xref: /freebsd/sys/dev/re/if_re.c (revision 7bd6fde3)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114 
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/taskqueue.h>
127 
128 #include <net/if.h>
129 #include <net/if_arp.h>
130 #include <net/ethernet.h>
131 #include <net/if_dl.h>
132 #include <net/if_media.h>
133 #include <net/if_types.h>
134 #include <net/if_vlan_var.h>
135 
136 #include <net/bpf.h>
137 
138 #include <machine/bus.h>
139 #include <machine/resource.h>
140 #include <sys/bus.h>
141 #include <sys/rman.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 
149 MODULE_DEPEND(re, pci, 1, 1, 1);
150 MODULE_DEPEND(re, ether, 1, 1, 1);
151 MODULE_DEPEND(re, miibus, 1, 1, 1);
152 
153 /* "device miibus" required.  See GENERIC if you get errors here. */
154 #include "miibus_if.h"
155 
156 /*
157  * Default to using PIO access for this driver.
158  */
159 #define RE_USEIOSPACE
160 
161 #include <pci/if_rlreg.h>
162 
163 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
164 
165 /*
166  * Various supported device vendors/types and their names.
167  */
168 static struct rl_type re_devs[] = {
169 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
170 		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
171 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
172 		"RealTek 8139C+ 10/100BaseTX" },
173 	{ RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E,
174 		"RealTek 8101E PCIe 10/100baseTX" },
175 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN1,
176 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
177 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN2,
178 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
179 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
180 		"RealTek 8169 Gigabit Ethernet" },
181 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
182 		"RealTek 8169S Single-chip Gigabit Ethernet" },
183 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB,
184 		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
185 	{ RT_VENDORID, RT_DEVICEID_8169SC, RL_HWREV_8169_8110SC,
186 		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
187 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
188 		"RealTek 8110S Single-chip Gigabit Ethernet" },
189 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
190 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191 	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S,
192 		"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193 	{ USR_VENDORID, USR_DEVICEID_997902, RL_HWREV_8169S,
194 		"US Robotics 997902 (RTL8169S) Gigabit Ethernet" },
195 	{ 0, 0, 0, NULL }
196 };
197 
198 static struct rl_hwrev re_hwrevs[] = {
199 	{ RL_HWREV_8139, RL_8139,  "" },
200 	{ RL_HWREV_8139A, RL_8139, "A" },
201 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
202 	{ RL_HWREV_8139B, RL_8139, "B" },
203 	{ RL_HWREV_8130, RL_8139, "8130" },
204 	{ RL_HWREV_8139C, RL_8139, "C" },
205 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
206 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
207 	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
208 	{ RL_HWREV_8169, RL_8169, "8169"},
209 	{ RL_HWREV_8169S, RL_8169, "8169S"},
210 	{ RL_HWREV_8110S, RL_8169, "8110S"},
211 	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
212 	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
213 	{ RL_HWREV_8100, RL_8139, "8100"},
214 	{ RL_HWREV_8101, RL_8139, "8101"},
215 	{ RL_HWREV_8100E, RL_8169, "8100E"},
216 	{ RL_HWREV_8101E, RL_8169, "8101E"},
217 	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
218 	{ 0, 0, NULL }
219 };
220 
221 static int re_probe		(device_t);
222 static int re_attach		(device_t);
223 static int re_detach		(device_t);
224 
225 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
226 
227 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
228 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
229 				    bus_size_t, int);
230 static int re_allocmem		(device_t, struct rl_softc *);
231 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
232 static int re_rx_list_init	(struct rl_softc *);
233 static int re_tx_list_init	(struct rl_softc *);
234 #ifdef RE_FIXUP_RX
235 static __inline void re_fixup_rx
236 				(struct mbuf *);
237 #endif
238 static int re_rxeof		(struct rl_softc *);
239 static void re_txeof		(struct rl_softc *);
240 #ifdef DEVICE_POLLING
241 static void re_poll		(struct ifnet *, enum poll_cmd, int);
242 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
243 #endif
244 static int re_intr		(void *);
245 static void re_tick		(void *);
246 static void re_tx_task		(void *, int);
247 static void re_int_task		(void *, int);
248 static void re_start		(struct ifnet *);
249 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
250 static void re_init		(void *);
251 static void re_init_locked	(struct rl_softc *);
252 static void re_stop		(struct rl_softc *);
253 static void re_watchdog		(struct rl_softc *);
254 static int re_suspend		(device_t);
255 static int re_resume		(device_t);
256 static void re_shutdown		(device_t);
257 static int re_ifmedia_upd	(struct ifnet *);
258 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
259 
260 static void re_eeprom_putbyte	(struct rl_softc *, int);
261 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
262 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
263 static int re_gmii_readreg	(device_t, int, int);
264 static int re_gmii_writereg	(device_t, int, int, int);
265 
266 static int re_miibus_readreg	(device_t, int, int);
267 static int re_miibus_writereg	(device_t, int, int, int);
268 static void re_miibus_statchg	(device_t);
269 
270 static void re_setmulti		(struct rl_softc *);
271 static void re_reset		(struct rl_softc *);
272 
273 #ifdef RE_DIAG
274 static int re_diag		(struct rl_softc *);
275 #endif
276 
277 #ifdef RE_USEIOSPACE
278 #define RL_RES			SYS_RES_IOPORT
279 #define RL_RID			RL_PCI_LOIO
280 #else
281 #define RL_RES			SYS_RES_MEMORY
282 #define RL_RID			RL_PCI_LOMEM
283 #endif
284 
285 static device_method_t re_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		re_probe),
288 	DEVMETHOD(device_attach,	re_attach),
289 	DEVMETHOD(device_detach,	re_detach),
290 	DEVMETHOD(device_suspend,	re_suspend),
291 	DEVMETHOD(device_resume,	re_resume),
292 	DEVMETHOD(device_shutdown,	re_shutdown),
293 
294 	/* bus interface */
295 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
296 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
297 
298 	/* MII interface */
299 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
300 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
301 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
302 
303 	{ 0, 0 }
304 };
305 
306 static driver_t re_driver = {
307 	"re",
308 	re_methods,
309 	sizeof(struct rl_softc)
310 };
311 
312 static devclass_t re_devclass;
313 
314 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
315 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
316 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
317 
318 #define EE_SET(x)					\
319 	CSR_WRITE_1(sc, RL_EECMD,			\
320 		CSR_READ_1(sc, RL_EECMD) | x)
321 
322 #define EE_CLR(x)					\
323 	CSR_WRITE_1(sc, RL_EECMD,			\
324 		CSR_READ_1(sc, RL_EECMD) & ~x)
325 
326 /*
327  * Send a read command and address to the EEPROM, check for ACK.
328  */
329 static void
330 re_eeprom_putbyte(sc, addr)
331 	struct rl_softc		*sc;
332 	int			addr;
333 {
334 	register int		d, i;
335 
336 	d = addr | (RL_9346_READ << sc->rl_eewidth);
337 
338 	/*
339 	 * Feed in each bit and strobe the clock.
340 	 */
341 
342 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
343 		if (d & i) {
344 			EE_SET(RL_EE_DATAIN);
345 		} else {
346 			EE_CLR(RL_EE_DATAIN);
347 		}
348 		DELAY(100);
349 		EE_SET(RL_EE_CLK);
350 		DELAY(150);
351 		EE_CLR(RL_EE_CLK);
352 		DELAY(100);
353 	}
354 
355 	return;
356 }
357 
358 /*
359  * Read a word of data stored in the EEPROM at address 'addr.'
360  */
361 static void
362 re_eeprom_getword(sc, addr, dest)
363 	struct rl_softc		*sc;
364 	int			addr;
365 	u_int16_t		*dest;
366 {
367 	register int		i;
368 	u_int16_t		word = 0;
369 
370 	/*
371 	 * Send address of word we want to read.
372 	 */
373 	re_eeprom_putbyte(sc, addr);
374 
375 	/*
376 	 * Start reading bits from EEPROM.
377 	 */
378 	for (i = 0x8000; i; i >>= 1) {
379 		EE_SET(RL_EE_CLK);
380 		DELAY(100);
381 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
382 			word |= i;
383 		EE_CLR(RL_EE_CLK);
384 		DELAY(100);
385 	}
386 
387 	*dest = word;
388 
389 	return;
390 }
391 
392 /*
393  * Read a sequence of words from the EEPROM.
