1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_init_fw_funcs.c
30  */
31 #include <sys/cdefs.h>
32 #include "bcm_osal.h"
33 #include "ecore_hw.h"
34 #include "ecore_init_ops.h"
35 #include "reg_addr.h"
36 #include "ecore_rt_defs.h"
37 #include "ecore_hsi_common.h"
38 #include "ecore_hsi_init_func.h"
39 #include "ecore_hsi_eth.h"
40 #include "ecore_hsi_init_tool.h"
41 #include "ecore_iro.h"
42 #include "ecore_init_fw_funcs.h"
43 
44 #define CDU_VALIDATION_DEFAULT_CFG 61
45 
46 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
47 	{ 400,  336,  352,  304,  304,  384,  416,  352}, /* region 3 offsets */
48 	{ 528,  496,  416,  448,  448,  512,  544,  480}, /* region 4 offsets */
49 	{ 608,  544,  496,  512,  576,  592,  624,  560}  /* region 5 offsets */
50 };
51 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
52 	{ 240,  240,  112,    0,    0,    0,    0,   96}  /* region 1 offsets */
53 };
54 
55 /* General constants */
56 #define QM_PQ_MEM_4KB(pq_size)			(pq_size ? DIV_ROUND_UP((pq_size + 1) * QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
57 #define QM_PQ_SIZE_256B(pq_size)		(pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : 0)
58 #define QM_INVALID_PQ_ID		0xffff
59 
60 /* Feature enable */
61 #define QM_BYPASS_EN			1
62 #define QM_BYTE_CRD_EN			1
63 
64 /* Other PQ constants */
65 #define QM_OTHER_PQS_PER_PF		4
66 
67 /* VOQ constants */
68 #define QM_E5_NUM_EXT_VOQ		(MAX_NUM_PORTS_E5 * NUM_OF_TCS)
69 
70 /* WFQ constants: */
71 
72 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
73 #define QM_WFQ_UPPER_BOUND		62500000
74 
75 /* Bit  of VOQ in WFQ VP PQ map */
76 #define QM_WFQ_VP_PQ_VOQ_SHIFT		0
77 
78 /* Bit  of PF in WFQ VP PQ map */
79 #define QM_WFQ_VP_PQ_PF_E4_SHIFT	5
80 #define QM_WFQ_VP_PQ_PF_E5_SHIFT	6
81 
82 /* 0x9000 = 4*9*1024 */
83 #define QM_WFQ_INC_VAL(weight)		((weight) * 0x9000)
84 
85 /* Max WFQ increment value is 0.7 * upper bound */
86 #define QM_WFQ_MAX_INC_VAL		((QM_WFQ_UPPER_BOUND * 7) / 10)
87 
88 /* Number of VOQs in E5 QmWfqCrd register */
89 #define QM_WFQ_CRD_E5_NUM_VOQS		16
90 
91 /* RL constants: */
92 
93 /* Period in us */
94 #define QM_RL_PERIOD			5
95 
96 /* Period in 25MHz cycles */
97 #define QM_RL_PERIOD_CLK_25M		(25 * QM_RL_PERIOD)
98 
99 /* RL increment value - rate is specified in mbps. the factor of 1.01 was
100 * added after seeing only 99% factor reached in a 25Gbps port with DPDK RFC
101 * 2544 test. In this scenario the PF RL was reducing the line rate to 99%
102 * although the credit increment value was the correct one and FW calculated
103 * correct packet sizes. The reason for the inaccuracy of the RL is unknown at
104 * this point.
105 */
106 #define QM_RL_INC_VAL(rate)			OSAL_MAX_T(u32, (u32)(((rate ? rate : 100000) * QM_RL_PERIOD * 101) 	/ (8 * 100)), 1)
107 
108 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
109 #define QM_PF_RL_UPPER_BOUND		62500000
110 
111 /* Max PF RL increment value is 0.7 * upper bound */
112 #define QM_PF_RL_MAX_INC_VAL		((QM_PF_RL_UPPER_BOUND * 7) / 10)
113 
114 /* Vport RL Upper bound, link speed is in Mpbs */
115 #define QM_VP_RL_UPPER_BOUND(speed)		((u32)OSAL_MAX_T(u32, QM_RL_INC_VAL(speed), 9700 + 1000))
116 
117 /* Max Vport RL increment value is the Vport RL upper bound */
118 #define QM_VP_RL_MAX_INC_VAL(speed)	QM_VP_RL_UPPER_BOUND(speed)
119 
120 /* Vport RL credit threshold in case of QM bypass */
121 #define QM_VP_RL_BYPASS_THRESH_SPEED	(QM_VP_RL_UPPER_BOUND(10000) - 1)
122 
123 /* AFullOprtnstcCrdMask constants */
124 #define QM_OPPOR_LINE_VOQ_DEF		1
125 #define QM_OPPOR_FW_STOP_DEF		0
126 #define QM_OPPOR_PQ_EMPTY_DEF		1
127 
128 /* Command Queue constants: */
129 
130 /* Pure LB CmdQ lines (+spare) */
131 #define PBF_CMDQ_PURE_LB_LINES		150
132 
133 #define PBF_CMDQ_LINES_E5_RSVD_RATIO	8
134 
135 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq)		(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + ext_voq 	* (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET 	- PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
136 
137 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) 	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + ext_voq 	* (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET 	- PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
138 
139 #define QM_VOQ_LINE_CRD(pbf_cmd_lines)		((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
140 
141 /* BTB: blocks constants (block size = 256B) */
142 
143 /* 256B blocks in 9700B packet */
144 #define BTB_JUMBO_PKT_BLOCKS		38
145 
146 /* Headroom per-port */
147 #define BTB_HEADROOM_BLOCKS		BTB_JUMBO_PKT_BLOCKS
148 #define BTB_PURE_LB_FACTOR		10
149 
150 /* Factored (hence really 0.7) */
151 #define BTB_PURE_LB_RATIO		7
152 
153 /* QM stop command constants */
154 #define QM_STOP_PQ_MASK_WIDTH		32
155 #define QM_STOP_CMD_ADDR		2
156 #define QM_STOP_CMD_STRUCT_SIZE		2
157 #define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
158 #define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
159 #define QM_STOP_CMD_PAUSE_MASK_MASK	-1
160 #define QM_STOP_CMD_GROUP_ID_OFFSET	1
161 #define QM_STOP_CMD_GROUP_ID_SHIFT	16
162 #define QM_STOP_CMD_GROUP_ID_MASK	15
163 #define QM_STOP_CMD_PQ_TYPE_OFFSET	1
164 #define QM_STOP_CMD_PQ_TYPE_SHIFT	24
165 #define QM_STOP_CMD_PQ_TYPE_MASK	1
166 #define QM_STOP_CMD_MAX_POLL_COUNT	100
167 #define QM_STOP_CMD_POLL_PERIOD_US	500
168 
169 /* QM command macros */
170 #define QM_CMD_STRUCT_SIZE(cmd)		  cmd##_STRUCT_SIZE
171 #define QM_CMD_SET_FIELD(var, cmd, field, value)  	SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
172 
173 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, ext_voq, wrr) 	OSAL_MEMSET(&map, 0, sizeof(map)); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_VALID, rl_valid); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, vp_pq_id); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_ID, rl_id); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VOQ, ext_voq); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, wrr); 	STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id, *((u32 *)&map))
174 
175 #define WRITE_PQ_INFO_TO_RAM							1
176 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl)	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | ((rl_valid) << 22) | ((rl) << 24))
177 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id)					XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4
178 
179 /******************** INTERNAL IMPLEMENTATION *********************/
180 
181 /* Returns the external VOQ number */
182 static u8 ecore_get_ext_voq(struct ecore_hwfn *p_hwfn,
183 							u8 port_id,
184 							u8 tc,
185 							u8 max_phys_tcs_per_port)
186 {
187 	if (tc == PURE_LB_TC)
188 		return NUM_OF_PHYS_TCS * (ECORE_IS_E5(p_hwfn->p_dev) ? MAX_NUM_PORTS_E5 : MAX_NUM_PORTS_BB) + port_id;
