1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_init_fw_funcs.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "bcm_osal.h"
35 #include "ecore_hw.h"
36 #include "ecore_init_ops.h"
37 #include "reg_addr.h"
38 #include "ecore_rt_defs.h"
39 #include "ecore_hsi_common.h"
40 #include "ecore_hsi_init_func.h"
41 #include "ecore_hsi_eth.h"
42 #include "ecore_hsi_init_tool.h"
43 #include "ecore_iro.h"
44 #include "ecore_init_fw_funcs.h"
45 
46 #define CDU_VALIDATION_DEFAULT_CFG 61
47 
48 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
49 	{ 400,  336,  352,  304,  304,  384,  416,  352}, /* region 3 offsets */
50 	{ 528,  496,  416,  448,  448,  512,  544,  480}, /* region 4 offsets */
51 	{ 608,  544,  496,  512,  576,  592,  624,  560}  /* region 5 offsets */
52 };
53 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
54 	{ 240,  240,  112,    0,    0,    0,    0,   96}  /* region 1 offsets */
55 };
56 
57 /* General constants */
58 #define QM_PQ_MEM_4KB(pq_size)			(pq_size ? DIV_ROUND_UP((pq_size + 1) * QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
59 #define QM_PQ_SIZE_256B(pq_size)		(pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : 0)
60 #define QM_INVALID_PQ_ID		0xffff
61 
62 /* Feature enable */
63 #define QM_BYPASS_EN			1
64 #define QM_BYTE_CRD_EN			1
65 
66 /* Other PQ constants */
67 #define QM_OTHER_PQS_PER_PF		4
68 
69 /* VOQ constants */
70 #define QM_E5_NUM_EXT_VOQ		(MAX_NUM_PORTS_E5 * NUM_OF_TCS)
71 
72 /* WFQ constants: */
73 
74 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
75 #define QM_WFQ_UPPER_BOUND		62500000
76 
77 /* Bit  of VOQ in WFQ VP PQ map */
78 #define QM_WFQ_VP_PQ_VOQ_SHIFT		0
79 
80 /* Bit  of PF in WFQ VP PQ map */
81 #define QM_WFQ_VP_PQ_PF_E4_SHIFT	5
82 #define QM_WFQ_VP_PQ_PF_E5_SHIFT	6
83 
84 /* 0x9000 = 4*9*1024 */
85 #define QM_WFQ_INC_VAL(weight)		((weight) * 0x9000)
86 
87 /* Max WFQ increment value is 0.7 * upper bound */
88 #define QM_WFQ_MAX_INC_VAL		((QM_WFQ_UPPER_BOUND * 7) / 10)
89 
90 /* Number of VOQs in E5 QmWfqCrd register */
91 #define QM_WFQ_CRD_E5_NUM_VOQS		16
92 
93 /* RL constants: */
94 
95 /* Period in us */
96 #define QM_RL_PERIOD			5
97 
98 /* Period in 25MHz cycles */
99 #define QM_RL_PERIOD_CLK_25M		(25 * QM_RL_PERIOD)
100 
101 /* RL increment value - rate is specified in mbps. the factor of 1.01 was
102 * added after seeing only 99% factor reached in a 25Gbps port with DPDK RFC
103 * 2544 test. In this scenario the PF RL was reducing the line rate to 99%
104 * although the credit increment value was the correct one and FW calculated
105 * correct packet sizes. The reason for the inaccuracy of the RL is unknown at
106 * this point.
107 */
108 #define QM_RL_INC_VAL(rate)			OSAL_MAX_T(u32, (u32)(((rate ? rate : 100000) * QM_RL_PERIOD * 101) 	/ (8 * 100)), 1)
109 
110 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
111 #define QM_PF_RL_UPPER_BOUND		62500000
112 
113 /* Max PF RL increment value is 0.7 * upper bound */
114 #define QM_PF_RL_MAX_INC_VAL		((QM_PF_RL_UPPER_BOUND * 7) / 10)
115 
116 /* Vport RL Upper bound, link speed is in Mpbs */
117 #define QM_VP_RL_UPPER_BOUND(speed)		((u32)OSAL_MAX_T(u32, QM_RL_INC_VAL(speed), 9700 + 1000))
118 
119 /* Max Vport RL increment value is the Vport RL upper bound */
120 #define QM_VP_RL_MAX_INC_VAL(speed)	QM_VP_RL_UPPER_BOUND(speed)
121 
122 /* Vport RL credit threshold in case of QM bypass */
123 #define QM_VP_RL_BYPASS_THRESH_SPEED	(QM_VP_RL_UPPER_BOUND(10000) - 1)
124 
125 /* AFullOprtnstcCrdMask constants */
126 #define QM_OPPOR_LINE_VOQ_DEF		1
127 #define QM_OPPOR_FW_STOP_DEF		0
128 #define QM_OPPOR_PQ_EMPTY_DEF		1
129 
130 /* Command Queue constants: */
131 
132 /* Pure LB CmdQ lines (+spare) */
133 #define PBF_CMDQ_PURE_LB_LINES		150
134 
135 #define PBF_CMDQ_LINES_E5_RSVD_RATIO	8
136 
137 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq)		(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + ext_voq 	* (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET 	- PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
138 
139 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) 	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + ext_voq 	* (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET 	- PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
140 
141 #define QM_VOQ_LINE_CRD(pbf_cmd_lines)		((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
142 
143 /* BTB: blocks constants (block size = 256B) */
144 
145 /* 256B blocks in 9700B packet */
146 #define BTB_JUMBO_PKT_BLOCKS		38
147 
148 /* Headroom per-port */
149 #define BTB_HEADROOM_BLOCKS		BTB_JUMBO_PKT_BLOCKS
150 #define BTB_PURE_LB_FACTOR		10
151 
152 /* Factored (hence really 0.7) */
153 #define BTB_PURE_LB_RATIO		7
154 
155 /* QM stop command constants */
156 #define QM_STOP_PQ_MASK_WIDTH		32
157 #define QM_STOP_CMD_ADDR		2
158 #define QM_STOP_CMD_STRUCT_SIZE		2
159 #define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
160 #define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
161 #define QM_STOP_CMD_PAUSE_MASK_MASK	-1
162 #define QM_STOP_CMD_GROUP_ID_OFFSET	1
163 #define QM_STOP_CMD_GROUP_ID_SHIFT	16
164 #define QM_STOP_CMD_GROUP_ID_MASK	15
165 #define QM_STOP_CMD_PQ_TYPE_OFFSET	1
166 #define QM_STOP_CMD_PQ_TYPE_SHIFT	24
167 #define QM_STOP_CMD_PQ_TYPE_MASK	1
168 #define QM_STOP_CMD_MAX_POLL_COUNT	100
169 #define QM_STOP_CMD_POLL_PERIOD_US	500
170 
171 /* QM command macros */
172 #define QM_CMD_STRUCT_SIZE(cmd)		  cmd##_STRUCT_SIZE
173 #define QM_CMD_SET_FIELD(var, cmd, field, value)  	SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
174 
175 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, ext_voq, wrr) 	OSAL_MEMSET(&map, 0, sizeof(map)); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_VALID, rl_valid); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, vp_pq_id); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_ID, rl_id); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VOQ, ext_voq); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, wrr); 	STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id, *((u32 *)&map))
176 
177 #define WRITE_PQ_INFO_TO_RAM							1
178 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl)	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | ((rl_valid) << 22) | ((rl) << 24))
179 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id)					XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4
180 
181 /******************** INTERNAL IMPLEMENTATION *********************/
182 
183 /* Returns the external VOQ number */
184 static u8 ecore_get_ext_voq(struct ecore_hwfn *p_hwfn,
185 							u8 port_id,
186 							u8 tc,
187 							u8 max_phys_tcs_per_port)
188 {
189 	if (tc == PURE_LB_TC)
190 		return NUM_OF_PHYS_TCS * (ECORE_IS_E5(p_hwfn->p_dev) ? MAX_NUM_PORTS_E5 : MAX_NUM_PORTS_BB) + port_id;
