xref: /freebsd/sys/dev/random/fortuna.c (revision 4b9d6057)
1 /*-
2  * Copyright (c) 2017 W. Dean Freeman
3  * Copyright (c) 2013-2015 Mark R V Murray
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer
11  *    in this position and unchanged.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 /*
30  * This implementation of Fortuna is based on the descriptions found in
31  * ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier
32  * and Kohno ("FS&K").
33  */
34 
35 #include <sys/param.h>
36 #include <sys/limits.h>
37 
38 #ifdef _KERNEL
39 #include <sys/fail.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/random.h>
45 #include <sys/sdt.h>
46 #include <sys/sysctl.h>
47 #include <sys/systm.h>
48 
49 #include <machine/cpu.h>
50 #else /* !_KERNEL */
51 #include <inttypes.h>
52 #include <stdbool.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <threads.h>
57 
58 #include "unit_test.h"
59 #endif /* _KERNEL */
60 
61 #include <crypto/chacha20/chacha.h>
62 #include <crypto/rijndael/rijndael-api-fst.h>
63 #include <crypto/sha2/sha256.h>
64 
65 #include <dev/random/hash.h>
66 #include <dev/random/randomdev.h>
67 #ifdef _KERNEL
68 #include <dev/random/random_harvestq.h>
69 #endif
70 #include <dev/random/uint128.h>
71 #include <dev/random/fortuna.h>
72 
73 /* Defined in FS&K */
74 #define	RANDOM_FORTUNA_NPOOLS 32		/* The number of accumulation pools */
75 #define	RANDOM_FORTUNA_DEFPOOLSIZE 64		/* The default pool size/length for a (re)seed */
76 #define	RANDOM_FORTUNA_MAX_READ (1 << 20)	/* Max bytes from AES before rekeying */
77 #define	RANDOM_FORTUNA_BLOCKS_PER_KEY (1 << 16)	/* Max blocks from AES before rekeying */
78 CTASSERT(RANDOM_FORTUNA_BLOCKS_PER_KEY * RANDOM_BLOCKSIZE ==
79     RANDOM_FORTUNA_MAX_READ);
80 
81 /*
82  * The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above.
83  * Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds,
84  * and too small may compromise initial security but get faster reseeds.
85  */
86 #define	RANDOM_FORTUNA_MINPOOLSIZE 16
87 #define	RANDOM_FORTUNA_MAXPOOLSIZE INT_MAX
88 CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE);
89 CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE);
90 
91 /* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */
92 CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t));
93 CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE);
94 
95 /* Probes for dtrace(1) */
96 #ifdef _KERNEL
97 SDT_PROVIDER_DECLARE(random);
98 SDT_PROVIDER_DEFINE(random);
99 SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *");
100 #endif /* _KERNEL */
101 
102 /*
103  * This is the beastie that needs protecting. It contains all of the
104  * state that we are excited about. Exactly one is instantiated.
105  */
106 static struct fortuna_state {
107 	struct fs_pool {		/* P_i */
108 		u_int fsp_length;	/* Only the first one is used by Fortuna */
109 		struct randomdev_hash fsp_hash;
110 	} fs_pool[RANDOM_FORTUNA_NPOOLS];
111 	u_int fs_reseedcount;		/* ReseedCnt */
112 	uint128_t fs_counter;		/* C */
113 	union randomdev_key fs_key;	/* K */
114 	u_int fs_minpoolsize;		/* Extras */
115 	/* Extras for the OS */
116 #ifdef _KERNEL
117 	/* For use when 'pacing' the reseeds */
118 	sbintime_t fs_lasttime;
119 #endif
120 	/* Reseed lock */
121 	mtx_t fs_mtx;
122 } fortuna_state;
123 
124 /*
125  * This knob enables or disables the "Concurrent Reads" Fortuna feature.
126  *
127  * The benefit of Concurrent Reads is improved concurrency in Fortuna.  That is
128  * reflected in two related aspects:
129  *
130  * 1. Concurrent full-rate devrandom readers can achieve similar throughput to
131  *    a single reader thread (at least up to a modest number of cores; the
132  *    non-concurrent design falls over at 2 readers).
