xref: /freebsd/sys/dev/qlxgbe/ql_os.c (revision f56f82e0)
1 /*
2  * Copyright (c) 2013-2016 Qlogic Corporation
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File: ql_os.c
30  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 
37 #include "ql_os.h"
38 #include "ql_hw.h"
39 #include "ql_def.h"
40 #include "ql_inline.h"
41 #include "ql_ver.h"
42 #include "ql_glbl.h"
43 #include "ql_dbg.h"
44 #include <sys/smp.h>
45 
46 /*
47  * Some PCI Configuration Space Related Defines
48  */
49 
50 #ifndef PCI_VENDOR_QLOGIC
51 #define PCI_VENDOR_QLOGIC	0x1077
52 #endif
53 
54 #ifndef PCI_PRODUCT_QLOGIC_ISP8030
55 #define PCI_PRODUCT_QLOGIC_ISP8030	0x8030
56 #endif
57 
58 #define PCI_QLOGIC_ISP8030 \
59 	((PCI_PRODUCT_QLOGIC_ISP8030 << 16) | PCI_VENDOR_QLOGIC)
60 
61 /*
62  * static functions
63  */
64 static int qla_alloc_parent_dma_tag(qla_host_t *ha);
65 static void qla_free_parent_dma_tag(qla_host_t *ha);
66 static int qla_alloc_xmt_bufs(qla_host_t *ha);
67 static void qla_free_xmt_bufs(qla_host_t *ha);
68 static int qla_alloc_rcv_bufs(qla_host_t *ha);
69 static void qla_free_rcv_bufs(qla_host_t *ha);
70 static void qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb);
71 
72 static void qla_init_ifnet(device_t dev, qla_host_t *ha);
73 static int qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS);
74 static int qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS);
75 static void qla_release(qla_host_t *ha);
76 static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
77 		int error);
78 static void qla_stop(qla_host_t *ha);
79 static void qla_get_peer(qla_host_t *ha);
80 static void qla_error_recovery(void *context, int pending);
81 static void qla_async_event(void *context, int pending);
82 static int qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
83 		uint32_t iscsi_pdu);
84 
85 /*
86  * Hooks to the Operating Systems
87  */
88 static int qla_pci_probe (device_t);
89 static int qla_pci_attach (device_t);
90 static int qla_pci_detach (device_t);
91 
92 static void qla_init(void *arg);
93 static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
94 static int qla_media_change(struct ifnet *ifp);
95 static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
96 
97 static int qla_transmit(struct ifnet *ifp, struct mbuf  *mp);
98 static void qla_qflush(struct ifnet *ifp);
99 static int qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
100 static void qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
101 static int qla_create_fp_taskqueues(qla_host_t *ha);
102 static void qla_destroy_fp_taskqueues(qla_host_t *ha);
103 static void qla_drain_fp_taskqueues(qla_host_t *ha);
104 
105 static device_method_t qla_pci_methods[] = {
106 	/* Device interface */
107 	DEVMETHOD(device_probe, qla_pci_probe),
108 	DEVMETHOD(device_attach, qla_pci_attach),
109 	DEVMETHOD(device_detach, qla_pci_detach),
110 	{ 0, 0 }
111 };
112 
113 static driver_t qla_pci_driver = {
114 	"ql", qla_pci_methods, sizeof (qla_host_t),
115 };
116 
117 static devclass_t qla83xx_devclass;
118 
119 DRIVER_MODULE(qla83xx, pci, qla_pci_driver, qla83xx_devclass, 0, 0);
120 
121 MODULE_DEPEND(qla83xx, pci, 1, 1, 1);
122 MODULE_DEPEND(qla83xx, ether, 1, 1, 1);
123 
124 MALLOC_DEFINE(M_QLA83XXBUF, "qla83xxbuf", "Buffers for qla83xx driver");
125 
126 #define QL_STD_REPLENISH_THRES		0
127 #define QL_JUMBO_REPLENISH_THRES	32
128 
129 
130 static char dev_str[64];
131 static char ver_str[64];
132 
133 /*
134  * Name:	qla_pci_probe
135  * Function:	Validate the PCI device to be a QLA80XX device
136  */
137 static int
138 qla_pci_probe(device_t dev)
139 {
140         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
141         case PCI_QLOGIC_ISP8030:
142 		snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
143 			"Qlogic ISP 83xx PCI CNA Adapter-Ethernet Function",
144 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
145 			QLA_VERSION_BUILD);
146 		snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
147 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
148 			QLA_VERSION_BUILD);
149                 device_set_desc(dev, dev_str);
150                 break;
151         default:
152                 return (ENXIO);
153         }
154 
155         if (bootverbose)
156                 printf("%s: %s\n ", __func__, dev_str);
157 
158         return (BUS_PROBE_DEFAULT);
159 }
160 
161 static void
162 qla_add_sysctls(qla_host_t *ha)
163 {
164         device_t dev = ha->pci_dev;
165 
166 	SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
167 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
168 		OID_AUTO, "version", CTLFLAG_RD,
169 		ver_str, 0, "Driver Version");
170 
171         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
172                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
173                 OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW,
174                 (void *)ha, 0,
175                 qla_sysctl_get_stats, "I", "Statistics");
176 
177         SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
178                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
179                 OID_AUTO, "fw_version", CTLFLAG_RD,
180                 ha->fw_ver_str, 0, "firmware version");
181 
182         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
183                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
184                 OID_AUTO, "link_status", CTLTYPE_INT | CTLFLAG_RW,
185                 (void *)ha, 0,
186                 qla_sysctl_get_link_status, "I", "Link Status");
187 
188 	ha->dbg_level = 0;
189         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
190                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
191                 OID_AUTO, "debug", CTLFLAG_RW,
192                 &ha->dbg_level, ha->dbg_level, "Debug Level");
193 
194 	ha->std_replenish = QL_STD_REPLENISH_THRES;
195         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
196                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
197                 OID_AUTO, "std_replenish", CTLFLAG_RW,
198                 &ha->std_replenish, ha->std_replenish,
199                 "Threshold for Replenishing Standard Frames");
200 
201         SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
202                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
203                 OID_AUTO, "ipv4_lro",
204                 CTLFLAG_RD, &ha->ipv4_lro,
205                 "number of ipv4 lro completions");
206 
207         SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
208                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
209                 OID_AUTO, "ipv6_lro",
210                 CTLFLAG_RD, &ha->ipv6_lro,
211                 "number of ipv6 lro completions");
212 
213 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
214 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
215 		OID_AUTO, "tx_tso_frames",
216 		CTLFLAG_RD, &ha->tx_tso_frames,
217 		"number of Tx TSO Frames");
218 
219 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
220                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
221 		OID_AUTO, "hw_vlan_tx_frames",
222 		CTLFLAG_RD, &ha->hw_vlan_tx_frames,
223 		"number of Tx VLAN Frames");
224 
225         return;
226 }
227 
228 static void
229 qla_watchdog(void *arg)
230 {
231 	qla_host_t *ha = arg;
232 	qla_hw_t *hw;
233 	struct ifnet *ifp;
234 	uint32_t i;
235 
236 	hw = &ha->hw;
237 	ifp = ha->ifp;
238 
239         if (ha->flags.qla_watchdog_exit) {
240 		ha->qla_watchdog_exited = 1;
241 		return;
242 	}
243 	ha->qla_watchdog_exited = 0;
244 
245 	if (!ha->flags.qla_watchdog_pause) {
