xref: /freebsd/sys/dev/qlxgb/qla_hw.c (revision 148a8da8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011-2012 Qlogic Corporation
5  * All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright
12  *     notice, this list of conditions and the following disclaimer.
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  *  POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 /*
31  * File: qla_hw.c
32  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
33  * Content: Contains Hardware dependent functions
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "qla_os.h"
40 #include "qla_reg.h"
41 #include "qla_hw.h"
42 #include "qla_def.h"
43 #include "qla_inline.h"
44 #include "qla_ver.h"
45 #include "qla_glbl.h"
46 #include "qla_dbg.h"
47 
48 static uint32_t sysctl_num_rds_rings = 2;
49 static uint32_t sysctl_num_sds_rings = 4;
50 
51 /*
52  * Static Functions
53  */
54 
55 static void qla_init_cntxt_regions(qla_host_t *ha);
56 static int qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp);
57 static int qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size);
58 static int qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
59 		uint16_t cntxt_id, uint32_t add_multi);
60 static void qla_del_rcv_cntxt(qla_host_t *ha);
61 static int qla_init_rcv_cntxt(qla_host_t *ha);
62 static void qla_del_xmt_cntxt(qla_host_t *ha);
63 static int qla_init_xmt_cntxt(qla_host_t *ha);
64 static int qla_get_max_rds(qla_host_t *ha);
65 static int qla_get_max_sds(qla_host_t *ha);
66 static int qla_get_max_rules(qla_host_t *ha);
67 static int qla_get_max_rcv_cntxts(qla_host_t *ha);
68 static int qla_get_max_tx_cntxts(qla_host_t *ha);
69 static int qla_get_max_mtu(qla_host_t *ha);
70 static int qla_get_max_lro(qla_host_t *ha);
71 static int qla_get_flow_control(qla_host_t *ha);
72 static void qla_hw_tx_done_locked(qla_host_t *ha);
73 
74 int
75 qla_get_msix_count(qla_host_t *ha)
76 {
77 	return (sysctl_num_sds_rings);
78 }
79 
80 /*
81  * Name: qla_hw_add_sysctls
82  * Function: Add P3Plus specific sysctls
83  */
84 void
85 qla_hw_add_sysctls(qla_host_t *ha)
86 {
87         device_t	dev;
88 
89         dev = ha->pci_dev;
90 
91         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
92                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
93                 OID_AUTO, "num_rds_rings", CTLFLAG_RD, &sysctl_num_rds_rings,
94 		sysctl_num_rds_rings, "Number of Rcv Descriptor Rings");
95 
96         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
97                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
98                 OID_AUTO, "num_sds_rings", CTLFLAG_RD, &sysctl_num_sds_rings,
99 		sysctl_num_sds_rings, "Number of Status Descriptor Rings");
100 }
101 
102 /*
103  * Name: qla_free_dma
104  * Function: Frees the DMA'able memory allocated in qla_alloc_dma()
105  */
106 void
107 qla_free_dma(qla_host_t *ha)
108 {
109 	uint32_t i;
110 
111         if (ha->hw.dma_buf.flags.context) {
112 		qla_free_dmabuf(ha, &ha->hw.dma_buf.context);
113         	ha->hw.dma_buf.flags.context = 0;
114 	}
115 
116         if (ha->hw.dma_buf.flags.sds_ring) {
117 		for (i = 0; i < ha->hw.num_sds_rings; i++)
118 			qla_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
119         	ha->hw.dma_buf.flags.sds_ring = 0;
120 	}
121 
122         if (ha->hw.dma_buf.flags.rds_ring) {
123 		for (i = 0; i < ha->hw.num_rds_rings; i++)
124 			qla_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
125         	ha->hw.dma_buf.flags.rds_ring = 0;
126 	}
127 
128         if (ha->hw.dma_buf.flags.tx_ring) {
129 		qla_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
130         	ha->hw.dma_buf.flags.tx_ring = 0;
131 	}
132 }
133 
134 /*
135  * Name: qla_alloc_dma
136  * Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
137  */
138 int
139 qla_alloc_dma(qla_host_t *ha)
140 {
141         device_t                dev;
142 	uint32_t		i, j, size;
143 
144         dev = ha->pci_dev;
145 
146         QL_DPRINT2((dev, "%s: enter\n", __func__));
147 
148 	ha->hw.num_rds_rings = (uint16_t)sysctl_num_rds_rings;
149 	ha->hw.num_sds_rings = (uint16_t)sysctl_num_sds_rings;
150 
151 	/*
152 	 * Allocate Transmit Ring
153 	 */
154 
155 	ha->hw.dma_buf.tx_ring.alignment = 8;
156 	ha->hw.dma_buf.tx_ring.size =
157 		(sizeof(q80_tx_cmd_t)) * NUM_TX_DESCRIPTORS;
158 
159         if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.tx_ring)) {
160                 device_printf(dev, "%s: tx ring alloc failed\n", __func__);
161                 goto qla_alloc_dma_exit;
162         }
163         ha->hw.dma_buf.flags.tx_ring = 1;
164 
165 	QL_DPRINT2((dev, "%s: tx_ring phys %p virt %p\n",
166 		__func__, (void *)(ha->hw.dma_buf.tx_ring.dma_addr),
167 		ha->hw.dma_buf.tx_ring.dma_b));
168 	/*
169 	 * Allocate Receive Descriptor Rings
170 	 */
171 
172 	for (i = 0; i < ha->hw.num_rds_rings; i++) {
173 		ha->hw.dma_buf.rds_ring[i].alignment = 8;
174 
175 		if (i == RDS_RING_INDEX_NORMAL) {
176 			ha->hw.dma_buf.rds_ring[i].size =
177 				(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
178 		} else if (i == RDS_RING_INDEX_JUMBO) {
179 			ha->hw.dma_buf.rds_ring[i].size =
180 				(sizeof(q80_recv_desc_t)) *
181 					NUM_RX_JUMBO_DESCRIPTORS;
182 		} else
183 			break;
184 
185 		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i])) {
186 			QL_DPRINT4((dev, "%s: rds ring alloc failed\n",
187 				__func__));
188 
189 			for (j = 0; j < i; j++)
190 				qla_free_dmabuf(ha,
191 					&ha->hw.dma_buf.rds_ring[j]);
192 
193 			goto qla_alloc_dma_exit;
194 		}
195 		QL_DPRINT4((dev, "%s: rx_ring[%d] phys %p virt %p\n",
196 			__func__, i,
197 			(void *)(ha->hw.dma_buf.rds_ring[i].dma_addr),
198 			ha->hw.dma_buf.rds_ring[i].dma_b));
199 	}
200 	ha->hw.dma_buf.flags.rds_ring = 1;
201 
202 	/*
203 	 * Allocate Status Descriptor Rings
204 	 */
205 
206 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
207 		ha->hw.dma_buf.sds_ring[i].alignment = 8;
208 		ha->hw.dma_buf.sds_ring[i].size =
209 			(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
210 
211 		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i])) {
212 			device_printf(dev, "%s: sds ring alloc failed\n",
213 				__func__);
214 
215 			for (j = 0; j < i; j++)
216 				qla_free_dmabuf(ha,
217 					&ha->hw.dma_buf.sds_ring[j]);
218 
219 			goto qla_alloc_dma_exit;
220 		}
221 		QL_DPRINT4((dev, "%s: sds_ring[%d] phys %p virt %p\n",
222 			__func__, i,
223 			(void *)(ha->hw.dma_buf.sds_ring[i].dma_addr),
224 			ha->hw.dma_buf.sds_ring[i].dma_b));
225 	}
226 	ha->hw.dma_buf.flags.sds_ring = 1;
227 
228 	/*
229 	 * Allocate Context Area
230 	 */
231 	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
232 
233 	size += QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
234 
235 	size += QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
236 
237 	size += QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
238 
239 	size += sizeof (uint32_t); /* for tx consumer index */
240 
241 	size = QL_ALIGN(size, PAGE_SIZE);
242 
243 	ha->hw.dma_buf.context.alignment = 8;
244 	ha->hw.dma_buf.context.size = size;
245 
246         if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.context)) {
247                 device_printf(dev, "%s: context alloc failed\n", __func__);
248                 goto qla_alloc_dma_exit;
249         }
250         ha->hw.dma_buf.flags.context = 1;
251 	QL_DPRINT2((dev, "%s: context phys %p virt %p\n",
252 		__func__, (void *)(ha->hw.dma_buf.context.dma_addr),
253 		ha->hw.dma_buf.context.dma_b));
254 
255 	qla_init_cntxt_regions(ha);
256 
257 	return 0;
258 
259 qla_alloc_dma_exit:
260 	qla_free_dma(ha);
261 	return -1;
262 }
263 
264 /*
265  * Name: qla_init_cntxt_regions
266  * Function: Initializes Tx/Rx Contexts.
