xref: /freebsd/sys/dev/sge/if_sge.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
3  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
26  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
33  * OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_vlan_var.h>
74 
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 
80 #include <machine/bus.h>
81 #include <machine/in_cksum.h>
82 
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 
89 #include <dev/sge/if_sgereg.h>
90 
91 MODULE_DEPEND(sge, pci, 1, 1, 1);
92 MODULE_DEPEND(sge, ether, 1, 1, 1);
93 MODULE_DEPEND(sge, miibus, 1, 1, 1);
94 
95 /* "device miibus0" required.  See GENERIC if you get errors here. */
96 #include "miibus_if.h"
97 
98 /*
99  * Various supported device vendors/types and their names.
100  */
101 static struct sge_type sge_devs[] = {
102 	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
103 	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
104 	{ 0, 0, NULL }
105 };
106 
107 static int	sge_probe(device_t);
108 static int	sge_attach(device_t);
109 static int	sge_detach(device_t);
110 static int	sge_shutdown(device_t);
111 static int	sge_suspend(device_t);
112 static int	sge_resume(device_t);
113 
114 static int	sge_miibus_readreg(device_t, int, int);
115 static int	sge_miibus_writereg(device_t, int, int, int);
116 static void	sge_miibus_statchg(device_t);
117 
118 static int	sge_newbuf(struct sge_softc *, int);
119 static int	sge_encap(struct sge_softc *, struct mbuf **);
120 static __inline void
121 		sge_discard_rxbuf(struct sge_softc *, int);
122 static void	sge_rxeof(struct sge_softc *);
123 static void	sge_txeof(struct sge_softc *);
124 static void	sge_intr(void *);
125 static void	sge_tick(void *);
126 static void	sge_start(struct ifnet *);
127 static void	sge_start_locked(struct ifnet *);
128 static int	sge_ioctl(struct ifnet *, u_long, caddr_t);
129 static void	sge_init(void *);
130 static void	sge_init_locked(struct sge_softc *);
131 static void	sge_stop(struct sge_softc *);
132 static void	sge_watchdog(struct sge_softc *);
133 static int	sge_ifmedia_upd(struct ifnet *);
134 static void	sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
135 
136 static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
137 static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
138 static uint16_t	sge_read_eeprom(struct sge_softc *, int);
139 
140 static void	sge_rxfilter(struct sge_softc *);
141 static void	sge_setvlan(struct sge_softc *);
142 static void	sge_reset(struct sge_softc *);
143 static int	sge_list_rx_init(struct sge_softc *);
144 static int	sge_list_rx_free(struct sge_softc *);
145 static int	sge_list_tx_init(struct sge_softc *);
146 static int	sge_list_tx_free(struct sge_softc *);
147 
148 static int	sge_dma_alloc(struct sge_softc *);
149 static void	sge_dma_free(struct sge_softc *);
150 static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
151 
152 static device_method_t sge_methods[] = {
153 	/* Device interface */
154 	DEVMETHOD(device_probe,		sge_probe),
155 	DEVMETHOD(device_attach,	sge_attach),
156 	DEVMETHOD(device_detach,	sge_detach),
157 	DEVMETHOD(device_suspend,	sge_suspend),
158 	DEVMETHOD(device_resume,	sge_resume),
159 	DEVMETHOD(device_shutdown,	sge_shutdown),
160 
161 	/* Bus interface */
162 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
163 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
164 
165 	/* MII interface */
166 	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
167 	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
168 	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
169 
170 	KOBJMETHOD_END
171 };
172 
173 static driver_t sge_driver = {
174 	"sge", sge_methods, sizeof(struct sge_softc)
175 };
176 
177 static devclass_t sge_devclass;
178 
179 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
180 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
181 
182 /*
183  * Register space access macros.
184  */
185 #define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
186 #define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
187 #define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
188 
189 #define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
190 #define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
191 #define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
192 
193 /* Define to show Tx/Rx error status. */
194 #undef SGE_SHOW_ERRORS
195 
196 #define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
197 
198 static void
199 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
200 {
201 	bus_addr_t *p;
202 
203 	if (error != 0)
204 		return;
205 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
206 	p  = arg;
207 	*p = segs->ds_addr;
208 }
209 
210 /*
211  * Read a sequence of words from the EEPROM.
