xref: /freebsd/sys/dev/sdhci/fsl_sdhci.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
32  *
33  * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34  */
35 
36 #include "opt_mmccam.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/bus.h>
42 #include <sys/callout.h>
43 #include <sys/kernel.h>
44 #include <sys/libkern.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/mutex.h>
49 #include <sys/resource.h>
50 #include <sys/rman.h>
51 #include <sys/sysctl.h>
52 #include <sys/taskqueue.h>
53 #include <sys/time.h>
54 
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 #ifdef __arm__
58 #include <machine/intr.h>
59 
60 #include <arm/freescale/imx/imx_ccmvar.h>
61 #endif
62 
63 #ifdef __powerpc__
64 #include <powerpc/mpc85xx/mpc85xx.h>
65 #endif
66 
67 #include <dev/gpio/gpiobusvar.h>
68 
69 #include <dev/ofw/ofw_bus.h>
70 #include <dev/ofw/ofw_bus_subr.h>
71 
72 #include <dev/mmc/bridge.h>
73 
74 #include <dev/sdhci/sdhci.h>
75 #include <dev/sdhci/sdhci_fdt_gpio.h>
76 
77 #include "mmcbr_if.h"
78 #include "sdhci_if.h"
79 
80 struct fsl_sdhci_softc {
81 	device_t		dev;
82 	struct resource *	mem_res;
83 	struct resource *	irq_res;
84 	void *			intr_cookie;
85 	struct sdhci_slot	slot;
86 	struct callout		r1bfix_callout;
87 	sbintime_t		r1bfix_timeout_at;
88 	struct sdhci_fdt_gpio * gpio;
89 	uint32_t		baseclk_hz;
90 	uint32_t		cmd_and_mode;
91 	uint32_t		r1bfix_intmask;
92 	uint16_t		sdclockreg_freq_bits;
93 	uint8_t			r1bfix_type;
94 	uint8_t			hwtype;
95 };
96 
97 #define	R1BFIX_NONE	0	/* No fix needed at next interrupt. */
98 #define	R1BFIX_NODATA	1	/* Synthesize DATA_END for R1B w/o data. */
99 #define	R1BFIX_AC12	2	/* Wait for busy after auto command 12. */
100 
101 #define	HWTYPE_NONE	0	/* Hardware not recognized/supported. */
102 #define	HWTYPE_ESDHC	1	/* fsl5x and earlier. */
103 #define	HWTYPE_USDHC	2	/* fsl6. */
104 
105 /*
106  * Freescale-specific registers, or in some cases the layout of bits within the
107  * sdhci-defined register is different on Freescale.  These names all begin with
108  * SDHC_ (not SDHCI_).
109  */
110 
111 #define	SDHC_WTMK_LVL		0x44	/* Watermark Level register. */
112 #define	USDHC_MIX_CONTROL	0x48	/* Mix(ed) Control register. */
113 #define	SDHC_VEND_SPEC		0xC0	/* Vendor-specific register. */
114 #define	 SDHC_VEND_FRC_SDCLK_ON	(1 <<  8)
115 #define	 SDHC_VEND_IPGEN	(1 << 11)
116 #define	 SDHC_VEND_HCKEN	(1 << 12)
117 #define	 SDHC_VEND_PEREN	(1 << 13)
118 
119 #define	SDHC_PRES_STATE		0x24
120 #define	  SDHC_PRES_CIHB	  (1 <<  0)
121 #define	  SDHC_PRES_CDIHB	  (1 <<  1)
122 #define	  SDHC_PRES_DLA		  (1 <<  2)
123 #define	  SDHC_PRES_SDSTB	  (1 <<  3)
124 #define	  SDHC_PRES_IPGOFF	  (1 <<  4)
125 #define	  SDHC_PRES_HCKOFF	  (1 <<  5)
126 #define	  SDHC_PRES_PEROFF	  (1 <<  6)
127 #define	  SDHC_PRES_SDOFF	  (1 <<  7)
128 #define	  SDHC_PRES_WTA		  (1 <<  8)
129 #define	  SDHC_PRES_RTA		  (1 <<  9)
130 #define	  SDHC_PRES_BWEN	  (1 << 10)