394  */
395 static void
396 re_read_eeprom(sc, dest, off, cnt)
397 	struct rl_softc		*sc;
398 	caddr_t			dest;
399 	int			off;
400 	int			cnt;
401 {
402 	int			i;
403 	u_int16_t		word = 0, *ptr;
404 
405 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
406 
407         DELAY(100);
408 
409 	for (i = 0; i < cnt; i++) {
410 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
411 		re_eeprom_getword(sc, off + i, &word);
412 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
413 		ptr = (u_int16_t *)(dest + (i * 2));
414                 *ptr = word;
415 	}
416 
417 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
418 
419 	return;
420 }
421 
422 static int
423 re_gmii_readreg(dev, phy, reg)
424 	device_t		dev;
425 	int			phy, reg;
426 {
427 	struct rl_softc		*sc;
428 	u_int32_t		rval;
429 	int			i;
430 
431 	if (phy != 1)
432 		return (0);
433 
434 	sc = device_get_softc(dev);
435 
436 	/* Let the rgephy driver read the GMEDIASTAT register */
437 
438 	if (reg == RL_GMEDIASTAT) {
439 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
440 		return (rval);
441 	}
442 
443 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
444 	DELAY(1000);
445 
446 	for (i = 0; i < RL_TIMEOUT; i++) {
447 		rval = CSR_READ_4(sc, RL_PHYAR);
448 		if (rval & RL_PHYAR_BUSY)
449 			break;
450 		DELAY(100);
451 	}
452 
453 	if (i == RL_TIMEOUT) {
454 		device_printf(sc->rl_dev, "PHY read failed\n");
455 		return (0);
456 	}
457 
458 	return (rval & RL_PHYAR_PHYDATA);
459 }
460 
461 static int
462 re_gmii_writereg(dev, phy, reg, data)
463 	device_t		dev;
464 	int			phy, reg, data;
465 {
466 	struct rl_softc		*sc;
467 	u_int32_t		rval;
468 	int			i;
469 
470 	sc = device_get_softc(dev);
471 
472 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
473 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
474 	DELAY(1000);
475 
476 	for (i = 0; i < RL_TIMEOUT; i++) {
477 		rval = CSR_READ_4(sc, RL_PHYAR);
478 		if (!(rval & RL_PHYAR_BUSY))
479 			break;
480 		DELAY(100);
481 	}
482 
483 	if (i == RL_TIMEOUT) {
484 		device_printf(sc->rl_dev, "PHY write failed\n");
485 		return (0);
486 	}
487 
488 	return (0);
489 }
490 
491 static int
492 re_miibus_readreg(dev, phy, reg)
493 	device_t		dev;
494 	int			phy, reg;
495 {
496 	struct rl_softc		*sc;
497 	u_int16_t		rval = 0;
498 	u_int16_t		re8139_reg = 0;
499 
500 	sc = device_get_softc(dev);
501 
502 	if (sc->rl_type == RL_8169) {
503 		rval = re_gmii_readreg(dev, phy, reg);
504 		return (rval);
505 	}
506 
507 	/* Pretend the internal PHY is only at address 0 */
508 	if (phy) {
509 		return (0);
510 	}
511 	switch (reg) {
512 	case MII_BMCR:
513 		re8139_reg = RL_BMCR;
514 		break;
515 	case MII_BMSR:
516 		re8139_reg = RL_BMSR;
517 		break;
518 	case MII_ANAR:
519 		re8139_reg = RL_ANAR;
520 		break;
521 	case MII_ANER:
522 		re8139_reg = RL_ANER;
523 		break;
524 	case MII_ANLPAR:
525 		re8139_reg = RL_LPAR;
526 		break;
527 	case MII_PHYIDR1:
528 	case MII_PHYIDR2:
529 		return (0);
530 	/*
531 	 * Allow the rlphy driver to read the media status
532 	 * register. If we have a link partner which does not
533 	 * support NWAY, this is the register which will tell
534 	 * us the results of parallel detection.
535 	 */
536 	case RL_MEDIASTAT:
537 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
538 		return (rval);
539 	default:
540 		device_printf(sc->rl_dev, "bad phy register\n");
541 		return (0);
542 	}
543 	rval = CSR_READ_2(sc, re8139_reg);
544 	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
545 		/* 8139C+ has different bit layout. */
546 		rval &= ~(BMCR_LOOP | BMCR_ISO);
547 	}
548 	return (rval);
549 }
550 
551 static int
552 re_miibus_writereg(dev, phy, reg, data)
553 	device_t		dev;
554 	int			phy, reg, data;
555 {
556 	struct rl_softc		*sc;
557 	u_int16_t		re8139_reg = 0;
558 	int			rval = 0;
559 
560 	sc = device_get_softc(dev);
561 
562 	if (sc->rl_type == RL_8169) {
563 		rval = re_gmii_writereg(dev, phy, reg, data);
564 		return (rval);
565 	}
566 
567 	/* Pretend the internal PHY is only at address 0 */
568 	if (phy)
569 		return (0);
570 
571 	switch (reg) {
572 	case MII_BMCR:
573 		re8139_reg = RL_BMCR;
574 		if (sc->rl_type == RL_8139CPLUS) {
575 			/* 8139C+ has different bit layout. */
576 			data &= ~(BMCR_LOOP | BMCR_ISO);
577 		}
578 		break;
579 	case MII_BMSR:
580 		re8139_reg = RL_BMSR;
581 		break;
582 	case MII_ANAR:
583 		re8139_reg = RL_ANAR;
584 		break;
585 	case MII_ANER:
586 		re8139_reg = RL_ANER;
587 		break;
588 	case MII_ANLPAR:
589 		re8139_reg = RL_LPAR;
590 		break;
591 	case MII_PHYIDR1:
592 	case MII_PHYIDR2:
593 		return (0);
594 		break;
595 	default:
596 		device_printf(sc->rl_dev, "bad phy register\n");
597 		return (0);
598 	}
599 	CSR_WRITE_2(sc, re8139_reg, data);
600 	return (0);
601 }
602 
603 static void
604 re_miibus_statchg(dev)
605 	device_t		dev;
606 {
607 
608 }
609 
610 /*
611  * Program the 64-bit multicast hash filter.
612  */
613 static void
614 re_setmulti(sc)
615 	struct rl_softc		*sc;
616 {
617 	struct ifnet		*ifp;
618 	int			h = 0;
619 	u_int32_t		hashes[2] = { 0, 0 };
620 	struct ifmultiaddr	*ifma;
621 	u_int32_t		rxfilt;
622 	int			mcnt = 0;
623 	u_int32_t		hwrev;
624 
625 	RL_LOCK_ASSERT(sc);
626 
627 	ifp = sc->rl_ifp;
628 
629 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
630 
631 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
632 		rxfilt |= RL_RXCFG_RX_MULTI;
633 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
634 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
635 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
636 		return;
637 	}
638 
639 	/* first, zot all the existing hash bits */
640 	CSR_WRITE_4(sc, RL_MAR0, 0);
641 	CSR_WRITE_4(sc, RL_MAR4, 0);
642 
643 	/* now program new ones */
644 	IF_ADDR_LOCK(ifp);
645 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
646 		if (ifma->ifma_addr->sa_family != AF_LINK)
647 			continue;
648 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
649 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
650 		if (h < 32)
651 			hashes[0] |= (1 << h);
652 		else
653 			hashes[1] |= (1 << (h - 32));
654 		mcnt++;
655 	}
656 	IF_ADDR_UNLOCK(ifp);
657 
658 	if (mcnt)
659 		rxfilt |= RL_RXCFG_RX_MULTI;
660 	else
661 		rxfilt &= ~RL_RXCFG_RX_MULTI;
662 
663 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
664 
665 	/*
666 	 * For some unfathomable reason, RealTek decided to reverse
667 	 * the order of the multicast hash registers in the PCI Express
668 	 * parts. This means we have to write the hash pattern in reverse
669 	 * order for those devices.
670 	 */
671 
672 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
673 
674 	if (hwrev == RL_HWREV_8100E || hwrev == RL_HWREV_8101E ||
675 	    hwrev == RL_HWREV_8168_SPIN1 || hwrev == RL_HWREV_8168_SPIN2) {
676 		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
677 		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
678 	} else {
679 		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
680 		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
681 	}
682 }
683 
684 static void
685 re_reset(sc)
686 	struct rl_softc		*sc;
687 {
688 	register int		i;
689 
690 	RL_LOCK_ASSERT(sc);
691 
692 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
693 
694 	for (i = 0; i < RL_TIMEOUT; i++) {
695 		DELAY(10);
696 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
697 			break;
698 	}
699 	if (i == RL_TIMEOUT)
700 		device_printf(sc->rl_dev, "reset never completed!\n");
701 
702 	CSR_WRITE_1(sc, 0x82, 1);
703 }
704 
705 #ifdef RE_DIAG
706 
707 /*
708  * The following routine is designed to test for a defect on some
709  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
710  * lines connected to the bus, however for a 32-bit only card, they
711  * should be pulled high. The result of this defect is that the
712  * NIC will not work right if you plug it into a 64-bit slot: DMA
713  * operations will be done with 64-bit transfers, which will fail
714  * because the 64-bit data lines aren't connected.
715  *
716  * There's no way to work around this (short of talking a soldering
717  * iron to the board), however we can detect it. The method we use
718  * here is to put the NIC into digital loopback mode, set the receiver
719  * to promiscuous mode, and then try to send a frame. We then compare
720  * the frame data we sent to what was received. If the data matches,
721  * then the NIC is working correctly, otherwise we know the user has
722  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
723  * slot. In the latter case, there's no way the NIC can work correctly,
724  * so we print out a message on the console and abort the device attach.
725  */
726 
727 static int
728 re_diag(sc)
729 	struct rl_softc		*sc;
730 {
731 	struct ifnet		*ifp = sc->rl_ifp;
732 	struct mbuf		*m0;
733 	struct ether_header	*eh;
734 	struct rl_desc		*cur_rx;
735 	u_int16_t		status;
736 	u_int32_t		rxstat;
737 	int			total_len, i, error = 0, phyaddr;
738 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
739 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
740 
741 	/* Allocate a single mbuf */
742 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
743 	if (m0 == NULL)
744 		return (ENOBUFS);
745 
746 	RL_LOCK(sc);
747 
748 	/*
749 	 * Initialize the NIC in test mode. This sets the chip up
750 	 * so that it can send and receive frames, but performs the
751 	 * following special functions:
752 	 * - Puts receiver in promiscuous mode
753 	 * - Enables digital loopback mode
754 	 * - Leaves interrupts turned off
755 	 */
756 
757 	ifp->if_flags |= IFF_PROMISC;
758 	sc->rl_testmode = 1;
759 	re_reset(sc);
760 	re_init_locked(sc);
761 	sc->rl_link = 1;
762 	if (sc->rl_type == RL_8169)
763 		phyaddr = 1;
764 	else
765 		phyaddr = 0;
766 
767 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
768 	for (i = 0; i < RL_TIMEOUT; i++) {
769 		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
770 		if (!(status & BMCR_RESET))
771 			break;
772 	}
773 
774 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
775 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
776 
777 	DELAY(100000);
778 
779 	/* Put some data in the mbuf */
780 
781 	eh = mtod(m0, struct ether_header *);
782 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
783 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
784 	eh->ether_type = htons(ETHERTYPE_IP);
785 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
786 
787 	/*
788 	 * Queue the packet, start transmission.