212  */
213 static uint16_t
214 sge_read_eeprom(struct sge_softc *sc, int offset)
215 {
216 	uint32_t val;
217 	int i;
218 
219 	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
220 	CSR_WRITE_4(sc, ROMInterface,
221 	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
222 	DELAY(500);
223 	for (i = 0; i < SGE_TIMEOUT; i++) {
224 		val = CSR_READ_4(sc, ROMInterface);
225 		if ((val & EI_REQ) == 0)
226 			break;
227 		DELAY(100);
228 	}
229 	if (i == SGE_TIMEOUT) {
230 		device_printf(sc->sge_dev,
231 		    "EEPROM read timeout : 0x%08x\n", val);
232 		return (0xffff);
233 	}
234 
235 	return ((val & EI_DATA) >> EI_DATA_SHIFT);
236 }
237 
238 static int
239 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
240 {
241 	uint16_t val;
242 	int i;
243 
244 	val = sge_read_eeprom(sc, EEPROMSignature);
245 	if (val == 0xffff || val == 0) {
246 		device_printf(sc->sge_dev,
247 		    "invalid EEPROM signature : 0x%04x\n", val);
248 		return (EINVAL);
249 	}
250 
251 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
252 		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
253 		dest[i + 0] = (uint8_t)val;
254 		dest[i + 1] = (uint8_t)(val >> 8);
255 	}
256 
257 	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
258 		sc->sge_flags |= SGE_FLAG_RGMII;
259 	return (0);
260 }
261 
262 /*
263  * For SiS96x, APC CMOS RAM is used to store ethernet address.
264  * APC CMOS RAM is accessed through ISA bridge.
265  */
266 static int
267 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
268 {
269 #if defined(__amd64__) || defined(__i386__)
270 	devclass_t pci;
271 	device_t bus, dev = NULL;
272 	device_t *kids;
273 	struct apc_tbl {
274 		uint16_t vid;
275 		uint16_t did;
276 	} *tp, apc_tbls[] = {
277 		{ SIS_VENDORID, 0x0965 },
278 		{ SIS_VENDORID, 0x0966 },
279 		{ SIS_VENDORID, 0x0968 }
280 	};
281 	uint8_t reg;
282 	int busnum, cnt, i, j, numkids;
283 
284 	cnt = sizeof(apc_tbls) / sizeof(apc_tbls[0]);
285 	pci = devclass_find("pci");
286 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
287 		bus = devclass_get_device(pci, busnum);
288 		if (!bus)
289 			continue;
290 		if (device_get_children(bus, &kids, &numkids) != 0)
291 			continue;
292 		for (i = 0; i < numkids; i++) {
293 			dev = kids[i];
294 			if (pci_get_class(dev) == PCIC_BRIDGE &&
295 			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
296 				tp = apc_tbls;
297 				for (j = 0; j < cnt; j++) {
298 					if (pci_get_vendor(dev) == tp->vid &&
299 					    pci_get_device(dev) == tp->did) {
300 						free(kids, M_TEMP);
301 						goto apc_found;
302 					}
303 					tp++;
304 				}
305 			}
306                 }
307 		free(kids, M_TEMP);
308 	}
309 	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
310 	return (EINVAL);
311 apc_found:
312 	/* Enable port 0x78 and 0x79 to access APC registers. */
313 	reg = pci_read_config(dev, 0x48, 1);
314 	pci_write_config(dev, 0x48, reg & ~0x02, 1);
315 	DELAY(50);
316 	pci_read_config(dev, 0x48, 1);
317 	/* Read stored ethernet address. */
318 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
319 		outb(0x78, 0x09 + i);
320 		dest[i] = inb(0x79);
321 	}
322 	outb(0x78, 0x12);
323 	if ((inb(0x79) & 0x80) != 0)
324 		sc->sge_flags |= SGE_FLAG_RGMII;
325 	/* Restore access to APC registers. */
326 	pci_write_config(dev, 0x48, reg, 1);
327 
328 	return (0);
329 #else
330 	return (EINVAL);
331 #endif
332 }
333 
