xref: /freebsd/sys/dev/sfxge/sfxge_tx.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010-2016 Solarflare Communications Inc.
5  * All rights reserved.
6  *
7  * This software was developed in part by Philip Paeps under contract for
8  * Solarflare Communications, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright notice,
14  *    this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright notice,
16  *    this list of conditions and the following disclaimer in the documentation
17  *    and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  * The views and conclusions contained in the software and documentation are
32  * those of the authors and should not be interpreted as representing official
33  * policies, either expressed or implied, of the FreeBSD Project.
34  */
35 
36 /* Theory of operation:
37  *
38  * Tx queues allocation and mapping on Siena
39  *
40  * One Tx queue with enabled checksum offload is allocated per Rx channel
41  * (event queue).  Also 2 Tx queues (one without checksum offload and one
42  * with IP checksum offload only) are allocated and bound to event queue 0.
43  * sfxge_txq_type is used as Tx queue label.
44  *
45  * So, event queue plus label mapping to Tx queue index is:
46  *	if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES)
47  *	else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1
48  * See sfxge_get_txq_by_label() sfxge_ev.c
49  *
50  * Tx queue allocation and mapping on EF10
51  *
52  * One Tx queue with enabled checksum offload is allocated per Rx
53  * channel (event queue). Checksum offload on all Tx queues is enabled or
54  * disabled dynamically by inserting option descriptors, so the additional
55  * queues used on Siena are not required.
56  *
57  * TxQ label is always set to zero on EF10 hardware.
58  * So, event queue to Tx queue mapping is simple:
59  * TxQ-index = EvQ-index
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_rss.h"
66 
67 #include <sys/param.h>
68 #include <sys/malloc.h>
69 #include <sys/mbuf.h>
70 #include <sys/smp.h>
71 #include <sys/socket.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/limits.h>
75 
76 #include <net/bpf.h>
77 #include <net/ethernet.h>
78 #include <net/if.h>
79 #include <net/if_vlan_var.h>
80 
81 #include <netinet/in.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip6.h>
84 #include <netinet/tcp.h>
85 
86 #ifdef RSS
87 #include <net/rss_config.h>
88 #endif
89 
90 #include "common/efx.h"
91 
92 #include "sfxge.h"
93 #include "sfxge_tx.h"
94 
95 
96 #define	SFXGE_PARAM_TX_DPL_GET_MAX	SFXGE_PARAM(tx_dpl_get_max)
97 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT;
98 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max);
99 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN,
100 	   &sfxge_tx_dpl_get_max, 0,
101 	   "Maximum number of any packets in deferred packet get-list");
102 
103 #define	SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \
104 	SFXGE_PARAM(tx_dpl_get_non_tcp_max)
105 static int sfxge_tx_dpl_get_non_tcp_max =
106 	SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT;
107 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max);
108 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN,
109 	   &sfxge_tx_dpl_get_non_tcp_max, 0,
110 	   "Maximum number of non-TCP packets in deferred packet get-list");
111 
112 #define	SFXGE_PARAM_TX_DPL_PUT_MAX	SFXGE_PARAM(tx_dpl_put_max)
113 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT;
114 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max);
115 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN,
116 	   &sfxge_tx_dpl_put_max, 0,
117 	   "Maximum number of any packets in deferred packet put-list");
118 
119 #define	SFXGE_PARAM_TSO_FW_ASSISTED	SFXGE_PARAM(tso_fw_assisted)
120 static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2);
121 TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted);
122 SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN,
123 	   &sfxge_tso_fw_assisted, 0,
124 	   "Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware");
125 
126 
127 static const struct {
128 	const char *name;
129 	size_t offset;
130 } sfxge_tx_stats[] = {
131 #define	SFXGE_TX_STAT(name, member) \
132 	{ #name, offsetof(struct sfxge_txq, member) }
133 	SFXGE_TX_STAT(tso_bursts, tso_bursts),
134 	SFXGE_TX_STAT(tso_packets, tso_packets),
135 	SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
136 	SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many),
137 	SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc),
138 	SFXGE_TX_STAT(tx_collapses, collapses),
139 	SFXGE_TX_STAT(tx_drops, drops),
140 	SFXGE_TX_STAT(tx_get_overflow, get_overflow),
141 	SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow),
142 	SFXGE_TX_STAT(tx_put_overflow, put_overflow),
143 	SFXGE_TX_STAT(tx_netdown_drops, netdown_drops),
144 };
145 
146 
147 /* Forward declarations. */
148 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
149 static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
150 static void sfxge_tx_qunblock(struct sfxge_txq *txq);
151 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
152 			      const bus_dma_segment_t *dma_seg, int n_dma_seg,
153 			      int n_extra_descs);
154 
155 static inline void
156 sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp)
157 {
158 	KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0"));
159 	if (__predict_false(*pstmp ==
160 			    &txq->stmp[txq->ptr_mask]))
161 		*pstmp = &txq->stmp[0];
162 	else
163 		(*pstmp)++;
164 }
165 
166 static int
167 sfxge_tx_maybe_toggle_cksum_offload(struct sfxge_txq *txq, struct mbuf *mbuf,
168 				    struct sfxge_tx_mapping **pstmp)
169 {
170 	uint16_t new_hw_cksum_flags;
171 	efx_desc_t *desc;
172 
173 	if (mbuf->m_pkthdr.csum_flags &
174 	    (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6 | CSUM_TSO)) {
175 		/*
176 		 * We always set EFX_TXQ_CKSUM_IPV4 here because this
177 		 * configuration is the most useful, and this won't
178 		 * cause any trouble in case of IPv6 traffic anyway.
179 		 */
180 		new_hw_cksum_flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
181 	} else if (mbuf->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
182 		new_hw_cksum_flags = EFX_TXQ_CKSUM_IPV4;
183 	} else {
184 		new_hw_cksum_flags = 0;
185 	}
186 
187 	if (new_hw_cksum_flags == txq->hw_cksum_flags)
188 		return (0);
189 
190 	desc = &txq->pend_desc[txq->n_pend_desc];
191 	efx_tx_qdesc_checksum_create(txq->common, new_hw_cksum_flags, desc);
192 	txq->hw_cksum_flags = new_hw_cksum_flags;
193 	txq->n_pend_desc++;
194 
195 	sfxge_next_stmp(txq, pstmp);
196 
197 	return (1);
198 }
199 
200 static int
201 sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf,
202 			  struct sfxge_tx_mapping **pstmp)
203 {
204 	uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ?
205 			     mbuf->m_pkthdr.ether_vtag :
206 			     0);
207 	efx_desc_t *desc;
208 
209 	if (this_tag == txq->hw_vlan_tci)
210 		return (0);
211 
212 	desc = &txq->pend_desc[txq->n_pend_desc];
213 	efx_tx_qdesc_vlantci_create(txq->common, bswap16(this_tag), desc);
214 	txq->hw_vlan_tci = this_tag;
215 	txq->n_pend_desc++;
216 
217 	sfxge_next_stmp(txq, pstmp);
218 
219 	return (1);
220 }
221 
222 void
223 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq)
224 {
225 	unsigned int completed;
226 
227 	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
228 
229 	completed = txq->completed;
230 	while (completed != txq->pending) {
231 		struct sfxge_tx_mapping *stmp;
232 		unsigned int id;
233 
234 		id = completed++ & txq->ptr_mask;
235 
236 		stmp = &txq->stmp[id];
237 		if (stmp->flags & TX_BUF_UNMAP) {
238 			bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
239 			if (stmp->flags & TX_BUF_MBUF) {
240 				struct mbuf *m = stmp->u.mbuf;
241 				do
242 					m = m_free(m);
243 				while (m != NULL);
244 			} else {
245 				free(stmp->u.heap_buf, M_SFXGE);
246 			}
247 			stmp->flags = 0;
248 		}
249 	}
250 	txq->completed = completed;
251 
252 	/* Check whether we need to unblock the queue. */
253 	mb();
254 	if (txq->blocked) {
255 		unsigned int level;
256 
257 		level = txq->added - txq->completed;
258 		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
259 			sfxge_tx_qunblock(txq);
260 	}
261 }
262 
263 static unsigned int
264 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf)
265 {
266 	/* Absence of TCP checksum flags does not mean that it is non-TCP
267 	 * but it should be true if user wants to achieve high throughput.
268 	 */
269 	return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)));
270 }
271 
272 /*
273  * Reorder the put list and append it to the get list.
