xref: /freebsd/sys/dev/sfxge/common/ef10_nic.c (revision b0b1dbdd)
1 /*-
2  * Copyright (c) 2012-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "efx.h"
35 #include "efx_impl.h"
36 #if EFSYS_OPT_MON_MCDI
37 #include "mcdi_mon.h"
38 #endif
39 
40 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
41 
42 #include "ef10_tlv_layout.h"
43 
44 	__checkReturn	efx_rc_t
45 efx_mcdi_get_port_assignment(
46 	__in		efx_nic_t *enp,
47 	__out		uint32_t *portp)
48 {
49 	efx_mcdi_req_t req;
50 	uint8_t payload[MAX(MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
51 			    MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN)];
52 	efx_rc_t rc;
53 
54 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
55 		    enp->en_family == EFX_FAMILY_MEDFORD);
56 
57 	(void) memset(payload, 0, sizeof (payload));
58 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
59 	req.emr_in_buf = payload;
60 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
61 	req.emr_out_buf = payload;
62 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
63 
64 	efx_mcdi_execute(enp, &req);
65 
66 	if (req.emr_rc != 0) {
67 		rc = req.emr_rc;
68 		goto fail1;
69 	}
70 
71 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
72 		rc = EMSGSIZE;
73 		goto fail2;
74 	}
75 
76 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
77 
78 	return (0);
79 
80 fail2:
81 	EFSYS_PROBE(fail2);
82 fail1:
83 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
84 
85 	return (rc);
86 }
87 
88 	__checkReturn	efx_rc_t
89 efx_mcdi_get_port_modes(
90 	__in		efx_nic_t *enp,
91 	__out		uint32_t *modesp,
92 	__out_opt	uint32_t *current_modep)
93 {
94 	efx_mcdi_req_t req;
95 	uint8_t payload[MAX(MC_CMD_GET_PORT_MODES_IN_LEN,
96 			    MC_CMD_GET_PORT_MODES_OUT_LEN)];
97 	efx_rc_t rc;
98 
99 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
100 		    enp->en_family == EFX_FAMILY_MEDFORD);
101 
102 	(void) memset(payload, 0, sizeof (payload));
103 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
104 	req.emr_in_buf = payload;
105 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
106 	req.emr_out_buf = payload;
107 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
108 
109 	efx_mcdi_execute(enp, &req);
110 
111 	if (req.emr_rc != 0) {
112 		rc = req.emr_rc;
113 		goto fail1;
114 	}
115 
116 	/*
117 	 * Require only Modes and DefaultMode fields, unless the current mode
118 	 * was requested (CurrentMode field was added for Medford).
119 	 */
120 	if (req.emr_out_length_used <
121 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
122 		rc = EMSGSIZE;
123 		goto fail2;
124 	}
125 	if ((current_modep != NULL) && (req.emr_out_length_used <
126 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
127 		rc = EMSGSIZE;
128 		goto fail3;
129 	}
130 
131 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
132 
133 	if (current_modep != NULL) {
134 		*current_modep = MCDI_OUT_DWORD(req,
135 					    GET_PORT_MODES_OUT_CURRENT_MODE);
136 	}
137 
138 	return (0);
139 
140 fail3:
141 	EFSYS_PROBE(fail3);
142 fail2:
143 	EFSYS_PROBE(fail2);
144 fail1:
145 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
146 
147 	return (rc);
148 }
149 
150 	__checkReturn	efx_rc_t
151 ef10_nic_get_port_mode_bandwidth(
152 	__in		uint32_t port_mode,
153 	__out		uint32_t *bandwidth_mbpsp)
154 {
155 	uint32_t bandwidth;
156 	efx_rc_t rc;
157 
158 	switch (port_mode) {
159 	case TLV_PORT_MODE_10G:
160 		bandwidth = 10000;
161 		break;
162 	case TLV_PORT_MODE_10G_10G:
163 		bandwidth = 10000 * 2;
164 		break;
165 	case TLV_PORT_MODE_10G_10G_10G_10G:
166 	case TLV_PORT_MODE_10G_10G_10G_10G_Q:
167 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:
168 	case TLV_PORT_MODE_10G_10G_10G_10G_Q2:
169 		bandwidth = 10000 * 4;
170 		break;
171 	case TLV_PORT_MODE_40G:
172 		bandwidth = 40000;
173 		break;
174 	case TLV_PORT_MODE_40G_40G:
175 		bandwidth = 40000 * 2;
176 		break;
177 	case TLV_PORT_MODE_40G_10G_10G:
178 	case TLV_PORT_MODE_10G_10G_40G:
179 		bandwidth = 40000 + (10000 * 2);
180 		break;
181 	default:
182 		rc = EINVAL;
183 		goto fail1;
184 	}
185 
186 	*bandwidth_mbpsp = bandwidth;
187 
188 	return (0);
189 
190 fail1:
191 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
192 
193 	return (rc);
194 }
195 
196 static	__checkReturn		efx_rc_t
197 efx_mcdi_vadaptor_alloc(
198 	__in			efx_nic_t *enp,
199 	__in			uint32_t port_id)
200 {
201 	efx_mcdi_req_t req;
202 	uint8_t payload[MAX(MC_CMD_VADAPTOR_ALLOC_IN_LEN,
203 			    MC_CMD_VADAPTOR_ALLOC_OUT_LEN)];
204 	efx_rc_t rc;
205 
206 	EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL);
207 
208 	(void) memset(payload, 0, sizeof (payload));
209 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
210 	req.emr_in_buf = payload;
211 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
212 	req.emr_out_buf = payload;
213 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
214 
215 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
216 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
217 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
218 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
219 
220 	efx_mcdi_execute(enp, &req);
221 
222 	if (req.emr_rc != 0) {
223 		rc = req.emr_rc;
224 		goto fail1;
225 	}
226 
227 	return (0);
228 
229 fail1:
230 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
231 
232 	return (rc);
233 }
234 
235 static	__checkReturn		efx_rc_t
236 efx_mcdi_vadaptor_free(
237 	__in			efx_nic_t *enp,
238 	__in			uint32_t port_id)
239 {
240 	efx_mcdi_req_t req;
241 	uint8_t payload[MAX(MC_CMD_VADAPTOR_FREE_IN_LEN,
242 			    MC_CMD_VADAPTOR_FREE_OUT_LEN)];
243 	efx_rc_t rc;
244 
245 	(void) memset(payload, 0, sizeof (payload));
246 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
247 	req.emr_in_buf = payload;
248 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
249 	req.emr_out_buf = payload;
250 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
251 
252 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
253 
254 	efx_mcdi_execute(enp, &req);
255 
256 	if (req.emr_rc != 0) {
257 		rc = req.emr_rc;
258 		goto fail1;
259 	}
260 
261 	return (0);
262 
263 fail1:
264 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
265 
266 	return (rc);
267 }
268 
269 	__checkReturn	efx_rc_t
270 efx_mcdi_get_mac_address_pf(
271 	__in			efx_nic_t *enp,
272 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
273 {
274 	efx_mcdi_req_t req;
275 	uint8_t payload[MAX(MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