191 	else
192 		return port_id * (ECORE_IS_E5(p_hwfn->p_dev) ? NUM_OF_PHYS_TCS : max_phys_tcs_per_port) + tc;
193 }
194 
195 /* Prepare PF RL enable/disable runtime init values */
196 static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn,
197 							   bool pf_rl_en)
198 {
199 	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
200 	if (pf_rl_en) {
201 		u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
202 		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
203 
204 		/* Enable RLs for all VOQs */
205 		STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET, (u32)voq_bit_mask);
206 #ifdef QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET
207 		if (num_ext_voqs >= 32)
208 			STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET, (u32)(voq_bit_mask >> 32));
209 #endif
210 
211 		/* Write RL period */
212 		STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
213 		STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
214 
215 		/* Set credit threshold for QM bypass flow */
216 		if (QM_BYPASS_EN)
217 			STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, QM_PF_RL_UPPER_BOUND);
218 	}
219 }
220 
221 /* Prepare PF WFQ enable/disable runtime init values */
222 static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn,
223 								bool pf_wfq_en)
224 {
225 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
226 
227 	/* Set credit threshold for QM bypass flow */
228 	if (pf_wfq_en && QM_BYPASS_EN)
229 		STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
230 }
231 
232 /* Prepare VPORT RL enable/disable runtime init values */
233 static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn,
234 								  bool vport_rl_en)
235 {
236 	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, vport_rl_en ? 1 : 0);
237 	if (vport_rl_en) {
238 
239 		/* Write RL period (use timer 0 only) */
240 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
241 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
242 
243 		/* Set credit threshold for QM bypass flow */
244 		if (QM_BYPASS_EN)
245 			STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, QM_VP_RL_BYPASS_THRESH_SPEED);
246 	}
247 }
248 
249 /* Prepare VPORT WFQ enable/disable runtime init values */
250 static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn,
251 								   bool vport_wfq_en)
252 {
253 	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, vport_wfq_en ? 1 : 0);
254 
255 	/* Set credit threshold for QM bypass flow */
256 	if (vport_wfq_en && QM_BYPASS_EN)
257 		STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
258 }
259 
260 /* Prepare runtime init values to allocate PBF command queue lines for
261  * the specified VOQ.
262  */
263 static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
264 										 u8 ext_voq,
265 										 u16 cmdq_lines)
266 {
267 	u32 qm_line_crd;
268 
269 	qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
270 
271 	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), (u32)cmdq_lines);
272 	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
273 	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
274 }
275 
276 /* Prepare runtime init values to allocate PBF command queue lines. */
277 static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
278 									 u8 max_ports_per_engine,
279 									 u8 max_phys_tcs_per_port,
280 									 struct init_qm_port_params port_params[MAX_NUM_PORTS])
281 {
282 	u8 tc, ext_voq, port_id, num_tcs_in_port;
283 	u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
284 
285 	/* Clear PBF lines of all VOQs */
286 	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
287 		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
288 
289 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
290 		u16 phys_lines, phys_lines_per_tc;
291 
292 		if (!port_params[port_id].active)
293 			continue;
294 
295 		/* Find number of command queue lines to divide between the
296 		 * active physical TCs. In E5, 1/8 of the lines are reserved.
297 		 * the lines for pure LB TC are subtracted.
298 		 */
299 		phys_lines = port_params[port_id].num_pbf_cmd_lines;
300 		if (ECORE_IS_E5(p_hwfn->p_dev))
301 			phys_lines -= DIV_ROUND_UP(phys_lines, PBF_CMDQ_LINES_E5_RSVD_RATIO);
302 		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
303 
304 		/* Find #lines per active physical TC */
305 		num_tcs_in_port = 0;
306 		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
307 			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
308 				num_tcs_in_port++;
309 		phys_lines_per_tc = phys_lines / num_tcs_in_port;
310 
311 		/* Init registers per active TC */
312 		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
313 			ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
314 			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
315 				ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, phys_lines_per_tc);
316 		}
317 
318 		/* Init registers for pure LB TC */
319 		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
320 		ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, PBF_CMDQ_PURE_LB_LINES);
321 	}
322 }
323 
324 /* Prepare runtime init values to allocate guaranteed BTB blocks for the
325  * specified port. The guaranteed BTB space is divided between the TCs as
326  * follows (shared space Is currently not used):
327  * 1. Parameters:
328  *    B - BTB blocks for this port
329  *    C - Number of physical TCs for this port
330  * 2. Calculation:
331  *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
332  *	 headroom.
333  *    b. B = B - 38 (remainder after global headroom allocation).
334  *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
335  *    d. B = B � MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
336  *    e. B/C blocks are allocated for each physical TC.
337  * Assumptions:
338  * - MTU is up to 9700 bytes (38 blocks)
339  * - All TCs are considered symmetrical (same rate and packet size)
340  * - No optimization for lossy TC (all are considered lossless). Shared space
341  *   is not enabled and allocated for each TC.
342  */
343 static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
344 									 u8 max_ports_per_engine,
345 									 u8 max_phys_tcs_per_port,
346 									 struct init_qm_port_params port_params[MAX_NUM_PORTS])
347 {
348 	u32 usable_blocks, pure_lb_blocks, phys_blocks;
349 	u8 tc, ext_voq, port_id, num_tcs_in_port;
350 
351 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
352 		if (!port_params[port_id].active)
353 			continue;
354 
355 		/* Subtract headroom blocks */
356 		usable_blocks = port_params[port_id].num_btb_blocks - BTB_HEADROOM_BLOCKS;
357 
358 		/* Find blocks per physical TC. use factor to avoid floating
359 		 * arithmethic.