131 #define	  SDHC_PRES_BREN	  (1 << 11)
132 #define	  SDHC_PRES_RTR		  (1 << 12)
133 #define	  SDHC_PRES_CINST	  (1 << 16)
134 #define	  SDHC_PRES_CDPL	  (1 << 18)
135 #define	  SDHC_PRES_WPSPL	  (1 << 19)
136 #define	  SDHC_PRES_CLSL	  (1 << 23)
137 #define	  SDHC_PRES_DLSL_SHIFT	  24
138 #define	  SDHC_PRES_DLSL_MASK	  (0xffU << SDHC_PRES_DLSL_SHIFT)
139 
140 #define	SDHC_PROT_CTRL		0x28
141 #define	 SDHC_PROT_LED		(1 << 0)
142 #define	 SDHC_PROT_WIDTH_1BIT	(0 << 1)
143 #define	 SDHC_PROT_WIDTH_4BIT	(1 << 1)
144 #define	 SDHC_PROT_WIDTH_8BIT	(2 << 1)
145 #define	 SDHC_PROT_WIDTH_MASK	(3 << 1)
146 #define	 SDHC_PROT_D3CD		(1 << 3)
147 #define	 SDHC_PROT_EMODE_BIG	(0 << 4)
148 #define	 SDHC_PROT_EMODE_HALF	(1 << 4)
149 #define	 SDHC_PROT_EMODE_LITTLE	(2 << 4)
150 #define	 SDHC_PROT_EMODE_MASK	(3 << 4)
151 #define	 SDHC_PROT_SDMA		(0 << 8)
152 #define	 SDHC_PROT_ADMA1	(1 << 8)
153 #define	 SDHC_PROT_ADMA2	(2 << 8)
154 #define	 SDHC_PROT_ADMA264	(3 << 8)
155 #define	 SDHC_PROT_DMA_MASK	(3 << 8)
156 #define	 SDHC_PROT_CDTL		(1 << 6)
157 #define	 SDHC_PROT_CDSS		(1 << 7)
158 
159 #define	SDHC_SYS_CTRL		0x2c
160 
161 /*
162  * The clock enable bits exist in different registers for ESDHC vs USDHC, but
163  * they are the same bits in both cases.  The divisor values go into the
164  * standard sdhci clock register, but in different bit positions and meanings
165    than the sdhci spec values.
166  */
167 #define	SDHC_CLK_IPGEN		(1 << 0)
168 #define	SDHC_CLK_HCKEN		(1 << 1)
169 #define	SDHC_CLK_PEREN		(1 << 2)
170 #define	SDHC_CLK_SDCLKEN	(1 << 3)
171 #define	SDHC_CLK_ENABLE_MASK	0x0000000f
172 #define	SDHC_CLK_DIVISOR_MASK	0x000000f0
173 #define	SDHC_CLK_DIVISOR_SHIFT	4
174 #define	SDHC_CLK_PRESCALE_MASK	0x0000ff00
175 #define	SDHC_CLK_PRESCALE_SHIFT	8
176 
177 static struct ofw_compat_data compat_data[] = {
178 	{"fsl,imx6q-usdhc",	HWTYPE_USDHC},
179 	{"fsl,imx6sl-usdhc",	HWTYPE_USDHC},
180 	{"fsl,imx53-esdhc",	HWTYPE_ESDHC},
181 	{"fsl,imx51-esdhc",	HWTYPE_ESDHC},
182 	{"fsl,esdhc",		HWTYPE_ESDHC},
183 	{NULL,			HWTYPE_NONE},
184 };
185 
186 static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
187 static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
188 static void fsl_sdhci_r1bfix_func(void *arg);
189 
190 static inline uint32_t
191 RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
192 {
193 
194 	return (bus_read_4(sc->mem_res, off));
195 }
196 
197 static inline void
198 WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
199 {
200 
201 	bus_write_4(sc->mem_res, off, val);
202 }
203 
204 static uint8_t
205 fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
206 {
207 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
208 	uint32_t val32, wrk32;
209 
210 	/*
211 	 * Most of the things in the standard host control register are in the
212 	 * hardware's wider protocol control register, but some of the bits are
213 	 * moved around.