133  *
134  * 2. The rand_harvestq process spends much less time spinning when one or more
135  *    readers is processing a large request.  Partially this is due to
136  *    rand_harvestq / ra_event_processor design, which only passes one event at
137  *    a time to the underlying algorithm.  Each time, Fortuna must take its
138  *    global state mutex, potentially blocking on a reader.  Our adaptive
139  *    mutexes assume that a lock holder currently on CPU will release the lock
140  *    quickly, and spin if the owning thread is currently running.
141  *
142  *    (There is no reason rand_harvestq necessarily has to use the same lock as
143  *    the generator, or that it must necessarily drop and retake locks
144  *    repeatedly, but that is the current status quo.)
145  *
146  * The concern is that the reduced lock scope might results in a less safe
147  * random(4) design.  However, the reduced-lock scope design is still
148  * fundamentally Fortuna.  This is discussed below.
149  *
150  * Fortuna Read() only needs mutual exclusion between readers to correctly
151  * update the shared read-side state: C, the 128-bit counter; and K, the
152  * current cipher/PRF key.
153  *
154  * In the Fortuna design, the global counter C should provide an independent
155  * range of values per request.
156  *
157  * Under lock, we can save a copy of C on the stack, and increment the global C
158  * by the number of blocks a Read request will require.
159  *
160  * Still under lock, we can save a copy of the key K on the stack, and then
161  * perform the usual key erasure K' <- Keystream(C, K, ...).  This does require
162  * generating 256 bits (32 bytes) of cryptographic keystream output with the
163  * global lock held, but that's all; none of the API keystream generation must
164  * be performed under lock.
165  *
166  * At this point, we may unlock.
167  *
168  * Some example timelines below (to oversimplify, all requests are in units of
169  * native blocks, and the keysize happens to be equal or less to the native
170  * blocksize of the underlying cipher, and the same sequence of two requests
171  * arrive in the same order).  The possibly expensive consumer keystream
172  * generation portion is marked with '**'.
173  *
174  * Status Quo fortuna_read()           Reduced-scope locking
175  * -------------------------           ---------------------
176  * C=C_0, K=K_0                        C=C_0, K=K_0
177  * <Thr 1 requests N blocks>           <Thr 1 requests N blocks>
178  * 1:Lock()                            1:Lock()
179  * <Thr 2 requests M blocks>           <Thr 2 requests M blocks>
180  * 1:GenBytes()                        1:stack_C := C_0
181  * 1:  Keystream(C_0, K_0, N)          1:stack_K := K_0
182  * 1:    <N blocks generated>**        1:C' := C_0 + N
183  * 1:    C' := C_0 + N                 1:K' := Keystream(C', K_0, 1)
184  * 1:    <- Keystream                  1:  <1 block generated>
185  * 1:  K' := Keystream(C', K_0, 1)     1:  C'' := C' + 1
186  * 1:    <1 block generated>           1:  <- Keystream
187  * 1:    C'' := C' + 1                 1:Unlock()
188  * 1:    <- Keystream
189  * 1:  <- GenBytes()
190  * 1:Unlock()
191  *
192  * Just prior to unlock, shared state is identical:
193  * ------------------------------------------------
194  * C'' == C_0 + N + 1                  C'' == C_0 + N + 1
195  * K' == keystream generated from      K' == keystream generated from
196  *       C_0 + N, K_0.                       C_0 + N, K_0.
197  * K_0 has been erased.                K_0 has been erased.
198  *
199  * After both designs unlock, the 2nd reader is unblocked.