189 	else
190 		return port_id * (ECORE_IS_E5(p_hwfn->p_dev) ? NUM_OF_PHYS_TCS : max_phys_tcs_per_port) + tc;
191 }
192 
193 /* Prepare PF RL enable/disable runtime init values */
194 static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn,
195 							   bool pf_rl_en)
196 {
197 	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
198 	if (pf_rl_en) {
199 		u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
200 		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
201 
202 		/* Enable RLs for all VOQs */
203 		STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET, (u32)voq_bit_mask);
204 #ifdef QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET
205 		if (num_ext_voqs >= 32)
206 			STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET, (u32)(voq_bit_mask >> 32));
207 #endif
208 
209 		/* Write RL period */
210 		STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
211 		STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
212 
213 		/* Set credit threshold for QM bypass flow */
214 		if (QM_BYPASS_EN)
215 			STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, QM_PF_RL_UPPER_BOUND);
216 	}
217 }
218 
219 /* Prepare PF WFQ enable/disable runtime init values */
220 static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn,
221 								bool pf_wfq_en)
222 {
223 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
224 
225 	/* Set credit threshold for QM bypass flow */
226 	if (pf_wfq_en && QM_BYPASS_EN)
227 		STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
228 }
229 
230 /* Prepare VPORT RL enable/disable runtime init values */
231 static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn,
232 								  bool vport_rl_en)
233 {
234 	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, vport_rl_en ? 1 : 0);
235 	if (vport_rl_en) {
236 		/* Write RL period (use timer 0 only) */
237 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
238 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
239 
240 		/* Set credit threshold for QM bypass flow */
241 		if (QM_BYPASS_EN)
242 			STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, QM_VP_RL_BYPASS_THRESH_SPEED);
243 	}
244 }
245 
246 /* Prepare VPORT WFQ enable/disable runtime init values */
247 static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn,
248 								   bool vport_wfq_en)
249 {
250 	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, vport_wfq_en ? 1 : 0);
251 
252 	/* Set credit threshold for QM bypass flow */
253 	if (vport_wfq_en && QM_BYPASS_EN)
254 		STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
255 }
256 
257 /* Prepare runtime init values to allocate PBF command queue lines for
258  * the specified VOQ.
259  */
260 static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
261 										 u8 ext_voq,
262 										 u16 cmdq_lines)
263 {
264 	u32 qm_line_crd;
265 
266 	qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
267 
268 	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), (u32)cmdq_lines);
269 	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
270 	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
271 }
272 
273 /* Prepare runtime init values to allocate PBF command queue lines. */
274 static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
275 									 u8 max_ports_per_engine,
276 									 u8 max_phys_tcs_per_port,
277 									 struct init_qm_port_params port_params[MAX_NUM_PORTS])
278 {
279 	u8 tc, ext_voq, port_id, num_tcs_in_port;
280 	u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
281 
282 	/* Clear PBF lines of all VOQs */
283 	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
284 		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
285 
286 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
287 		u16 phys_lines, phys_lines_per_tc;
288 
289 		if (!port_params[port_id].active)
290 			continue;
291 
292 		/* Find number of command queue lines to divide between the
293 		 * active physical TCs. In E5, 1/8 of the lines are reserved.
294 		 * the lines for pure LB TC are subtracted.
295 		 */
296 		phys_lines = port_params[port_id].num_pbf_cmd_lines;
297 		if (ECORE_IS_E5(p_hwfn->p_dev))
298 			phys_lines -= DIV_ROUND_UP(phys_lines, PBF_CMDQ_LINES_E5_RSVD_RATIO);
299 		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
300 
301 		/* Find #lines per active physical TC */
302 		num_tcs_in_port = 0;
303 		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
304 			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
305 				num_tcs_in_port++;
306 		phys_lines_per_tc = phys_lines / num_tcs_in_port;
307 
308 		/* Init registers per active TC */
309 		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
310 			ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
311 			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
312 				ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, phys_lines_per_tc);
313 		}
314 
315 		/* Init registers for pure LB TC */
316 		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
317 		ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, PBF_CMDQ_PURE_LB_LINES);
318 	}
319 }
320 
321 /* Prepare runtime init values to allocate guaranteed BTB blocks for the
322  * specified port. The guaranteed BTB space is divided between the TCs as
323  * follows (shared space Is currently not used):
324  * 1. Parameters:
325  *    B - BTB blocks for this port
326  *    C - Number of physical TCs for this port
327  * 2. Calculation:
328  *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
329  *	 headroom.
330  *    b. B = B - 38 (remainder after global headroom allocation).
331  *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
332  *    d. B = B � MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
333  *    e. B/C blocks are allocated for each physical TC.
334  * Assumptions:
335  * - MTU is up to 9700 bytes (38 blocks)
336  * - All TCs are considered symmetrical (same rate and packet size)
337  * - No optimization for lossy TC (all are considered lossless). Shared space
338  *   is not enabled and allocated for each TC.
339  */
340 static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
341 									 u8 max_ports_per_engine,
342 									 u8 max_phys_tcs_per_port,
343 									 struct init_qm_port_params port_params[MAX_NUM_PORTS])
344 {
345 	u32 usable_blocks, pure_lb_blocks, phys_blocks;
346 	u8 tc, ext_voq, port_id, num_tcs_in_port;
347 
348 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
349 		if (!port_params[port_id].active)
350 			continue;
351 
352 		/* Subtract headroom blocks */
353 		usable_blocks = port_params[port_id].num_btb_blocks - BTB_HEADROOM_BLOCKS;
354 
355 		/* Find blocks per physical TC. use factor to avoid floating
356 		 * arithmethic.