267  */
268 static void
269 qla_init_cntxt_regions(qla_host_t *ha)
270 {
271 	qla_hw_t		*hw;
272 	q80_tx_cntxt_req_t	*tx_cntxt_req;
273 	q80_rcv_cntxt_req_t	*rx_cntxt_req;
274 	bus_addr_t		phys_addr;
275 	uint32_t		i;
276         device_t                dev;
277 	uint32_t		size;
278 
279         dev = ha->pci_dev;
280 
281 	hw = &ha->hw;
282 
283 	hw->tx_ring_base = hw->dma_buf.tx_ring.dma_b;
284 
285 	for (i = 0; i < ha->hw.num_sds_rings; i++)
286 		hw->sds[i].sds_ring_base =
287 			(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
288 
289 
290 	phys_addr = hw->dma_buf.context.dma_addr;
291 
292 	memset((void *)hw->dma_buf.context.dma_b, 0,
293 		ha->hw.dma_buf.context.size);
294 
295 	hw->tx_cntxt_req	=
296 		(q80_tx_cntxt_req_t *)hw->dma_buf.context.dma_b;
297 	hw->tx_cntxt_req_paddr	= phys_addr;
298 
299 	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
300 
301 	hw->tx_cntxt_rsp	=
302 		(q80_tx_cntxt_rsp_t *)((uint8_t *)hw->tx_cntxt_req + size);
303 	hw->tx_cntxt_rsp_paddr	= hw->tx_cntxt_req_paddr + size;
304 
305 	size = QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
306 
307 	hw->rx_cntxt_req =
308 		(q80_rcv_cntxt_req_t *)((uint8_t *)hw->tx_cntxt_rsp + size);
309 	hw->rx_cntxt_req_paddr = hw->tx_cntxt_rsp_paddr + size;
310 
311 	size = QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
312 
313 	hw->rx_cntxt_rsp =
314 		(q80_rcv_cntxt_rsp_t *)((uint8_t *)hw->rx_cntxt_req + size);
315 	hw->rx_cntxt_rsp_paddr = hw->rx_cntxt_req_paddr + size;
316 
317 	size = QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
318 
319 	hw->tx_cons = (uint32_t *)((uint8_t *)hw->rx_cntxt_rsp + size);
320 	hw->tx_cons_paddr = hw->rx_cntxt_rsp_paddr + size;
321 
322 	/*
323 	 * Initialize the Transmit Context Request so that we don't need to
324 	 * do it every time we need to create a context
325 	 */
326 	tx_cntxt_req = hw->tx_cntxt_req;
327 
328 	tx_cntxt_req->rsp_dma_addr = qla_host_to_le64(hw->tx_cntxt_rsp_paddr);
329 
330 	tx_cntxt_req->cmd_cons_dma_addr = qla_host_to_le64(hw->tx_cons_paddr);
331 
332 	tx_cntxt_req->caps[0] = qla_host_to_le32((CNTXT_CAP0_BASEFW |
333 					CNTXT_CAP0_LEGACY_MN | CNTXT_CAP0_LSO));
334 
335 	tx_cntxt_req->intr_mode = qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
336 
337 	tx_cntxt_req->phys_addr =
338 		qla_host_to_le64(hw->dma_buf.tx_ring.dma_addr);
339 
340 	tx_cntxt_req->num_entries = qla_host_to_le32(NUM_TX_DESCRIPTORS);
341 
342 	/*
343 	 * Initialize the Receive Context Request
344 	 */
345 
346 	rx_cntxt_req = hw->rx_cntxt_req;
347 
348 	rx_cntxt_req->rx_req.rsp_dma_addr =
349 		qla_host_to_le64(hw->rx_cntxt_rsp_paddr);
350 
351 	rx_cntxt_req->rx_req.caps[0] = qla_host_to_le32(CNTXT_CAP0_BASEFW |
352 						CNTXT_CAP0_LEGACY_MN |
353 						CNTXT_CAP0_JUMBO |
354 						CNTXT_CAP0_LRO|
355 						CNTXT_CAP0_HW_LRO);
356 
357 	rx_cntxt_req->rx_req.intr_mode =
358 		qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
359 
360 	rx_cntxt_req->rx_req.rds_intr_mode =
361 		qla_host_to_le32(CNTXT_INTR_MODE_UNIQUE);
362 
363 	rx_cntxt_req->rx_req.rds_ring_offset = 0;
364 	rx_cntxt_req->rx_req.sds_ring_offset = qla_host_to_le32(
365 		(hw->num_rds_rings * sizeof(q80_rq_rds_ring_t)));
366 	rx_cntxt_req->rx_req.num_rds_rings =
367 		qla_host_to_le16(hw->num_rds_rings);
368 	rx_cntxt_req->rx_req.num_sds_rings =
369 		qla_host_to_le16(hw->num_sds_rings);
370 
371 	for (i = 0; i < hw->num_rds_rings; i++) {
372 		rx_cntxt_req->rds_req[i].phys_addr =
373 			qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
374 
375 		if (i == RDS_RING_INDEX_NORMAL) {
376 			rx_cntxt_req->rds_req[i].buf_size =
377 				qla_host_to_le64(MCLBYTES);
378 			rx_cntxt_req->rds_req[i].size =
379 				qla_host_to_le32(NUM_RX_DESCRIPTORS);
380 		} else {
381 			rx_cntxt_req->rds_req[i].buf_size =
382 				qla_host_to_le64(MJUM9BYTES);
383 			rx_cntxt_req->rds_req[i].size =
384 				qla_host_to_le32(NUM_RX_JUMBO_DESCRIPTORS);
385 		}
386 	}
387 
388 	for (i = 0; i < hw->num_sds_rings; i++) {
389 		rx_cntxt_req->sds_req[i].phys_addr =
390 			qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
391 		rx_cntxt_req->sds_req[i].size =
392 			qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
393 		rx_cntxt_req->sds_req[i].msi_index = qla_host_to_le16(i);
394 	}
395 
396 	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_req = %p paddr %p\n",
397 		__func__, hw->tx_cntxt_req, (void *)hw->tx_cntxt_req_paddr));
398 	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_rsp = %p paddr %p\n",
399 		__func__, hw->tx_cntxt_rsp, (void *)hw->tx_cntxt_rsp_paddr));
400 	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_req = %p paddr %p\n",
401 		__func__, hw->rx_cntxt_req, (void *)hw->rx_cntxt_req_paddr));
402 	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_rsp = %p paddr %p\n",
403 		__func__, hw->rx_cntxt_rsp, (void *)hw->rx_cntxt_rsp_paddr));
404 	QL_DPRINT2((ha->pci_dev, "%s: tx_cons      = %p paddr %p\n",
405 		__func__, hw->tx_cons, (void *)hw->tx_cons_paddr));
406 }
407 
408 /*
409  * Name: qla_issue_cmd
410  * Function: Issues commands on the CDRP interface and returns responses.