274  */
275 static void
276 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
277 {
278 	struct sfxge_tx_dpl *stdp;
279 	struct mbuf *mbuf, *get_next, **get_tailp;
280 	volatile uintptr_t *putp;
281 	uintptr_t put;
282 	unsigned int count;
283 	unsigned int non_tcp_count;
284 
285 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
286 
287 	stdp = &txq->dpl;
288 
289 	/* Acquire the put list. */
290 	putp = &stdp->std_put;
291 	put = atomic_readandclear_ptr(putp);
292 	mbuf = (void *)put;
293 
294 	if (mbuf == NULL)
295 		return;
296 
297 	/* Reverse the put list. */
298 	get_tailp = &mbuf->m_nextpkt;
299 	get_next = NULL;
300 
301 	count = 0;
302 	non_tcp_count = 0;
303 	do {
304 		struct mbuf *put_next;
305 
306 		non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf);
307 		put_next = mbuf->m_nextpkt;
308 		mbuf->m_nextpkt = get_next;
309 		get_next = mbuf;
310 		mbuf = put_next;
311 
312 		count++;
313 	} while (mbuf != NULL);
314 
315 	if (count > stdp->std_put_hiwat)
316 		stdp->std_put_hiwat = count;
317 
318 	/* Append the reversed put list to the get list. */
319 	KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
320 	*stdp->std_getp = get_next;
321 	stdp->std_getp = get_tailp;
322 	stdp->std_get_count += count;
323 	stdp->std_get_non_tcp_count += non_tcp_count;
324 }
325 
326 static void
327 sfxge_tx_qreap(struct sfxge_txq *txq)
328 {
329 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
330 
331 	txq->reaped = txq->completed;
332 }
333 
334 static void
335 sfxge_tx_qlist_post(struct sfxge_txq *txq)
336 {
337 	unsigned int old_added;
338 	unsigned int block_level;
339 	unsigned int level;
340 	int rc;
341 
342 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
343 
344 	KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
345 	KASSERT(txq->n_pend_desc <= txq->max_pkt_desc,
346 		("txq->n_pend_desc too large"));
347 	KASSERT(!txq->blocked, ("txq->blocked"));
348 
349 	old_added = txq->added;
350 
351 	/* Post the fragment list. */
352 	rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc,
353 			  txq->reaped, &txq->added);
354 	KASSERT(rc == 0, ("efx_tx_qdesc_post() failed"));
355 
356 	/* If efx_tx_qdesc_post() had to refragment, our information about
357 	 * buffers to free may be associated with the wrong
358 	 * descriptors.
359 	 */
360 	KASSERT(txq->added - old_added == txq->n_pend_desc,
361 		("efx_tx_qdesc_post() refragmented descriptors"));
362 
363 	level = txq->added - txq->reaped;
364 	KASSERT(level <= txq->entries, ("overfilled TX queue"));
365 
366 	/* Clear the fragment list. */
367 	txq->n_pend_desc = 0;
368 
369 	/*
370 	 * Set the block level to ensure there is space to generate a
371 	 * large number of descriptors for TSO.
372 	 */
373 	block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc;
374 
375 	/* Have we reached the block level? */
376 	if (level < block_level)
377 		return;
378 
379 	/* Reap, and check again */
380 	sfxge_tx_qreap(txq);
381 	level = txq->added - txq->reaped;
382 	if (level < block_level)
383 		return;
384 
385 	txq->blocked = 1;
386 
387 	/*
388 	 * Avoid a race with completion interrupt handling that could leave
389 	 * the queue blocked.
390 	 */
391 	mb();
392 	sfxge_tx_qreap(txq);
393 	level = txq->added - txq->reaped;
394 	if (level < block_level) {
395 		mb();
396 		txq->blocked = 0;
397 	}
398 }
399 
400 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
401 {
402 	bus_dmamap_t *used_map;
403 	bus_dmamap_t map;
404 	bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
405 	unsigned int id;
406 	struct sfxge_tx_mapping *stmp;
407 	efx_desc_t *desc;
408 	int n_dma_seg;
409 	int rc;
410 	int i;
411 	int eop;
412 	uint16_t hw_cksum_flags_prev;
413 	uint16_t hw_vlan_tci_prev;
414 	int n_extra_descs;
415 
416 	KASSERT(!txq->blocked, ("txq->blocked"));
417 
418 #if SFXGE_TX_PARSE_EARLY
419 	/*
420 	 * If software TSO is used, we still need to copy packet header,
421 	 * even if we have already parsed it early before enqueue.
422 	 */
423 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) &&
424 	    (txq->tso_fw_assisted == 0))
425 		prefetch_read_many(mbuf->m_data);
426 #else
427 	/*
428 	 * Prefetch packet header since we need to parse it and extract
429 	 * IP ID, TCP sequence number and flags.
430 	 */
431 	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
432 		prefetch_read_many(mbuf->m_data);
433 #endif
434 
435 	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) {
436 		rc = EINTR;
437 		goto reject;
438 	}
439 
440 	/* Load the packet for DMA. */
441 	id = txq->added & txq->ptr_mask;
442 	stmp = &txq->stmp[id];
443 	rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
444 				     mbuf, dma_seg, &n_dma_seg, 0);
445 	if (rc == EFBIG) {
446 		/* Try again. */
447 		struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
448 						   SFXGE_TX_MAPPING_MAX_SEG);
449 		if (new_mbuf == NULL)
450 			goto reject;
451 		++txq->collapses;
452 		mbuf = new_mbuf;
453 		rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
454 					     stmp->map, mbuf,
455 					     dma_seg, &n_dma_seg, 0);
456 	}
457 	if (rc != 0)
458 		goto reject;
459 
460 	/* Make the packet visible to the hardware. */
461 	bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
462 
463 	used_map = &stmp->map;
464 
465 	hw_cksum_flags_prev = txq->hw_cksum_flags;
466 	hw_vlan_tci_prev = txq->hw_vlan_tci;
467 
468 	/*
469 	 * The order of option descriptors, which are used to leverage VLAN tag
470 	 * and checksum offloads, might be important. Changing checksum offload
471 	 * between VLAN option and packet descriptors probably does not work.
472 	 */
473 	n_extra_descs = sfxge_tx_maybe_toggle_cksum_offload(txq, mbuf, &stmp);
474 	n_extra_descs += sfxge_tx_maybe_insert_tag(txq, mbuf, &stmp);
475 
476 	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
477 		rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg,
478 					n_extra_descs);
479 		if (rc < 0)
480 			goto reject_mapped;
481 		stmp = &txq->stmp[(rc - 1) & txq->ptr_mask];
482 	} else {
483 		/* Add the mapping to the fragment list, and set flags
484 		 * for the buffer.
485 		 */
486 
487 		i = 0;
488 		for (;;) {
489 			desc = &txq->pend_desc[i + n_extra_descs];
490 			eop = (i == n_dma_seg - 1);
491 			efx_tx_qdesc_dma_create(txq->common,
492 						dma_seg[i].ds_addr,
493 						dma_seg[i].ds_len,
494 						eop,
495 						desc);
496 			if (eop)
497 				break;
498 			i++;
499 			sfxge_next_stmp(txq, &stmp);
500 		}
501 		txq->n_pend_desc = n_dma_seg + n_extra_descs;
502 	}
503 
504 	/*
505 	 * If the mapping required more than one descriptor
506 	 * then we need to associate the DMA map with the last
507 	 * descriptor, not the first.
508 	 */
509 	if (used_map != &stmp->map) {
510 		map = stmp->map;
511 		stmp->map = *used_map;
512 		*used_map = map;
513 	}
514 
515 	stmp->u.mbuf = mbuf;
516 	stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
517 
518 	/* Post the fragment list. */
519 	sfxge_tx_qlist_post(txq);
520 
521 	return (0);
522 
523 reject_mapped:
524 	txq->hw_vlan_tci = hw_vlan_tci_prev;
525 	txq->hw_cksum_flags = hw_cksum_flags_prev;
526 	bus_dmamap_unload(txq->packet_dma_tag, *used_map);
527 reject:
528 	/* Drop the packet on the floor. */
529 	m_freem(mbuf);
530 	++txq->drops;
531 
532 	return (rc);
533 }
534 
535 /*
536  * Drain the deferred packet list into the transmit queue.