334 static int
335 sge_miibus_readreg(device_t dev, int phy, int reg)
336 {
337 	struct sge_softc *sc;
338 	uint32_t val;
339 	int i;
340 
341 	sc = device_get_softc(dev);
342 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
343 	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
344 	DELAY(10);
345 	for (i = 0; i < SGE_TIMEOUT; i++) {
346 		val = CSR_READ_4(sc, GMIIControl);
347 		if ((val & GMI_REQ) == 0)
348 			break;
349 		DELAY(10);
350 	}
351 	if (i == SGE_TIMEOUT) {
352 		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
353 		return (0);
354 	}
355 	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
356 }
357 
358 static int
359 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
360 {
361 	struct sge_softc *sc;
362 	uint32_t val;
363 	int i;
364 
365 	sc = device_get_softc(dev);
366 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
367 	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
368 	    GMI_OP_WR | GMI_REQ);
369 	DELAY(10);
370 	for (i = 0; i < SGE_TIMEOUT; i++) {
371 		val = CSR_READ_4(sc, GMIIControl);
372 		if ((val & GMI_REQ) == 0)
373 			break;
374 		DELAY(10);
375 	}
376 	if (i == SGE_TIMEOUT)
377 		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
378 	return (0);
379 }
380 
381 static void
382 sge_miibus_statchg(device_t dev)
383 {
384 	struct sge_softc *sc;
385 	struct mii_data *mii;
386 	struct ifnet *ifp;
387 	uint32_t ctl, speed;
388 
389 	sc = device_get_softc(dev);
390 	mii = device_get_softc(sc->sge_miibus);
391 	ifp = sc->sge_ifp;
392 	if (mii == NULL || ifp == NULL ||
393 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
394 		return;
395 	speed = 0;
396 	sc->sge_flags &= ~SGE_FLAG_LINK;
397 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
398 	    (IFM_ACTIVE | IFM_AVALID)) {
399 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
400 		case IFM_10_T:
401 			sc->sge_flags |= SGE_FLAG_LINK;
402 			speed = SC_SPEED_10;
403 			break;
404 		case IFM_100_TX:
405 			sc->sge_flags |= SGE_FLAG_LINK;
406 			speed = SC_SPEED_100;
407 			break;
408 		case IFM_1000_T:
409 			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
410 				sc->sge_flags |= SGE_FLAG_LINK;
411 				speed = SC_SPEED_1000;
412 			}
413 			break;
414 		default:
415 			break;
416                 }
417         }
418 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
419 		return;
420 	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
421 	ctl = CSR_READ_4(sc, StationControl);
422 	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
423 	if (speed == SC_SPEED_1000) {
424 		ctl |= 0x07000000;
425 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
426 	} else {
427 		ctl |= 0x04000000;
428 		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
429 	}
430 #ifdef notyet
431 	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
432 		ctl |= 0x03000000;
433 #endif
434 	ctl |= speed;
435 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
436 		ctl |= SC_FDX;
437 		sc->sge_flags |= SGE_FLAG_FDX;
438 	} else
439 		sc->sge_flags &= ~SGE_FLAG_FDX;
440 	CSR_WRITE_4(sc, StationControl, ctl);
441 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
442 		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
443 		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
444 	}
445 }
446 
447 static void
448 sge_rxfilter(struct sge_softc *sc)
449 {
450 	struct ifnet *ifp;
451 	struct ifmultiaddr *ifma;
