num_pqs);
794 	OSAL_SPIN_UNLOCK(&qm_lock);
795 	if (!b_rc)
796 		return ECORE_INVAL;
797 
798 	return ECORE_SUCCESS;
799 }
800 
801 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
802 {
803 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
804 	enum _ecore_status_t rc;
805 
806 	rc = ecore_init_qm_sanity(p_hwfn);
807 	if (rc != ECORE_SUCCESS)
808 		goto alloc_err;
809 
810 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
811 					    sizeof(struct init_qm_pq_params) *
812 					    ecore_init_qm_get_num_pqs(p_hwfn));
813 	if (!qm_info->qm_pq_params)
814 		goto alloc_err;
815 
816 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
817 					       sizeof(struct init_qm_vport_params) *
818 					       ecore_init_qm_get_num_vports(p_hwfn));
819 	if (!qm_info->qm_vport_params)
820 		goto alloc_err;
821 
822 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
823 					      sizeof(struct init_qm_port_params) *
824 					      p_hwfn->p_dev->num_ports_in_engines);
825 	if (!qm_info->qm_port_params)
826 		goto alloc_err;
827 
828 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
829 					sizeof(struct ecore_wfq_data) *
830 					ecore_init_qm_get_num_vports(p_hwfn));
831 	if (!qm_info->wfq_data)
832 		goto alloc_err;
833 
834 	return ECORE_SUCCESS;
835 
836 alloc_err:
837 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
838 	ecore_qm_info_free(p_hwfn);
839 	return ECORE_NOMEM;
840 }
841 /******************** End QM initialization ***************/
842 
843 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
844 {
845 	enum _ecore_status_t rc = ECORE_SUCCESS;
846 	u32 rdma_tasks, excess_tasks;
847 	u32 line_count;
848 	int i;
849 
850 	if (IS_VF(p_dev)) {
851 		for_each_hwfn(p_dev, i) {
852 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
853 			if (rc != ECORE_SUCCESS)
854 				return rc;
855 		}
856 		return rc;
857 	}
858 
859 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
860 				     sizeof(*p_dev->fw_data));
861 	if (!p_dev->fw_data)
862 		return ECORE_NOMEM;
863 
864 	for_each_hwfn(p_dev, i) {
865 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
866 		u32 n_eqes, num_cons;
867 
868 		/* First allocate the context manager structure */
869 		rc = ecore_cxt_mngr_alloc(p_hwfn);
870 		if (rc)
871 			goto alloc_err;
872 
873 		/* Set the HW cid/tid numbers (in the contest manager)
874 		 * Must be done prior to any further computations.
875 		 */
876 		rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
877 		if (rc)
878 			goto alloc_err;
879 
880 		rc = ecore_alloc_qm_data(p_hwfn);
881 		if (rc)
882 			goto alloc_err;
883 
884 		/* init qm info */
885 		ecore_init_qm_info(p_hwfn);
886 
887 		/* Compute the ILT client partition */
888 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
889 		if (rc) {
890 			DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
891 			/* In case there are not enough ILT lines we reduce the
892 			 * number of RDMA tasks and re-compute.
893 			 */
894 			excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
895 					p_hwfn, line_count);
896 			if (!excess_tasks)
897 				goto alloc_err;
898 
899 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
900 			rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
901 			if (rc)
902 				goto alloc_err;
903 
904 			rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
905 			if (rc) {
906 				DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
907 				       line_count);
908 
909 				goto alloc_err;
910 			}
911 		}
912 
913 		/* CID map / ILT shadow table / T2
914 		 * The talbes sizes are determined by the computations above
915 		 */
916 		rc = ecore_cxt_tables_alloc(p_hwfn);
917 		if (rc)
918 			goto alloc_err;
919 
920 		/* SPQ, must follow ILT because initializes SPQ context */
921 		rc = ecore_spq_alloc(p_hwfn);
922 		if (rc)
923 			goto alloc_err;
924 
925 		/* SP status block allocation */
926 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
927 							   RESERVED_PTT_DPC);
928 
929 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
930 		if (rc)
931 			goto alloc_err;
932 
933 		rc = ecore_iov_alloc(p_hwfn);
934 		if (rc)
935 			goto alloc_err;
936 
937 		/* EQ */
938 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
939 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
940 			/* Calculate the EQ size
941 			 * ---------------------
942 			 * Each ICID may generate up to one event at a time i.e.
943 			 * the event must be handled/cleared before a new one
944 			 * can be generated. We calculate the sum of events per
945 			 * protocol and create an EQ deep enough to handle the
946 			 * worst case:
947 			 * - Core - according to SPQ.
948 			 * - RoCE - per QP there are a couple of ICIDs, one
949 			 *	  responder and one requester, each can
950 			 *	  generate an EQE => n_eqes_qp = 2 * n_qp.
951 			 *	  Each CQ can generate an EQE. There are 2 CQs
952 			 *	  per QP => n_eqes_cq = 2 * n_qp.
953 			 *	  Hence the RoCE total is 4 * n_qp or
954 			 *	  2 * num_cons.
955 			 * - ENet - There can be up to two events per VF. One
956 			 *	  for VF-PF channel and another for VF FLR
957 			 *	  initial cleanup. The number of VFs is
958 			 *	  bounded by MAX_NUM_VFS_BB, and is much
959 			 *	  smaller than RoCE's so we avoid exact
960 			 *	  calculation.
961 			 */
962 			if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
963 				num_cons = ecore_cxt_get_proto_cid_count(
964 					p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
965 				num_cons *= 2;
966 			} else {
967 				num_cons = ecore_cxt_get_proto_cid_count(
968 						p_hwfn, PROTOCOLID_IWARP,
969 						OSAL_NULL);
970 			}
971 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
972 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
973 			num_cons = ecore_cxt_get_proto_cid_count(
974 					p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
975 			n_eqes += 2 * num_cons;
976 		}
977 
978 		if (n_eqes > 0xFFFF) {
979 			DP_ERR(p_hwfn,
980 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
981 			       n_eqes, 0xFFFF);
982 			goto alloc_no_mem;
983 		}
984 
985 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
986 		if (rc)
987 			goto alloc_err;
988 
989 		rc = ecore_consq_alloc(p_hwfn);
990 		if (rc)
991 			goto alloc_err;
992 
993 		rc = ecore_l2_alloc(p_hwfn);
994 		if (rc != ECORE_SUCCESS)
995 			goto alloc_err;
996 
997 #ifdef CONFIG_ECORE_LL2
998 		if (p_hwfn->using_ll2) {
999 			rc = ecore_ll2_alloc(p_hwfn);
1000 			if (rc)
1001 				goto alloc_err;
1002 		}
1003 #endif
1004 #ifdef CONFIG_ECORE_FCOE
1005 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1006 			rc = ecore_fcoe_alloc(p_hwfn);
1007 			if (rc)
1008 				goto alloc_err;
1009 		}
1010 #endif
1011 #ifdef CONFIG_ECORE_ISCSI
1012 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1013 			rc = ecore_iscsi_alloc(p_hwfn);
1014 			if (rc)
1015 				goto alloc_err;
1016 			rc = ecore_ooo_alloc(p_hwfn);
1017 			if (rc)
1018 				goto alloc_err;
1019 		}
1020 #endif
1021 
1022 		/* DMA info initialization */
1023 		rc = ecore_dmae_info_alloc(p_hwfn);
1024 		if (rc) {
1025 			DP_NOTICE(p_hwfn, true,
1026 				  "Failed to allocate memory for dmae_info structure\n");
1027 			goto alloc_err;
1028 		}
1029 
1030 		/* DCBX initialization */
1031 		rc = ecore_dcbx_info_alloc(p_hwfn);
1032 		if (rc) {
1033 			DP_NOTICE(p_hwfn, true,
1034 				  "Failed to allocate memory for dcbx structure\n");
1035 			goto alloc_err;
1036 		}
1037 	}
1038 
1039 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
1040 					 sizeof(*p_dev->reset_stats));
1041 	if (!p_dev->reset_stats) {
1042 		DP_NOTICE(p_dev, true,
1043 			  "Failed to allocate reset statistics\n");
1044 		goto alloc_no_mem;
1045 	}
1046 
1047 	return ECORE_SUCCESS;
1048 
1049 alloc_no_mem:
1050 	rc = ECORE_NOMEM;
1051 alloc_err:
1052 	ecore_resc_free(p_dev);
1053 	return rc;
1054 }
1055 
1056 void ecore_resc_setup(struct ecore_dev *p_dev)
1057 {
1058 	int i;
1059 
1060 	if (IS_VF(p_dev)) {
1061 		for_each_hwfn(p_dev, i)
1062 			ecore_l2_setup(&p_dev->hwfns[i]);
1063 		return;
1064 	}
1065 
1066 	for_each_hwfn(p_dev, i) {
1067 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1068 
1069 		ecore_cxt_mngr_setup(p_hwfn);
1070 		ecore_spq_setup(p_hwfn);
1071 		ecore_eq_setup(p_hwfn);
1072 		ecore_consq_setup(p_hwfn);
1073 
1074 		/* Read shadow of current MFW mailbox */
1075 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1076 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1077 			    p_hwfn->mcp_info->mfw_mb_cur,
1078 			    p_hwfn->mcp_info->mfw_mb_length);
1079 
1080 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1081 
1082 		ecore_l2_setup(p_hwfn);
1083 		ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
1084 #ifdef CONFIG_ECORE_LL2
1085 		if (p_hwfn->using_ll2)
1086 			ecore_ll2_setup(p_hwfn);
1087 #endif
1088 #ifdef CONFIG_ECORE_FCOE
1089 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1090 			ecore_fcoe_setup(p_hwfn);
1091 #endif
1092 #ifdef CONFIG_ECORE_ISCSI
1093 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1094 			ecore_iscsi_setup(p_hwfn);
1095 			ecore_ooo_setup(p_hwfn);
1096 		}
1097 #endif
1098 	}
1099 }
1100 
1101 #define FINAL_CLEANUP_POLL_CNT	(100)
1102 #define FINAL_CLEANUP_POLL_TIME	(10)
1103 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
1104 					 struct ecore_ptt *p_ptt,
1105 					 u16 id, bool is_vf)
1106 {
1107 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1108 	enum _ecore_status_t rc = ECORE_TIMEOUT;
1109 
1110 #ifndef ASIC_ONLY
1111 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
1112 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1113 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
1114 		return ECORE_SUCCESS;
1115 	}
1116 #endif
1117 
1118 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
1119 	       USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1120 
1121 	if (is_vf)
1122 		id += 0x10;
1123 
1124 	command |= X_FINAL_CLEANUP_AGG_INT <<
1125 		   SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1126 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1127 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1128 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1129 
1130 	/* Make sure notification is not set before initiating final cleanup */
1131 	if (REG_RD(p_hwfn, addr)) {
1132 		DP_NOTICE(p_hwfn, false,
1133 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
1134 		REG_WR(p_hwfn, addr, 0);
1135 	}
1136 
1137 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
1138 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
1139 		   id, command);
1140 
1141 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1142 
1143 	/* Poll until completion */
1144 	while (!REG_RD(p_hwfn, addr) && count--)
1145 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
1146 
1147 	if (REG_RD(p_hwfn, addr))
1148 		rc = ECORE_SUCCESS;
1149 	else
1150 		DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
1151 
1152 	/* Cleanup afterwards */
1153 	REG_WR(p_hwfn, addr, 0);
1154 
1155 	return rc;
1156 }
1157 
1158 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
1159 {
1160 	int hw_mode = 0;
1161 
1162 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
1163 		hw_mode |= 1 << MODE_BB;
1164 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
1165 		hw_mode |= 1 << MODE_K2;
1166 	} else {
1167 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
1168 			  p_hwfn->p_dev->type);
1169 		return ECORE_INVAL;
1170 	}
1171 
1172 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
1173 	switch (p_hwfn->p_dev->num_ports_in_engines) {
1174 	case 1:
1175 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1176 		break;
1177 	case 2:
1178 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1179 		break;
1180 	case 4:
1181 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1182 		break;
1183 	default:
1184 		DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
1185 			  p_hwfn->p_dev->num_ports_in_engines);
1186 		return ECORE_INVAL;
1187 	}
1188 
1189 	switch (p_hwfn->p_dev->mf_mode) {
1190 	case ECORE_MF_DEFAULT:
1191 	case ECORE_MF_NPAR:
1192 		hw_mode |= 1 << MODE_MF_SI;
1193 		break;
1194 	case ECORE_MF_OVLAN:
1195 		hw_mode |= 1 << MODE_MF_SD;
1196 		break;
1197 	default:
1198 		DP_NOTICE(p_hwfn, true, "Unsupported MF mode, init as DEFAULT\n");
1199 		hw_mode |= 1 << MODE_MF_SI;
1200 	}
1201 
1202 #ifndef ASIC_ONLY
1203 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1204 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1205 			hw_mode |= 1 << MODE_FPGA;
1206 		} else {
1207 			if (p_hwfn->p_dev->b_is_emul_full)
1208 				hw_mode |= 1 << MODE_EMUL_FULL;
1209 			else
1210 				hw_mode |= 1 << MODE_EMUL_REDUCED;
1211 		}
1212 	} else
1213 #endif
1214 	hw_mode |= 1 << MODE_ASIC;
1215 
1216 	if (p_hwfn->p_dev->num_hwfns > 1)
1217 		hw_mode |= 1 << MODE_100G;
1218 
1219 	p_hwfn->hw_info.hw_mode = hw_mode;
1220 
1221 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
1222 		   "Configuring function for hw_mode: 0x%08x\n",
1223 		   p_hwfn->hw_info.hw_mode);
1224 
1225 	return ECORE_SUCCESS;
1226 }
1227 
1228 #ifndef ASIC_ONLY
1229 /* MFW-replacement initializations for non-ASIC */
1230 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
1231 					       struct ecore_ptt *p_ptt)
1232 {
1233 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1234 	u32 pl_hv = 1;
1235 	int i;
1236 
1237 	if (CHIP_REV_IS_EMUL(p_dev)) {
1238 		if (ECORE_IS_AH(p_dev))
1239 			pl_hv |= 0x600;
1240 		else if (ECORE_IS_E5(p_dev))
1241 			ECORE_E5_MISSING_CODE;
1242 	}
1243 
1244 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
1245 
1246 	if (CHIP_REV_IS_EMUL(p_dev) &&
1247 	    (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
1248 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
1249 			 0x3ffffff);
1250 
1251 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
1252 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
1253 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
1254 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
1255 
1256 	if (CHIP_REV_IS_EMUL(p_dev)) {
1257 		if (ECORE_IS_AH(p_dev)) {
1258 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
1259 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
1260 				 (p_dev->num_ports_in_engines >> 1));
1261 
1262 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
1263 				 p_dev->num_ports_in_engines == 4 ? 0 : 3);
1264 		} else if (ECORE_IS_E5(p_dev)) {
1265 			ECORE_E5_MISSING_CODE;
1266 		}
1267 	}
1268 
1269 	/* Poll on RBC */
1270 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
1271 	for (i = 0; i < 100; i++) {
1272 		OSAL_UDELAY(50);
1273 		if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
1274 			break;
1275 	}
1276 	if (i == 100)
1277 		DP_NOTICE(p_hwfn, true, "RBC done failed to complete in PSWRQ2\n");
1278 
1279 	return ECORE_SUCCESS;
1280 }
1281 #endif
1282 
1283 /* Init run time data for all PFs and their VFs on an engine.
1284  * TBD - for VFs - Once we have parent PF info for each VF in
1285  * shmem available as CAU requires knowledge of parent PF for each VF.
1286  */
1287 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
1288 {
1289 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1290 	int i, igu_sb_id;
1291 
1292 	for_each_hwfn(p_dev, i) {
1293 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1294 		struct ecore_igu_info *p_igu_info;
1295 		struct ecore_igu_block *p_block;
1296 		struct cau_sb_entry sb_entry;
1297 
1298 		p_igu_info = p_hwfn->hw_info.p_igu_info;
1299 
1300 		for (igu_sb_id = 0;
1301 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
1302 		     igu_sb_id++) {
1303 			p_block = &p_igu_info->entry[igu_sb_id];
1304 
1305 			if (!p_block->is_pf)
1306 				continue;
1307 
1308 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
1309 						p_block->function_id,
1310 						0, 0);
1311 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
1312 					 sb_entry);
1313 		}
1314 	}
1315 }
1316 
1317 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
1318 				       struct ecore_ptt *p_ptt)
1319 {
1320 	u32 val, wr_mbs, cache_line_size;
1321 
1322 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
1323 	switch (val) {
1324 	case 0:
1325 		wr_mbs = 128;
1326 		break;
1327 	case 1:
1328 		wr_mbs = 256;
1329 		break;
1330 	case 2:
1331 		wr_mbs = 512;
1332 		break;
1333 	default:
1334 		DP_INFO(p_hwfn,
1335 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1336 			val);
1337 		return;
1338 	}
1339 
1340 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
1341 	switch (cache_line_size) {
1342 	case 32:
1343 		val = 0;
1344 		break;
1345 	case 64:
1346 		val = 1;
1347 		break;
1348 	case 128:
1349 		val = 2;
1350 		break;
1351 	case 256:
1352 		val = 3;
1353 		break;
1354 	default:
1355 		DP_INFO(p_hwfn,
1356 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1357 			cache_line_size);
1358 	}
1359 
1360 	if (OSAL_CACHE_LINE_SIZE > wr_mbs)
1361 		DP_INFO(p_hwfn,
1362 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
1363 			OSAL_CACHE_LINE_SIZE, wr_mbs);
1364 
1365 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
1366 }
1367 
1368 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
1369 						 struct ecore_ptt *p_ptt,
1370 						 int hw_mode)
1371 {
1372 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1373 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1374 	u8 vf_id, max_num_vfs;
1375 	u16 num_pfs, pf_id;
1376 	u32 concrete_fid;
1377 	enum _ecore_status_t rc	= ECORE_SUCCESS;
1378 
1379 	ecore_init_cau_rt_data(p_dev);
1380 
1381 	/* Program GTT windows */
1382 	ecore_gtt_init(p_hwfn);
1383 
1384 #ifndef ASIC_ONLY
1385 	if (CHIP_REV_IS_EMUL(p_dev)) {
1386 		rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
1387 		if (rc != ECORE_SUCCESS)
1388 			return rc;
1389 	}
1390 #endif
1391 
1392 	if (p_hwfn->mcp_info) {
1393 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
1394 			qm_info->pf_rl_en = 1;
1395 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1396 			qm_info->pf_wfq_en = 1;
1397 	}
1398 
1399 	ecore_qm_common_rt_init(p_hwfn,
1400 				p_dev->num_ports_in_engines,
1401 				qm_info->max_phys_tcs_per_port,
1402 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
1403 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
1404 				qm_info->qm_port_params);
1405 
1406 	ecore_cxt_hw_init_common(p_hwfn);
1407 
1408 	ecore_init_cache_line_size(p_hwfn, p_ptt);
1409 
1410 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1411 	if (rc != ECORE_SUCCESS)
1412 		return rc;
1413 
1414 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1415 	 * need to decide with which value, maybe runtime
1416 	 */
1417 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1418 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1419 
1420 	if (ECORE_IS_BB(p_dev)) {
1421 		/* Workaround clears ROCE search for all functions to prevent
1422 		 * involving non intialized function in processing ROCE packet.