537  */
538 static void
539 sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
540 {
541 	struct sfxge_softc *sc;
542 	struct sfxge_tx_dpl *stdp;
543 	struct mbuf *mbuf, *next;
544 	unsigned int count;
545 	unsigned int non_tcp_count;
546 	unsigned int pushed;
547 	int rc;
548 
549 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
550 
551 	sc = txq->sc;
552 	stdp = &txq->dpl;
553 	pushed = txq->added;
554 
555 	if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) {
556 		prefetch_read_many(sc->enp);
557 		prefetch_read_many(txq->common);
558 	}
559 
560 	mbuf = stdp->std_get;
561 	count = stdp->std_get_count;
562 	non_tcp_count = stdp->std_get_non_tcp_count;
563 
564 	if (count > stdp->std_get_hiwat)
565 		stdp->std_get_hiwat = count;
566 
567 	while (count != 0) {
568 		KASSERT(mbuf != NULL, ("mbuf == NULL"));
569 
570 		next = mbuf->m_nextpkt;
571 		mbuf->m_nextpkt = NULL;
572 
573 		ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
574 
575 		if (next != NULL)
576 			prefetch_read_many(next);
577 
578 		rc = sfxge_tx_queue_mbuf(txq, mbuf);
579 		--count;
580 		non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf);
581 		mbuf = next;
582 		if (rc != 0)
583 			continue;
584 
585 		if (txq->blocked)
586 			break;
587 
588 		/* Push the fragments to the hardware in batches. */
589 		if (txq->added - pushed >= SFXGE_TX_BATCH) {
590 			efx_tx_qpush(txq->common, txq->added, pushed);
591 			pushed = txq->added;
592 		}
593 	}
594 
595 	if (count == 0) {
596 		KASSERT(mbuf == NULL, ("mbuf != NULL"));
597 		KASSERT(non_tcp_count == 0,
598 			("inconsistent TCP/non-TCP detection"));
599 		stdp->std_get = NULL;
600 		stdp->std_get_count = 0;
601 		stdp->std_get_non_tcp_count = 0;
602 		stdp->std_getp = &stdp->std_get;
603 	} else {
604 		stdp->std_get = mbuf;
605 		stdp->std_get_count = count;
606 		stdp->std_get_non_tcp_count = non_tcp_count;
607 	}
608 
609 	if (txq->added != pushed)
610 		efx_tx_qpush(txq->common, txq->added, pushed);
611 
612 	KASSERT(txq->blocked || stdp->std_get_count == 0,
613 		("queue unblocked but count is non-zero"));
614 }
615 
616 #define	SFXGE_TX_QDPL_PENDING(_txq)	((_txq)->dpl.std_put != 0)
617 
618 /*
619  * Service the deferred packet list.
620  *
621  * NOTE: drops the txq mutex!
622  */
623 static void
624 sfxge_tx_qdpl_service(struct sfxge_txq *txq)
625 {
626 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
627 
628 	do {
629 		if (SFXGE_TX_QDPL_PENDING(txq))
630 			sfxge_tx_qdpl_swizzle(txq);
631 
632 		if (!txq->blocked)
633 			sfxge_tx_qdpl_drain(txq);
634 
635 		SFXGE_TXQ_UNLOCK(txq);
636 	} while (SFXGE_TX_QDPL_PENDING(txq) &&
637 		 SFXGE_TXQ_TRYLOCK(txq));
638 }
639 
640 /*
641  * Put a packet on the deferred packet get-list.
642  */
643 static int
644 sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf)
645 {
646 	struct sfxge_tx_dpl *stdp;
647 
648 	stdp = &txq->dpl;
649 
650 	KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
651 
652 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
653 
654 	if (stdp->std_get_count >= stdp->std_get_max) {
655 		txq->get_overflow++;
656 		return (ENOBUFS);
657 	}
658 	if (sfxge_is_mbuf_non_tcp(mbuf)) {
659 		if (stdp->std_get_non_tcp_count >=
660 		    stdp->std_get_non_tcp_max) {
661 			txq->get_non_tcp_overflow++;
662 			return (ENOBUFS);
663 		}
664 		stdp->std_get_non_tcp_count++;
665 	}
666 
667 	*(stdp->std_getp) = mbuf;
668 	stdp->std_getp = &mbuf->m_nextpkt;
669 	stdp->std_get_count++;
670 
671 	return (0);
672 }
673 
674 /*
675  * Put a packet on the deferred packet put-list.
676  *
677  * We overload the csum_data field in the mbuf to keep track of this length
678  * because there is no cheap alternative to avoid races.
679  */
680 static int
681 sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf)
682 {
683 	struct sfxge_tx_dpl *stdp;
684 	volatile uintptr_t *putp;
685 	uintptr_t old;
686 	uintptr_t new;
687 	unsigned int put_count;
688 
689 	KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
690 
691 	SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
692 
693 	stdp = &txq->dpl;
694 	putp = &stdp->std_put;
695 	new = (uintptr_t)mbuf;
696 
697 	do {
698 		old = *putp;
699 		if (old != 0) {
700 			struct mbuf *mp = (struct mbuf *)old;
701 			put_count = mp->m_pkthdr.csum_data;
702 		} else
703 			put_count = 0;
704 		if (put_count >= stdp->std_put_max) {
705 			atomic_add_long(&txq->put_overflow, 1);
706 			return (ENOBUFS);
707 		}
708 		mbuf->m_pkthdr.csum_data = put_count + 1;
709 		mbuf->m_nextpkt = (void *)old;
710 	} while (atomic_cmpset_ptr(putp, old, new) == 0);
711 
712 	return (0);
713 }
714 
715 /*
716  * Called from if_transmit - will try to grab the txq lock and enqueue to the
717  * put list if it succeeds, otherwise try to push onto the defer list if space.
718  */
719 static int
720 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
721 {
722 	int rc;
723 
724 	if (!SFXGE_LINK_UP(txq->sc)) {
725 		atomic_add_long(&txq->netdown_drops, 1);
726 		return (ENETDOWN);
727 	}
728 
729 	/*
730 	 * Try to grab the txq lock.  If we are able to get the lock,
731 	 * the packet will be appended to the "get list" of the deferred
732 	 * packet list.  Otherwise, it will be pushed on the "put list".
733 	 */
734 	if (SFXGE_TXQ_TRYLOCK(txq)) {
735 		/* First swizzle put-list to get-list to keep order */
736 		sfxge_tx_qdpl_swizzle(txq);
737 
738 		rc = sfxge_tx_qdpl_put_locked(txq, m);
739 
740 		/* Try to service the list. */
741 		sfxge_tx_qdpl_service(txq);
742 		/* Lock has been dropped. */
743 	} else {
744 		rc = sfxge_tx_qdpl_put_unlocked(txq, m);
745 
746 		/*
747 		 * Try to grab the lock again.
748 		 *
749 		 * If we are able to get the lock, we need to process
750 		 * the deferred packet list.  If we are not able to get
751 		 * the lock, another thread is processing the list.
752 		 */
753 		if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) {
754 			sfxge_tx_qdpl_service(txq);
755 			/* Lock has been dropped. */
756 		}
757 	}
758 
759 	SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
760 
761 	return (rc);
762 }
763 
764 static void
765 sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
766 {
767 	struct sfxge_tx_dpl *stdp = &txq->dpl;
768 	struct mbuf *mbuf, *next;
769 
770 	SFXGE_TXQ_LOCK(txq);
771 
772 	sfxge_tx_qdpl_swizzle(txq);
773 	for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
774 		next = mbuf->m_nextpkt;
775 		m_freem(mbuf);
776 	}
777 	stdp->std_get = NULL;
778 	stdp->std_get_count = 0;
779 	stdp->std_get_non_tcp_count = 0;
780 	stdp->std_getp = &stdp->std_get;
781 
782 	SFXGE_TXQ_UNLOCK(txq);
783 }
784 
785 void
786 sfxge_if_qflush(struct ifnet *ifp)
787 {
788 	struct sfxge_softc *sc;
789 	unsigned int i;
790 
791 	sc = ifp->if_softc;
792 
793 	for (i = 0; i < sc->txq_count; i++)
794 		sfxge_tx_qdpl_flush(sc->txq[i]);
795 }
796 
797 #if SFXGE_TX_PARSE_EARLY
798 
799 /* There is little space for user data in mbuf pkthdr, so we
800  * use l*hlen fields which are not used by the driver otherwise
801  * to store header offsets.
802  * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes.
803  */
804 
805 
806 #define TSO_MBUF_PROTO(_mbuf)    ((_mbuf)->m_pkthdr.PH_loc.sixteen[0])
807 /* We abuse l5hlen here because PH_loc can hold only 64 bits of data */
808 #define TSO_MBUF_FLAGS(_mbuf)    ((_mbuf)->m_pkthdr.l5hlen)
809 #define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1])
810 #define TSO_MBUF_SEQNUM(_mbuf)   ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1])
811 
812 static void sfxge_parse_tx_packet(struct mbuf *mbuf)
813 {
814 	struct ether_header *eh = mtod(mbuf, struct ether_header *);
815 	const struct tcphdr *th;
816 	struct tcphdr th_copy;
817 
818 	/* Find network protocol and header */
819 	TSO_MBUF_PROTO(mbuf) = eh->ether_type;
820 	if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) {
821 		struct ether_vlan_header *veh =
822 			mtod(mbuf, struct ether_vlan_header *);
823 		TSO_MBUF_PROTO(mbuf) = veh->evl_proto;
824 		mbuf->m_pkthdr.l2hlen = sizeof(*veh);
825 	} else {
826 		mbuf->m_pkthdr.l2hlen = sizeof(*eh);
827 	}
828 
829 	/* Find TCP header */
830 	if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) {
831 		const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen);
832 
833 		KASSERT(iph->ip_p == IPPROTO_TCP,
834 			("TSO required on non-TCP packet"));
835 		mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl;
836 		TSO_MBUF_PACKETID(mbuf) = iph->ip_id;
837 	} else {
838 		KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6),
839 			("TSO required on non-IP packet"));
840 		KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt ==
841 			IPPROTO_TCP,
842 			("TSO required on non-TCP packet"));
843 		mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr);
844 		TSO_MBUF_PACKETID(mbuf) = 0;
845 	}
846 
847 	KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen,
848 		("network header is fragmented in mbuf"));
849 
850 	/* We need TCP header including flags (window is the next) */
851 	if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) {
852 		m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy),
853 			   (caddr_t)&th_copy);
854 		th = &th_copy;
855 	} else {
856 		th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen);
857 	}
858 
859 	mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off;
860 	TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq);
861 
862 	/* These flags must not be duplicated */
863 	/*
864 	 * RST should not be duplicated as well, but FreeBSD kernel
865 	 * generates TSO packets with RST flag. So, do not assert
866 	 * its absence.