789 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
790 	 */
791 
792 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
793 	RL_UNLOCK(sc);
794 	/* XXX: re_diag must not be called when in ALTQ mode */
795 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
796 	RL_LOCK(sc);
797 	m0 = NULL;
798 
799 	/* Wait for it to propagate through the chip */
800 
801 	DELAY(100000);
802 	for (i = 0; i < RL_TIMEOUT; i++) {
803 		status = CSR_READ_2(sc, RL_ISR);
804 		CSR_WRITE_2(sc, RL_ISR, status);
805 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
806 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
807 			break;
808 		DELAY(10);
809 	}
810 
811 	if (i == RL_TIMEOUT) {
812 		device_printf(sc->rl_dev,
813 		    "diagnostic failed, failed to receive packet in"
814 		    " loopback mode\n");
815 		error = EIO;
816 		goto done;
817 	}
818 
819 	/*
820 	 * The packet should have been dumped into the first
821 	 * entry in the RX DMA ring. Grab it from there.
822 	 */
823 
824 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
825 	    sc->rl_ldata.rl_rx_list_map,
826 	    BUS_DMASYNC_POSTREAD);
827 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
828 	    sc->rl_ldata.rl_rx_dmamap[0],
829 	    BUS_DMASYNC_POSTWRITE);
830 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
831 	    sc->rl_ldata.rl_rx_dmamap[0]);
832 
833 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
834 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
835 	eh = mtod(m0, struct ether_header *);
836 
837 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
838 	total_len = RL_RXBYTES(cur_rx);
839 	rxstat = le32toh(cur_rx->rl_cmdstat);
840 
841 	if (total_len != ETHER_MIN_LEN) {
842 		device_printf(sc->rl_dev,
843 		    "diagnostic failed, received short packet\n");
844 		error = EIO;
845 		goto done;
846 	}
847 
848 	/* Test that the received packet data matches what we sent. */
849 
850 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
851 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
852 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
853 		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
854 		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
855 		    dst, ":", src, ":", ETHERTYPE_IP);
856 		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
857 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
858 		    ntohs(eh->ether_type));
859 		device_printf(sc->rl_dev, "You may have a defective 32-bit "
860 		    "NIC plugged into a 64-bit PCI slot.\n");
861 		device_printf(sc->rl_dev, "Please re-install the NIC in a "
862 		    "32-bit slot for proper operation.\n");
863 		device_printf(sc->rl_dev, "Read the re(4) man page for more "
864 		    "details.\n");
865 		error = EIO;
866 	}
867 
868 done:
869 	/* Turn interface off, release resources */
870 
871 	sc->rl_testmode = 0;
872 	sc->rl_link = 0;
873 	ifp->if_flags &= ~IFF_PROMISC;
874 	re_stop(sc);
875 	if (m0 != NULL)
876 		m_freem(m0);
877 
878 	RL_UNLOCK(sc);
879 
880 	return (error);
881 }
882 
883 #endif
884 
885 /*
886  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
887  * IDs against our list and return a device name if we find a match.
888  */
889 static int
890 re_probe(dev)
891 	device_t		dev;
892 {
893 	struct rl_type		*t;
894 	struct rl_softc		*sc;
895 	int			rid;
896 	u_int32_t		hwrev;
897 
898 	t = re_devs;
899 	sc = device_get_softc(dev);
900 
901 	while (t->rl_name != NULL) {
902 		if ((pci_get_vendor(dev) == t->rl_vid) &&
903 		    (pci_get_device(dev) == t->rl_did)) {
904 			/*
905 			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
906 			 * Rev. 2 i supported by sk(4).
907 			 */
908 			if ((t->rl_vid == LINKSYS_VENDORID) &&
909 				(t->rl_did == LINKSYS_DEVICEID_EG1032) &&
910 				(pci_get_subdevice(dev) !=
911 				LINKSYS_SUBDEVICE_EG1032_REV3)) {
912 				t++;
913 				continue;
914 			}
915 
916 			/*
917 			 * Temporarily map the I/O space
918 			 * so we can read the chip ID register.
919 			 */
920 			rid = RL_RID;
921 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
922 			    RF_ACTIVE);
923 			if (sc->rl_res == NULL) {
924 				device_printf(dev,
925 				    "couldn't map ports/memory\n");
926 				return (ENXIO);
927 			}
928 			sc->rl_btag = rman_get_bustag(sc->rl_res);
929 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
930 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
931 			bus_release_resource(dev, RL_RES,
932 			    RL_RID, sc->rl_res);
933 			if (t->rl_basetype == hwrev) {
934 				device_set_desc(dev, t->rl_name);
935 				return (BUS_PROBE_DEFAULT);
936 			}
937 		}
938 		t++;
939 	}
940 
941 	return (ENXIO);
942 }
943 
944 /*
945  * This routine takes the segment list provided as the result of
946  * a bus_dma_map_load() operation and assigns the addresses/lengths
947  * to RealTek DMA descriptors. This can be called either by the RX
948  * code or the TX code. In the RX case, we'll probably wind up mapping
949  * at most one segment. For the TX case, there could be any number of
950  * segments since TX packets may span multiple mbufs. In either case,
951  * if the number of segments is larger than the rl_maxsegs limit
952  * specified by the caller, we abort the mapping operation. Sadly,
953  * whoever designed the buffer mapping API did not provide a way to
954  * return an error from here, so we have to fake it a bit.
955  */
956 
957 static void
958 re_dma_map_desc(arg, segs, nseg, mapsize, error)
959 	void			*arg;
960 	bus_dma_segment_t	*segs;
961 	int			nseg;
962 	bus_size_t		mapsize;
963 	int			error;
964 {
965 	struct rl_dmaload_arg	*ctx;
966 	struct rl_desc		*d = NULL;
967 	int			i = 0, idx;
968 	u_int32_t		cmdstat;
969 	int			totlen = 0;
970 
971 	if (error)
972 		return;
973 
974 	ctx = arg;
975 
976 	/* Signal error to caller if there's too many segments */
977 	if (nseg > ctx->rl_maxsegs) {
978 		ctx->rl_maxsegs = 0;
979 		return;
980 	}
981 
982 	/*
983 	 * Map the segment array into descriptors. Note that we set the
984 	 * start-of-frame and end-of-frame markers for either TX or RX, but
985 	 * they really only have meaning in the TX case. (In the RX case,
986 	 * it's the chip that tells us where packets begin and end.)
987 	 * We also keep track of the end of the ring and set the
988 	 * end-of-ring bits as needed, and we set the ownership bits
989 	 * in all except the very first descriptor. (The caller will
990 	 * set this descriptor later when it start transmission or
991 	 * reception.)
992 	 */
993 	idx = ctx->rl_idx;
994 	for (;;) {
995 		d = &ctx->rl_ring[idx];
996 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
997 			ctx->rl_maxsegs = 0;
998 			return;
999 		}
1000 		cmdstat = segs[i].ds_len;
1001 		totlen += segs[i].ds_len;
1002 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
1003 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
1004 		if (i == 0)
1005 			cmdstat |= RL_TDESC_CMD_SOF;
1006 		else
1007 			cmdstat |= RL_TDESC_CMD_OWN;
1008 		if (idx == (RL_RX_DESC_CNT - 1))
1009 			cmdstat |= RL_TDESC_CMD_EOR;
1010 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
1011 		i++;
1012 		if (i == nseg)
1013 			break;
1014 		RL_DESC_INC(idx);
1015 	}
1016 
1017 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
1018 	ctx->rl_maxsegs = nseg;
1019 	ctx->rl_idx = idx;
1020 }
1021 
1022 /*
1023  * Map a single buffer address.
1024  */
1025 
1026 static void
1027 re_dma_map_addr(arg, segs, nseg, error)
1028 	void			*arg;
1029 	bus_dma_segment_t	*segs;
1030 	int			nseg;
1031 	int			error;
1032 {
1033 	bus_addr_t		*addr;
1034 
1035 	if (error)
1036 		return;
1037 
1038 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1039 	addr = arg;
1040 	*addr = segs->ds_addr;
1041 }
1042 
1043 static int
1044 re_allocmem(dev, sc)
1045 	device_t		dev;
1046 	struct rl_softc		*sc;
1047 {
1048 	int			error;
1049 	int			nseg;
1050 	int			i;
1051 
1052 	/*
1053 	 * Allocate map for RX mbufs.
1054 	 */
1055 	nseg = 32;
1056 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
1057 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1058 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1059 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1060 	if (error) {
1061 		device_printf(dev, "could not allocate dma tag\n");
1062 		return (ENOMEM);
1063 	}
1064 
1065 	/*
1066 	 * Allocate map for TX descriptor list.
1067 	 */
1068 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1069 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1070 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, 0,
1071 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1072 	if (error) {
1073 		device_printf(dev, "could not allocate dma tag\n");
1074 		return (ENOMEM);
1075 	}
1076 
1077 	/* Allocate DMA'able memory for the TX ring */
1078 
1079 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1080 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1081 	    &sc->rl_ldata.rl_tx_list_map);
1082 	if (error)
1083 		return (ENOMEM);
1084 
1085 	/* Load the map for the TX ring. */
1086 
1087 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1088 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1089 	     RL_TX_LIST_SZ, re_dma_map_addr,
1090 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1091 
1092 	/* Create DMA maps for TX buffers */
1093 
1094 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1095 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1096 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1097 		if (error) {
1098 			device_printf(dev, "can't create DMA map for TX\n");
1099 			return (ENOMEM);
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Allocate map for RX descriptor list.
1105 	 */
1106 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1107 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1108 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, 0,
1109 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1110 	if (error) {
1111 		device_printf(dev, "could not allocate dma tag\n");
1112 		return (ENOMEM);
1113 	}
1114 
1115 	/* Allocate DMA'able memory for the RX ring */
1116 
1117 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1118 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1119 	    &sc->rl_ldata.rl_rx_list_map);
1120 	if (error)
1121 		return (ENOMEM);
1122 
1123 	/* Load the map for the RX ring. */
1124 
1125 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1126 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1127 	     RL_RX_LIST_SZ, re_dma_map_addr,
1128 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1129 
1130 	/* Create DMA maps for RX buffers */
1131 
1132 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1133 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1134 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1135 		if (error) {
1136 			device_printf(dev, "can't create DMA map for RX\n");
1137 			return (ENOMEM);
1138 		}
1139 	}
1140 
1141 	return (0);
1142 }
1143 
1144 /*
1145  * Attach the interface. Allocate softc structures, do ifmedia
1146  * setup and ethernet/BPF attach.