360 		 */
361 		num_tcs_in_port = 0;
362 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
363 			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
364 				num_tcs_in_port++;
365 
366 		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / (num_tcs_in_port * BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO);
367 		pure_lb_blocks = OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS, pure_lb_blocks / BTB_PURE_LB_FACTOR);
368 		phys_blocks = (usable_blocks - pure_lb_blocks) / num_tcs_in_port;
369 
370 		/* Init physical TCs */
371 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
372 			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) {
373 				ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
374 				STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), phys_blocks);
375 			}
376 		}
377 
378 		/* Init pure LB TC */
379 		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
380 		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), pure_lb_blocks);
381 	}
382 }
383 
384 /* Prepare Tx PQ mapping runtime init values for the specified PF */
385 static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
386 									struct ecore_ptt *p_ptt,
387 									u8 port_id,
388 									u8 pf_id,
389 									u8 max_phys_tcs_per_port,
390 									bool is_pf_loading,
391 									u32 num_pf_cids,
392 									u32 num_vf_cids,
393 									u16 start_pq,
394 									u16 num_pf_pqs,
395 									u16 num_vf_pqs,
396 									u8 start_vport,
397 									u32 base_mem_addr_4kb,
398 									struct init_qm_pq_params *pq_params,
399 									struct init_qm_vport_params *vport_params)
400 {
401 	/* A bit per Tx PQ indicating if the PQ is associated with a VF */
402 	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
403 	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
404 	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
405 	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
406 
407 	num_pqs = num_pf_pqs + num_vf_pqs;
408 
409 	first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
410 	last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
411 
412 	pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
413 	vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
414 	mem_addr_4kb = base_mem_addr_4kb;
415 
416 	/* Set mapping from PQ group to PF */
417 	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
418 		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
419 
420 	/* Set PQ sizes */
421 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, QM_PQ_SIZE_256B(num_pf_cids));
422 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, QM_PQ_SIZE_256B(num_vf_cids));
423 
424 	/* Go over all Tx PQs */
425 	for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
426 		u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
427 		u8 ext_voq, vport_id_in_pf;
428 		bool is_vf_pq, rl_valid;
429 		u16 first_tx_pq_id;
430 
431 		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
432 		is_vf_pq = (i >= num_pf_pqs);
433 		rl_valid = pq_params[i].rl_valid && pq_params[i].vport_id < max_qm_global_rls;
434 
435 		/* Update first Tx PQ of VPORT/TC */
436 		vport_id_in_pf = pq_params[i].vport_id - start_vport;
437 		first_tx_pq_id = vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id];
438 		if (first_tx_pq_id == QM_INVALID_PQ_ID) {
439 			u32 map_val = (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (pf_id << (ECORE_IS_E5(p_hwfn->p_dev) ? QM_WFQ_VP_PQ_PF_E5_SHIFT : QM_WFQ_VP_PQ_PF_E4_SHIFT));
440 
441 			/* Create new VP PQ */
442 			vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id] = pq_id;
443 			first_tx_pq_id = pq_id;
444 
445 			/* Map VP PQ to VOQ and PF */
446 			STORE_RT_REG(p_hwfn, QM_REG_WFQVPMAP_RT_OFFSET + first_tx_pq_id, map_val);
447 		}
448 
449 		/* Check RL ID */
450 		if (pq_params[i].rl_valid && pq_params[i].vport_id >= max_qm_global_rls)
451 			DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
452 
453 		/* Prepare PQ map entry */
454 		if (ECORE_IS_E5(p_hwfn->p_dev)) {
455 			struct qm_rf_pq_map_e5 tx_pq_map;
456 			QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E5, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
457 		}
458 		else {
459 			struct qm_rf_pq_map_e4 tx_pq_map;
460 			QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E4, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
461 		}
462 
463 		/* Set PQ base address */
464 		STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, mem_addr_4kb);
465 
466 		/* Clear PQ pointer table entry (64 bit) */
467 		if (is_pf_loading)
468 			for (j = 0; j < 2; j++)
469 				STORE_RT_REG(p_hwfn, QM_REG_PTRTBLTX_RT_OFFSET + (pq_id * 2) + j, 0);
470 
471 		/* Write PQ info to RAM */
472 		if (WRITE_PQ_INFO_TO_RAM != 0)
473 		{
474 			u32 pq_info = 0;
475 			pq_info = PQ_INFO_ELEMENT(first_tx_pq_id, pf_id, pq_params[i].tc_id, port_id, rl_valid ? 1 : 0, rl_valid ? pq_params[i].vport_id : 0);
476 			ecore_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), pq_info);
477 		}
478 
479 		/* If VF PQ, add indication to PQ VF mask */
480 		if (is_vf_pq) {
481 			tx_pq_vf_mask[pq_id / QM_PF_QUEUE_GROUP_SIZE] |= (1 << (pq_id % QM_PF_QUEUE_GROUP_SIZE));
482 			mem_addr_4kb += vport_pq_mem_4kb;
483 		}
484 		else {
485 			mem_addr_4kb += pq_mem_4kb;
486 		}
487 	}
488 
489 	/* Store Tx PQ VF mask to size select register */
490 	for (i = 0; i < num_tx_pq_vf_masks; i++)
491 		if (tx_pq_vf_mask[i])
492 			STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, tx_pq_vf_mask[i]);
493 }
494 
495 /* Prepare Other PQ mapping runtime init values for the specified PF */
496 static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
497 									   u8 pf_id,
498 									   bool is_pf_loading,
499 									   u32 num_pf_cids,
500 									   u32 num_tids,
501 									   u32 base_mem_addr_4kb)
502 {
503 	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
504 	u16 i, j, pq_id, pq_group;
505 
506 	/* A single other PQ group is used in each PF, where PQ group i is used
507 	 * in PF i.
508 	 */
509 	pq_group = pf_id;
510 	pq_size = num_pf_cids + num_tids;
511 	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
512 	mem_addr_4kb = base_mem_addr_4kb;
513 
514 	/* Map PQ group to PF */
515 	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
516 
517 	/* Set PQ sizes */
518 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, QM_PQ_SIZE_256B(pq_size));
519 
520 	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
521 		/* Set PQ base address */
522 		STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, mem_addr_4kb);
523 
524 		/* Clear PQ pointer table entry */
525 		if (is_pf_loading)
526 			for (j = 0; j < 2; j++)
527 				STORE_RT_REG(p_hwfn, QM_REG_PTRTBLOTHER_RT_OFFSET + (pq_id * 2) + j, 0);
528 
529 		mem_addr_4kb += pq_mem_4kb;
530 	}
531 }
532 
533 /* Prepare PF WFQ runtime init values for the specified PF.
534  * Return -1 on error.
535  */
536 static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
537 								u8 port_id,
538 								u8 pf_id,
539 								u16 pf_wfq,
540 								u8 max_phys_tcs_per_port,
541 								u16 num_tx_pqs,
542 								struct init_qm_pq_params *pq_params)
543 {
544 	u32 inc_val, crd_reg_offset;
545 	u8 ext_voq;
546 	u16 i;
547 
548 	inc_val = QM_WFQ_INC_VAL(pf_wfq);
549 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
550 		DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
551 		return -1;
552 	}
553 
554 	for (i = 0; i < num_tx_pqs; i++) {
555 		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
556 		crd_reg_offset = ECORE_IS_E5(p_hwfn->p_dev) ?
557 			(ext_voq < QM_WFQ_CRD_E5_NUM_VOQS ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + (ext_voq % QM_WFQ_CRD_E5_NUM_VOQS) * MAX_NUM_PFS_E5 + pf_id :
558 			(pf_id < MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + ext_voq * MAX_NUM_PFS_BB + (pf_id % MAX_NUM_PFS_BB);
559 		OVERWRITE_RT_REG(p_hwfn, crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
560 	}
561 
562 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + pf_id, QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
563 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
564 
565 	return 0;
566 }
567 
568 /* Prepare PF RL runtime init values for the specified PF.
569  * Return -1 on error.
570  */
571 static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn,
572 							  u8 pf_id,
573 							  u32 pf_rl)
574 {
575 	u32 inc_val;
576 
577 	inc_val = QM_RL_INC_VAL(pf_rl);
578 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
579 		DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
580 		return -1;
581 	}
582 
583 	STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
584 	STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
585 	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
586 
587 	return 0;
588 }
589 
590 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
591  * Return -1 on error.
592  */
593 static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
594 								u8 num_vports,
595 								struct init_qm_vport_params *vport_params)
596 {
597 	u16 vport_pq_id;
598 	u32 inc_val;
599 	u8 tc, i;
600 
601 	/* Go over all PF VPORTs */
602 	for (i = 0; i < num_vports; i++) {
603 		if (!vport_params[i].vport_wfq)
604 			continue;
605 
606 		inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
607 		if (inc_val > QM_WFQ_MAX_INC_VAL) {
608 			DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
609 			return -1;
610 		}
611 
612 		/* Each VPORT can have several VPORT PQ IDs for various TCs */
613 		for (tc = 0; tc < NUM_OF_TCS; tc++) {
614 			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
615 			if (vport_pq_id != QM_INVALID_PQ_ID) {
616 				STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET + vport_pq_id, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
617 				STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET + vport_pq_id, inc_val);
618 			}
619 		}
620 	}
621 
622 	return 0;
623 }
624 
625 /* Prepare VPORT RL runtime init values for the specified VPORTs.