200  *
201  * 2:Lock()                            2:Lock()
202  * 2:GenBytes()                        2:stack_C' := C''
203  * 2:  Keystream(C'', K', M)           2:stack_K' := K'
204  * 2:    <M blocks generated>**        2:C''' := C'' + M
205  * 2:    C''' := C'' + M               2:K'' := Keystream(C''', K', 1)
206  * 2:    <- Keystream                  2:  <1 block generated>
207  * 2:  K'' := Keystream(C''', K', 1)   2:  C'''' := C''' + 1
208  * 2:    <1 block generated>           2:  <- Keystream
209  * 2:    C'''' := C''' + 1             2:Unlock()
210  * 2:    <- Keystream
211  * 2:  <- GenBytes()
212  * 2:Unlock()
213  *
214  * Just prior to unlock, global state is identical:
215  * ------------------------------------------------------
216  *
217  * C'''' == (C_0 + N + 1) + M + 1      C'''' == (C_0 + N + 1) + M + 1
218  * K'' == keystream generated from     K'' == keystream generated from
219  *        C_0 + N + 1 + M, K'.                C_0 + N + 1 + M, K'.
220  * K' has been erased.                 K' has been erased.
221  *
222  * Finally, in the new design, the two consumer threads can finish the
223  * remainder of the generation at any time (including simultaneously):
224  *
225  *                                     1:  GenBytes()
226  *                                     1:    Keystream(stack_C, stack_K, N)
227  *                                     1:      <N blocks generated>**
228  *                                     1:    <- Keystream
229  *                                     1:  <- GenBytes
230  *                                     1:ExplicitBzero(stack_C, stack_K)
231  *
232  *                                     2:  GenBytes()
233  *                                     2:    Keystream(stack_C', stack_K', M)
234  *                                     2:      <M blocks generated>**
235  *                                     2:    <- Keystream
236  *                                     2:  <- GenBytes
237  *                                     2:ExplicitBzero(stack_C', stack_K')
238  *
239  * The generated user keystream for both threads is identical between the two
240  * implementations:
241  *
242  * 1: Keystream(C_0, K_0, N)           1: Keystream(stack_C, stack_K, N)
243  * 2: Keystream(C'', K', M)            2: Keystream(stack_C', stack_K', M)
244  *
245  * (stack_C == C_0; stack_K == K_0; stack_C' == C''; stack_K' == K'.)
246  */
247 static bool fortuna_concurrent_read __read_frequently = true;
248 
249 #ifdef _KERNEL
250 static struct sysctl_ctx_list random_clist;
251 RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE);
252 #else
253 static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE];
254 #endif
255 
256 static void random_fortuna_pre_read(void);
257 static void random_fortuna_read(uint8_t *, size_t);
258 static bool random_fortuna_seeded(void);
259 static bool random_fortuna_seeded_internal(void);
260 static void random_fortuna_process_event(struct harvest_event *);
261 
262 static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount);
263 
264 #ifdef RANDOM_LOADABLE
265 static
266 #endif
267 const struct random_algorithm random_alg_context = {
268 	.ra_ident = "Fortuna",
269 	.ra_pre_read = random_fortuna_pre_read,
270 	.ra_read = random_fortuna_read,
271 	.ra_seeded = random_fortuna_seeded,
272 	.ra_event_processor = random_fortuna_process_event,
273 	.ra_poolcount = RANDOM_FORTUNA_NPOOLS,
274 };
275 
276 /* ARGSUSED */
277 static void
278 random_fortuna_init_alg(void *unused __unused)
279 {
280 	int i;
281 #ifdef _KERNEL
282 	struct sysctl_oid *random_fortuna_o;
283 #endif
284 
285 #ifdef RANDOM_LOADABLE
286 	p_random_alg_context = &random_alg_context;
287 #endif
288 
289 	RANDOM_RESEED_INIT_LOCK();
290 	/*
291 	 * Fortuna parameters. Do not adjust these unless you have
292 	 * have a very good clue about what they do!