867 	 */
868 	KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
869 		("incompatible TCP flag 0x%x on TSO packet",
870 		 th->th_flags & (TH_URG | TH_SYN)));
871 	TSO_MBUF_FLAGS(mbuf) = th->th_flags;
872 }
873 #endif
874 
875 /*
876  * TX start -- called by the stack.
877  */
878 int
879 sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
880 {
881 	struct sfxge_softc *sc;
882 	struct sfxge_txq *txq;
883 	int rc;
884 
885 	sc = (struct sfxge_softc *)ifp->if_softc;
886 
887 	/*
888 	 * Transmit may be called when interface is up from the kernel
889 	 * point of view, but not yet up (in progress) from the driver
890 	 * point of view. I.e. link aggregation bring up.
891 	 * Transmit may be called when interface is up from the driver
892 	 * point of view, but already down from the kernel point of
893 	 * view. I.e. Rx when interface shutdown is in progress.
894 	 */
895 	KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP),
896 		("interface not up"));
897 
898 	/* Pick the desired transmit queue. */
899 	if (sc->txq_dynamic_cksum_toggle_supported |
900 	    (m->m_pkthdr.csum_flags &
901 	     (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO))) {
902 		int index = 0;
903 
904 #ifdef RSS
905 		uint32_t bucket_id;
906 
907 		/*
908 		 * Select a TX queue which matches the corresponding
909 		 * RX queue for the hash in order to assign both
910 		 * TX and RX parts of the flow to the same CPU
911 		 */
912 		if (rss_m2bucket(m, &bucket_id) == 0)
913 			index = bucket_id % (sc->txq_count - (SFXGE_TXQ_NTYPES - 1));
914 #else
915 		/* check if flowid is set */
916 		if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
917 			uint32_t hash = m->m_pkthdr.flowid;
918 			uint32_t idx = hash % nitems(sc->rx_indir_table);
919 
920 			index = sc->rx_indir_table[idx];
921 		}
922 #endif
923 #if SFXGE_TX_PARSE_EARLY
924 		if (m->m_pkthdr.csum_flags & CSUM_TSO)
925 			sfxge_parse_tx_packet(m);
926 #endif
927 		index += (sc->txq_dynamic_cksum_toggle_supported == B_FALSE) ?
928 			 SFXGE_TXQ_IP_TCP_UDP_CKSUM : 0;
929 		txq = sc->txq[index];
930 	} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
931 		txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
932 	} else {
933 		txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
934 	}
935 
936 	rc = sfxge_tx_packet_add(txq, m);
937 	if (rc != 0)
938 		m_freem(m);
939 
940 	return (rc);
941 }
942 
943 /*
944  * Software "TSO".  Not quite as good as doing it in hardware, but
945  * still faster than segmenting in the stack.
946  */
947 
948 struct sfxge_tso_state {
949 	/* Output position */
950 	unsigned out_len;	/* Remaining length in current segment */
951 	unsigned seqnum;	/* Current sequence number */
952 	unsigned packet_space;	/* Remaining space in current packet */
953 	unsigned segs_space;	/* Remaining number of DMA segments
954 				   for the packet (FATSOv2 only) */
955 
956 	/* Input position */
957 	uint64_t dma_addr;	/* DMA address of current position */
958 	unsigned in_len;	/* Remaining length in current mbuf */
959 
960 	const struct mbuf *mbuf; /* Input mbuf (head of chain) */
961 	u_short protocol;	/* Network protocol (after VLAN decap) */
962 	ssize_t nh_off;		/* Offset of network header */
963 	ssize_t tcph_off;	/* Offset of TCP header */
964 	unsigned header_len;	/* Number of bytes of header */
965 	unsigned seg_size;	/* TCP segment size */
966 	int fw_assisted;	/* Use FW-assisted TSO */
967 	u_short packet_id;	/* IPv4 packet ID from the original packet */
968 	uint8_t tcp_flags;	/* TCP flags */
969 	efx_desc_t header_desc; /* Precomputed header descriptor for
970 				 * FW-assisted TSO */
971 };
972 
973 #if !SFXGE_TX_PARSE_EARLY
974 static const struct ip *tso_iph(const struct sfxge_tso_state *tso)
975 {
976 	KASSERT(tso->protocol == htons(ETHERTYPE_IP),
977 		("tso_iph() in non-IPv4 state"));
978 	return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
979 }
980 
981 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
982 {
983 	KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
984 		("tso_ip6h() in non-IPv6 state"));
985 	return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
986 }
987 
988 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
989 {
990 	return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
991 }
992 #endif
993 
994 
995 /* Size of preallocated TSO header buffers.  Larger blocks must be
996  * allocated from the heap.
997  */
998 #define	TSOH_STD_SIZE	128
999 
1000 /* At most half the descriptors in the queue at any time will refer to
1001  * a TSO header buffer, since they must always be followed by a
1002  * payload descriptor referring to an mbuf.
1003  */
1004 #define	TSOH_COUNT(_txq_entries)	((_txq_entries) / 2u)
1005 #define	TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
1006 #define	TSOH_PAGE_COUNT(_txq_entries)	\
1007 	howmany(TSOH_COUNT(_txq_entries), TSOH_PER_PAGE)
1008 
1009 static int tso_init(struct sfxge_txq *txq)
1010 {
1011 	struct sfxge_softc *sc = txq->sc;
1012 	unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries);
1013 	int i, rc;
1014 
1015 	/* Allocate TSO header buffers */
1016 	txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]),
1017 				  M_SFXGE, M_WAITOK);
1018 
1019 	for (i = 0; i < tsoh_page_count; i++) {
1020 		rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
1021 		if (rc != 0)
1022 			goto fail;
1023 	}
1024 
1025 	return (0);
1026 
1027 fail:
1028 	while (i-- > 0)
1029 		sfxge_dma_free(&txq->tsoh_buffer[i]);
1030 	free(txq->tsoh_buffer, M_SFXGE);
1031 	txq->tsoh_buffer = NULL;
1032 	return (rc);
1033 }
1034 
1035 static void tso_fini(struct sfxge_txq *txq)
1036 {
1037 	int i;
1038 
1039 	if (txq->tsoh_buffer != NULL) {
1040 		for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++)
1041 			sfxge_dma_free(&txq->tsoh_buffer[i]);
1042 		free(txq->tsoh_buffer, M_SFXGE);
1043 	}
1044 }
1045 
1046 static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso,
1047 		      const bus_dma_segment_t *hdr_dma_seg,
1048 		      struct mbuf *mbuf)
1049 {
1050 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp);
1051 #if !SFXGE_TX_PARSE_EARLY
1052 	struct ether_header *eh = mtod(mbuf, struct ether_header *);
1053 	const struct tcphdr *th;
1054 	struct tcphdr th_copy;
1055 #endif
1056 
1057 	tso->fw_assisted = txq->tso_fw_assisted;
1058 	tso->mbuf = mbuf;
1059 
1060 	/* Find network protocol and header */
1061 #if !SFXGE_TX_PARSE_EARLY
1062 	tso->protocol = eh->ether_type;
1063 	if (tso->protocol == htons(ETHERTYPE_VLAN)) {
1064 		struct ether_vlan_header *veh =
1065 			mtod(mbuf, struct ether_vlan_header *);
1066 		tso->protocol = veh->evl_proto;
1067 		tso->nh_off = sizeof(*veh);
1068 	} else {
1069 		tso->nh_off = sizeof(*eh);
1070 	}
1071 #else
1072 	tso->protocol = TSO_MBUF_PROTO(mbuf);
1073 	tso->nh_off = mbuf->m_pkthdr.l2hlen;
1074 	tso->tcph_off = mbuf->m_pkthdr.l3hlen;
1075 	tso->packet_id = ntohs(TSO_MBUF_PACKETID(mbuf));
1076 #endif
1077 
1078 #if !SFXGE_TX_PARSE_EARLY
1079 	/* Find TCP header */
1080 	if (tso->protocol == htons(ETHERTYPE_IP)) {
1081 		KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
1082 			("TSO required on non-TCP packet"));
1083 		tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
1084 		tso->packet_id = ntohs(tso_iph(tso)->ip_id);
1085 	} else {
1086 		KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
1087 			("TSO required on non-IP packet"));
1088 		KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
1089 			("TSO required on non-TCP packet"));
1090 		tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
1091 		tso->packet_id = 0;
1092 	}
1093 #endif
1094 
1095 
1096 	if (tso->fw_assisted &&
1097 	    __predict_false(tso->tcph_off >
1098 			    encp->enc_tx_tso_tcp_header_offset_limit)) {
1099 		tso->fw_assisted = 0;
1100 	}
1101 
1102 
1103 #if !SFXGE_TX_PARSE_EARLY
1104 	KASSERT(mbuf->m_len >= tso->tcph_off,
1105 		("network header is fragmented in mbuf"));
1106 	/* We need TCP header including flags (window is the next) */
1107 	if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) {
1108 		m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy),
1109 			   (caddr_t)&th_copy);
1110 		th = &th_copy;
1111 	} else {
1112 		th = tso_tcph(tso);
1113 	}
1114 	tso->header_len = tso->tcph_off + 4 * th->th_off;
1115 #else
1116 	tso->header_len = mbuf->m_pkthdr.l4hlen;
1117 #endif
1118 	tso->seg_size = mbuf->m_pkthdr.tso_segsz;
1119 
1120 #if !SFXGE_TX_PARSE_EARLY
1121 	tso->seqnum = ntohl(th->th_seq);
1122 
1123 	/* These flags must not be duplicated */
1124 	/*
1125 	 * RST should not be duplicated as well, but FreeBSD kernel
1126 	 * generates TSO packets with RST flag. So, do not assert
1127 	 * its absence.