276 			    MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)];
277 	efx_rc_t rc;
278 
279 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
280 		    enp->en_family == EFX_FAMILY_MEDFORD);
281 
282 	(void) memset(payload, 0, sizeof (payload));
283 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
284 	req.emr_in_buf = payload;
285 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
286 	req.emr_out_buf = payload;
287 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
288 
289 	efx_mcdi_execute(enp, &req);
290 
291 	if (req.emr_rc != 0) {
292 		rc = req.emr_rc;
293 		goto fail1;
294 	}
295 
296 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
297 		rc = EMSGSIZE;
298 		goto fail2;
299 	}
300 
301 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
302 		rc = ENOENT;
303 		goto fail3;
304 	}
305 
306 	if (mac_addrp != NULL) {
307 		uint8_t *addrp;
308 
309 		addrp = MCDI_OUT2(req, uint8_t,
310 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
311 
312 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
313 	}
314 
315 	return (0);
316 
317 fail3:
318 	EFSYS_PROBE(fail3);
319 fail2:
320 	EFSYS_PROBE(fail2);
321 fail1:
322 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
323 
324 	return (rc);
325 }
326 
327 	__checkReturn	efx_rc_t
328 efx_mcdi_get_mac_address_vf(
329 	__in			efx_nic_t *enp,
330 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
331 {
332 	efx_mcdi_req_t req;
333 	uint8_t payload[MAX(MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
334 			    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX)];
335 	efx_rc_t rc;
336 
337 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
338 		    enp->en_family == EFX_FAMILY_MEDFORD);
339 
340 	(void) memset(payload, 0, sizeof (payload));
341 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
342 	req.emr_in_buf = payload;
343 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
344 	req.emr_out_buf = payload;
345 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
346 
347 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
348 	    EVB_PORT_ID_ASSIGNED);
349 
350 	efx_mcdi_execute(enp, &req);
351 
352 	if (req.emr_rc != 0) {
353 		rc = req.emr_rc;
354 		goto fail1;
355 	}
356 
357 	if (req.emr_out_length_used <
358 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
359 		rc = EMSGSIZE;
360 		goto fail2;
361 	}
362 
363 	if (MCDI_OUT_DWORD(req,
364 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
365 		rc = ENOENT;
366 		goto fail3;
367 	}
368 
369 	if (mac_addrp != NULL) {
370 		uint8_t *addrp;
371 
372 		addrp = MCDI_OUT2(req, uint8_t,
373 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
374 
375 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
376 	}
377 
378 	return (0);
379 
380 fail3:
381 	EFSYS_PROBE(fail3);
382 fail2:
383 	EFSYS_PROBE(fail2);
384 fail1:
385 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
386 
387 	return (rc);
388 }
389 
390 	__checkReturn	efx_rc_t
391 efx_mcdi_get_clock(
392 	__in		efx_nic_t *enp,
393 	__out		uint32_t *sys_freqp,
394 	__out		uint32_t *dpcpu_freqp)
395 {
396 	efx_mcdi_req_t req;
397 	uint8_t payload[MAX(MC_CMD_GET_CLOCK_IN_LEN,
398 			    MC_CMD_GET_CLOCK_OUT_LEN)];
399 	efx_rc_t rc;
400 
401 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
402 		    enp->en_family == EFX_FAMILY_MEDFORD);
403 
404 	(void) memset(payload, 0, sizeof (payload));
405 	req.emr_cmd = MC_CMD_GET_CLOCK;
406 	req.emr_in_buf = payload;
407 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
408 	req.emr_out_buf = payload;
409 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
410 
411 	efx_mcdi_execute(enp, &req);
412 
413 	if (req.emr_rc != 0) {
414 		rc = req.emr_rc;
415 		goto fail1;
416 	}
417 
418 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
419 		rc = EMSGSIZE;
420 		goto fail2;
421 	}
422 
423 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
424 	if (*sys_freqp == 0) {
425 		rc = EINVAL;
426 		goto fail3;
427 	}
428 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
429 	if (*dpcpu_freqp == 0) {
430 		rc = EINVAL;
431 		goto fail4;
432 	}
433 
434 	return (0);
435 
436 fail4:
437 	EFSYS_PROBE(fail4);
438 fail3:
439 	EFSYS_PROBE(fail3);
440 fail2:
441 	EFSYS_PROBE(fail2);
442 fail1:
443 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
444 
445 	return (rc);
446 }
447 
448 	__checkReturn	efx_rc_t
449 efx_mcdi_get_vector_cfg(
450 	__in		efx_nic_t *enp,
451 	__out_opt	uint32_t *vec_basep,
452 	__out_opt	uint32_t *pf_nvecp,
453 	__out_opt	uint32_t *vf_nvecp)
454 {
455 	efx_mcdi_req_t req;
456 	uint8_t payload[MAX(MC_CMD_GET_VECTOR_CFG_IN_LEN,
457 			    MC_CMD_GET_VECTOR_CFG_OUT_LEN)];
458 	efx_rc_t rc;
459 
460 	(void) memset(payload, 0, sizeof (payload));
461 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
462 	req.emr_in_buf = payload;
463 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
464 	req.emr_out_buf = payload;
465 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
466 
467 	efx_mcdi_execute(enp, &req);
468 
469 	if (req.emr_rc != 0) {
470 		rc = req.emr_rc;
471 		goto fail1;
472 	}
473 
474 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
475 		rc = EMSGSIZE;
476 		goto fail2;
477 	}
478 
479 	if (vec_basep != NULL)
480 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
481 	if (pf_nvecp != NULL)
482 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
483 	if (vf_nvecp != NULL)
484 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
485 
486 	return (0);
487 
488 fail2:
489 	EFSYS_PROBE(fail2);
490 fail1:
491 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
492 
493 	return (rc);
494 }
495 
496 static	__checkReturn	efx_rc_t
497 efx_mcdi_get_capabilities(
498 	__in		efx_nic_t *enp,
499 	__out		uint32_t *flagsp,
500 	__out		uint32_t *flags2p,
501 	__out		uint32_t *tso2ncp)
502 {
503 	efx_mcdi_req_t req;
504 	uint8_t payload[MAX(MC_CMD_GET_CAPABILITIES_IN_LEN,
505 			    MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)];
506 	efx_rc_t rc;
507 
508 	(void) memset(payload, 0, sizeof (payload));
509 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
510 	req.emr_in_buf = payload;
511 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
512 	req.emr_out_buf = payload;
513 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
514 
515 	efx_mcdi_execute(enp, &req);
516 
517 	if (req.emr_rc != 0) {
518 		rc = req.emr_rc;
519 		goto fail1;
520 	}
521 
522 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
523 		rc = EMSGSIZE;