246 		if (ql_hw_check_health(ha) || ha->qla_initiate_recovery ||
247 			(ha->msg_from_peer == QL_PEER_MSG_RESET)) {
248 			ha->qla_watchdog_paused = 1;
249 			ha->flags.qla_watchdog_pause = 1;
250 			ha->qla_initiate_recovery = 0;
251 			ha->err_inject = 0;
252 			device_printf(ha->pci_dev,
253 				"%s: taskqueue_enqueue(err_task) \n", __func__);
254 			taskqueue_enqueue(ha->err_tq, &ha->err_task);
255 		} else if (ha->flags.qla_interface_up) {
256 
257                         if (ha->async_event) {
258                                 ha->async_event = 0;
259                                 taskqueue_enqueue(ha->async_event_tq,
260                                         &ha->async_event_task);
261                         }
262 
263 			for (i = 0; i < ha->hw.num_sds_rings; i++) {
264 				qla_tx_fp_t *fp = &ha->tx_fp[i];
265 
266 				if (fp->fp_taskqueue != NULL)
267 					taskqueue_enqueue(fp->fp_taskqueue,
268 						&fp->fp_task);
269 			}
270 
271 			ha->qla_watchdog_paused = 0;
272 		} else {
273 			ha->qla_watchdog_paused = 0;
274 		}
275 	} else {
276 		ha->qla_watchdog_paused = 1;
277 	}
278 
279 	ha->watchdog_ticks = ha->watchdog_ticks++ % 1000;
280 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
281 		qla_watchdog, ha);
282 }
283 
284 /*
285  * Name:	qla_pci_attach
286  * Function:	attaches the device to the operating system
287  */
288 static int
289 qla_pci_attach(device_t dev)
290 {
291 	qla_host_t *ha = NULL;
292 	uint32_t rsrc_len;
293 	int i;
294 	uint32_t num_rcvq = 0;
295 
296         if ((ha = device_get_softc(dev)) == NULL) {
297                 device_printf(dev, "cannot get softc\n");
298                 return (ENOMEM);
299         }
300 
301         memset(ha, 0, sizeof (qla_host_t));
302 
303         if (pci_get_device(dev) != PCI_PRODUCT_QLOGIC_ISP8030) {
304                 device_printf(dev, "device is not ISP8030\n");
305                 return (ENXIO);
306 	}
307 
308         ha->pci_func = pci_get_function(dev) & 0x1;
309 
310         ha->pci_dev = dev;
311 
312 	pci_enable_busmaster(dev);
313 
314 	ha->reg_rid = PCIR_BAR(0);
315 	ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
316 				RF_ACTIVE);
317 
318         if (ha->pci_reg == NULL) {
319                 device_printf(dev, "unable to map any ports\n");
320                 goto qla_pci_attach_err;
321         }
322 
323 	rsrc_len = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
324 					ha->reg_rid);
325 
326 	mtx_init(&ha->hw_lock, "qla83xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
327 
328 	qla_add_sysctls(ha);
329 	ql_hw_add_sysctls(ha);
330 
331 	ha->flags.lock_init = 1;
332 
333 	ha->reg_rid1 = PCIR_BAR(2);
334 	ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
335 			&ha->reg_rid1, RF_ACTIVE);
336 
337 	ha->msix_count = pci_msix_count(dev);
338 
339 	if (ha->msix_count < (ha->hw.num_sds_rings + 1)) {
340 		device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
341 			ha->msix_count);
342 		goto qla_pci_attach_err;
343 	}
344 
345 	QL_DPRINT2(ha, (dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
346 		" msix_count 0x%x pci_reg %p pci_reg1 %p\n", __func__, ha,
347 		ha->pci_func, rsrc_len, ha->msix_count, ha->pci_reg,
348 		ha->pci_reg1));
349 
350         /* initialize hardware */
351         if (ql_init_hw(ha)) {
352                 device_printf(dev, "%s: ql_init_hw failed\n", __func__);
353                 goto qla_pci_attach_err;
354         }
355 
356         device_printf(dev, "%s: firmware[%d.%d.%d.%d]\n", __func__,
357                 ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
358                 ha->fw_ver_build);
359         snprintf(ha->fw_ver_str, sizeof(ha->fw_ver_str), "%d.%d.%d.%d",
360                         ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
361                         ha->fw_ver_build);
362 
363         if (qla_get_nic_partition(ha, NULL, &num_rcvq)) {
364                 device_printf(dev, "%s: qla_get_nic_partition failed\n",
365                         __func__);
366                 goto qla_pci_attach_err;
367         }
368         device_printf(dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
369                 " msix_count 0x%x pci_reg %p pci_reg1 %p num_rcvq = %d\n",
370 		__func__, ha, ha->pci_func, rsrc_len, ha->msix_count,
371 		ha->pci_reg, ha->pci_reg1, num_rcvq);
372 
373 
374 #ifdef QL_ENABLE_ISCSI_TLV
375         if ((ha->msix_count  < 64) || (num_rcvq != 32)) {
376                 ha->hw.num_sds_rings = 15;
377                 ha->hw.num_tx_rings = ha->hw.num_sds_rings * 2;
378         }
379 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
380 	ha->hw.num_rds_rings = ha->hw.num_sds_rings;
381 
382 	ha->msix_count = ha->hw.num_sds_rings + 1;
383 
384 	if (pci_alloc_msix(dev, &ha->msix_count)) {
385 		device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
386 			ha->msix_count);
387 		ha->msix_count = 0;
388 		goto qla_pci_attach_err;
389 	}
390 
391 	ha->mbx_irq_rid = 1;
392 	ha->mbx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
393 				&ha->mbx_irq_rid,
394 				(RF_ACTIVE | RF_SHAREABLE));
395 	if (ha->mbx_irq == NULL) {
396 		device_printf(dev, "could not allocate mbx interrupt\n");
397 		goto qla_pci_attach_err;
398 	}
399 	if (bus_setup_intr(dev, ha->mbx_irq, (INTR_TYPE_NET | INTR_MPSAFE),
400 		NULL, ql_mbx_isr, ha, &ha->mbx_handle)) {
401 		device_printf(dev, "could not setup mbx interrupt\n");
402 		goto qla_pci_attach_err;
403 	}
404 
405 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
406 		ha->irq_vec[i].sds_idx = i;
407                 ha->irq_vec[i].ha = ha;
408                 ha->irq_vec[i].irq_rid = 2 + i;
409 
410 		ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
411 				&ha->irq_vec[i].irq_rid,
412 				(RF_ACTIVE | RF_SHAREABLE));
413 
414 		if (ha->irq_vec[i].irq == NULL) {
415 			device_printf(dev, "could not allocate interrupt\n");
416 			goto qla_pci_attach_err;
417 		}
418 		if (bus_setup_intr(dev, ha->irq_vec[i].irq,
419 			(INTR_TYPE_NET | INTR_MPSAFE),
420 			NULL, ql_isr, &ha->irq_vec[i],
421 			&ha->irq_vec[i].handle)) {
422 			device_printf(dev, "could not setup interrupt\n");
423 			goto qla_pci_attach_err;
424 		}
425 
426 		ha->tx_fp[i].ha = ha;
427 		ha->tx_fp[i].txr_idx = i;
428 
429 		if (qla_alloc_tx_br(ha, &ha->tx_fp[i])) {
430 			device_printf(dev, "%s: could not allocate tx_br[%d]\n",
431 				__func__, i);
432 			goto qla_pci_attach_err;
433 		}
434 	}
435 
436 	if (qla_create_fp_taskqueues(ha) != 0)
437 		goto qla_pci_attach_err;
438 
439 	printf("%s: mp__ncpus %d sds %d rds %d msi-x %d\n", __func__, mp_ncpus,
440 		ha->hw.num_sds_rings, ha->hw.num_rds_rings, ha->msix_count);
441 
442 	ql_read_mac_addr(ha);
443 
444 	/* allocate parent dma tag */
445 	if (qla_alloc_parent_dma_tag(ha)) {
446 		device_printf(dev, "%s: qla_alloc_parent_dma_tag failed\n",
447 			__func__);
448 		goto qla_pci_attach_err;
449 	}
450 
451 	/* alloc all dma buffers */
452 	if (ql_alloc_dma(ha)) {
453 		device_printf(dev, "%s: ql_alloc_dma failed\n", __func__);
454 		goto qla_pci_attach_err;
455 	}
456 	qla_get_peer(ha);
457 
458 	if (ql_minidump_init(ha) != 0) {
459 		device_printf(dev, "%s: ql_minidump_init failed\n", __func__);
460 		goto qla_pci_attach_err;
461 	}
462 	/* create the o.s ethernet interface */
463 	qla_init_ifnet(dev, ha);
464 
465 	ha->flags.qla_watchdog_active = 1;
466 	ha->flags.qla_watchdog_pause = 0;
467 
468 	callout_init(&ha->tx_callout, TRUE);
469 	ha->flags.qla_callout_init = 1;
470 
471 	/* create ioctl device interface */
472 	if (ql_make_cdev(ha)) {
473 		device_printf(dev, "%s: ql_make_cdev failed\n", __func__);
474 		goto qla_pci_attach_err;
475 	}
476 