1423 		 */
1424 		num_pfs = NUM_OF_ENG_PFS(p_dev);
1425 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1426 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1427 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1428 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1429 		}
1430 		/* pretend to original PF */
1431 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1432 	}
1433 
1434 	/* Workaround for avoiding CCFC execution error when getting packets
1435 	 * with CRC errors, and allowing instead the invoking of the FW error
1436 	 * handler.
1437 	 * This is not done inside the init tool since it currently can't
1438 	 * perform a pretending to VFs.
1439 	 */
1440 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1441 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1442 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1443 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1444 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1445 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1446 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1447 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1448 	}
1449 	/* pretend to original PF */
1450 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1451 
1452 	return rc;
1453 }
1454 
1455 #ifndef ASIC_ONLY
1456 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
1457 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
1458 
1459 #define PMEG_IF_BYTE_COUNT	8
1460 
1461 static void ecore_wr_nw_port(struct ecore_hwfn	*p_hwfn,
1462 			     struct ecore_ptt	*p_ptt,
1463 			     u32		addr,
1464 			     u64		data,
1465 			     u8			reg_type,
1466 			     u8			port)
1467 {
1468 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1469 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1470 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
1471 		   (8 << PMEG_IF_BYTE_COUNT),
1472 		   (reg_type << 25) | (addr << 8) | port,
1473 		   (u32)((data >> 32) & 0xffffffff),
1474 		   (u32)(data & 0xffffffff));
1475 
1476 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
1477 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
1478 		  0xffff00fe) |
1479 		 (8 << PMEG_IF_BYTE_COUNT));
1480 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
1481 		 (reg_type << 25) | (addr << 8) | port);
1482 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
1483 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
1484 		 (data >> 32) & 0xffffffff);
1485 }
1486 
1487 #define XLPORT_MODE_REG	(0x20a)
1488 #define XLPORT_MAC_CONTROL (0x210)
1489 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1490 #define XLPORT_ENABLE_REG (0x20b)
1491 
1492 #define XLMAC_CTRL (0x600)
1493 #define XLMAC_MODE (0x601)
1494 #define XLMAC_RX_MAX_SIZE (0x608)
1495 #define XLMAC_TX_CTRL (0x604)
1496 #define XLMAC_PAUSE_CTRL (0x60d)
1497 #define XLMAC_PFC_CTRL (0x60e)
1498 
1499 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
1500 				    struct ecore_ptt *p_ptt)
1501 {
1502 	u8 loopback = 0, port = p_hwfn->port_id * 2;
1503 
1504 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1505 
1506 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
1507 			 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
1508 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1509 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1510 			 0x40, 0, port); /*XLMAC: SOFT RESET */
1511 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
1512 			 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
1513 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
1514 			 0x3fff, 0, port); /* XLMAC: Max Size */
1515 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1516 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1517 			 0, port);
1518 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
1519 			 0x7c000, 0, port);
1520 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1521 			 0x30ffffc000ULL, 0, port);
1522 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
1523 			 0, port); /* XLMAC: TX_EN, RX_EN */
1524 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
1525 			 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1526 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
1527 			 1, 0, port); /* Enabled Parallel PFC interface */
1528 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
1529 			 0xf, 1, port); /* XLPORT port enable */
1530 }
1531 
1532 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
1533 				       struct ecore_ptt *p_ptt)
1534 {
1535 	u8 port = p_hwfn->port_id;
1536 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
1537 
1538 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1539 
1540 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
1541 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
1542 		 (port <<
1543 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
1544 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
1545 
1546 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
1547 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
1548 
1549 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
1550 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
1551 
1552 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
1553 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
1554 
1555 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
1556 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
1557 
1558 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
1559 		 (0xA <<
1560 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
1561 		 (8 <<
1562 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
1563 
1564 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
1565 		 0xa853);
1566 }
1567 
1568 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1569 				 struct ecore_ptt *p_ptt)
1570 {
1571 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
1572 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
1573 	else /* BB */
1574 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
1575 
1576 	return;
1577 }
1578 
1579 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
1580 			       struct ecore_ptt *p_ptt,  u8 port)
1581 {
1582 	int port_offset = port ? 0x800 : 0;
1583 	u32 xmac_rxctrl	= 0;
1584 
1585 	/* Reset of XMAC */
1586 	/* FIXME: move to common start */
1587 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
1588 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
1589 	OSAL_MSLEEP(1);
1590 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1591 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
1592 
1593 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
1594 
1595 	/* Set the number of ports on the Warp Core to 10G */
1596 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
1597 
1598 	/* Soft reset of XMAC */
1599 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1600 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1601 	OSAL_MSLEEP(1);
1602 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1603 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1604 
1605 	/* FIXME: move to common end */
1606 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1607 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
1608 
1609 	/* Set Max packet size: initialize XMAC block register for port 0 */
1610 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
1611 
1612 	/* CRC append for Tx packets: init XMAC block register for port 1 */
1613 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
1614 
1615 	/* Enable TX and RX: initialize XMAC block register for port 1 */
1616 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
1617 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
1618 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
1619 			       XMAC_REG_RX_CTRL_BB + port_offset);
1620 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
1621 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
1622 }
1623 #endif
1624 
1625 static enum _ecore_status_t
1626 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1627 		       struct ecore_ptt *p_ptt,
1628 		       u32 pwm_region_size,
1629 		       u32 n_cpus)
1630 {
1631 	u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1632 	u32 dpi_bit_shift, dpi_count;
1633 	u32 min_dpis;
1634 
1635 	/* Calculate DPI size
1636 	 * ------------------
1637 	 * The PWM region contains Doorbell Pages. The first is reserverd for
1638 	 * the kernel for, e.g, L2. The others are free to be used by non-
1639 	 * trusted applications, typically from user space. Each page, called a
1640 	 * doorbell page is sectioned into windows that allow doorbells to be
1641 	 * issued in parallel by the kernel/application. The size of such a
1642 	 * window (a.k.a. WID) is 1kB.
1643 	 * Summary:
1644 	 *    1kB WID x N WIDS = DPI page size
1645 	 *    DPI page size x N DPIs = PWM region size
1646 	 * Notes:
1647 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1648 	 * in order to ensure that two applications won't share the same page.
1649 	 * It also must contain at least one WID per CPU to allow parallelism.
1650 	 * It also must be a power of 2, since it is stored as a bit shift.
1651 	 *
1652 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1653 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1654 	 * containing 4 WIDs.
1655 	 */
1656 	dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1657 	dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1658 	dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1659 	dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1660 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1661 
1662 	dpi_count = pwm_region_size / dpi_page_size;
1663 
1664 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1665 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1666 
1667 	/* Update hwfn */
1668 	p_hwfn->dpi_size = dpi_page_size;
1669 	p_hwfn->dpi_count = dpi_count;
1670 
1671 	/* Update registers */
1672 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1673 
1674 	if (dpi_count < min_dpis)
1675 		return ECORE_NORESOURCES;
1676 
1677 	return ECORE_SUCCESS;
1678 }
1679 
1680 enum ECORE_ROCE_EDPM_MODE {
1681 	ECORE_ROCE_EDPM_MODE_ENABLE	= 0,
1682 	ECORE_ROCE_EDPM_MODE_FORCE_ON	= 1,
1683 	ECORE_ROCE_EDPM_MODE_DISABLE	= 2,
1684 };
1685 
1686 static enum _ecore_status_t
1687 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1688 			      struct ecore_ptt *p_ptt)
1689 {
1690 	u32 pwm_regsize, norm_regsize;
1691 	u32 non_pwm_conn, min_addr_reg1;
1692 	u32 db_bar_size, n_cpus = 1;
1693 	u32 roce_edpm_mode;
1694 	u32 pf_dems_shift;
1695 	enum _ecore_status_t rc = ECORE_SUCCESS;
1696 	u8 cond;
1697 
1698 	db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1699 	if (p_hwfn->p_dev->num_hwfns > 1)
1700 		db_bar_size /= 2;
1701 
1702 	/* Calculate doorbell regions
1703 	 * -----------------------------------
1704 	 * The doorbell BAR is made of two regions. The first is called normal
1705 	 * region and the second is called PWM region. In the normal region
1706 	 * each ICID has its own set of addresses so that writing to that
1707 	 * specific address identifies the ICID. In the Process Window Mode
1708 	 * region the ICID is given in the data written to the doorbell. The
1709 	 * above per PF register denotes the offset in the doorbell BAR in which
1710 	 * the PWM region begins.
1711 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1712 	 * non-PWM connection. The calculation below computes the total non-PWM
1713 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1714 	 * in units of 4,096 bytes.
1715 	 */
1716 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1717 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1718 						     OSAL_NULL) +
1719 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
1720 						     OSAL_NULL);
1721 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1722 	min_addr_reg1 = norm_regsize / 4096;
1723 	pwm_regsize = db_bar_size - norm_regsize;
1724 
1725 	/* Check that the normal and PWM sizes are valid */
1726 	if (db_bar_size < norm_regsize) {
1727 		DP_ERR(p_hwfn->p_dev, "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", db_bar_size, norm_regsize);
1728 		return ECORE_NORESOURCES;
1729 	}
1730 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1731 		DP_ERR(p_hwfn->p_dev, "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size, norm_regsize);
1732 		return ECORE_NORESOURCES;
1733 	}
1734 
1735 	/* Calculate number of DPIs */
1736 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1737 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1738 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1739 		/* Either EDPM is mandatory, or we are attempting to allocate a
1740 		 * WID per CPU.
1741 		 */
1742 		n_cpus = OSAL_NUM_ACTIVE_CPU();
1743 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1744 	}
1745 
1746 	cond = ((rc != ECORE_SUCCESS) &&
1747 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1748 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1749 	if (cond || p_hwfn->dcbx_no_edpm) {
1750 		/* Either EDPM is disabled from user configuration, or it is
1751 		 * disabled via DCBx, or it is not mandatory and we failed to
1752 		 * allocated a WID per CPU.
1753 		 */
1754 		n_cpus = 1;
1755 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1756 
1757 #ifdef CONFIG_ECORE_ROCE
1758 		/* If we entered this flow due to DCBX then the DPM register is
1759 		 * already configured.
1760 		 */
1761 		if (cond)
1762 			ecore_rdma_dpm_bar(p_hwfn, p_ptt);
1763 #endif
1764 	}
1765 
1766 	p_hwfn->wid_count = (u16)n_cpus;
1767 
1768 	DP_INFO(p_hwfn, "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1769 		norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
1770 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1771 		"disabled" : "enabled");
1772 
1773 	/* Check return codes from above calls */
1774 	if (rc != ECORE_SUCCESS) {
1775 		DP_ERR(p_hwfn,
1776 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d. You can try reducing this down to %d via user configuration n_dpi or by disabling EDPM via user configuration roce_edpm\n",
1777 		       p_hwfn->dpi_count,
1778 		       p_hwfn->pf_params.rdma_pf_params.min_dpis,
1779 		       ECORE_MIN_DPIS);
1780 		return ECORE_NORESOURCES;
1781 	}
1782 
1783 	/* Update hwfn */
1784 	p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
1785 						      * calculate the doorbell
1786 						      * address
1787 						      */
1788 
1789 	/* Update registers */
1790 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1791 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1792 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1793 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1794 
1795 	return ECORE_SUCCESS;
1796 }
1797 
1798 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1799 					       struct ecore_ptt *p_ptt,
1800 					       int hw_mode)
1801 {
1802 	enum _ecore_status_t rc	= ECORE_SUCCESS;
1803 
1804 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1805 			    hw_mode);
1806 	if (rc != ECORE_SUCCESS)
1807 		return rc;
1808 #if 0
1809 	/* FW 8.10.5.0 requires us to configure PF_VECTOR and DUALMODE in LLH.
1810 	 * This would hopefully be moved to MFW.
1811 	 */
1812 	if (IS_MF_DEFAULT(p_hwfn) || IS_MF_SI(p_hwfn)) {
1813 		u8 pf_id = 0;
1814 
1815 		if (ecore_hw_init_first_eth(p_hwfn, p_ptt, &pf_id) ==
1816 		    ECORE_SUCCESS) {
1817 			DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP,
1818 				   "PF[%08x] is first eth on engine\n",
1819 				   pf_id);
1820 
1821 			/* We should have configured BIT for ppfid, i.e., the
1822 			 * relative function number in the port. But there's a
1823 			 * bug in LLH in BB where the ppfid is actually engine
1824 			 * based, so we need to take this into account.
1825 			 */
1826 			if (!ECORE_IS_BB(p_hwfn->p_dev))
1827 				pf_id /= p_hwfn->p_dev->num_ports_in_engines;
1828 
1829 			ecore_wr(p_hwfn, p_ptt,
1830 				 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id);
1831 		}
1832 
1833 		/* Take the protocol-based hit vector if there is a hit,
1834 		 * otherwise take the other vector.
1835 		 */
1836 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_CLS_TYPE_DUALMODE, 0x2);
1837 	}
1838 #endif
1839 #ifndef ASIC_ONLY
1840 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1841 		return ECORE_SUCCESS;
1842 
1843 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1844 		if (ECORE_IS_AH(p_hwfn->p_dev))
1845 			return ECORE_SUCCESS;
1846 		else if (ECORE_IS_BB(p_hwfn->p_dev))
1847 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
1848 		else /* E5 */
1849 			ECORE_E5_MISSING_CODE;
1850 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1851 		if (p_hwfn->p_dev->num_hwfns > 1) {
1852 			/* Activate OPTE in CMT */
1853 			u32 val;
1854 
1855 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1856 			val |= 0x10;
1857 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1858 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1859 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1860 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1861 			ecore_wr(p_hwfn, p_ptt,
1862 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1863 			ecore_wr(p_hwfn, p_ptt,
1864 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1865 			ecore_wr(p_hwfn, p_ptt,
1866 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1867 				 0x55555555);
1868 		}
1869 
1870 		ecore_emul_link_init(p_hwfn, p_ptt);
1871 	} else {
1872 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1873 	}
1874 #endif
1875 
1876 	return rc;
1877 }
1878 
1879 static enum _ecore_status_t ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1880 					     struct ecore_ptt *p_ptt,
1881 					      struct ecore_tunnel_info *p_tunn,
1882 					      int hw_mode,
1883 					      bool b_hw_start,
1884 					      enum ecore_int_mode int_mode,
1885 					      bool allow_npar_tx_switch)
1886 {
1887 	u8 rel_pf_id = p_hwfn->rel_pf_id;
1888 	u32 prs_reg;
1889 	enum _ecore_status_t rc	= ECORE_SUCCESS;
1890 	u16 ctrl;
1891 	int pos;
1892 
1893 	if (p_hwfn->mcp_info) {
1894 		struct ecore_mcp_function_info *p_info;
1895 
1896 		p_info = &p_hwfn->mcp_info->func_info;
1897 		if (p_info->bandwidth_min)
1898 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1899 
1900 		/* Update rate limit once we'll actually have a link */
1901 		p_hwfn->qm_info.pf_rl = 100000;
1902 	}
1903 	ecore_cxt_hw_init_pf(p_hwfn);
1904 
1905 	ecore_int_igu_init_rt(p_hwfn);
1906 
1907 	/* Set VLAN in NIG if needed */
1908 	if (hw_mode & (1 << MODE_MF_SD)) {
1909 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1910 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1911 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1912 			     p_hwfn->hw_info.ovlan);
1913 	}
1914 
1915 	/* Enable classification by MAC if needed */
1916 	if (hw_mode & (1 << MODE_MF_SI)) {
1917 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
1918 		STORE_RT_REG(p_hwfn,
1919 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
1920 	}
1921 
1922 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise?*/
1923 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1924 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1925 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1926 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1927 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1928 
1929 	/* perform debug configuration when chip is out of reset */
1930 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1931 
1932 	/* Cleanup chip from previous driver if such remains exist */
1933 	rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1934 	if (rc != ECORE_SUCCESS) {
1935 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1936 		return rc;
1937 	}
1938 
1939 	/* PF Init sequence */
1940 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1941 	if (rc)
1942 		return rc;
1943 
1944 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1945 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1946 	if (rc)
1947 		return rc;
1948 
1949 	/* Pure runtime initializations - directly to the HW  */
1950 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1951 
1952 	/* PCI relaxed ordering causes a decrease in the performance on some
1953 	 * systems. Till a root cause is found, disable this attribute in the
1954 	 * PCI config space.
1955 	 */
1956 	pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1957 	if (!pos) {
1958 		DP_NOTICE(p_hwfn, true,
1959 			  "Failed to find the PCI Express Capability structure in the PCI config space\n");
1960 		return ECORE_IO;
1961 	}
1962 	OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1963 	ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1964 	OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1965 
1966 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1967 	if (rc)
1968 		return rc;
1969 #if 0
1970 	/* FW 8.10.5.0 requires us to configure MSG_INFO in PRS.
1971 	 * This would hopefully be moved to MFW.