452 	uint32_t crc, hashes[2];
453 	uint16_t rxfilt;
454 
455 	SGE_LOCK_ASSERT(sc);
456 
457 	ifp = sc->sge_ifp;
458 	rxfilt = CSR_READ_2(sc, RxMacControl);
459 	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
460 	rxfilt |= AcceptMyPhys;
461 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
462 		rxfilt |= AcceptBroadcast;
463 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
464 		if ((ifp->if_flags & IFF_PROMISC) != 0)
465 			rxfilt |= AcceptAllPhys;
466 		rxfilt |= AcceptMulticast;
467 		hashes[0] = 0xFFFFFFFF;
468 		hashes[1] = 0xFFFFFFFF;
469 	} else {
470 		rxfilt |= AcceptMulticast;
471 		hashes[0] = hashes[1] = 0;
472 		/* Now program new ones. */
473 		if_maddr_rlock(ifp);
474 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
475 			if (ifma->ifma_addr->sa_family != AF_LINK)
476 				continue;
477 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
478 			    ifma->ifma_addr), ETHER_ADDR_LEN);
479 			hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
480 		}
481 		if_maddr_runlock(ifp);
482 	}
483 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
484 	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
485 	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
486 }
487 
488 static void
489 sge_setvlan(struct sge_softc *sc)
490 {
491 	struct ifnet *ifp;
492 	uint16_t rxfilt;
493 
494 	SGE_LOCK_ASSERT(sc);
495 
496 	ifp = sc->sge_ifp;
497 	if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
498 		return;
499 	rxfilt = CSR_READ_2(sc, RxMacControl);
500 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
501 		rxfilt |= RXMAC_STRIP_VLAN;
502 	else
503 		rxfilt &= ~RXMAC_STRIP_VLAN;
504 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
505 }
506 
507 static void
508 sge_reset(struct sge_softc *sc)
509 {
510 
511 	CSR_WRITE_4(sc, IntrMask, 0);
512 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
513 
514 	/* Soft reset. */
515 	CSR_WRITE_4(sc, IntrControl, 0x8000);
516 	CSR_READ_4(sc, IntrControl);
517 	DELAY(100);
518 	CSR_WRITE_4(sc, IntrControl, 0);
519 	/* Stop MAC. */
520 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
521 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
522 
523 	CSR_WRITE_4(sc, IntrMask, 0);
524 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
525 
526 	CSR_WRITE_4(sc, GMIIControl, 0);
527 }
528 
529 /*
530  * Probe for an SiS chip. Check the PCI vendor and device
531  * IDs against our list and return a device name if we find a match.
532  */
533 static int
534 sge_probe(device_t dev)
535 {
536 	struct sge_type *t;
537 
538 	t = sge_devs;
539 	while (t->sge_name != NULL) {
540 		if ((pci_get_vendor(dev) == t->sge_vid) &&
541 		    (pci_get_device(dev) == t->sge_did)) {
542 			device_set_desc(dev, t->sge_name);
543 			return (BUS_PROBE_DEFAULT);
544 		}
545 		t++;
546 	}
547 
548 	return (ENXIO);
549 }
550 
551 /*
552  * Attach the interface.  Allocate softc structures, do ifmedia
553  * setup and ethernet/BPF attach.
554  */
555 static int
556 sge_attach(device_t dev)
557 {
558 	struct sge_softc *sc;
559 	struct ifnet *ifp;
560 	uint8_t eaddr[ETHER_ADDR_LEN];
561 	int error = 0, rid;
562 
563 	sc = device_get_softc(dev);
564 	sc->sge_dev = dev;
565 
566 	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
567 	    MTX_DEF);
568         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
569 
570 	/*
571 	 * Map control/status registers.