477 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
478 		qla_watchdog, ha);
479 
480 	TASK_INIT(&ha->err_task, 0, qla_error_recovery, ha);
481 	ha->err_tq = taskqueue_create("qla_errq", M_NOWAIT,
482 			taskqueue_thread_enqueue, &ha->err_tq);
483 	taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
484 		device_get_nameunit(ha->pci_dev));
485 
486         TASK_INIT(&ha->async_event_task, 0, qla_async_event, ha);
487         ha->async_event_tq = taskqueue_create("qla_asyncq", M_NOWAIT,
488                         taskqueue_thread_enqueue, &ha->async_event_tq);
489         taskqueue_start_threads(&ha->async_event_tq, 1, PI_NET, "%s asyncq",
490                 device_get_nameunit(ha->pci_dev));
491 
492 	QL_DPRINT2(ha, (dev, "%s: exit 0\n", __func__));
493         return (0);
494 
495 qla_pci_attach_err:
496 
497 	qla_release(ha);
498 
499 	QL_DPRINT2(ha, (dev, "%s: exit ENXIO\n", __func__));
500         return (ENXIO);
501 }
502 
503 /*
504  * Name:	qla_pci_detach
505  * Function:	Unhooks the device from the operating system
506  */
507 static int
508 qla_pci_detach(device_t dev)
509 {
510 	qla_host_t *ha = NULL;
511 	struct ifnet *ifp;
512 
513 	QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
514 
515         if ((ha = device_get_softc(dev)) == NULL) {
516                 device_printf(dev, "cannot get softc\n");
517                 return (ENOMEM);
518         }
519 
520 	ifp = ha->ifp;
521 
522 	QLA_LOCK(ha);
523 	qla_stop(ha);
524 	QLA_UNLOCK(ha);
525 
526 	qla_release(ha);
527 
528 	QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
529 
530         return (0);
531 }
532 
533 /*
534  * SYSCTL Related Callbacks
535  */
536 static int
537 qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS)
538 {
539 	int err, ret = 0;
540 	qla_host_t *ha;
541 
542 	err = sysctl_handle_int(oidp, &ret, 0, req);
543 
544 	if (err || !req->newptr)
545 		return (err);
546 
547 	if (ret == 1) {
548 		ha = (qla_host_t *)arg1;
549 		ql_get_stats(ha);
550 	}
551 	return (err);
552 }
553 static int
554 qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS)
555 {
556 	int err, ret = 0;
557 	qla_host_t *ha;
558 
559 	err = sysctl_handle_int(oidp, &ret, 0, req);
560 
561 	if (err || !req->newptr)
562 		return (err);
563 
564 	if (ret == 1) {
565 		ha = (qla_host_t *)arg1;
566 		ql_hw_link_status(ha);
567 	}
568 	return (err);
569 }
570 
571 /*
572  * Name:	qla_release
573  * Function:	Releases the resources allocated for the device
574  */
575 static void
576 qla_release(qla_host_t *ha)
577 {
578 	device_t dev;
579 	int i;
580 
581 	dev = ha->pci_dev;
582 
583         if (ha->async_event_tq) {
584                 taskqueue_drain(ha->async_event_tq, &ha->async_event_task);
585                 taskqueue_free(ha->async_event_tq);
586         }
587 
588 	if (ha->err_tq) {
589 		taskqueue_drain(ha->err_tq, &ha->err_task);
590 		taskqueue_free(ha->err_tq);
591 	}
592 
593 	ql_del_cdev(ha);
594 
595 	if (ha->flags.qla_watchdog_active) {
596 		ha->flags.qla_watchdog_exit = 1;
597 
598 		while (ha->qla_watchdog_exited == 0)
599 			qla_mdelay(__func__, 1);
600 	}
601 
602 	if (ha->flags.qla_callout_init)
603 		callout_stop(&ha->tx_callout);
604 
605 	if (ha->ifp != NULL)
606 		ether_ifdetach(ha->ifp);
607 
608 	ql_free_dma(ha);
609 	qla_free_parent_dma_tag(ha);
610 
611 	if (ha->mbx_handle)
612 		(void)bus_teardown_intr(dev, ha->mbx_irq, ha->mbx_handle);
613 
614 	if (ha->mbx_irq)
615 		(void) bus_release_resource(dev, SYS_RES_IRQ, ha->mbx_irq_rid,
616 				ha->mbx_irq);
617 
618 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
619 
620 		if (ha->irq_vec[i].handle) {
621 			(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
622 					ha->irq_vec[i].handle);
623 		}
624 
625 		if (ha->irq_vec[i].irq) {
626 			(void)bus_release_resource(dev, SYS_RES_IRQ,
627 				ha->irq_vec[i].irq_rid,
628 				ha->irq_vec[i].irq);
629 		}
630 
631 		qla_free_tx_br(ha, &ha->tx_fp[i]);
632 	}
633 	qla_destroy_fp_taskqueues(ha);
634 
635 	if (ha->msix_count)
636 		pci_release_msi(dev);
637 
638 	if (ha->flags.lock_init) {
639 		mtx_destroy(&ha->hw_lock);
640 	}
641 
642         if (ha->pci_reg)
643                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
644 				ha->pci_reg);
645 
646         if (ha->pci_reg1)
647                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
648 				ha->pci_reg1);
649 }
650 
651 /*
652  * DMA Related Functions
653  */
654 
655 static void
656 qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
657 {
658         *((bus_addr_t *)arg) = 0;
659 
660         if (error) {
661                 printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
662                 return;
663 	}
664 
665         *((bus_addr_t *)arg) = segs[0].ds_addr;
666 
667 	return;
668 }
669 
670 int
671 ql_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
672 {
673         int             ret = 0;
674         device_t        dev;
675         bus_addr_t      b_addr;
676 
677         dev = ha->pci_dev;
678 
679         QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
680 
681         ret = bus_dma_tag_create(
682                         ha->parent_tag,/* parent */
683                         dma_buf->alignment,
684                         ((bus_size_t)(1ULL << 32)),/* boundary */
685                         BUS_SPACE_MAXADDR,      /* lowaddr */
686                         BUS_SPACE_MAXADDR,      /* highaddr */
687                         NULL, NULL,             /* filter, filterarg */
688                         dma_buf->size,          /* maxsize */
689                         1,                      /* nsegments */
690                         dma_buf->size,          /* maxsegsize */
691                         0,                      /* flags */
692                         NULL, NULL,             /* lockfunc, lockarg */
693                         &dma_buf->dma_tag);
694 
695         if (ret) {
696                 device_printf(dev, "%s: could not create dma tag\n", __func__);
697                 goto ql_alloc_dmabuf_exit;
698         }
699         ret = bus_dmamem_alloc(dma_buf->dma_tag,
700                         (void **)&dma_buf->dma_b,
701                         (BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
702                         &dma_buf->dma_map);
703         if (ret) {
704                 bus_dma_tag_destroy(dma_buf->dma_tag);
705                 device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
706                 goto ql_alloc_dmabuf_exit;
707         }
708 
709         ret = bus_dmamap_load(dma_buf->dma_tag,
710                         dma_buf->dma_map,
711                         dma_buf->dma_b,
712                         dma_buf->size,
713                         qla_dmamap_callback,
714                         &b_addr, BUS_DMA_NOWAIT);
715 
716         if (ret || !b_addr) {
717                 bus_dma_tag_destroy(dma_buf->dma_tag);
718                 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
719                         dma_buf->dma_map);
720                 ret = -1;
721                 goto ql_alloc_dmabuf_exit;
722         }
723 
724         dma_buf->dma_addr = b_addr;
725 
726 ql_alloc_dmabuf_exit:
727         QL_DPRINT2(ha, (dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
728                 __func__, ret, (void *)dma_buf->dma_tag,
729                 (void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
730 		dma_buf->size));
731 
732         return ret;
733 }
734 
735 void
736 ql_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
737 {
738 	bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
739         bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