1972 	 */
1973 	if (IS_MF_SI(p_hwfn)) {
1974 		u8 pf_id = 0;
1975 		u32 val;
1976 
1977 		if (ecore_hw_init_first_eth(p_hwfn, p_ptt, &pf_id) ==
1978 		    ECORE_SUCCESS) {
1979 			if (p_hwfn->rel_pf_id == pf_id) {
1980 				DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP,
1981 					   "PF[%d] is first ETH on engine\n",
1982 					   pf_id);
1983 				val = 1;
1984 			}
1985 			ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, val);
1986 		}
1987 	}
1988 #endif
1989 	/* Add an LLH filter with the primary MAC address.  */
1990 	if (p_hwfn->p_dev->num_hwfns > 1 && IS_LEAD_HWFN(p_hwfn)) {
1991 		rc = ecore_llh_add_mac_filter(p_hwfn, p_ptt,
1992 					      p_hwfn->hw_info.hw_mac_addr);
1993 		if (rc != ECORE_SUCCESS)
1994 			DP_NOTICE(p_hwfn, false,
1995 				"Failed to add an LLH filter with the primary MAC\n");
1996 	}
1997 
1998 	if (b_hw_start) {
1999 		/* enable interrupts */
2000 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
2001 		if (rc != ECORE_SUCCESS)
2002 			return rc;
2003 
2004 		/* send function start command */
2005 		rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
2006 				       allow_npar_tx_switch);
2007 		if (rc) {
2008 			DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
2009 		} else {
2010 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
2011 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2012 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
2013 
2014 			if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2015 			{
2016 				ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
2017 					 (1 << 2));
2018 				ecore_wr(p_hwfn, p_ptt,
2019 					 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
2020 					 0x100);
2021 			}
2022 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2023 				   "PRS_REG_SEARCH registers after start PFn\n");
2024 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
2025 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2026 				   "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
2027 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
2028 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2029 				   "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
2030 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
2031 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2032 				   "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
2033 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
2034 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2035 				   "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
2036 			prs_reg = ecore_rd(p_hwfn, p_ptt,
2037 					   PRS_REG_SEARCH_TCP_FIRST_FRAG);
2038 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2039 				   "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
2040 				   prs_reg);
2041 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
2042 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2043 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
2044 		}
2045 	}
2046 	return rc;
2047 }
2048 
2049 enum _ecore_status_t ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
2050 					   struct ecore_ptt *p_ptt,
2051 					   u8 enable)
2052 {
2053 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
2054 
2055 	/* Change PF in PXP */
2056 	ecore_wr(p_hwfn, p_ptt,
2057 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
2058 
2059 	/* wait until value is set - try for 1 second every 50us */
2060 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
2061 		val = ecore_rd(p_hwfn, p_ptt,
2062 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
2063 		if (val == set_val)
2064 			break;
2065 
2066 		OSAL_UDELAY(50);
2067 	}
2068 
2069 	if (val != set_val) {
2070 		DP_NOTICE(p_hwfn, true,
2071 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
2072 		return ECORE_UNKNOWN_ERROR;
2073 	}
2074 
2075 	return ECORE_SUCCESS;
2076 }
2077 
2078 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
2079 			struct ecore_ptt *p_main_ptt)
2080 {
2081 	/* Read shadow of current MFW mailbox */
2082 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
2083 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2084 		    p_hwfn->mcp_info->mfw_mb_cur,
2085 		    p_hwfn->mcp_info->mfw_mb_length);
2086 }
2087 
2088 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
2089 				    struct ecore_hw_init_params *p_params)
2090 {
2091 	if (p_params->p_tunn) {
2092 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
2093 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
2094 	}
2095 
2096 	p_hwfn->b_int_enabled = 1;
2097 
2098 	return ECORE_SUCCESS;
2099 }
2100 
2101 static void
2102 ecore_fill_load_req_params(struct ecore_load_req_params *p_load_req,
2103 			   struct ecore_drv_load_params *p_drv_load)
2104 {
2105 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
2106 
2107 	if (p_drv_load != OSAL_NULL) {
2108 		p_load_req->drv_role = p_drv_load->is_crash_kernel ?
2109 				       ECORE_DRV_ROLE_KDUMP :
2110 				       ECORE_DRV_ROLE_OS;
2111 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
2112 		p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
2113 		p_load_req->override_force_load =
2114 			p_drv_load->override_force_load;
2115 	} else {
2116 		p_load_req->drv_role = ECORE_DRV_ROLE_OS;
2117 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
2118 		p_load_req->avoid_eng_reset = false;
2119 		p_load_req->override_force_load =
2120 			ECORE_OVERRIDE_FORCE_LOAD_NONE;
2121 	}
2122 }
2123 
2124 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
2125 				   struct ecore_hw_init_params *p_params)
2126 {
2127 	struct ecore_load_req_params load_req_params;
2128 	u32 load_code, param, drv_mb_param;
2129 	bool b_default_mtu = true;
2130 	struct ecore_hwfn *p_hwfn;
2131 	enum _ecore_status_t rc = ECORE_SUCCESS, mfw_rc;
2132 	int i;
2133 
2134 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && (p_dev->num_hwfns > 1)) {
2135 		DP_NOTICE(p_dev, false,
2136 			  "MSI mode is not supported for CMT devices\n");
2137 		return ECORE_INVAL;
2138 	}
2139 
2140 	if (IS_PF(p_dev)) {
2141 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
2142 		if (rc != ECORE_SUCCESS)
2143 			return rc;
2144 	}
2145 
2146 	for_each_hwfn(p_dev, i) {
2147 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2148 
2149 		/* If management didn't provide a default, set one of our own */
2150 		if (!p_hwfn->hw_info.mtu) {
2151 			p_hwfn->hw_info.mtu = 1500;
2152 			b_default_mtu = false;
2153 		}
2154 
2155 		if (IS_VF(p_dev)) {
2156 			ecore_vf_start(p_hwfn, p_params);
2157 			continue;
2158 		}
2159 
2160 		/* Enable DMAE in PXP */
2161 		rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
2162 		if (rc != ECORE_SUCCESS)
2163 			return rc;
2164 
2165 		rc = ecore_calc_hw_mode(p_hwfn);
2166 		if (rc != ECORE_SUCCESS)
2167 			return rc;
2168 
2169 		ecore_fill_load_req_params(&load_req_params,
2170 					   p_params->p_drv_load_params);
2171 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
2172 					&load_req_params);
2173 		if (rc != ECORE_SUCCESS) {
2174 			DP_NOTICE(p_hwfn, true,
2175 				  "Failed sending a LOAD_REQ command\n");
2176 			return rc;
2177 		}
2178 
2179 		load_code = load_req_params.load_code;
2180 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
2181 			   "Load request was sent. Load code: 0x%x\n",
2182 			   load_code);
2183 
2184 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
2185 
2186 		/* CQ75580:
2187 		 * When comming back from hiberbate state, the registers from
2188 		 * which shadow is read initially are not initialized. It turns
2189 		 * out that these registers get initialized during the call to
2190 		 * ecore_mcp_load_req request. So we need to reread them here
2191 		 * to get the proper shadow register value.
2192 		 * Note: This is a workaround for the missing MFW
2193 		 * initialization. It may be removed once the implementation
2194 		 * is done.
2195 		 */
2196 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
2197 
2198 		/* Only relevant for recovery:
2199 		 * Clear the indication after the LOAD_REQ command is responded
2200 		 * by the MFW.
2201 		 */
2202 		p_dev->recov_in_prog = false;
2203 
2204 		p_hwfn->first_on_engine = (load_code ==
2205 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
2206 
2207 		if (!qm_lock_init) {
2208 			OSAL_SPIN_LOCK_INIT(&qm_lock);
2209 			qm_lock_init = true;
2210 		}
2211 
2212 		switch (load_code) {
2213 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
2214 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
2215 					     p_hwfn->hw_info.hw_mode);
2216 			if (rc != ECORE_SUCCESS)
2217 				break;
2218 			/* Fall into */
2219 		case FW_MSG_CODE_DRV_LOAD_PORT:
2220 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
2221 						p_hwfn->hw_info.hw_mode);
2222 			if (rc != ECORE_SUCCESS)
2223 				break;
2224 			/* Fall into */
2225 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
2226 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
2227 					      p_params->p_tunn,
2228 					      p_hwfn->hw_info.hw_mode,
2229 					      p_params->b_hw_start,
2230 					      p_params->int_mode,
2231 					      p_params->allow_npar_tx_switch);
2232 			break;
2233 		default:
2234 			DP_NOTICE(p_hwfn, false,
2235 				  "Unexpected load code [0x%08x]", load_code);
2236 			rc = ECORE_NOTIMPL;
2237 			break;
2238 		}
2239 
2240 		if (rc != ECORE_SUCCESS)
2241 			DP_NOTICE(p_hwfn, true,
2242 				  "init phase failed for loadcode 0x%x (rc %d)\n",
2243 				  load_code, rc);
2244 
2245 		/* ACK mfw regardless of success or failure of initialization */
2246 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2247 				       DRV_MSG_CODE_LOAD_DONE,
2248 				       0, &load_code, &param);
2249 
2250 		/* Check the return value of the ecore_hw_init_*() function */
2251 		if (rc != ECORE_SUCCESS)
2252 			return rc;
2253 
2254 		/* Check the return value of the LOAD_DONE command */
2255 		if (mfw_rc != ECORE_SUCCESS) {
2256 			DP_NOTICE(p_hwfn, true,
2257 				  "Failed sending a LOAD_DONE command\n");
2258 			return mfw_rc;
2259 		}
2260 
2261 		/* Check if there is a DID mismatch between nvm-cfg/efuse */
2262 		if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR)
2263 			DP_NOTICE(p_hwfn, false,
2264 				  "warning: device configuration is not supported on this board type. The device may not function as expected.\n");
2265 
2266 		/* send DCBX attention request command */
2267 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
2268 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
2269 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2270 				       DRV_MSG_CODE_SET_DCBX,
2271 				       1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
2272 				       &load_code, &param);
2273 		if (mfw_rc != ECORE_SUCCESS) {
2274 			DP_NOTICE(p_hwfn, true,
2275 				  "Failed to send DCBX attention request\n");
2276 			return mfw_rc;
2277 		}
2278 
2279 		p_hwfn->hw_init_done = true;
2280 	}
2281 
2282 	if (IS_PF(p_dev)) {
2283 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2284 		drv_mb_param = STORM_FW_VERSION;
2285 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2286 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
2287 				   drv_mb_param, &load_code, &param);
2288 		if (rc != ECORE_SUCCESS)
2289 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
2290 
2291 		if (!b_default_mtu) {
2292 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
2293 						      p_hwfn->hw_info.mtu);
2294 			if (rc != ECORE_SUCCESS)
2295 				DP_INFO(p_hwfn, "Failed to update default mtu\n");
2296 		}
2297 
2298 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
2299 						      p_hwfn->p_main_ptt,
2300 						      ECORE_OV_DRIVER_STATE_DISABLED);
2301 		if (rc != ECORE_SUCCESS)
2302 			DP_INFO(p_hwfn, "Failed to update driver state\n");
2303 
2304 		rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
2305 						 ECORE_OV_ESWITCH_VEB);
2306 		if (rc != ECORE_SUCCESS)
2307 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
2308 	}
2309 
2310 	return rc;
2311 }
2312 
2313 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
2314 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
2315 				 struct ecore_hwfn *p_hwfn,
2316 				 struct ecore_ptt *p_ptt)
2317 {
2318 	int i;
2319 
2320 	/* close timers */
2321 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
2322 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
2323 	for (i = 0;
2324 	     i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
2325 	     i++) {
2326 		if ((!ecore_rd(p_hwfn, p_ptt,
2327 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
2328 		    (!ecore_rd(p_hwfn, p_ptt,
2329 			       TM_REG_PF_SCAN_ACTIVE_TASK)))
2330 			break;
2331 
2332 		/* Dependent on number of connection/tasks, possibly
2333 		 * 1ms sleep is required between polls
2334 		 */
2335 		OSAL_MSLEEP(1);
2336 	}
2337 
2338 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
2339 		return;
2340 
2341 	DP_NOTICE(p_hwfn, true,
2342 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
2343 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
2344 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
2345 }
2346 
2347 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
2348 {
2349 	int j;
2350 
2351 	for_each_hwfn(p_dev, j) {
2352 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2353 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2354 
2355 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2356 	}
2357 }
2358 
2359 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
2360 						 struct ecore_ptt *p_ptt,
2361 						 u32 addr, u32 expected_val)
2362 {
2363 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
2364 
2365 	if (val != expected_val) {
2366 		DP_NOTICE(p_hwfn, true,
2367 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
2368 			  addr, val, expected_val);
2369 		return ECORE_UNKNOWN_ERROR;
2370 	}
2371 
2372 	return ECORE_SUCCESS;
2373 }
2374 
2375 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
2376 {
2377 	struct ecore_hwfn *p_hwfn;
2378 	struct ecore_ptt *p_ptt;
2379 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
2380 	int j;
2381 
2382 	for_each_hwfn(p_dev, j) {
2383 		p_hwfn = &p_dev->hwfns[j];
2384 		p_ptt = p_hwfn->p_main_ptt;
2385 
2386 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
2387 
2388 		if (IS_VF(p_dev)) {
2389 			ecore_vf_pf_int_cleanup(p_hwfn);
2390 			rc = ecore_vf_pf_reset(p_hwfn);
2391 			if (rc != ECORE_SUCCESS) {
2392 				DP_NOTICE(p_hwfn, true,
2393 					  "ecore_vf_pf_reset failed. rc = %d.\n",
2394 					  rc);
2395 				rc2 = ECORE_UNKNOWN_ERROR;
2396 			}
2397 			continue;
2398 		}
2399 
2400 		/* mark the hw as uninitialized... */
2401 		p_hwfn->hw_init_done = false;
2402 
2403 		/* Send unload command to MCP */
2404 		if (!p_dev->recov_in_prog) {
2405 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
2406 			if (rc != ECORE_SUCCESS) {
2407 				DP_NOTICE(p_hwfn, true,
2408 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
2409 					  rc);
2410 				rc2 = ECORE_UNKNOWN_ERROR;
2411 			}
2412 		}
2413 
2414 		OSAL_DPC_SYNC(p_hwfn);
2415 
2416 		/* After this point no MFW attentions are expected, e.g. prevent
2417 		 * race between pf stop and dcbx pf update.
2418 		 */
2419 
2420 		rc = ecore_sp_pf_stop(p_hwfn);
2421 		if (rc != ECORE_SUCCESS) {
2422 			DP_NOTICE(p_hwfn, true,
2423 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
2424 				  rc);
2425 			rc2 = ECORE_UNKNOWN_ERROR;
2426 		}
2427 
2428 		/* perform debug action after PF stop was sent */
2429 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
2430 
2431 		/* close NIG to BRB gate */
2432 		ecore_wr(p_hwfn, p_ptt,
2433 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2434 
2435 		/* close parser */
2436 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2437 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2438 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2439 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2440 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2441 
2442 		/* @@@TBD - clean transmission queues (5.b) */
2443 		/* @@@TBD - clean BTB (5.c) */
2444 
2445 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2446 
2447 		/* @@@TBD - verify DMAE requests are done (8) */
2448 
2449 		/* Disable Attention Generation */
2450 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
2451 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2452 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2453 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
2454 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
2455 		if (rc != ECORE_SUCCESS) {
2456 			DP_NOTICE(p_hwfn, true,
2457 				  "Failed to return IGU CAM to default\n");
2458 			rc2 = ECORE_UNKNOWN_ERROR;
2459 		}
2460 
2461 		/* Need to wait 1ms to guarantee SBs are cleared */
2462 		OSAL_MSLEEP(1);
2463 
2464 		if (!p_dev->recov_in_prog) {
2465 			ecore_verify_reg_val(p_hwfn, p_ptt,
2466 					     QM_REG_USG_CNT_PF_TX, 0);
2467 			ecore_verify_reg_val(p_hwfn, p_ptt,
2468 					     QM_REG_USG_CNT_PF_OTHER, 0);
2469 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
2470 		}
2471 
2472 		/* Disable PF in HW blocks */
2473 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
2474 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
2475 
2476 		if (!p_dev->recov_in_prog) {
2477 			ecore_mcp_unload_done(p_hwfn, p_ptt);
2478 			if (rc != ECORE_SUCCESS) {
2479 				DP_NOTICE(p_hwfn, true,
2480 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
2481 					  rc);
2482 				rc2 = ECORE_UNKNOWN_ERROR;
2483 			}
2484 		}
2485 
2486 		/* remove the LLH filter with the primary MAC addres */
2487 		if (p_hwfn->p_dev->num_hwfns > 1 && IS_LEAD_HWFN(p_hwfn))
2488 			ecore_llh_remove_mac_filter(p_hwfn, p_ptt,
2489 				    p_hwfn->hw_info.hw_mac_addr);
2490 	} /* hwfn loop */
2491 
2492 	if (IS_PF(p_dev)) {
2493 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2494 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
2495 
2496 		/* Disable DMAE in PXP - in CMT, this should only be done for
2497 		 * first hw-function, and only after all transactions have
2498 		 * stopped for all active hw-functions.
2499 		 */
2500 		rc = ecore_change_pci_hwfn(p_hwfn, p_ptt, false);
2501 		if (rc != ECORE_SUCCESS) {
2502 			DP_NOTICE(p_hwfn, true,
2503 				  "ecore_change_pci_hwfn failed. rc = %d.\n",
2504 				  rc);
2505 			rc2 = ECORE_UNKNOWN_ERROR;
2506 		}
2507 	}
2508 
2509 	return rc2;
2510 }
2511 
2512 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
2513 {
2514 	int j;
2515 
2516 	for_each_hwfn(p_dev, j) {
2517 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2518 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2519 
2520 		if (IS_VF(p_dev)) {
2521 			ecore_vf_pf_int_cleanup(p_hwfn);
2522 			continue;
2523 		}
2524 
2525 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
2526 
2527 		ecore_wr(p_hwfn, p_ptt,
2528 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2529 
2530 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2531 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2532 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2533 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2534 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2535 
2536 		/* @@@TBD - clean transmission queues (5.b) */
2537 		/* @@@TBD - clean BTB (5.c) */
2538 
2539 		/* @@@TBD - verify DMAE requests are done (8) */
2540 
2541 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
2542 		/* Need to wait 1ms to guarantee SBs are cleared */
2543 		OSAL_MSLEEP(1);
2544 	}
2545 }
2546 
2547 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
2548 {
2549 	struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2550 
2551 	if (IS_VF(p_hwfn->p_dev))
2552 		return;
2553 
2554 	/* If roce info is allocated it means roce is initialized and should
2555 	 * be enabled in searcher.