1147  */
1148 static int
1149 re_attach(dev)
1150 	device_t		dev;
1151 {
1152 	u_char			eaddr[ETHER_ADDR_LEN];
1153 	u_int16_t		as[ETHER_ADDR_LEN / 2];
1154 	struct rl_softc		*sc;
1155 	struct ifnet		*ifp;
1156 	struct rl_hwrev		*hw_rev;
1157 	int			hwrev;
1158 	u_int16_t		re_did = 0;
1159 	int			error = 0, rid, i;
1160 
1161 	sc = device_get_softc(dev);
1162 	sc->rl_dev = dev;
1163 
1164 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1165 	    MTX_DEF);
1166 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1167 
1168 	/*
1169 	 * Map control/status registers.
1170 	 */
1171 	pci_enable_busmaster(dev);
1172 
1173 	rid = RL_RID;
1174 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1175 	    RF_ACTIVE);
1176 
1177 	if (sc->rl_res == NULL) {
1178 		device_printf(dev, "couldn't map ports/memory\n");
1179 		error = ENXIO;
1180 		goto fail;
1181 	}
1182 
1183 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1184 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1185 
1186 	/* Allocate interrupt */
1187 	rid = 0;
1188 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1189 	    RF_SHAREABLE | RF_ACTIVE);
1190 
1191 	if (sc->rl_irq == NULL) {
1192 		device_printf(dev, "couldn't map interrupt\n");
1193 		error = ENXIO;
1194 		goto fail;
1195 	}
1196 
1197 	/* Reset the adapter. */
1198 	RL_LOCK(sc);
1199 	re_reset(sc);
1200 	RL_UNLOCK(sc);
1201 
1202 	hw_rev = re_hwrevs;
1203 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1204 	while (hw_rev->rl_desc != NULL) {
1205 		if (hw_rev->rl_rev == hwrev) {
1206 			sc->rl_type = hw_rev->rl_type;
1207 			break;
1208 		}
1209 		hw_rev++;
1210 	}
1211 
1212 	sc->rl_eewidth = 6;
1213 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1214 	if (re_did != 0x8129)
1215 	        sc->rl_eewidth = 8;
1216 
1217 	/*
1218 	 * Get station address from the EEPROM.
1219 	 */
1220 	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1221 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1222 		as[i] = le16toh(as[i]);
1223 	bcopy(as, eaddr, sizeof(eaddr));
1224 
1225 	if (sc->rl_type == RL_8169) {
1226 		/* Set RX length mask */
1227 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1228 		sc->rl_txstart = RL_GTXSTART;
1229 	} else {
1230 		/* Set RX length mask */
1231 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1232 		sc->rl_txstart = RL_TXSTART;
1233 	}
1234 
1235 	/*
1236 	 * Allocate the parent bus DMA tag appropriate for PCI.
1237 	 */
1238 #define RL_NSEG_NEW 32
1239 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
1240 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1241 	    MAXBSIZE, RL_NSEG_NEW, BUS_SPACE_MAXSIZE_32BIT, 0,
1242 	    NULL, NULL, &sc->rl_parent_tag);
1243 	if (error)
1244 		goto fail;
1245 
1246 	error = re_allocmem(dev, sc);
1247 
1248 	if (error)
1249 		goto fail;
1250 
1251 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1252 	if (ifp == NULL) {
1253 		device_printf(dev, "can not if_alloc()\n");
1254 		error = ENOSPC;
1255 		goto fail;
1256 	}
1257 
1258 	/* Do MII setup */
1259 	if (mii_phy_probe(dev, &sc->rl_miibus,
1260 	    re_ifmedia_upd, re_ifmedia_sts)) {
1261 		device_printf(dev, "MII without any phy!\n");
1262 		error = ENXIO;
1263 		goto fail;
1264 	}
1265 
1266 	ifp->if_softc = sc;
1267 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1268 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1269 	ifp->if_ioctl = re_ioctl;
1270 	ifp->if_start = re_start;
1271 	ifp->if_hwassist = RE_CSUM_FEATURES | CSUM_TSO;
1272 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1273 	ifp->if_capenable = ifp->if_capabilities;
1274 	ifp->if_init = re_init;
1275 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1276 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1277 	IFQ_SET_READY(&ifp->if_snd);
1278 
1279 	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1280 	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1281 
1282 	/*
1283 	 * Call MI attach routine.
1284 	 */
1285 	ether_ifattach(ifp, eaddr);
1286 
1287 	/* VLAN capability setup */
1288 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1289 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1290 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1291 	ifp->if_capenable = ifp->if_capabilities;
1292 #ifdef DEVICE_POLLING
1293 	ifp->if_capabilities |= IFCAP_POLLING;
1294 #endif
1295 	/*
1296 	 * Tell the upper layer(s) we support long frames.
1297 	 * Must appear after the call to ether_ifattach() because
1298 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1299 	 */
1300 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1301 
1302 #ifdef RE_DIAG
1303 	/*
1304 	 * Perform hardware diagnostic on the original RTL8169.
1305 	 * Some 32-bit cards were incorrectly wired and would
1306 	 * malfunction if plugged into a 64-bit slot.
1307 	 */
1308 
1309 	if (hwrev == RL_HWREV_8169) {
1310 		error = re_diag(sc);
1311 		if (error) {
1312 			device_printf(dev,
1313 		    	"attach aborted due to hardware diag failure\n");
1314 			ether_ifdetach(ifp);
1315 			goto fail;
1316 		}
1317 	}
1318 #endif
1319 
1320 	/* Hook interrupt last to avoid having to lock softc */
1321 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1322 	    re_intr, NULL, sc, &sc->rl_intrhand);
1323 	if (error) {
1324 		device_printf(dev, "couldn't set up irq\n");
1325 		ether_ifdetach(ifp);
1326 	}
1327 
1328 fail:
1329 
1330 	if (error)
1331 		re_detach(dev);
1332 
1333 	return (error);
1334 }
1335 
1336 /*
1337  * Shutdown hardware and free up resources. This can be called any
1338  * time after the mutex has been initialized. It is called in both
1339  * the error case in attach and the normal detach case so it needs
1340  * to be careful about only freeing resources that have actually been
1341  * allocated.
1342  */
1343 static int
1344 re_detach(dev)
1345 	device_t		dev;
1346 {
1347 	struct rl_softc		*sc;
1348 	struct ifnet		*ifp;
1349 	int			i;
1350 
1351 	sc = device_get_softc(dev);
1352 	ifp = sc->rl_ifp;
1353 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1354 
1355 #ifdef DEVICE_POLLING
1356 	if (ifp->if_capenable & IFCAP_POLLING)
1357 		ether_poll_deregister(ifp);
1358 #endif
1359 	/* These should only be active if attach succeeded */
1360 	if (device_is_attached(dev)) {
1361 		RL_LOCK(sc);
1362 #if 0
1363 		sc->suspended = 1;
1364 #endif
1365 		re_stop(sc);
1366 		RL_UNLOCK(sc);
1367 		callout_drain(&sc->rl_stat_callout);
1368 		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1369 		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1370 		/*
1371 		 * Force off the IFF_UP flag here, in case someone
1372 		 * still had a BPF descriptor attached to this
1373 		 * interface. If they do, ether_ifdetach() will cause
1374 		 * the BPF code to try and clear the promisc mode
1375 		 * flag, which will bubble down to re_ioctl(),
1376 		 * which will try to call re_init() again. This will
1377 		 * turn the NIC back on and restart the MII ticker,
1378 		 * which will panic the system when the kernel tries
1379 		 * to invoke the re_tick() function that isn't there
1380 		 * anymore.
1381 		 */
1382 		ifp->if_flags &= ~IFF_UP;
1383 		ether_ifdetach(ifp);
1384 	}
1385 	if (sc->rl_miibus)
1386 		device_delete_child(dev, sc->rl_miibus);
1387 	bus_generic_detach(dev);
1388 
1389 	/*
1390 	 * The rest is resource deallocation, so we should already be
1391 	 * stopped here.
1392 	 */
1393 
1394 	if (sc->rl_intrhand)
1395 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1396 	if (ifp != NULL)
1397 		if_free(ifp);
1398 	if (sc->rl_irq)
1399 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1400 	if (sc->rl_res)
1401 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1402 
1403 	/* Unload and free the RX DMA ring memory and map */
1404 
1405 	if (sc->rl_ldata.rl_rx_list_tag) {
1406 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1407 		    sc->rl_ldata.rl_rx_list_map);
1408 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1409 		    sc->rl_ldata.rl_rx_list,
1410 		    sc->rl_ldata.rl_rx_list_map);
1411 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1412 	}
1413 
1414 	/* Unload and free the TX DMA ring memory and map */
1415 
1416 	if (sc->rl_ldata.rl_tx_list_tag) {
1417 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1418 		    sc->rl_ldata.rl_tx_list_map);
1419 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1420 		    sc->rl_ldata.rl_tx_list,
1421 		    sc->rl_ldata.rl_tx_list_map);
1422 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1423 	}
1424 
1425 	/* Destroy all the RX and TX buffer maps */
1426 
1427 	if (sc->rl_ldata.rl_mtag) {
1428 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1429 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1430 			    sc->rl_ldata.rl_tx_dmamap[i]);
1431 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1432 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1433 			    sc->rl_ldata.rl_rx_dmamap[i]);
1434 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1435 	}
1436 
1437 	/* Unload and free the stats buffer and map */
1438 
1439 	if (sc->rl_ldata.rl_stag) {
1440 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1441 		    sc->rl_ldata.rl_rx_list_map);
1442 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1443 		    sc->rl_ldata.rl_stats,
1444 		    sc->rl_ldata.rl_smap);
1445 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1446 	}
1447 
1448 	if (sc->rl_parent_tag)
1449 		bus_dma_tag_destroy(sc->rl_parent_tag);
1450 
1451 	mtx_destroy(&sc->rl_mtx);
1452 
1453 	return (0);
1454 }
1455 
1456 static int
1457 re_newbuf(sc, idx, m)
1458 	struct rl_softc		*sc;
1459 	int			idx;
1460 	struct mbuf		*m;
1461 {
1462 	struct rl_dmaload_arg	arg;
1463 	struct mbuf		*n = NULL;
1464 	int			error;
1465 
1466 	if (m == NULL) {
1467 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1468 		if (n == NULL)
1469 			return (ENOBUFS);
1470 		m = n;
1471 	} else
1472 		m->m_data = m->m_ext.ext_buf;
1473 
1474 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1475 #ifdef RE_FIXUP_RX
1476 	/*
1477 	 * This is part of an evil trick to deal with non-x86 platforms.