740         bus_dma_tag_destroy(dma_buf->dma_tag);
741 }
742 
743 static int
744 qla_alloc_parent_dma_tag(qla_host_t *ha)
745 {
746 	int		ret;
747 	device_t	dev;
748 
749 	dev = ha->pci_dev;
750 
751         /*
752          * Allocate parent DMA Tag
753          */
754         ret = bus_dma_tag_create(
755                         bus_get_dma_tag(dev),   /* parent */
756                         1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
757                         BUS_SPACE_MAXADDR,      /* lowaddr */
758                         BUS_SPACE_MAXADDR,      /* highaddr */
759                         NULL, NULL,             /* filter, filterarg */
760                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
761                         0,                      /* nsegments */
762                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
763                         0,                      /* flags */
764                         NULL, NULL,             /* lockfunc, lockarg */
765                         &ha->parent_tag);
766 
767         if (ret) {
768                 device_printf(dev, "%s: could not create parent dma tag\n",
769                         __func__);
770 		return (-1);
771         }
772 
773         ha->flags.parent_tag = 1;
774 
775 	return (0);
776 }
777 
778 static void
779 qla_free_parent_dma_tag(qla_host_t *ha)
780 {
781         if (ha->flags.parent_tag) {
782                 bus_dma_tag_destroy(ha->parent_tag);
783                 ha->flags.parent_tag = 0;
784         }
785 }
786 
787 /*
788  * Name: qla_init_ifnet
789  * Function: Creates the Network Device Interface and Registers it with the O.S
790  */
791 
792 static void
793 qla_init_ifnet(device_t dev, qla_host_t *ha)
794 {
795 	struct ifnet *ifp;
796 
797 	QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
798 
799 	ifp = ha->ifp = if_alloc(IFT_ETHER);
800 
801 	if (ifp == NULL)
802 		panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
803 
804 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
805 
806 	ifp->if_baudrate = IF_Gbps(10);
807 	ifp->if_capabilities = IFCAP_LINKSTATE;
808 	ifp->if_mtu = ETHERMTU;
809 
810 	ifp->if_init = qla_init;
811 	ifp->if_softc = ha;
812 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
813 	ifp->if_ioctl = qla_ioctl;
814 
815 	ifp->if_transmit = qla_transmit;
816 	ifp->if_qflush = qla_qflush;
817 
818 	IFQ_SET_MAXLEN(&ifp->if_snd, qla_get_ifq_snd_maxlen(ha));
819 	ifp->if_snd.ifq_drv_maxlen = qla_get_ifq_snd_maxlen(ha);
820 	IFQ_SET_READY(&ifp->if_snd);
821 
822 	ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
823 
824 	ether_ifattach(ifp, qla_get_mac_addr(ha));
825 
826 	ifp->if_capabilities |= IFCAP_HWCSUM |
827 				IFCAP_TSO4 |
828 				IFCAP_JUMBO_MTU |
829 				IFCAP_VLAN_HWTAGGING |
830 				IFCAP_VLAN_MTU |
831 				IFCAP_VLAN_HWTSO |
832 				IFCAP_LRO;
833 
834 	ifp->if_capenable = ifp->if_capabilities;
835 
836 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
837 
838 	ifmedia_init(&ha->media, IFM_IMASK, qla_media_change, qla_media_status);
839 
840 	ifmedia_add(&ha->media, (IFM_ETHER | qla_get_optics(ha) | IFM_FDX), 0,
841 		NULL);
842 	ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
843 
844 	ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
845 
846 	QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
847 
848 	return;
849 }
850 
851 static void
852 qla_init_locked(qla_host_t *ha)
853 {
854 	struct ifnet *ifp = ha->ifp;
855 
856 	qla_stop(ha);
857 
858 	if (qla_alloc_xmt_bufs(ha) != 0)
859 		return;
860 
861 	qla_confirm_9kb_enable(ha);
862 
863 	if (qla_alloc_rcv_bufs(ha) != 0)
864 		return;
865 
866 	bcopy(IF_LLADDR(ha->ifp), ha->hw.mac_addr, ETHER_ADDR_LEN);
867 
868 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO;
869 
870 	ha->flags.stop_rcv = 0;
871  	if (ql_init_hw_if(ha) == 0) {
872 		ifp = ha->ifp;
873 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
874 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
875 		ha->flags.qla_watchdog_pause = 0;
876 		ha->hw_vlan_tx_frames = 0;
877 		ha->tx_tso_frames = 0;
878 		ha->flags.qla_interface_up = 1;
879 	}
880 
881 	return;
882 }
883 
884 static void
885 qla_init(void *arg)
886 {
887 	qla_host_t *ha;
888 
889 	ha = (qla_host_t *)arg;
890 
891 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
892 
893 	QLA_LOCK(ha);
894 	qla_init_locked(ha);
895 	QLA_UNLOCK(ha);
896 
897 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
898 }
899 
900 static int
901 qla_set_multi(qla_host_t *ha, uint32_t add_multi)
902 {
903 	uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
904 	struct ifmultiaddr *ifma;
905 	int mcnt = 0;
906 	struct ifnet *ifp = ha->ifp;
907 	int ret = 0;
908 
909 	if_maddr_rlock(ifp);
910 
911 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
912 
913 		if (ifma->ifma_addr->sa_family != AF_LINK)
914 			continue;
915 
916 		if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
917 			break;
918 
919 		bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
920 			&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
921 
922 		mcnt++;
923 	}
924 
925 	if_maddr_runlock(ifp);
926 
927 	QLA_LOCK(ha);
928 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
929 		ret = ql_hw_set_multi(ha, mta, mcnt, add_multi);
930 	}
931 	QLA_UNLOCK(ha);
932 
933 	return (ret);
934 }
935 
936 static int
937 qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
938 {
939 	int ret = 0;
940 	struct ifreq *ifr = (struct ifreq *)data;
941 	struct ifaddr *ifa = (struct ifaddr *)data;
942 	qla_host_t *ha;
943 
944 	ha = (qla_host_t *)ifp->if_softc;
945 
946 	switch (cmd) {
947 	case SIOCSIFADDR:
948 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
949 			__func__, cmd));
950 
951 		if (ifa->ifa_addr->sa_family == AF_INET) {
952 			ifp->if_flags |= IFF_UP;
953 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
954 				QLA_LOCK(ha);
955 				qla_init_locked(ha);
956 				QLA_UNLOCK(ha);
957 			}
958 			QL_DPRINT4(ha, (ha->pci_dev,
959 				"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
960 				__func__, cmd,
961 				ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
962 
963 			arp_ifinit(ifp, ifa);
964 		} else {
965 			ether_ioctl(ifp, cmd, data);
966 		}
967 		break;
968 
969 	case SIOCSIFMTU:
970 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
971 			__func__, cmd));
972 
973 		if (ifr->ifr_mtu > QLA_MAX_MTU) {
974 			ret = EINVAL;
975 		} else {
976 			QLA_LOCK(ha);
977 
978 			ifp->if_mtu = ifr->ifr_mtu;
979 			ha->max_frame_size =
980 				ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
981 
982 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
983 				ret = ql_set_max_mtu(ha, ha->max_frame_size,
984 					ha->hw.rcv_cntxt_id);
985 			}
986 
987 			if (ifp->if_mtu > ETHERMTU)
988 				ha->std_replenish = QL_JUMBO_REPLENISH_THRES;
989 			else
990 				ha->std_replenish = QL_STD_REPLENISH_THRES;
991 
992 
993 			QLA_UNLOCK(ha);
994 
995 			if (ret)
996 				ret = EINVAL;
997 		}
998 
999 		break;
1000 
1001 	case SIOCSIFFLAGS:
1002 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
1003 			__func__, cmd));
1004 
1005 		QLA_LOCK(ha);
1006 
1007 		if (ifp->if_flags & IFF_UP) {
1008 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1009 				if ((ifp->if_flags ^ ha->if_flags) &
1010 					IFF_PROMISC) {
1011 					ret = ql_set_promisc(ha);
1012 				} else if ((ifp->if_flags ^ ha->if_flags) &
1013 					IFF_ALLMULTI) {
1014 					ret = ql_set_allmulti(ha);
1015 				}
1016 			} else {
1017 				qla_init_locked(ha);
1018 				ha->max_frame_size = ifp->if_mtu +
1019 					ETHER_HDR_LEN + ETHER_CRC_LEN;
1020 				ret = ql_set_max_mtu(ha, ha->max_frame_size,
1021 					ha->hw.rcv_cntxt_id);