293 	 */
294 	fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE;
295 #ifdef _KERNEL
296 	fortuna_state.fs_lasttime = 0;
297 	random_fortuna_o = SYSCTL_ADD_NODE(&random_clist,
298 		SYSCTL_STATIC_CHILDREN(_kern_random),
299 		OID_AUTO, "fortuna", CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
300 		"Fortuna Parameters");
301 	SYSCTL_ADD_PROC(&random_clist,
302 	    SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO, "minpoolsize",
303 	    CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
304 	    &fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE,
305 	    random_check_uint_fs_minpoolsize, "IU",
306 	    "Minimum pool size necessary to cause a reseed");
307 	KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup"));
308 
309 	SYSCTL_ADD_BOOL(&random_clist, SYSCTL_CHILDREN(random_fortuna_o),
310 	    OID_AUTO, "concurrent_read", CTLFLAG_RDTUN,
311 	    &fortuna_concurrent_read, 0, "If non-zero, enable "
312 	    "feature to improve concurrent Fortuna performance.");
313 #endif
314 
315 	/*-
316 	 * FS&K - InitializePRNG()
317 	 *      - P_i = \epsilon
318 	 *      - ReseedCNT = 0
319 	 */
320 	for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
321 		randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
322 		fortuna_state.fs_pool[i].fsp_length = 0;
323 	}
324 	fortuna_state.fs_reseedcount = 0;
325 	/*-
326 	 * FS&K - InitializeGenerator()
327 	 *      - C = 0
328 	 *      - K = 0
329 	 */
330 	fortuna_state.fs_counter = UINT128_ZERO;
331 	explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
332 }
333 SYSINIT(random_alg, SI_SUB_RANDOM, SI_ORDER_SECOND, random_fortuna_init_alg,
334     NULL);
335 
336 /*-
337  * FS&K - AddRandomEvent()
338  * Process a single stochastic event off the harvest queue
339  */
340 static void
341 random_fortuna_process_event(struct harvest_event *event)
342 {
343 	u_int pl;
344 
345 	RANDOM_RESEED_LOCK();
346 	/*-
347 	 * FS&K - P_i = P_i|<harvested stuff>
348 	 * Accumulate the event into the appropriate pool
349 	 * where each event carries the destination information.
350 	 *
351 	 * The hash_init() and hash_finish() calls are done in
352 	 * random_fortuna_pre_read().
353 	 *
354 	 * We must be locked against pool state modification which can happen
355 	 * during accumulation/reseeding and reading/regating.
356 	 */
357 	pl = event->he_destination % RANDOM_FORTUNA_NPOOLS;
358 	/*
359 	 * If a VM generation ID changes (clone and play or VM rewind), we want
360 	 * to incorporate that as soon as possible.  Override destingation pool
361 	 * for immediate next use.
362 	 */
363 	if (event->he_source == RANDOM_PURE_VMGENID)
364 		pl = 0;
365 	/*
366 	 * We ignore low entropy static/counter fields towards the end of the
367 	 * he_event structure in order to increase measurable entropy when
368 	 * conducting SP800-90B entropy analysis measurements of seed material
369 	 * fed into PRNG.
370 	 * -- wdf
371 	 */
372 	KASSERT(event->he_size <= sizeof(event->he_entropy),
373 	    ("%s: event->he_size: %hhu > sizeof(event->he_entropy): %zu\n",
374 	    __func__, event->he_size, sizeof(event->he_entropy)));
375 	randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
376 	    &event->he_somecounter, sizeof(event->he_somecounter));
377 	randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
378 	    event->he_entropy, event->he_size);
379 
380 	/*-
381 	 * Don't wrap the length.  This is a "saturating" add.
382 	 * XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0],
383 	 * but it's been useful debugging to see them all.
384 	 */
385 	fortuna_state.fs_pool[pl].fsp_length = MIN(RANDOM_FORTUNA_MAXPOOLSIZE,
386 	    fortuna_state.fs_pool[pl].fsp_length +
387 	    sizeof(event->he_somecounter) + event->he_size);
388 	RANDOM_RESEED_UNLOCK();
389 }
390 
391 /*-
392  * FS&K - Reseed()
393  * This introduces new key material into the output generator.
394  * Additionally it increments the output generator's counter
395  * variable C. When C > 0, the output generator is seeded and
396  * will deliver output.