1478 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1479 	 * boundaries, but that will hose non-x86 machines. To get around
1480 	 * this, we leave some empty space at the start of each buffer
1481 	 * and for non-x86 hosts, we copy the buffer back six bytes
1482 	 * to achieve word alignment. This is slightly more efficient
1483 	 * than allocating a new buffer, copying the contents, and
1484 	 * discarding the old buffer.
1485 	 */
1486 	m_adj(m, RE_ETHER_ALIGN);
1487 #endif
1488 	arg.rl_idx = idx;
1489 	arg.rl_maxsegs = 1;
1490 	arg.rl_flags = 0;
1491 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1492 
1493 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1494 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1495 	    &arg, BUS_DMA_NOWAIT);
1496 	if (error || arg.rl_maxsegs != 1) {
1497 		if (n != NULL)
1498 			m_freem(n);
1499 		if (arg.rl_maxsegs == 0)
1500 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1501 			    sc->rl_ldata.rl_rx_dmamap[idx]);
1502 		return (ENOMEM);
1503 	}
1504 
1505 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1506 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1507 
1508 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1509 	    sc->rl_ldata.rl_rx_dmamap[idx],
1510 	    BUS_DMASYNC_PREREAD);
1511 
1512 	return (0);
1513 }
1514 
1515 #ifdef RE_FIXUP_RX
1516 static __inline void
1517 re_fixup_rx(m)
1518 	struct mbuf		*m;
1519 {
1520 	int                     i;
1521 	uint16_t                *src, *dst;
1522 
1523 	src = mtod(m, uint16_t *);
1524 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1525 
1526 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1527 		*dst++ = *src++;
1528 
1529 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1530 
1531 	return;
1532 }
1533 #endif
1534 
1535 static int
1536 re_tx_list_init(sc)
1537 	struct rl_softc		*sc;
1538 {
1539 
1540 	RL_LOCK_ASSERT(sc);
1541 
1542 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1543 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1544 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1545 
1546 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1547 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1548 	sc->rl_ldata.rl_tx_prodidx = 0;
1549 	sc->rl_ldata.rl_tx_considx = 0;
1550 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1551 
1552 	return (0);
1553 }
1554 
1555 static int
1556 re_rx_list_init(sc)
1557 	struct rl_softc		*sc;
1558 {
1559 	int			i;
1560 
1561 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1562 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1563 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1564 
1565 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1566 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1567 			return (ENOBUFS);
1568 	}
1569 
1570 	/* Flush the RX descriptors */
1571 
1572 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1573 	    sc->rl_ldata.rl_rx_list_map,
1574 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1575 
1576 	sc->rl_ldata.rl_rx_prodidx = 0;
1577 	sc->rl_head = sc->rl_tail = NULL;
1578 
1579 	return (0);
1580 }
1581 
1582 /*
1583  * RX handler for C+ and 8169. For the gigE chips, we support
1584  * the reception of jumbo frames that have been fragmented
1585  * across multiple 2K mbuf cluster buffers.
1586  */
1587 static int
1588 re_rxeof(sc)
1589 	struct rl_softc		*sc;
1590 {
1591 	struct mbuf		*m;
1592 	struct ifnet		*ifp;
1593 	int			i, total_len;
1594 	struct rl_desc		*cur_rx;
1595 	u_int32_t		rxstat, rxvlan;
1596 	int			maxpkt = 16;
1597 
1598 	RL_LOCK_ASSERT(sc);
1599 
1600 	ifp = sc->rl_ifp;
1601 	i = sc->rl_ldata.rl_rx_prodidx;
1602 
1603 	/* Invalidate the descriptor memory */
1604 
1605 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1606 	    sc->rl_ldata.rl_rx_list_map,
1607 	    BUS_DMASYNC_POSTREAD);
1608 
1609 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i]) && maxpkt) {
1610 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1611 		m = sc->rl_ldata.rl_rx_mbuf[i];
1612 		total_len = RL_RXBYTES(cur_rx);
1613 		rxstat = le32toh(cur_rx->rl_cmdstat);
1614 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1615 
1616 		/* Invalidate the RX mbuf and unload its map */
1617 
1618 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1619 		    sc->rl_ldata.rl_rx_dmamap[i],
1620 		    BUS_DMASYNC_POSTWRITE);
1621 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1622 		    sc->rl_ldata.rl_rx_dmamap[i]);
1623 
1624 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1625 			m->m_len = RE_RX_DESC_BUFLEN;
1626 			if (sc->rl_head == NULL)
1627 				sc->rl_head = sc->rl_tail = m;
1628 			else {
1629 				m->m_flags &= ~M_PKTHDR;
1630 				sc->rl_tail->m_next = m;
1631 				sc->rl_tail = m;
1632 			}
1633 			re_newbuf(sc, i, NULL);
1634 			RL_DESC_INC(i);
1635 			continue;
1636 		}
1637 
1638 		/*
1639 		 * NOTE: for the 8139C+, the frame length field
1640 		 * is always 12 bits in size, but for the gigE chips,
1641 		 * it is 13 bits (since the max RX frame length is 16K).
1642 		 * Unfortunately, all 32 bits in the status word
1643 		 * were already used, so to make room for the extra
1644 		 * length bit, RealTek took out the 'frame alignment
1645 		 * error' bit and shifted the other status bits
1646 		 * over one slot. The OWN, EOR, FS and LS bits are
1647 		 * still in the same places. We have already extracted
1648 		 * the frame length and checked the OWN bit, so rather
1649 		 * than using an alternate bit mapping, we shift the
1650 		 * status bits one space to the right so we can evaluate
1651 		 * them using the 8169 status as though it was in the
1652 		 * same format as that of the 8139C+.
1653 		 */
1654 		if (sc->rl_type == RL_8169)
1655 			rxstat >>= 1;
1656 
1657 		/*
1658 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1659 		 * set, but if CRC is clear, it will still be a valid frame.
1660 		 */
1661 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1662 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1663 			ifp->if_ierrors++;
1664 			/*
1665 			 * If this is part of a multi-fragment packet,
1666 			 * discard all the pieces.
1667 			 */
1668 			if (sc->rl_head != NULL) {
1669 				m_freem(sc->rl_head);
1670 				sc->rl_head = sc->rl_tail = NULL;
1671 			}
1672 			re_newbuf(sc, i, m);
1673 			RL_DESC_INC(i);
1674 			continue;
1675 		}
1676 
1677 		/*
1678 		 * If allocating a replacement mbuf fails,
1679 		 * reload the current one.
1680 		 */
1681 
1682 		if (re_newbuf(sc, i, NULL)) {
1683 			ifp->if_ierrors++;
1684 			if (sc->rl_head != NULL) {
1685 				m_freem(sc->rl_head);
1686 				sc->rl_head = sc->rl_tail = NULL;
1687 			}
1688 			re_newbuf(sc, i, m);
1689 			RL_DESC_INC(i);
1690 			continue;
1691 		}
1692 
1693 		RL_DESC_INC(i);
1694 
1695 		if (sc->rl_head != NULL) {
1696 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1697 			if (m->m_len == 0)
1698 				m->m_len = RE_RX_DESC_BUFLEN;
1699 			/*
1700 			 * Special case: if there's 4 bytes or less
1701 			 * in this buffer, the mbuf can be discarded:
1702 			 * the last 4 bytes is the CRC, which we don't
1703 			 * care about anyway.