1022 			}
1023 		} else {
1024 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1025 				qla_stop(ha);
1026 			ha->if_flags = ifp->if_flags;
1027 		}
1028 
1029 		QLA_UNLOCK(ha);
1030 		break;
1031 
1032 	case SIOCADDMULTI:
1033 		QL_DPRINT4(ha, (ha->pci_dev,
1034 			"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
1035 
1036 		if (qla_set_multi(ha, 1))
1037 			ret = EINVAL;
1038 		break;
1039 
1040 	case SIOCDELMULTI:
1041 		QL_DPRINT4(ha, (ha->pci_dev,
1042 			"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
1043 
1044 		if (qla_set_multi(ha, 0))
1045 			ret = EINVAL;
1046 		break;
1047 
1048 	case SIOCSIFMEDIA:
1049 	case SIOCGIFMEDIA:
1050 		QL_DPRINT4(ha, (ha->pci_dev,
1051 			"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
1052 			__func__, cmd));
1053 		ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
1054 		break;
1055 
1056 	case SIOCSIFCAP:
1057 	{
1058 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1059 
1060 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
1061 			__func__, cmd));
1062 
1063 		if (mask & IFCAP_HWCSUM)
1064 			ifp->if_capenable ^= IFCAP_HWCSUM;
1065 		if (mask & IFCAP_TSO4)
1066 			ifp->if_capenable ^= IFCAP_TSO4;
1067 		if (mask & IFCAP_VLAN_HWTAGGING)
1068 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1069 		if (mask & IFCAP_VLAN_HWTSO)
1070 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1071 		if (mask & IFCAP_LRO)
1072 			ifp->if_capenable ^= IFCAP_LRO;
1073 
1074 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1075 			qla_init(ha);
1076 
1077 		VLAN_CAPABILITIES(ifp);
1078 		break;
1079 	}
1080 
1081 	default:
1082 		QL_DPRINT4(ha, (ha->pci_dev, "%s: default (0x%lx)\n",
1083 			__func__, cmd));
1084 		ret = ether_ioctl(ifp, cmd, data);
1085 		break;
1086 	}
1087 
1088 	return (ret);
1089 }
1090 
1091 static int
1092 qla_media_change(struct ifnet *ifp)
1093 {
1094 	qla_host_t *ha;
1095 	struct ifmedia *ifm;
1096 	int ret = 0;
1097 
1098 	ha = (qla_host_t *)ifp->if_softc;
1099 
1100 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1101 
1102 	ifm = &ha->media;
1103 
1104 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1105 		ret = EINVAL;
1106 
1107 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1108 
1109 	return (ret);
1110 }
1111 
1112 static void
1113 qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1114 {
1115 	qla_host_t *ha;
1116 
1117 	ha = (qla_host_t *)ifp->if_softc;
1118 
1119 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1120 
1121 	ifmr->ifm_status = IFM_AVALID;
1122 	ifmr->ifm_active = IFM_ETHER;
1123 
1124 	ql_update_link_state(ha);
1125 	if (ha->hw.link_up) {
1126 		ifmr->ifm_status |= IFM_ACTIVE;
1127 		ifmr->ifm_active |= (IFM_FDX | qla_get_optics(ha));
1128 	}
1129 
1130 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit (%s)\n", __func__,\
1131 		(ha->hw.link_up ? "link_up" : "link_down")));
1132 
1133 	return;
1134 }
1135 
1136 
1137 static int
1138 qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
1139 	uint32_t iscsi_pdu)
1140 {
1141 	bus_dma_segment_t	segs[QLA_MAX_SEGMENTS];
1142 	bus_dmamap_t		map;
1143 	int			nsegs;
1144 	int			ret = -1;
1145 	uint32_t		tx_idx;
1146 	struct mbuf		*m_head = *m_headp;
1147 
1148 	QL_DPRINT8(ha, (ha->pci_dev, "%s: enter\n", __func__));
1149 
1150 	tx_idx = ha->hw.tx_cntxt[txr_idx].txr_next;
1151 	map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
1152 
1153 	ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
1154 			BUS_DMA_NOWAIT);
1155 
1156 	if (ret == EFBIG) {
1157 
1158 		struct mbuf *m;
1159 
1160 		QL_DPRINT8(ha, (ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
1161 			m_head->m_pkthdr.len));
1162 
1163 		m = m_defrag(m_head, M_NOWAIT);
1164 		if (m == NULL) {
1165 			ha->err_tx_defrag++;
1166 			m_freem(m_head);
1167 			*m_headp = NULL;
1168 			device_printf(ha->pci_dev,
1169 				"%s: m_defrag() = NULL [%d]\n",
1170 				__func__, ret);
1171 			return (ENOBUFS);
1172 		}
1173 		m_head = m;
1174 		*m_headp = m_head;
1175 
1176 		if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
1177 					segs, &nsegs, BUS_DMA_NOWAIT))) {
1178 
1179 			ha->err_tx_dmamap_load++;
1180 
1181 			device_printf(ha->pci_dev,
1182 				"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
1183 				__func__, ret, m_head->m_pkthdr.len);
1184 
1185 			if (ret != ENOMEM) {
1186 				m_freem(m_head);
1187 				*m_headp = NULL;
1188 			}
1189 			return (ret);
1190 		}
1191 
1192 	} else if (ret) {
1193 
1194 		ha->err_tx_dmamap_load++;
1195 
1196 		device_printf(ha->pci_dev,
1197 			"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
1198 			__func__, ret, m_head->m_pkthdr.len);
1199 
1200 		if (ret != ENOMEM) {
1201 			m_freem(m_head);
1202 			*m_headp = NULL;
1203 		}
1204 		return (ret);
1205 	}
1206 
1207 	QL_ASSERT(ha, (nsegs != 0), ("qla_send: empty packet"));
1208 
1209 	bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
1210 
1211         if (!(ret = ql_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx,
1212 				iscsi_pdu))) {
1213 		ha->tx_ring[txr_idx].count++;
1214 		ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
1215 	} else {
1216 		if (ret == EINVAL) {
1217 			if (m_head)
1218 				m_freem(m_head);
1219 			*m_headp = NULL;
1220 		}
1221 	}
1222 
1223 	QL_DPRINT8(ha, (ha->pci_dev, "%s: exit\n", __func__));
1224 	return (ret);
1225 }
1226 
1227 static int
1228 qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
1229 {
1230         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
1231                 "qla%d_fp%d_tx_mq_lock", ha->pci_func, fp->txr_idx);
1232 
1233         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
1234 
1235         fp->tx_br = buf_ring_alloc(NUM_TX_DESCRIPTORS, M_DEVBUF,
1236                                    M_NOWAIT, &fp->tx_mtx);
1237         if (fp->tx_br == NULL) {
1238             QL_DPRINT1(ha, (ha->pci_dev, "buf_ring_alloc failed for "
1239                 " fp[%d, %d]\n", ha->pci_func, fp->txr_idx));
1240             return (-ENOMEM);
1241         }
1242         return 0;
1243 }
1244 
1245 static void
1246 qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
1247 {
1248         struct mbuf *mp;
1249         struct ifnet *ifp = ha->ifp;
1250 
1251         if (mtx_initialized(&fp->tx_mtx)) {
1252 
1253                 if (fp->tx_br != NULL) {
1254 
1255                         mtx_lock(&fp->tx_mtx);
1256 
1257                         while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
1258                                 m_freem(mp);
1259                         }
1260 
1261                         mtx_unlock(&fp->tx_mtx);
1262 
1263                         buf_ring_free(fp->tx_br, M_DEVBUF);
1264                         fp->tx_br = NULL;
1265                 }
1266                 mtx_destroy(&fp->tx_mtx);
1267         }
1268         return;
1269 }
1270 
1271 static void
1272 qla_fp_taskqueue(void *context, int pending)
1273 {
1274         qla_tx_fp_t *fp;
1275         qla_host_t *ha;
1276         struct ifnet *ifp;
1277         struct mbuf  *mp;
1278         int ret;
1279 	uint32_t txr_idx;
1280 	uint32_t iscsi_pdu = 0;
1281 	uint32_t rx_pkts_left;
1282 
1283         fp = context;
1284 
1285         if (fp == NULL)
1286                 return;
1287 
1288         ha = (qla_host_t *)fp->ha;
1289 
1290         ifp = ha->ifp;
1291 
1292 	txr_idx = fp->txr_idx;
1293 
1294         mtx_lock(&fp->tx_mtx);
1295 
1296         if (((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1297                 IFF_DRV_RUNNING) || (!ha->hw.link_up)) {
1298                 mtx_unlock(&fp->tx_mtx);
1299                 goto qla_fp_taskqueue_exit;
1300         }
1301 
1302 	rx_pkts_left = ql_rcv_isr(ha, fp->txr_idx, 64);