572 	 */
573 	pci_enable_busmaster(dev);
574 
575 	/* Allocate resources. */
576 	sc->sge_res_id = PCIR_BAR(0);
577 	sc->sge_res_type = SYS_RES_MEMORY;
578 	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
579 	    &sc->sge_res_id, RF_ACTIVE);
580 	if (sc->sge_res == NULL) {
581 		device_printf(dev, "couldn't allocate resource\n");
582 		error = ENXIO;
583 		goto fail;
584 	}
585 
586 	rid = 0;
587 	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
588 	    RF_SHAREABLE | RF_ACTIVE);
589 	if (sc->sge_irq == NULL) {
590 		device_printf(dev, "couldn't allocate IRQ resources\n");
591 		error = ENXIO;
592 		goto fail;
593 	}
594 	sc->sge_rev = pci_get_revid(dev);
595 	if (pci_get_device(dev) == SIS_DEVICEID_190)
596 		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
597 	/* Reset the adapter. */
598 	sge_reset(sc);
599 
600 	/* Get MAC address from the EEPROM. */
601 	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
602 		sge_get_mac_addr_apc(sc, eaddr);
603 	else
604 		sge_get_mac_addr_eeprom(sc, eaddr);
605 
606 	if ((error = sge_dma_alloc(sc)) != 0)
607 		goto fail;
608 
609 	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
610 	if (ifp == NULL) {
611 		device_printf(dev, "cannot allocate ifnet structure.\n");
612 		error = ENOSPC;
613 		goto fail;
614 	}
615 	ifp->if_softc = sc;
616 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
617 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618 	ifp->if_ioctl = sge_ioctl;
619 	ifp->if_start = sge_start;
620 	ifp->if_init = sge_init;
621 	ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
622 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
623 	IFQ_SET_READY(&ifp->if_snd);
624 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
625 	ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
626 	ifp->if_capenable = ifp->if_capabilities;
627 	/*
628 	 * Do MII setup.
629 	 */
630 	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
631 	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
632 	if (error != 0) {
633 		device_printf(dev, "attaching PHYs failed\n");
634 		goto fail;
635 	}
636 
637 	/*
638 	 * Call MI attach routine.
639 	 */
640 	ether_ifattach(ifp, eaddr);
641 
642 	/* VLAN setup. */
643 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
644 	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
645 	ifp->if_capenable = ifp->if_capabilities;
646 	/* Tell the upper layer(s) we support long frames. */
647 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
648 
649 	/* Hook interrupt last to avoid having to lock softc */
650 	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
651 	    NULL, sge_intr, sc, &sc->sge_intrhand);
652 	if (error) {
653 		device_printf(dev, "couldn't set up irq\n");
654 		ether_ifdetach(ifp);
655 		goto fail;
656 	}
657 
658 fail:
659 	if (error)
660 		sge_detach(dev);
661 
662 	return (error);
663 }
664 
665 /*
666  * Shutdown hardware and free up resources.  This can be called any
667  * time after the mutex has been initialized.  It is called in both
668  * the error case in attach and the normal detach case so it needs
669  * to be careful about only freeing resources that have actually been
670  * allocated.
671  */
672 static int
673 sge_detach(device_t dev)
674 {
675 	struct sge_softc *sc;
676 	struct ifnet *ifp;
677 
678 	sc = device_get_softc(dev);
679 	ifp = sc->sge_ifp;
680 	/* These should only be active if attach succeeded. */
681 	if (device_is_attached(dev)) {
682 		ether_ifdetach(ifp);
683 		SGE_LOCK(sc);
684 		sge_stop(sc);
685 		SGE_UNLOCK(sc);
686 		callout_drain(&sc->sge_stat_ch);
687 	}
688 	if (sc->sge_miibus)
689 		device_delete_child(dev, sc->sge_miibus);
690 	bus_generic_detach(dev);
691 
692 	if (sc->sge_intrhand)
693 		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
694 	if (sc->sge_irq)
695 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
696 	if (sc->sge_res)
697 		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
698 		    sc->sge_res);
699 	if (ifp)
700 		if_free(ifp);
701 	sge_dma_free(sc);
702 	mtx_destroy(&sc->sge_mtx);
703 
704 	return (0);
705 }
706 
707 /*
708  * Stop all chip I/O so that the kernel's probe routines don't
709  * get confused by errant DMAs when rebooting.