626  * Return -1 on error.
627  */
628 static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
629 								  u8 start_vport,
630 								  u8 num_vports,
631 								  u32 link_speed,
632 								  struct init_qm_vport_params *vport_params)
633 {
634 	u8 i, vport_id;
635 	u32 inc_val;
636 
637 	if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
638 		DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
639 		return -1;
640 	}
641 
642 	/* Go over all PF VPORTs */
643 	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
644 		inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ? vport_params[i].vport_rl : link_speed);
645 		if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
646 			DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
647 			return -1;
648 		}
649 
650 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
651 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id, QM_VP_RL_UPPER_BOUND(link_speed) | (u32)QM_RL_CRD_REG_SIGN_BIT);
652 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id, inc_val);
653 	}
654 
655 	return 0;
656 }
657 
658 static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
659 									   struct ecore_ptt *p_ptt)
660 {
661 	u32 reg_val, i;
662 
663 	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; i++) {
664 		OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
665 		reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
666 	}
667 
668 	/* Check if timeout while waiting for SDM command ready */
669 	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
670 		DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG, "Timeout when waiting for QM SDM command ready signal\n");
671 		return false;
672 	}
673 
674 	return true;
675 }
676 
677 static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
678 							  struct ecore_ptt *p_ptt,
679 							  u32 cmd_addr,
680 							  u32 cmd_data_lsb,
681 							  u32 cmd_data_msb)
682 {
683 	if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
684 		return false;
685 
686 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
687 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
688 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
689 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
690 	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
691 
692 	return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
693 }
694 
695 
696 /******************** INTERFACE IMPLEMENTATION *********************/
697 
698 u32 ecore_qm_pf_mem_size(u32 num_pf_cids,
699 						 u32 num_vf_cids,
700 						 u32 num_tids,
701 						 u16 num_pf_pqs,
702 						 u16 num_vf_pqs)
703 {
704 	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
705 		   QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
706 		   QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
707 }
708 
709 int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
710 							u8 max_ports_per_engine,
711 							u8 max_phys_tcs_per_port,
712 							bool pf_rl_en,
713 							bool pf_wfq_en,
714 							bool vport_rl_en,
715 							bool vport_wfq_en,
716 							struct init_qm_port_params port_params[MAX_NUM_PORTS])
717 {
718 	u32 mask;
719 
720 	/* Init AFullOprtnstcCrdMask */
721 	mask = (QM_OPPOR_LINE_VOQ_DEF << QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
722 		(QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
723 		(pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
724 		(vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
725 		(pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
726 		(vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
727 		(QM_OPPOR_FW_STOP_DEF << QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
728 		(QM_OPPOR_PQ_EMPTY_DEF << QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
729 	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
730 
731 	/* Enable/disable PF RL */
732 	ecore_enable_pf_rl(p_hwfn, pf_rl_en);
733 
734 	/* Enable/disable PF WFQ */
735 	ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
736 
737 	/* Enable/disable VPORT RL */
738 	ecore_enable_vport_rl(p_hwfn, vport_rl_en);
739 
740 	/* Enable/disable VPORT WFQ */
741 	ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
742 
743 	/* Init PBF CMDQ line credit */
744 	ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
745 
746 	/* Init BTB blocks in PBF */
747 	ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
748 
749 	return 0;
750 }
751 
752 int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
753 						struct ecore_ptt *p_ptt,
754 						u8 port_id,
755 						u8 pf_id,
756 						u8 max_phys_tcs_per_port,
757 						bool is_pf_loading,
758 						u32 num_pf_cids,
759 						u32 num_vf_cids,
760 						u32 num_tids,
761 						u16 start_pq,
762 						u16 num_pf_pqs,
763 						u16 num_vf_pqs,
764 						u8 start_vport,
765 						u8 num_vports,
766 						u16 pf_wfq,
767 						u32 pf_rl,
768 						u32 link_speed,
769 						struct init_qm_pq_params *pq_params,
770 						struct init_qm_vport_params *vport_params)
771 {
772 	u32 other_mem_size_4kb;
773 	u8 tc, i;
774 
775 	other_mem_size_4kb = QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
776 
777 	/* Clear first Tx PQ ID array for each VPORT */
778 	for(i = 0; i < num_vports; i++)
779 		for(tc = 0; tc < NUM_OF_TCS; tc++)
780 			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
781 
782 	/* Map Other PQs (if any) */
783 #if QM_OTHER_PQS_PER_PF > 0
784 	ecore_other_pq_map_rt_init(p_hwfn, pf_id, is_pf_loading, num_pf_cids, num_tids, 0);
785 #endif
786 
787 	/* Map Tx PQs */
788 	ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, port_id, pf_id, max_phys_tcs_per_port, is_pf_loading, num_pf_cids, num_vf_cids,
789 							start_pq, num_pf_pqs, num_vf_pqs, start_vport, other_mem_size_4kb, pq_params, vport_params);
790 
791 	/* Init PF WFQ */
792 	if (pf_wfq)
793 		if (ecore_pf_wfq_rt_init(p_hwfn, port_id, pf_id, pf_wfq, max_phys_tcs_per_port, num_pf_pqs + num_vf_pqs, pq_params))
794 		return -1;
795 
796 	/* Init PF RL */
797 	if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl))
798 		return -1;
799 
800 	/* Set VPORT WFQ */
801 	if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params))
802 		return -1;
803 
804 	/* Set VPORT RL */
805 	if (ecore_vport_rl_rt_init(p_hwfn, start_vport, num_vports, link_speed, vport_params))
806 		return -1;
807 
808 	return 0;
809 }
810 
811 int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
812 					  struct ecore_ptt *p_ptt,
813 					  u8 pf_id,
814 					  u16 pf_wfq)
815 {
816 	u32 inc_val;
817 
818 	inc_val = QM_WFQ_INC_VAL(pf_wfq);
819 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
820 		DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
821 		return -1;
822 	}
823 
824 	ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
825 
826 	return 0;
827 }
828 
829 int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
830 					 struct ecore_ptt *p_ptt,
831 					 u8 pf_id,
832 					 u32 pf_rl)
833 {
834 	u32 inc_val;
835 
836 	inc_val = QM_RL_INC_VAL(pf_rl);
837 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
838 		DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
839 		return -1;
840 	}
841 
842 	ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
843 	ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
844 
845 	return 0;
846 }
847 
848 int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
849 						 struct ecore_ptt *p_ptt,
850 						 u16 first_tx_pq_id[NUM_OF_TCS],