214 	 */
215 	if (off == SDHCI_HOST_CONTROL) {
216 		wrk32 = RD4(sc, SDHC_PROT_CTRL);
217 		val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
218 		    SDHCI_CTRL_FORCE_CARD);
219 		switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
220 		case SDHC_PROT_WIDTH_1BIT:
221 			/* Value is already 0. */
222 			break;
223 		case SDHC_PROT_WIDTH_4BIT:
224 			val32 |= SDHCI_CTRL_4BITBUS;
225 			break;
226 		case SDHC_PROT_WIDTH_8BIT:
227 			val32 |= SDHCI_CTRL_8BITBUS;
228 			break;
229 		}
230 		switch (wrk32 & SDHC_PROT_DMA_MASK) {
231 		case SDHC_PROT_SDMA:
232 			/* Value is already 0. */
233 			break;
234 		case SDHC_PROT_ADMA1:
235 			/* This value is deprecated, should never appear. */
236 			break;
237 		case SDHC_PROT_ADMA2:
238 			val32 |= SDHCI_CTRL_ADMA2;
239 			break;
240 		case SDHC_PROT_ADMA264:
241 			val32 |= SDHCI_CTRL_ADMA264;
242 			break;
243 		}
244 		return val32;
245 	}
246 
247 	/*
248 	 * XXX can't find the bus power on/off knob.  For now we have to say the
249 	 * power is always on and always set to the same voltage.
250 	 */
251 	if (off == SDHCI_POWER_CONTROL) {
252 		return (SDHCI_POWER_ON | SDHCI_POWER_300);
253 	}
254 
255 
256 	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
257 }
258 
259 static uint16_t
260 fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
261 {
262 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
263 	uint32_t val32;
264 
265 	if (sc->hwtype == HWTYPE_USDHC) {
266 		/*
267 		 * The USDHC hardware has nothing in the version register, but
268 		 * it's v3 compatible with all our translation code.
269 		 */
270 		if (off == SDHCI_HOST_VERSION) {
271 			return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
272 		}
273 		/*
274 		 * The USDHC hardware moved the transfer mode bits to the mixed
275 		 * control register, fetch them from there.
276 		 */
277 		if (off == SDHCI_TRANSFER_MODE)
278 			return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
279 
280 	} else if (sc->hwtype == HWTYPE_ESDHC) {
281 
282 		/*
283 		 * The ESDHC hardware has the typical 32-bit combined "command
284 		 * and mode" register that we have to cache so that command
285 		 * isn't written until after mode.  On a read, just retrieve the
286 		 * cached values last written.
287 		 */
288 		if (off == SDHCI_TRANSFER_MODE) {
289 			return (sc->cmd_and_mode & 0x0000ffff);
290 		} else if (off == SDHCI_COMMAND_FLAGS) {
291 			return (sc->cmd_and_mode >> 16);
292 		}
293 	}
294 
295 	/*
296 	 * This hardware only manages one slot.  Synthesize a slot interrupt
297 	 * status register... if there are any enabled interrupts active they
298 	 * must be coming from our one and only slot.
299 	 */
300 	if (off == SDHCI_SLOT_INT_STATUS) {
301 		val32  = RD4(sc, SDHCI_INT_STATUS);
302 		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
303 		return (val32 ? 1 : 0);
304 	}
305 
306 	/*
307 	 * Clock bits are scattered into various registers which differ by
308 	 * hardware type, complex enough to have their own function.
309 	 */
310 	if (off == SDHCI_CLOCK_CONTROL) {
311 		return (fsl_sdhc_get_clock(sc));
312 	}
313 
314 	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
315 }
316 
317 static uint32_t
318 fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
319 {
320 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
321 	uint32_t val32, wrk32;
322 
323 	val32 = RD4(sc, off);
324 
325 	/*
326 	 * The hardware leaves the base clock frequency out of the capabilities
327 	 * register, but we filled it in by setting slot->max_clk at attach time
328 	 * rather than here, because we can't represent frequencies above 63MHz
329 	 * in an sdhci 2.0 capabliities register.  The timeout clock is the same
330 	 * as the active output sdclock; we indicate that with a quirk setting
331 	 * so don't populate the timeout frequency bits.
332 	 *
333 	 * XXX Turn off (for now) features the hardware can do but this driver
334 	 * doesn't yet handle (1.8v, suspend/resume, etc).
335 	 */
336 	if (off == SDHCI_CAPABILITIES) {
337 		val32 &= ~SDHCI_CAN_VDD_180;
338 		val32 &= ~SDHCI_CAN_DO_SUSPEND;
339 		val32 |= SDHCI_CAN_DO_8BITBUS;
340 		return (val32);
341 	}
342 
343 	/*
344 	 * The hardware moves bits around in the present state register to make
345 	 * room for all 8 data line state bits.  To translate, mask out all the
346 	 * bits which are not in the same position in both registers (this also
347 	 * masks out some Freescale-specific bits in locations defined as
348 	 * reserved by sdhci), then shift the data line and retune request bits
349 	 * down to their standard locations.