411  */
412 static int
413 qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp)
414 {
415 	int	ret = 0;
416 	uint32_t signature;
417 	uint32_t count = 400; /* 4 seconds or 400 10ms intervals */
418 	uint32_t data;
419 	device_t dev;
420 
421 	dev = ha->pci_dev;
422 
423 	signature = 0xcafe0000 | 0x0100 | ha->pci_func;
424 
425 	ret = qla_sem_lock(ha, Q8_SEM5_LOCK, 0, (uint32_t)ha->pci_func);
426 
427 	if (ret) {
428 		device_printf(dev, "%s: SEM5_LOCK lock failed\n", __func__);
429 		return (ret);
430 	}
431 
432 	WRITE_OFFSET32(ha, Q8_NX_CDRP_SIGNATURE, signature);
433 
434 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG1, (cdrp->cmd_arg1));
435 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG2, (cdrp->cmd_arg2));
436 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG3, (cdrp->cmd_arg3));
437 
438 	WRITE_OFFSET32(ha, Q8_NX_CDRP_CMD_RSP, cdrp->cmd);
439 
440 	while (count) {
441 		qla_mdelay(__func__, 10);
442 
443 		data = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
444 
445 		if ((!(data & 0x80000000)))
446 			break;
447 		count--;
448 	}
449 	if ((!count) || (data != 1))
450 		ret = -1;
451 
452 	cdrp->rsp = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
453 	cdrp->rsp_arg1 = READ_REG32(ha, Q8_NX_CDRP_ARG1);
454 	cdrp->rsp_arg2 = READ_REG32(ha, Q8_NX_CDRP_ARG2);
455 	cdrp->rsp_arg3 = READ_REG32(ha, Q8_NX_CDRP_ARG3);
456 
457 	qla_sem_unlock(ha, Q8_SEM5_UNLOCK);
458 
459 	if (ret) {
460 		device_printf(dev, "%s: "
461 			"cmd[0x%08x] = 0x%08x\n"
462 			"\tsig[0x%08x] = 0x%08x\n"
463 			"\targ1[0x%08x] = 0x%08x\n"
464 			"\targ2[0x%08x] = 0x%08x\n"
465 			"\targ3[0x%08x] = 0x%08x\n",
466 			__func__, Q8_NX_CDRP_CMD_RSP, cdrp->cmd,
467 			Q8_NX_CDRP_SIGNATURE, signature,
468 			Q8_NX_CDRP_ARG1, cdrp->cmd_arg1,
469 			Q8_NX_CDRP_ARG2, cdrp->cmd_arg2,
470 			Q8_NX_CDRP_ARG3, cdrp->cmd_arg3);
471 
472 		device_printf(dev, "%s: exit (ret = 0x%x)\n"
473 			"\t\t rsp = 0x%08x\n"
474 			"\t\t arg1 = 0x%08x\n"
475 			"\t\t arg2 = 0x%08x\n"
476 			"\t\t arg3 = 0x%08x\n",
477 			__func__, ret, cdrp->rsp,
478 			cdrp->rsp_arg1, cdrp->rsp_arg2, cdrp->rsp_arg3);
479 	}
480 
481 	return (ret);
482 }
483 
484 #define QLA_TX_MIN_FREE	2
485 
486 /*
487  * Name: qla_fw_cmd
488  * Function: Issues firmware control commands on the Tx Ring.
489  */
490 static int
491 qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size)
492 {
493 	device_t dev;
494         q80_tx_cmd_t *tx_cmd;
495         qla_hw_t *hw = &ha->hw;
496 	int count = 100;
497 
498 	dev = ha->pci_dev;
499 
500 	QLA_TX_LOCK(ha);
501 
502         if (hw->txr_free <= QLA_TX_MIN_FREE) {
503 		while (count--) {
504 			qla_hw_tx_done_locked(ha);
505 			if (hw->txr_free > QLA_TX_MIN_FREE)
506 				break;
507 
508 			QLA_TX_UNLOCK(ha);
509 			qla_mdelay(__func__, 10);
510 			QLA_TX_LOCK(ha);
511 		}
512         	if (hw->txr_free <= QLA_TX_MIN_FREE) {
513 			QLA_TX_UNLOCK(ha);
514 			device_printf(dev, "%s: xmit queue full\n", __func__);
515                 	return (-1);
516 		}
517         }
518         tx_cmd = &hw->tx_ring_base[hw->txr_next];
519 
520         bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
521 
522 	bcopy(fw_cmd, tx_cmd, size);
523 
524 	hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
525 	hw->txr_free--;
526 
527 	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
528 
529 	QLA_TX_UNLOCK(ha);
530 
531 	return (0);
532 }
533 
534 /*
535  * Name: qla_config_rss
536  * Function: Configure RSS for the context/interface.
537  */
538 const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
539 			0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
540 			0x255b0ec26d5a56daULL };
541 
542 static int
543 qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
544 {
545 	qla_fw_cds_config_rss_t rss_config;
546 	int ret, i;
547 
548 	bzero(&rss_config, sizeof(qla_fw_cds_config_rss_t));
549 
550 	rss_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
551 	rss_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_RSS;
552 	rss_config.hdr.cntxt_id = cntxt_id;
553 
554 	rss_config.hash_type = (Q8_FWCD_RSS_HASH_TYPE_IPV4_TCP_IP |
555 					Q8_FWCD_RSS_HASH_TYPE_IPV6_TCP_IP);
556 	rss_config.flags = Q8_FWCD_RSS_FLAGS_ENABLE_RSS;
557 
558 	rss_config.ind_tbl_mask = 0x7;
559 
560 	for (i = 0; i < 5; i++)
561 		rss_config.rss_key[i] = rss_key[i];
562 
563 	ret = qla_fw_cmd(ha, &rss_config, sizeof(qla_fw_cds_config_rss_t));
564 
565 	return ret;
566 }
567 
568 /*
569  * Name: qla_config_intr_coalesce
570  * Function: Configure Interrupt Coalescing.
571  */
572 static int
573 qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable)
574 {
575 	qla_fw_cds_config_intr_coalesc_t intr_coalesce;
576 	int ret;
577 
578 	bzero(&intr_coalesce, sizeof(qla_fw_cds_config_intr_coalesc_t));
579 
580 	intr_coalesce.hdr.cmd = Q8_FWCD_CNTRL_REQ;
581 	intr_coalesce.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_INTR_COALESCING;
582 	intr_coalesce.hdr.cntxt_id = cntxt_id;
583 
584 	intr_coalesce.flags = 0x04;
585 	intr_coalesce.max_rcv_pkts = 256;
586 	intr_coalesce.max_rcv_usecs = 3;
587 	intr_coalesce.max_snd_pkts = 64;
588 	intr_coalesce.max_snd_usecs = 4;
589 
590 	if (tenable) {
591 		intr_coalesce.usecs_to = 1000; /* 1 millisecond */
592 		intr_coalesce.timer_type = Q8_FWCMD_INTR_COALESC_TIMER_PERIODIC;
593 		intr_coalesce.sds_ring_bitmask =
594 			Q8_FWCMD_INTR_COALESC_SDS_RING_0;
595 	}
596 
597 	ret = qla_fw_cmd(ha, &intr_coalesce,
598 			sizeof(qla_fw_cds_config_intr_coalesc_t));
599 
600 	return ret;
601 }
602 
603 
604 /*
605  * Name: qla_config_mac_addr
606  * Function: binds a MAC address to the context/interface.
607  *	Can be unicast, multicast or broadcast.
608  */
609 static int
610 qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint16_t cntxt_id,
611 	uint32_t add_multi)
612 {
613 	qla_fw_cds_config_mac_addr_t mac_config;
614 	int ret;
615 
616 //	device_printf(ha->pci_dev,
617 //		"%s: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
618 //		mac_addr[0], mac_addr[1], mac_addr[2],
619 //		mac_addr[3], mac_addr[4], mac_addr[5]);
620 
621 	bzero(&mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
622 
623 	mac_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
624 	mac_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_ADDR;
625 	mac_config.hdr.cntxt_id = cntxt_id;
626 
627 	if (add_multi)
628 		mac_config.cmd = Q8_FWCD_ADD_MAC_ADDR;
629 	else
630 		mac_config.cmd = Q8_FWCD_DEL_MAC_ADDR;
631 	bcopy(mac_addr, mac_config.mac_addr,6);
632 
633 	ret = qla_fw_cmd(ha, &mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
634 
635 	return ret;
636 }
637 
638 
639 /*
640  * Name: qla_set_mac_rcv_mode
641  * Function: Enable/Disable AllMulticast and Promiscuous Modes.