1303 
1304 #ifdef QL_ENABLE_ISCSI_TLV
1305 	ql_hw_tx_done_locked(ha, fp->txr_idx);
1306 	ql_hw_tx_done_locked(ha, (fp->txr_idx + (ha->hw.num_tx_rings >> 1)));
1307 	txr_idx = txr_idx + (ha->hw.num_tx_rings >> 1);
1308 #else
1309 	ql_hw_tx_done_locked(ha, fp->txr_idx);
1310 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
1311 
1312         mp = drbr_peek(ifp, fp->tx_br);
1313 
1314         while (mp != NULL) {
1315 
1316 		if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE) {
1317 #ifdef QL_ENABLE_ISCSI_TLV
1318 			if (ql_iscsi_pdu(ha, mp) == 0) {
1319 				iscsi_pdu = 1;
1320 			}
1321 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
1322 		}
1323 
1324 		ret = qla_send(ha, &mp, txr_idx, iscsi_pdu);
1325 
1326                 if (ret) {
1327                         if (mp != NULL)
1328                                 drbr_putback(ifp, fp->tx_br, mp);
1329                         else {
1330                                 drbr_advance(ifp, fp->tx_br);
1331                         }
1332 
1333                         mtx_unlock(&fp->tx_mtx);
1334 
1335                         goto qla_fp_taskqueue_exit0;
1336                 } else {
1337                         drbr_advance(ifp, fp->tx_br);
1338                 }
1339 
1340                 mp = drbr_peek(ifp, fp->tx_br);
1341         }
1342 
1343         mtx_unlock(&fp->tx_mtx);
1344 
1345 qla_fp_taskqueue_exit0:
1346 
1347 	if (rx_pkts_left || ((mp != NULL) && ret)) {
1348 		taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
1349 	} else {
1350 		if (!ha->flags.stop_rcv) {
1351 			QL_ENABLE_INTERRUPTS(ha, fp->txr_idx);
1352 		}
1353 	}
1354 
1355 qla_fp_taskqueue_exit:
1356 
1357         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
1358         return;
1359 }
1360 
1361 static int
1362 qla_create_fp_taskqueues(qla_host_t *ha)
1363 {
1364         int     i;
1365         uint8_t tq_name[32];
1366 
1367         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1368 
1369                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1370 
1371                 bzero(tq_name, sizeof (tq_name));
1372                 snprintf(tq_name, sizeof (tq_name), "ql_fp_tq_%d", i);
1373 
1374                 TASK_INIT(&fp->fp_task, 0, qla_fp_taskqueue, fp);
1375 
1376                 fp->fp_taskqueue = taskqueue_create_fast(tq_name, M_NOWAIT,
1377                                         taskqueue_thread_enqueue,
1378                                         &fp->fp_taskqueue);
1379 
1380                 if (fp->fp_taskqueue == NULL)
1381                         return (-1);
1382 
1383                 taskqueue_start_threads(&fp->fp_taskqueue, 1, PI_NET, "%s",
1384                         tq_name);
1385 
1386                 QL_DPRINT1(ha, (ha->pci_dev, "%s: %p\n", __func__,
1387                         fp->fp_taskqueue));
1388         }
1389 
1390         return (0);
1391 }
1392 
1393 static void
1394 qla_destroy_fp_taskqueues(qla_host_t *ha)
1395 {
1396         int     i;
1397 
1398         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1399 
1400                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1401 
1402                 if (fp->fp_taskqueue != NULL) {
1403                         taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
1404                         taskqueue_free(fp->fp_taskqueue);
1405                         fp->fp_taskqueue = NULL;
1406                 }
1407         }
1408         return;
1409 }
1410 
1411 static void
1412 qla_drain_fp_taskqueues(qla_host_t *ha)
1413 {
1414         int     i;
1415 
1416         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1417                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1418 
1419                 if (fp->fp_taskqueue != NULL) {
1420                         taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
1421                 }
1422         }
1423         return;
1424 }
1425 
1426 static int
1427 qla_transmit(struct ifnet *ifp, struct mbuf  *mp)
1428 {
1429 	qla_host_t *ha = (qla_host_t *)ifp->if_softc;
1430         qla_tx_fp_t *fp;
1431         int rss_id = 0;
1432         int ret = 0;
1433 
1434         QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1435 
1436 #if __FreeBSD_version >= 1100000
1437         if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE)
1438 #else
1439         if (mp->m_flags & M_FLOWID)
1440 #endif
1441                 rss_id = (mp->m_pkthdr.flowid & Q8_RSS_IND_TBL_MAX_IDX) %
1442                                         ha->hw.num_sds_rings;
1443         fp = &ha->tx_fp[rss_id];
1444 
1445         if (fp->tx_br == NULL) {
1446                 ret = EINVAL;
1447                 goto qla_transmit_exit;
1448         }
1449 
1450         if (mp != NULL) {
1451                 ret = drbr_enqueue(ifp, fp->tx_br, mp);
1452         }
1453 
1454         if (fp->fp_taskqueue != NULL)
1455                 taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
1456 
1457         ret = 0;
1458 
1459 qla_transmit_exit:
1460 
1461         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
1462         return ret;
1463 }
1464 
1465 static void
1466 qla_qflush(struct ifnet *ifp)
1467 {
1468         int                     i;
1469         qla_tx_fp_t		*fp;
1470         struct mbuf             *mp;
1471         qla_host_t              *ha;
1472 
1473         ha = (qla_host_t *)ifp->if_softc;
1474 
1475         QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1476 
1477         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1478 
1479                 fp = &ha->tx_fp[i];
1480 
1481                 if (fp == NULL)
1482                         continue;
1483 
1484                 if (fp->tx_br) {
1485                         mtx_lock(&fp->tx_mtx);
1486 
1487                         while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
1488                                 m_freem(mp);
1489                         }
1490                         mtx_unlock(&fp->tx_mtx);
1491                 }
1492         }
1493         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1494 
1495         return;
1496 }
1497 
1498 static void
1499 qla_stop(qla_host_t *ha)
1500 {
1501 	struct ifnet *ifp = ha->ifp;
1502 	device_t	dev;
1503 	int i = 0;
1504 
1505 	dev = ha->pci_dev;
1506 
1507 	ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1508 
1509         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1510         	qla_tx_fp_t *fp;
1511 
1512 		fp = &ha->tx_fp[i];
1513 
1514                 if (fp == NULL)
1515                         continue;
1516 
1517 		if (fp->tx_br != NULL) {
1518                         mtx_lock(&fp->tx_mtx);
1519                         mtx_unlock(&fp->tx_mtx);
1520 		}
1521 	}
1522 
1523 	ha->flags.qla_watchdog_pause = 1;
1524 
1525 	while (!ha->qla_watchdog_paused)
1526 		qla_mdelay(__func__, 1);
1527 
1528 	ha->flags.qla_interface_up = 0;
1529 
1530 	QLA_UNLOCK(ha);
1531 	qla_drain_fp_taskqueues(ha);
1532 	QLA_LOCK(ha);
1533 
1534 	ql_del_hw_if(ha);
1535 
1536 	qla_free_xmt_bufs(ha);
1537 	qla_free_rcv_bufs(ha);
1538 
1539 	return;
1540 }
1541 
1542 /*
1543  * Buffer Management Functions for Transmit and Receive Rings
1544  */
1545 static int
1546 qla_alloc_xmt_bufs(qla_host_t *ha)
1547 {
1548 	int ret = 0;
1549 	uint32_t i, j;
1550 	qla_tx_buf_t *txb;
1551 
1552 	if (bus_dma_tag_create(NULL,    /* parent */
1553 		1, 0,    /* alignment, bounds */
1554 		BUS_SPACE_MAXADDR,       /* lowaddr */
1555 		BUS_SPACE_MAXADDR,       /* highaddr */
1556 		NULL, NULL,      /* filter, filterarg */
1557 		QLA_MAX_TSO_FRAME_SIZE,     /* maxsize */
1558 		QLA_MAX_SEGMENTS,        /* nsegments */