2556 	 */
2557 	if (p_hwfn->p_rdma_info) {
2558 		if (p_hwfn->b_rdma_enabled_in_prs)
2559 			ecore_wr(p_hwfn, p_ptt,
2560 				 p_hwfn->rdma_prs_search_reg, 0x1);
2561 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
2562 	}
2563 
2564 	/* Re-open incoming traffic */
2565 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2566 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
2567 }
2568 /* TEMP macro to be removed when wol code revisted */
2569 #define ECORE_WOL_WR(_p_hwfn, _p_ptt, _offset, _val) ECORE_IS_BB(_p_hwfn->p_dev) ? \
2570 	ecore_wr(_p_hwfn, _p_ptt, _offset, _val) : \
2571 	ecore_mcp_wol_wr(_p_hwfn, _p_ptt, _offset, _val);
2572 
2573 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev,
2574 	const bool b_enable,
2575 	u32 reg_idx,
2576 	u32 pattern_size,
2577 	u32 crc)
2578 {
2579 	struct ecore_hwfn *hwfn = &p_dev->hwfns[0];
2580 	u32 reg_len = 0;
2581 	u32 reg_crc = 0;
2582 
2583 	/* Get length and CRC register offsets */
2584 	switch (reg_idx)
2585 	{
2586 	case 0:
2587 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
2588 				WOL_REG_ACPI_PAT_0_LEN_K2_E5;
2589 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
2590 				WOL_REG_ACPI_PAT_0_CRC_K2_E5;
2591 		break;
2592 	case 1:
2593 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
2594 				WOL_REG_ACPI_PAT_1_LEN_K2_E5;
2595 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
2596 				WOL_REG_ACPI_PAT_1_CRC_K2_E5;
2597 		break;
2598 	case 2:
2599 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
2600 				WOL_REG_ACPI_PAT_2_LEN_K2_E5;
2601 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
2602 				WOL_REG_ACPI_PAT_2_CRC_K2_E5;
2603 		break;
2604 	case 3:
2605 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
2606 				WOL_REG_ACPI_PAT_3_LEN_K2_E5;
2607 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
2608 				WOL_REG_ACPI_PAT_3_CRC_K2_E5;
2609 		break;
2610 	case 4:
2611 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
2612 				WOL_REG_ACPI_PAT_4_LEN_K2_E5;
2613 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
2614 				WOL_REG_ACPI_PAT_4_CRC_K2_E5;
2615 		break;
2616 	case 5:
2617 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
2618 				WOL_REG_ACPI_PAT_5_LEN_K2_E5;
2619 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
2620 				WOL_REG_ACPI_PAT_5_CRC_K2_E5;
2621 		break;
2622 	case 6:
2623 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
2624 				WOL_REG_ACPI_PAT_6_LEN_K2_E5;
2625 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
2626 				WOL_REG_ACPI_PAT_6_CRC_K2_E5;
2627 		break;
2628 	case 7:
2629 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
2630 				WOL_REG_ACPI_PAT_7_LEN_K2_E5;
2631 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
2632 				WOL_REG_ACPI_PAT_7_CRC_K2_E5;
2633 		break;
2634 	default:
2635 		return ECORE_UNKNOWN_ERROR;
2636 	}
2637 
2638 	/* Allign pattern size to 4 */
2639 	while (pattern_size % 4)
2640 	{
2641 		pattern_size++;
2642 	}
2643 	/* write pattern length */
2644 	ECORE_WOL_WR(hwfn, hwfn->p_main_ptt, reg_len, pattern_size);
2645 
2646 	/* write crc value*/
2647 	ECORE_WOL_WR(hwfn, hwfn->p_main_ptt, reg_crc, crc);
2648 
2649 	DP_INFO(p_dev,
2650 		"ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
2651 		"reg_len[0x%x=0x%x]\n",
2652 		reg_idx, reg_crc, crc, reg_len, pattern_size);
2653 
2654 	return ECORE_SUCCESS;
2655 }
2656 
2657 void ecore_wol_buffer_clear(struct ecore_dev *p_dev)
2658 {
2659 	struct ecore_hwfn *hwfn = &p_dev->hwfns[0];
2660 	const u32 wake_buffer_clear_offset =
2661 		ECORE_IS_BB(p_dev) ?
2662 		NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
2663 
2664 	DP_INFO(p_dev,
2665 		"ecore_wol_buffer_clear: reset "
2666 		"REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
2667 		wake_buffer_clear_offset);
2668 
2669 	ECORE_WOL_WR(hwfn, hwfn->p_main_ptt, wake_buffer_clear_offset, 1);
2670 	ECORE_WOL_WR(hwfn, hwfn->p_main_ptt, wake_buffer_clear_offset, 0);
2671 }
2672 
2673 enum _ecore_status_t ecore_get_wake_info(struct ecore_dev *p_dev,
2674 	struct ecore_wake_info *wake_info)
2675 {
2676 	struct ecore_hwfn *hwfn = &p_dev->hwfns[0];
2677 	u32 *buf = OSAL_NULL;
2678 	u32 i    = 0;
2679 	const u32 reg_wake_buffer_offest =
2680 		ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
2681 			WOL_REG_WAKE_BUFFER_K2_E5;
2682 
2683 	wake_info->wk_info    = ecore_rd(hwfn, hwfn->p_main_ptt,
2684 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
2685 				WOL_REG_WAKE_INFO_K2_E5);
2686 	wake_info->wk_details = ecore_rd(hwfn, hwfn->p_main_ptt,
2687 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
2688 				WOL_REG_WAKE_DETAILS_K2_E5);
2689 	wake_info->wk_pkt_len = ecore_rd(hwfn, hwfn->p_main_ptt,
2690 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
2691 				WOL_REG_WAKE_PKT_LEN_K2_E5);
2692 
2693 	DP_INFO(p_dev,
2694 		"ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
2695 		"REG_WAKE_DETAILS=0x%08x "
2696 		"REG_WAKE_PKT_LEN=0x%08x\n",
2697 		wake_info->wk_info,
2698 		wake_info->wk_details,
2699 		wake_info->wk_pkt_len);
2700 
2701 	buf = (u32 *)wake_info->wk_buffer;
2702 
2703 	for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
2704 	{
2705 		if ((i*sizeof(u32)) >=  sizeof(wake_info->wk_buffer))
2706 		{
2707 			DP_INFO(p_dev,
2708 				"ecore_get_wake_info: i index to 0 high=%d\n",
2709 				 i);
2710 			break;
2711 		}
2712 		buf[i] = ecore_rd(hwfn, hwfn->p_main_ptt,
2713 				  reg_wake_buffer_offest + (i * sizeof(u32)));
2714 		DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
2715 			i, buf[i]);
2716 	}
2717 
2718 	ecore_wol_buffer_clear(p_dev);
2719 
2720 	return ECORE_SUCCESS;
2721 }
2722 
2723 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2724 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2725 {
2726 	ecore_ptt_pool_free(p_hwfn);
2727 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2728 	p_hwfn->hw_info.p_igu_info = OSAL_NULL;
2729 }
2730 
2731 /* Setup bar access */
2732 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2733 {
2734 	/* clear indirect access */
2735 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
2736 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2737 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
2738 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2739 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
2740 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2741 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
2742 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2743 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
2744 	} else {
2745 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2746 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2747 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2748 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2749 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2750 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2751 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2752 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2753 	}
2754 
2755 	/* Clean Previous errors if such exist */
2756 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2757 		 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
2758 		 1 << p_hwfn->abs_pf_id);
2759 
2760 	/* enable internal target-read */
2761 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2762 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2763 }
2764 
2765 static void get_function_id(struct ecore_hwfn *p_hwfn)
2766 {
2767 	/* ME Register */
2768 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
2769 						  PXP_PF_ME_OPAQUE_ADDR);
2770 
2771 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2772 
2773 	/* Bits 16-19 from the ME registers are the pf_num */
2774 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2775 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2776 				      PXP_CONCRETE_FID_PFID);
2777 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2778 				    PXP_CONCRETE_FID_PORT);
2779 
2780 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2781 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2782 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2783 }
2784 
2785 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2786 {
2787 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2788 	struct ecore_sb_cnt_info sb_cnt;
2789 	u32 non_l2_sbs = 0;
2790 
2791 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
2792 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
2793 
2794 #ifdef CONFIG_ECORE_ROCE
2795 	/* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
2796 	 * status blocks equally between L2 / RoCE but with consideration as
2797 	 * to how many l2 queues / cnqs we have
2798 	 */
2799 	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2800 		u32 max_cnqs;
2801 
2802 		feat_num[ECORE_RDMA_CNQ] =
2803 			OSAL_MIN_T(u32,
2804 				   sb_cnt.cnt / 2,
2805 				   RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
2806 
2807 		/* Upper layer might require less */
2808 		max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
2809 		if (max_cnqs) {
2810 			if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
2811 				max_cnqs = 0;
2812 			feat_num[ECORE_RDMA_CNQ] =
2813 				OSAL_MIN_T(u32,
2814 					   feat_num[ECORE_RDMA_CNQ],
2815 					   max_cnqs);
2816 		}
2817 
2818 		non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
2819 	}
2820 #endif
2821 
2822 	/* L2 Queues require each: 1 status block. 1 L2 queue */
2823 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
2824 		/* Start by allocating VF queues, then PF's */
2825 		feat_num[ECORE_VF_L2_QUE] =
2826 			OSAL_MIN_T(u32,
2827 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
2828 				   sb_cnt.iov_cnt);
2829 		feat_num[ECORE_PF_L2_QUE] =
2830 			OSAL_MIN_T(u32,
2831 				   sb_cnt.cnt - non_l2_sbs,
2832 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
2833 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
2834 	}
2835 
2836 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
2837 		feat_num[ECORE_FCOE_CQ] =
2838 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
2839 							     ECORE_CMDQS_CQS));
2840 
2841 	if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
2842 		feat_num[ECORE_ISCSI_CQ] =
2843 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
2844 							     ECORE_CMDQS_CQS));
2845 
2846 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2847 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
2848 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2849 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
2850 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
2851 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
2852 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
2853 		   (int)sb_cnt.cnt);
2854 }
2855 
2856 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2857 {
2858 	switch (res_id) {
2859 	case ECORE_L2_QUEUE:
2860 		return "L2_QUEUE";
2861 	case ECORE_VPORT:
2862 		return "VPORT";
2863 	case ECORE_RSS_ENG:
2864 		return "RSS_ENG";
2865 	case ECORE_PQ:
2866 		return "PQ";
2867 	case ECORE_RL:
2868 		return "RL";
2869 	case ECORE_MAC:
2870 		return "MAC";
2871 	case ECORE_VLAN:
2872 		return "VLAN";
2873 	case ECORE_RDMA_CNQ_RAM:
2874 		return "RDMA_CNQ_RAM";
2875 	case ECORE_ILT:
2876 		return "ILT";
2877 	case ECORE_LL2_QUEUE:
2878 		return "LL2_QUEUE";
2879 	case ECORE_CMDQS_CQS:
2880 		return "CMDQS_CQS";
2881 	case ECORE_RDMA_STATS_QUEUE:
2882 		return "RDMA_STATS_QUEUE";
2883 	case ECORE_BDQ:
2884 		return "BDQ";
2885 	case ECORE_SB:
2886 		return "SB";
2887 	default:
2888 		return "UNKNOWN_RESOURCE";
2889 	}
2890 }
2891 
2892 static enum _ecore_status_t
2893 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
2894 			      enum ecore_resources res_id, u32 resc_max_val,
2895 			      u32 *p_mcp_resp)
2896 {
2897 	enum _ecore_status_t rc;
2898 
2899 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_hwfn->p_main_ptt, res_id,
2900 					resc_max_val, p_mcp_resp);
2901 	if (rc != ECORE_SUCCESS) {
2902 		DP_NOTICE(p_hwfn, true,
2903 			  "MFW response failure for a max value setting of resource %d [%s]\n",
2904 			  res_id, ecore_hw_get_resc_name(res_id));
2905 		return rc;
2906 	}
2907 
2908 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
2909 		DP_INFO(p_hwfn,
2910 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
2911 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
2912 
2913 	return ECORE_SUCCESS;
2914 }
2915 
2916 static enum _ecore_status_t
2917 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn)
2918 {
2919 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2920 	u32 resc_max_val, mcp_resp;
2921 	u8 res_id;
2922 	enum _ecore_status_t rc;
2923 
2924 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2925 		switch (res_id) {
2926 		case ECORE_LL2_QUEUE:
2927 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
2928 			break;
2929 		case ECORE_RDMA_CNQ_RAM:
2930 			/* No need for a case for ECORE_CMDQS_CQS since
2931 			 * CNQ/CMDQS are the same resource.
2932 			 */
2933 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
2934 			break;
2935 		case ECORE_RDMA_STATS_QUEUE:
2936 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
2937 					    : RDMA_NUM_STATISTIC_COUNTERS_BB;
2938 			break;
2939 		case ECORE_BDQ:
2940 			resc_max_val = BDQ_NUM_RESOURCES;
2941 			break;
2942 		default:
2943 			continue;
2944 		}
2945 
2946 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, res_id,
2947 						   resc_max_val, &mcp_resp);
2948 		if (rc != ECORE_SUCCESS)
2949 			return rc;
2950 
2951 		/* There's no point to continue to the next resource if the
2952 		 * command is not supported by the MFW.
2953 		 * We do continue if the command is supported but the resource
2954 		 * is unknown to the MFW. Such a resource will be later
2955 		 * configured with the default allocation values.
2956 		 */
2957 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
2958 			return ECORE_NOTIMPL;
2959 	}
2960 
2961 	return ECORE_SUCCESS;
2962 }
2963 
2964 static
2965 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
2966 					    enum ecore_resources res_id,
2967 					    u32 *p_resc_num, u32 *p_resc_start)
2968 {
2969 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2970 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2971 
2972 	switch (res_id) {
2973 	case ECORE_L2_QUEUE:
2974 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2975 				      MAX_NUM_L2_QUEUES_BB) / num_funcs;
2976 		break;
2977 	case ECORE_VPORT:
2978 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2979 				      MAX_NUM_VPORTS_BB) / num_funcs;
2980 		break;
2981 	case ECORE_RSS_ENG:
2982 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2983 				      ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2984 		break;
2985 	case ECORE_PQ:
2986 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2987 				      MAX_QM_TX_QUEUES_BB) / num_funcs;
2988 		*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
2989 		break;
2990 	case ECORE_RL:
2991 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2992 		break;
2993 	case ECORE_MAC:
2994 	case ECORE_VLAN:
2995 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2996 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2997 		break;
2998 	case ECORE_ILT:
2999 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
3000 				      PXP_NUM_ILT_RECORDS_BB) / num_funcs;
3001 		break;
3002 	case ECORE_LL2_QUEUE:
3003 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
3004 		break;
3005 	case ECORE_RDMA_CNQ_RAM:
3006 	case ECORE_CMDQS_CQS:
3007 		/* CNQ/CMDQS are the same resource */
3008 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
3009 		break;
3010 	case ECORE_RDMA_STATS_QUEUE:
3011 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
3012 				      RDMA_NUM_STATISTIC_COUNTERS_BB) /
3013 			      num_funcs;
3014 		break;
3015 	case ECORE_BDQ:
3016 		if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
3017 		    p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
3018 			*p_resc_num = 0;
3019 		else
3020 			*p_resc_num = 1;
3021 		break;
3022 	case ECORE_SB:
3023 		/* Since we want its value to reflect whether MFW supports
3024 		 * the new scheme, have a default of 0.
3025 		 */
3026 		*p_resc_num = 0;
3027 		break;
3028 	default:
3029 		return ECORE_INVAL;
3030 	}
3031 
3032 	switch (res_id) {
3033 	case ECORE_BDQ:
3034 		if (!*p_resc_num)
3035 			*p_resc_start = 0;
3036 		else if (p_hwfn->p_dev->num_ports_in_engines == 4)
3037 			*p_resc_start = p_hwfn->port_id;
3038 		else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
3039 			*p_resc_start = p_hwfn->port_id;
3040 		else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3041 			*p_resc_start = p_hwfn->port_id + 2;
3042 		break;
3043 	default:
3044 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
3045 		break;
3046 	}
3047 
3048 	return ECORE_SUCCESS;
3049 }
3050 
3051 static enum _ecore_status_t
3052 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
3053 			 bool drv_resc_alloc)
3054 {
3055 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
3056 	u32 mcp_resp, *p_resc_num, *p_resc_start;
3057 	enum _ecore_status_t rc;
3058 
3059 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
3060 	p_resc_start = &RESC_START(p_hwfn, res_id);
3061 
3062 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
3063 				    &dflt_resc_start);
3064 	if (rc != ECORE_SUCCESS) {
3065 		DP_ERR(p_hwfn,
3066 		       "Failed to get default amount for resource %d [%s]\n",
3067 			res_id, ecore_hw_get_resc_name(res_id));
3068 		return rc;
3069 	}
3070 
3071 #ifndef ASIC_ONLY
3072 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
3073 		*p_resc_num = dflt_resc_num;
3074 		*p_resc_start = dflt_resc_start;
3075 		goto out;
3076 	}
3077 #endif
3078 
3079 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
3080 				     &mcp_resp, p_resc_num, p_resc_start);
3081 	if (rc != ECORE_SUCCESS) {
3082 		DP_NOTICE(p_hwfn, true,
3083 			  "MFW response failure for an allocation request for resource %d [%s]\n",
3084 			  res_id, ecore_hw_get_resc_name(res_id));
3085 		return rc;
3086 	}
3087 
3088 	/* Default driver values are applied in the following cases:
3089 	 * - The resource allocation MB command is not supported by the MFW
3090 	 * - There is an internal error in the MFW while processing the request
3091 	 * - The resource ID is unknown to the MFW
3092 	 */
3093 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3094 		DP_INFO(p_hwfn,
3095 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
3096 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
3097 			dflt_resc_num, dflt_resc_start);
3098 		*p_resc_num = dflt_resc_num;
3099 		*p_resc_start = dflt_resc_start;
3100 		goto out;
3101 	}
3102 
3103 	if ((*p_resc_num != dflt_resc_num ||
3104 	     *p_resc_start != dflt_resc_start) &&
3105 	    res_id != ECORE_SB) {
3106 		DP_INFO(p_hwfn,
3107 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
3108 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
3109 			*p_resc_start, dflt_resc_num, dflt_resc_start,
3110 			drv_resc_alloc ? " - Applying default values" : "");
3111 		if (drv_resc_alloc) {
3112 			*p_resc_num = dflt_resc_num;
3113 			*p_resc_start = dflt_resc_start;
3114 		}
3115 	}
3116 out:
3117 	/* PQs have to divide by 8 [that's the HW granularity].
3118 	 * Reduce number so it would fit.