642  */
643 static int
644 qla_set_mac_rcv_mode(qla_host_t *ha, uint16_t cntxt_id, uint32_t mode)
645 {
646 	qla_set_mac_rcv_mode_t rcv_mode;
647 	int ret;
648 
649 	bzero(&rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
650 
651 	rcv_mode.hdr.cmd = Q8_FWCD_CNTRL_REQ;
652 	rcv_mode.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_RCV_MODE;
653 	rcv_mode.hdr.cntxt_id = cntxt_id;
654 
655 	rcv_mode.mode = mode;
656 
657 	ret = qla_fw_cmd(ha, &rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
658 
659 	return ret;
660 }
661 
662 void
663 qla_set_promisc(qla_host_t *ha)
664 {
665 	(void)qla_set_mac_rcv_mode(ha,
666 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
667 		Q8_MAC_RCV_ENABLE_PROMISCUOUS);
668 }
669 
670 void
671 qla_set_allmulti(qla_host_t *ha)
672 {
673 	(void)qla_set_mac_rcv_mode(ha,
674 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
675 		Q8_MAC_RCV_ENABLE_ALLMULTI);
676 }
677 
678 void
679 qla_reset_promisc_allmulti(qla_host_t *ha)
680 {
681 	(void)qla_set_mac_rcv_mode(ha,
682 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
683 		Q8_MAC_RCV_RESET_PROMISC_ALLMULTI);
684 }
685 
686 /*
687  * Name: qla_config_ipv4_addr
688  * Function: Configures the Destination IP Addr for LRO.
689  */
690 void
691 qla_config_ipv4_addr(qla_host_t *ha, uint32_t ipv4_addr)
692 {
693 	qla_config_ipv4_t ip_conf;
694 
695 	bzero(&ip_conf, sizeof(qla_config_ipv4_t));
696 
697 	ip_conf.hdr.cmd = Q8_FWCD_CNTRL_REQ;
698 	ip_conf.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_IPADDR;
699 	ip_conf.hdr.cntxt_id = (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
700 
701 	ip_conf.cmd = (uint64_t)Q8_CONFIG_CMD_IP_ENABLE;
702 	ip_conf.ipv4_addr = (uint64_t)ipv4_addr;
703 
704 	(void)qla_fw_cmd(ha, &ip_conf, sizeof(qla_config_ipv4_t));
705 
706 	return;
707 }
708 
709 /*
710  * Name: qla_tx_tso
711  * Function: Checks if the packet to be transmitted is a candidate for
712  *	Large TCP Segment Offload. If yes, the appropriate fields in the Tx
713  *	Ring Structure are plugged in.
714  */
715 static int
716 qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd, uint8_t *hdr)
717 {
718 	struct ether_vlan_header *eh;
719 	struct ip *ip = NULL;
720 	struct tcphdr *th = NULL;
721 	uint32_t ehdrlen,  hdrlen = 0, ip_hlen, tcp_hlen, tcp_opt_off;
722 	uint16_t etype, opcode, offload = 1;
723 	uint8_t *tcp_opt;
724 	device_t dev;
725 
726 	dev = ha->pci_dev;
727 
728 	eh = mtod(mp, struct ether_vlan_header *);
729 
730 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
731 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
732 		etype = ntohs(eh->evl_proto);
733 	} else {
734 		ehdrlen = ETHER_HDR_LEN;
735 		etype = ntohs(eh->evl_encap_proto);
736 	}
737 
738 	switch (etype) {
739 		case ETHERTYPE_IP:
740 
741 			tcp_opt_off = ehdrlen + sizeof(struct ip) +
742 					sizeof(struct tcphdr);
743 
744 			if (mp->m_len < tcp_opt_off) {
745 				m_copydata(mp, 0, tcp_opt_off, hdr);
746 				ip = (struct ip *)hdr;
747 			} else {
748 				ip = (struct ip *)(mp->m_data + ehdrlen);
749 			}
750 
751 			ip_hlen = ip->ip_hl << 2;
752 			opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
753 
754 			if ((ip->ip_p != IPPROTO_TCP) ||
755 				(ip_hlen != sizeof (struct ip))) {
756 				offload = 0;
757 			} else {
758 				th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
759 			}
760 		break;
761 
762 		default:
763 			QL_DPRINT8((dev, "%s: type!=ip\n", __func__));
764 			offload = 0;
765 		break;
766 	}
767 
768 	if (!offload)
769 		return (-1);
770 
771 	tcp_hlen = th->th_off << 2;
772 
773 
774 	hdrlen = ehdrlen + ip_hlen + tcp_hlen;
775 
776 	if (mp->m_len < hdrlen) {
777 		if (mp->m_len < tcp_opt_off) {
778 			if (tcp_hlen > sizeof(struct tcphdr)) {
779 				m_copydata(mp, tcp_opt_off,
780 					(tcp_hlen - sizeof(struct tcphdr)),
781 					&hdr[tcp_opt_off]);
782 			}
783 		} else {
784 			m_copydata(mp, 0, hdrlen, hdr);
785 		}
786 	}
787 
788 	if ((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
789 
790 		/* If TCP options are preset only time stamp option is supported */
791 		if ((tcp_hlen - sizeof(struct tcphdr)) != 10)
792 			return -1;
793 		else {
794 
795 			if (mp->m_len < hdrlen) {
796 				tcp_opt = &hdr[tcp_opt_off];
797 			} else {
798 				tcp_opt = (uint8_t *)(mp->m_data + tcp_opt_off);
799 			}
800 
801 			if ((*tcp_opt != 0x01) || (*(tcp_opt + 1) != 0x01) ||
802 				(*(tcp_opt + 2) != 0x08) ||
803 				(*(tcp_opt + 3) != 10)) {
804 				return -1;
805 			}
806 		}
807 
808 		tx_cmd->mss = ha->max_frame_size - ETHER_CRC_LEN - hdrlen;
809 	} else {
810 		tx_cmd->mss = mp->m_pkthdr.tso_segsz;
811 	}
812 
813 	tx_cmd->flags_opcode = opcode ;
814 	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
815 	tx_cmd->ip_hdr_off = ehdrlen;
816 	tx_cmd->mss = mp->m_pkthdr.tso_segsz;
817 	tx_cmd->total_hdr_len = hdrlen;
818 
819 	/* Check for Multicast least significant bit of MSB == 1 */
820 	if (eh->evl_dhost[0] & 0x01) {
821 		tx_cmd->flags_opcode = Q8_TX_CMD_FLAGS_MULTICAST;
822 	}
823 
824 	if (mp->m_len < hdrlen) {
825 		return (1);
826 	}
827 
828 	return (0);
829 }
830 
831 /*
832  * Name: qla_tx_chksum
833  * Function: Checks if the packet to be transmitted is a candidate for
834  *	TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
835  *	Ring Structure are plugged in.
836  */
837 static int
838 qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
839 {
840 	struct ether_vlan_header *eh;
841 	struct ip *ip;
842 	struct ip6_hdr *ip6;
843 	uint32_t ehdrlen, ip_hlen;
844 	uint16_t etype, opcode, offload = 1;
845 	device_t dev;
846 
847 	dev = ha->pci_dev;
848 
849 	if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
850 		return (-1);
851 
852 	eh = mtod(mp, struct ether_vlan_header *);
853 
854 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
855 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
856 		etype = ntohs(eh->evl_proto);
857 	} else {
858 		ehdrlen = ETHER_HDR_LEN;
859 		etype = ntohs(eh->evl_encap_proto);
860 	}
861 
862 
863 	switch (etype) {
864 		case ETHERTYPE_IP:
865 			ip = (struct ip *)(mp->m_data + ehdrlen);
866 
867 			ip_hlen = sizeof (struct ip);
868 
869 			if (mp->m_len < (ehdrlen + ip_hlen)) {
870 				device_printf(dev, "%s: ipv4 mlen\n", __func__);
871 				offload = 0;
872 				break;
873 			}
874 
875 			if (ip->ip_p == IPPROTO_TCP)
876 				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
877 			else if (ip->ip_p == IPPROTO_UDP)
878 				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
879 			else {
880 				device_printf(dev, "%s: ipv4\n", __func__);
881 				offload = 0;
882 			}
883 		break;
884 
885 		case ETHERTYPE_IPV6:
886 			ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
887 
888 			ip_hlen = sizeof(struct ip6_hdr);
889 
890 			if (mp->m_len < (ehdrlen + ip_hlen)) {
891 				device_printf(dev, "%s: ipv6 mlen\n", __func__);
892 				offload = 0;
893 				break;
894 			}
895 
896 			if (ip6->ip6_nxt == IPPROTO_TCP)
897 				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
898 			else if (ip6->ip6_nxt == IPPROTO_UDP)
899 				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
900 			else {
901 				device_printf(dev, "%s: ipv6\n", __func__);
902 				offload = 0;
903 			}
904 		break;
905 
906 		default:
907 			offload = 0;
908 		break;
909 	}
910 	if (!offload)
911 		return (-1);
912 
913 	tx_cmd->flags_opcode = opcode;
914 
915 	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
916 
917 	return (0);
918 }
919 
920 /*
921  * Name: qla_hw_send
922  * Function: Transmits a packet. It first checks if the packet is a
923  *	candidate for Large TCP Segment Offload and then for UDP/TCP checksum
924  *	offload. If either of these creteria are not met, it is transmitted
925  *	as a regular ethernet frame.