1559 		PAGE_SIZE,        /* maxsegsize */
1560 		BUS_DMA_ALLOCNOW,        /* flags */
1561 		NULL,    /* lockfunc */
1562 		NULL,    /* lockfuncarg */
1563 		&ha->tx_tag)) {
1564 		device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n",
1565 			__func__);
1566 		return (ENOMEM);
1567 	}
1568 
1569 	for (i = 0; i < ha->hw.num_tx_rings; i++) {
1570 		bzero((void *)ha->tx_ring[i].tx_buf,
1571 			(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
1572 	}
1573 
1574 	for (j = 0; j < ha->hw.num_tx_rings; j++) {
1575 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++) {
1576 
1577 			txb = &ha->tx_ring[j].tx_buf[i];
1578 
1579 			if ((ret = bus_dmamap_create(ha->tx_tag,
1580 					BUS_DMA_NOWAIT, &txb->map))) {
1581 
1582 				ha->err_tx_dmamap_create++;
1583 				device_printf(ha->pci_dev,
1584 					"%s: bus_dmamap_create failed[%d]\n",
1585 					__func__, ret);
1586 
1587 				qla_free_xmt_bufs(ha);
1588 
1589 				return (ret);
1590 			}
1591 		}
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 /*
1598  * Release mbuf after it sent on the wire
1599  */
1600 static void
1601 qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
1602 {
1603 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1604 
1605 	if (txb->m_head && txb->map) {
1606 
1607 		bus_dmamap_unload(ha->tx_tag, txb->map);
1608 
1609 		m_freem(txb->m_head);
1610 		txb->m_head = NULL;
1611 	}
1612 
1613 	if (txb->map)
1614 		bus_dmamap_destroy(ha->tx_tag, txb->map);
1615 
1616 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1617 }
1618 
1619 static void
1620 qla_free_xmt_bufs(qla_host_t *ha)
1621 {
1622 	int		i, j;
1623 
1624 	for (j = 0; j < ha->hw.num_tx_rings; j++) {
1625 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
1626 			qla_clear_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
1627 	}
1628 
1629 	if (ha->tx_tag != NULL) {
1630 		bus_dma_tag_destroy(ha->tx_tag);
1631 		ha->tx_tag = NULL;
1632 	}
1633 
1634 	for (i = 0; i < ha->hw.num_tx_rings; i++) {
1635 		bzero((void *)ha->tx_ring[i].tx_buf,
1636 			(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
1637 	}
1638 	return;
1639 }
1640 
1641 
1642 static int
1643 qla_alloc_rcv_std(qla_host_t *ha)
1644 {
1645 	int		i, j, k, r, ret = 0;
1646 	qla_rx_buf_t	*rxb;
1647 	qla_rx_ring_t	*rx_ring;
1648 
1649 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1650 
1651 		rx_ring = &ha->rx_ring[r];
1652 
1653 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1654 
1655 			rxb = &rx_ring->rx_buf[i];
1656 
1657 			ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT,
1658 					&rxb->map);
1659 
1660 			if (ret) {
1661 				device_printf(ha->pci_dev,
1662 					"%s: dmamap[%d, %d] failed\n",
1663 					__func__, r, i);
1664 
1665 				for (k = 0; k < r; k++) {
1666 					for (j = 0; j < NUM_RX_DESCRIPTORS;
1667 						j++) {
1668 						rxb = &ha->rx_ring[k].rx_buf[j];
1669 						bus_dmamap_destroy(ha->rx_tag,
1670 							rxb->map);
1671 					}
1672 				}
1673 
1674 				for (j = 0; j < i; j++) {
1675 					bus_dmamap_destroy(ha->rx_tag,
1676 						rx_ring->rx_buf[j].map);
1677 				}
1678 				goto qla_alloc_rcv_std_err;
1679 			}
1680 		}
1681 	}
1682 
1683 	qla_init_hw_rcv_descriptors(ha);
1684 
1685 
1686 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1687 
1688 		rx_ring = &ha->rx_ring[r];
1689 
1690 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1691 			rxb = &rx_ring->rx_buf[i];
1692 			rxb->handle = i;
1693 			if (!(ret = ql_get_mbuf(ha, rxb, NULL))) {
1694 				/*
1695 			 	 * set the physical address in the
1696 				 * corresponding descriptor entry in the
1697 				 * receive ring/queue for the hba
1698 				 */
1699 				qla_set_hw_rcv_desc(ha, r, i, rxb->handle,
1700 					rxb->paddr,
1701 					(rxb->m_head)->m_pkthdr.len);
1702 			} else {
1703 				device_printf(ha->pci_dev,
1704 					"%s: ql_get_mbuf [%d, %d] failed\n",
1705 					__func__, r, i);
1706 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
1707 				goto qla_alloc_rcv_std_err;
1708 			}
1709 		}
1710 	}
1711 	return 0;
1712 
1713 qla_alloc_rcv_std_err:
1714 	return (-1);
1715 }
1716 
1717 static void
1718 qla_free_rcv_std(qla_host_t *ha)
1719 {
1720 	int		i, r;
1721 	qla_rx_buf_t	*rxb;
1722 
1723 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1724 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1725 			rxb = &ha->rx_ring[r].rx_buf[i];
1726 			if (rxb->m_head != NULL) {
1727 				bus_dmamap_unload(ha->rx_tag, rxb->map);
1728 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
1729 				m_freem(rxb->m_head);
1730 				rxb->m_head = NULL;
1731 			}
1732 		}
1733 	}
1734 	return;
1735 }
1736 
1737 static int
1738 qla_alloc_rcv_bufs(qla_host_t *ha)
1739 {
1740 	int		i, ret = 0;
1741 
1742 	if (bus_dma_tag_create(NULL,    /* parent */
1743 			1, 0,    /* alignment, bounds */
1744 			BUS_SPACE_MAXADDR,       /* lowaddr */
1745 			BUS_SPACE_MAXADDR,       /* highaddr */
1746 			NULL, NULL,      /* filter, filterarg */
1747 			MJUM9BYTES,     /* maxsize */
1748 			1,        /* nsegments */
1749 			MJUM9BYTES,        /* maxsegsize */
1750 			BUS_DMA_ALLOCNOW,        /* flags */
1751 			NULL,    /* lockfunc */
1752 			NULL,    /* lockfuncarg */
1753 			&ha->rx_tag)) {
1754 
1755 		device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n",
1756 			__func__);
1757 
1758 		return (ENOMEM);
1759 	}
1760 
1761 	bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
1762 
1763 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1764 		ha->hw.sds[i].sdsr_next = 0;
1765 		ha->hw.sds[i].rxb_free = NULL;
1766 		ha->hw.sds[i].rx_free = 0;
1767 	}
1768 
1769 	ret = qla_alloc_rcv_std(ha);
1770 
1771 	return (ret);
1772 }
1773 
1774 static void
1775 qla_free_rcv_bufs(qla_host_t *ha)
1776 {
1777 	int		i;
1778 
1779 	qla_free_rcv_std(ha);
1780 
1781 	if (ha->rx_tag != NULL) {
1782 		bus_dma_tag_destroy(ha->rx_tag);
1783 		ha->rx_tag = NULL;
1784 	}
1785 
1786 	bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
1787 
1788 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1789 		ha->hw.sds[i].sdsr_next = 0;
1790 		ha->hw.sds[i].rxb_free = NULL;
1791 		ha->hw.sds[i].rx_free = 0;
1792 	}
1793 
1794 	return;
1795 }
1796 
1797 int
1798 ql_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
1799 {
1800 	struct mbuf *mp = nmp;
1801 	struct ifnet   		*ifp;
1802 	int            		ret = 0;
1803 	uint32_t		offset;
1804 	bus_dma_segment_t	segs[1];
1805 	int			nsegs, mbuf_size;
1806 
1807 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1808 
1809 	ifp = ha->ifp;
1810 
1811         if (ha->hw.enable_9kb)
1812                 mbuf_size = MJUM9BYTES;
1813         else
1814                 mbuf_size = MCLBYTES;
1815 
1816 	if (mp == NULL) {
1817 
1818 		if (QL_ERR_INJECT(ha, INJCT_M_GETCL_M_GETJCL_FAILURE))
1819 			return(-1);
1820 
1821                 if (ha->hw.enable_9kb)
1822                         mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, mbuf_size);
1823                 else
1824                         mp = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1825 
1826 		if (mp == NULL) {
1827 			ha->err_m_getcl++;
1828 			ret = ENOBUFS;
1829 			device_printf(ha->pci_dev,
1830 					"%s: m_getcl failed\n", __func__);
1831 			goto exit_ql_get_mbuf;
1832 		}
1833 		mp->m_len = mp->m_pkthdr.len = mbuf_size;
1834 	} else {
1835 		mp->m_len = mp->m_pkthdr.len = mbuf_size;
1836 		mp->m_data = mp->m_ext.ext_buf;
1837 		mp->m_next = NULL;
1838 	}
1839 
1840 	offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
1841 	if (offset) {
1842 		offset = 8 - offset;
1843 		m_adj(mp, offset);
1844 	}
1845 
1846 	/*
1847 	 * Using memory from the mbuf cluster pool, invoke the bus_dma
1848 	 * machinery to arrange the memory mapping.