350 	 */
351 	if (off == SDHCI_PRESENT_STATE) {
352 		wrk32 = val32;
353 		val32 &= 0x000F0F07;
354 		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
355 		val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
356 		return (val32);
357 	}
358 
359 	/*
360 	 * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
361 	 * command with an R1B response, mix it into the hardware status.
362 	 */
363 	if (off == SDHCI_INT_STATUS) {
364 		return (val32 | sc->r1bfix_intmask);
365 	}
366 
367 	return val32;
368 }
369 
370 static void
371 fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
372     uint32_t *data, bus_size_t count)
373 {
374 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
375 
376 	bus_read_multi_4(sc->mem_res, off, data, count);
377 }
378 
379 static void
380 fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
381 {
382 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
383 	uint32_t val32;
384 
385 	/*
386 	 * Most of the things in the standard host control register are in the
387 	 * hardware's wider protocol control register, but some of the bits are
388 	 * moved around.
389 	 */
390 	if (off == SDHCI_HOST_CONTROL) {
391 		val32 = RD4(sc, SDHC_PROT_CTRL);
392 		val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
393 		    SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
394 		val32 |= (val & SDHCI_CTRL_LED);
395 		if (val & SDHCI_CTRL_8BITBUS)
396 			val32 |= SDHC_PROT_WIDTH_8BIT;
397 		else
398 			val32 |= (val & SDHCI_CTRL_4BITBUS);
399 		val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
400 		val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
401 		WR4(sc, SDHC_PROT_CTRL, val32);
402 		return;
403 	}
404 
405 	/* XXX I can't find the bus power on/off knob; do nothing. */
406 	if (off == SDHCI_POWER_CONTROL) {
407 		return;
408 	}
409 #ifdef __powerpc__
410 	/* XXX Reset doesn't seem to work as expected.  Do nothing for now. */
411 	if (off == SDHCI_SOFTWARE_RESET)
412 		return;
413 #endif
414 
415 	val32 = RD4(sc, off & ~3);
416 	val32 &= ~(0xff << (off & 3) * 8);
417 	val32 |= (val << (off & 3) * 8);
418 
419 	WR4(sc, off & ~3, val32);
420 }
421 
422 static void
423 fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
424 {
425 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
426 	uint32_t val32;
427 
428 	/*
429 	 * The clock control stuff is complex enough to have its own function
430 	 * that can handle the ESDHC versus USDHC differences.
431 	 */
432 	if (off == SDHCI_CLOCK_CONTROL) {
433 		fsl_sdhc_set_clock(sc, val);
434 		return;
435 	}
436 
437 	/*
438 	 * Figure out whether we need to check the DAT0 line for busy status at
439 	 * interrupt time.  The controller should be doing this, but for some
440 	 * reason it doesn't.  There are two cases:
441 	 *  - R1B response with no data transfer should generate a DATA_END (aka
442 	 *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
443 	 *    there's no data transfer there's no DATA_END interrupt.  This is
444 	 *    documented; they seem to think it's a feature.
445 	 *  - R1B response after Auto-CMD12 appears to not work, even though
446 	 *    there's a control bit for it (bit 3) in the vendor register.
447 	 * When we're starting a command that needs a manual DAT0 line check at
448 	 * interrupt time, we leave ourselves a note in r1bfix_type so that we
449 	 * can do the extra work in fsl_sdhci_intr().
450 	 */
451 	if (off == SDHCI_COMMAND_FLAGS) {
452 		if (val & SDHCI_CMD_DATA) {
453 			const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
454 			val32 = RD4(sc, USDHC_MIX_CONTROL);
455 			if ((val32 & MBAUTOCMD) == MBAUTOCMD)
456 				sc->r1bfix_type = R1BFIX_AC12;
457 		} else {
458 			if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
459 				WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
460 				WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
461 				sc->r1bfix_type = R1BFIX_NODATA;
462 			}
463 		}
464 	}
465 
466 	/*
467 	 * The USDHC hardware moved the transfer mode bits to mixed control; we
468 	 * just write them there and we're done.  The ESDHC hardware has the
469 	 * typical combined cmd-and-mode register that allows only 32-bit
470 	 * access, so when writing the mode bits just save them, then later when
471 	 * writing the command bits, add in the saved mode bits.