1704 			 */
1705 			if (m->m_len <= ETHER_CRC_LEN) {
1706 				sc->rl_tail->m_len -=
1707 				    (ETHER_CRC_LEN - m->m_len);
1708 				m_freem(m);
1709 			} else {
1710 				m->m_len -= ETHER_CRC_LEN;
1711 				m->m_flags &= ~M_PKTHDR;
1712 				sc->rl_tail->m_next = m;
1713 			}
1714 			m = sc->rl_head;
1715 			sc->rl_head = sc->rl_tail = NULL;
1716 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1717 		} else
1718 			m->m_pkthdr.len = m->m_len =
1719 			    (total_len - ETHER_CRC_LEN);
1720 
1721 #ifdef RE_FIXUP_RX
1722 		re_fixup_rx(m);
1723 #endif
1724 		ifp->if_ipackets++;
1725 		m->m_pkthdr.rcvif = ifp;
1726 
1727 		/* Do RX checksumming if enabled */
1728 
1729 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1730 
1731 			/* Check IP header checksum */
1732 			if (rxstat & RL_RDESC_STAT_PROTOID)
1733 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1734 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1735 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1736 
1737 			/* Check TCP/UDP checksum */
1738 			if ((RL_TCPPKT(rxstat) &&
1739 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1740 			    (RL_UDPPKT(rxstat) &&
1741 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1742 				m->m_pkthdr.csum_flags |=
1743 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1744 				m->m_pkthdr.csum_data = 0xffff;
1745 			}
1746 		}
1747 		maxpkt--;
1748 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1749 			m->m_pkthdr.ether_vtag =
1750 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1751 			m->m_flags |= M_VLANTAG;
1752 		}
1753 		RL_UNLOCK(sc);
1754 		(*ifp->if_input)(ifp, m);
1755 		RL_LOCK(sc);
1756 	}
1757 
1758 	/* Flush the RX DMA ring */
1759 
1760 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1761 	    sc->rl_ldata.rl_rx_list_map,
1762 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1763 
1764 	sc->rl_ldata.rl_rx_prodidx = i;
1765 
1766 	if (maxpkt)
1767 		return(EAGAIN);
1768 
1769 	return(0);
1770 }
1771 
1772 static void
1773 re_txeof(sc)
1774 	struct rl_softc		*sc;
1775 {
1776 	struct ifnet		*ifp;
1777 	u_int32_t		txstat;
1778 	int			idx;
1779 
1780 	ifp = sc->rl_ifp;
1781 	idx = sc->rl_ldata.rl_tx_considx;
1782 
1783 	/* Invalidate the TX descriptor list */
1784 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1785 	    sc->rl_ldata.rl_tx_list_map,
1786 	    BUS_DMASYNC_POSTREAD);
1787 
1788 	while (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT) {
1789 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1790 		if (txstat & RL_TDESC_CMD_OWN)
1791 			break;
1792 
1793 		sc->rl_ldata.rl_tx_list[idx].rl_bufaddr_lo = 0;
1794 
1795 		/*
1796 		 * We only stash mbufs in the last descriptor
1797 		 * in a fragment chain, which also happens to
1798 		 * be the only place where the TX status bits
1799 		 * are valid.
1800 		 */
1801 		if (txstat & RL_TDESC_CMD_EOF) {
1802 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1803 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1804 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1805 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1806 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1807 			    RL_TDESC_STAT_COLCNT))
1808 				ifp->if_collisions++;
1809 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1810 				ifp->if_oerrors++;
1811 			else
1812 				ifp->if_opackets++;
1813 		}
1814 		sc->rl_ldata.rl_tx_free++;
1815 		RL_DESC_INC(idx);
1816 	}
1817 	sc->rl_ldata.rl_tx_considx = idx;
1818 
1819 	/* No changes made to the TX ring, so no flush needed */
1820 
1821 	if (sc->rl_ldata.rl_tx_free > RL_TX_DESC_THLD)
1822 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1823 
1824 	if (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT) {
1825 		/*
1826 		 * Some chips will ignore a second TX request issued
1827 		 * while an existing transmission is in progress. If
1828 		 * the transmitter goes idle but there are still
1829 		 * packets waiting to be sent, we need to restart the
1830 		 * channel here to flush them out. This only seems to
1831 		 * be required with the PCIe devices.
1832 		 */
1833 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1834 
1835 #ifdef RE_TX_MODERATION
1836 		/*
1837 		 * If not all descriptors have been reaped yet, reload
1838 		 * the timer so that we will eventually get another
1839 		 * interrupt that will cause us to re-enter this routine.
1840 		 * This is done in case the transmitter has gone idle.
1841 		 */
1842 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1843 #endif
1844 	} else
1845 		sc->rl_watchdog_timer = 0;
1846 }
1847 
1848 static void
1849 re_tick(xsc)
1850 	void			*xsc;
1851 {
1852 	struct rl_softc		*sc;
1853 	struct mii_data		*mii;
1854 	struct ifnet		*ifp;
1855 
1856 	sc = xsc;
1857 	ifp = sc->rl_ifp;
1858 
1859 	RL_LOCK_ASSERT(sc);
1860 
1861 	re_watchdog(sc);
1862 
1863 	mii = device_get_softc(sc->rl_miibus);
1864 	mii_tick(mii);
1865 	if (sc->rl_link) {
1866 		if (!(mii->mii_media_status & IFM_ACTIVE))
1867 			sc->rl_link = 0;
1868 	} else {
1869 		if (mii->mii_media_status & IFM_ACTIVE &&
1870 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1871 			sc->rl_link = 1;
1872 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1873 				taskqueue_enqueue_fast(taskqueue_fast,
1874 				    &sc->rl_txtask);
1875 		}
1876 	}
1877 
1878 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1879 }
1880 
1881 #ifdef DEVICE_POLLING
1882 static void
1883 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1884 {
1885 	struct rl_softc *sc = ifp->if_softc;
1886 
1887 	RL_LOCK(sc);
1888 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1889 		re_poll_locked(ifp, cmd, count);
1890 	RL_UNLOCK(sc);
1891 }
1892 
1893 static void
1894 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1895 {
1896 	struct rl_softc *sc = ifp->if_softc;
1897 
1898 	RL_LOCK_ASSERT(sc);
1899 
1900 	sc->rxcycles = count;
1901 	re_rxeof(sc);
1902 	re_txeof(sc);
1903 
1904 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1905 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
1906 
1907 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1908 		u_int16_t       status;
1909 
1910 		status = CSR_READ_2(sc, RL_ISR);
1911 		if (status == 0xffff)
1912 			return;
1913 		if (status)
1914 			CSR_WRITE_2(sc, RL_ISR, status);
1915 
1916 		/*
1917 		 * XXX check behaviour on receiver stalls.
1918 		 */
1919 
1920 		if (status & RL_ISR_SYSTEM_ERR) {
1921 			re_reset(sc);
1922 			re_init_locked(sc);
1923 		}
1924 	}
1925 }
1926 #endif /* DEVICE_POLLING */
1927 
1928 static int
1929 re_intr(arg)
1930 	void			*arg;
1931 {
1932 	struct rl_softc		*sc;
1933 	uint16_t		status;
1934 
1935 	sc = arg;
1936 
1937 	status = CSR_READ_2(sc, RL_ISR);
1938 	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
1939                 return (FILTER_STRAY);
1940 	CSR_WRITE_2(sc, RL_IMR, 0);
1941 
1942 	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
1943 
1944 	return (FILTER_HANDLED);
1945 }
1946 
1947 static void
1948 re_int_task(arg, npending)
1949 	void			*arg;
1950 	int			npending;
1951 {
1952 	struct rl_softc		*sc;
1953 	struct ifnet		*ifp;
1954 	u_int16_t		status;
1955 	int			rval = 0;
1956 
1957 	sc = arg;
1958 	ifp = sc->rl_ifp;
1959 
1960 	RL_LOCK(sc);
1961 
1962 	status = CSR_READ_2(sc, RL_ISR);
1963         CSR_WRITE_2(sc, RL_ISR, status);
1964 
1965 	if (sc->suspended || !(ifp->if_flags & IFF_UP)) {
1966 		RL_UNLOCK(sc);
1967 		return;
1968 	}
1969 
1970 #ifdef DEVICE_POLLING
1971 	if  (ifp->if_capenable & IFCAP_POLLING) {
1972 		RL_UNLOCK(sc);
1973 		return;
1974 	}
1975 #endif
1976 
1977 	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
1978 		rval = re_rxeof(sc);
1979 
1980 #ifdef RE_TX_MODERATION
1981 	if (status & (RL_ISR_TIMEOUT_EXPIRED|
1982 #else
1983 	if (status & (RL_ISR_TX_OK|
1984 #endif
1985 	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
1986 		re_txeof(sc);
1987 
1988 	if (status & RL_ISR_SYSTEM_ERR) {
1989 		re_reset(sc);
1990 		re_init_locked(sc);
1991 	}
1992 
1993 	if (status & RL_ISR_LINKCHG) {
1994 		callout_stop(&sc->rl_stat_callout);
1995 		re_tick(sc);
1996 	}
1997 
1998 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1999 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2000 
2001 	RL_UNLOCK(sc);
2002 
2003         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2004 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2005 		return;
2006 	}
2007 
2008 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2009 
2010 	return;
2011 }
2012 
2013 static int
2014 re_encap(sc, m_head, idx)
2015 	struct rl_softc		*sc;
2016 	struct mbuf		**m_head;
2017 	int			*idx;
2018 {
2019 	struct mbuf		*m_new = NULL;
2020 	struct rl_dmaload_arg	arg;
2021 	bus_dmamap_t		map;
2022 	int			error;
2023 
2024 	RL_LOCK_ASSERT(sc);
2025 
2026 	if (sc->rl_ldata.rl_tx_free <= RL_TX_DESC_THLD)
2027 		return (EFBIG);
2028 
2029 	/*
2030 	 * Set up checksum offload. Note: checksum offload bits must
2031 	 * appear in all descriptors of a multi-descriptor transmit
2032 	 * attempt. This is according to testing done with an 8169
2033 	 * chip. This is a requirement.
2034 	 */
2035 
2036 	arg.rl_flags = 0;
2037 
2038 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2039 		arg.rl_flags = RL_TDESC_CMD_LGSEND |
2040 		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2041 		    RL_TDESC_CMD_MSSVAL_SHIFT);
2042 	else {
2043 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
2044 			arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
2045 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
2046 			arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
2047 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
2048 			arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
2049 	}
2050 
2051 	arg.rl_idx = *idx;
2052 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2053 	if (arg.rl_maxsegs > RL_TX_DESC_THLD)
2054 		arg.rl_maxsegs -= RL_TX_DESC_THLD;
2055 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
2056 
2057 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
2058 
2059 	/*
2060 	 * With some of the RealTek chips, using the checksum offload
2061 	 * support in conjunction with the autopadding feature results
2062 	 * in the transmission of corrupt frames. For example, if we
2063 	 * need to send a really small IP fragment that's less than 60
2064 	 * bytes in size, and IP header checksumming is enabled, the
2065 	 * resulting ethernet frame that appears on the wire will
2066 	 * have garbled payload. To work around this, if TX checksum
2067 	 * offload is enabled, we always manually pad short frames out
2068 	 * to the minimum ethernet frame size. We do this by pretending
2069 	 * the mbuf chain has too many fragments so the coalescing code
2070 	 * below can assemble the packet into a single buffer that's
2071 	 * padded out to the mininum frame size.