926  */
927 int
928 qla_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
929 	uint32_t *tx_idx,  struct mbuf *mp)
930 {
931 	struct ether_vlan_header *eh;
932 	qla_hw_t *hw = &ha->hw;
933 	q80_tx_cmd_t *tx_cmd, tso_cmd;
934 	bus_dma_segment_t *c_seg;
935 	uint32_t num_tx_cmds, hdr_len = 0;
936 	uint32_t total_length = 0, bytes, tx_cmd_count = 0;
937 	device_t dev;
938 	int i, ret;
939 	uint8_t *src = NULL, *dst = NULL;
940 
941 	dev = ha->pci_dev;
942 
943 	/*
944 	 * Always make sure there is atleast one empty slot in the tx_ring
945 	 * tx_ring is considered full when there only one entry available
946 	 */
947         num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
948 
949 	total_length = mp->m_pkthdr.len;
950 	if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
951 		device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
952 			__func__, total_length);
953 		return (-1);
954 	}
955 	eh = mtod(mp, struct ether_vlan_header *);
956 
957 	if ((mp->m_pkthdr.len > ha->max_frame_size)||(nsegs > Q8_TX_MAX_SEGMENTS)) {
958 
959 		bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
960 
961 		src = ha->hw.frame_hdr;
962 		ret = qla_tx_tso(ha, mp, &tso_cmd, src);
963 
964 		if (!(ret & ~1)) {
965 			/* find the additional tx_cmd descriptors required */
966 
967 			hdr_len = tso_cmd.total_hdr_len;
968 
969 			bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
970 			bytes = QL_MIN(bytes, hdr_len);
971 
972 			num_tx_cmds++;
973 			hdr_len -= bytes;
974 
975 			while (hdr_len) {
976 				bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
977 				hdr_len -= bytes;
978 				num_tx_cmds++;
979 			}
980 			hdr_len = tso_cmd.total_hdr_len;
981 
982 			if (ret == 0)
983 				src = (uint8_t *)eh;
984 		}
985 	}
986 
987 	if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
988 		qla_hw_tx_done_locked(ha);
989 		if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
990         		QL_DPRINT8((dev, "%s: (hw->txr_free <= "
991 				"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
992 				__func__));
993 			return (-1);
994 		}
995 	}
996 
997 	*tx_idx = hw->txr_next;
998 
999         tx_cmd = &hw->tx_ring_base[hw->txr_next];
1000 
1001 	if (hdr_len == 0) {
1002 		if ((nsegs > Q8_TX_MAX_SEGMENTS) ||
1003 			(mp->m_pkthdr.len > ha->max_frame_size)){
1004         		device_printf(dev,
1005 				"%s: (nsegs[%d, %d, 0x%b] > Q8_TX_MAX_SEGMENTS)\n",
1006 				__func__, nsegs, mp->m_pkthdr.len,
1007 				(int)mp->m_pkthdr.csum_flags, CSUM_BITS);
1008 			qla_dump_buf8(ha, "qla_hw_send: wrong pkt",
1009 				mtod(mp, char *), mp->m_len);
1010 			return (EINVAL);
1011 		}
1012 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1013 		if (qla_tx_chksum(ha, mp, tx_cmd) != 0)
1014         		tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
1015 	} else {
1016 		bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
1017 	}
1018 
1019 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
1020         	tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
1021 	else if (mp->m_flags & M_VLANTAG) {
1022         	tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
1023 						Q8_TX_CMD_FLAGS_HW_VLAN_ID);
1024 		tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
1025 	}
1026 
1027 
1028         tx_cmd->n_bufs = (uint8_t)nsegs;
1029         tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
1030         tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
1031 	tx_cmd->port_cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
1032 
1033 	c_seg = segs;
1034 
1035 	while (1) {
1036 		for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
1037 
1038 			switch (i) {
1039 			case 0:
1040 				tx_cmd->buf1_addr = c_seg->ds_addr;
1041 				tx_cmd->buf1_len = c_seg->ds_len;
1042 				break;
1043 
1044 			case 1:
1045 				tx_cmd->buf2_addr = c_seg->ds_addr;
1046 				tx_cmd->buf2_len = c_seg->ds_len;
1047 				break;
1048 
1049 			case 2:
1050 				tx_cmd->buf3_addr = c_seg->ds_addr;
1051 				tx_cmd->buf3_len = c_seg->ds_len;
1052 				break;
1053 
1054 			case 3:
1055 				tx_cmd->buf4_addr = c_seg->ds_addr;
1056 				tx_cmd->buf4_len = c_seg->ds_len;
1057 				break;
1058 			}
1059 
1060 			c_seg++;
1061 			nsegs--;
1062 		}
1063 
1064 		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1065 		tx_cmd_count++;
1066 
1067 		if (!nsegs)
1068 			break;
1069 
1070         	tx_cmd = &hw->tx_ring_base[hw->txr_next];
1071 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1072 	}
1073 
1074 	if (hdr_len) {
1075 		/* TSO : Copy the header in the following tx cmd descriptors */
1076 
1077 		tx_cmd = &hw->tx_ring_base[hw->txr_next];
1078 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1079 
1080 		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
1081 		bytes = QL_MIN(bytes, hdr_len);
1082 
1083 		dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
1084 
1085 		if (mp->m_flags & M_VLANTAG) {
1086 			/* first copy the src/dst MAC addresses */
1087 			bcopy(src, dst, (ETHER_ADDR_LEN * 2));
1088 			dst += (ETHER_ADDR_LEN * 2);
1089 			src += (ETHER_ADDR_LEN * 2);
1090 
1091 			hdr_len -= (ETHER_ADDR_LEN * 2);
1092 
1093 			*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
1094 			dst += 2;
1095 			*((uint16_t *)dst) = mp->m_pkthdr.ether_vtag;
1096 			dst += 2;
1097 
1098 			bytes -= ((ETHER_ADDR_LEN * 2) + 4);
1099 
1100 			bcopy(src, dst, bytes);
1101 			src += bytes;
1102 			hdr_len -= bytes;
1103 		} else {
1104 			bcopy(src, dst, bytes);
1105 			src += bytes;
1106 			hdr_len -= bytes;
1107 		}
1108 
1109 		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1110 		tx_cmd_count++;
1111 
1112 		while (hdr_len) {
1113 			tx_cmd = &hw->tx_ring_base[hw->txr_next];
1114 			bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1115 
1116 			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
1117 
1118 			bcopy(src, tx_cmd, bytes);
1119 			src += bytes;
1120 			hdr_len -= bytes;
1121 			hw->txr_next =
1122 				(hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1123 			tx_cmd_count++;
1124 		}
1125 	}
1126 
1127 	hw->txr_free = hw->txr_free - tx_cmd_count;
1128 
1129 	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
1130        	QL_DPRINT8((dev, "%s: return\n", __func__));
1131 	return (0);
1132 }
1133 
1134 /*
1135  * Name: qla_del_hw_if
1136  * Function: Destroys the hardware specific entities corresponding to an
1137  *	Ethernet Interface
1138  */
1139 void
1140 qla_del_hw_if(qla_host_t *ha)
1141 {
1142 	int	i;
1143 
1144 	for (i = 0; i < ha->hw.num_sds_rings; i++)
1145 		QL_DISABLE_INTERRUPTS(ha, i);
1146 
1147 	qla_del_rcv_cntxt(ha);
1148 	qla_del_xmt_cntxt(ha);
1149 
1150 	ha->hw.flags.lro = 0;
1151 }
1152 
1153 /*
1154  * Name: qla_init_hw_if
1155  * Function: Creates the hardware specific entities corresponding to an
1156  *	Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
1157  *	corresponding to the interface. Enables LRO if allowed.