472 	 */
473 	if (sc->hwtype == HWTYPE_USDHC) {
474 		if (off == SDHCI_TRANSFER_MODE) {
475 			val32 = RD4(sc, USDHC_MIX_CONTROL);
476 			val32 &= ~0x3f;
477 			val32 |= val & 0x37;
478 			// XXX acmd23 not supported here (or by sdhci driver)
479 			WR4(sc, USDHC_MIX_CONTROL, val32);
480 			return;
481 		}
482 	} else if (sc->hwtype == HWTYPE_ESDHC) {
483 		if (off == SDHCI_TRANSFER_MODE) {
484 			sc->cmd_and_mode =
485 			    (sc->cmd_and_mode & 0xffff0000) | val;
486 			return;
487 		} else if (off == SDHCI_COMMAND_FLAGS) {
488 			sc->cmd_and_mode =
489 			    (sc->cmd_and_mode & 0xffff) | (val << 16);
490 			WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
491 			return;
492 		}
493 	}
494 
495 	val32 = RD4(sc, off & ~3);
496 	val32 &= ~(0xffff << (off & 3) * 8);
497 	val32 |= ((val & 0xffff) << (off & 3) * 8);
498 	WR4(sc, off & ~3, val32);
499 }
500 
501 static void
502 fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
503 {
504 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
505 
506 	/* Clear synthesized interrupts, then pass the value to the hardware. */
507 	if (off == SDHCI_INT_STATUS) {
508 		sc->r1bfix_intmask &= ~val;
509 	}
510 
511 	WR4(sc, off, val);
512 }
513 
514 static void
515 fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
516     uint32_t *data, bus_size_t count)
517 {
518 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
519 
520 	bus_write_multi_4(sc->mem_res, off, data, count);
521 }
522 
523 static uint16_t
524 fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
525 {
526 	uint16_t val;
527 
528 	/*
529 	 * Whenever the sdhci driver writes the clock register we save a
530 	 * snapshot of just the frequency bits, so that we can play them back
531 	 * here on a register read without recalculating the frequency from the
532 	 * prescalar and divisor bits in the real register.  We'll start with
533 	 * those bits, and mix in the clock status and enable bits that come
534 	 * from different places depending on which hardware we've got.
535 	 */
536 	val = sc->sdclockreg_freq_bits;
537 
538 	/*
539 	 * The internal clock is always enabled (actually, the hardware manages
540 	 * it).  Whether the internal clock is stable yet after a frequency
541 	 * change comes from the present-state register on both hardware types.
542 	 */
543 	val |= SDHCI_CLOCK_INT_EN;
544 	if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
545 	    val |= SDHCI_CLOCK_INT_STABLE;
546 
547 	/*
548 	 * On i.MX ESDHC hardware the card bus clock enable is in the usual
549 	 * sdhci register but it's a different bit, so transcribe it (note the
550 	 * difference between standard SDHCI_ and Freescale SDHC_ prefixes
551 	 * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
552 	 * no force-off for the card bus clock (the hardware runs the clock when
553 	 * transfers are active no matter what), so we always say the clock is
554 	 * on.
555 	 * XXX Maybe we should say it's in whatever state the sdhci driver last
556 	 * set it to.
557 	 */
558 	if (sc->hwtype == HWTYPE_ESDHC) {
559 #ifdef __arm__
560 		if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
561 #endif
562 			val |= SDHCI_CLOCK_CARD_EN;
563 	} else {
564 		val |= SDHCI_CLOCK_CARD_EN;
565 	}
566 
567 	return (val);
568 }
569 
570 static void
571 fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
572 {
573 	uint32_t divisor, freq, prescale, val32;
574 
575 	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
576 
577 	/*
578 	 * Save the frequency-setting bits in SDHCI format so that we can play
579 	 * them back in get_clock without complex decoding of hardware regs,
580 	 * then deal with the freqency part of the value based on hardware type.
581 	 */
582 	sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
583 	if (sc->hwtype == HWTYPE_ESDHC) {
584 		/*
585 		 * The i.MX5 ESDHC hardware requires the driver to manually
586 		 * start and stop the sd bus clock.  If the enable bit is not
587 		 * set, turn off the clock in hardware and we're done, otherwise
588 		 * decode the requested frequency.  ESDHC hardware is sdhci 2.0;
589 		 * the sdhci driver will use the original 8-bit divisor field
590 		 * and the "base / 2^N" divisor scheme.
591 		 */
592 		if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
593 #ifdef __arm__
594 			/* On QorIQ, this is a reserved bit. */
595 			WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
596 #endif
597 			return;
598 
599 		}
600 		divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
601 		freq = sc->baseclk_hz >> ffs(divisor);
602 	} else {
603 		/*
604 		 * The USDHC hardware provides only "force always on" control
605 		 * over the sd bus clock, but no way to turn it off.  (If a cmd
606 		 * or data transfer is in progress the clock is on, otherwise it
607 		 * is off.)  If the clock is being disabled, we can just return
608 		 * now, otherwise we decode the requested frequency.  USDHC
609 		 * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
610 		 * divisor using the "base / 2*N" divisor scheme.