851 						 u16 vport_wfq)
852 {
853 	u16 vport_pq_id;
854 	u32 inc_val;
855 	u8 tc;
856 
857 	inc_val = QM_WFQ_INC_VAL(vport_wfq);
858 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
859 		DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
860 		return -1;
861 	}
862 
863 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
864 		vport_pq_id = first_tx_pq_id[tc];
865 		if (vport_pq_id != QM_INVALID_PQ_ID) {
866 			ecore_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
867 		}
868 	}
869 
870 	return 0;
871 }
872 
873 int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
874 						struct ecore_ptt *p_ptt,
875 						u8 vport_id,
876 						u32 vport_rl,
877 						u32 link_speed)
878 {
879 	u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
880 
881 	if (vport_id >= max_qm_global_rls) {
882 		DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
883 		return -1;
884 	}
885 
886 	inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
887 	if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
888 		DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
889 		return -1;
890 	}
891 
892 	ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
893 	ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
894 
895 	return 0;
896 }
897 
898 bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
899 							struct ecore_ptt *p_ptt,
900 							bool is_release_cmd,
901 							bool is_tx_pq,
902 							u16 start_pq,
903 							u16 num_pqs)
904 {
905 	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = {0};
906 	u32 pq_mask = 0, last_pq, pq_id;
907 
908 	last_pq = start_pq + num_pqs - 1;
909 
910 	/* Set command's PQ type */
911 	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
912 
913 	/* Go over requested PQs */
914 	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
915 
916 		/* Set PQ bit in mask (stop command only) */
917 		if (!is_release_cmd)
918 			pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
919 
920 		/* If last PQ or end of PQ mask, write command */
921 		if ((pq_id == last_pq) || (pq_id % QM_STOP_PQ_MASK_WIDTH == (QM_STOP_PQ_MASK_WIDTH - 1))) {
922 			QM_CMD_SET_FIELD(cmd_arr, (u32)QM_STOP_CMD, PAUSE_MASK, pq_mask);
923 			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID, pq_id / QM_STOP_PQ_MASK_WIDTH);
924 			if (!ecore_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0], cmd_arr[1]))
925 				return false;
926 			pq_mask = 0;
927 		}
928 	}
929 
930 	return true;
931 }
932 
933 #ifndef UNUSED_HSI_FUNC
934 
935 /* NIG: ETS configuration constants */
936 #define NIG_TX_ETS_CLIENT_OFFSET	4
937 #define NIG_LB_ETS_CLIENT_OFFSET	1
938 #define NIG_ETS_MIN_WFQ_BYTES		1600
939 
940 /* NIG: ETS constants */
941 #define NIG_ETS_UP_BOUND(weight,mtu)		(2 * ((weight) > (mtu) ? (weight) : (mtu)))
942 
943 /* NIG: RL constants */
944 
945 /* Byte base type value */
946 #define NIG_RL_BASE_TYPE		1
947 
948 /* Period in us */
949 #define NIG_RL_PERIOD			1
950 
951 /* Period in 25MHz cycles */
952 #define NIG_RL_PERIOD_CLK_25M		(25 * NIG_RL_PERIOD)
953 
954 /* Rate in mbps */
955 #define NIG_RL_INC_VAL(rate)		(((rate) * NIG_RL_PERIOD) / 8)
956 
957 #define NIG_RL_MAX_VAL(inc_val,mtu)		(2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
958 
959 /* NIG: packet prioritry configuration constants */
960 #define NIG_PRIORITY_MAP_TC_BITS	4
961 
962 
963 void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
964 						struct ecore_ptt *p_ptt,
965 						struct init_ets_req* req,
966 						bool is_lb)
967 {
968 	u32 min_weight, tc_weight_base_addr, tc_weight_addr_diff;
969 	u32 tc_bound_base_addr, tc_bound_addr_diff;
970 	u8 sp_tc_map = 0, wfq_tc_map = 0;
971 	u8 tc, num_tc, tc_client_offset;
972 
973 	num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
974 	tc_client_offset = is_lb ? NIG_LB_ETS_CLIENT_OFFSET : NIG_TX_ETS_CLIENT_OFFSET;
975 	min_weight = 0xffffffff;
976 	tc_weight_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 : NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
977 	tc_weight_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 - NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
978 								  NIG_REG_TX_ARB_CREDIT_WEIGHT_1 - NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
979 	tc_bound_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 : NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
980 	tc_bound_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
981 								 NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
982 
983 	for (tc = 0; tc < num_tc; tc++) {
984 		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
985 
986 		/* Update SP map */
987 		if (tc_req->use_sp)
988 			sp_tc_map |= (1 << tc);
989 
990 		if (!tc_req->use_wfq)
991 			continue;
992 
993 		/* Update WFQ map */
994 		wfq_tc_map |= (1 << tc);
995 
996 		/* Find minimal weight */
997 		if (tc_req->weight < min_weight)
998 			min_weight = tc_req->weight;
999 	}
1000 
1001 	/* Write SP map */
1002 	ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT : NIG_REG_TX_ARB_CLIENT_IS_STRICT, (sp_tc_map << tc_client_offset));
1003 
1004 	/* Write WFQ map */
1005 	ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ : NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ, (wfq_tc_map << tc_client_offset));
1006 
1007 	/* Write WFQ weights */
1008 	for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
1009 		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1010 		u32 byte_weight;
1011 
1012 		if (!tc_req->use_wfq)
1013 			continue;
1014 
1015 		/* Translate weight to bytes */
1016 		byte_weight = (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
1017 
1018 		/* Write WFQ weight */
1019 		ecore_wr(p_hwfn, p_ptt, tc_weight_base_addr + tc_weight_addr_diff * tc_client_offset, byte_weight);
1020 
1021 		/* Write WFQ upper bound */
1022 		ecore_wr(p_hwfn, p_ptt, tc_bound_base_addr + tc_bound_addr_diff * tc_client_offset, NIG_ETS_UP_BOUND(byte_weight, req->mtu));
1023 	}
1024 }
1025 
1026 void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
1027 						  struct ecore_ptt *p_ptt,
1028 						  struct init_nig_lb_rl_req* req)
1029 {
1030 	u32 ctrl, inc_val, reg_offset;
1031 	u8 tc;
1032 
1033 	/* Disable global MAC+LB RL */
1034 	ctrl = NIG_RL_BASE_TYPE << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
1035 	ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1036 
1037 	/* Configure and enable global MAC+LB RL */
1038 	if (req->lb_mac_rate) {
1039 
1040 		/* Configure  */
1041 		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
1042 		inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
1043 		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE, inc_val);
1044 		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
1045 
1046 		/* Enable */
1047 		ctrl |= 1 << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
1048 		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1049 	}
1050 
1051 	/* Disable global LB-only RL */
1052 	ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
1053 	ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1054 
1055 	/* Configure and enable global LB-only RL */
1056 	if (req->lb_rate) {
1057 
1058 		/* Configure  */
1059 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
1060 		inc_val = NIG_RL_INC_VAL(req->lb_rate);
1061 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE, inc_val);
1062 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
1063 
1064 		/* Enable */
1065 		ctrl |= 1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