1158  */
1159 int
1160 qla_init_hw_if(qla_host_t *ha)
1161 {
1162 	device_t	dev;
1163 	int		i;
1164 	uint8_t		bcast_mac[6];
1165 
1166 	qla_get_hw_caps(ha);
1167 
1168 	dev = ha->pci_dev;
1169 
1170 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1171 		bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
1172 			ha->hw.dma_buf.sds_ring[i].size);
1173 	}
1174 	/*
1175 	 * Create Receive Context
1176 	 */
1177 	if (qla_init_rcv_cntxt(ha)) {
1178 		return (-1);
1179 	}
1180 
1181 	ha->hw.rx_next = NUM_RX_DESCRIPTORS - 2;
1182 	ha->hw.rxj_next = NUM_RX_JUMBO_DESCRIPTORS - 2;
1183 	ha->hw.rx_in = ha->hw.rxj_in = 0;
1184 
1185 	/* Update the RDS Producer Indices */
1186 	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 0, ha->hw.rx_next);
1187 	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 1, ha->hw.rxj_next);
1188 
1189 	/*
1190 	 * Create Transmit Context
1191 	 */
1192 	if (qla_init_xmt_cntxt(ha)) {
1193 		qla_del_rcv_cntxt(ha);
1194 		return (-1);
1195 	}
1196 
1197 	qla_config_mac_addr(ha, ha->hw.mac_addr,
1198 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1199 
1200 	bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
1201 	bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
1202 	qla_config_mac_addr(ha, bcast_mac,
1203 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1204 
1205 	qla_config_rss(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
1206 
1207 	qla_config_intr_coalesce(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 0);
1208 
1209 	for (i = 0; i < ha->hw.num_sds_rings; i++)
1210 		QL_ENABLE_INTERRUPTS(ha, i);
1211 
1212 	return (0);
1213 }
1214 
1215 /*
1216  * Name: qla_init_rcv_cntxt
1217  * Function: Creates the Receive Context.
1218  */
1219 static int
1220 qla_init_rcv_cntxt(qla_host_t *ha)
1221 {
1222 	device_t		dev;
1223 	qla_cdrp_t		cdrp;
1224 	q80_rcv_cntxt_rsp_t	*rsp;
1225 	q80_stat_desc_t		*sdesc;
1226 	bus_addr_t		phys_addr;
1227 	int			i, j;
1228         qla_hw_t		*hw = &ha->hw;
1229 
1230 	dev = ha->pci_dev;
1231 
1232 	/*
1233 	 * Create Receive Context
1234 	 */
1235 
1236 	for (i = 0; i < hw->num_sds_rings; i++) {
1237 		sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
1238 		for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
1239 			sdesc->data[0] =
1240 				Q8_STAT_DESC_SET_OWNER(Q8_STAT_DESC_OWNER_FW);
1241 		}
1242 	}
1243 
1244 	phys_addr = ha->hw.rx_cntxt_req_paddr;
1245 
1246 	bzero(&cdrp, sizeof(qla_cdrp_t));
1247 
1248 	cdrp.cmd = Q8_CMD_CREATE_RX_CNTXT;
1249 	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1250 	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1251 	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_rcv_cntxt_req_t));
1252 
1253 	if (qla_issue_cmd(ha, &cdrp)) {
1254 		device_printf(dev, "%s: Q8_CMD_CREATE_RX_CNTXT failed\n",
1255 			__func__);
1256 		return (-1);
1257 	} else {
1258 		rsp = ha->hw.rx_cntxt_rsp;
1259 
1260 		QL_DPRINT2((dev, "%s: rcv cntxt successful"
1261 			" rds_ring_offset = 0x%08x"
1262 			" sds_ring_offset = 0x%08x"
1263 			" cntxt_state = 0x%08x"
1264 			" funcs_per_port = 0x%08x"
1265 			" num_rds_rings = 0x%04x"
1266 			" num_sds_rings = 0x%04x"
1267 			" cntxt_id = 0x%04x"
1268 			" phys_port = 0x%02x"
1269 			" virt_port = 0x%02x\n",
1270 			__func__,
1271 			rsp->rx_rsp.rds_ring_offset,
1272 			rsp->rx_rsp.sds_ring_offset,
1273 			rsp->rx_rsp.cntxt_state,
1274 			rsp->rx_rsp.funcs_per_port,
1275 			rsp->rx_rsp.num_rds_rings,
1276 			rsp->rx_rsp.num_sds_rings,
1277 			rsp->rx_rsp.cntxt_id,
1278 			rsp->rx_rsp.phys_port,
1279 			rsp->rx_rsp.virt_port));
1280 
1281 		for (i = 0; i < ha->hw.num_rds_rings; i++) {
1282 			QL_DPRINT2((dev,
1283 				"%s: rcv cntxt rds[%i].producer_reg = 0x%08x\n",
1284 				__func__, i, rsp->rds_rsp[i].producer_reg));
1285 		}
1286 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1287 			QL_DPRINT2((dev,
1288 				"%s: rcv cntxt sds[%i].consumer_reg = 0x%08x"
1289 				" sds[%i].intr_mask_reg = 0x%08x\n",
1290 				__func__, i, rsp->sds_rsp[i].consumer_reg,
1291 				i, rsp->sds_rsp[i].intr_mask_reg));
1292 		}
1293 	}
1294 	ha->hw.flags.init_rx_cnxt = 1;
1295 	return (0);
1296 }
1297 
1298 /*
1299  * Name: qla_del_rcv_cntxt
1300  * Function: Destroys the Receive Context.
1301  */
1302 void
1303 qla_del_rcv_cntxt(qla_host_t *ha)
1304 {
1305 	qla_cdrp_t	cdrp;
1306 	device_t	dev = ha->pci_dev;
1307 
1308 	if (!ha->hw.flags.init_rx_cnxt)
1309 		return;
1310 
1311 	bzero(&cdrp, sizeof(qla_cdrp_t));
1312 
1313 	cdrp.cmd = Q8_CMD_DESTROY_RX_CNTXT;
1314 	cdrp.cmd_arg1 = (uint32_t) (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
1315 
1316 	if (qla_issue_cmd(ha, &cdrp)) {
1317 		device_printf(dev, "%s: Q8_CMD_DESTROY_RX_CNTXT failed\n",
1318 			__func__);
1319 	}
1320 	ha->hw.flags.init_rx_cnxt = 0;
1321 }
1322 
1323 /*
1324  * Name: qla_init_xmt_cntxt
1325  * Function: Creates the Transmit Context.
1326  */
1327 static int
1328 qla_init_xmt_cntxt(qla_host_t *ha)
1329 {
1330 	bus_addr_t		phys_addr;
1331 	device_t		dev;
1332 	q80_tx_cntxt_rsp_t	*tx_rsp;
1333 	qla_cdrp_t		cdrp;
1334         qla_hw_t		*hw = &ha->hw;
1335 
1336 	dev = ha->pci_dev;
1337 
1338 	/*
1339 	 * Create Transmit Context
1340 	 */
1341 	phys_addr = ha->hw.tx_cntxt_req_paddr;
1342 	tx_rsp = ha->hw.tx_cntxt_rsp;
1343 
1344 	hw->txr_comp = hw->txr_next = 0;
1345 	*(hw->tx_cons) = 0;
1346 
1347 	bzero(&cdrp, sizeof(qla_cdrp_t));
1348 
1349 	cdrp.cmd = Q8_CMD_CREATE_TX_CNTXT;
1350 	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1351 	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1352 	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_tx_cntxt_req_t));
1353 
1354 	if (qla_issue_cmd(ha, &cdrp)) {
1355 		device_printf(dev, "%s: Q8_CMD_CREATE_TX_CNTXT failed\n",
1356 			__func__);
1357 		return (-1);
1358 	} else {
1359 		ha->hw.tx_prod_reg = tx_rsp->producer_reg;
1360 
1361 		QL_DPRINT2((dev, "%s: tx cntxt successful"
1362 			" cntxt_state = 0x%08x "
1363 			" cntxt_id = 0x%04x "
1364 			" phys_port_id = 0x%02x "
1365 			" virt_port_id = 0x%02x "
1366 			" producer_reg = 0x%08x "
1367 			" intr_mask_reg = 0x%08x\n",
1368 			__func__, tx_rsp->cntxt_state, tx_rsp->cntxt_id,
1369 			tx_rsp->phys_port_id, tx_rsp->virt_port_id,
1370 			tx_rsp->producer_reg, tx_rsp->intr_mask_reg));
1371 	}
1372 	ha->hw.txr_free = NUM_TX_DESCRIPTORS;
1373 
1374 	ha->hw.flags.init_tx_cnxt = 1;
1375 	return (0);
1376 }
1377 
1378 /*
1379  * Name: qla_del_xmt_cntxt
1380  * Function: Destroys the Transmit Context.