524 		goto fail2;
525 	}
526 
527 	*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
528 
529 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
530 		*flags2p = 0;
531 		*tso2ncp = 0;
532 	} else {
533 		*flags2p = MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2);
534 		*tso2ncp = MCDI_OUT_WORD(req,
535 				GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
536 	}
537 
538 	return (0);
539 
540 fail2:
541 	EFSYS_PROBE(fail2);
542 fail1:
543 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
544 
545 	return (rc);
546 }
547 
548 
549 static	__checkReturn	efx_rc_t
550 efx_mcdi_alloc_vis(
551 	__in		efx_nic_t *enp,
552 	__in		uint32_t min_vi_count,
553 	__in		uint32_t max_vi_count,
554 	__out		uint32_t *vi_basep,
555 	__out		uint32_t *vi_countp,
556 	__out		uint32_t *vi_shiftp)
557 {
558 	efx_mcdi_req_t req;
559 	uint8_t payload[MAX(MC_CMD_ALLOC_VIS_IN_LEN,
560 			    MC_CMD_ALLOC_VIS_OUT_LEN)];
561 	efx_rc_t rc;
562 
563 	if (vi_countp == NULL) {
564 		rc = EINVAL;
565 		goto fail1;
566 	}
567 
568 	(void) memset(payload, 0, sizeof (payload));
569 	req.emr_cmd = MC_CMD_ALLOC_VIS;
570 	req.emr_in_buf = payload;
571 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
572 	req.emr_out_buf = payload;
573 	req.emr_out_length = MC_CMD_ALLOC_VIS_OUT_LEN;
574 
575 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
576 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
577 
578 	efx_mcdi_execute(enp, &req);
579 
580 	if (req.emr_rc != 0) {
581 		rc = req.emr_rc;
582 		goto fail2;
583 	}
584 
585 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
586 		rc = EMSGSIZE;
587 		goto fail3;
588 	}
589 
590 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
591 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
592 
593 	/* Report VI_SHIFT if available (always zero for Huntington) */
594 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
595 		*vi_shiftp = 0;
596 	else
597 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
598 
599 	return (0);
600 
601 fail3:
602 	EFSYS_PROBE(fail3);
603 fail2:
604 	EFSYS_PROBE(fail2);
605 fail1:
606 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
607 
608 	return (rc);
609 }
610 
611 
612 static	__checkReturn	efx_rc_t
613 efx_mcdi_free_vis(
614 	__in		efx_nic_t *enp)
615 {
616 	efx_mcdi_req_t req;
617 	efx_rc_t rc;
618 
619 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
620 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
621 
622 	req.emr_cmd = MC_CMD_FREE_VIS;
623 	req.emr_in_buf = NULL;
624 	req.emr_in_length = 0;
625 	req.emr_out_buf = NULL;
626 	req.emr_out_length = 0;
627 
628 	efx_mcdi_execute_quiet(enp, &req);
629 
630 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
631 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
632 		rc = req.emr_rc;
633 		goto fail1;
634 	}
635 
636 	return (0);
637 
638 fail1:
639 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
640 
641 	return (rc);
642 }
643 
644 
645 static	__checkReturn	efx_rc_t
646 efx_mcdi_alloc_piobuf(
647 	__in		efx_nic_t *enp,
648 	__out		efx_piobuf_handle_t *handlep)
649 {
650 	efx_mcdi_req_t req;
651 	uint8_t payload[MAX(MC_CMD_ALLOC_PIOBUF_IN_LEN,
652 			    MC_CMD_ALLOC_PIOBUF_OUT_LEN)];
653 	efx_rc_t rc;
654 
655 	if (handlep == NULL) {
656 		rc = EINVAL;
657 		goto fail1;
658 	}
659 
660 	(void) memset(payload, 0, sizeof (payload));
661 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
662 	req.emr_in_buf = payload;
663 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
664 	req.emr_out_buf = payload;
665 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
666 
667 	efx_mcdi_execute_quiet(enp, &req);
668 
669 	if (req.emr_rc != 0) {
670 		rc = req.emr_rc;
671 		goto fail2;
672 	}
673 
674 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
675 		rc = EMSGSIZE;
676 		goto fail3;
677 	}
678 
679 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
680 
681 	return (0);
682 
683 fail3:
684 	EFSYS_PROBE(fail3);
685 fail2:
686 	EFSYS_PROBE(fail2);
687 fail1:
688 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
689 
690 	return (rc);
691 }
692 
693 static	__checkReturn	efx_rc_t
694 efx_mcdi_free_piobuf(
695 	__in		efx_nic_t *enp,
696 	__in		efx_piobuf_handle_t handle)
697 {
698 	efx_mcdi_req_t req;
699 	uint8_t payload[MAX(MC_CMD_FREE_PIOBUF_IN_LEN,
700 			    MC_CMD_FREE_PIOBUF_OUT_LEN)];
701 	efx_rc_t rc;
702 
703 	(void) memset(payload, 0, sizeof (payload));
704 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
705 	req.emr_in_buf = payload;
706 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
707 	req.emr_out_buf = payload;
708 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
709 
710 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
711 
712 	efx_mcdi_execute_quiet(enp, &req);
713 
714 	if (req.emr_rc != 0) {
715 		rc = req.emr_rc;
716 		goto fail1;
717 	}
718 
719 	return (0);
720 
721 fail1:
722 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
723 
724 	return (rc);
725 }
726 
727 static	__checkReturn	efx_rc_t
728 efx_mcdi_link_piobuf(
729 	__in		efx_nic_t *enp,
730 	__in		uint32_t vi_index,
731 	__in		efx_piobuf_handle_t handle)
732 {
733 	efx_mcdi_req_t req;
734 	uint8_t payload[MAX(MC_CMD_LINK_PIOBUF_IN_LEN,
735 			    MC_CMD_LINK_PIOBUF_OUT_LEN)];
736 	efx_rc_t rc;
737 
738 	(void) memset(payload, 0, sizeof (payload));
739 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
740 	req.emr_in_buf = payload;
741 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
742 	req.emr_out_buf = payload;
743 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
744 
745 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
746 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
747 
748 	efx_mcdi_execute(enp, &req);
749 
750 	if (req.emr_rc != 0) {
751 		rc = req.emr_rc;
752 		goto fail1;
753 	}
754 
755 	return (0);
756 
757 fail1:
758 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
759 
760 	return (rc);
761 }
762 
763 static	__checkReturn	efx_rc_t
764 efx_mcdi_unlink_piobuf(
765 	__in		efx_nic_t *enp,
766 	__in		uint32_t vi_index)
767 {
768 	efx_mcdi_req_t req;
769 	uint8_t payload[MAX(MC_CMD_UNLINK_PIOBUF_IN_LEN,
770 			    MC_CMD_UNLINK_PIOBUF_OUT_LEN)];
771 	efx_rc_t rc;
772 
773 	(void) memset(payload, 0, sizeof (payload));
774 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
775 	req.emr_in_buf = payload;
776 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
777 	req.emr_out_buf = payload;
778 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