3119 	 */
3120 	if ((res_id == ECORE_PQ) &&
3121 	    ((*p_resc_num % 8) || (*p_resc_start % 8))) {
3122 		DP_INFO(p_hwfn,
3123 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
3124 			*p_resc_num, (*p_resc_num) & ~0x7,
3125 			*p_resc_start, (*p_resc_start) & ~0x7);
3126 		*p_resc_num &= ~0x7;
3127 		*p_resc_start &= ~0x7;
3128 	}
3129 
3130 	return ECORE_SUCCESS;
3131 }
3132 
3133 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
3134 						   bool drv_resc_alloc)
3135 {
3136 	enum _ecore_status_t rc;
3137 	u8 res_id;
3138 
3139 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
3140 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
3141 		if (rc != ECORE_SUCCESS)
3142 			return rc;
3143 	}
3144 
3145 	return ECORE_SUCCESS;
3146 }
3147 
3148 #define ECORE_RESC_ALLOC_LOCK_RETRY_CNT		10
3149 #define ECORE_RESC_ALLOC_LOCK_RETRY_INTVL_US	10000 /* 10 msec */
3150 
3151 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
3152 					      bool drv_resc_alloc)
3153 {
3154 	struct ecore_resc_unlock_params resc_unlock_params;
3155 	struct ecore_resc_lock_params resc_lock_params;
3156 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
3157 	u8 res_id;
3158 	enum _ecore_status_t rc;
3159 #ifndef ASIC_ONLY
3160 	u32 *resc_start = p_hwfn->hw_info.resc_start;
3161 	u32 *resc_num = p_hwfn->hw_info.resc_num;
3162 	/* For AH, an equal share of the ILT lines between the maximal number of
3163 	 * PFs is not enough for RoCE. This would be solved by the future
3164 	 * resource allocation scheme, but isn't currently present for
3165 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
3166 	 * to work - the BB number of ILT lines divided by its max PFs number.
3167 	 */
3168 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
3169 #endif
3170 
3171 	/* Setting the max values of the soft resources and the following
3172 	 * resources allocation queries should be atomic. Since several PFs can
3173 	 * run in parallel - a resource lock is needed.
3174 	 * If either the resource lock or resource set value commands are not
3175 	 * supported - skip the the max values setting, release the lock if
3176 	 * needed, and proceed to the queries. Other failures, including a
3177 	 * failure to acquire the lock, will cause this function to fail.
3178 	 * Old drivers that don't acquire the lock can run in parallel, and
3179 	 * their allocation values won't be affected by the updated max values.
3180 	 */
3181 	OSAL_MEM_ZERO(&resc_lock_params, sizeof(resc_lock_params));
3182 	resc_lock_params.resource = ECORE_RESC_LOCK_RESC_ALLOC;
3183 	resc_lock_params.retry_num = ECORE_RESC_ALLOC_LOCK_RETRY_CNT;
3184 	resc_lock_params.retry_interval = ECORE_RESC_ALLOC_LOCK_RETRY_INTVL_US;
3185 	resc_lock_params.sleep_b4_retry = true;
3186 	OSAL_MEM_ZERO(&resc_unlock_params, sizeof(resc_unlock_params));
3187 	resc_unlock_params.resource = ECORE_RESC_LOCK_RESC_ALLOC;
3188 
3189 	rc = ecore_mcp_resc_lock(p_hwfn, p_hwfn->p_main_ptt, &resc_lock_params);
3190 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
3191 		return rc;
3192 	} else if (rc == ECORE_NOTIMPL) {
3193 		DP_INFO(p_hwfn,
3194 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
3195 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
3196 		DP_NOTICE(p_hwfn, false,
3197 			  "Failed to acquire the resource lock for the resource allocation commands\n");
3198 		return ECORE_BUSY;
3199 	} else {
3200 		rc = ecore_hw_set_soft_resc_size(p_hwfn);
3201 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
3202 			DP_NOTICE(p_hwfn, false,
3203 				  "Failed to set the max values of the soft resources\n");
3204 			goto unlock_and_exit;
3205 		} else if (rc == ECORE_NOTIMPL) {
3206 			DP_INFO(p_hwfn,
3207 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
3208 			rc = ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
3209 						   &resc_unlock_params);
3210 			if (rc != ECORE_SUCCESS)
3211 				DP_INFO(p_hwfn,
3212 					"Failed to release the resource lock for the resource allocation commands\n");
3213 		}
3214 	}
3215 
3216 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
3217 	if (rc != ECORE_SUCCESS)
3218 		goto unlock_and_exit;
3219 
3220 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
3221 		rc = ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
3222 					   &resc_unlock_params);
3223 		if (rc != ECORE_SUCCESS)
3224 			DP_INFO(p_hwfn,
3225 				"Failed to release the resource lock for the resource allocation commands\n");
3226 	}
3227 
3228 #ifndef ASIC_ONLY
3229 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
3230 		/* Reduced build contains less PQs */
3231 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
3232 			resc_num[ECORE_PQ] = 32;
3233 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
3234 					       p_hwfn->enabled_func_idx;
3235 		}
3236 
3237 		/* For AH emulation, since we have a possible maximal number of
3238 		 * 16 enabled PFs, in case there are not enough ILT lines -
3239 		 * allocate only first PF as RoCE and have all the other ETH
3240 		 * only with less ILT lines.
3241 		 */
3242 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
3243 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
3244 							 resc_num[ECORE_ILT],
3245 							 roce_min_ilt_lines);
3246 	}
3247 
3248 	/* Correct the common ILT calculation if PF0 has more */
3249 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
3250 	    p_hwfn->p_dev->b_is_emul_full &&
3251 	    p_hwfn->rel_pf_id &&
3252 	    resc_num[ECORE_ILT] < roce_min_ilt_lines)
3253 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
3254 					 resc_num[ECORE_ILT];
3255 #endif
3256 
3257 	/* Sanity for ILT */
3258 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
3259 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
3260 		DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
3261 			  RESC_START(p_hwfn, ECORE_ILT),
3262 			  RESC_END(p_hwfn, ECORE_ILT) - 1);
3263 		return ECORE_INVAL;
3264 	}
3265 
3266 	/* This will also learn the number of SBs from MFW */
3267 	if (ecore_int_igu_reset_cam(p_hwfn, p_hwfn->p_main_ptt))
3268 		return ECORE_INVAL;
3269 
3270 	ecore_hw_set_feat(p_hwfn);
3271 
3272 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3273 		   "The numbers for each resource are:\n");
3274 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
3275 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
3276 			   ecore_hw_get_resc_name(res_id),
3277 			   RESC_NUM(p_hwfn, res_id),
3278 			   RESC_START(p_hwfn, res_id));
3279 
3280 	return ECORE_SUCCESS;
3281 
3282 unlock_and_exit:
3283 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
3284 		ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
3285 				      &resc_unlock_params);
3286 	return rc;
3287 }
3288 
3289 static enum _ecore_status_t
3290 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
3291 		      struct ecore_ptt *p_ptt,
3292 		      struct ecore_hw_prepare_params *p_params)
3293 {
3294 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
3295 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
3296 	struct ecore_mcp_link_capabilities *p_caps;
3297 	struct ecore_mcp_link_params *link;
3298 	enum _ecore_status_t rc;
3299 
3300 	/* Read global nvm_cfg address */
3301 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
3302 
3303 	/* Verify MCP has initialized it */
3304 	if (!nvm_cfg_addr) {
3305 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
3306 		if (p_params->b_relaxed_probe)
3307 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
3308 		return ECORE_INVAL;
3309 	}
3310 
3311 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
3312 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
3313 
3314 	addr = MCP_REG_SCRATCH  + nvm_cfg1_offset +
3315 		   OFFSETOF(struct nvm_cfg1, glob) +
3316 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
3317 
3318 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
3319 
3320 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
3321 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
3322 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
3323 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
3324 		break;
3325 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
3326 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
3327 		break;
3328 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
3329 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
3330 		break;
3331 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
3332 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
3333 		break;
3334 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
3335 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
3336 		break;
3337 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
3338 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
3339 		break;
3340 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
3341 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
3342 		break;
3343 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
3344 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
3345 		break;
3346 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
3347 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
3348 		break;
3349 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
3350 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
3351 		break;
3352 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
3353 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
3354 		break;
3355 	default:
3356 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
3357 			  core_cfg);
3358 		break;
3359 	}
3360 
3361 	/* Read DCBX configuration */
3362 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3363 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3364 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
3365 			     port_cfg_addr +
3366 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
3367 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
3368 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
3369 	switch (dcbx_mode) {
3370 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
3371 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
3372 		break;
3373 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
3374 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
3375 		break;
3376 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
3377 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
3378 		break;
3379 	default:
3380 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
3381 	}
3382 
3383 	/* Read default link configuration */
3384 	link = &p_hwfn->mcp_info->link_input;
3385 	p_caps = &p_hwfn->mcp_info->link_capabilities;
3386 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3387 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3388 	link_temp = ecore_rd(p_hwfn, p_ptt,
3389 			     port_cfg_addr +
3390 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
3391 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
3392 	link->speed.advertised_speeds = link_temp;
3393 	p_caps->speed_capabilities = link->speed.advertised_speeds;
3394 
3395 	link_temp = ecore_rd(p_hwfn, p_ptt,
3396 				 port_cfg_addr +
3397 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
3398 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
3399 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
3400 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
3401 		link->speed.autoneg = true;
3402 		break;
3403 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
3404 		link->speed.forced_speed = 1000;
3405 		break;
3406 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
3407 		link->speed.forced_speed = 10000;
3408 		break;
3409 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
3410 		link->speed.forced_speed = 25000;
3411 		break;
3412 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
3413 		link->speed.forced_speed = 40000;
3414 		break;
3415 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
3416 		link->speed.forced_speed = 50000;
3417 		break;
3418 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
3419 		link->speed.forced_speed = 100000;
3420 		break;
3421 	default:
3422 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
3423 			  link_temp);
3424 	}
3425 
3426 	p_caps->default_speed = link->speed.forced_speed;
3427 	p_caps->default_speed_autoneg = link->speed.autoneg;
3428 
3429 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
3430 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
3431 	link->pause.autoneg = !!(link_temp &
3432 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
3433 	link->pause.forced_rx = !!(link_temp &
3434 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
3435 	link->pause.forced_tx = !!(link_temp &
3436 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
3437 	link->loopback_mode = 0;
3438 
3439 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
3440 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
3441 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
3442 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
3443 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
3444 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
3445 		link->eee.enable = true;
3446 		switch (link_temp) {
3447 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
3448 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
3449 			link->eee.enable = false;
3450 			break;
3451 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
3452 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
3453 			break;
3454 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
3455 			p_caps->eee_lpi_timer =
3456 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
3457 			break;
3458 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
3459 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
3460 			break;
3461 		}
3462 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
3463 		link->eee.tx_lpi_enable = link->eee.enable;
3464 		if (link->eee.enable)
3465 			link->eee.adv_caps = ECORE_EEE_1G_ADV |
3466 						ECORE_EEE_10G_ADV;
3467 	} else {
3468 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
3469 	}
3470 
3471 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3472 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
3473 		   link->speed.forced_speed, link->speed.advertised_speeds,
3474 		   link->speed.autoneg, link->pause.autoneg,
3475 		   p_caps->default_eee, p_caps->eee_lpi_timer);
3476 
3477 	/* Read Multi-function information from shmem */
3478 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3479 		   OFFSETOF(struct nvm_cfg1, glob) +
3480 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
3481 
3482 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
3483 
3484 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
3485 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
3486 
3487 	switch (mf_mode) {
3488 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
3489 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
3490 		break;
3491 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
3492 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
3493 		break;
3494 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
3495 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
3496 		break;
3497 	}
3498 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
3499 		p_hwfn->p_dev->mf_mode);
3500 
3501 	/* Read Multi-function information from shmem */
3502 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3503 		   OFFSETOF(struct nvm_cfg1, glob) +
3504 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
3505 
3506 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
3507 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
3508 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
3509 				 &p_hwfn->hw_info.device_capabilities);
3510 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
3511 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
3512 				 &p_hwfn->hw_info.device_capabilities);
3513 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
3514 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
3515 				 &p_hwfn->hw_info.device_capabilities);
3516 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
3517 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
3518 				 &p_hwfn->hw_info.device_capabilities);
3519 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
3520 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
3521 				 &p_hwfn->hw_info.device_capabilities);
3522 
3523 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
3524 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3525 		rc = ECORE_SUCCESS;
3526 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3527 	}
3528 
3529 	return rc;
3530 }
3531 
3532 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
3533 				struct ecore_ptt *p_ptt)
3534 {
3535 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
3536 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
3537 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3538 
3539 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
3540 
3541 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
3542 	 * in the other bits are selected.
3543 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
3544 	 * '0' only for enabled functions (function 0 always exists and
3545 	 * enabled).
3546 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
3547 	 * the number of functions for both hwfns is learnt from the same bits.
3548 	 */
3549 	if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
3550 		reg_function_hide = ecore_rd(p_hwfn, p_ptt,
3551 					     MISCS_REG_FUNCTION_HIDE_BB_K2);
3552 	} else { /* E5 */
3553 		reg_function_hide = 0;
3554 		ECORE_E5_MISSING_CODE;
3555 	}
3556 
3557 	if (reg_function_hide & 0x1) {
3558 		if (ECORE_IS_BB(p_dev)) {
3559 			if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
3560 				num_funcs = 0;
3561 				eng_mask = 0xaaaa;
3562 			} else {
3563 				num_funcs = 1;
3564 				eng_mask = 0x5554;
3565 			}
3566 		} else {
3567 			num_funcs = 1;
3568 			eng_mask = 0xfffe;
3569 		}
3570 
3571 		/* Get the number of the enabled functions on the engine */
3572 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
3573 		while (tmp) {
3574 			if (tmp & 0x1)
3575 				num_funcs++;
3576 			tmp >>= 0x1;
3577 		}
3578 
3579 		/* Get the PF index within the enabled functions */
3580 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
3581 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
3582 		while (tmp) {
3583 			if (tmp & 0x1)
3584 				enabled_func_idx--;
3585 			tmp >>= 0x1;
3586 		}
3587 	}
3588 
3589 	p_hwfn->num_funcs_on_engine = num_funcs;
3590 	p_hwfn->enabled_func_idx = enabled_func_idx;
3591 
3592 #ifndef ASIC_ONLY
3593 	if (CHIP_REV_IS_FPGA(p_dev)) {
3594 		DP_NOTICE(p_hwfn, false,
3595 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
3596 		p_hwfn->num_funcs_on_engine = 4;
3597 	}
3598 #endif
3599 
3600 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3601 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
3602 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
3603 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
3604 }
3605 
3606 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
3607 				      struct ecore_ptt *p_ptt)
3608 {
3609 	u32 port_mode;
3610 
3611 #ifndef ASIC_ONLY
3612 	/* Read the port mode */
3613 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3614 		port_mode = 4;
3615 	else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
3616 		 (p_hwfn->p_dev->num_hwfns > 1))
3617 		/* In CMT on emulation, assume 1 port */
3618 		port_mode = 1;
3619 	else
3620 #endif
3621 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
3622 
3623 	if (port_mode < 3) {
3624 		p_hwfn->p_dev->num_ports_in_engines = 1;
3625 	} else if (port_mode <= 5) {
3626 		p_hwfn->p_dev->num_ports_in_engines = 2;
3627 	} else {
3628 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
3629 			  p_hwfn->p_dev->num_ports_in_engines);
3630 
3631 		/* Default num_ports_in_engines to something */
3632 		p_hwfn->p_dev->num_ports_in_engines = 1;
3633 	}
3634 }
3635 
3636 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
3637 					 struct ecore_ptt *p_ptt)
3638 {
3639 	u32 port;
3640 	int i;
3641 
3642 	p_hwfn->p_dev->num_ports_in_engines = 0;
3643 
3644 #ifndef ASIC_ONLY
3645 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3646 		port = ecore_rd(p_hwfn, p_ptt,
3647 				MISCS_REG_ECO_RESERVED);
3648 		switch ((port & 0xf000) >> 12) {
3649 		case 1:
3650 			p_hwfn->p_dev->num_ports_in_engines = 1;
3651 			break;
3652 		case 3:
3653 			p_hwfn->p_dev->num_ports_in_engines = 2;
3654 			break;
3655 		case 0xf:
3656 			p_hwfn->p_dev->num_ports_in_engines = 4;
3657 			break;
3658 		default:
3659 			DP_NOTICE(p_hwfn, false,
3660 				  "Unknown port mode in ECO_RESERVED %08x\n",
3661 				  port);
3662 		}
3663 	} else
3664 #endif
3665 	for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
3666 		port = ecore_rd(p_hwfn, p_ptt,
3667 				CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
3668 		if (port & 1)
3669 			p_hwfn->p_dev->num_ports_in_engines++;
3670 	}
3671 }
3672 
3673 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
3674 				   struct ecore_ptt *p_ptt)
3675 {
3676 	if (ECORE_IS_BB(p_hwfn->p_dev))
3677 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
3678 	else
3679 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
3680 }
3681 
3682 static enum _ecore_status_t
3683 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3684 		  enum ecore_pci_personality personality,
3685 		  struct ecore_hw_prepare_params *p_params)
3686 {
3687 	bool drv_resc_alloc = p_params->drv_resc_alloc;
3688 	enum _ecore_status_t rc;
3689 
3690 	/* Since all information is common, only first hwfns should do this */
3691 	if (IS_LEAD_HWFN(p_hwfn)) {
3692 		rc = ecore_iov_hw_info(p_hwfn);
3693 		if (rc != ECORE_SUCCESS) {
3694 			if (p_params->b_relaxed_probe)
3695 				p_params->p_relaxed_res =
3696 						ECORE_HW_PREPARE_BAD_IOV;
3697 			else
3698 				return rc;
3699 		}
3700 	}
3701 
3702 	/* TODO In get_hw_info, amoungst others:
3703 	 * Get MCP FW revision and determine according to it the supported
3704 	 * featrues (e.g. DCB)
3705 	 * Get boot mode
3706 	 * ecore_get_pcie_width_speed, WOL capability.
3707 	 * Number of global CQ-s (for storage
3708 	 */
3709 	ecore_hw_info_port_num(p_hwfn, p_ptt);
3710 
3711 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
3712 
3713 #ifndef ASIC_ONLY
3714 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
3715 #endif
3716 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
3717 	if (rc != ECORE_SUCCESS)
3718 		return rc;
3719 #ifndef ASIC_ONLY
3720 	}
3721 #endif
3722 
3723 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
3724 	if (rc != ECORE_SUCCESS) {
3725 		if (p_params->b_relaxed_probe)
3726 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
3727 		else
3728 			return rc;
3729 	}
3730 
3731 #ifndef ASIC_ONLY
3732 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
3733 #endif
3734 	OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
3735 		    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
3736 #ifndef ASIC_ONLY
3737 	} else {
3738 		static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
3739 
3740 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
3741 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
3742 	}
3743 #endif
3744 
3745 	if (ecore_mcp_is_init(p_hwfn)) {
3746 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
3747 			p_hwfn->hw_info.ovlan =
3748 				p_hwfn->mcp_info->func_info.ovlan;
3749 
3750 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
3751 	}
3752 
3753 	if (personality != ECORE_PCI_DEFAULT) {
3754 		p_hwfn->hw_info.personality = personality;
3755 	} else if (ecore_mcp_is_init(p_hwfn)) {
3756 		enum ecore_pci_personality protocol;
3757 
3758 		protocol = p_hwfn->mcp_info->func_info.protocol;
3759 		p_hwfn->hw_info.personality = protocol;
3760 	}
3761 
3762 #ifndef ASIC_ONLY
3763 	/* To overcome ILT lack for emulation, until at least until we'll have
3764 	 * a definite answer from system about it, allow only PF0 to be RoCE.