357 		 */
358 		num_tcs_in_port = 0;
359 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
360 			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
361 				num_tcs_in_port++;
362 
363 		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / (num_tcs_in_port * BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO);
364 		pure_lb_blocks = OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS, pure_lb_blocks / BTB_PURE_LB_FACTOR);
365 		phys_blocks = (usable_blocks - pure_lb_blocks) / num_tcs_in_port;
366 
367 		/* Init physical TCs */
368 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
369 			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) {
370 				ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
371 				STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), phys_blocks);
372 			}
373 		}
374 
375 		/* Init pure LB TC */
376 		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
377 		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), pure_lb_blocks);
378 	}
379 }
380 
381 /* Prepare Tx PQ mapping runtime init values for the specified PF */
382 static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
383 									struct ecore_ptt *p_ptt,
384 									u8 port_id,
385 									u8 pf_id,
386 									u8 max_phys_tcs_per_port,
387 									bool is_pf_loading,
388 									u32 num_pf_cids,
389 									u32 num_vf_cids,
390 									u16 start_pq,
391 									u16 num_pf_pqs,
392 									u16 num_vf_pqs,
393 									u8 start_vport,
394 									u32 base_mem_addr_4kb,
395 									struct init_qm_pq_params *pq_params,
396 									struct init_qm_vport_params *vport_params)
397 {
398 	/* A bit per Tx PQ indicating if the PQ is associated with a VF */
399 	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
400 	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
401 	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
402 	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
403 
404 	num_pqs = num_pf_pqs + num_vf_pqs;
405 
406 	first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
407 	last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
408 
409 	pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
410 	vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
411 	mem_addr_4kb = base_mem_addr_4kb;
412 
413 	/* Set mapping from PQ group to PF */
414 	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
415 		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
416 
417 	/* Set PQ sizes */
418 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, QM_PQ_SIZE_256B(num_pf_cids));
419 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, QM_PQ_SIZE_256B(num_vf_cids));
420 
421 	/* Go over all Tx PQs */
422 	for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
423 		u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
424 		u8 ext_voq, vport_id_in_pf;
425 		bool is_vf_pq, rl_valid;
426 		u16 first_tx_pq_id;
427 
428 		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
429 		is_vf_pq = (i >= num_pf_pqs);
430 		rl_valid = pq_params[i].rl_valid && pq_params[i].vport_id < max_qm_global_rls;
431 
432 		/* Update first Tx PQ of VPORT/TC */
433 		vport_id_in_pf = pq_params[i].vport_id - start_vport;
434 		first_tx_pq_id = vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id];
435 		if (first_tx_pq_id == QM_INVALID_PQ_ID) {
436 			u32 map_val = (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (pf_id << (ECORE_IS_E5(p_hwfn->p_dev) ? QM_WFQ_VP_PQ_PF_E5_SHIFT : QM_WFQ_VP_PQ_PF_E4_SHIFT));
437 
438 			/* Create new VP PQ */
439 			vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id] = pq_id;
440 			first_tx_pq_id = pq_id;
441 
442 			/* Map VP PQ to VOQ and PF */
443 			STORE_RT_REG(p_hwfn, QM_REG_WFQVPMAP_RT_OFFSET + first_tx_pq_id, map_val);
444 		}
445 
446 		/* Check RL ID */
447 		if (pq_params[i].rl_valid && pq_params[i].vport_id >= max_qm_global_rls)
448 			DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
449 
450 		/* Prepare PQ map entry */
451 		if (ECORE_IS_E5(p_hwfn->p_dev)) {
452 			struct qm_rf_pq_map_e5 tx_pq_map;
453 			QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E5, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
454 		}
455 		else {
456 			struct qm_rf_pq_map_e4 tx_pq_map;
457 			QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E4, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
458 		}
459 
460 		/* Set PQ base address */
461 		STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, mem_addr_4kb);
462 
463 		/* Clear PQ pointer table entry (64 bit) */
464 		if (is_pf_loading)
465 			for (j = 0; j < 2; j++)
466 				STORE_RT_REG(p_hwfn, QM_REG_PTRTBLTX_RT_OFFSET + (pq_id * 2) + j, 0);
467 
468 		/* Write PQ info to RAM */
469 		if (WRITE_PQ_INFO_TO_RAM != 0)
470 		{
471 			u32 pq_info = 0;
472 			pq_info = PQ_INFO_ELEMENT(first_tx_pq_id, pf_id, pq_params[i].tc_id, port_id, rl_valid ? 1 : 0, rl_valid ? pq_params[i].vport_id : 0);
473 			ecore_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), pq_info);
474 		}
475 
476 		/* If VF PQ, add indication to PQ VF mask */
477 		if (is_vf_pq) {
478 			tx_pq_vf_mask[pq_id / QM_PF_QUEUE_GROUP_SIZE] |= (1 << (pq_id % QM_PF_QUEUE_GROUP_SIZE));
479 			mem_addr_4kb += vport_pq_mem_4kb;
480 		}
481 		else {
482 			mem_addr_4kb += pq_mem_4kb;
483 		}
484 	}
485 
486 	/* Store Tx PQ VF mask to size select register */
487 	for (i = 0; i < num_tx_pq_vf_masks; i++)
488 		if (tx_pq_vf_mask[i])
489 			STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, tx_pq_vf_mask[i]);
490 }
491 
492 /* Prepare Other PQ mapping runtime init values for the specified PF */
493 static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
494 									   u8 pf_id,
495 									   bool is_pf_loading,
496 									   u32 num_pf_cids,
497 									   u32 num_tids,
498 									   u32 base_mem_addr_4kb)
499 {
500 	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
501 	u16 i, j, pq_id, pq_group;
502 
503 	/* A single other PQ group is used in each PF, where PQ group i is used
504 	 * in PF i.
505 	 */
506 	pq_group = pf_id;
507 	pq_size = num_pf_cids + num_tids;
508 	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
509 	mem_addr_4kb = base_mem_addr_4kb;
510 
511 	/* Map PQ group to PF */
512 	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
513 
514 	/* Set PQ sizes */
515 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, QM_PQ_SIZE_256B(pq_size));
516 
517 	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
518 		/* Set PQ base address */
519 		STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, mem_addr_4kb);
520 
521 		/* Clear PQ pointer table entry */
522 		if (is_pf_loading)
523 			for (j = 0; j < 2; j++)
524 				STORE_RT_REG(p_hwfn, QM_REG_PTRTBLOTHER_RT_OFFSET + (pq_id * 2) + j, 0);
525 
526 		mem_addr_4kb += pq_mem_4kb;
527 	}
528 }
529 
530 /* Prepare PF WFQ runtime init values for the specified PF.
531  * Return -1 on error.
532  */
533 static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
534 								u8 port_id,
535 								u8 pf_id,
536 								u16 pf_wfq,
537 								u8 max_phys_tcs_per_port,
538 								u16 num_tx_pqs,
539 								struct init_qm_pq_params *pq_params)
540 {
541 	u32 inc_val, crd_reg_offset;
542 	u8 ext_voq;
543 	u16 i;
544 
545 	inc_val = QM_WFQ_INC_VAL(pf_wfq);
546 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
547 		DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
548 		return -1;
549 	}
550 
551 	for (i = 0; i < num_tx_pqs; i++) {
552 		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
553 		crd_reg_offset = ECORE_IS_E5(p_hwfn->p_dev) ?
554 			(ext_voq < QM_WFQ_CRD_E5_NUM_VOQS ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + (ext_voq % QM_WFQ_CRD_E5_NUM_VOQS) * MAX_NUM_PFS_E5 + pf_id :
555 			(pf_id < MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + ext_voq * MAX_NUM_PFS_BB + (pf_id % MAX_NUM_PFS_BB);
556 		OVERWRITE_RT_REG(p_hwfn, crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
557 	}
558 
559 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + pf_id, QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
560 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
561 
562 	return 0;
563 }
564 
565 /* Prepare PF RL runtime init values for the specified PF.
566  * Return -1 on error.
567  */
568 static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn,
569 							  u8 pf_id,
570 							  u32 pf_rl)
571 {
572 	u32 inc_val;
573 
574 	inc_val = QM_RL_INC_VAL(pf_rl);
575 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
576 		DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
577 		return -1;
578 	}
579 
580 	STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
581 	STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
582 	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
583 
584 	return 0;
585 }
586 
587 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
588  * Return -1 on error.
589  */
590 static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
591 								u8 num_vports,
592 								struct init_qm_vport_params *vport_params)
593 {
594 	u16 vport_pq_id;
595 	u32 inc_val;
596 	u8 tc, i;
597 
598 	/* Go over all PF VPORTs */
599 	for (i = 0; i < num_vports; i++) {
600 		if (!vport_params[i].vport_wfq)
601 			continue;
602 
603 		inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
604 		if (inc_val > QM_WFQ_MAX_INC_VAL) {
605 			DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
606 			return -1;
607 		}
608 
609 		/* Each VPORT can have several VPORT PQ IDs for various TCs */
610 		for (tc = 0; tc < NUM_OF_TCS; tc++) {
611 			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
612 			if (vport_pq_id != QM_INVALID_PQ_ID) {
613 				STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET + vport_pq_id, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
614 				STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET + vport_pq_id, inc_val);
615 			}
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 /* Prepare VPORT RL runtime init values for the specified VPORTs.