779 
780 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
781 
782 	efx_mcdi_execute_quiet(enp, &req);
783 
784 	if (req.emr_rc != 0) {
785 		rc = req.emr_rc;
786 		goto fail1;
787 	}
788 
789 	return (0);
790 
791 fail1:
792 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
793 
794 	return (rc);
795 }
796 
797 static			void
798 ef10_nic_alloc_piobufs(
799 	__in		efx_nic_t *enp,
800 	__in		uint32_t max_piobuf_count)
801 {
802 	efx_piobuf_handle_t *handlep;
803 	unsigned int i;
804 
805 	EFSYS_ASSERT3U(max_piobuf_count, <=,
806 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
807 
808 	enp->en_arch.ef10.ena_piobuf_count = 0;
809 
810 	for (i = 0; i < max_piobuf_count; i++) {
811 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
812 
813 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
814 			goto fail1;
815 
816 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
817 		enp->en_arch.ef10.ena_piobuf_count++;
818 	}
819 
820 	return;
821 
822 fail1:
823 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
824 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
825 
826 		efx_mcdi_free_piobuf(enp, *handlep);
827 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
828 	}
829 	enp->en_arch.ef10.ena_piobuf_count = 0;
830 }
831 
832 
833 static			void
834 ef10_nic_free_piobufs(
835 	__in		efx_nic_t *enp)
836 {
837 	efx_piobuf_handle_t *handlep;
838 	unsigned int i;
839 
840 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
841 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
842 
843 		efx_mcdi_free_piobuf(enp, *handlep);
844 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
845 	}
846 	enp->en_arch.ef10.ena_piobuf_count = 0;
847 }
848 
849 /* Sub-allocate a block from a piobuf */
850 	__checkReturn	efx_rc_t
851 ef10_nic_pio_alloc(
852 	__inout		efx_nic_t *enp,
853 	__out		uint32_t *bufnump,
854 	__out		efx_piobuf_handle_t *handlep,
855 	__out		uint32_t *blknump,
856 	__out		uint32_t *offsetp,
857 	__out		size_t *sizep)
858 {
859 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
860 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
861 	uint32_t blk_per_buf;
862 	uint32_t buf, blk;
863 	efx_rc_t rc;
864 
865 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
866 		    enp->en_family == EFX_FAMILY_MEDFORD);
867 	EFSYS_ASSERT(bufnump);
868 	EFSYS_ASSERT(handlep);
869 	EFSYS_ASSERT(blknump);
870 	EFSYS_ASSERT(offsetp);
871 	EFSYS_ASSERT(sizep);
872 
873 	if ((edcp->edc_pio_alloc_size == 0) ||
874 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
875 		rc = ENOMEM;
876 		goto fail1;
877 	}
878 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
879 
880 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
881 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
882 
883 		if (~(*map) == 0)
884 			continue;
885 
886 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
887 		for (blk = 0; blk < blk_per_buf; blk++) {
888 			if ((*map & (1u << blk)) == 0) {
889 				*map |= (1u << blk);
890 				goto done;
891 			}
892 		}
893 	}
894 	rc = ENOMEM;
895 	goto fail2;
896 
897 done:
898 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
899 	*bufnump = buf;
900 	*blknump = blk;
901 	*sizep = edcp->edc_pio_alloc_size;
902 	*offsetp = blk * (*sizep);
903 
904 	return (0);
905 
906 fail2:
907 	EFSYS_PROBE(fail2);
908 fail1:
909 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
910 
911 	return (rc);
912 }
913 
914 /* Free a piobuf sub-allocated block */
915 	__checkReturn	efx_rc_t
916 ef10_nic_pio_free(
917 	__inout		efx_nic_t *enp,
918 	__in		uint32_t bufnum,
919 	__in		uint32_t blknum)
920 {
921 	uint32_t *map;
922 	efx_rc_t rc;
923 
924 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
925 	    (blknum >= (8 * sizeof (*map)))) {
926 		rc = EINVAL;
927 		goto fail1;
928 	}
929 
930 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
931 	if ((*map & (1u << blknum)) == 0) {
932 		rc = ENOENT;
933 		goto fail2;
934 	}
935 	*map &= ~(1u << blknum);
936 
937 	return (0);
938 
939 fail2:
940 	EFSYS_PROBE(fail2);
941 fail1:
942 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
943 
944 	return (rc);
945 }
946 
947 	__checkReturn	efx_rc_t
948 ef10_nic_pio_link(
949 	__inout		efx_nic_t *enp,
950 	__in		uint32_t vi_index,
951 	__in		efx_piobuf_handle_t handle)
952 {
953 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
954 }
955 
956 	__checkReturn	efx_rc_t
957 ef10_nic_pio_unlink(
958 	__inout		efx_nic_t *enp,
959 	__in		uint32_t vi_index)
960 {
961 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
962 }
963 
964 static	__checkReturn	efx_rc_t
965 ef10_mcdi_get_pf_count(
966 	__in		efx_nic_t *enp,
967 	__out		uint32_t *pf_countp)
968 {
969 	efx_mcdi_req_t req;
970 	uint8_t payload[MAX(MC_CMD_GET_PF_COUNT_IN_LEN,
971 			    MC_CMD_GET_PF_COUNT_OUT_LEN)];
972 	efx_rc_t rc;
973 
974 	(void) memset(payload, 0, sizeof (payload));
975 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
976 	req.emr_in_buf = payload;
977 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
978 	req.emr_out_buf = payload;
979 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
980 
981 	efx_mcdi_execute(enp, &req);
982 
983 	if (req.emr_rc != 0) {
984 		rc = req.emr_rc;
985 		goto fail1;
986 	}
987 
988 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
989 		rc = EMSGSIZE;
990 		goto fail2;
991 	}
992 
993 	*pf_countp = *MCDI_OUT(req, uint8_t,
994 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
995 
996 	EFSYS_ASSERT(*pf_countp != 0);
997 
998 	return (0);
999 
1000 fail2:
1001 	EFSYS_PROBE(fail2);
1002 fail1:
1003 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1004 
1005 	return (rc);
1006 }
1007 
1008 	__checkReturn	efx_rc_t
1009 ef10_get_datapath_caps(
1010 	__in		efx_nic_t *enp)
1011 {
1012 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1013 	uint32_t flags;
1014 	uint32_t flags2;
1015 	uint32_t tso2nc;
1016 	efx_rc_t rc;
1017 
1018 	if ((rc = efx_mcdi_get_capabilities(enp, &flags, &flags2,
1019 					    &tso2nc)) != 0)
1020 		goto fail1;
1021 
1022 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1023 		goto fail1;
1024 
1025 #define	CAP_FLAG(flags1, field)		\
1026 	((flags1) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN)))
1027 
1028 #define	CAP_FLAG2(flags2, field)	\
1029 	((flags2) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN)))
1030 
1031 	/*
1032 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
1033 	 * We only support the 14 byte prefix here.