3765 	 */
3766 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
3767 		if (!p_hwfn->rel_pf_id)
3768 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
3769 		else
3770 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
3771 	}
3772 #endif
3773 
3774 	/* although in BB some constellations may support more than 4 tcs,
3775 	 * that can result in performance penalty in some cases. 4
3776 	 * represents a good tradeoff between performance and flexibility.
3777 	 */
3778 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
3779 
3780 	/* start out with a single active tc. This can be increased either
3781 	 * by dcbx negotiation or by upper layer driver
3782 	 */
3783 	p_hwfn->hw_info.num_active_tc = 1;
3784 
3785 	ecore_get_num_funcs(p_hwfn, p_ptt);
3786 
3787 	if (ecore_mcp_is_init(p_hwfn))
3788 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
3789 
3790 	/* In case of forcing the driver's default resource allocation, calling
3791 	 * ecore_hw_get_resc() should come after initializing the personality
3792 	 * and after getting the number of functions, since the calculation of
3793 	 * the resources/features depends on them.
3794 	 * This order is not harmful if not forcing.
3795 	 */
3796 	rc = ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
3797 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3798 		rc = ECORE_SUCCESS;
3799 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3800 	}
3801 
3802 	return rc;
3803 }
3804 
3805 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
3806 {
3807 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3808 	u16 device_id_mask;
3809 	u32 tmp;
3810 
3811 	/* Read Vendor Id / Device Id */
3812 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
3813 				  &p_dev->vendor_id);
3814 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
3815 				  &p_dev->device_id);
3816 
3817 	/* Determine type */
3818 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
3819 	switch (device_id_mask) {
3820 	case ECORE_DEV_ID_MASK_BB:
3821 		p_dev->type = ECORE_DEV_TYPE_BB;
3822 		break;
3823 	case ECORE_DEV_ID_MASK_AH:
3824 		p_dev->type = ECORE_DEV_TYPE_AH;
3825 		break;
3826 	default:
3827 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
3828 			  p_dev->device_id);
3829 		return ECORE_ABORTED;
3830 	}
3831 
3832 	p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3833 					MISCS_REG_CHIP_NUM);
3834 	p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3835 					MISCS_REG_CHIP_REV);
3836 
3837 	MASK_FIELD(CHIP_REV, p_dev->chip_rev);
3838 
3839 	/* Learn number of HW-functions */
3840 	tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3841 		       MISCS_REG_CMT_ENABLED_FOR_PAIR);
3842 
3843 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
3844 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
3845 		p_dev->num_hwfns = 2;
3846 	} else {
3847 		p_dev->num_hwfns = 1;
3848 	}
3849 
3850 #ifndef ASIC_ONLY
3851 	if (CHIP_REV_IS_EMUL(p_dev)) {
3852 		/* For some reason we have problems with this register
3853 		 * in B0 emulation; Simply assume no CMT
3854 		 */
3855 		DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
3856 		p_dev->num_hwfns = 1;
3857 	}
3858 #endif
3859 
3860 	p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3861 				       MISCS_REG_CHIP_TEST_REG) >> 4;
3862 	MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
3863 	p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3864 					  MISCS_REG_CHIP_METAL);
3865 	MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
3866 	DP_INFO(p_dev->hwfns,
3867 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
3868 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
3869 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
3870 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
3871 		p_dev->chip_metal);
3872 
3873 	if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
3874 		DP_NOTICE(p_dev->hwfns, false,
3875 			  "The chip type/rev (BB A0) is not supported!\n");
3876 		return ECORE_ABORTED;
3877 	}
3878 
3879 #ifndef ASIC_ONLY
3880 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
3881 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3882 			 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
3883 
3884 	if (CHIP_REV_IS_EMUL(p_dev)) {
3885 		tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3886 			       MISCS_REG_ECO_RESERVED);
3887 		if (tmp & (1 << 29)) {
3888 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
3889 			p_dev->b_is_emul_full = true;
3890 		} else {
3891 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
3892 		}
3893 	}
3894 #endif
3895 
3896 	return ECORE_SUCCESS;
3897 }
3898 
3899 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
3900 {
3901 	int j;
3902 
3903 	if (IS_VF(p_dev))
3904 		return;
3905 
3906 	for_each_hwfn(p_dev, j) {
3907 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3908 
3909 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
3910 
3911 		p_hwfn->hw_init_done = false;
3912 		p_hwfn->first_on_engine = false;
3913 
3914 		ecore_ptt_invalidate(p_hwfn);
3915 	}
3916 }
3917 
3918 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
3919 {
3920 	int j = 0;
3921 
3922 	if (IS_VF(p_dev))
3923 		return;
3924 
3925 	for_each_hwfn(p_dev, j) {
3926 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3927 		struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
3928 
3929 		ecore_hw_hwfn_prepare(p_hwfn);
3930 
3931 		if (!p_ptt)
3932 			DP_NOTICE(p_hwfn, true, "ptt acquire failed\n");
3933 		else {
3934 			ecore_load_mcp_offsets(p_hwfn, p_ptt);
3935 			ecore_ptt_release(p_hwfn, p_ptt);
3936 		}
3937 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
3938 	}
3939 }
3940 
3941 static enum _ecore_status_t ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
3942 						    void OSAL_IOMEM *p_regview,
3943 						    void OSAL_IOMEM *p_doorbells,
3944 						    struct ecore_hw_prepare_params *p_params)
3945 {
3946 	struct ecore_mdump_retain_data mdump_retain;
3947 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3948 	struct ecore_mdump_info mdump_info;
3949 	enum _ecore_status_t rc = ECORE_SUCCESS;
3950 
3951 	/* Split PCI bars evenly between hwfns */
3952 	p_hwfn->regview = p_regview;
3953 	p_hwfn->doorbells = p_doorbells;
3954 
3955 	if (IS_VF(p_dev))
3956 		return ecore_vf_hw_prepare(p_hwfn);
3957 
3958 	/* Validate that chip access is feasible */
3959 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
3960 		DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
3961 		if (p_params->b_relaxed_probe)
3962 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
3963 		return ECORE_INVAL;
3964 	}
3965 
3966 	get_function_id(p_hwfn);
3967 
3968 	/* Allocate PTT pool */
3969 	rc = ecore_ptt_pool_alloc(p_hwfn);
3970 	if (rc) {
3971 		DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
3972 		if (p_params->b_relaxed_probe)
3973 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3974 		goto err0;
3975 	}
3976 
3977 	/* Allocate the main PTT */
3978 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
3979 
3980 	/* First hwfn learns basic information, e.g., number of hwfns */
3981 	if (!p_hwfn->my_id) {
3982 		rc = ecore_get_dev_info(p_dev);
3983 		if (rc != ECORE_SUCCESS) {
3984 			if (p_params->b_relaxed_probe)
3985 				p_params->p_relaxed_res =
3986 					ECORE_HW_PREPARE_FAILED_DEV;
3987 			goto err1;
3988 		}
3989 	}
3990 
3991 	ecore_hw_hwfn_prepare(p_hwfn);
3992 
3993 	/* Initialize MCP structure */
3994 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
3995 	if (rc) {
3996 		DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
3997 		if (p_params->b_relaxed_probe)
3998 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3999 		goto err1;
4000 	}
4001 
4002 	/* Read the device configuration information from the HW and SHMEM */
4003 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
4004 			       p_params->personality, p_params);
4005 	if (rc) {
4006 		DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
4007 		goto err2;
4008 	}
4009 
4010 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
4011 	 * called, since among others it sets the ports number in an engine.
4012 	 */
4013 	if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
4014 	    !p_dev->recov_in_prog) {
4015 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
4016 		if (rc != ECORE_SUCCESS)
4017 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
4018 	}
4019 
4020 	/* Check if mdump logs/data are present and update the epoch value */
4021 	if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
4022 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
4023 					      &mdump_info);
4024 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
4025 			DP_NOTICE(p_hwfn, false,
4026 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
4027 
4028 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
4029 						&mdump_retain);
4030 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
4031 			DP_NOTICE(p_hwfn, false,
4032 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
4033 				  mdump_retain.epoch, mdump_retain.pf,
4034 				  mdump_retain.status);
4035 
4036 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
4037 					   p_params->epoch);
4038 	}
4039 
4040 	/* Allocate the init RT array and initialize the init-ops engine */
4041 	rc = ecore_init_alloc(p_hwfn);
4042 	if (rc) {
4043 		DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
4044 		if (p_params->b_relaxed_probe)
4045 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
4046 		goto err2;
4047 	}
4048 
4049 #ifndef ASIC_ONLY
4050 	if (CHIP_REV_IS_FPGA(p_dev)) {
4051 		DP_NOTICE(p_hwfn, false,
4052 			  "FPGA: workaround; Prevent DMAE parities\n");
4053 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
4054 			 7);
4055 
4056 		DP_NOTICE(p_hwfn, false,
4057 			  "FPGA: workaround: Set VF bar0 size\n");
4058 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4059 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
4060 	}
4061 #endif
4062 
4063 	return rc;
4064 err2:
4065 	if (IS_LEAD_HWFN(p_hwfn))
4066 		ecore_iov_free_hw_info(p_dev);
4067 	ecore_mcp_free(p_hwfn);
4068 err1:
4069 	ecore_hw_hwfn_free(p_hwfn);
4070 err0:
4071 	return rc;
4072 }
4073 
4074 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
4075 				      struct ecore_hw_prepare_params *p_params)
4076 {
4077 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4078 	enum _ecore_status_t rc;
4079 
4080 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
4081 	p_dev->allow_mdump = p_params->allow_mdump;
4082 
4083 	if (p_params->b_relaxed_probe)
4084 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
4085 
4086 	/* Store the precompiled init data ptrs */
4087 	if (IS_PF(p_dev))
4088 		ecore_init_iro_array(p_dev);
4089 
4090 	/* Initialize the first hwfn - will learn number of hwfns */
4091 	rc = ecore_hw_prepare_single(p_hwfn,
4092 				     p_dev->regview,
4093 				     p_dev->doorbells, p_params);
4094 	if (rc != ECORE_SUCCESS)
4095 		return rc;
4096 
4097 	p_params->personality = p_hwfn->hw_info.personality;
4098 
4099 	/* initilalize 2nd hwfn if necessary */
4100 	if (p_dev->num_hwfns > 1) {
4101 		void OSAL_IOMEM *p_regview, *p_doorbell;
4102 		u8 OSAL_IOMEM *addr;
4103 
4104 		/* adjust bar offset for second engine */
4105 		addr = (u8 OSAL_IOMEM *)p_dev->regview +
4106 					ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
4107 		p_regview = (void OSAL_IOMEM *)addr;
4108 
4109 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
4110 					ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
4111 		p_doorbell = (void OSAL_IOMEM *)addr;
4112 
4113 		/* prepare second hw function */
4114 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
4115 					     p_doorbell, p_params);
4116 
4117 		/* in case of error, need to free the previously
4118 		 * initiliazed hwfn 0.
4119 		 */
4120 		if (rc != ECORE_SUCCESS) {
4121 			if (p_params->b_relaxed_probe)
4122 				p_params->p_relaxed_res =
4123 						ECORE_HW_PREPARE_FAILED_ENG2;
4124 
4125 			if (IS_PF(p_dev)) {
4126 				ecore_init_free(p_hwfn);
4127 				ecore_mcp_free(p_hwfn);
4128 				ecore_hw_hwfn_free(p_hwfn);
4129 			} else {
4130 				DP_NOTICE(p_dev, true, "What do we need to free when VF hwfn1 init fails\n");
4131 			}
4132 			return rc;
4133 		}
4134 	}
4135 
4136 	return rc;
4137 }
4138 
4139 void ecore_hw_remove(struct ecore_dev *p_dev)
4140 {
4141 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4142 	int i;
4143 
4144 	if (IS_PF(p_dev))
4145 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
4146 						 ECORE_OV_DRIVER_STATE_NOT_LOADED);
4147 
4148 	for_each_hwfn(p_dev, i) {
4149 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4150 
4151 		if (IS_VF(p_dev)) {
4152 			ecore_vf_pf_release(p_hwfn);
4153 			continue;
4154 		}
4155 
4156 		ecore_init_free(p_hwfn);
4157 		ecore_hw_hwfn_free(p_hwfn);
4158 		ecore_mcp_free(p_hwfn);
4159 
4160 		OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
4161 	}
4162 
4163 	ecore_iov_free_hw_info(p_dev);
4164 }
4165 
4166 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
4167 				      struct ecore_chain *p_chain)
4168 {
4169 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
4170 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
4171 	struct ecore_chain_next *p_next;
4172 	u32 size, i;
4173 
4174 	if (!p_virt)
4175 		return;
4176 
4177 	size = p_chain->elem_size * p_chain->usable_per_page;
4178 
4179 	for (i = 0; i < p_chain->page_cnt; i++) {
4180 		if (!p_virt)
4181 			break;
4182 
4183 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
4184 		p_virt_next = p_next->next_virt;
4185 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
4186 
4187 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
4188 				       ECORE_CHAIN_PAGE_SIZE);
4189 
4190 		p_virt = p_virt_next;
4191 		p_phys = p_phys_next;
4192 	}
4193 }
4194 
4195 static void ecore_chain_free_single(struct ecore_dev *p_dev,
4196 				    struct ecore_chain *p_chain)
4197 {
4198 	if (!p_chain->p_virt_addr)
4199 		return;
4200 
4201 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
4202 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
4203 }
4204 
4205 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
4206 				 struct ecore_chain *p_chain)
4207 {
4208 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
4209 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
4210 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
4211 
4212 	if (!pp_virt_addr_tbl)
4213 		return;
4214 
4215 	if (!p_pbl_virt)
4216 		goto out;
4217 
4218 	for (i = 0; i < page_cnt; i++) {
4219 		if (!pp_virt_addr_tbl[i])
4220 			break;
4221 
4222 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
4223 				       *(dma_addr_t *)p_pbl_virt,
4224 				       ECORE_CHAIN_PAGE_SIZE);
4225 
4226 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
4227 	}
4228 
4229 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
4230 
4231 	if (!p_chain->b_external_pbl) {
4232 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
4233 				       p_chain->pbl_sp.p_phys_table, pbl_size);
4234 	}
4235 out:
4236 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
4237 	p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
4238 }
4239 
4240 void ecore_chain_free(struct ecore_dev *p_dev,
4241 		      struct ecore_chain *p_chain)
4242 {
4243 	switch (p_chain->mode) {
4244 	case ECORE_CHAIN_MODE_NEXT_PTR:
4245 		ecore_chain_free_next_ptr(p_dev, p_chain);
4246 		break;
4247 	case ECORE_CHAIN_MODE_SINGLE:
4248 		ecore_chain_free_single(p_dev, p_chain);
4249 		break;
4250 	case ECORE_CHAIN_MODE_PBL:
4251 		ecore_chain_free_pbl(p_dev, p_chain);
4252 		break;
4253 	}
4254 }
4255 
4256 static enum _ecore_status_t
4257 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
4258 			       enum ecore_chain_cnt_type cnt_type,
4259 			       osal_size_t elem_size, u32 page_cnt)
4260 {
4261 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
4262 
4263 	/* The actual chain size can be larger than the maximal possible value
4264 	 * after rounding up the requested elements number to pages, and after
4265 	 * taking into acount the unusuable elements (next-ptr elements).
4266 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
4267 	 * size/capacity fields are of a u32 type.
4268 	 */
4269 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
4270 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
4271 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
4272 	     chain_size > ECORE_U32_MAX)) {
4273 		DP_NOTICE(p_dev, true,
4274 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
4275 			  (unsigned long long)chain_size);
4276 		return ECORE_INVAL;
4277 	}
4278 
4279 	return ECORE_SUCCESS;
4280 }
4281 
4282 static enum _ecore_status_t
4283 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4284 {
4285 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
4286 	dma_addr_t p_phys = 0;
4287 	u32 i;
4288 
4289 	for (i = 0; i < p_chain->page_cnt; i++) {
4290 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
4291 						 ECORE_CHAIN_PAGE_SIZE);
4292 		if (!p_virt) {
4293 			DP_NOTICE(p_dev, true,
4294 				  "Failed to allocate chain memory\n");
4295 			return ECORE_NOMEM;
4296 		}
4297 
4298 		if (i == 0) {
4299 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
4300 			ecore_chain_reset(p_chain);
4301 		} else {
4302 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4303 						       p_virt, p_phys);
4304 		}
4305 
4306 		p_virt_prev = p_virt;
4307 	}
4308 	/* Last page's next element should point to the beginning of the
4309 	 * chain.
4310 	 */
4311 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4312 				       p_chain->p_virt_addr,
4313 				       p_chain->p_phys_addr);
4314 
4315 	return ECORE_SUCCESS;
4316 }
4317 
4318 static enum _ecore_status_t
4319 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4320 {
4321 	dma_addr_t p_phys = 0;
4322 	void *p_virt = OSAL_NULL;
4323 
4324 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
4325 	if (!p_virt) {
4326 		DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
4327 		return ECORE_NOMEM;
4328 	}
4329 
4330 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
4331 	ecore_chain_reset(p_chain);
4332 
4333 	return ECORE_SUCCESS;
4334 }
4335 
4336 static enum _ecore_status_t
4337 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
4338 		      struct ecore_chain *p_chain,
4339 		      struct ecore_chain_ext_pbl *ext_pbl)
4340 {
4341 	void *p_virt = OSAL_NULL;
4342 	u8 *p_pbl_virt = OSAL_NULL;
4343 	void **pp_virt_addr_tbl = OSAL_NULL;
4344 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
4345 	u32 page_cnt = p_chain->page_cnt, size, i;
4346 
4347 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
4348 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
4349 	if (!pp_virt_addr_tbl) {
4350 		DP_NOTICE(p_dev, true,
4351 			  "Failed to allocate memory for the chain virtual addresses table\n");
4352 		return ECORE_NOMEM;
4353 	}
4354 
4355 	/* The allocation of the PBL table is done with its full size, since it
4356 	 * is expected to be successive.