623  * Return -1 on error.
624  */
625 static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
626 								  u8 start_vport,
627 								  u8 num_vports,
628 								  u32 link_speed,
629 								  struct init_qm_vport_params *vport_params)
630 {
631 	u8 i, vport_id;
632 	u32 inc_val;
633 
634 	if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
635 		DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
636 		return -1;
637 	}
638 
639 	/* Go over all PF VPORTs */
640 	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
641 		inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ? vport_params[i].vport_rl : link_speed);
642 		if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
643 			DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
644 			return -1;
645 		}
646 
647 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
648 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id, QM_VP_RL_UPPER_BOUND(link_speed) | (u32)QM_RL_CRD_REG_SIGN_BIT);
649 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id, inc_val);
650 	}
651 
652 	return 0;
653 }
654 
655 static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
656 									   struct ecore_ptt *p_ptt)
657 {
658 	u32 reg_val, i;
659 
660 	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; i++) {
661 		OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
662 		reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
663 	}
664 
665 	/* Check if timeout while waiting for SDM command ready */
666 	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
667 		DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG, "Timeout when waiting for QM SDM command ready signal\n");
668 		return false;
669 	}
670 
671 	return true;
672 }
673 
674 static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
675 							  struct ecore_ptt *p_ptt,
676 							  u32 cmd_addr,
677 							  u32 cmd_data_lsb,
678 							  u32 cmd_data_msb)
679 {
680 	if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
681 		return false;
682 
683 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
684 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
685 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
686 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
687 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
688 
689 	return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
690 }
691 
692 /******************** INTERFACE IMPLEMENTATION *********************/
693 
694 u32 ecore_qm_pf_mem_size(u32 num_pf_cids,
695 						 u32 num_vf_cids,
696 						 u32 num_tids,
697 						 u16 num_pf_pqs,
698 						 u16 num_vf_pqs)
699 {
700 	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
701 		   QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
702 		   QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
703 }
704 
705 int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
706 							u8 max_ports_per_engine,
707 							u8 max_phys_tcs_per_port,
708 							bool pf_rl_en,
709 							bool pf_wfq_en,
710 							bool vport_rl_en,
711 							bool vport_wfq_en,
712 							struct init_qm_port_params port_params[MAX_NUM_PORTS])
713 {
714 	u32 mask;
715 
716 	/* Init AFullOprtnstcCrdMask */
717 	mask = (QM_OPPOR_LINE_VOQ_DEF << QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
718 		(QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
719 		(pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
720 		(vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
721 		(pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
722 		(vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
723 		(QM_OPPOR_FW_STOP_DEF << QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
724 		(QM_OPPOR_PQ_EMPTY_DEF << QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
725 	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
726 
727 	/* Enable/disable PF RL */
728 	ecore_enable_pf_rl(p_hwfn, pf_rl_en);
729 
730 	/* Enable/disable PF WFQ */
731 	ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
732 
733 	/* Enable/disable VPORT RL */
734 	ecore_enable_vport_rl(p_hwfn, vport_rl_en);
735 
736 	/* Enable/disable VPORT WFQ */
737 	ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
738 
739 	/* Init PBF CMDQ line credit */
740 	ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
741 
742 	/* Init BTB blocks in PBF */
743 	ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
744 
745 	return 0;
746 }
747 
748 int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
749 						struct ecore_ptt *p_ptt,
750 						u8 port_id,
751 						u8 pf_id,
752 						u8 max_phys_tcs_per_port,
753 						bool is_pf_loading,
754 						u32 num_pf_cids,
755 						u32 num_vf_cids,
756 						u32 num_tids,
757 						u16 start_pq,
758 						u16 num_pf_pqs,
759 						u16 num_vf_pqs,
760 						u8 start_vport,
761 						u8 num_vports,
762 						u16 pf_wfq,
763 						u32 pf_rl,
764 						u32 link_speed,
765 						struct init_qm_pq_params *pq_params,
766 						struct init_qm_vport_params *vport_params)
767 {
768 	u32 other_mem_size_4kb;
769 	u8 tc, i;
770 
771 	other_mem_size_4kb = QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
772 
773 	/* Clear first Tx PQ ID array for each VPORT */
774 	for(i = 0; i < num_vports; i++)
775 		for(tc = 0; tc < NUM_OF_TCS; tc++)
776 			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
777 
778 	/* Map Other PQs (if any) */
779 #if QM_OTHER_PQS_PER_PF > 0
780 	ecore_other_pq_map_rt_init(p_hwfn, pf_id, is_pf_loading, num_pf_cids, num_tids, 0);
781 #endif
782 
783 	/* Map Tx PQs */
784 	ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, port_id, pf_id, max_phys_tcs_per_port, is_pf_loading, num_pf_cids, num_vf_cids,
785 							start_pq, num_pf_pqs, num_vf_pqs, start_vport, other_mem_size_4kb, pq_params, vport_params);
786 
787 	/* Init PF WFQ */
788 	if (pf_wfq)
789 		if (ecore_pf_wfq_rt_init(p_hwfn, port_id, pf_id, pf_wfq, max_phys_tcs_per_port, num_pf_pqs + num_vf_pqs, pq_params))
790 		return -1;
791 
792 	/* Init PF RL */
793 	if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl))
794 		return -1;
795 
796 	/* Set VPORT WFQ */
797 	if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params))
798 		return -1;
799 
800 	/* Set VPORT RL */
801 	if (ecore_vport_rl_rt_init(p_hwfn, start_vport, num_vports, link_speed, vport_params))
802 		return -1;
803 
804 	return 0;
805 }
806 
807 int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
808 					  struct ecore_ptt *p_ptt,
809 					  u8 pf_id,
810 					  u16 pf_wfq)
811 {
812 	u32 inc_val;
813 
814 	inc_val = QM_WFQ_INC_VAL(pf_wfq);
815 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
816 		DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
817 		return -1;
818 	}
819 
820 	ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
821 
822 	return 0;
823 }
824 
825 int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
826 					 struct ecore_ptt *p_ptt,
827 					 u8 pf_id,
828 					 u32 pf_rl)
829 {
830 	u32 inc_val;
831 
832 	inc_val = QM_RL_INC_VAL(pf_rl);
833 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
834 		DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
835 		return -1;
836 	}
837 
838 	ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
839 	ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
840 
841 	return 0;
842 }
843 
844 int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
845 						 struct ecore_ptt *p_ptt,
846 						 u16 first_tx_pq_id[NUM_OF_TCS],