1034 	 */
1035 	if (CAP_FLAG(flags, RX_PREFIX_LEN_14) == 0) {
1036 		rc = ENOTSUP;
1037 		goto fail2;
1038 	}
1039 	encp->enc_rx_prefix_size = 14;
1040 
1041 	/* Check if the firmware supports TSO */
1042 	encp->enc_fw_assisted_tso_enabled =
1043 	    CAP_FLAG(flags, TX_TSO) ? B_TRUE : B_FALSE;
1044 
1045 	/* Check if the firmware supports FATSOv2 */
1046 	encp->enc_fw_assisted_tso_v2_enabled =
1047 	    CAP_FLAG2(flags2, TX_TSO_V2) ? B_TRUE : B_FALSE;
1048 
1049 	/* Get the number of TSO contexts (FATSOv2) */
1050 	encp->enc_fw_assisted_tso_v2_n_contexts =
1051 		CAP_FLAG2(flags2, TX_TSO_V2) ? tso2nc : 0;
1052 
1053 	/* Check if the firmware has vadapter/vport/vswitch support */
1054 	encp->enc_datapath_cap_evb =
1055 	    CAP_FLAG(flags, EVB) ? B_TRUE : B_FALSE;
1056 
1057 	/* Check if the firmware supports VLAN insertion */
1058 	encp->enc_hw_tx_insert_vlan_enabled =
1059 	    CAP_FLAG(flags, TX_VLAN_INSERTION) ? B_TRUE : B_FALSE;
1060 
1061 	/* Check if the firmware supports RX event batching */
1062 	encp->enc_rx_batching_enabled =
1063 	    CAP_FLAG(flags, RX_BATCHING) ? B_TRUE : B_FALSE;
1064 
1065 	/*
1066 	 * Even if batching isn't reported as supported, we may still get
1067 	 * batched events.
1068 	 */
1069 	encp->enc_rx_batch_max = 16;
1070 
1071 	/* Check if the firmware supports disabling scatter on RXQs */
1072 	encp->enc_rx_disable_scatter_supported =
1073 	    CAP_FLAG(flags, RX_DISABLE_SCATTER) ? B_TRUE : B_FALSE;
1074 
1075 	/* Check if the firmware supports set mac with running filters */
1076 	encp->enc_allow_set_mac_with_installed_filters =
1077 	    CAP_FLAG(flags, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED) ?
1078 	    B_TRUE : B_FALSE;
1079 
1080 	/*
1081 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1082 	 * specifying which parameters to configure.
1083 	 */
1084 	encp->enc_enhanced_set_mac_supported =
1085 		CAP_FLAG(flags, SET_MAC_ENHANCED) ? B_TRUE : B_FALSE;
1086 
1087 	/*
1088 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1089 	 * us to let the firmware choose the settings to use on an EVQ.
1090 	 */
1091 	encp->enc_init_evq_v2_supported =
1092 		CAP_FLAG2(flags2, INIT_EVQ_V2) ? B_TRUE : B_FALSE;
1093 
1094 	/*
1095 	 * Check if firmware provides packet memory and Rx datapath
1096 	 * counters.
1097 	 */
1098 	encp->enc_pm_and_rxdp_counters =
1099 	    CAP_FLAG(flags, PM_AND_RXDP_COUNTERS) ? B_TRUE : B_FALSE;
1100 
1101 	/*
1102 	 * Check if the 40G MAC hardware is capable of reporting
1103 	 * statistics for Tx size bins.
1104 	 */
1105 	encp->enc_mac_stats_40g_tx_size_bins =
1106 	    CAP_FLAG2(flags2, MAC_STATS_40G_TX_SIZE_BINS) ? B_TRUE : B_FALSE;
1107 
1108 	/*
1109 	 * Check if firmware-verified NVRAM updates must be used.
1110 	 *
1111 	 * The firmware trusted installer requires all NVRAM updates to use
1112 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1113 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1114 	 * partition and report the result).
1115 	 */
1116 	encp->enc_fw_verified_nvram_update_required =
1117 	    CAP_FLAG2(flags2, NVRAM_UPDATE_REPORT_VERIFY_RESULT) ?
1118 	    B_TRUE : B_FALSE;
1119 
1120 #undef CAP_FLAG
1121 #undef CAP_FLAG2
1122 
1123 	return (0);
1124 
1125 fail2:
1126 	EFSYS_PROBE(fail2);
1127 fail1:
1128 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1129 
1130 	return (rc);
1131 }
1132 
1133 
1134 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1135 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1136 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1137 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1138 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1139 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1140 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1141 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1142 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1143 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1144 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1145 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1146 
1147 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1148 
1149 
1150 	__checkReturn		efx_rc_t
1151 ef10_get_privilege_mask(
1152 	__in			efx_nic_t *enp,
1153 	__out			uint32_t *maskp)
1154 {
1155 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1156 	uint32_t mask;
1157 	efx_rc_t rc;
1158 
1159 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1160 					    &mask)) != 0) {
1161 		if (rc != ENOTSUP)
1162 			goto fail1;
1163 
1164 		/* Fallback for old firmware without privilege mask support */
1165 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1166 			/* Assume PF has admin privilege */
1167 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1168 		} else {
1169 			/* VF is always unprivileged by default */
1170 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1171 		}
1172 	}
1173 
1174 	*maskp = mask;
1175 
1176 	return (0);
1177 
1178 fail1:
1179 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1180 
1181 	return (rc);
1182 }
1183 
1184 
1185 /*
1186  * Table of mapping schemes from port number to the number of the external
1187  * connector on the board. The external numbering does not distinguish
1188  * off-board separated outputs such as from multi-headed cables.