611 		 */
612 		if ((val & SDHCI_CLOCK_CARD_EN) == 0)
613 			return;
614 		divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
615 		    ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
616 		    SDHCI_DIVIDER_MASK_LEN;
617 		if (divisor == 0)
618 			freq = sc->baseclk_hz;
619 		else
620 			freq = sc->baseclk_hz / (2 * divisor);
621 	}
622 
623 	/*
624 	 * Get a prescaler and final divisor to achieve the desired frequency.
625 	 */
626 	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
627 		prescale <<= 1;
628 
629 	for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
630 		++divisor;
631 
632 #ifdef DEBUG
633 	device_printf(sc->dev,
634 	    "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
635 	    freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
636 	    prescale, divisor);
637 #endif
638 
639 	/*
640 	 * Adjust to zero-based values, and store them to the hardware.
641 	 */
642 	prescale >>= 1;
643 	divisor -= 1;
644 
645 	val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
646 	val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
647 	val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
648 	val32 |= SDHC_CLK_IPGEN;
649 	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
650 }
651 
652 static boolean_t
653 fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
654 {
655 	uint32_t inhibit;
656 
657 	mtx_assert(&sc->slot.mtx, MA_OWNED);
658 
659 	/*
660 	 * Check the DAT0 line status using both the DLA (data line active) and
661 	 * CDIHB (data inhibit) bits in the present state register.  In theory
662 	 * just DLA should do the trick,  but in practice it takes both.  If the
663 	 * DAT0 line is still being held and we're not yet beyond the timeout
664 	 * point, just schedule another callout to check again later.
665 	 */
666 	inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
667 
668 	if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
669 		callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
670 		    fsl_sdhci_r1bfix_func, sc, 0);
671 		return (false);
672 	}
673 
674 	/*
675 	 * If we reach this point with the inhibit bits still set, we've got a
676 	 * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
677 	 * line has been released, and we synthesize a DATA_END, and if the type
678 	 * of fix needed was on a command-without-data we also now add in the
679 	 * original INT_RESPONSE that we suppressed earlier.
680 	 */
681 	if (inhibit)
682 		sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
683 	else {
684 		sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
685 		if (sc->r1bfix_type == R1BFIX_NODATA)
686 			sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
687 	}
688 
689 	sc->r1bfix_type = R1BFIX_NONE;
690 	return (true);
691 }
692 
693 static void
694 fsl_sdhci_r1bfix_func(void * arg)
695 {
696 	struct fsl_sdhci_softc *sc = arg;
697 	boolean_t r1bwait_done;
698 
699 	mtx_lock(&sc->slot.mtx);
700 	r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
701 	mtx_unlock(&sc->slot.mtx);
702 	if (r1bwait_done)
703 		sdhci_generic_intr(&sc->slot);
704 }
705 
706 static void
707 fsl_sdhci_intr(void *arg)
708 {
709 	struct fsl_sdhci_softc *sc = arg;
710 	uint32_t intmask;
711 
712 	mtx_lock(&sc->slot.mtx);
713 
714 	/*
715 	 * Manually check the DAT0 line for R1B response types that the
716 	 * controller fails to handle properly.  The controller asserts the done
717 	 * interrupt while the card is still asserting busy with the DAT0 line.
718 	 *
719 	 * We check DAT0 immediately because most of the time, especially on a
720 	 * read, the card will actually be done by time we get here.  If it's
721 	 * not, then the wait_done routine will schedule a callout to re-check
722 	 * periodically until it is done.  In that case we clear the interrupt
723 	 * out of the hardware now so that we can present it later when the DAT0
724 	 * line is released.
725 	 *
726 	 * If we need to wait for the DAT0 line to be released, we set up a
727 	 * timeout point 250ms in the future.  This number comes from the SD
728 	 * spec, which allows a command to take that long.  In the real world,
729 	 * cards tend to take 10-20ms for a long-running command such as a write
730 	 * or erase that spans two pages.