397  * The entropy_data buffer passed is a very specific size; the
398  * product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE.
399  */
400 static void
401 random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount)
402 {
403 	struct randomdev_hash context;
404 	uint8_t hash[RANDOM_KEYSIZE];
405 	const void *keymaterial;
406 	size_t keysz;
407 	bool seeded;
408 
409 	RANDOM_RESEED_ASSERT_LOCK_OWNED();
410 
411 	seeded = random_fortuna_seeded_internal();
412 	if (seeded) {
413 		randomdev_getkey(&fortuna_state.fs_key, &keymaterial, &keysz);
414 		KASSERT(keysz == RANDOM_KEYSIZE, ("%s: key size %zu not %u",
415 			__func__, keysz, (unsigned)RANDOM_KEYSIZE));
416 	}
417 
418 	/*-
419 	 * FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m))
420 	 *      - C = C + 1
421 	 */
422 	randomdev_hash_init(&context);
423 	randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE);
424 	if (seeded)
425 		randomdev_hash_iterate(&context, keymaterial, keysz);
426 	randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount);
427 	randomdev_hash_finish(&context, hash);
428 	randomdev_hash_init(&context);
429 	randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE);
430 	randomdev_hash_finish(&context, hash);
431 	randomdev_encrypt_init(&fortuna_state.fs_key, hash);
432 	explicit_bzero(hash, sizeof(hash));
433 	/* Unblock the device if this is the first time we are reseeding. */
434 	if (uint128_is_zero(fortuna_state.fs_counter))
435 		randomdev_unblock();
436 	uint128_increment(&fortuna_state.fs_counter);
437 }
438 
439 /*-
440  * FS&K - RandomData() (Part 1)
441  * Used to return processed entropy from the PRNG. There is a pre_read
442  * required to be present (but it can be a stub) in order to allow
443  * specific actions at the begin of the read.
444  */
445 void
446 random_fortuna_pre_read(void)
447 {
448 #ifdef _KERNEL
449 	sbintime_t now;
450 #endif
451 	struct randomdev_hash context;
452 	uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS];
453 	uint8_t temp[RANDOM_KEYSIZE];
454 	u_int i;
455 
456 	KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0"));
457 	RANDOM_RESEED_LOCK();
458 #ifdef _KERNEL
459 	/* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
460 	now = getsbinuptime();
461 #endif
462 
463 	if (fortuna_state.fs_pool[0].fsp_length < fortuna_state.fs_minpoolsize
464 #ifdef _KERNEL
465 	    /*
466 	     * FS&K - Use 'getsbinuptime()' to prevent reseed-spamming, but do
467 	     * not block initial seeding (fs_lasttime == 0).
468 	     */
469 	    || (__predict_true(fortuna_state.fs_lasttime != 0) &&
470 		now - fortuna_state.fs_lasttime <= SBT_1S/10)
471 #endif
472 	) {
473 		RANDOM_RESEED_UNLOCK();
474 		return;
475 	}
476 
477 #ifdef _KERNEL
478 	/*
479 	 * When set, pretend we do not have enough entropy to reseed yet.
480 	 */
481 	KFAIL_POINT_CODE(DEBUG_FP, random_fortuna_pre_read, {
482 		if (RETURN_VALUE != 0) {
483 			RANDOM_RESEED_UNLOCK();
484 			return;
485 		}
486 	});
487 #endif
488 
489 #ifdef _KERNEL
490 	fortuna_state.fs_lasttime = now;
491 #endif
492 
493 	/* FS&K - ReseedCNT = ReseedCNT + 1 */
494 	fortuna_state.fs_reseedcount++;
495 	/* s = \epsilon at start */
496 	for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
497 		/* FS&K - if Divides(ReseedCnt, 2^i) ... */
498 		if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) {
499 			/*-
500 			    * FS&K - temp = (P_i)
501 			    *      - P_i = \epsilon
502 			    *      - s = s|H(temp)
503 			    */
504 			randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp);
505 			randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
506 			fortuna_state.fs_pool[i].fsp_length = 0;
507 			randomdev_hash_init(&context);
508 			randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE);
509 			randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS);
510 		} else
511 			break;
512 	}
513 #ifdef _KERNEL
514 	SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool);
515 #endif
516 	/* FS&K */
517 	random_fortuna_reseed_internal(s, i);
518 	RANDOM_RESEED_UNLOCK();
519 
520 	/* Clean up and secure */
521 	explicit_bzero(s, sizeof(s));
522 	explicit_bzero(temp, sizeof(temp));
523 }
524 
525 /*
526  * This is basically GenerateBlocks() from FS&K.