1189  *
1190  * The count of adjacent port numbers that map to each external port
1191  * and the offset in the numbering, is determined by the chip family and
1192  * current port mode.
1193  *
1194  * For the Huntington family, the current port mode cannot be discovered,
1195  * so the mapping used is instead the last match in the table to the full
1196  * set of port modes to which the NIC can be configured. Therefore the
1197  * ordering of entries in the the mapping table is significant.
1198  */
1199 static struct {
1200 	efx_family_t	family;
1201 	uint32_t	modes_mask;
1202 	int32_t		count;
1203 	int32_t		offset;
1204 }	__ef10_external_port_mappings[] = {
1205 	/* Supported modes with 1 output per external port */
1206 	{
1207 		EFX_FAMILY_HUNTINGTON,
1208 		(1 << TLV_PORT_MODE_10G) |
1209 		(1 << TLV_PORT_MODE_10G_10G) |
1210 		(1 << TLV_PORT_MODE_10G_10G_10G_10G),
1211 		1,
1212 		1
1213 	},
1214 	{
1215 		EFX_FAMILY_MEDFORD,
1216 		(1 << TLV_PORT_MODE_10G) |
1217 		(1 << TLV_PORT_MODE_10G_10G),
1218 		1,
1219 		1
1220 	},
1221 	/* Supported modes with 2 outputs per external port */
1222 	{
1223 		EFX_FAMILY_HUNTINGTON,
1224 		(1 << TLV_PORT_MODE_40G) |
1225 		(1 << TLV_PORT_MODE_40G_40G) |
1226 		(1 << TLV_PORT_MODE_40G_10G_10G) |
1227 		(1 << TLV_PORT_MODE_10G_10G_40G),
1228 		2,
1229 		1
1230 	},
1231 	{
1232 		EFX_FAMILY_MEDFORD,
1233 		(1 << TLV_PORT_MODE_40G) |
1234 		(1 << TLV_PORT_MODE_40G_40G) |
1235 		(1 << TLV_PORT_MODE_40G_10G_10G) |
1236 		(1 << TLV_PORT_MODE_10G_10G_40G) |
1237 		(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),
1238 		2,
1239 		1
1240 	},
1241 	/* Supported modes with 4 outputs per external port */
1242 	{
1243 		EFX_FAMILY_MEDFORD,
1244 		(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q) |
1245 		(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q1),
1246 		4,
1247 		1,
1248 	},
1249 	{
1250 		EFX_FAMILY_MEDFORD,
1251 		(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q2),
1252 		4,
1253 		2
1254 	},
1255 };
1256 
1257 	__checkReturn	efx_rc_t
1258 ef10_external_port_mapping(
1259 	__in		efx_nic_t *enp,
1260 	__in		uint32_t port,
1261 	__out		uint8_t *external_portp)
1262 {
1263 	efx_rc_t rc;
1264 	int i;
1265 	uint32_t port_modes;
1266 	uint32_t matches;
1267 	uint32_t current;
1268 	int32_t count = 1; /* Default 1-1 mapping */
1269 	int32_t offset = 1; /* Default starting external port number */
1270 
1271 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current)) != 0) {
1272 		/*
1273 		 * No current port mode information
1274 		 * - infer mapping from available modes
1275 		 */
1276 		if ((rc = efx_mcdi_get_port_modes(enp,
1277 			    &port_modes, NULL)) != 0) {
1278 			/*
1279 			 * No port mode information available
1280 			 * - use default mapping
1281 			 */
1282 			goto out;
1283 		}
1284 	} else {
1285 		/* Only need to scan the current mode */
1286 		port_modes = 1 << current;
1287 	}
1288 
1289 	/*
1290 	 * Infer the internal port -> external port mapping from
1291 	 * the possible port modes for this NIC.
1292 	 */
1293 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1294 		if (__ef10_external_port_mappings[i].family !=
1295 		    enp->en_family)
1296 			continue;
1297 		matches = (__ef10_external_port_mappings[i].modes_mask &
1298 		    port_modes);
1299 		if (matches != 0) {
1300 			count = __ef10_external_port_mappings[i].count;
1301 			offset = __ef10_external_port_mappings[i].offset;
1302 			port_modes &= ~matches;
1303 		}
1304 	}
1305 
1306 	if (port_modes != 0) {
1307 		/* Some advertised modes are not supported */
1308 		rc = ENOTSUP;
1309 		goto fail1;
1310 	}
1311 
1312 out:
1313 	/*
1314 	 * Scale as required by last matched mode and then convert to
1315 	 * correctly offset numbering
1316 	 */
1317 	*external_portp = (uint8_t)((port / count) + offset);
1318 	return (0);
1319 
1320 fail1:
1321 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1322 
1323 	return (rc);
1324 }
1325 
1326 
1327 	__checkReturn	efx_rc_t
1328 ef10_nic_probe(
1329 	__in		efx_nic_t *enp)
1330 {
1331 	const efx_nic_ops_t *enop = enp->en_enop;
1332 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1333 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
1334 	efx_rc_t rc;
1335 
1336 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
1337 		    enp->en_family == EFX_FAMILY_MEDFORD);
1338 
1339 	/* Read and clear any assertion state */
1340 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
1341 		goto fail1;
1342 
1343 	/* Exit the assertion handler */
1344 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
1345 		if (rc != EACCES)
1346 			goto fail2;
1347 
1348 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
1349 		goto fail3;
1350 
1351 	if ((rc = enop->eno_board_cfg(enp)) != 0)
1352 		if (rc != EACCES)
1353 			goto fail4;
1354 
1355 	/*
1356 	 * Set default driver config limits (based on board config).
1357 	 *
1358 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
1359 	 * sufficient and small enough to allow multiple functions on the same
1360 	 * port.