4357 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
4358 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
4359 	 * should be saved to allow its freeing during the error flow.
4360 	 */
4361 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
4362 
4363 	if (ext_pbl == OSAL_NULL) {
4364 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
4365 	} else {
4366 		p_pbl_virt = ext_pbl->p_pbl_virt;
4367 		p_pbl_phys = ext_pbl->p_pbl_phys;
4368 		p_chain->b_external_pbl = true;
4369 	}
4370 
4371 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
4372 				 pp_virt_addr_tbl);
4373 	if (!p_pbl_virt) {
4374 		DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
4375 		return ECORE_NOMEM;
4376 	}
4377 
4378 	for (i = 0; i < page_cnt; i++) {
4379 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
4380 						 ECORE_CHAIN_PAGE_SIZE);
4381 		if (!p_virt) {
4382 			DP_NOTICE(p_dev, true,
4383 				  "Failed to allocate chain memory\n");
4384 			return ECORE_NOMEM;
4385 		}
4386 
4387 		if (i == 0) {
4388 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
4389 			ecore_chain_reset(p_chain);
4390 		}
4391 
4392 		/* Fill the PBL table with the physical address of the page */
4393 		*(dma_addr_t *)p_pbl_virt = p_phys;
4394 		/* Keep the virtual address of the page */
4395 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
4396 
4397 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
4398 	}
4399 
4400 	return ECORE_SUCCESS;
4401 }
4402 
4403 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
4404 				       enum ecore_chain_use_mode intended_use,
4405 				       enum ecore_chain_mode mode,
4406 				       enum ecore_chain_cnt_type cnt_type,
4407 				       u32 num_elems, osal_size_t elem_size,
4408 				       struct ecore_chain *p_chain,
4409 				       struct ecore_chain_ext_pbl *ext_pbl)
4410 {
4411 	u32 page_cnt;
4412 	enum _ecore_status_t rc = ECORE_SUCCESS;
4413 
4414 	if (mode == ECORE_CHAIN_MODE_SINGLE)
4415 		page_cnt = 1;
4416 	else
4417 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
4418 
4419 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
4420 					    page_cnt);
4421 	if (rc) {
4422 		DP_NOTICE(p_dev, true,
4423 			  "Cannot allocate a chain with the given arguments:\n"
4424 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
4425 			  intended_use, mode, cnt_type, num_elems, elem_size);
4426 		return rc;
4427 	}
4428 
4429 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
4430 				mode, cnt_type, p_dev->dp_ctx);
4431 
4432 	switch (mode) {
4433 	case ECORE_CHAIN_MODE_NEXT_PTR:
4434 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
4435 		break;
4436 	case ECORE_CHAIN_MODE_SINGLE:
4437 		rc = ecore_chain_alloc_single(p_dev, p_chain);
4438 		break;
4439 	case ECORE_CHAIN_MODE_PBL:
4440 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
4441 		break;
4442 	}
4443 	if (rc)
4444 		goto nomem;
4445 
4446 	return ECORE_SUCCESS;
4447 
4448 nomem:
4449 	ecore_chain_free(p_dev, p_chain);
4450 	return rc;
4451 }
4452 
4453 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
4454 				       u16 src_id, u16 *dst_id)
4455 {
4456 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
4457 		u16 min, max;
4458 
4459 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
4460 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
4461 		DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
4462 			  src_id, min, max);
4463 
4464 		return ECORE_INVAL;
4465 	}
4466 
4467 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
4468 
4469 	return ECORE_SUCCESS;
4470 }
4471 
4472 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
4473 				    u8 src_id, u8 *dst_id)
4474 {
4475 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
4476 		u8 min, max;
4477 
4478 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
4479 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
4480 		DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
4481 			  src_id, min, max);
4482 
4483 		return ECORE_INVAL;
4484 	}
4485 
4486 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
4487 
4488 	return ECORE_SUCCESS;
4489 }
4490 
4491 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
4492 				      u8 src_id, u8 *dst_id)
4493 {
4494 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
4495 		u8 min, max;
4496 
4497 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
4498 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
4499 		DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
4500 			  src_id, min, max);
4501 
4502 		return ECORE_INVAL;
4503 	}
4504 
4505 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
4506 
4507 	return ECORE_SUCCESS;
4508 }
4509 
4510 static enum _ecore_status_t
4511 ecore_llh_add_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4512 			       struct ecore_ptt *p_ptt, u32 high, u32 low,
4513 			       u32 *p_entry_num)
4514 {
4515 	u32 en;
4516 	int i;
4517 
4518 	/* Find a free entry and utilize it */
4519 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4520 		en = ecore_rd(p_hwfn, p_ptt,
4521 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4522 			      i * sizeof(u32));
4523 		if (en)
4524 			continue;
4525 		ecore_wr(p_hwfn, p_ptt,
4526 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4527 			 2 * i * sizeof(u32), low);
4528 		ecore_wr(p_hwfn, p_ptt,
4529 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4530 			 (2 * i + 1) * sizeof(u32), high);
4531 		ecore_wr(p_hwfn, p_ptt,
4532 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4533 			 i * sizeof(u32), 0);
4534 		ecore_wr(p_hwfn, p_ptt,
4535 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4536 			 i * sizeof(u32), 0);
4537 		ecore_wr(p_hwfn, p_ptt,
4538 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4539 			 i * sizeof(u32), 1);
4540 		break;
4541 	}
4542 
4543 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4544 		return ECORE_NORESOURCES;
4545 
4546 	*p_entry_num = i;
4547 
4548 	return ECORE_SUCCESS;
4549 }
4550 
4551 static enum _ecore_status_t
4552 ecore_llh_add_mac_filter_e5(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
4553 			    u32 high, u32 low, u32 *p_entry_num)
4554 {
4555 	ECORE_E5_MISSING_CODE;
4556 
4557 	return ECORE_NOTIMPL;
4558 }
4559 
4560 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
4561 					  struct ecore_ptt *p_ptt, u8 *p_filter)
4562 {
4563 	u32 high, low, entry_num;
4564 	enum _ecore_status_t rc;
4565 
4566 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4567 		return ECORE_SUCCESS;
4568 
4569 	high = p_filter[1] | (p_filter[0] << 8);
4570 	low = p_filter[5] | (p_filter[4] << 8) |
4571 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4572 
4573 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4574 		rc = ecore_llh_add_mac_filter_bb_ah(p_hwfn, p_ptt, high, low,
4575 						    &entry_num);
4576 	else /* E5 */
4577 		rc = ecore_llh_add_mac_filter_e5(p_hwfn, p_ptt, high, low,
4578 						 &entry_num);
4579 	if (rc != ECORE_SUCCESS) {
4580 		DP_NOTICE(p_hwfn, false,
4581 			  "Failed to find an empty LLH filter to utilize\n");
4582 		return rc;
4583 	}
4584 
4585 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4586 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx is added at LLH entry %d\n",
4587 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4588 		   p_filter[4], p_filter[5], entry_num);
4589 
4590 	return ECORE_SUCCESS;
4591 }
4592 
4593 static enum _ecore_status_t
4594 ecore_llh_remove_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4595 				  struct ecore_ptt *p_ptt, u32 high, u32 low,
4596 				  u32 *p_entry_num)
4597 {
4598 	int i;
4599 
4600 	/* Find the entry and clean it */
4601 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4602 		if (ecore_rd(p_hwfn, p_ptt,
4603 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4604 			     2 * i * sizeof(u32)) != low)
4605 			continue;
4606 		if (ecore_rd(p_hwfn, p_ptt,
4607 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4608 			     (2 * i + 1) * sizeof(u32)) != high)
4609 			continue;
4610 
4611 		ecore_wr(p_hwfn, p_ptt,
4612 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4613 		ecore_wr(p_hwfn, p_ptt,
4614 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4615 			 2 * i * sizeof(u32), 0);
4616 		ecore_wr(p_hwfn, p_ptt,
4617 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4618 			 (2 * i + 1) * sizeof(u32), 0);
4619 		break;
4620 	}
4621 
4622 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4623 		return ECORE_INVAL;
4624 
4625 	*p_entry_num = i;
4626 
4627 	return ECORE_SUCCESS;
4628 }
4629 
4630 static enum _ecore_status_t
4631 ecore_llh_remove_mac_filter_e5(struct ecore_hwfn *p_hwfn,
4632 			       struct ecore_ptt *p_ptt, u32 high, u32 low,
4633 			       u32 *p_entry_num)
4634 {
4635 	ECORE_E5_MISSING_CODE;
4636 
4637 	return ECORE_NOTIMPL;
4638 }
4639 
4640 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
4641 			     struct ecore_ptt *p_ptt, u8 *p_filter)
4642 {
4643 	u32 high, low, entry_num;
4644 	enum _ecore_status_t rc;
4645 
4646 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4647 		return;
4648 
4649 	high = p_filter[1] | (p_filter[0] << 8);
4650 	low = p_filter[5] | (p_filter[4] << 8) |
4651 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4652 
4653 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4654 		rc = ecore_llh_remove_mac_filter_bb_ah(p_hwfn, p_ptt, high,
4655 						       low, &entry_num);
4656 	else /* E5 */
4657 		rc = ecore_llh_remove_mac_filter_e5(p_hwfn, p_ptt, high, low,
4658 						    &entry_num);
4659 	if (rc != ECORE_SUCCESS) {
4660 		DP_NOTICE(p_hwfn, false,
4661 			  "Tried to remove a non-configured filter [MAC %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx]\n",
4662 			  p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4663 			  p_filter[4], p_filter[5]);
4664 		return;
4665 	}
4666 
4667 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4668 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx was removed from LLH entry %d\n",
4669 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4670 		   p_filter[4], p_filter[5], entry_num);
4671 }
4672 
4673 static enum _ecore_status_t
4674 ecore_llh_add_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4675 				    struct ecore_ptt *p_ptt,
4676 				    enum ecore_llh_port_filter_type_t type,
4677 				    u32 high, u32 low, u32 *p_entry_num)
4678 {
4679 	u32 en;
4680 	int i;
4681 
4682 	/* Find a free entry and utilize it */
4683 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4684 		en = ecore_rd(p_hwfn, p_ptt,
4685 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4686 			      i * sizeof(u32));
4687 		if (en)
4688 			continue;
4689 		ecore_wr(p_hwfn, p_ptt,
4690 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4691 			 2 * i * sizeof(u32), low);
4692 		ecore_wr(p_hwfn, p_ptt,
4693 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4694 			 (2 * i + 1) * sizeof(u32), high);
4695 		ecore_wr(p_hwfn, p_ptt,
4696 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4697 			 i * sizeof(u32), 1);
4698 		ecore_wr(p_hwfn, p_ptt,
4699 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4700 			 i * sizeof(u32), 1 << type);
4701 		ecore_wr(p_hwfn, p_ptt,
4702 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 1);
4703 		break;
4704 	}
4705 
4706 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4707 		return ECORE_NORESOURCES;
4708 
4709 	*p_entry_num = i;
4710 
4711 	return ECORE_SUCCESS;
4712 }
4713 
4714 static enum _ecore_status_t
4715 ecore_llh_add_protocol_filter_e5(struct ecore_hwfn *p_hwfn,
4716 				 struct ecore_ptt *p_ptt,
4717 				 enum ecore_llh_port_filter_type_t type,
4718 				 u32 high, u32 low, u32 *p_entry_num)
4719 {
4720 	ECORE_E5_MISSING_CODE;
4721 
4722 	return ECORE_NOTIMPL;
4723 }
4724 
4725 enum _ecore_status_t
4726 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
4727 			      struct ecore_ptt *p_ptt,
4728 			      u16 source_port_or_eth_type,
4729 			      u16 dest_port,
4730 			      enum ecore_llh_port_filter_type_t type)
4731 {
4732 	u32 high, low, entry_num;
4733 	enum _ecore_status_t rc;
4734 
4735 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4736 		return ECORE_SUCCESS;
4737 
4738 	high = 0;
4739 	low = 0;
4740 	switch (type) {
4741 	case ECORE_LLH_FILTER_ETHERTYPE:
4742 		high = source_port_or_eth_type;
4743 		break;
4744 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4745 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4746 		low = source_port_or_eth_type << 16;
4747 		break;
4748 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4749 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4750 		low = dest_port;
4751 		break;
4752 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4753 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4754 		low = (source_port_or_eth_type << 16) | dest_port;
4755 		break;
4756 	default:
4757 		DP_NOTICE(p_hwfn, true,
4758 			  "Non valid LLH protocol filter type %d\n", type);
4759 		return ECORE_INVAL;
4760 	}
4761 
4762 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4763 		rc = ecore_llh_add_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
4764 							 high, low, &entry_num);
4765 	else /* E5 */
4766 		rc = ecore_llh_add_protocol_filter_e5(p_hwfn, p_ptt, type, high,
4767 						      low, &entry_num);
4768 	if (rc != ECORE_SUCCESS) {
4769 		DP_NOTICE(p_hwfn, false,
4770 			  "Failed to find an empty LLH filter to utilize\n");
4771 		return rc;
4772 	}
4773 
4774 	switch (type) {
4775 	case ECORE_LLH_FILTER_ETHERTYPE:
4776 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4777 			   "ETH type %x is added at LLH entry %d\n",
4778 			   source_port_or_eth_type, entry_num);
4779 		break;
4780 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4781 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4782 			   "TCP src port %x is added at LLH entry %d\n",
4783 			   source_port_or_eth_type, entry_num);
4784 		break;
4785 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4786 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4787 			   "UDP src port %x is added at LLH entry %d\n",
4788 			   source_port_or_eth_type, entry_num);
4789 		break;
4790 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4791 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4792 			   "TCP dst port %x is added at LLH entry %d\n",
4793 			   dest_port, entry_num);
4794 		break;
4795 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4796 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4797 			   "UDP dst port %x is added at LLH entry %d\n",
4798 			   dest_port, entry_num);
4799 		break;
4800 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4801 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4802 			   "TCP src/dst ports %x/%x are added at LLH entry %d\n",
4803 			   source_port_or_eth_type, dest_port, entry_num);
4804 		break;
4805 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4806 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4807 			   "UDP src/dst ports %x/%x are added at LLH entry %d\n",
4808 			   source_port_or_eth_type, dest_port, entry_num);
4809 			break;
4810 	}
4811 
4812 	return ECORE_SUCCESS;
4813 }
4814 
4815 static enum _ecore_status_t
4816 ecore_llh_remove_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4817 				       struct ecore_ptt *p_ptt,
4818 				       enum ecore_llh_port_filter_type_t type,
4819 				       u32 high, u32 low, u32 *p_entry_num)
4820 {
4821 	int i;
4822 
4823 	/* Find the entry and clean it */
4824 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4825 		if (!ecore_rd(p_hwfn, p_ptt,
4826 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4827 			      i * sizeof(u32)))
4828 			continue;
4829 		if (!ecore_rd(p_hwfn, p_ptt,
4830 			      NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4831 			      i * sizeof(u32)))
4832 			continue;
4833 		if (!(ecore_rd(p_hwfn, p_ptt,
4834 			       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4835 			       i * sizeof(u32)) & (1 << type)))
4836 			continue;
4837 		if (ecore_rd(p_hwfn, p_ptt,
4838 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4839 			     2 * i * sizeof(u32)) != low)
4840 			continue;
4841 		if (ecore_rd(p_hwfn, p_ptt,
4842 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4843 			     (2 * i + 1) * sizeof(u32)) != high)
4844 			continue;
4845 
4846 		ecore_wr(p_hwfn, p_ptt,
4847 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4848 		ecore_wr(p_hwfn, p_ptt,
4849 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4850 			 i * sizeof(u32), 0);
4851 		ecore_wr(p_hwfn, p_ptt,
4852 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4853 			 i * sizeof(u32), 0);
4854 		ecore_wr(p_hwfn, p_ptt,
4855 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4856 			 2 * i * sizeof(u32), 0);
4857 		ecore_wr(p_hwfn, p_ptt,
4858 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4859 			 (2 * i + 1) * sizeof(u32), 0);
4860 		break;
4861 	}
4862 
4863 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4864 		return ECORE_INVAL;
4865 
4866 	*p_entry_num = i;
4867 
4868 	return ECORE_SUCCESS;
4869 }
4870 
4871 static enum _ecore_status_t
4872 ecore_llh_remove_protocol_filter_e5(struct ecore_hwfn *p_hwfn,
4873 				    struct ecore_ptt *p_ptt,
4874 				    enum ecore_llh_port_filter_type_t type,
4875 				    u32 high, u32 low, u32 *p_entry_num)
4876 {
4877 	ECORE_E5_MISSING_CODE;
4878 
4879 	return ECORE_NOTIMPL;
4880 }
4881 
4882 void
4883 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
4884 				 struct ecore_ptt *p_ptt,
4885 				 u16 source_port_or_eth_type,
4886 				 u16 dest_port,
4887 				 enum ecore_llh_port_filter_type_t type)
4888 {
4889 	u32 high, low, entry_num;
4890 	enum _ecore_status_t rc;
4891 
4892 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4893 		return;
4894 
4895 	high = 0;
4896 	low = 0;
4897 	switch (type) {
4898 	case ECORE_LLH_FILTER_ETHERTYPE:
4899 		high = source_port_or_eth_type;
4900 		break;
4901 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4902 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4903 		low = source_port_or_eth_type << 16;
4904 		break;
4905 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4906 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4907 		low = dest_port;
4908 		break;
4909 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4910 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4911 		low = (source_port_or_eth_type << 16) | dest_port;
4912 		break;
4913 	default:
4914 		DP_NOTICE(p_hwfn, true,
4915 			  "Non valid LLH protocol filter type %d\n", type);
4916 		return;
4917 	}
4918 
4919 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4920 		rc = ecore_llh_remove_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
4921 							    high, low,
4922 							    &entry_num);
4923 	else /* E5 */
4924 		rc = ecore_llh_remove_protocol_filter_e5(p_hwfn, p_ptt, type,
4925 							 high, low, &entry_num);
4926 	if (rc != ECORE_SUCCESS) {
4927 		DP_NOTICE(p_hwfn, false,
4928 			  "Tried to remove a non-configured filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x]\n",
4929 			  type, source_port_or_eth_type, dest_port);
4930 		return;
4931 	}
4932 
4933 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4934 		   "Protocol filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x] was removed from LLH entry %d\n",
4935 		   type, source_port_or_eth_type, dest_port, entry_num);
4936 }
4937 
4938 static void ecore_llh_clear_all_filters_bb_ah(struct ecore_hwfn *p_hwfn,
4939 					      struct ecore_ptt *p_ptt)
4940 {
4941 	int i;
4942 
4943 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4944 		ecore_wr(p_hwfn, p_ptt,
4945 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2  +
4946 			 i * sizeof(u32), 0);
4947 		ecore_wr(p_hwfn, p_ptt,
4948 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4949 			 2 * i * sizeof(u32), 0);
4950 		ecore_wr(p_hwfn, p_ptt,
4951 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4952 			 (2 * i + 1) * sizeof(u32), 0);
4953 	}
4954 }
4955 
4956 static void ecore_llh_clear_all_filters_e5(struct ecore_hwfn *p_hwfn,
4957 					   struct ecore_ptt *p_ptt)
4958 {
4959 	ECORE_E5_MISSING_CODE;
4960 }
4961 
4962 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
4963 			     struct ecore_ptt *p_ptt)
4964 {
4965 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4966 		return;
4967 
4968 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4969 		ecore_llh_clear_all_filters_bb_ah(p_hwfn, p_ptt);
4970 	else /* E5 */
4971 		ecore_llh_clear_all_filters_e5(p_hwfn, p_ptt);
4972 }
4973 
4974 enum _ecore_status_t
4975 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
4976 				  struct ecore_ptt *p_ptt)
4977 {
4978 	if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
4979 		ecore_wr(p_hwfn, p_ptt,
4980 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
4981 			 1 << p_hwfn->abs_pf_id / 2);
4982 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
4983 		return ECORE_SUCCESS;
4984 	} else {
4985 		DP_NOTICE(p_hwfn, false,
4986 			  "This function can't be set as default\n");
4987 		return ECORE_INVAL;
4988 	}
4989 }
4990 
4991 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
4992 					       struct ecore_ptt *p_ptt,
4993 					       u32 hw_addr, void *p_eth_qzone,
4994 					       osal_size_t eth_qzone_size,
4995 					       u8 timeset)
4996 {
4997 	struct coalescing_timeset *p_coal_timeset;
4998 
4999 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
5000 		DP_NOTICE(p_hwfn, true,
5001 			  "Coalescing configuration not enabled\n");
5002 		return ECORE_INVAL;
5003 	}
5004 
5005 	p_coal_timeset = p_eth_qzone;
5006 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
5007 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
5008 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
5009 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
5010 
5011 	return ECORE_SUCCESS;
5012 }
5013 
5014 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
5015 					      u16 rx_coal, u16 tx_coal,
5016 					      void *p_handle)
5017 {
5018 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
5019 	enum _ecore_status_t rc = ECORE_SUCCESS;
5020 	struct ecore_ptt *p_ptt;
5021 
5022 	/* TODO - Configuring a single queue's coalescing but
5023 	 * claiming all queues are abiding same configuration
5024 	 * for PF and VF both.