847 						 u16 vport_wfq)
848 {
849 	u16 vport_pq_id;
850 	u32 inc_val;
851 	u8 tc;
852 
853 	inc_val = QM_WFQ_INC_VAL(vport_wfq);
854 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
855 		DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
856 		return -1;
857 	}
858 
859 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
860 		vport_pq_id = first_tx_pq_id[tc];
861 		if (vport_pq_id != QM_INVALID_PQ_ID) {
862 			ecore_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
863 		}
864 	}
865 
866 	return 0;
867 }
868 
869 int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
870 						struct ecore_ptt *p_ptt,
871 						u8 vport_id,
872 						u32 vport_rl,
873 						u32 link_speed)
874 {
875 	u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
876 
877 	if (vport_id >= max_qm_global_rls) {
878 		DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
879 		return -1;
880 	}
881 
882 	inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
883 	if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
884 		DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
885 		return -1;
886 	}
887 
888 	ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
889 	ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
890 
891 	return 0;
892 }
893 
894 bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
895 							struct ecore_ptt *p_ptt,
896 							bool is_release_cmd,
897 							bool is_tx_pq,
898 							u16 start_pq,
899 							u16 num_pqs)
900 {
901 	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = {0};
902 	u32 pq_mask = 0, last_pq, pq_id;
903 
904 	last_pq = start_pq + num_pqs - 1;
905 
906 	/* Set command's PQ type */
907 	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
908 
909 	/* Go over requested PQs */
910 	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
911 		/* Set PQ bit in mask (stop command only) */
912 		if (!is_release_cmd)
913 			pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
914 
915 		/* If last PQ or end of PQ mask, write command */
916 		if ((pq_id == last_pq) || (pq_id % QM_STOP_PQ_MASK_WIDTH == (QM_STOP_PQ_MASK_WIDTH - 1))) {
917 			QM_CMD_SET_FIELD(cmd_arr, (u32)QM_STOP_CMD, PAUSE_MASK, pq_mask);
918 			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID, pq_id / QM_STOP_PQ_MASK_WIDTH);
919 			if (!ecore_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0], cmd_arr[1]))
920 				return false;
921 			pq_mask = 0;
922 		}
923 	}
924 
925 	return true;
926 }
927 
928 #ifndef UNUSED_HSI_FUNC
929 
930 /* NIG: ETS configuration constants */
931 #define NIG_TX_ETS_CLIENT_OFFSET	4
932 #define NIG_LB_ETS_CLIENT_OFFSET	1
933 #define NIG_ETS_MIN_WFQ_BYTES		1600
934 
935 /* NIG: ETS constants */
936 #define NIG_ETS_UP_BOUND(weight,mtu)		(2 * ((weight) > (mtu) ? (weight) : (mtu)))
937 
938 /* NIG: RL constants */
939 
940 /* Byte base type value */
941 #define NIG_RL_BASE_TYPE		1
942 
943 /* Period in us */
944 #define NIG_RL_PERIOD			1
945 
946 /* Period in 25MHz cycles */
947 #define NIG_RL_PERIOD_CLK_25M		(25 * NIG_RL_PERIOD)
948 
949 /* Rate in mbps */
950 #define NIG_RL_INC_VAL(rate)		(((rate) * NIG_RL_PERIOD) / 8)
951 
952 #define NIG_RL_MAX_VAL(inc_val,mtu)		(2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
953 
954 /* NIG: packet prioritry configuration constants */
955 #define NIG_PRIORITY_MAP_TC_BITS	4
956 
957 void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
958 						struct ecore_ptt *p_ptt,
959 						struct init_ets_req* req,
960 						bool is_lb)
961 {
962 	u32 min_weight, tc_weight_base_addr, tc_weight_addr_diff;
963 	u32 tc_bound_base_addr, tc_bound_addr_diff;
964 	u8 sp_tc_map = 0, wfq_tc_map = 0;
965 	u8 tc, num_tc, tc_client_offset;
966 
967 	num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
968 	tc_client_offset = is_lb ? NIG_LB_ETS_CLIENT_OFFSET : NIG_TX_ETS_CLIENT_OFFSET;
969 	min_weight = 0xffffffff;
970 	tc_weight_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 : NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
971 	tc_weight_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 - NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
972 								  NIG_REG_TX_ARB_CREDIT_WEIGHT_1 - NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
973 	tc_bound_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 : NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
974 	tc_bound_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
975 								 NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
976 
977 	for (tc = 0; tc < num_tc; tc++) {
978 		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
979 
980 		/* Update SP map */
981 		if (tc_req->use_sp)
982 			sp_tc_map |= (1 << tc);
983 
984 		if (!tc_req->use_wfq)
985 			continue;
986 
987 		/* Update WFQ map */
988 		wfq_tc_map |= (1 << tc);
989 
990 		/* Find minimal weight */
991 		if (tc_req->weight < min_weight)
992 			min_weight = tc_req->weight;
993 	}
994 
995 	/* Write SP map */
996 	ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT : NIG_REG_TX_ARB_CLIENT_IS_STRICT, (sp_tc_map << tc_client_offset));
997 
998 	/* Write WFQ map */
999 	ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ : NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ, (wfq_tc_map << tc_client_offset));
1000 
1001 	/* Write WFQ weights */
1002 	for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
1003 		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1004 		u32 byte_weight;
1005 
1006 		if (!tc_req->use_wfq)
1007 			continue;
1008 
1009 		/* Translate weight to bytes */
1010 		byte_weight = (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
1011 
1012 		/* Write WFQ weight */
1013 		ecore_wr(p_hwfn, p_ptt, tc_weight_base_addr + tc_weight_addr_diff * tc_client_offset, byte_weight);
1014 
1015 		/* Write WFQ upper bound */
1016 		ecore_wr(p_hwfn, p_ptt, tc_bound_base_addr + tc_bound_addr_diff * tc_client_offset, NIG_ETS_UP_BOUND(byte_weight, req->mtu));
1017 	}
1018 }
1019 
1020 void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
1021 						  struct ecore_ptt *p_ptt,
1022 						  struct init_nig_lb_rl_req* req)
1023 {
1024 	u32 ctrl, inc_val, reg_offset;
1025 	u8 tc;
1026 
1027 	/* Disable global MAC+LB RL */
1028 	ctrl = NIG_RL_BASE_TYPE << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
1029 	ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1030 
1031 	/* Configure and enable global MAC+LB RL */
1032 	if (req->lb_mac_rate) {
1033 		/* Configure  */
1034 		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
1035 		inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
1036 		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE, inc_val);
1037 		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
1038 
1039 		/* Enable */
1040 		ctrl |= 1 << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
1041 		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1042 	}
1043 
1044 	/* Disable global LB-only RL */
1045 	ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
1046 	ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1047 
1048 	/* Configure and enable global LB-only RL */
1049 	if (req->lb_rate) {
1050 		/* Configure  */
1051 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
1052 		inc_val = NIG_RL_INC_VAL(req->lb_rate);
1053 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE, inc_val);
1054 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
1055 
1056 		/* Enable */
1057 		ctrl |= 1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