1361 	 */
1362 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
1363 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
1364 
1365 	/* The client driver must configure and enable PIO buffer support */
1366 	edcp->edc_max_piobuf_count = 0;
1367 	edcp->edc_pio_alloc_size = 0;
1368 
1369 #if EFSYS_OPT_MAC_STATS
1370 	/* Wipe the MAC statistics */
1371 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
1372 		goto fail5;
1373 #endif
1374 
1375 #if EFSYS_OPT_LOOPBACK
1376 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
1377 		goto fail6;
1378 #endif
1379 
1380 #if EFSYS_OPT_MON_STATS
1381 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
1382 		/* Unprivileged functions do not have access to sensors */
1383 		if (rc != EACCES)
1384 			goto fail7;
1385 	}
1386 #endif
1387 
1388 	encp->enc_features = enp->en_features;
1389 
1390 	return (0);
1391 
1392 #if EFSYS_OPT_MON_STATS
1393 fail7:
1394 	EFSYS_PROBE(fail7);
1395 #endif
1396 #if EFSYS_OPT_LOOPBACK
1397 fail6:
1398 	EFSYS_PROBE(fail6);
1399 #endif
1400 #if EFSYS_OPT_MAC_STATS
1401 fail5:
1402 	EFSYS_PROBE(fail5);
1403 #endif
1404 fail4:
1405 	EFSYS_PROBE(fail4);
1406 fail3:
1407 	EFSYS_PROBE(fail3);
1408 fail2:
1409 	EFSYS_PROBE(fail2);
1410 fail1:
1411 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1412 
1413 	return (rc);
1414 }
1415 
1416 	__checkReturn	efx_rc_t
1417 ef10_nic_set_drv_limits(
1418 	__inout		efx_nic_t *enp,
1419 	__in		efx_drv_limits_t *edlp)
1420 {
1421 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1422 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
1423 	uint32_t min_evq_count, max_evq_count;
1424 	uint32_t min_rxq_count, max_rxq_count;
1425 	uint32_t min_txq_count, max_txq_count;
1426 	efx_rc_t rc;
1427 
1428 	if (edlp == NULL) {
1429 		rc = EINVAL;
1430 		goto fail1;
1431 	}
1432 
1433 	/* Get minimum required and maximum usable VI limits */
1434 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
1435 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
1436 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
1437 
1438 	edcp->edc_min_vi_count =
1439 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
1440 
1441 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
1442 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
1443 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
1444 
1445 	edcp->edc_max_vi_count =
1446 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
1447 
1448 	/*
1449 	 * Check limits for sub-allocated piobuf blocks.
1450 	 * PIO is optional, so don't fail if the limits are incorrect.
1451 	 */
1452 	if ((encp->enc_piobuf_size == 0) ||
1453 	    (encp->enc_piobuf_limit == 0) ||
1454 	    (edlp->edl_min_pio_alloc_size == 0) ||
1455 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
1456 		/* Disable PIO */
1457 		edcp->edc_max_piobuf_count = 0;
1458 		edcp->edc_pio_alloc_size = 0;
1459 	} else {
1460 		uint32_t blk_size, blk_count, blks_per_piobuf;
1461 
1462 		blk_size =
1463 		    MAX(edlp->edl_min_pio_alloc_size,
1464 			    encp->enc_piobuf_min_alloc_size);
1465 
1466 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
1467 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
1468 
1469 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
1470 
1471 		/* A zero max pio alloc count means unlimited */
1472 		if ((edlp->edl_max_pio_alloc_count > 0) &&
1473 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
1474 			blk_count = edlp->edl_max_pio_alloc_count;
1475 		}
1476 
1477 		edcp->edc_pio_alloc_size = blk_size;
1478 		edcp->edc_max_piobuf_count =
1479 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
1480 	}
1481 
1482 	return (0);
1483 
1484 fail1:
1485 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1486 
1487 	return (rc);
1488 }
1489 
1490 
1491 	__checkReturn	efx_rc_t
1492 ef10_nic_reset(
1493 	__in		efx_nic_t *enp)
1494 {
1495 	efx_mcdi_req_t req;
1496 	uint8_t payload[MAX(MC_CMD_ENTITY_RESET_IN_LEN,
1497 			    MC_CMD_ENTITY_RESET_OUT_LEN)];
1498 	efx_rc_t rc;
1499 
1500 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
1501 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
1502 		goto fail1;
1503 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
1504 		goto fail2;
1505 
1506 	(void) memset(payload, 0, sizeof (payload));
1507 	req.emr_cmd = MC_CMD_ENTITY_RESET;
1508 	req.emr_in_buf = payload;
1509 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
1510 	req.emr_out_buf = payload;
1511 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
1512 
1513 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
1514 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1515 
1516 	efx_mcdi_execute(enp, &req);
1517 
1518 	if (req.emr_rc != 0) {
1519 		rc = req.emr_rc;
1520 		goto fail3;
1521 	}
1522 
1523 	/* Clear RX/TX DMA queue errors */
1524 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
1525 
1526 	return (0);
1527 
1528 fail3:
1529 	EFSYS_PROBE(fail3);
1530 fail2:
1531 	EFSYS_PROBE(fail2);
1532 fail1:
1533 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1534 
1535 	return (rc);
1536 }
1537 
1538 	__checkReturn	efx_rc_t
1539 ef10_nic_init(
1540 	__in		efx_nic_t *enp)
1541 {
1542 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
1543 	uint32_t min_vi_count, max_vi_count;
1544 	uint32_t vi_count, vi_base, vi_shift;
1545 	uint32_t i;
1546 	uint32_t retry;
1547 	uint32_t delay_us;
1548 	efx_rc_t rc;
1549 
1550 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
1551 		    enp->en_family == EFX_FAMILY_MEDFORD);
1552 
1553 	/* Enable reporting of some events (e.g. link change) */
1554 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
1555 		goto fail1;
1556 
1557 	/* Allocate (optional) on-chip PIO buffers */
1558 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
1559 
1560 	/*
1561 	 * For best performance, PIO writes should use a write-combined
1562 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
1563 	 * aperture of each VI would be a burden to drivers (and not
1564 	 * possible if the host page size is >4Kbyte).
1565 	 *
1566 	 * To avoid this we use a single uncached (UC) mapping for VI
1567 	 * register access, and a single WC mapping for extra VIs used
1568 	 * for PIO writes.
1569 	 *
1570 	 * Each piobuf must be linked to a VI in the WC mapping, and to
1571 	 * each VI that is using a sub-allocated block from the piobuf.
1572 	 */
1573 	min_vi_count = edcp->edc_min_vi_count;
1574 	max_vi_count =
1575 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
1576 
1577 	/* Ensure that the previously attached driver's VIs are freed */
1578 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
1579 		goto fail2;
1580 
1581 	/*
1582 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
1583 	 * fails then retrying the request for fewer VI resources may succeed.