527  *
528  * It differs in two ways:
529  *
530  * 1. Chacha20 is tolerant of non-block-multiple request sizes, so we do not
531  * need to handle any remainder bytes specially and can just pass the length
532  * directly to the PRF construction; and
533  *
534  * 2. Chacha20 is a 512-bit block size cipher (whereas AES has 128-bit block
535  * size, regardless of key size).  This means Chacha does not require re-keying
536  * every 1MiB.  This is implied by the math in FS&K 9.4 and mentioned
537  * explicitly in the conclusion, "If we had a block cipher with a 256-bit [or
538  * greater] block size, then the collisions would not have been an issue at
539  * all" (p. 144).
540  *
541  * 3. In conventional ("locked") mode, we produce a maximum of PAGE_SIZE output
542  * at a time before dropping the lock, to not bully the lock especially.  This
543  * has been the status quo since 2015 (r284959).
544  *
545  * The upstream caller random_fortuna_read is responsible for zeroing out
546  * sensitive buffers provided as parameters to this routine.
547  */
548 enum {
549 	FORTUNA_UNLOCKED = false,
550 	FORTUNA_LOCKED = true
551 };
552 static void
553 random_fortuna_genbytes(uint8_t *buf, size_t bytecount,
554     uint8_t newkey[static RANDOM_KEYSIZE], uint128_t *p_counter,
555     union randomdev_key *p_key, bool locked)
556 {
557 	uint8_t remainder_buf[RANDOM_BLOCKSIZE];
558 	size_t chunk_size;
559 
560 	if (locked)
561 		RANDOM_RESEED_ASSERT_LOCK_OWNED();
562 	else
563 		RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
564 
565 	/*
566 	 * Easy case: don't have to worry about bullying the global mutex,
567 	 * don't have to worry about rekeying Chacha; API is byte-oriented.
568 	 */
569 	if (!locked && random_chachamode) {
570 		randomdev_keystream(p_key, p_counter, buf, bytecount);
571 		return;
572 	}
573 
574 	if (locked) {
575 		/*
576 		 * While holding the global lock, limit PRF generation to
577 		 * mitigate, but not eliminate, bullying symptoms.
578 		 */
579 		chunk_size = PAGE_SIZE;
580 	} else {
581 		/*
582 		* 128-bit block ciphers like AES must be re-keyed at 1MB
583 		* intervals to avoid unacceptable statistical differentiation
584 		* from true random data (FS&K 9.4, p. 143-144).
585 		*/
586 		MPASS(!random_chachamode);
587 		chunk_size = RANDOM_FORTUNA_MAX_READ;
588 	}
589 
590 	chunk_size = MIN(bytecount, chunk_size);
591 	if (!random_chachamode)
592 		chunk_size = rounddown(chunk_size, RANDOM_BLOCKSIZE);
593 
594 	while (bytecount >= chunk_size && chunk_size > 0) {
595 		randomdev_keystream(p_key, p_counter, buf, chunk_size);
596 
597 		buf += chunk_size;
598 		bytecount -= chunk_size;
599 
600 		/* We have to rekey if there is any data remaining to be
601 		 * generated, in two scenarios:
602 		 *
603 		 * locked: we need to rekey before we unlock and release the
604 		 * global state to another consumer; or
605 		 *
606 		 * unlocked: we need to rekey because we're in AES mode and are
607 		 * required to rekey at chunk_size==1MB.  But we do not need to
608 		 * rekey during the last trailing <1MB chunk.