731 	 */
732 	switch (sc->r1bfix_type) {
733 	case R1BFIX_NODATA:
734 		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
735 		break;
736 	case R1BFIX_AC12:
737 		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
738 		break;
739 	default:
740 		intmask = 0;
741 		break;
742 	}
743 	if (intmask) {
744 		sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
745 		if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
746 			WR4(sc, SDHCI_INT_STATUS, intmask);
747 			bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
748 			    BUS_SPACE_BARRIER_WRITE);
749 		}
750 	}
751 
752 	mtx_unlock(&sc->slot.mtx);
753 	sdhci_generic_intr(&sc->slot);
754 }
755 
756 static int
757 fsl_sdhci_get_ro(device_t bus, device_t child)
758 {
759 	struct fsl_sdhci_softc *sc = device_get_softc(bus);
760 
761 	return (sdhci_fdt_gpio_get_readonly(sc->gpio));
762 }
763 
764 static bool
765 fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
766 {
767 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
768 
769 	return (sdhci_fdt_gpio_get_present(sc->gpio));
770 }
771 
772 #ifdef __powerpc__
773 static uint32_t
774 fsl_sdhci_get_platform_clock(device_t dev)
775 {
776 	phandle_t node;
777 	uint32_t clock;
778 
779 	node = ofw_bus_get_node(dev);
780 
781 	/* Get sdhci node properties */
782 	if((OF_getprop(node, "clock-frequency", (void *)&clock,
783 	    sizeof(clock)) <= 0) || (clock == 0)) {
784 
785 		clock = mpc85xx_get_system_clock();
786 
787 		if (clock == 0) {
788 			device_printf(dev,"Cannot acquire correct sdhci "
789 			    "frequency from DTS.\n");
790 
791 			return (0);
792 		}
793 	}
794 
795 	if (bootverbose)
796 		device_printf(dev, "Acquired clock: %d from DTS\n", clock);
797 
798 	return (clock);
799 }
800 #endif
801 
802 
803 static int
804 fsl_sdhci_detach(device_t dev)
805 {
806 
807 	/* sdhci_fdt_gpio_teardown(sc->gpio); */
808 	return (EBUSY);
809 }
810 
811 static int
812 fsl_sdhci_attach(device_t dev)
813 {
814 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
815 	int rid, err;
816 #ifdef __powerpc__
817 	phandle_t node;
818 	uint32_t protctl;
819 #endif
820 
821 	sc->dev = dev;
822 
823 	sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
824 	if (sc->hwtype == HWTYPE_NONE)
825 		panic("Impossible: not compatible in fsl_sdhci_attach()");
826 
827 	rid = 0;
828 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
829 	    RF_ACTIVE);
830 	if (!sc->mem_res) {
831 		device_printf(dev, "cannot allocate memory window\n");
832 		err = ENXIO;
833 		goto fail;
834 	}
835 
836 	rid = 0;
837 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
838 	    RF_ACTIVE);
839 	if (!sc->irq_res) {
840 		device_printf(dev, "cannot allocate interrupt\n");
841 		err = ENXIO;
842 		goto fail;
843 	}
844 
845 	if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
846 	    NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
847 		device_printf(dev, "cannot setup interrupt handler\n");
848 		err = ENXIO;
849 		goto fail;
850 	}
851 
852 	sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
853 
854 	/*
855 	 * DMA is not really broken, I just haven't implemented it yet.
856 	 */
857 	sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
858 
859 	/*
860 	 * Set the buffer watermark level to 128 words (512 bytes) for both read
861 	 * and write.  The hardware has a restriction that when the read or
862 	 * write ready status is asserted, that means you can read exactly the
863 	 * number of words set in the watermark register before you have to
864 	 * re-check the status and potentially wait for more data.  The main
865 	 * sdhci driver provides no hook for doing status checking on less than
866 	 * a full block boundary, so we set the watermark level to be a full
867 	 * block.  Reads and writes where the block size is less than the
868 	 * watermark size will work correctly too, no need to change the
869 	 * watermark for different size blocks.  However, 128 is the maximum
870 	 * allowed for the watermark, so PIO is limitted to 512 byte blocks
871 	 * (which works fine for SD cards, may be a problem for SDIO some day).
872 	 *
873 	 * XXX need named constants for this stuff.
874 	 */
875 	/* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
876 	if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
877 		WR4(sc, SDHC_WTMK_LVL, 0x10801080);
878 	else
879 		WR4(sc, SDHC_WTMK_LVL, 0x08800880);
880 
881 	/*
882 	 * We read in native byte order in the main driver, but the register
883 	 * defaults to little endian.
884 	 */
885 #ifdef __powerpc__
886 	sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
887 #else
888 	sc->baseclk_hz = imx_ccm_sdhci_hz();
889 #endif
890 	sc->slot.max_clk = sc->baseclk_hz;
891 
892 	/*
893 	 * Set up any gpio pin handling described in the FDT data. This cannot
894 	 * fail; see comments in sdhci_fdt_gpio.h for details.