1584 	 */
1585 	vi_count = 0;
1586 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
1587 		    &vi_base, &vi_count, &vi_shift)) != 0)
1588 		goto fail3;
1589 
1590 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
1591 
1592 	if (vi_count < min_vi_count) {
1593 		rc = ENOMEM;
1594 		goto fail4;
1595 	}
1596 
1597 	enp->en_arch.ef10.ena_vi_base = vi_base;
1598 	enp->en_arch.ef10.ena_vi_count = vi_count;
1599 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
1600 
1601 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
1602 		/* Not enough extra VIs to map piobufs */
1603 		ef10_nic_free_piobufs(enp);
1604 	}
1605 
1606 	enp->en_arch.ef10.ena_pio_write_vi_base =
1607 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
1608 
1609 	/* Save UC memory mapping details */
1610 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
1611 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
1612 		enp->en_arch.ef10.ena_uc_mem_map_size =
1613 		    (ER_DZ_TX_PIOBUF_STEP *
1614 		    enp->en_arch.ef10.ena_pio_write_vi_base);
1615 	} else {
1616 		enp->en_arch.ef10.ena_uc_mem_map_size =
1617 		    (ER_DZ_TX_PIOBUF_STEP *
1618 		    enp->en_arch.ef10.ena_vi_count);
1619 	}
1620 
1621 	/* Save WC memory mapping details */
1622 	enp->en_arch.ef10.ena_wc_mem_map_offset =
1623 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
1624 	    enp->en_arch.ef10.ena_uc_mem_map_size;
1625 
1626 	enp->en_arch.ef10.ena_wc_mem_map_size =
1627 	    (ER_DZ_TX_PIOBUF_STEP *
1628 	    enp->en_arch.ef10.ena_piobuf_count);
1629 
1630 	/* Link piobufs to extra VIs in WC mapping */
1631 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
1632 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
1633 			rc = efx_mcdi_link_piobuf(enp,
1634 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
1635 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
1636 			if (rc != 0)
1637 				break;
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * Allocate a vAdaptor attached to our upstream vPort/pPort.
1643 	 *
1644 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
1645 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
1646 	 * retry the request several times after waiting a while. The wait time
1647 	 * between retries starts small (10ms) and exponentially increases.
1648 	 * Total wait time is a little over two seconds. Retry logic in the
1649 	 * client driver may mean this whole loop is repeated if it continues to
1650 	 * fail.
1651 	 */
1652 	retry = 0;
1653 	delay_us = 10000;
1654 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
1655 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
1656 		    (rc != ENOENT)) {
1657 			/*
1658 			 * Do not retry alloc for PF, or for other errors on
1659 			 * a VF.
1660 			 */
1661 			goto fail5;
1662 		}
1663 
1664 		/* VF startup before PF is ready. Retry allocation. */
1665 		if (retry > 5) {
1666 			/* Too many attempts */
1667 			rc = EINVAL;
1668 			goto fail6;
1669 		}
1670 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
1671 		EFSYS_SLEEP(delay_us);
1672 		retry++;
1673 		if (delay_us < 500000)
1674 			delay_us <<= 2;
1675 	}
1676 
1677 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
1678 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
1679 
1680 	return (0);
1681 
1682 fail6:
1683 	EFSYS_PROBE(fail6);
1684 fail5:
1685 	EFSYS_PROBE(fail5);
1686 fail4:
1687 	EFSYS_PROBE(fail4);
1688 fail3:
1689 	EFSYS_PROBE(fail3);
1690 fail2:
1691 	EFSYS_PROBE(fail2);
1692 
1693 	ef10_nic_free_piobufs(enp);
1694 
1695 fail1:
1696 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1697 
1698 	return (rc);
1699 }
1700 
1701 	__checkReturn	efx_rc_t
1702 ef10_nic_get_vi_pool(
1703 	__in		efx_nic_t *enp,
1704 	__out		uint32_t *vi_countp)
1705 {
1706 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
1707 		    enp->en_family == EFX_FAMILY_MEDFORD);
1708 
1709 	/*
1710 	 * Report VIs that the client driver can use.
1711 	 * Do not include VIs used for PIO buffer writes.
1712 	 */
1713 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
1714 
1715 	return (0);
1716 }
1717 
1718 	__checkReturn	efx_rc_t
1719 ef10_nic_get_bar_region(
1720 	__in		efx_nic_t *enp,
1721 	__in		efx_nic_region_t region,
1722 	__out		uint32_t *offsetp,
1723 	__out		size_t *sizep)
1724 {
1725 	efx_rc_t rc;
1726 
1727 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
1728 		    enp->en_family == EFX_FAMILY_MEDFORD);
1729 
1730 	/*
1731 	 * TODO: Specify host memory mapping alignment and granularity
1732 	 * in efx_drv_limits_t so that they can be taken into account
1733 	 * when allocating extra VIs for PIO writes.
1734 	 */
1735 	switch (region) {
1736 	case EFX_REGION_VI:
1737 		/* UC mapped memory BAR region for VI registers */
1738 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
1739 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
1740 		break;
1741 
1742 	case EFX_REGION_PIO_WRITE_VI:
1743 		/* WC mapped memory BAR region for piobuf writes */
1744 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
1745 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
1746 		break;
1747 
1748 	default:
1749 		rc = EINVAL;
1750 		goto fail1;
1751 	}
1752 
1753 	return (0);
1754 
1755 fail1:
1756 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1757 
1758 	return (rc);
1759 }
1760 
1761 			void
1762 ef10_nic_fini(
1763 	__in		efx_nic_t *enp)
1764 {
1765 	uint32_t i;
1766 	efx_rc_t rc;
1767 
1768 	(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
1769 	enp->en_vport_id = 0;
1770 
1771 	/* Unlink piobufs from extra VIs in WC mapping */
1772 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
1773 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
1774 			rc = efx_mcdi_unlink_piobuf(enp,
1775 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
1776 			if (rc != 0)
1777 				break;
1778 		}
1779 	}
1780 
1781 	ef10_nic_free_piobufs(enp);
1782 
1783 	(void) efx_mcdi_free_vis(enp);
1784 	enp->en_arch.ef10.ena_vi_count = 0;
1785 }
1786 
1787 			void
1788 ef10_nic_unprobe(
1789 	__in		efx_nic_t *enp)
1790 {
1791 #if EFSYS_OPT_MON_STATS
1792 	mcdi_mon_cfg_free(enp);
1793 #endif /* EFSYS_OPT_MON_STATS */
1794 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
1795 }
1796 
1797 #if EFSYS_OPT_DIAG
1798 
1799 	__checkReturn	efx_rc_t
1800 ef10_nic_register_test(
1801 	__in		efx_nic_t *enp)
1802 {
1803 	efx_rc_t rc;
1804 
1805 	/* FIXME */
1806 	_NOTE(ARGUNUSED(enp))
1807 	_NOTE(CONSTANTCONDITION)
1808 	if (B_FALSE) {
1809 		rc = ENOTSUP;
1810 		goto fail1;
1811 	}
1812 	/* FIXME */
1813 
1814 	return (0);
1815 
1816 fail1:
1817 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1818 
1819 	return (rc);
1820 }
1821 
1822 #endif	/* EFSYS_OPT_DIAG */
1823 
1824 
1825 #endif	/* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
1826