1849 	 */
1850 	ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
1851 			mp, segs, &nsegs, BUS_DMA_NOWAIT);
1852 	rxb->paddr = segs[0].ds_addr;
1853 
1854 	if (ret || !rxb->paddr || (nsegs != 1)) {
1855 		m_free(mp);
1856 		rxb->m_head = NULL;
1857 		device_printf(ha->pci_dev,
1858 			"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
1859 			__func__, ret, (long long unsigned int)rxb->paddr,
1860 			nsegs);
1861                 ret = -1;
1862 		goto exit_ql_get_mbuf;
1863 	}
1864 	rxb->m_head = mp;
1865 	bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
1866 
1867 exit_ql_get_mbuf:
1868 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
1869 	return (ret);
1870 }
1871 
1872 
1873 static void
1874 qla_get_peer(qla_host_t *ha)
1875 {
1876 	device_t *peers;
1877 	int count, i, slot;
1878 	int my_slot = pci_get_slot(ha->pci_dev);
1879 
1880 	if (device_get_children(device_get_parent(ha->pci_dev), &peers, &count))
1881 		return;
1882 
1883 	for (i = 0; i < count; i++) {
1884 		slot = pci_get_slot(peers[i]);
1885 
1886 		if ((slot >= 0) && (slot == my_slot) &&
1887 			(pci_get_device(peers[i]) ==
1888 				pci_get_device(ha->pci_dev))) {
1889 			if (ha->pci_dev != peers[i])
1890 				ha->peer_dev = peers[i];
1891 		}
1892 	}
1893 }
1894 
1895 static void
1896 qla_send_msg_to_peer(qla_host_t *ha, uint32_t msg_to_peer)
1897 {
1898 	qla_host_t *ha_peer;
1899 
1900 	if (ha->peer_dev) {
1901         	if ((ha_peer = device_get_softc(ha->peer_dev)) != NULL) {
1902 
1903 			ha_peer->msg_from_peer = msg_to_peer;
1904 		}
1905 	}
1906 }
1907 
1908 static void
1909 qla_error_recovery(void *context, int pending)
1910 {
1911 	qla_host_t *ha = context;
1912 	uint32_t msecs_100 = 100;
1913 	struct ifnet *ifp = ha->ifp;
1914 	int i = 0;
1915 
1916         QLA_LOCK(ha);
1917 
1918 	if (ha->flags.qla_interface_up) {
1919 
1920 		ha->hw.imd_compl = 1;
1921 		qla_mdelay(__func__, 300);
1922 
1923 	        ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1924 
1925 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1926 	        	qla_tx_fp_t *fp;
1927 
1928 			fp = &ha->tx_fp[i];
1929 
1930 			if (fp == NULL)
1931 				continue;
1932 
1933 			if (fp->tx_br != NULL) {
1934 				mtx_lock(&fp->tx_mtx);
1935 				mtx_unlock(&fp->tx_mtx);
1936 			}
1937 		}
1938 	}
1939 
1940         QLA_UNLOCK(ha);
1941 
1942 	qla_drain_fp_taskqueues(ha);
1943 
1944 	if ((ha->pci_func & 0x1) == 0) {
1945 
1946 		if (!ha->msg_from_peer) {
1947 			qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
1948 
1949 			while ((ha->msg_from_peer != QL_PEER_MSG_ACK) &&
1950 				msecs_100--)
1951 				qla_mdelay(__func__, 100);
1952 		}
1953 
1954 		ha->msg_from_peer = 0;
1955 
1956         	QLA_LOCK(ha);
1957 
1958 		ql_minidump(ha);
1959 
1960         	QLA_UNLOCK(ha);
1961 
1962 		(void) ql_init_hw(ha);
1963 
1964         	QLA_LOCK(ha);
1965 
1966 		if (ha->flags.qla_interface_up) {
1967 			qla_free_xmt_bufs(ha);
1968 			qla_free_rcv_bufs(ha);
1969 		}
1970 
1971         	QLA_UNLOCK(ha);
1972 
1973 		qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
1974 
1975 	} else {
1976 		if (ha->msg_from_peer == QL_PEER_MSG_RESET) {
1977 
1978 			ha->msg_from_peer = 0;
1979 
1980 			qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
1981 		} else {
1982 			qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
1983 		}
1984 
1985 		while ((ha->msg_from_peer != QL_PEER_MSG_ACK)  && msecs_100--)
1986 			qla_mdelay(__func__, 100);
1987 		ha->msg_from_peer = 0;
1988 
1989 		(void) ql_init_hw(ha);
1990 
1991         	QLA_LOCK(ha);
1992 
1993 		if (ha->flags.qla_interface_up) {
1994 			qla_free_xmt_bufs(ha);
1995 			qla_free_rcv_bufs(ha);
1996 		}
1997 
1998         	QLA_UNLOCK(ha);
1999 	}
2000 
2001         QLA_LOCK(ha);
2002 
2003 	if (ha->flags.qla_interface_up) {
2004 
2005 		if (qla_alloc_xmt_bufs(ha) != 0) {
2006 			QLA_UNLOCK(ha);
2007 			return;
2008 		}
2009 		qla_confirm_9kb_enable(ha);
2010 
2011 		if (qla_alloc_rcv_bufs(ha) != 0) {
2012 			QLA_UNLOCK(ha);
2013 			return;
2014 		}
2015 
2016 		ha->flags.stop_rcv = 0;
2017 
2018 		if (ql_init_hw_if(ha) == 0) {
2019 			ifp = ha->ifp;
2020 			ifp->if_drv_flags |= IFF_DRV_RUNNING;
2021 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2022 			ha->flags.qla_watchdog_pause = 0;
2023 		}
2024 	} else
2025 		ha->flags.qla_watchdog_pause = 0;
2026 
2027         QLA_UNLOCK(ha);
2028 }
2029 
2030 static void
2031 qla_async_event(void *context, int pending)
2032 {
2033         qla_host_t *ha = context;
2034 
2035         QLA_LOCK(ha);
2036         qla_hw_async_event(ha);
2037         QLA_UNLOCK(ha);
2038 }
2039 
2040