1381  */
1382 static void
1383 qla_del_xmt_cntxt(qla_host_t *ha)
1384 {
1385 	qla_cdrp_t	cdrp;
1386 	device_t	dev = ha->pci_dev;
1387 
1388 	if (!ha->hw.flags.init_tx_cnxt)
1389 		return;
1390 
1391 	bzero(&cdrp, sizeof(qla_cdrp_t));
1392 
1393 	cdrp.cmd = Q8_CMD_DESTROY_TX_CNTXT;
1394 	cdrp.cmd_arg1 = (uint32_t) (ha->hw.tx_cntxt_rsp)->cntxt_id;
1395 
1396 	if (qla_issue_cmd(ha, &cdrp)) {
1397 		device_printf(dev, "%s: Q8_CMD_DESTROY_TX_CNTXT failed\n",
1398 			__func__);
1399 	}
1400 	ha->hw.flags.init_tx_cnxt = 0;
1401 }
1402 
1403 /*
1404  * Name: qla_get_max_rds
1405  * Function: Returns the maximum number of Receive Descriptor Rings per context.
1406  */
1407 static int
1408 qla_get_max_rds(qla_host_t *ha)
1409 {
1410 	qla_cdrp_t	cdrp;
1411 	device_t	dev;
1412 
1413 	dev = ha->pci_dev;
1414 
1415 	bzero(&cdrp, sizeof(qla_cdrp_t));
1416 
1417 	cdrp.cmd = Q8_CMD_RD_MAX_RDS_PER_CNTXT;
1418 
1419 	if (qla_issue_cmd(ha, &cdrp)) {
1420 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1421 			__func__);
1422 		return (-1);
1423 	} else {
1424 		ha->hw.max_rds_per_cntxt = cdrp.rsp_arg1;
1425 		QL_DPRINT2((dev, "%s: max_rds_per_context 0x%08x\n",
1426 			__func__, ha->hw.max_rds_per_cntxt));
1427 	}
1428 	return 0;
1429 }
1430 
1431 /*
1432  * Name: qla_get_max_sds
1433  * Function: Returns the maximum number of Status Descriptor Rings per context.
1434  */
1435 static int
1436 qla_get_max_sds(qla_host_t *ha)
1437 {
1438 	qla_cdrp_t	cdrp;
1439 	device_t	dev;
1440 
1441 	dev = ha->pci_dev;
1442 
1443 	bzero(&cdrp, sizeof(qla_cdrp_t));
1444 
1445 	cdrp.cmd = Q8_CMD_RD_MAX_SDS_PER_CNTXT;
1446 
1447 	if (qla_issue_cmd(ha, &cdrp)) {
1448 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1449 			__func__);
1450 		return (-1);
1451 	} else {
1452 		ha->hw.max_sds_per_cntxt = cdrp.rsp_arg1;
1453 		QL_DPRINT2((dev, "%s: max_sds_per_context 0x%08x\n",
1454 			__func__, ha->hw.max_sds_per_cntxt));
1455 	}
1456 	return 0;
1457 }
1458 
1459 /*
1460  * Name: qla_get_max_rules
1461  * Function: Returns the maximum number of Rules per context.
1462  */
1463 static int
1464 qla_get_max_rules(qla_host_t *ha)
1465 {
1466 	qla_cdrp_t	cdrp;
1467 	device_t	dev;
1468 
1469 	dev = ha->pci_dev;
1470 
1471 	bzero(&cdrp, sizeof(qla_cdrp_t));
1472 
1473 	cdrp.cmd = Q8_CMD_RD_MAX_RULES_PER_CNTXT;
1474 
1475 	if (qla_issue_cmd(ha, &cdrp)) {
1476 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RULES_PER_CNTXT failed\n",
1477 			__func__);
1478 		return (-1);
1479 	} else {
1480 		ha->hw.max_rules_per_cntxt = cdrp.rsp_arg1;
1481 		QL_DPRINT2((dev, "%s: max_rules_per_cntxt 0x%08x\n",
1482 			__func__, ha->hw.max_rules_per_cntxt));
1483 	}
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Name: qla_get_max_rcv_cntxts
1489  * Function: Returns the maximum number of Receive Contexts supported.
1490  */
1491 static int
1492 qla_get_max_rcv_cntxts(qla_host_t *ha)
1493 {
1494 	qla_cdrp_t	cdrp;
1495 	device_t	dev;
1496 
1497 	dev = ha->pci_dev;
1498 
1499 	bzero(&cdrp, sizeof(qla_cdrp_t));
1500 
1501 	cdrp.cmd = Q8_CMD_RD_MAX_RX_CNTXT;
1502 
1503 	if (qla_issue_cmd(ha, &cdrp)) {
1504 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RX_CNTXT failed\n",
1505 			__func__);
1506 		return (-1);
1507 	} else {
1508 		ha->hw.max_rcv_cntxts = cdrp.rsp_arg1;
1509 		QL_DPRINT2((dev, "%s: max_rcv_cntxts 0x%08x\n",
1510 			__func__, ha->hw.max_rcv_cntxts));
1511 	}
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Name: qla_get_max_tx_cntxts
1517  * Function: Returns the maximum number of Transmit Contexts supported.
1518  */
1519 static int
1520 qla_get_max_tx_cntxts(qla_host_t *ha)
1521 {
1522 	qla_cdrp_t	cdrp;
1523 	device_t	dev;
1524 
1525 	dev = ha->pci_dev;
1526 
1527 	bzero(&cdrp, sizeof(qla_cdrp_t));
1528 
1529 	cdrp.cmd = Q8_CMD_RD_MAX_TX_CNTXT;
1530 
1531 	if (qla_issue_cmd(ha, &cdrp)) {
1532 		device_printf(dev, "%s: Q8_CMD_RD_MAX_TX_CNTXT failed\n",
1533 			__func__);
1534 		return (-1);
1535 	} else {
1536 		ha->hw.max_xmt_cntxts = cdrp.rsp_arg1;
1537 		QL_DPRINT2((dev, "%s: max_xmt_cntxts 0x%08x\n",
1538 			__func__, ha->hw.max_xmt_cntxts));
1539 	}
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Name: qla_get_max_mtu
1545  * Function: Returns the MTU supported for a context.
1546  */
1547 static int
1548 qla_get_max_mtu(qla_host_t *ha)
1549 {
1550 	qla_cdrp_t	cdrp;
1551 	device_t	dev;
1552 
1553 	dev = ha->pci_dev;
1554 
1555 	bzero(&cdrp, sizeof(qla_cdrp_t));
1556 
1557 	cdrp.cmd = Q8_CMD_RD_MAX_MTU;
1558 
1559 	if (qla_issue_cmd(ha, &cdrp)) {
1560 		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1561 		return (-1);
1562 	} else {
1563 		ha->hw.max_mtu = cdrp.rsp_arg1;
1564 		QL_DPRINT2((dev, "%s: max_mtu 0x%08x\n", __func__,
1565 			ha->hw.max_mtu));
1566 	}
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Name: qla_set_max_mtu
1572  * Function:
1573  *	Sets the maximum transfer unit size for the specified rcv context.
1574  */
1575 int
1576 qla_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
1577 {
1578 	qla_cdrp_t	cdrp;
1579 	device_t	dev;
1580 
1581 	dev = ha->pci_dev;
1582 
1583 	bzero(&cdrp, sizeof(qla_cdrp_t));
1584 
1585 	cdrp.cmd = Q8_CMD_SET_MTU;
1586 	cdrp.cmd_arg1 = (uint32_t)cntxt_id;
1587 	cdrp.cmd_arg2 = mtu;
1588 
1589 	if (qla_issue_cmd(ha, &cdrp)) {
1590 		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1591 		return (-1);
1592 	} else {
1593 		ha->hw.max_mtu = cdrp.rsp_arg1;
1594 	}
1595 	return 0;
1596 }
1597 
1598 /*
1599  * Name: qla_get_max_lro
1600  * Function: Returns the maximum number of TCP Connection which can be supported
1601  *	with LRO.