1066 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1067 	}
1068 
1069 	/* Per-TC RLs */
1070 	for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS; tc++, reg_offset += 4) {
1071 
1072 		/* Disable TC RL */
1073 		ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
1074 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1075 
1076 		/* Configure and enable TC RL */
1077 		if (!req->tc_rate[tc])
1078 			continue;
1079 
1080 		/* Configure */
1081 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 + reg_offset, NIG_RL_PERIOD_CLK_25M);
1082 		inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
1083 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 + reg_offset, inc_val);
1084 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 + reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
1085 
1086 		/* Enable */
1087 		ctrl |= 1 << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
1088 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1089 	}
1090 }
1091 
1092 void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
1093 							   struct ecore_ptt *p_ptt,
1094 							   struct init_nig_pri_tc_map_req* req)
1095 {
1096 	u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
1097 	u32 pri_tc_mask = 0;
1098 	u8 pri, tc;
1099 
1100 	for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
1101 		if (!req->pri[pri].valid)
1102 			continue;
1103 
1104 		pri_tc_mask |= (req->pri[pri].tc_id << (pri * NIG_PRIORITY_MAP_TC_BITS));
1105 		tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
1106 	}
1107 
1108 	/* Write priority -> TC mask */
1109 	ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
1110 
1111 	/* Write TC -> priority mask */
1112 	for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
1113 		ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4, tc_pri_mask[tc]);
1114 		ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4, tc_pri_mask[tc]);
1115 	}
1116 }
1117 
1118 #endif /* UNUSED_HSI_FUNC */
1119 
1120 #ifndef UNUSED_HSI_FUNC
1121 
1122 /* PRS: ETS configuration constants */
1123 #define PRS_ETS_MIN_WFQ_BYTES		1600
1124 #define PRS_ETS_UP_BOUND(weight,mtu)		(2 * ((weight) > (mtu) ? (weight) : (mtu)))
1125 
1126 
1127 void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
1128 						struct ecore_ptt *p_ptt,
1129 						struct init_ets_req* req)
1130 {
1131 	u32 tc_weight_addr_diff, tc_bound_addr_diff, min_weight = 0xffffffff;
1132 	u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
1133 
1134 	tc_weight_addr_diff = PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 - PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
1135 	tc_bound_addr_diff = PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 - PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
1136 
1137 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
1138 		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1139 
1140 		/* Update SP map */
1141 		if (tc_req->use_sp)
1142 			sp_tc_map |= (1 << tc);
1143 
1144 		if (!tc_req->use_wfq)
1145 			continue;
1146 
1147 		/* Update WFQ map */
1148 		wfq_tc_map |= (1 << tc);
1149 
1150 		/* Find minimal weight */
1151 		if (tc_req->weight < min_weight)
1152 			min_weight = tc_req->weight;
1153 	}
1154 
1155 	/* Write SP map */
1156 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
1157 
1158 	/* Write WFQ map */
1159 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ, wfq_tc_map);
1160 
1161 	/* Write WFQ weights */
1162 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
1163 		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1164 		u32 byte_weight;
1165 
1166 		if (!tc_req->use_wfq)
1167 			continue;
1168 
1169 		/* Translate weight to bytes */
1170 		byte_weight = (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
1171 
1172 		/* Write WFQ weight */
1173 		ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 + tc * tc_weight_addr_diff, byte_weight);
1174 
1175 		/* Write WFQ upper bound */
1176 		ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 + tc * tc_bound_addr_diff, PRS_ETS_UP_BOUND(byte_weight, req->mtu));
1177 	}
1178 }
1179 
1180 #endif /* UNUSED_HSI_FUNC */
1181 #ifndef UNUSED_HSI_FUNC
1182 
1183 /* BRB: RAM configuration constants */
1184 #define BRB_TOTAL_RAM_BLOCKS_BB	4800
1185 #define BRB_TOTAL_RAM_BLOCKS_K2	5632
1186 #define BRB_BLOCK_SIZE		128
1187 #define BRB_MIN_BLOCKS_PER_TC	9
1188 #define BRB_HYST_BYTES		10240
1189 #define BRB_HYST_BLOCKS		(BRB_HYST_BYTES / BRB_BLOCK_SIZE)
1190 
1191 /* Temporary big RAM allocation - should be updated */
1192 void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
1193 						struct ecore_ptt *p_ptt,
1194 						struct init_brb_ram_req* req)
1195 {
1196 	u32 tc_headroom_blocks, min_pkt_size_blocks, total_blocks;
1197 	u32 active_port_blocks, reg_offset = 0;
1198 	u8 port, active_ports = 0;
1199 
1200 	tc_headroom_blocks = (u32)DIV_ROUND_UP(req->headroom_per_tc, BRB_BLOCK_SIZE);
1201 	min_pkt_size_blocks = (u32)DIV_ROUND_UP(req->min_pkt_size, BRB_BLOCK_SIZE);
1202 	total_blocks = ECORE_IS_K2(p_hwfn->p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 : BRB_TOTAL_RAM_BLOCKS_BB;
1203 
1204 	/* Find number of active ports */
1205 	for (port = 0; port < MAX_NUM_PORTS; port++)
1206 		if (req->num_active_tcs[port])
1207 			active_ports++;
1208 
1209 	active_port_blocks = (u32)(total_blocks / active_ports);
1210 
1211 	for (port = 0; port < req->max_ports_per_engine; port++) {
1212 		u32 port_blocks, port_shared_blocks, port_guaranteed_blocks;
1213 		u32 full_xoff_th, full_xon_th, pause_xoff_th, pause_xon_th;
1214 		u32 tc_guaranteed_blocks;
1215 		u8 tc;
1216 
1217 		/* Calculate per-port sizes */
1218 		tc_guaranteed_blocks = (u32)DIV_ROUND_UP(req->guranteed_per_tc, BRB_BLOCK_SIZE);
1219 		port_blocks = req->num_active_tcs[port] ? active_port_blocks : 0;
1220 		port_guaranteed_blocks = req->num_active_tcs[port] * tc_guaranteed_blocks;
1221 		port_shared_blocks = port_blocks - port_guaranteed_blocks;
1222 		full_xoff_th = req->num_active_tcs[port] * BRB_MIN_BLOCKS_PER_TC;
1223 		full_xon_th = full_xoff_th + min_pkt_size_blocks;
1224 		pause_xoff_th = tc_headroom_blocks;
1225 		pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
1226 
1227 		/* Init total size per port */
1228 		ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4, port_blocks);
1229 
1230 		/* Init shared size per port */
1231 		ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4, port_shared_blocks);
1232 
1233 		for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
1234 			/* Clear init values for non-active TCs */
1235 			if (tc == req->num_active_tcs[port]) {
1236 				tc_guaranteed_blocks = 0;
1237 				full_xoff_th = 0;
1238 				full_xon_th = 0;
1239 				pause_xoff_th = 0;
1240 				pause_xon_th = 0;
1241 			}
1242 
1243 			/* Init guaranteed size per TC */
1244 			ecore_wr(p_hwfn, p_ptt, BRB_REG_TC_GUARANTIED_0 + reg_offset, tc_guaranteed_blocks);
1245 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset, BRB_HYST_BLOCKS);
1246 
1247 			/* Init pause/full thresholds per physical TC - for
1248 			 * loopback traffic.
1249 			 */
1250 			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
1251 			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
1252 			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
1253 			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
1254 
1255 			/* Init pause/full thresholds per physical TC - for
1256 			 * main traffic.