1058 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1059 	}
1060 
1061 	/* Per-TC RLs */
1062 	for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS; tc++, reg_offset += 4) {
1063 		/* Disable TC RL */
1064 		ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
1065 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1066 
1067 		/* Configure and enable TC RL */
1068 		if (!req->tc_rate[tc])
1069 			continue;
1070 
1071 		/* Configure */
1072 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 + reg_offset, NIG_RL_PERIOD_CLK_25M);
1073 		inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
1074 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 + reg_offset, inc_val);
1075 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 + reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
1076 
1077 		/* Enable */
1078 		ctrl |= 1 << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
1079 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1080 	}
1081 }
1082 
1083 void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
1084 							   struct ecore_ptt *p_ptt,
1085 							   struct init_nig_pri_tc_map_req* req)
1086 {
1087 	u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
1088 	u32 pri_tc_mask = 0;
1089 	u8 pri, tc;
1090 
1091 	for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
1092 		if (!req->pri[pri].valid)
1093 			continue;
1094 
1095 		pri_tc_mask |= (req->pri[pri].tc_id << (pri * NIG_PRIORITY_MAP_TC_BITS));
1096 		tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
1097 	}
1098 
1099 	/* Write priority -> TC mask */
1100 	ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
1101 
1102 	/* Write TC -> priority mask */
1103 	for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
1104 		ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4, tc_pri_mask[tc]);
1105 		ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4, tc_pri_mask[tc]);
1106 	}
1107 }
1108 
1109 #endif /* UNUSED_HSI_FUNC */
1110 
1111 #ifndef UNUSED_HSI_FUNC
1112 
1113 /* PRS: ETS configuration constants */
1114 #define PRS_ETS_MIN_WFQ_BYTES		1600
1115 #define PRS_ETS_UP_BOUND(weight,mtu)		(2 * ((weight) > (mtu) ? (weight) : (mtu)))
1116 
1117 void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
1118 						struct ecore_ptt *p_ptt,
1119 						struct init_ets_req* req)
1120 {
1121 	u32 tc_weight_addr_diff, tc_bound_addr_diff, min_weight = 0xffffffff;
1122 	u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
1123 
1124 	tc_weight_addr_diff = PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 - PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
1125 	tc_bound_addr_diff = PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 - PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
1126 
1127 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
1128 		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1129 
1130 		/* Update SP map */
1131 		if (tc_req->use_sp)
1132 			sp_tc_map |= (1 << tc);
1133 
1134 		if (!tc_req->use_wfq)
1135 			continue;
1136 
1137 		/* Update WFQ map */
1138 		wfq_tc_map |= (1 << tc);
1139 
1140 		/* Find minimal weight */
1141 		if (tc_req->weight < min_weight)
1142 			min_weight = tc_req->weight;
1143 	}
1144 
1145 	/* Write SP map */
1146 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
1147 
1148 	/* Write WFQ map */
1149 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ, wfq_tc_map);
1150 
1151 	/* Write WFQ weights */
1152 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
1153 		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1154 		u32 byte_weight;
1155 
1156 		if (!tc_req->use_wfq)
1157 			continue;
1158 
1159 		/* Translate weight to bytes */
1160 		byte_weight = (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
1161 
1162 		/* Write WFQ weight */
1163 		ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 + tc * tc_weight_addr_diff, byte_weight);
1164 
1165 		/* Write WFQ upper bound */
1166 		ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 + tc * tc_bound_addr_diff, PRS_ETS_UP_BOUND(byte_weight, req->mtu));
1167 	}
1168 }
1169 
1170 #endif /* UNUSED_HSI_FUNC */
1171 #ifndef UNUSED_HSI_FUNC
1172 
1173 /* BRB: RAM configuration constants */
1174 #define BRB_TOTAL_RAM_BLOCKS_BB	4800
1175 #define BRB_TOTAL_RAM_BLOCKS_K2	5632
1176 #define BRB_BLOCK_SIZE		128
1177 #define BRB_MIN_BLOCKS_PER_TC	9
1178 #define BRB_HYST_BYTES		10240
1179 #define BRB_HYST_BLOCKS		(BRB_HYST_BYTES / BRB_BLOCK_SIZE)
1180 
1181 /* Temporary big RAM allocation - should be updated */
1182 void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
1183 						struct ecore_ptt *p_ptt,
1184 						struct init_brb_ram_req* req)
1185 {
1186 	u32 tc_headroom_blocks, min_pkt_size_blocks, total_blocks;
1187 	u32 active_port_blocks, reg_offset = 0;
1188 	u8 port, active_ports = 0;
1189 
1190 	tc_headroom_blocks = (u32)DIV_ROUND_UP(req->headroom_per_tc, BRB_BLOCK_SIZE);
1191 	min_pkt_size_blocks = (u32)DIV_ROUND_UP(req->min_pkt_size, BRB_BLOCK_SIZE);
1192 	total_blocks = ECORE_IS_K2(p_hwfn->p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 : BRB_TOTAL_RAM_BLOCKS_BB;
1193 
1194 	/* Find number of active ports */
1195 	for (port = 0; port < MAX_NUM_PORTS; port++)
1196 		if (req->num_active_tcs[port])
1197 			active_ports++;
1198 
1199 	active_port_blocks = (u32)(total_blocks / active_ports);
1200 
1201 	for (port = 0; port < req->max_ports_per_engine; port++) {
1202 		u32 port_blocks, port_shared_blocks, port_guaranteed_blocks;
1203 		u32 full_xoff_th, full_xon_th, pause_xoff_th, pause_xon_th;
1204 		u32 tc_guaranteed_blocks;
1205 		u8 tc;
1206 
1207 		/* Calculate per-port sizes */
1208 		tc_guaranteed_blocks = (u32)DIV_ROUND_UP(req->guranteed_per_tc, BRB_BLOCK_SIZE);
1209 		port_blocks = req->num_active_tcs[port] ? active_port_blocks : 0;
1210 		port_guaranteed_blocks = req->num_active_tcs[port] * tc_guaranteed_blocks;
1211 		port_shared_blocks = port_blocks - port_guaranteed_blocks;
1212 		full_xoff_th = req->num_active_tcs[port] * BRB_MIN_BLOCKS_PER_TC;
1213 		full_xon_th = full_xoff_th + min_pkt_size_blocks;
1214 		pause_xoff_th = tc_headroom_blocks;
1215 		pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
1216 
1217 		/* Init total size per port */
1218 		ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4, port_blocks);
1219 
1220 		/* Init shared size per port */
1221 		ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4, port_shared_blocks);
1222 
1223 		for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
1224 			/* Clear init values for non-active TCs */
1225 			if (tc == req->num_active_tcs[port]) {
1226 				tc_guaranteed_blocks = 0;
1227 				full_xoff_th = 0;
1228 				full_xon_th = 0;
1229 				pause_xoff_th = 0;
1230 				pause_xon_th = 0;
1231 			}
1232 
1233 			/* Init guaranteed size per TC */
1234 			ecore_wr(p_hwfn, p_ptt, BRB_REG_TC_GUARANTIED_0 + reg_offset, tc_guaranteed_blocks);
1235 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset, BRB_HYST_BLOCKS);
1236 
1237 			/* Init pause/full thresholds per physical TC - for
1238 			 * loopback traffic.
1239 			 */
1240 			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
1241 			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
1242 			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
1243 			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
1244 
1245 			/* Init pause/full thresholds per physical TC - for
1246 			 * main traffic.