5025 	 */
5026 
5027 #ifdef CONFIG_ECORE_SRIOV
5028 	if (IS_VF(p_hwfn->p_dev))
5029 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
5030 						tx_coal, p_cid);
5031 #endif /* #ifdef CONFIG_ECORE_SRIOV */
5032 
5033 	p_ptt = ecore_ptt_acquire(p_hwfn);
5034 	if (!p_ptt)
5035 		return ECORE_AGAIN;
5036 
5037 	if (rx_coal) {
5038 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
5039 		if (rc)
5040 			goto out;
5041 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
5042 	}
5043 
5044 	if (tx_coal) {
5045 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
5046 		if (rc)
5047 			goto out;
5048 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
5049 	}
5050 out:
5051 	ecore_ptt_release(p_hwfn, p_ptt);
5052 
5053 	return rc;
5054 }
5055 
5056 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
5057 					    struct ecore_ptt *p_ptt,
5058 					    u16 coalesce,
5059 					    struct ecore_queue_cid *p_cid)
5060 {
5061 	struct ustorm_eth_queue_zone eth_qzone;
5062 	u8 timeset, timer_res;
5063 	u32 address;
5064 	enum _ecore_status_t rc;
5065 
5066 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5067 	if (coalesce <= 0x7F)
5068 		timer_res = 0;
5069 	else if (coalesce <= 0xFF)
5070 		timer_res = 1;
5071 	else if (coalesce <= 0x1FF)
5072 		timer_res = 2;
5073 	else {
5074 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5075 		return ECORE_INVAL;
5076 	}
5077 	timeset = (u8)(coalesce >> timer_res);
5078 
5079 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5080 				     p_cid->sb_igu_id, false);
5081 	if (rc != ECORE_SUCCESS)
5082 		goto out;
5083 
5084 	address = BAR0_MAP_REG_USDM_RAM +
5085 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5086 
5087 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5088 				sizeof(struct ustorm_eth_queue_zone), timeset);
5089 	if (rc != ECORE_SUCCESS)
5090 		goto out;
5091 
5092 out:
5093 	return rc;
5094 }
5095 
5096 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
5097 					    struct ecore_ptt *p_ptt,
5098 					    u16 coalesce,
5099 					    struct ecore_queue_cid *p_cid)
5100 {
5101 	struct xstorm_eth_queue_zone eth_qzone;
5102 	u8 timeset, timer_res;
5103 	u32 address;
5104 	enum _ecore_status_t rc;
5105 
5106 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5107 	if (coalesce <= 0x7F)
5108 		timer_res = 0;
5109 	else if (coalesce <= 0xFF)
5110 		timer_res = 1;
5111 	else if (coalesce <= 0x1FF)
5112 		timer_res = 2;
5113 	else {
5114 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5115 		return ECORE_INVAL;
5116 	}
5117 	timeset = (u8)(coalesce >> timer_res);
5118 
5119 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5120 				     p_cid->sb_igu_id, true);
5121 	if (rc != ECORE_SUCCESS)
5122 		goto out;
5123 
5124 	address = BAR0_MAP_REG_XSDM_RAM +
5125 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5126 
5127 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5128 				sizeof(struct xstorm_eth_queue_zone), timeset);
5129 out:
5130 	return rc;
5131 }
5132 
5133 /* Calculate final WFQ values for all vports and configure it.
5134  * After this configuration each vport must have
5135  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
5136  */
5137 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
5138 					       struct ecore_ptt *p_ptt,
5139 					       u32 min_pf_rate)
5140 {
5141 	struct init_qm_vport_params *vport_params;
5142 	int i;
5143 
5144 	vport_params = p_hwfn->qm_info.qm_vport_params;
5145 
5146 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5147 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5148 
5149 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
5150 					    min_pf_rate;
5151 		ecore_init_vport_wfq(p_hwfn, p_ptt,
5152 				     vport_params[i].first_tx_pq_id,
5153 				     vport_params[i].vport_wfq);
5154 	}
5155 }
5156 
5157 static void
5158 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
5159 
5160 {
5161 	int i;
5162 
5163 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
5164 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
5165 }
5166 
5167 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
5168 					     struct ecore_ptt *p_ptt,
5169 					     u32 min_pf_rate)
5170 {
5171 	struct init_qm_vport_params *vport_params;
5172 	int i;
5173 
5174 	vport_params = p_hwfn->qm_info.qm_vport_params;
5175 
5176 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5177 		ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
5178 		ecore_init_vport_wfq(p_hwfn, p_ptt,
5179 				     vport_params[i].first_tx_pq_id,
5180 				     vport_params[i].vport_wfq);
5181 	}
5182 }
5183 
5184 /* This function performs several validations for WFQ
5185  * configuration and required min rate for a given vport
5186  * 1. req_rate must be greater than one percent of min_pf_rate.
5187  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
5188  *    rates to get less than one percent of min_pf_rate.
5189  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
5190  */
5191 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
5192 						 u16 vport_id, u32 req_rate,
5193 						 u32 min_pf_rate)
5194 {
5195 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
5196 	int non_requested_count = 0, req_count = 0, i, num_vports;
5197 
5198 	num_vports = p_hwfn->qm_info.num_vports;
5199 
5200 	/* Accounting for the vports which are configured for WFQ explicitly */
5201 	for (i = 0; i < num_vports; i++) {
5202 		u32 tmp_speed;
5203 
5204 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
5205 			req_count++;
5206 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5207 			total_req_min_rate += tmp_speed;
5208 		}
5209 	}
5210 
5211 	/* Include current vport data as well */
5212 	req_count++;
5213 	total_req_min_rate += req_rate;
5214 	non_requested_count = num_vports - req_count;
5215 
5216 	/* validate possible error cases */
5217 	if (req_rate > min_pf_rate) {
5218 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5219 			   "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5220 			   vport_id, req_rate, min_pf_rate);
5221 		return ECORE_INVAL;
5222 	}
5223 
5224 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
5225 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5226 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5227 			   vport_id, req_rate, min_pf_rate);
5228 		return ECORE_INVAL;
5229 	}
5230 
5231 	/* TBD - for number of vports greater than 100 */
5232 	if (num_vports > ECORE_WFQ_UNIT) {
5233 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5234 			   "Number of vports is greater than %d\n",
5235 			   ECORE_WFQ_UNIT);
5236 		return ECORE_INVAL;
5237 	}
5238 
5239 	if (total_req_min_rate > min_pf_rate) {
5240 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5241 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5242 			   total_req_min_rate, min_pf_rate);
5243 		return ECORE_INVAL;
5244 	}
5245 
5246 	/* Data left for non requested vports */
5247 	total_left_rate = min_pf_rate - total_req_min_rate;
5248 	left_rate_per_vp = total_left_rate / non_requested_count;
5249 
5250 	/* validate if non requested get < 1% of min bw */
5251 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
5252 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5253 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5254 			   left_rate_per_vp, min_pf_rate);
5255 		return ECORE_INVAL;
5256 	}
5257 
5258 	/* now req_rate for given vport passes all scenarios.
5259 	 * assign final wfq rates to all vports.
5260 	 */
5261 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
5262 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
5263 
5264 	for (i = 0; i < num_vports; i++) {
5265 		if (p_hwfn->qm_info.wfq_data[i].configured)
5266 			continue;
5267 
5268 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
5269 	}
5270 
5271 	return ECORE_SUCCESS;
5272 }
5273 
5274 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
5275 				       struct ecore_ptt *p_ptt,
5276 				       u16 vp_id, u32 rate)
5277 {
5278 	struct ecore_mcp_link_state *p_link;
5279 	int rc = ECORE_SUCCESS;
5280 
5281 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
5282 
5283 	if (!p_link->min_pf_rate) {
5284 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
5285 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
5286 		return rc;
5287 	}
5288 
5289 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
5290 
5291 	if (rc == ECORE_SUCCESS)
5292 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
5293 						   p_link->min_pf_rate);
5294 	else
5295 		DP_NOTICE(p_hwfn, false,
5296 			  "Validation failed while configuring min rate\n");
5297 
5298 	return rc;
5299 }
5300 
5301 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
5302 						   struct ecore_ptt *p_ptt,
5303 						   u32 min_pf_rate)
5304 {
5305 	bool use_wfq = false;
5306 	int rc = ECORE_SUCCESS;
5307 	u16 i;
5308 
5309 	/* Validate all pre configured vports for wfq */
5310 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5311 		u32 rate;
5312 
5313 		if (!p_hwfn->qm_info.wfq_data[i].configured)
5314 			continue;
5315 
5316 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
5317 		use_wfq = true;
5318 
5319 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
5320 		if (rc != ECORE_SUCCESS) {
5321 			DP_NOTICE(p_hwfn, false,
5322 				  "WFQ validation failed while configuring min rate\n");
5323 			break;
5324 		}
5325 	}
5326 
5327 	if (rc == ECORE_SUCCESS && use_wfq)
5328 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5329 	else
5330 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5331 
5332 	return rc;
5333 }
5334 
5335 /* Main API for ecore clients to configure vport min rate.
5336  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
5337  * rate - Speed in Mbps needs to be assigned to a given vport.
5338  */
5339 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
5340 {
5341 	int i, rc = ECORE_INVAL;
5342 
5343 	/* TBD - for multiple hardware functions - that is 100 gig */
5344 	if (p_dev->num_hwfns > 1) {
5345 		DP_NOTICE(p_dev, false,
5346 			  "WFQ configuration is not supported for this device\n");
5347 		return rc;
5348 	}
5349 
5350 	for_each_hwfn(p_dev, i) {
5351 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5352 		struct ecore_ptt *p_ptt;
5353 
5354 		p_ptt = ecore_ptt_acquire(p_hwfn);
5355 		if (!p_ptt)
5356 			return ECORE_TIMEOUT;
5357 
5358 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
5359 
5360 		if (rc != ECORE_SUCCESS) {
5361 			ecore_ptt_release(p_hwfn, p_ptt);
5362 			return rc;
5363 		}
5364 
5365 		ecore_ptt_release(p_hwfn, p_ptt);
5366 	}
5367 
5368 	return rc;
5369 }
5370 
5371 /* API to configure WFQ from mcp link change */
5372 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
5373 					   struct ecore_ptt *p_ptt,
5374 					   u32 min_pf_rate)
5375 {
5376 	int i;
5377 
5378 	/* TBD - for multiple hardware functions - that is 100 gig */
5379 	if (p_dev->num_hwfns > 1) {
5380 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
5381 			   "WFQ configuration is not supported for this device\n");
5382 		return;
5383 	}
5384 
5385 	for_each_hwfn(p_dev, i) {
5386 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5387 
5388 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
5389 							min_pf_rate);
5390 	}
5391 }
5392 
5393 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
5394 				       struct ecore_ptt *p_ptt,
5395 				       struct ecore_mcp_link_state *p_link,
5396 				       u8 max_bw)
5397 {
5398 	int rc = ECORE_SUCCESS;
5399 
5400 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
5401 
5402 	if (!p_link->line_speed && (max_bw != 100))
5403 		return rc;
5404 
5405 	p_link->speed = (p_link->line_speed * max_bw) / 100;
5406 	p_hwfn->qm_info.pf_rl = p_link->speed;
5407 
5408 	/* Since the limiter also affects Tx-switched traffic, we don't want it
5409 	 * to limit such traffic in case there's no actual limit.
5410 	 * In that case, set limit to imaginary high boundary.
5411 	 */
5412 	if (max_bw == 100)
5413 		p_hwfn->qm_info.pf_rl = 100000;
5414 
5415 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
5416 			      p_hwfn->qm_info.pf_rl);
5417 
5418 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5419 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
5420 		   p_link->speed);
5421 
5422 	return rc;
5423 }
5424 
5425 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
5426 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
5427 {
5428 	int i, rc = ECORE_INVAL;
5429 
5430 	if (max_bw < 1 || max_bw > 100) {
5431 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
5432 		return rc;
5433 	}
5434 
5435 	for_each_hwfn(p_dev, i) {
5436 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5437 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
5438 		struct ecore_mcp_link_state *p_link;
5439 		struct ecore_ptt *p_ptt;
5440 
5441 		p_link = &p_lead->mcp_info->link_output;
5442 
5443 		p_ptt = ecore_ptt_acquire(p_hwfn);
5444 		if (!p_ptt)
5445 			return ECORE_TIMEOUT;
5446 
5447 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
5448 							p_link, max_bw);
5449 
5450 		ecore_ptt_release(p_hwfn, p_ptt);
5451 
5452 		if (rc != ECORE_SUCCESS)
5453 			break;
5454 	}
5455 
5456 	return rc;
5457 }
5458 
5459 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
5460 				       struct ecore_ptt *p_ptt,
5461 				       struct ecore_mcp_link_state *p_link,
5462 				       u8 min_bw)
5463 {
5464 	int rc = ECORE_SUCCESS;
5465 
5466 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
5467 	p_hwfn->qm_info.pf_wfq = min_bw;
5468 
5469 	if (!p_link->line_speed)
5470 		return rc;
5471 
5472 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
5473 
5474 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
5475 
5476 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5477 		   "Configured MIN bandwidth to be %d Mb/sec\n",
5478 		   p_link->min_pf_rate);
5479 
5480 	return rc;
5481 }
5482 
5483 /* Main API to configure PF min bandwidth where bw range is [1-100] */
5484 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
5485 {
5486 	int i, rc = ECORE_INVAL;
5487 
5488 	if (min_bw < 1 || min_bw > 100) {
5489 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
5490 		return rc;
5491 	}
5492 
5493 	for_each_hwfn(p_dev, i) {
5494 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5495 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
5496 		struct ecore_mcp_link_state *p_link;
5497 		struct ecore_ptt *p_ptt;
5498 
5499 		p_link = &p_lead->mcp_info->link_output;
5500 
5501 		p_ptt = ecore_ptt_acquire(p_hwfn);
5502 		if (!p_ptt)
5503 			return ECORE_TIMEOUT;
5504 
5505 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
5506 							p_link, min_bw);
5507 		if (rc != ECORE_SUCCESS) {
5508 			ecore_ptt_release(p_hwfn, p_ptt);
5509 			return rc;
5510 		}
5511 
5512 		if (p_link->min_pf_rate) {
5513 			u32 min_rate = p_link->min_pf_rate;
5514 
5515 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
5516 								     p_ptt,
5517 								     min_rate);
5518 		}
5519 
5520 		ecore_ptt_release(p_hwfn, p_ptt);
5521 	}
5522 
5523 	return rc;
5524 }
5525 
5526 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
5527 {
5528 	struct ecore_mcp_link_state *p_link;
5529 
5530 	p_link = &p_hwfn->mcp_info->link_output;
5531 
5532 	if (p_link->min_pf_rate)
5533 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
5534 						 p_link->min_pf_rate);
5535 
5536 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
5537 		    sizeof(*p_hwfn->qm_info.wfq_data) *
5538 				p_hwfn->qm_info.num_vports);
5539 }
5540 
5541 int ecore_device_num_engines(struct ecore_dev *p_dev)
5542 {
5543 	return ECORE_IS_BB(p_dev) ? 2 : 1;
5544 }
5545 
5546 int ecore_device_num_ports(struct ecore_dev *p_dev)
5547 {
5548 	/* in CMT always only one port */
5549 	if (p_dev->num_hwfns > 1)
5550 		return 1;
5551 
5552 	return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
5553 }
5554 
5555 void ecore_set_fw_mac_addr(__le16 *fw_msb,
5556 			  __le16 *fw_mid,
5557 			  __le16 *fw_lsb,
5558 			  u8 *mac)
5559 {
5560 	((u8 *)fw_msb)[0] = mac[1];
5561 	((u8 *)fw_msb)[1] = mac[0];
5562 	((u8 *)fw_mid)[0] = mac[3];
5563 	((u8 *)fw_mid)[1] = mac[2];
5564 	((u8 *)fw_lsb)[0] = mac[5];
5565 	((u8 *)fw_lsb)[1] = mac[4];
5566 }
5567