895 	 */
896 	sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
897 
898 #ifdef __powerpc__
899 	node = ofw_bus_get_node(dev);
900 	/* Default to big-endian on powerpc */
901 	protctl = RD4(sc, SDHC_PROT_CTRL);
902 	protctl &= ~SDHC_PROT_EMODE_MASK;
903 	if (OF_hasprop(node, "little-endian"))
904 		protctl |= SDHC_PROT_EMODE_LITTLE;
905 	else
906 		protctl |= SDHC_PROT_EMODE_BIG;
907 	WR4(sc, SDHC_PROT_CTRL, protctl);
908 #endif
909 
910 	callout_init(&sc->r1bfix_callout, 1);
911 	sdhci_init_slot(dev, &sc->slot, 0);
912 
913 	bus_generic_probe(dev);
914 	bus_generic_attach(dev);
915 
916 #ifdef MMCCAM
917 	sdhci_cam_start_slot(&sc->slot);
918 #else
919 	sdhci_start_slot(&sc->slot);
920 #endif
921 
922 	return (0);
923 
924 fail:
925 	if (sc->intr_cookie)
926 		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
927 	if (sc->irq_res)
928 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
929 	if (sc->mem_res)
930 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
931 
932 	return (err);
933 }
934 
935 static int
936 fsl_sdhci_probe(device_t dev)
937 {
938 
939         if (!ofw_bus_status_okay(dev))
940 		return (ENXIO);
941 
942 	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
943 	case HWTYPE_ESDHC:
944 		device_set_desc(dev, "Freescale eSDHC controller");
945 		return (BUS_PROBE_DEFAULT);
946 	case HWTYPE_USDHC:
947 		device_set_desc(dev, "Freescale uSDHC controller");
948 		return (BUS_PROBE_DEFAULT);
949 	default:
950 		break;
951 	}
952 	return (ENXIO);
953 }
954 
955 static device_method_t fsl_sdhci_methods[] = {
956 	/* Device interface */
957 	DEVMETHOD(device_probe,		fsl_sdhci_probe),
958 	DEVMETHOD(device_attach,	fsl_sdhci_attach),
959 	DEVMETHOD(device_detach,	fsl_sdhci_detach),
960 
961 	/* Bus interface */
962 	DEVMETHOD(bus_read_ivar,	sdhci_generic_read_ivar),
963 	DEVMETHOD(bus_write_ivar,	sdhci_generic_write_ivar),
964 
965 	/* MMC bridge interface */
966 	DEVMETHOD(mmcbr_update_ios,	sdhci_generic_update_ios),
967 	DEVMETHOD(mmcbr_request,	sdhci_generic_request),
968 	DEVMETHOD(mmcbr_get_ro,		fsl_sdhci_get_ro),
969 	DEVMETHOD(mmcbr_acquire_host,	sdhci_generic_acquire_host),
970 	DEVMETHOD(mmcbr_release_host,	sdhci_generic_release_host),
971 
972 	/* SDHCI accessors */
973 	DEVMETHOD(sdhci_read_1,		fsl_sdhci_read_1),
974 	DEVMETHOD(sdhci_read_2,		fsl_sdhci_read_2),
975 	DEVMETHOD(sdhci_read_4,		fsl_sdhci_read_4),
976 	DEVMETHOD(sdhci_read_multi_4,	fsl_sdhci_read_multi_4),
977 	DEVMETHOD(sdhci_write_1,	fsl_sdhci_write_1),
978 	DEVMETHOD(sdhci_write_2,	fsl_sdhci_write_2),
979 	DEVMETHOD(sdhci_write_4,	fsl_sdhci_write_4),
980 	DEVMETHOD(sdhci_write_multi_4,	fsl_sdhci_write_multi_4),
981 	DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
982 
983 	DEVMETHOD_END
984 };
985 
986 static devclass_t fsl_sdhci_devclass;
987 
988 static driver_t fsl_sdhci_driver = {
989 	"sdhci_fsl",
990 	fsl_sdhci_methods,
991 	sizeof(struct fsl_sdhci_softc),
992 };
993 
994 DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass,
995     NULL, NULL);
996 MODULE_DEPEND(sdhci_fsl, sdhci, 1, 1, 1);
997 
998 #ifndef MMCCAM
999 MMC_DECLARE_BRIDGE(sdhci_fsl);
1000 #endif
1001