1257 			 */
1258 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
1259 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
1260 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
1261 			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
1262 		}
1263 	}
1264 }
1265 
1266 #endif /* UNUSED_HSI_FUNC */
1267 #ifndef UNUSED_HSI_FUNC
1268 
1269 /* In MF, should be called once per port to set EtherType of OuterTag */
1270 void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn, u32 ethType)
1271 {
1272 	/* Update DORQ register */
1273 	STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
1274 }
1275 
1276 #endif /* UNUSED_HSI_FUNC */
1277 
1278 
1279 #define SET_TUNNEL_TYPE_ENABLE_BIT(var,offset,enable) var = ((var) & ~(1 << (offset))) | ( (enable) ? (1 << (offset)) : 0)
1280 #define PRS_ETH_TUNN_OUTPUT_FORMAT        -188897008
1281 #define PRS_ETH_OUTPUT_FORMAT             -46832
1282 
1283 void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
1284 	struct ecore_ptt *p_ptt,
1285 	u16 dest_port)
1286 {
1287 	/* Update PRS register */
1288 	ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1289 
1290 	/* Update NIG register */
1291 	ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1292 
1293 	/* Update PBF register */
1294 	ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1295 }
1296 
1297 void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
1298 	struct ecore_ptt *p_ptt,
1299 	bool vxlan_enable)
1300 {
1301 	u32 reg_val;
1302 
1303 	/* Update PRS register */
1304 	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1305 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT, vxlan_enable);
1306 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1307     if (reg_val) /* TODO: handle E5 init */
1308     {
1309         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1310 
1311         /* Update output  only if tunnel blocks not included. */
1312         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1313         {
1314             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1315         }
1316     }
1317 
1318 	/* Update NIG register */
1319 	reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1320 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT, vxlan_enable);
1321 	ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1322 
1323 	/* Update DORQ register */
1324 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1325 }
1326 
1327 void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
1328 	struct ecore_ptt *p_ptt,
1329 	bool eth_gre_enable,
1330 	bool ip_gre_enable)
1331 {
1332 	u32 reg_val;
1333 
1334 	/* Update PRS register */
1335 	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1336 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
1337 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT,  ip_gre_enable);
1338 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1339     if (reg_val) /* TODO: handle E5 init */
1340     {
1341         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1342 
1343         /* Update output  only if tunnel blocks not included. */
1344         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1345         {
1346             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1347         }
1348     }
1349 
1350 	/* Update NIG register */
1351 	reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1352 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
1353 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT,  ip_gre_enable);
1354 	ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1355 
1356 	/* Update DORQ registers */
1357 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1358 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1359 }
1360 
1361 void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
1362 	struct ecore_ptt *p_ptt,
1363 	u16 dest_port)
1364 
1365 {
1366 	/* Update PRS register */
1367 	ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1368 
1369 	/* Update NIG register */
1370 	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1371 
1372 	/* Update PBF register */
1373 	ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1374 }
1375 
1376 void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
1377                              struct ecore_ptt *p_ptt,
1378                              bool eth_geneve_enable,
1379                              bool ip_geneve_enable)
1380 {
1381 	u32 reg_val;
1382 
1383 	/* Update PRS register */
1384 	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1385 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT, eth_geneve_enable);
1386 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT, ip_geneve_enable);
1387 	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1388     if (reg_val) /* TODO: handle E5 init */
1389     {
1390         reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1391 
1392         /* Update output  only if tunnel blocks not included. */
1393         if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1394         {
1395             ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1396         }
1397     }
1398 
1399 	/* Update NIG register */
1400 	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, eth_geneve_enable ? 1 : 0);
1401 	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1402 
1403 	/* EDPM with geneve tunnel not supported in BB */
1404 	if (ECORE_IS_BB_B0(p_hwfn->p_dev))
1405 		return;
1406 
1407 	/* Update DORQ registers */
1408 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, eth_geneve_enable ? 1 : 0);
1409 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, ip_geneve_enable ? 1 : 0);
1410 }
1411 
1412 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET   4
1413 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT      -927094512
1414 
1415 void ecore_set_vxlan_no_l2_enable(struct ecore_hwfn *p_hwfn,
1416                                 struct ecore_ptt *p_ptt,
1417                                 bool enable)
1418 {
1419     u32 reg_val, cfg_mask;
1420 
1421     /* read PRS config register */
1422     reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1423 
1424     /* set VXLAN_NO_L2_ENABLE mask */
1425     cfg_mask = (1 << PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1426 
1427     if (enable)
1428     {
1429         /* set VXLAN_NO_L2_ENABLE flag */
1430         reg_val |= cfg_mask;
1431 
1432         /* update PRS FIC  register */
1433         ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1434     }
1435     else
1436     {
1437         /* clear VXLAN_NO_L2_ENABLE flag */
1438         reg_val &= ~cfg_mask;
1439     }
1440 
1441     /* write PRS config register */
1442     ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1443 }
1444 
1445 #ifndef UNUSED_HSI_FUNC
1446 
1447 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1448 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1449 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1450 #define PARSER_ETH_CONN_CM_HDR 0
1451 #define CAM_LINE_SIZE sizeof(u32)
1452 #define RAM_LINE_SIZE sizeof(u64)
1453 #define REG_SIZE sizeof(u32)
1454 
1455 
1456 void ecore_gft_disable(struct ecore_hwfn *p_hwfn,
1457     struct ecore_ptt *p_ptt,
1458     u16 pf_id)
1459 {
1460     /* disable gft search for PF */
1461     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1462 
1463     /* Clean ram & cam for next gft session*/
1464 
1465     /* Zero camline */
1466     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, 0);
1467 
1468     /* Zero ramline */
1469     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, 0);
1470     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, 0);
1471 }
1472 
1473 
1474 void ecore_set_gft_event_id_cm_hdr (struct ecore_hwfn *p_hwfn,
1475 	struct ecore_ptt *p_ptt)
1476 {
1477 	u32 rfs_cm_hdr_event_id;
1478 
1479     /* Set RFS event ID to be awakened i Tstorm By Prs */
1480     rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1481     rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1482     rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1483     ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1484 }
1485 
1486 void ecore_gft_config(struct ecore_hwfn *p_hwfn,
1487     struct ecore_ptt *p_ptt,
1488     u16 pf_id,
1489     bool tcp,
1490     bool udp,
1491     bool ipv4,
1492     bool ipv6,
1493     enum gft_profile_type profile_type)
1494 {
1495     u32 reg_val, cam_line, ram_line_lo, ram_line_hi;
1496 
1497     if (!ipv6 && !ipv4)
1498         DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1499     if (!tcp && !udp)
1500         DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - udp or tcp\n");
1501     if (profile_type >= MAX_GFT_PROFILE_TYPE)
1502         DP_NOTICE(p_hwfn, true, "gft_config: unsupported gft_profile_type\n");
1503 
1504     /* Set RFS event ID to be awakened i Tstorm By Prs */
1505     reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1506     reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1507     ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1508 
1509     /* Do not load context only cid in PRS on match. */
1510     ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1511 
1512     /* Do not use tenant ID exist bit for gft search*/
1513     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1514 
1515     /* Set Cam */
1516     cam_line = 0;
1517     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1518 
1519     /* Filters are per PF!! */
1520     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID_MASK, GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1521     SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1522 
1523     if (!(tcp && udp)) {
1524         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1525         if (tcp)
1526             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_TCP_PROTOCOL);
1527         else
1528             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_UDP_PROTOCOL);
1529     }
1530 
1531     if (!(ipv4 && ipv6)) {
1532         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1533         if (ipv4)
1534             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV4);
1535         else
1536             SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV6);
1537     }
1538 
1539     /* Write characteristics to cam */
1540     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, cam_line);
1541     cam_line = ecore_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id);
1542 
1543     /* Write line to RAM - compare to filter 4 tuple */
1544     ram_line_lo = 0;
1545     ram_line_hi = 0;
1546 
1547     /* Tunnel type */
1548     SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1549     SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1550 
1551     if (profile_type == GFT_PROFILE_TYPE_4_TUPLE)
1552     {