609 		 */
610 		if (bytecount > 0) {
611 			if (locked || chunk_size == RANDOM_FORTUNA_MAX_READ) {
612 				randomdev_keystream(p_key, p_counter, newkey,
613 				    RANDOM_KEYSIZE);
614 				randomdev_encrypt_init(p_key, newkey);
615 			}
616 
617 			/*
618 			 * If we're holding the global lock, yield it briefly
619 			 * now.
620 			 */
621 			if (locked) {
622 				RANDOM_RESEED_UNLOCK();
623 				RANDOM_RESEED_LOCK();
624 			}
625 
626 			/*
627 			 * At the trailing end, scale down chunk_size from 1MB or
628 			 * PAGE_SIZE to all remaining full blocks (AES) or all
629 			 * remaining bytes (Chacha).
630 			 */
631 			if (bytecount < chunk_size) {
632 				if (random_chachamode)
633 					chunk_size = bytecount;
634 				else if (bytecount >= RANDOM_BLOCKSIZE)
635 					chunk_size = rounddown(bytecount,
636 					    RANDOM_BLOCKSIZE);
637 				else
638 					break;
639 			}
640 		}
641 	}
642 
643 	/*
644 	 * Generate any partial AES block remaining into a temporary buffer and
645 	 * copy the desired substring out.
646 	 */
647 	if (bytecount > 0) {
648 		MPASS(!random_chachamode);
649 
650 		randomdev_keystream(p_key, p_counter, remainder_buf,
651 		    sizeof(remainder_buf));
652 	}
653 
654 	/*
655 	 * In locked mode, re-key global K before dropping the lock, which we
656 	 * don't need for memcpy/bzero below.
657 	 */
658 	if (locked) {
659 		randomdev_keystream(p_key, p_counter, newkey, RANDOM_KEYSIZE);
660 		randomdev_encrypt_init(p_key, newkey);
661 		RANDOM_RESEED_UNLOCK();
662 	}
663 
664 	if (bytecount > 0) {
665 		memcpy(buf, remainder_buf, bytecount);
666 		explicit_bzero(remainder_buf, sizeof(remainder_buf));
667 	}
668 }
669 
670 
671 /*
672  * Handle only "concurrency-enabled" Fortuna reads to simplify logic.
673  *
674  * Caller (random_fortuna_read) is responsible for zeroing out sensitive
675  * buffers provided as parameters to this routine.
676  */
677 static void
678 random_fortuna_read_concurrent(uint8_t *buf, size_t bytecount,
679     uint8_t newkey[static RANDOM_KEYSIZE])
680 {
681 	union randomdev_key key_copy;
682 	uint128_t counter_copy;
683 	size_t blockcount;
684 
685 	MPASS(fortuna_concurrent_read);
686 
687 	/*
688 	 * Compute number of blocks required for the PRF request ('delta C').
689 	 * We will step the global counter 'C' by this number under lock, and
690 	 * then actually consume the counter values outside the lock.
691 	 *
692 	 * This ensures that contemporaneous but independent requests for
693 	 * randomness receive distinct 'C' values and thus independent PRF
694 	 * results.
695 	 */
696 	if (random_chachamode) {
697 		blockcount = howmany(bytecount, CHACHA_BLOCKLEN);
698 	} else {
699 		blockcount = howmany(bytecount, RANDOM_BLOCKSIZE);
700 
701 		/*
702 		 * Need to account for the additional blocks generated by
703 		 * rekeying when updating the global fs_counter.
704 		 */
705 		blockcount += RANDOM_KEYS_PER_BLOCK *
706 		    (blockcount / RANDOM_FORTUNA_BLOCKS_PER_KEY);
707 	}
708 
709 	RANDOM_RESEED_LOCK();
710 	KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
711 
712 	/*
713 	 * Save the original counter and key values that will be used as the
714 	 * PRF for this particular consumer.