1247 			 */
1248 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
1249 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
1250 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
1251 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
1252 		}
1253 	}
1254 }
1255 
1256 #endif /* UNUSED_HSI_FUNC */
1257 #ifndef UNUSED_HSI_FUNC
1258 
1259 /* In MF, should be called once per port to set EtherType of OuterTag */
1260 void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn, u32 ethType)
1261 {
1262 	/* Update DORQ register */
1263 	STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
1264 }
1265 
1266 #endif /* UNUSED_HSI_FUNC */
1267 
1268 #define SET_TUNNEL_TYPE_ENABLE_BIT(var,offset,enable) var = ((var) & ~(1 << (offset))) | ( (enable) ? (1 << (offset)) : 0)
1269 #define PRS_ETH_TUNN_OUTPUT_FORMAT        -188897008
1270 #define PRS_ETH_OUTPUT_FORMAT             -46832
1271 
1272 void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
1273 	struct ecore_ptt *p_ptt,
1274 	u16 dest_port)
1275 {
1276 	/* Update PRS register */
1277 	ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1278 
1279 	/* Update NIG register */
1280 	ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1281 
1282 	/* Update PBF register */
1283 	ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1284 }
1285 
1286 void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
1287 	struct ecore_ptt *p_ptt,
1288 	bool vxlan_enable)
1289 {
1290 	u32 reg_val;
1291 
1292 	/* Update PRS register */
1293 	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1294 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT, vxlan_enable);
1295 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1296     if (reg_val) /* TODO: handle E5 init */
1297     {
1298         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1299 
1300         /* Update output  only if tunnel blocks not included. */
1301         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1302         {
1303             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1304         }
1305     }
1306 
1307 	/* Update NIG register */
1308 	reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1309 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT, vxlan_enable);
1310 	ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1311 
1312 	/* Update DORQ register */
1313 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1314 }
1315 
1316 void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
1317 	struct ecore_ptt *p_ptt,
1318 	bool eth_gre_enable,
1319 	bool ip_gre_enable)
1320 {
1321 	u32 reg_val;
1322 
1323 	/* Update PRS register */
1324 	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1325 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
1326 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT,  ip_gre_enable);
1327 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1328     if (reg_val) /* TODO: handle E5 init */
1329     {
1330         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1331 
1332         /* Update output  only if tunnel blocks not included. */
1333         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1334         {
1335             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1336         }
1337     }
1338 
1339 	/* Update NIG register */
1340 	reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1341 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
1342 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT,  ip_gre_enable);
1343 	ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1344 
1345 	/* Update DORQ registers */
1346 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1347 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1348 }
1349 
1350 void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
1351 	struct ecore_ptt *p_ptt,
1352 	u16 dest_port)
1353 
1354 {
1355 	/* Update PRS register */
1356 	ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1357 
1358 	/* Update NIG register */
1359 	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1360 
1361 	/* Update PBF register */
1362 	ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1363 }
1364 
1365 void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
1366                              struct ecore_ptt *p_ptt,
1367                              bool eth_geneve_enable,
1368                              bool ip_geneve_enable)
1369 {
1370 	u32 reg_val;
1371 
1372 	/* Update PRS register */
1373 	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1374 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT, eth_geneve_enable);
1375 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT, ip_geneve_enable);
1376 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1377     if (reg_val) /* TODO: handle E5 init */
1378     {
1379         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1380 
1381         /* Update output  only if tunnel blocks not included. */
1382         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1383         {
1384             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1385         }
1386     }
1387 
1388 	/* Update NIG register */
1389 	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, eth_geneve_enable ? 1 : 0);
1390 	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1391 
1392 	/* EDPM with geneve tunnel not supported in BB */
1393 	if (ECORE_IS_BB_B0(p_hwfn->p_dev))
1394 		return;
1395 
1396 	/* Update DORQ registers */
1397 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, eth_geneve_enable ? 1 : 0);
1398 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, ip_geneve_enable ? 1 : 0);
1399 }
1400 
1401 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET   4
1402 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT      -927094512
1403 
1404 void ecore_set_vxlan_no_l2_enable(struct ecore_hwfn *p_hwfn,
1405                                 struct ecore_ptt *p_ptt,
1406                                 bool enable)
1407 {
1408     u32 reg_val, cfg_mask;
1409 
1410     /* read PRS config register */
1411     reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1412 
1413     /* set VXLAN_NO_L2_ENABLE mask */
1414     cfg_mask = (1 << PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1415 
1416     if (enable)
1417     {
1418         /* set VXLAN_NO_L2_ENABLE flag */
1419         reg_val |= cfg_mask;
1420 
1421         /* update PRS FIC  register */
1422         ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1423     }
1424     else
1425     {
1426         /* clear VXLAN_NO_L2_ENABLE flag */
1427         reg_val &= ~cfg_mask;
1428     }
1429 
1430     /* write PRS config register */
1431     ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1432 }
1433 
1434 #ifndef UNUSED_HSI_FUNC
1435 
1436 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1437 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1438 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1439 #define PARSER_ETH_CONN_CM_HDR 0
1440 #define CAM_LINE_SIZE sizeof(u32)
1441 #define RAM_LINE_SIZE sizeof(u64)
1442 #define REG_SIZE sizeof(u32)
1443 
1444 void ecore_gft_disable(struct ecore_hwfn *p_hwfn,
1445     struct ecore_ptt *p_ptt,
1446     u16 pf_id)
1447 {
1448     /* disable gft search for PF */
1449     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1450 
1451     /* Clean ram & cam for next gft session*/
1452 
1453     /* Zero camline */
1454     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, 0);
1455 
1456     /* Zero ramline */
1457     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, 0);
1458     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, 0);
1459 }
1460 
1461 void ecore_set_gft_event_id_cm_hdr (struct ecore_hwfn *p_hwfn,
1462 	struct ecore_ptt *p_ptt)
1463 {
1464 	u32 rfs_cm_hdr_event_id;
1465 
1466     /* Set RFS event ID to be awakened i Tstorm By Prs */
1467     rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1468     rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1469     rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1470     ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1471 }
1472 
1473 void ecore_gft_config(struct ecore_hwfn *p_hwfn,
1474     struct ecore_ptt *p_ptt,
1475     u16 pf_id,
1476     bool tcp,
1477     bool udp,
1478     bool ipv4,
1479     bool ipv6,
1480     enum gft_profile_type profile_type)
1481 {
1482     u32 reg_val, cam_line, ram_line_lo, ram_line_hi;
1483 
1484     if (!ipv6 && !ipv4)
1485         DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1486     if (!tcp && !udp)
1487         DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - udp or tcp\n");
1488     if (profile_type >= MAX_GFT_PROFILE_TYPE)
1489         DP_NOTICE(p_hwfn, true, "gft_config: unsupported gft_profile_type\n");
1490 
1491     /* Set RFS event ID to be awakened i Tstorm By Prs */
1492     reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1493     reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1494     ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1495 
1496     /* Do not load context only cid in PRS on match. */
1497     ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1498 
1499     /* Do not use tenant ID exist bit for gft search*/
1500     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1501 
1502     /* Set Cam */
1503     cam_line = 0;
1504     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1505 
1506     /* Filters are per PF!! */
1507     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID_MASK, GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1508     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1509 
1510     if (!(tcp && udp)) {
1511         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1512         if (tcp)
1513             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_TCP_PROTOCOL);
1514         else
1515             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_UDP_PROTOCOL);
1516     }
1517 
1518     if (!(ipv4 && ipv6)) {
1519         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1520         if (ipv4)
1521             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV4);
1522         else
1523             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV6);
1524     }
1525 
1526     /* Write characteristics to cam */
1527     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, cam_line);
1528     cam_line = ecore_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id);
1529 
1530     /* Write line to RAM - compare to filter 4 tuple */
1531     ram_line_lo = 0;
1532     ram_line_hi = 0;
1533 
1534     /* Tunnel type */
1535     SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1536     SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1537 
1538     if (profile_type == GFT_PROFILE_TYPE_4_TUPLE)
1539     {