1128 	 */
1129 	KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
1130 		("incompatible TCP flag 0x%x on TSO packet",
1131 		 th->th_flags & (TH_URG | TH_SYN)));
1132 	tso->tcp_flags = th->th_flags;
1133 #else
1134 	tso->seqnum = TSO_MBUF_SEQNUM(mbuf);
1135 	tso->tcp_flags = TSO_MBUF_FLAGS(mbuf);
1136 #endif
1137 
1138 	tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
1139 
1140 	if (tso->fw_assisted) {
1141 		if (hdr_dma_seg->ds_len >= tso->header_len)
1142 			efx_tx_qdesc_dma_create(txq->common,
1143 						hdr_dma_seg->ds_addr,
1144 						tso->header_len,
1145 						B_FALSE,
1146 						&tso->header_desc);
1147 		else
1148 			tso->fw_assisted = 0;
1149 	}
1150 }
1151 
1152 /*
1153  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1154  *
1155  * Form descriptors for the current fragment, until we reach the end
1156  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
1157  * space.
1158  */
1159 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
1160 					  struct sfxge_tso_state *tso)
1161 {
1162 	efx_desc_t *desc;
1163 	int n;
1164 	uint64_t dma_addr = tso->dma_addr;
1165 	boolean_t eop;
1166 
1167 	if (tso->in_len == 0 || tso->packet_space == 0)
1168 		return;
1169 
1170 	KASSERT(tso->in_len > 0, ("TSO input length went negative"));
1171 	KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
1172 
1173 	if (tso->fw_assisted & SFXGE_FATSOV2) {
1174 		n = tso->in_len;
1175 		tso->out_len -= n;
1176 		tso->seqnum += n;
1177 		tso->in_len = 0;
1178 		if (n < tso->packet_space) {
1179 			tso->packet_space -= n;
1180 			tso->segs_space--;
1181 		} else {
1182 			tso->packet_space = tso->seg_size -
1183 			    (n - tso->packet_space) % tso->seg_size;
1184 			tso->segs_space =
1185 			    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 -
1186 			    (tso->packet_space != tso->seg_size);
1187 		}
1188 	} else {
1189 		n = min(tso->in_len, tso->packet_space);
1190 		tso->packet_space -= n;
1191 		tso->out_len -= n;
1192 		tso->dma_addr += n;
1193 		tso->in_len -= n;
1194 	}
1195 
1196 	/*
1197 	 * It is OK to use binary OR below to avoid extra branching
1198 	 * since all conditions may always be checked.
1199 	 */
1200 	eop = (tso->out_len == 0) | (tso->packet_space == 0) |
1201 	    (tso->segs_space == 0);
1202 
1203 	desc = &txq->pend_desc[txq->n_pend_desc++];
1204 	efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc);
1205 }
1206 
1207 /* Callback from bus_dmamap_load() for long TSO headers. */
1208 static void tso_map_long_header(void *dma_addr_ret,
1209 				bus_dma_segment_t *segs, int nseg,
1210 				int error)
1211 {
1212 	*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
1213 				      __predict_true(nseg == 1)) ?
1214 				     segs->ds_addr : 0);
1215 }
1216 
1217 /*
1218  * tso_start_new_packet - generate a new header and prepare for the new packet
1219  *
1220  * Generate a new header and prepare for the new packet.  Return 0 on
1221  * success, or an error code if failed to alloc header.
1222  */
1223 static int tso_start_new_packet(struct sfxge_txq *txq,
1224 				struct sfxge_tso_state *tso,
1225 				unsigned int *idp)
1226 {
1227 	unsigned int id = *idp;
1228 	struct tcphdr *tsoh_th;
1229 	unsigned ip_length;
1230 	caddr_t header;
1231 	uint64_t dma_addr;
1232 	bus_dmamap_t map;
1233 	efx_desc_t *desc;
1234 	int rc;
1235 
1236 	if (tso->fw_assisted) {
1237 		if (tso->fw_assisted & SFXGE_FATSOV2) {
1238 			/* Add 2 FATSOv2 option descriptors */
1239 			desc = &txq->pend_desc[txq->n_pend_desc];
1240 			efx_tx_qdesc_tso2_create(txq->common,
1241 						 tso->packet_id,
1242 						 0,
1243 						 tso->seqnum,
1244 						 tso->seg_size,
1245 						 desc,
1246 						 EFX_TX_FATSOV2_OPT_NDESCS);
1247 			desc += EFX_TX_FATSOV2_OPT_NDESCS;
1248 			txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS;
1249 			KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1250 			id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask;
1251 
1252 			tso->segs_space =
1253 			    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1;
1254 		} else {
1255 			uint8_t tcp_flags = tso->tcp_flags;
1256 
1257 			if (tso->out_len > tso->seg_size)
1258 				tcp_flags &= ~(TH_FIN | TH_PUSH);
1259 
1260 			/* Add FATSOv1 option descriptor */
1261 			desc = &txq->pend_desc[txq->n_pend_desc++];
1262 			efx_tx_qdesc_tso_create(txq->common,
1263 						tso->packet_id,
1264 						tso->seqnum,
1265 						tcp_flags,
1266 						desc++);
1267 			KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1268 			id = (id + 1) & txq->ptr_mask;
1269 
1270 			tso->seqnum += tso->seg_size;
1271 			tso->segs_space = UINT_MAX;
1272 		}
1273 
1274 		/* Header DMA descriptor */
1275 		*desc = tso->header_desc;
1276 		txq->n_pend_desc++;
1277 		KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1278 		id = (id + 1) & txq->ptr_mask;
1279 	} else {
1280 		/* Allocate a DMA-mapped header buffer. */
1281 		if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
1282 			unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
1283 			unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
1284 
1285 			header = (txq->tsoh_buffer[page_index].esm_base +
1286 				  buf_index * TSOH_STD_SIZE);
1287 			dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
1288 				    buf_index * TSOH_STD_SIZE);
1289 			map = txq->tsoh_buffer[page_index].esm_map;
1290 
1291 			KASSERT(txq->stmp[id].flags == 0,
1292 				("stmp flags are not 0"));
1293 		} else {
1294 			struct sfxge_tx_mapping *stmp = &txq->stmp[id];
1295 
1296 			/* We cannot use bus_dmamem_alloc() as that may sleep */
1297 			header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
1298 			if (__predict_false(!header))
1299 				return (ENOMEM);
1300 			rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
1301 					     header, tso->header_len,
1302 					     tso_map_long_header, &dma_addr,
1303 					     BUS_DMA_NOWAIT);
1304 			if (__predict_false(dma_addr == 0)) {
1305 				if (rc == 0) {
1306 					/* Succeeded but got >1 segment */
1307 					bus_dmamap_unload(txq->packet_dma_tag,
1308 							  stmp->map);
1309 					rc = EINVAL;
1310 				}
1311 				free(header, M_SFXGE);
1312 				return (rc);
1313 			}
1314 			map = stmp->map;
1315 
1316 			txq->tso_long_headers++;
1317 			stmp->u.heap_buf = header;
1318 			stmp->flags = TX_BUF_UNMAP;
1319 		}
1320 
1321 		tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
1322 
1323 		/* Copy and update the headers. */
1324 		m_copydata(tso->mbuf, 0, tso->header_len, header);
1325 
1326 		tsoh_th->th_seq = htonl(tso->seqnum);
1327 		tso->seqnum += tso->seg_size;
1328 		if (tso->out_len > tso->seg_size) {
1329 			/* This packet will not finish the TSO burst. */
1330 			ip_length = tso->header_len - tso->nh_off + tso->seg_size;
1331 			tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
1332 		} else {
1333 			/* This packet will be the last in the TSO burst. */
1334 			ip_length = tso->header_len - tso->nh_off + tso->out_len;
1335 		}
1336 
1337 		if (tso->protocol == htons(ETHERTYPE_IP)) {
1338 			struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
1339 			tsoh_iph->ip_len = htons(ip_length);
1340 			/* XXX We should increment ip_id, but FreeBSD doesn't
1341 			 * currently allocate extra IDs for multiple segments.