2072 	 *
2073 	 * Note: this appears unnecessary for TCP, and doing it for TCP
2074 	 * with PCIe adapters seems to result in bad checksums.
2075 	 */
2076 
2077 	if (arg.rl_flags && !(arg.rl_flags & RL_TDESC_CMD_TCPCSUM) &&
2078             (*m_head)->m_pkthdr.len < RL_MIN_FRAMELEN)
2079 		error = EFBIG;
2080 	else
2081 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2082 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2083 
2084 	if (error && error != EFBIG) {
2085 		device_printf(sc->rl_dev, "can't map mbuf (error %d)\n", error);
2086 		return (ENOBUFS);
2087 	}
2088 
2089 	/* Too many segments to map, coalesce into a single mbuf */
2090 
2091 	if (error || arg.rl_maxsegs == 0) {
2092 		if (arg.rl_maxsegs == 0)
2093 			bus_dmamap_unload(sc->rl_ldata.rl_mtag, map);
2094 		m_new = m_defrag(*m_head, M_DONTWAIT);
2095 		if (m_new == NULL) {
2096 			m_freem(*m_head);
2097 			*m_head = NULL;
2098 			return (ENOBUFS);
2099 		}
2100 		*m_head = m_new;
2101 
2102 		/*
2103 		 * Manually pad short frames, and zero the pad space
2104 		 * to avoid leaking data.
2105 		 */
2106 		if (m_new->m_pkthdr.len < RL_MIN_FRAMELEN) {
2107 			bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
2108 			    RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
2109 			m_new->m_pkthdr.len += RL_MIN_FRAMELEN -
2110 			    m_new->m_pkthdr.len;
2111 			m_new->m_len = m_new->m_pkthdr.len;
2112 		}
2113 
2114 		/* Note that we'll run over RL_TX_DESC_THLD here. */
2115 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2116 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2117 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2118 		if (error || arg.rl_maxsegs == 0) {
2119 			device_printf(sc->rl_dev,
2120 			    "can't map defragmented mbuf (error %d)\n", error);
2121 			m_freem(m_new);
2122 			*m_head = NULL;
2123 			if (arg.rl_maxsegs == 0)
2124 				bus_dmamap_unload(sc->rl_ldata.rl_mtag, map);
2125 			return (EFBIG);
2126 		}
2127 	}
2128 
2129 	/*
2130 	 * Insure that the map for this transmission
2131 	 * is placed at the array index of the last descriptor
2132 	 * in this chain.  (Swap last and first dmamaps.)
2133 	 */
2134 	sc->rl_ldata.rl_tx_dmamap[*idx] =
2135 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
2136 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
2137 
2138 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
2139 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
2140 
2141 	/*
2142 	 * Set up hardware VLAN tagging. Note: vlan tag info must
2143 	 * appear in the first descriptor of a multi-descriptor
2144 	 * transmission attempt.
2145 	 */
2146 	if ((*m_head)->m_flags & M_VLANTAG)
2147 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
2148 		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2149 		    RL_TDESC_VLANCTL_TAG);
2150 
2151 	/* Transfer ownership of packet to the chip. */
2152 
2153 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
2154 	    htole32(RL_TDESC_CMD_OWN);
2155 	if (*idx != arg.rl_idx)
2156 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
2157 		    htole32(RL_TDESC_CMD_OWN);
2158 
2159         RL_DESC_INC(arg.rl_idx);
2160 	*idx = arg.rl_idx;
2161 
2162 	return (0);
2163 }
2164 
2165 static void
2166 re_tx_task(arg, npending)
2167 	void			*arg;
2168 	int			npending;
2169 {
2170 	struct ifnet		*ifp;
2171 
2172 	ifp = arg;
2173 	re_start(ifp);
2174 
2175 	return;
2176 }
2177 
2178 /*
2179  * Main transmit routine for C+ and gigE NICs.
2180  */
2181 static void
2182 re_start(ifp)
2183 	struct ifnet		*ifp;
2184 {
2185 	struct rl_softc		*sc;
2186 	struct mbuf		*m_head = NULL;
2187 	int			idx, queued = 0;
2188 
2189 	sc = ifp->if_softc;
2190 
2191 	RL_LOCK(sc);
2192 
2193 	if (!sc->rl_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
2194 		RL_UNLOCK(sc);
2195 		return;
2196 	}
2197 
2198 	idx = sc->rl_ldata.rl_tx_prodidx;
2199 
2200 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2201 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2202 		if (m_head == NULL)
2203 			break;
2204 
2205 		if (re_encap(sc, &m_head, &idx)) {
2206 			if (m_head == NULL)
2207 				break;
2208 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2209 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2210 			break;
2211 		}
2212 
2213 		/*
2214 		 * If there's a BPF listener, bounce a copy of this frame
2215 		 * to him.
2216 		 */
2217 		BPF_MTAP(ifp, m_head);
2218 
2219 		queued++;
2220 	}
2221 
2222 	if (queued == 0) {
2223 #ifdef RE_TX_MODERATION
2224 		if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
2225 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2226 #endif
2227 		RL_UNLOCK(sc);
2228 		return;
2229 	}
2230 
2231 	/* Flush the TX descriptors */
2232 
2233 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2234 	    sc->rl_ldata.rl_tx_list_map,
2235 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2236 
2237 	sc->rl_ldata.rl_tx_prodidx = idx;
2238 
2239 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2240 
2241 #ifdef RE_TX_MODERATION
2242 	/*
2243 	 * Use the countdown timer for interrupt moderation.
2244 	 * 'TX done' interrupts are disabled. Instead, we reset the
2245 	 * countdown timer, which will begin counting until it hits
2246 	 * the value in the TIMERINT register, and then trigger an
2247 	 * interrupt. Each time we write to the TIMERCNT register,
2248 	 * the timer count is reset to 0.
2249 	 */
2250 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2251 #endif
2252 
2253 	/*
2254 	 * Set a timeout in case the chip goes out to lunch.
2255 	 */
2256 	sc->rl_watchdog_timer = 5;
2257 
2258 	RL_UNLOCK(sc);
2259 
2260 	return;
2261 }
2262 
2263 static void
2264 re_init(xsc)
2265 	void			*xsc;
2266 {
2267 	struct rl_softc		*sc = xsc;
2268 
2269 	RL_LOCK(sc);
2270 	re_init_locked(sc);
2271 	RL_UNLOCK(sc);
2272 }
2273 
2274 static void
2275 re_init_locked(sc)
2276 	struct rl_softc		*sc;
2277 {
2278 	struct ifnet		*ifp = sc->rl_ifp;
2279 	struct mii_data		*mii;
2280 	u_int32_t		rxcfg = 0;
2281 	union {
2282 		uint32_t align_dummy;
2283 		u_char eaddr[ETHER_ADDR_LEN];
2284         } eaddr;
2285 
2286 	RL_LOCK_ASSERT(sc);
2287 
2288 	mii = device_get_softc(sc->rl_miibus);
2289 
2290 	/*
2291 	 * Cancel pending I/O and free all RX/TX buffers.
2292 	 */
2293 	re_stop(sc);
2294 
2295 	/*
2296 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2297 	 * RX checksum offload. We must configure the C+ register
2298 	 * before all others.
2299 	 */
2300 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2301 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2302 	    RL_CPLUSCMD_VLANSTRIP|RL_CPLUSCMD_RXCSUM_ENB);
2303 
2304 	/*
2305 	 * Init our MAC address.  Even though the chipset
2306 	 * documentation doesn't mention it, we need to enter "Config
2307 	 * register write enable" mode to modify the ID registers.
2308 	 */
2309 	/* Copy MAC address on stack to align. */
2310 	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2311 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2312 	CSR_WRITE_4(sc, RL_IDR0,
2313 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2314 	CSR_WRITE_4(sc, RL_IDR4,
2315 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2316 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2317 
2318 	/*
2319 	 * For C+ mode, initialize the RX descriptors and mbufs.
2320 	 */
2321 	re_rx_list_init(sc);
2322 	re_tx_list_init(sc);
2323 
2324 	/*
2325 	 * Load the addresses of the RX and TX lists into the chip.
2326 	 */
2327 
2328 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2329 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2330 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2331 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2332 
2333 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2334 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2335 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2336 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2337 
2338 	/*
2339 	 * Enable transmit and receive.
2340 	 */
2341 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2342 
2343 	/*
2344 	 * Set the initial TX and RX configuration.
2345 	 */
2346 	if (sc->rl_testmode) {
2347 		if (sc->rl_type == RL_8169)
2348 			CSR_WRITE_4(sc, RL_TXCFG,
2349 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2350 		else
2351 			CSR_WRITE_4(sc, RL_TXCFG,
2352 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2353 	} else
2354 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2355 
2356 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2357 
2358 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2359 
2360 	/* Set the individual bit to receive frames for this host only. */
2361 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2362 	rxcfg |= RL_RXCFG_RX_INDIV;
2363 
2364 	/* If we want promiscuous mode, set the allframes bit. */
2365 	if (ifp->if_flags & IFF_PROMISC)
2366 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2367 	else
2368 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2369 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2370 
2371 	/*
2372 	 * Set capture broadcast bit to capture broadcast frames.
2373 	 */
2374 	if (ifp->if_flags & IFF_BROADCAST)
2375 		rxcfg |= RL_RXCFG_RX_BROAD;
2376 	else
2377 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2378 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2379 
2380 	/*
2381 	 * Program the multicast filter, if necessary.
2382 	 */
2383 	re_setmulti(sc);
2384 
2385 #ifdef DEVICE_POLLING
2386 	/*
2387 	 * Disable interrupts if we are polling.
2388 	 */
2389 	if (ifp->if_capenable & IFCAP_POLLING)
2390 		CSR_WRITE_2(sc, RL_IMR, 0);
2391 	else	/* otherwise ... */
2392 #endif
2393 
2394 	/*
2395 	 * Enable interrupts.