715 	 */
716 	memcpy(&counter_copy, &fortuna_state.fs_counter, sizeof(counter_copy));
717 	memcpy(&key_copy, &fortuna_state.fs_key, sizeof(key_copy));
718 
719 	/*
720 	 * Step the counter as if we had generated 'bytecount' blocks for this
721 	 * consumer.  I.e., ensure that the next consumer gets an independent
722 	 * range of counter values once we drop the global lock.
723 	 */
724 	uint128_add64(&fortuna_state.fs_counter, blockcount);
725 
726 	/*
727 	 * We still need to Rekey the global 'K' between independent calls;
728 	 * this is no different from conventional Fortuna.  Note that
729 	 * 'randomdev_keystream()' will step the fs_counter 'C' appropriately
730 	 * for the blocks needed for the 'newkey'.
731 	 *
732 	 * (This is part of PseudoRandomData() in FS&K, 9.4.4.)
733 	 */
734 	randomdev_keystream(&fortuna_state.fs_key, &fortuna_state.fs_counter,
735 	    newkey, RANDOM_KEYSIZE);
736 	randomdev_encrypt_init(&fortuna_state.fs_key, newkey);
737 
738 	/*
739 	 * We have everything we need to generate a unique PRF for this
740 	 * consumer without touching global state.
741 	 */
742 	RANDOM_RESEED_UNLOCK();
743 
744 	random_fortuna_genbytes(buf, bytecount, newkey, &counter_copy,
745 	    &key_copy, FORTUNA_UNLOCKED);
746 	RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
747 
748 	explicit_bzero(&counter_copy, sizeof(counter_copy));
749 	explicit_bzero(&key_copy, sizeof(key_copy));
750 }
751 
752 /*-
753  * FS&K - RandomData() (Part 2)
754  * Main read from Fortuna, continued. May be called multiple times after
755  * the random_fortuna_pre_read() above.
756  *
757  * The supplied buf MAY not be a multiple of RANDOM_BLOCKSIZE in size; it is
758  * the responsibility of the algorithm to accommodate partial block reads, if a
759  * block output mode is used.
760  */
761 void
762 random_fortuna_read(uint8_t *buf, size_t bytecount)
763 {
764 	uint8_t newkey[RANDOM_KEYSIZE];
765 
766 	if (fortuna_concurrent_read) {
767 		random_fortuna_read_concurrent(buf, bytecount, newkey);
768 		goto out;
769 	}
770 
771 	RANDOM_RESEED_LOCK();
772 	KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
773 
774 	random_fortuna_genbytes(buf, bytecount, newkey,
775 	    &fortuna_state.fs_counter, &fortuna_state.fs_key, FORTUNA_LOCKED);
776 	/* Returns unlocked */
777 	RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
778 
779 out:
780 	explicit_bzero(newkey, sizeof(newkey));
781 }
782 
783 #ifdef _KERNEL
784 static bool block_seeded_status = false;
785 SYSCTL_BOOL(_kern_random, OID_AUTO, block_seeded_status, CTLFLAG_RWTUN,
786     &block_seeded_status, 0,
787     "If non-zero, pretend Fortuna is in an unseeded state.  By setting "
788     "this as a tunable, boot can be tested as if the random device is "
789     "unavailable.");
790 #endif
791 
792 static bool
793 random_fortuna_seeded_internal(void)
794 {
795 	return (!uint128_is_zero(fortuna_state.fs_counter));
796 }
797 
798 static bool
799 random_fortuna_seeded(void)
800 {
801 
802 #ifdef _KERNEL
803 	if (block_seeded_status)
804 		return (false);
805 #endif
806 
807 	if (__predict_true(random_fortuna_seeded_internal()))
808 		return (true);
809 
810 	/*
811 	 * Maybe we have enough entropy in the zeroth pool but just haven't
812 	 * kicked the initial seed step.  Do so now.
813 	 */
814 	random_fortuna_pre_read();
815 
816 	return (random_fortuna_seeded_internal());
817 }
818