1342 			 */
1343 		} else {
1344 			struct ip6_hdr *tsoh_iph =
1345 				(struct ip6_hdr *)(header + tso->nh_off);
1346 			tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
1347 		}
1348 
1349 		/* Make the header visible to the hardware. */
1350 		bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
1351 
1352 		/* Form a descriptor for this header. */
1353 		desc = &txq->pend_desc[txq->n_pend_desc++];
1354 		efx_tx_qdesc_dma_create(txq->common,
1355 					dma_addr,
1356 					tso->header_len,
1357 					0,
1358 					desc);
1359 		id = (id + 1) & txq->ptr_mask;
1360 
1361 		tso->segs_space = UINT_MAX;
1362 	}
1363 	tso->packet_space = tso->seg_size;
1364 	txq->tso_packets++;
1365 	*idp = id;
1366 
1367 	return (0);
1368 }
1369 
1370 static int
1371 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
1372 		   const bus_dma_segment_t *dma_seg, int n_dma_seg,
1373 		   int n_extra_descs)
1374 {
1375 	struct sfxge_tso_state tso;
1376 	unsigned int id;
1377 	unsigned skipped = 0;
1378 
1379 	tso_start(txq, &tso, dma_seg, mbuf);
1380 
1381 	while (dma_seg->ds_len + skipped <= tso.header_len) {
1382 		skipped += dma_seg->ds_len;
1383 		--n_dma_seg;
1384 		KASSERT(n_dma_seg, ("no payload found in TSO packet"));
1385 		++dma_seg;
1386 	}
1387 	tso.in_len = dma_seg->ds_len - (tso.header_len - skipped);
1388 	tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped);
1389 
1390 	id = (txq->added + n_extra_descs) & txq->ptr_mask;
1391 	if (__predict_false(tso_start_new_packet(txq, &tso, &id)))
1392 		return (-1);
1393 
1394 	while (1) {
1395 		tso_fill_packet_with_fragment(txq, &tso);
1396 		/* Exactly one DMA descriptor is added */
1397 		KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1398 		id = (id + 1) & txq->ptr_mask;
1399 
1400 		/* Move onto the next fragment? */
1401 		if (tso.in_len == 0) {
1402 			--n_dma_seg;
1403 			if (n_dma_seg == 0)
1404 				break;
1405 			++dma_seg;
1406 			tso.in_len = dma_seg->ds_len;
1407 			tso.dma_addr = dma_seg->ds_addr;
1408 		}
1409 
1410 		/* End of packet? */
1411 		if ((tso.packet_space == 0) | (tso.segs_space == 0)) {
1412 			unsigned int n_fatso_opt_desc =
1413 			    (tso.fw_assisted & SFXGE_FATSOV2) ?
1414 			    EFX_TX_FATSOV2_OPT_NDESCS :
1415 			    (tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0;
1416 
1417 			/* If the queue is now full due to tiny MSS,
1418 			 * or we can't create another header, discard
1419 			 * the remainder of the input mbuf but do not
1420 			 * roll back the work we have done.
1421 			 */
1422 			if (txq->n_pend_desc + n_fatso_opt_desc +
1423 			    1 /* header */ + n_dma_seg > txq->max_pkt_desc) {
1424 				txq->tso_pdrop_too_many++;
1425 				break;
1426 			}
1427 			if (__predict_false(tso_start_new_packet(txq, &tso,
1428 								 &id))) {
1429 				txq->tso_pdrop_no_rsrc++;
1430 				break;
1431 			}
1432 		}
1433 	}
1434 
1435 	txq->tso_bursts++;
1436 	return (id);
1437 }
1438 
1439 static void
1440 sfxge_tx_qunblock(struct sfxge_txq *txq)
1441 {
1442 	struct sfxge_softc *sc;
1443 	struct sfxge_evq *evq;
1444 
1445 	sc = txq->sc;
1446 	evq = sc->evq[txq->evq_index];
1447 
1448 	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
1449 
1450 	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED))
1451 		return;
1452 
1453 	SFXGE_TXQ_LOCK(txq);
1454 
1455 	if (txq->blocked) {
1456 		unsigned int level;
1457 
1458 		level = txq->added - txq->completed;
1459 		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) {
1460 			/* reaped must be in sync with blocked */
1461 			sfxge_tx_qreap(txq);
1462 			txq->blocked = 0;
1463 		}
1464 	}
1465 
1466 	sfxge_tx_qdpl_service(txq);
1467 	/* note: lock has been dropped */
1468 }
1469 
1470 void
1471 sfxge_tx_qflush_done(struct sfxge_txq *txq)
1472 {
1473 
1474 	txq->flush_state = SFXGE_FLUSH_DONE;
1475 }
1476 
1477 static void
1478 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
1479 {
1480 	struct sfxge_txq *txq;
1481 	struct sfxge_evq *evq;
1482 	unsigned int count;
1483 
1484 	SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
1485 
1486 	txq = sc->txq[index];
1487 	evq = sc->evq[txq->evq_index];
1488 
1489 	SFXGE_EVQ_LOCK(evq);
1490 	SFXGE_TXQ_LOCK(txq);
1491 
1492 	KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
1493 	    ("txq->init_state != SFXGE_TXQ_STARTED"));
1494 
1495 	txq->init_state = SFXGE_TXQ_INITIALIZED;
1496 
1497 	if (txq->flush_state != SFXGE_FLUSH_DONE) {
1498 		txq->flush_state = SFXGE_FLUSH_PENDING;
1499 
1500 		SFXGE_EVQ_UNLOCK(evq);
1501 		SFXGE_TXQ_UNLOCK(txq);
1502 
1503 		/* Flush the transmit queue. */
1504 		if (efx_tx_qflush(txq->common) != 0) {
1505 			log(LOG_ERR, "%s: Flushing Tx queue %u failed\n",
1506 			    device_get_nameunit(sc->dev), index);
1507 			txq->flush_state = SFXGE_FLUSH_DONE;
1508 		} else {
1509 			count = 0;
1510 			do {
1511 				/* Spin for 100ms. */
1512 				DELAY(100000);
1513 				if (txq->flush_state != SFXGE_FLUSH_PENDING)
1514 					break;
1515 			} while (++count < 20);
1516 		}
1517 		SFXGE_EVQ_LOCK(evq);
1518 		SFXGE_TXQ_LOCK(txq);
1519 
1520 		KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
1521 		    ("txq->flush_state == SFXGE_FLUSH_FAILED"));
1522 
1523 		if (txq->flush_state != SFXGE_FLUSH_DONE) {
1524 			/* Flush timeout */
1525 			log(LOG_ERR, "%s: Cannot flush Tx queue %u\n",
1526 			    device_get_nameunit(sc->dev), index);
1527 			txq->flush_state = SFXGE_FLUSH_DONE;
1528 		}
1529 	}
1530 
1531 	txq->blocked = 0;
1532 	txq->pending = txq->added;
1533 
1534 	sfxge_tx_qcomplete(txq, evq);
1535 	KASSERT(txq->completed == txq->added,
1536 	    ("txq->completed != txq->added"));
1537 
1538 	sfxge_tx_qreap(txq);
1539 	KASSERT(txq->reaped == txq->completed,
1540 	    ("txq->reaped != txq->completed"));
1541 
1542 	txq->added = 0;
1543 	txq->pending = 0;
1544 	txq->completed = 0;
1545 	txq->reaped = 0;
1546 
1547 	/* Destroy the common code transmit queue. */
1548 	efx_tx_qdestroy(txq->common);
1549 	txq->common = NULL;
1550 
1551 	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1552 	    EFX_TXQ_NBUFS(sc->txq_entries));
1553 
1554 	txq->hw_cksum_flags = 0;
1555 
1556 	SFXGE_EVQ_UNLOCK(evq);
1557 	SFXGE_TXQ_UNLOCK(txq);
1558 }
1559 
1560 /*
1561  * Estimate maximum number of Tx descriptors required for TSO packet.
1562  * With minimum MSS and maximum mbuf length we might need more (even
1563  * than a ring-ful of descriptors), but this should not happen in
1564  * practice except due to deliberate attack.  In that case we will
1565  * truncate the output at a packet boundary.
1566  */
1567 static unsigned int
1568 sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type,
1569 		      unsigned int tso_fw_assisted)
1570 {
1571 	/* One descriptor for every input fragment */
1572 	unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG;
1573 	unsigned int sw_tso_max_descs;
1574 	unsigned int fa_tso_v1_max_descs = 0;
1575 	unsigned int fa_tso_v2_max_descs = 0;
1576 
1577 	/* Checksum offload Tx option descriptor may be required */
1578 	if (sc->txq_dynamic_cksum_toggle_supported)
1579 		max_descs++;
1580 
1581 	/* VLAN tagging Tx option descriptor may be required */
1582 	if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled)
1583 		max_descs++;
1584 
1585 	if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) {
1586 		/*
1587 		 * Plus header and payload descriptor for each output segment.