2396 	 */
2397 	if (sc->rl_testmode)
2398 		CSR_WRITE_2(sc, RL_IMR, 0);
2399 	else
2400 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2401 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2402 
2403 	/* Set initial TX threshold */
2404 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2405 
2406 	/* Start RX/TX process. */
2407 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2408 #ifdef notdef
2409 	/* Enable receiver and transmitter. */
2410 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2411 #endif
2412 
2413 #ifdef RE_TX_MODERATION
2414 	/*
2415 	 * Initialize the timer interrupt register so that
2416 	 * a timer interrupt will be generated once the timer
2417 	 * reaches a certain number of ticks. The timer is
2418 	 * reloaded on each transmit. This gives us TX interrupt
2419 	 * moderation, which dramatically improves TX frame rate.
2420 	 */
2421 	if (sc->rl_type == RL_8169)
2422 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2423 	else
2424 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2425 #endif
2426 
2427 	/*
2428 	 * For 8169 gigE NICs, set the max allowed RX packet
2429 	 * size so we can receive jumbo frames.
2430 	 */
2431 	if (sc->rl_type == RL_8169)
2432 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2433 
2434 	if (sc->rl_testmode)
2435 		return;
2436 
2437 	mii_mediachg(mii);
2438 
2439 	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2440 
2441 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2442 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2443 
2444 	sc->rl_link = 0;
2445 	sc->rl_watchdog_timer = 0;
2446 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2447 }
2448 
2449 /*
2450  * Set media options.
2451  */
2452 static int
2453 re_ifmedia_upd(ifp)
2454 	struct ifnet		*ifp;
2455 {
2456 	struct rl_softc		*sc;
2457 	struct mii_data		*mii;
2458 
2459 	sc = ifp->if_softc;
2460 	mii = device_get_softc(sc->rl_miibus);
2461 	RL_LOCK(sc);
2462 	mii_mediachg(mii);
2463 	RL_UNLOCK(sc);
2464 
2465 	return (0);
2466 }
2467 
2468 /*
2469  * Report current media status.
2470  */
2471 static void
2472 re_ifmedia_sts(ifp, ifmr)
2473 	struct ifnet		*ifp;
2474 	struct ifmediareq	*ifmr;
2475 {
2476 	struct rl_softc		*sc;
2477 	struct mii_data		*mii;
2478 
2479 	sc = ifp->if_softc;
2480 	mii = device_get_softc(sc->rl_miibus);
2481 
2482 	RL_LOCK(sc);
2483 	mii_pollstat(mii);
2484 	RL_UNLOCK(sc);
2485 	ifmr->ifm_active = mii->mii_media_active;
2486 	ifmr->ifm_status = mii->mii_media_status;
2487 }
2488 
2489 static int
2490 re_ioctl(ifp, command, data)
2491 	struct ifnet		*ifp;
2492 	u_long			command;
2493 	caddr_t			data;
2494 {
2495 	struct rl_softc		*sc = ifp->if_softc;
2496 	struct ifreq		*ifr = (struct ifreq *) data;
2497 	struct mii_data		*mii;
2498 	int			error = 0;
2499 
2500 	switch (command) {
2501 	case SIOCSIFMTU:
2502 		RL_LOCK(sc);
2503 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2504 			error = EINVAL;
2505 		ifp->if_mtu = ifr->ifr_mtu;
2506 		RL_UNLOCK(sc);
2507 		break;
2508 	case SIOCSIFFLAGS:
2509 		RL_LOCK(sc);
2510 		if (ifp->if_flags & IFF_UP)
2511 			re_init_locked(sc);
2512 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2513 			re_stop(sc);
2514 		RL_UNLOCK(sc);
2515 		break;
2516 	case SIOCADDMULTI:
2517 	case SIOCDELMULTI:
2518 		RL_LOCK(sc);
2519 		re_setmulti(sc);
2520 		RL_UNLOCK(sc);
2521 		break;
2522 	case SIOCGIFMEDIA:
2523 	case SIOCSIFMEDIA:
2524 		mii = device_get_softc(sc->rl_miibus);
2525 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2526 		break;
2527 	case SIOCSIFCAP:
2528 	    {
2529 		int mask, reinit;
2530 
2531 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2532 		reinit = 0;
2533 #ifdef DEVICE_POLLING
2534 		if (mask & IFCAP_POLLING) {
2535 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2536 				error = ether_poll_register(re_poll, ifp);
2537 				if (error)
2538 					return(error);
2539 				RL_LOCK(sc);
2540 				/* Disable interrupts */
2541 				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2542 				ifp->if_capenable |= IFCAP_POLLING;
2543 				RL_UNLOCK(sc);
2544 			} else {
2545 				error = ether_poll_deregister(ifp);
2546 				/* Enable interrupts. */
2547 				RL_LOCK(sc);
2548 				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2549 				ifp->if_capenable &= ~IFCAP_POLLING;
2550 				RL_UNLOCK(sc);
2551 			}
2552 		}
2553 #endif /* DEVICE_POLLING */
2554 		if (mask & IFCAP_HWCSUM) {
2555 			ifp->if_capenable ^= IFCAP_HWCSUM;
2556 			if (ifp->if_capenable & IFCAP_TXCSUM)
2557 				ifp->if_hwassist |= RE_CSUM_FEATURES;
2558 			else
2559 				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2560 			reinit = 1;
2561 		}
2562 		if (mask & IFCAP_VLAN_HWTAGGING) {
2563 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2564 			reinit = 1;
2565 		}
2566 		if (mask & IFCAP_TSO4) {
2567 			ifp->if_capenable ^= IFCAP_TSO4;
2568 			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2569 			    (IFCAP_TSO4 & ifp->if_capabilities))
2570 				ifp->if_hwassist |= CSUM_TSO;
2571 			else
2572 				ifp->if_hwassist &= ~CSUM_TSO;
2573 		}
2574 		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2575 			re_init(sc);
2576 		VLAN_CAPABILITIES(ifp);
2577 	    }
2578 		break;
2579 	default:
2580 		error = ether_ioctl(ifp, command, data);
2581 		break;
2582 	}
2583 
2584 	return (error);
2585 }
2586 
2587 static void
2588 re_watchdog(sc)
2589 	struct rl_softc		*sc;
2590 {
2591 
2592 	RL_LOCK_ASSERT(sc);
2593 
2594 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2595 		return;
2596 
2597 	device_printf(sc->rl_dev, "watchdog timeout\n");
2598 	sc->rl_ifp->if_oerrors++;
2599 
2600 	re_txeof(sc);
2601 	re_rxeof(sc);
2602 	re_init_locked(sc);
2603 }
2604 
2605 /*
2606  * Stop the adapter and free any mbufs allocated to the
2607  * RX and TX lists.
2608  */
2609 static void
2610 re_stop(sc)
2611 	struct rl_softc		*sc;
2612 {
2613 	register int		i;
2614 	struct ifnet		*ifp;
2615 
2616 	RL_LOCK_ASSERT(sc);
2617 
2618 	ifp = sc->rl_ifp;
2619 
2620 	sc->rl_watchdog_timer = 0;
2621 	callout_stop(&sc->rl_stat_callout);
2622 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2623 
2624 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2625 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2626 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2627 
2628 	if (sc->rl_head != NULL) {
2629 		m_freem(sc->rl_head);
2630 		sc->rl_head = sc->rl_tail = NULL;
2631 	}
2632 
2633 	/* Free the TX list buffers. */
2634 
2635 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2636 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2637 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2638 			    sc->rl_ldata.rl_tx_dmamap[i]);
2639 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2640 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2641 		}
2642 	}
2643 
2644 	/* Free the RX list buffers. */
2645 
2646 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2647 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2648 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2649 			    sc->rl_ldata.rl_rx_dmamap[i]);
2650 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2651 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2652 		}
2653 	}
2654 }
2655 
2656 /*
2657  * Device suspend routine.  Stop the interface and save some PCI
2658  * settings in case the BIOS doesn't restore them properly on
2659  * resume.
2660  */
2661 static int
2662 re_suspend(dev)
2663 	device_t		dev;
2664 {
2665 	struct rl_softc		*sc;
2666 
2667 	sc = device_get_softc(dev);
2668 
2669 	RL_LOCK(sc);
2670 	re_stop(sc);
2671 	sc->suspended = 1;
2672 	RL_UNLOCK(sc);
2673 
2674 	return (0);
2675 }
2676 
2677 /*
2678  * Device resume routine.  Restore some PCI settings in case the BIOS
2679  * doesn't, re-enable busmastering, and restart the interface if
2680  * appropriate.
2681  */
2682 static int
2683 re_resume(dev)
2684 	device_t		dev;
2685 {
2686 	struct rl_softc		*sc;
2687 	struct ifnet		*ifp;
2688 
2689 	sc = device_get_softc(dev);
2690 
2691 	RL_LOCK(sc);
2692 
2693 	ifp = sc->rl_ifp;
2694 
2695 	/* reinitialize interface if necessary */
2696 	if (ifp->if_flags & IFF_UP)
2697 		re_init_locked(sc);
2698 
2699 	sc->suspended = 0;
2700 	RL_UNLOCK(sc);
2701 
2702 	return (0);
2703 }
2704 
2705 /*
2706  * Stop all chip I/O so that the kernel's probe routines don't
2707  * get confused by errant DMAs when rebooting.
2708  */
2709 static void
2710 re_shutdown(dev)
2711 	device_t		dev;
2712 {
2713 	struct rl_softc		*sc;
2714 
2715 	sc = device_get_softc(dev);
2716 
2717 	RL_LOCK(sc);
2718 	re_stop(sc);
2719 	/*
2720 	 * Mark interface as down since otherwise we will panic if
2721 	 * interrupt comes in later on, which can happen in some
2722 	 * cases.
2723 	 */
2724 	sc->rl_ifp->if_flags &= ~IFF_UP;
2725 	RL_UNLOCK(sc);
2726 }
2727