1540         SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1541         SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1542         SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1543         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1544         SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
1545         SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1546     }
1547     else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT)
1548     {
1549         SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1550         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1551         SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1552     }
1553     else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR)
1554     {
1555         SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1556         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1557     }
1558     else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR)
1559     {
1560         SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1561         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1562     }
1563     else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE)
1564     {
1565         SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1566     }
1567 
1568     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, ram_line_lo);
1569     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, ram_line_hi);
1570 
1571     /* Set default profile so that no filter match will happen */
1572     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
1573     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
1574 
1575     /* Enable gft search */
1576     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1577 }
1578 
1579 #endif /* UNUSED_HSI_FUNC */
1580 
1581 /* Configure VF zone size mode*/
1582 void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u16 mode, bool runtime_init)
1583 {
1584 	u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
1585 	u32 msdm_vf_offset_mask;
1586 
1587 	if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
1588 		msdm_vf_size_log += 1;
1589 	else if (mode == VF_ZONE_SIZE_MODE_QUAD)
1590 		msdm_vf_size_log += 2;
1591 
1592 	msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
1593 
1594 	if (runtime_init) {
1595 		STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET, msdm_vf_size_log);
1596 		STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET, msdm_vf_offset_mask);
1597 	}
1598 	else {
1599 		ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
1600 		ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
1601 	}
1602 }
1603 
1604 /* Get mstorm statistics for offset by VF zone size mode */
1605 u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn, u16 stat_cnt_id, u16 vf_zone_size_mode)
1606 {
1607 	u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
1608 
1609 	if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) && (stat_cnt_id > MAX_NUM_PFS)) {
1610 		if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1611 			offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
1612 		else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1613 			offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
1614 	}
1615 
1616 	return offset;
1617 }
1618 
1619 /* Get mstorm VF producer offset by VF zone size mode */
1620 u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn, u8 vf_id, u8 vf_queue_id, u16 vf_zone_size_mode)
1621 {
1622 	u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
1623 
1624 	if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
1625 		if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1626 			offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
1627 		else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1628 			offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
1629 	}
1630 
1631 	return offset;
1632 }
1633 
1634 #ifndef LINUX_REMOVE
1635 #define CRC8_INIT_VALUE 0xFF
1636 #endif
1637 static u8 cdu_crc8_table[CRC8_TABLE_SIZE];
1638 
1639 /* Calculate and return CDU validation byte per connection type/region/cid */
1640 static u8 ecore_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1641 {
1642 	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1643 
1644 	static u8 crc8_table_valid;	/*automatically initialized to 0*/
1645 	u8 crc, validation_byte = 0;
1646 	u32 validation_string = 0;
1647 	u32 data_to_crc;
1648 
1649 	if (crc8_table_valid == 0) {
1650 		OSAL_CRC8_POPULATE(cdu_crc8_table, 0x07);
1651 		crc8_table_valid = 1;
1652 	}
1653 
1654 	/* The CRC is calculated on the String-to-compress:
1655 	 * [31:8]  = {CID[31:20],CID[11:0]}
1656 	 * [7:4]   = Region
1657 	 * [3:0]   = Type
1658 	 */
1659 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1660 		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1661 
1662 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1663 		validation_string |= ((region & 0xF) << 4);
1664 
1665 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1666 		validation_string |= (conn_type & 0xF);
1667 
1668 	/* Convert to big-endian and calculate CRC8*/
1669 	data_to_crc = OSAL_BE32_TO_CPU(validation_string);
1670 
1671 	crc = OSAL_CRC8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
1672 
1673 	/* The validation byte [7:0] is composed:
1674 	 * for type A validation
1675 	 * [7]		= active configuration bit
1676 	 * [6:0]	= crc[6:0]
1677 	 *
1678 	 * for type B validation
1679 	 * [7]		= active configuration bit
1680 	 * [6:3]	= connection_type[3:0]
1681 	 * [2:0]	= crc[2:0]
1682 	 */
1683 	validation_byte |= ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1684 
1685 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1686 		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1687 	else
1688 		validation_byte |= crc & 0x7F;
1689 
1690 	return validation_byte;
1691 }
1692 
1693 /* Calcualte and set validation bytes for session context */
1694 void ecore_calc_session_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 cid)
1695 {
1696 	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1697 
1698 	p_ctx = (u8* const)p_ctx_mem;
1699 	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1700 	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1701 	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1702 
1703 	OSAL_MEMSET(p_ctx, 0, ctx_size);
1704 
1705 	*x_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 3, cid);
1706 	*t_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 4, cid);
1707 	*u_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 5, cid);
1708 }
1709 
1710 /* Calcualte and set validation bytes for task context */
1711 void ecore_calc_task_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 tid)
1712 {
1713 	u8 *p_ctx, *region1_val_ptr;
1714 
1715 	p_ctx = (u8* const)p_ctx_mem;
1716 	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1717 
1718 	OSAL_MEMSET(p_ctx, 0, ctx_size);
1719 
1720 	*region1_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 1, tid);
1721 }
1722 
1723 /* Memset session context to 0 while preserving validation bytes */
1724 void ecore_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1725 {
1726 	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1727 	u8 x_val, t_val, u_val;
1728 
1729 	p_ctx = (u8* const)p_ctx_mem;
1730 	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1731 	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1732 	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1733 
1734 	x_val = *x_val_ptr;
1735 	t_val = *t_val_ptr;
1736 	u_val = *u_val_ptr;
1737 
1738 	OSAL_MEMSET(p_ctx, 0, ctx_size);
1739 
1740 	*x_val_ptr = x_val;
1741 	*t_val_ptr = t_val;
1742 	*u_val_ptr = u_val;
1743 }
1744 
1745 /* Memset task context to 0 while preserving validation bytes */
1746 void ecore_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1747 {
1748 	u8 *p_ctx, *region1_val_ptr;
1749 	u8 region1_val;
1750 
1751 	p_ctx = (u8* const)p_ctx_mem;
1752 	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1753 
1754 	region1_val = *region1_val_ptr;
1755 
1756 	OSAL_MEMSET(p_ctx, 0, ctx_size);
1757 
1758 	*region1_val_ptr = region1_val;
1759 }
1760 
1761 /* Enable and configure context validation */
1762 void ecore_enable_context_validation(struct ecore_hwfn * p_hwfn, struct ecore_ptt *p_ptt)
1763 {
1764 	u32 ctx_validation;
1765 
1766 	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1767 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1768 	ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1769 
1770 	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1771 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1772 	ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1773 
1774 	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1775 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1776 	ecore_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1777 }
1778 
1779 #define RSS_IND_TABLE_BASE_ADDR       4112
1780 #define RSS_IND_TABLE_VPORT_SIZE      16
1781 #define RSS_IND_TABLE_ENTRY_PER_LINE  8
1782 
1783 /* Update RSS indirection table entry. */
1784 void ecore_update_eth_rss_ind_table_entry(struct ecore_hwfn * p_hwfn,
1785     struct ecore_ptt *p_ptt,
1786     u8 rss_id,
1787     u8 ind_table_index,
1788     u16 ind_table_value)
1789 {
1790     u32 cnt, rss_addr;
1791     u32 * reg_val;
1792     u16 rss_ind_entry[RSS_IND_TABLE_ENTRY_PER_LINE];
1793     u16 rss_ind_mask [RSS_IND_TABLE_ENTRY_PER_LINE];
1794 
1795     /* get entry address */
1796     rss_addr =  RSS_IND_TABLE_BASE_ADDR +
1797                 RSS_IND_TABLE_VPORT_SIZE * rss_id +
1798                 ind_table_index/RSS_IND_TABLE_ENTRY_PER_LINE;
1799 
1800     /* prepare update command */
1801     ind_table_index %= RSS_IND_TABLE_ENTRY_PER_LINE;
1802 
1803     for (cnt = 0; cnt < RSS_IND_TABLE_ENTRY_PER_LINE; cnt ++)
1804     {
1805         if (cnt == ind_table_index)
1806         {
1807             rss_ind_entry[cnt] = ind_table_value;
1808             rss_ind_mask[cnt]  = 0xFFFF;
1809         }
1810         else
1811         {
1812             rss_ind_entry[cnt] = 0;
1813             rss_ind_mask[cnt]  = 0;
1814         }
1815     }
1816 
1817     /* Update entry in HW*/
1818     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_ADDR, rss_addr);
1819 
1820     reg_val = (u32*)rss_ind_mask;
1821     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK, reg_val[0]);
1822     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 4, reg_val[1]);
1823     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 8, reg_val[2]);
1824     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 12, reg_val[3]);
1825 
1826     reg_val = (u32*)rss_ind_entry;
1827     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA, reg_val[0]);
1828     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 4, reg_val[1]);
1829     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 8, reg_val[2]);
1830     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 12, reg_val[3]);
1831 }
1832