1588 		 * Minus one since header fragment is already counted.
1589 		 * Even if FATSO is used, we should be ready to fallback
1590 		 * to do it in the driver.
1591 		 */
1592 		sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1;
1593 
1594 		/* FW assisted TSOv1 requires one more descriptor per segment
1595 		 * in comparison to SW TSO */
1596 		if (tso_fw_assisted & SFXGE_FATSOV1)
1597 			fa_tso_v1_max_descs =
1598 			    sw_tso_max_descs + SFXGE_TSO_MAX_SEGS;
1599 
1600 		/* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra
1601 		 * descriptors per superframe limited by number of DMA fetches
1602 		 * per packet. The first packet header is already counted.
1603 		 */
1604 		if (tso_fw_assisted & SFXGE_FATSOV2) {
1605 			fa_tso_v2_max_descs =
1606 			    howmany(SFXGE_TX_MAPPING_MAX_SEG,
1607 				    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) *
1608 			    (EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1;
1609 		}
1610 
1611 		max_descs += MAX(sw_tso_max_descs,
1612 				 MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs));
1613 	}
1614 
1615 	return (max_descs);
1616 }
1617 
1618 static int
1619 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
1620 {
1621 	struct sfxge_txq *txq;
1622 	efsys_mem_t *esmp;
1623 	uint16_t flags;
1624 	unsigned int tso_fw_assisted;
1625 	unsigned int label;
1626 	struct sfxge_evq *evq;
1627 	unsigned int desc_index;
1628 	int rc;
1629 
1630 	SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
1631 
1632 	txq = sc->txq[index];
1633 	esmp = &txq->mem;
1634 	evq = sc->evq[txq->evq_index];
1635 
1636 	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1637 	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1638 	KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
1639 	    ("evq->init_state != SFXGE_EVQ_STARTED"));
1640 
1641 	/* Program the buffer table. */
1642 	if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
1643 	    EFX_TXQ_NBUFS(sc->txq_entries))) != 0)
1644 		return (rc);
1645 
1646 	/* Determine the kind of queue we are creating. */
1647 	tso_fw_assisted = 0;
1648 	switch (txq->type) {
1649 	case SFXGE_TXQ_NON_CKSUM:
1650 		flags = 0;
1651 		break;
1652 	case SFXGE_TXQ_IP_CKSUM:
1653 		flags = EFX_TXQ_CKSUM_IPV4;
1654 		break;
1655 	case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
1656 		flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
1657 		tso_fw_assisted = sc->tso_fw_assisted;
1658 		if (tso_fw_assisted & SFXGE_FATSOV2)
1659 			flags |= EFX_TXQ_FATSOV2;
1660 		break;
1661 	default:
1662 		KASSERT(0, ("Impossible TX queue"));
1663 		flags = 0;
1664 		break;
1665 	}
1666 
1667 	label = (sc->txq_dynamic_cksum_toggle_supported) ? 0 : txq->type;
1668 
1669 	/* Create the common code transmit queue. */
1670 	if ((rc = efx_tx_qcreate(sc->enp, index, label, esmp,
1671 	    sc->txq_entries, txq->buf_base_id, flags, evq->common,
1672 	    &txq->common, &desc_index)) != 0) {
1673 		/* Retry if no FATSOv2 resources, otherwise fail */
1674 		if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2))
1675 			goto fail;
1676 
1677 		/* Looks like all FATSOv2 contexts are used */
1678 		flags &= ~EFX_TXQ_FATSOV2;
1679 		tso_fw_assisted &= ~SFXGE_FATSOV2;
1680 		if ((rc = efx_tx_qcreate(sc->enp, index, label, esmp,
1681 		    sc->txq_entries, txq->buf_base_id, flags, evq->common,
1682 		    &txq->common, &desc_index)) != 0)
1683 			goto fail;
1684 	}
1685 
1686 	/* Initialise queue descriptor indexes */
1687 	txq->added = txq->pending = txq->completed = txq->reaped = desc_index;
1688 
1689 	SFXGE_TXQ_LOCK(txq);
1690 
1691 	/* Enable the transmit queue. */
1692 	efx_tx_qenable(txq->common);
1693 
1694 	txq->init_state = SFXGE_TXQ_STARTED;
1695 	txq->flush_state = SFXGE_FLUSH_REQUIRED;
1696 	txq->tso_fw_assisted = tso_fw_assisted;
1697 
1698 	txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type,
1699 						  tso_fw_assisted);
1700 
1701 	txq->hw_vlan_tci = 0;
1702 
1703 	txq->hw_cksum_flags = flags &
1704 			      (EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP);
1705 
1706 	SFXGE_TXQ_UNLOCK(txq);
1707 
1708 	return (0);
1709 
1710 fail:
1711 	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1712 	    EFX_TXQ_NBUFS(sc->txq_entries));
1713 	return (rc);
1714 }
1715 
1716 void
1717 sfxge_tx_stop(struct sfxge_softc *sc)
1718 {
1719 	int index;
1720 
1721 	index = sc->txq_count;
1722 	while (--index >= 0)
1723 		sfxge_tx_qstop(sc, index);
1724 
1725 	/* Tear down the transmit module */
1726 	efx_tx_fini(sc->enp);
1727 }
1728 
1729 int
1730 sfxge_tx_start(struct sfxge_softc *sc)
1731 {
1732 	int index;
1733 	int rc;
1734 
1735 	/* Initialize the common code transmit module. */
1736 	if ((rc = efx_tx_init(sc->enp)) != 0)
1737 		return (rc);
1738 
1739 	for (index = 0; index < sc->txq_count; index++) {
1740 		if ((rc = sfxge_tx_qstart(sc, index)) != 0)
1741 			goto fail;
1742 	}
1743 
1744 	return (0);
1745 
1746 fail:
1747 	while (--index >= 0)
1748 		sfxge_tx_qstop(sc, index);
1749 
1750 	efx_tx_fini(sc->enp);
1751 
1752 	return (rc);
1753 }
1754 
1755 static int
1756 sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node)
1757 {
1758 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev);
1759 	struct sysctl_oid *stat_node;
1760 	unsigned int id;
1761 
1762 	stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1763 	    "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx queue statistics");
1764 	if (stat_node == NULL)
1765 		return (ENOMEM);
1766 
1767 	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1768 		SYSCTL_ADD_ULONG(
1769 		    ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO,
1770 		    sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS,
1771 		    (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset),
1772 		    "");
1773 	}
1774 
1775 	return (0);
1776 }
1777 
1778 /**
1779  * Destroy a transmit queue.