1602  */
1603 static int
1604 qla_get_max_lro(qla_host_t *ha)
1605 {
1606 	qla_cdrp_t	cdrp;
1607 	device_t	dev;
1608 
1609 	dev = ha->pci_dev;
1610 
1611 	bzero(&cdrp, sizeof(qla_cdrp_t));
1612 
1613 	cdrp.cmd = Q8_CMD_RD_MAX_LRO;
1614 
1615 	if (qla_issue_cmd(ha, &cdrp)) {
1616 		device_printf(dev, "%s: Q8_CMD_RD_MAX_LRO failed\n", __func__);
1617 		return (-1);
1618 	} else {
1619 		ha->hw.max_lro = cdrp.rsp_arg1;
1620 		QL_DPRINT2((dev, "%s: max_lro 0x%08x\n", __func__,
1621 			ha->hw.max_lro));
1622 	}
1623 	return 0;
1624 }
1625 
1626 /*
1627  * Name: qla_get_flow_control
1628  * Function: Returns the Receive/Transmit Flow Control (PAUSE) settings for
1629  *	PCI function.
1630  */
1631 static int
1632 qla_get_flow_control(qla_host_t *ha)
1633 {
1634 	qla_cdrp_t	cdrp;
1635 	device_t	dev;
1636 
1637 	dev = ha->pci_dev;
1638 
1639 	bzero(&cdrp, sizeof(qla_cdrp_t));
1640 
1641 	cdrp.cmd = Q8_CMD_GET_FLOW_CNTRL;
1642 
1643 	if (qla_issue_cmd(ha, &cdrp)) {
1644 		device_printf(dev, "%s: Q8_CMD_GET_FLOW_CNTRL failed\n",
1645 			__func__);
1646 		return (-1);
1647 	} else {
1648 		QL_DPRINT2((dev, "%s: flow control 0x%08x\n", __func__,
1649 			cdrp.rsp_arg1));
1650 	}
1651 	return 0;
1652 }
1653 
1654 /*
1655  * Name: qla_get_flow_control
1656  * Function: Retrieves hardware capabilities
1657  */
1658 void
1659 qla_get_hw_caps(qla_host_t *ha)
1660 {
1661 	//qla_read_mac_addr(ha);
1662 	qla_get_max_rds(ha);
1663 	qla_get_max_sds(ha);
1664 	qla_get_max_rules(ha);
1665 	qla_get_max_rcv_cntxts(ha);
1666 	qla_get_max_tx_cntxts(ha);
1667 	qla_get_max_mtu(ha);
1668 	qla_get_max_lro(ha);
1669 	qla_get_flow_control(ha);
1670 	return;
1671 }
1672 
1673 /*
1674  * Name: qla_hw_set_multi
1675  * Function: Sets the Multicast Addresses provided the host O.S into the
1676  *	hardware (for the given interface)
1677  */
1678 void
1679 qla_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
1680 	uint32_t add_multi)
1681 {
1682 	q80_rcv_cntxt_rsp_t	*rsp;
1683 	int i;
1684 
1685 	rsp = ha->hw.rx_cntxt_rsp;
1686 	for (i = 0; i < mcnt; i++) {
1687 		qla_config_mac_addr(ha, mta, rsp->rx_rsp.cntxt_id, add_multi);
1688 		mta += Q8_MAC_ADDR_LEN;
1689 	}
1690 	return;
1691 }
1692 
1693 /*
1694  * Name: qla_hw_tx_done_locked
1695  * Function: Handle Transmit Completions
1696  */
1697 static void
1698 qla_hw_tx_done_locked(qla_host_t *ha)
1699 {
1700 	qla_tx_buf_t *txb;
1701         qla_hw_t *hw = &ha->hw;
1702 	uint32_t comp_idx, comp_count = 0;
1703 
1704 	/* retrieve index of last entry in tx ring completed */
1705 	comp_idx = qla_le32_to_host(*(hw->tx_cons));
1706 
1707 	while (comp_idx != hw->txr_comp) {
1708 
1709 		txb = &ha->tx_buf[hw->txr_comp];
1710 
1711 		hw->txr_comp++;
1712 		if (hw->txr_comp == NUM_TX_DESCRIPTORS)
1713 			hw->txr_comp = 0;
1714 
1715 		comp_count++;
1716 
1717 		if (txb->m_head) {
1718 			bus_dmamap_sync(ha->tx_tag, txb->map,
1719 				BUS_DMASYNC_POSTWRITE);
1720 			bus_dmamap_unload(ha->tx_tag, txb->map);
1721 			bus_dmamap_destroy(ha->tx_tag, txb->map);
1722 			m_freem(txb->m_head);
1723 
1724 			txb->map = (bus_dmamap_t)0;
1725 			txb->m_head = NULL;
1726 		}
1727 	}
1728 
1729 	hw->txr_free += comp_count;
1730 
1731        	QL_DPRINT8((ha->pci_dev, "%s: return [c,f, p, pn][%d, %d, %d, %d]\n", __func__,
1732 		hw->txr_comp, hw->txr_free, hw->txr_next, READ_REG32(ha, (ha->hw.tx_prod_reg + 0x1b2000))));
1733 
1734 	return;
1735 }
1736 
1737 /*
1738  * Name: qla_hw_tx_done
1739  * Function: Handle Transmit Completions
1740  */
1741 void
1742 qla_hw_tx_done(qla_host_t *ha)
1743 {
1744 	if (!mtx_trylock(&ha->tx_lock)) {
1745        		QL_DPRINT8((ha->pci_dev,
1746 			"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
1747 		return;
1748 	}
1749 	qla_hw_tx_done_locked(ha);
1750 
1751 	if (ha->hw.txr_free > free_pkt_thres)
1752 		ha->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1753 
1754 	mtx_unlock(&ha->tx_lock);
1755 	return;
1756 }
1757 
1758 void
1759 qla_update_link_state(qla_host_t *ha)
1760 {
1761 	uint32_t link_state;
1762 	uint32_t prev_link_state;
1763 
1764 	if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1765 		ha->hw.flags.link_up = 0;
1766 		return;
1767 	}
1768 	link_state = READ_REG32(ha, Q8_LINK_STATE);
1769 
1770 	prev_link_state =  ha->hw.flags.link_up;
1771 
1772 	if (ha->pci_func == 0)
1773 		ha->hw.flags.link_up = (((link_state & 0xF) == 1)? 1 : 0);
1774 	else
1775 		ha->hw.flags.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
1776 
1777 	if (prev_link_state !=  ha->hw.flags.link_up) {
1778 		if (ha->hw.flags.link_up) {
1779 			if_link_state_change(ha->ifp, LINK_STATE_UP);
1780 		} else {
1781 			if_link_state_change(ha->ifp, LINK_STATE_DOWN);
1782 		}
1783 	}
1784 }
1785 
1786 int
1787 qla_config_lro(qla_host_t *ha)
1788 {
1789 	int i;
1790         qla_hw_t *hw = &ha->hw;
1791 	struct lro_ctrl *lro;
1792 
1793 	for (i = 0; i < hw->num_sds_rings; i++) {
1794 		lro = &hw->sds[i].lro;
1795 		if (tcp_lro_init(lro)) {
1796 			device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1797 				__func__);
1798 			return (-1);
1799 		}
1800 		lro->ifp = ha->ifp;
1801 	}
1802 	ha->flags.lro_init = 1;
1803 
1804 	QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1805 	return (0);
1806 }
1807 
1808 void
1809 qla_free_lro(qla_host_t *ha)
1810 {
1811 	int i;
1812         qla_hw_t *hw = &ha->hw;
1813 	struct lro_ctrl *lro;
1814 
1815 	if (!ha->flags.lro_init)
1816 		return;
1817 
1818 	for (i = 0; i < hw->num_sds_rings; i++) {
1819 		lro = &hw->sds[i].lro;
1820 		tcp_lro_free(lro);
1821 	}
1822 	ha->flags.lro_init = 0;
1823 }
1824 
1825 void
1826 qla_hw_stop_rcv(qla_host_t *ha)
1827 {
1828 	int i, done, count = 100;
1829 
1830 	while (count--) {
1831 		done = 1;
1832 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1833 			if (ha->hw.sds[i].rcv_active)
1834 				done = 0;
1835 		}
1836 		if (done)
1837 			break;
1838 		else
1839 			qla_mdelay(__func__, 10);
1840 	}
1841 }
1842 
1843