1553         SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1554         SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1555         SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1556         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1557         SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
1558         SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1559     }
1560     else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT)
1561     {
1562         SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1563         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1564         SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1565     }
1566     else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR)
1567     {
1568         SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1569         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1570     }
1571     else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR)
1572     {
1573         SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1574         SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1575     }
1576     else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE)
1577     {
1578         SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1579     }
1580 
1581     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, ram_line_lo);
1582     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, ram_line_hi);
1583 
1584     /* Set default profile so that no filter match will happen */
1585     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
1586     ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
1587 
1588     /* Enable gft search */
1589     ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1590 }
1591 
1592 
1593 #endif /* UNUSED_HSI_FUNC */
1594 
1595 /* Configure VF zone size mode*/
1596 void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u16 mode, bool runtime_init)
1597 {
1598 	u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
1599 	u32 msdm_vf_offset_mask;
1600 
1601 	if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
1602 		msdm_vf_size_log += 1;
1603 	else if (mode == VF_ZONE_SIZE_MODE_QUAD)
1604 		msdm_vf_size_log += 2;
1605 
1606 	msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
1607 
1608 	if (runtime_init) {
1609 		STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET, msdm_vf_size_log);
1610 		STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET, msdm_vf_offset_mask);
1611 	}
1612 	else {
1613 		ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
1614 		ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
1615 	}
1616 }
1617 
1618 /* Get mstorm statistics for offset by VF zone size mode */
1619 u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn, u16 stat_cnt_id, u16 vf_zone_size_mode)
1620 {
1621 	u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
1622 
1623 	if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) && (stat_cnt_id > MAX_NUM_PFS)) {
1624 		if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1625 			offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
1626 		else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1627 			offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
1628 	}
1629 
1630 	return offset;
1631 }
1632 
1633 /* Get mstorm VF producer offset by VF zone size mode */
1634 u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn, u8 vf_id, u8 vf_queue_id, u16 vf_zone_size_mode)
1635 {
1636 	u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
1637 
1638 	if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
1639 		if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1640 			offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
1641 		else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1642 			offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
1643 	}
1644 
1645 	return offset;
1646 }
1647 
1648 #ifndef LINUX_REMOVE
1649 #define CRC8_INIT_VALUE 0xFF
1650 #endif
1651 static u8 cdu_crc8_table[CRC8_TABLE_SIZE];
1652 
1653 /* Calculate and return CDU validation byte per connection type/region/cid */
1654 static u8 ecore_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1655 {
1656 	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1657 
1658 	static u8 crc8_table_valid;	/*automatically initialized to 0*/
1659 	u8 crc, validation_byte = 0;
1660 	u32 validation_string = 0;
1661 	u32 data_to_crc;
1662 
1663 	if (crc8_table_valid == 0) {
1664 		OSAL_CRC8_POPULATE(cdu_crc8_table, 0x07);
1665 		crc8_table_valid = 1;
1666 	}
1667 
1668 	/* The CRC is calculated on the String-to-compress:
1669 	 * [31:8]  = {CID[31:20],CID[11:0]}
1670 	 * [7:4]   = Region
1671 	 * [3:0]   = Type
1672 	 */
1673 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1674 		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1675 
1676 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1677 		validation_string |= ((region & 0xF) << 4);
1678 
1679 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1680 		validation_string |= (conn_type & 0xF);
1681 
1682 	/* Convert to big-endian and calculate CRC8*/
1683 	data_to_crc = OSAL_BE32_TO_CPU(validation_string);
1684 
1685 	crc = OSAL_CRC8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
1686 
1687 	/* The validation byte [7:0] is composed:
1688 	 * for type A validation
1689 	 * [7]		= active configuration bit
1690 	 * [6:0]	= crc[6:0]
1691 	 *
1692 	 * for type B validation
1693 	 * [7]		= active configuration bit
1694 	 * [6:3]	= connection_type[3:0]
1695 	 * [2:0]	= crc[2:0]
1696 	 */
1697 	validation_byte |= ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1698 
1699 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1700 		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1701 	else
1702 		validation_byte |= crc & 0x7F;
1703 
1704 	return validation_byte;
1705 }
1706 
1707 /* Calcualte and set validation bytes for session context */
1708 void ecore_calc_session_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 cid)
1709 {
1710 	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1711 
1712 	p_ctx = (u8* const)p_ctx_mem;
1713 	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1714 	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1715 	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1716 
1717 	OSAL_MEMSET(p_ctx, 0, ctx_size);
1718 
1719 	*x_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 3, cid);
1720 	*t_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 4, cid);
1721 	*u_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 5, cid);
1722 }
1723 
1724 /* Calcualte and set validation bytes for task context */
1725 void ecore_calc_task_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 tid)
1726 {
1727 	u8 *p_ctx, *region1_val_ptr;
1728 
1729 	p_ctx = (u8* const)p_ctx_mem;
1730 	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1731 
1732 	OSAL_MEMSET(p_ctx, 0, ctx_size);
1733 
1734 	*region1_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 1, tid);
1735 }
1736 
1737 /* Memset session context to 0 while preserving validation bytes */
1738 void ecore_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1739 {
1740 	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1741 	u8 x_val, t_val, u_val;
1742 
1743 	p_ctx = (u8* const)p_ctx_mem;
1744 	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1745 	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1746 	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1747 
1748 	x_val = *x_val_ptr;
1749 	t_val = *t_val_ptr;
1750 	u_val = *u_val_ptr;
1751 
1752 	OSAL_MEMSET(p_ctx, 0, ctx_size);
1753 
1754 	*x_val_ptr = x_val;
1755 	*t_val_ptr = t_val;
1756 	*u_val_ptr = u_val;
1757 }
1758 
1759 /* Memset task context to 0 while preserving validation bytes */
1760 void ecore_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1761 {
1762 	u8 *p_ctx, *region1_val_ptr;
1763 	u8 region1_val;
1764 
1765 	p_ctx = (u8* const)p_ctx_mem;
1766 	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1767 
1768 	region1_val = *region1_val_ptr;
1769 
1770 	OSAL_MEMSET(p_ctx, 0, ctx_size);
1771 
1772 	*region1_val_ptr = region1_val;
1773 }
1774 
1775 /* Enable and configure context validation */
1776 void ecore_enable_context_validation(struct ecore_hwfn * p_hwfn, struct ecore_ptt *p_ptt)
1777 {
1778 	u32 ctx_validation;
1779 
1780 	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1781 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1782 	ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1783 
1784 	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1785 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1786 	ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1787 
1788 	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1789 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1790 	ecore_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1791 }
1792 
1793 #define RSS_IND_TABLE_BASE_ADDR       4112
1794 #define RSS_IND_TABLE_VPORT_SIZE      16
1795 #define RSS_IND_TABLE_ENTRY_PER_LINE  8
1796 
1797 /* Update RSS indirection table entry. */
1798 void ecore_update_eth_rss_ind_table_entry(struct ecore_hwfn * p_hwfn,
1799     struct ecore_ptt *p_ptt,
1800     u8 rss_id,
1801     u8 ind_table_index,
1802     u16 ind_table_value)
1803 {
1804     u32 cnt, rss_addr;
1805     u32 * reg_val;
1806     u16 rss_ind_entry[RSS_IND_TABLE_ENTRY_PER_LINE];
1807     u16 rss_ind_mask [RSS_IND_TABLE_ENTRY_PER_LINE];
1808 
1809     /* get entry address */
1810     rss_addr =  RSS_IND_TABLE_BASE_ADDR +
1811                 RSS_IND_TABLE_VPORT_SIZE * rss_id +
1812                 ind_table_index/RSS_IND_TABLE_ENTRY_PER_LINE;
1813 
1814     /* prepare update command */
1815     ind_table_index %= RSS_IND_TABLE_ENTRY_PER_LINE;
1816 
1817     for (cnt = 0; cnt < RSS_IND_TABLE_ENTRY_PER_LINE; cnt ++)
1818     {
1819         if (cnt == ind_table_index)
1820         {
1821             rss_ind_entry[cnt] = ind_table_value;
1822             rss_ind_mask[cnt]  = 0xFFFF;
1823         }
1824         else
1825         {
1826             rss_ind_entry[cnt] = 0;
1827             rss_ind_mask[cnt]  = 0;
1828         }
1829     }
1830 
1831     /* Update entry in HW*/
1832     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_ADDR, rss_addr);
1833 
1834     reg_val = (u32*)rss_ind_mask;
1835     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK, reg_val[0]);
1836     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 4, reg_val[1]);
1837     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 8, reg_val[2]);
1838     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 12, reg_val[3]);
1839 
1840     reg_val = (u32*)rss_ind_entry;
1841     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA, reg_val[0]);
1842     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 4, reg_val[1]);
1843     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 8, reg_val[2]);
1844     ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 12, reg_val[3]);
1845 }
1846 
1847 
1848