1780  */
1781 static void
1782 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
1783 {
1784 	struct sfxge_txq *txq;
1785 	unsigned int nmaps;
1786 
1787 	txq = sc->txq[index];
1788 
1789 	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1790 	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1791 
1792 	if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
1793 		tso_fini(txq);
1794 
1795 	/* Free the context arrays. */
1796 	free(txq->pend_desc, M_SFXGE);
1797 	nmaps = sc->txq_entries;
1798 	while (nmaps-- != 0)
1799 		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1800 	free(txq->stmp, M_SFXGE);
1801 
1802 	/* Release DMA memory mapping. */
1803 	sfxge_dma_free(&txq->mem);
1804 
1805 	sc->txq[index] = NULL;
1806 
1807 	SFXGE_TXQ_LOCK_DESTROY(txq);
1808 
1809 	free(txq, M_SFXGE);
1810 }
1811 
1812 static int
1813 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
1814 	       enum sfxge_txq_type type, unsigned int evq_index)
1815 {
1816 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
1817 	char name[16];
1818 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1819 	struct sysctl_oid *txq_node;
1820 	struct sfxge_txq *txq;
1821 	struct sfxge_evq *evq;
1822 	struct sfxge_tx_dpl *stdp;
1823 	struct sysctl_oid *dpl_node;
1824 	efsys_mem_t *esmp;
1825 	unsigned int nmaps;
1826 	int rc;
1827 
1828 	txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
1829 	txq->sc = sc;
1830 	txq->entries = sc->txq_entries;
1831 	txq->ptr_mask = txq->entries - 1;
1832 
1833 	sc->txq[txq_index] = txq;
1834 	esmp = &txq->mem;
1835 
1836 	evq = sc->evq[evq_index];
1837 
1838 	/* Allocate and zero DMA space for the descriptor ring. */
1839 	if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0)
1840 		return (rc);
1841 
1842 	/* Allocate buffer table entries. */
1843 	sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries),
1844 				 &txq->buf_base_id);
1845 
1846 	/* Create a DMA tag for packet mappings. */
1847 	if (bus_dma_tag_create(sc->parent_dma_tag, 1,
1848 	    encp->enc_tx_dma_desc_boundary,
1849 	    MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
1850 	    NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG,
1851 	    encp->enc_tx_dma_desc_size_max, 0, NULL, NULL,
1852 	    &txq->packet_dma_tag) != 0) {
1853 		device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
1854 		rc = ENOMEM;
1855 		goto fail;
1856 	}
1857 
1858 	/* Allocate pending descriptor array for batching writes. */
1859 	txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries,
1860 				M_SFXGE, M_ZERO | M_WAITOK);
1861 
1862 	/* Allocate and initialise mbuf DMA mapping array. */
1863 	txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries,
1864 	    M_SFXGE, M_ZERO | M_WAITOK);
1865 	for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) {
1866 		rc = bus_dmamap_create(txq->packet_dma_tag, 0,
1867 				       &txq->stmp[nmaps].map);
1868 		if (rc != 0)
1869 			goto fail2;
1870 	}
1871 
1872 	snprintf(name, sizeof(name), "%u", txq_index);
1873 	txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node),
1874 	    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
1875 	if (txq_node == NULL) {
1876 		rc = ENOMEM;
1877 		goto fail_txq_node;
1878 	}
1879 
1880 	if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
1881 	    (rc = tso_init(txq)) != 0)
1882 		goto fail3;
1883 
1884 	/* Initialize the deferred packet list. */
1885 	stdp = &txq->dpl;
1886 	stdp->std_put_max = sfxge_tx_dpl_put_max;
1887 	stdp->std_get_max = sfxge_tx_dpl_get_max;
1888 	stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max;
1889 	stdp->std_getp = &stdp->std_get;
1890 
1891 	SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index);
1892 
1893 	dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1894 	    "dpl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
1895 	    "Deferred packet list statistics");
1896 	if (dpl_node == NULL) {
1897 		rc = ENOMEM;
1898 		goto fail_dpl_node;
1899 	}
1900 
1901 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1902 			"get_count", CTLFLAG_RD | CTLFLAG_STATS,
1903 			&stdp->std_get_count, 0, "");
1904 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1905 			"get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS,
1906 			&stdp->std_get_non_tcp_count, 0, "");
1907 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1908 			"get_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1909 			&stdp->std_get_hiwat, 0, "");
1910 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1911 			"put_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1912 			&stdp->std_put_hiwat, 0, "");
1913 
1914 	rc = sfxge_txq_stat_init(txq, txq_node);
1915 	if (rc != 0)
1916 		goto fail_txq_stat_init;
1917 
1918 	txq->type = type;
1919 	txq->evq_index = evq_index;
1920 	txq->init_state = SFXGE_TXQ_INITIALIZED;
1921 
1922 	return (0);
1923 
1924 fail_txq_stat_init:
1925 fail_dpl_node:
1926 fail3:
1927 fail_txq_node:
1928 	free(txq->pend_desc, M_SFXGE);
1929 fail2:
1930 	while (nmaps-- != 0)
1931 		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1932 	free(txq->stmp, M_SFXGE);
1933 	bus_dma_tag_destroy(txq->packet_dma_tag);
1934 
1935 fail:
1936 	sfxge_dma_free(esmp);
1937 
1938 	return (rc);
1939 }
1940 
1941 static int
1942 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
1943 {
1944 	struct sfxge_softc *sc = arg1;
1945 	unsigned int id = arg2;
1946 	unsigned long sum;
1947 	unsigned int index;
1948 
1949 	/* Sum across all TX queues */
1950 	sum = 0;
1951 	for (index = 0; index < sc->txq_count; index++)
1952 		sum += *(unsigned long *)((caddr_t)sc->txq[index] +
1953 					  sfxge_tx_stats[id].offset);
1954 
1955 	return (SYSCTL_OUT(req, &sum, sizeof(sum)));
1956 }
1957 
1958 static void
1959 sfxge_tx_stat_init(struct sfxge_softc *sc)
1960 {
1961 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1962 	struct sysctl_oid_list *stat_list;
1963 	unsigned int id;
1964 
1965 	stat_list = SYSCTL_CHILDREN(sc->stats_node);
1966 
1967 	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1968 		SYSCTL_ADD_PROC(ctx, stat_list, OID_AUTO,
1969 		    sfxge_tx_stats[id].name,
1970 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1971 		    sc, id, sfxge_tx_stat_handler, "LU", "");
1972 	}
1973 }
1974 
1975 uint64_t
1976 sfxge_tx_get_drops(struct sfxge_softc *sc)
1977 {
1978 	unsigned int index;
1979 	uint64_t drops = 0;
1980 	struct sfxge_txq *txq;
1981 
1982 	/* Sum across all TX queues */
1983 	for (index = 0; index < sc->txq_count; index++) {
1984 		txq = sc->txq[index];
1985 		/*
1986 		 * In theory, txq->put_overflow and txq->netdown_drops
1987 		 * should use atomic operation and other should be
1988 		 * obtained under txq lock, but it is just statistics.
1989 		 */
1990 		drops += txq->drops + txq->get_overflow +
1991 			 txq->get_non_tcp_overflow +
1992 			 txq->put_overflow + txq->netdown_drops +
1993 			 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc;
1994 	}
1995 	return (drops);
1996 }
1997 
1998 void
1999 sfxge_tx_fini(struct sfxge_softc *sc)
2000 {
2001 	int index;
2002 
2003 	index = sc->txq_count;
2004 	while (--index >= 0)
2005 		sfxge_tx_qfini(sc, index);
2006 
2007 	sc->txq_count = 0;
2008 }
2009 
2010 
2011 int
2012 sfxge_tx_init(struct sfxge_softc *sc)
2013 {
2014 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
2015 	struct sfxge_intr *intr;
2016 	int index;
2017 	int rc;
2018 
2019 	intr = &sc->intr;
2020 
2021 	KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
2022 	    ("intr->state != SFXGE_INTR_INITIALIZED"));
2023 
2024 	if (sfxge_tx_dpl_get_max <= 0) {
2025 		log(LOG_ERR, "%s=%d must be greater than 0",
2026 		    SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max);
2027 		rc = EINVAL;
2028 		goto fail_tx_dpl_get_max;
2029 	}
2030 	if (sfxge_tx_dpl_get_non_tcp_max <= 0) {
2031 		log(LOG_ERR, "%s=%d must be greater than 0",
2032 		    SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX,
2033 		    sfxge_tx_dpl_get_non_tcp_max);
2034 		rc = EINVAL;
2035 		goto fail_tx_dpl_get_non_tcp_max;
2036 	}
2037 	if (sfxge_tx_dpl_put_max < 0) {
2038 		log(LOG_ERR, "%s=%d must be greater or equal to 0",
2039 		    SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max);
2040 		rc = EINVAL;
2041 		goto fail_tx_dpl_put_max;
2042 	}
2043 
2044 	sc->txq_count = SFXGE_EVQ0_N_TXQ(sc) - 1 + sc->intr.n_alloc;
2045 
2046 	sc->tso_fw_assisted = sfxge_tso_fw_assisted;
2047 	if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) ||
2048 	    (!encp->enc_fw_assisted_tso_enabled))
2049 		sc->tso_fw_assisted &= ~SFXGE_FATSOV1;
2050 	if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) ||
2051 	    (!encp->enc_fw_assisted_tso_v2_enabled))
2052 		sc->tso_fw_assisted &= ~SFXGE_FATSOV2;
2053 
2054 	sc->txqs_node = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev),
2055 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
2056 	    "txq", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx queues");
2057 	if (sc->txqs_node == NULL) {
2058 		rc = ENOMEM;
2059 		goto fail_txq_node;
2060 	}
2061 
2062 	/* Initialize the transmit queues */
2063 	if (sc->txq_dynamic_cksum_toggle_supported == B_FALSE) {
2064 		if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
2065 		    SFXGE_TXQ_NON_CKSUM, 0)) != 0)
2066 			goto fail;
2067 
2068 		if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
2069 		    SFXGE_TXQ_IP_CKSUM, 0)) != 0)
2070 			goto fail2;
2071 	}
2072 
2073 	for (index = 0;
2074 	     index < sc->txq_count - SFXGE_EVQ0_N_TXQ(sc) + 1;
2075 	     index++) {
2076 		if ((rc = sfxge_tx_qinit(sc, SFXGE_EVQ0_N_TXQ(sc) - 1 + index,
2077 		    SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
2078 			goto fail3;
2079 	}
2080 
2081 	sfxge_tx_stat_init(sc);
2082 
2083 	return (0);
2084 
2085 fail3:
2086 	while (--index >= 0)
2087 		sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
2088 
2089 	sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
2090 
2091 fail2:
2092 	sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
2093 
2094 fail:
2095 fail_txq_node:
2096 	sc->txq_count = 0;
2097 fail_tx_dpl_put_max:
2098 fail_tx_dpl_get_non_tcp_max:
2099 fail_tx_dpl_get_max:
2100 	return (rc);
2101 }
2102