710  */
711 static int
712 sge_shutdown(device_t dev)
713 {
714 	struct sge_softc *sc;
715 
716 	sc = device_get_softc(dev);
717 	SGE_LOCK(sc);
718 	sge_stop(sc);
719 	SGE_UNLOCK(sc);
720 	return (0);
721 }
722 
723 static int
724 sge_suspend(device_t dev)
725 {
726 	struct sge_softc *sc;
727 	struct ifnet *ifp;
728 
729 	sc = device_get_softc(dev);
730 	SGE_LOCK(sc);
731 	ifp = sc->sge_ifp;
732 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
733 		sge_stop(sc);
734 	SGE_UNLOCK(sc);
735 	return (0);
736 }
737 
738 static int
739 sge_resume(device_t dev)
740 {
741 	struct sge_softc *sc;
742 	struct ifnet *ifp;
743 
744 	sc = device_get_softc(dev);
745 	SGE_LOCK(sc);
746 	ifp = sc->sge_ifp;
747 	if ((ifp->if_flags & IFF_UP) != 0)
748 		sge_init_locked(sc);
749 	SGE_UNLOCK(sc);
750 	return (0);
751 }
752 
753 static int
754 sge_dma_alloc(struct sge_softc *sc)
755 {
756 	struct sge_chain_data *cd;
757 	struct sge_list_data *ld;
758 	struct sge_rxdesc *rxd;
759 	struct sge_txdesc *txd;
760 	int error, i;
761 
762 	cd = &sc->sge_cdata;
763 	ld = &sc->sge_ldata;
764 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
765 	    1, 0,			/* alignment, boundary */
766 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
767 	    BUS_SPACE_MAXADDR,		/* highaddr */
768 	    NULL, NULL,			/* filter, filterarg */
769 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
770 	    1,				/* nsegments */
771 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
772 	    0,				/* flags */
773 	    NULL,			/* lockfunc */
774 	    NULL,			/* lockarg */
775 	    &cd->sge_tag);
776 	if (error != 0) {
777 		device_printf(sc->sge_dev,
778 		    "could not create parent DMA tag.\n");
779 		goto fail;
780 	}
781 
782 	/* RX descriptor ring */
783 	error = bus_dma_tag_create(cd->sge_tag,
784 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
785 	    BUS_SPACE_MAXADDR,		/* lowaddr */
786 	    BUS_SPACE_MAXADDR,		/* highaddr */
787 	    NULL, NULL,			/* filter, filterarg */
788 	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
789 	    SGE_RX_RING_SZ,		/* maxsegsize */
790 	    0,				/* flags */
791 	    NULL,			/* lockfunc */
792 	    NULL,			/* lockarg */
793 	    &cd->sge_rx_tag);
794 	if (error != 0) {
795 		device_printf(sc->sge_dev,
796 		    "could not create Rx ring DMA tag.\n");
797 		goto fail;
798 	}
799 	/* Allocate DMA'able memory and load DMA map for RX ring. */
800 	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
801 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
802 	    &cd->sge_rx_dmamap);
803 	if (error != 0) {
804 		device_printf(sc->sge_dev,
805 		    "could not allocate DMA'able memory for Rx ring.\n");
806 		goto fail;
807 	}
808 	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
809 	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
810 	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
811 	if (error != 0) {
812 		device_printf(sc->sge_dev,
813 		    "could not load DMA'able memory for Rx ring.\n");
814 	}
815 
816 	/* TX descriptor ring */
817 	error = bus_dma_tag_create(cd->sge_tag,
818 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
819 	    BUS_SPACE_MAXADDR,		/* lowaddr */
820 	    BUS_SPACE_MAXADDR,		/* highaddr */
821 	    NULL, NULL,			/* filter, filterarg */
822 	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
823 	    SGE_TX_RING_SZ,		/* maxsegsize */
824 	    0,				/* flags */
825 	    NULL,			/* lockfunc */
826 	    NULL,			/* lockarg */
827 	    &cd->sge_tx_tag);
828 	if (error != 0) {
829 		device_printf(sc->sge_dev,
830 		    "could not create Rx ring DMA tag.\n");
831 		goto fail;
832 	}
833 	/* Allocate DMA'able memory and load DMA map for TX ring. */
834 	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
835 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
836 	    &cd->sge_tx_dmamap);
837 	if (error != 0) {
838 		device_printf(sc->sge_dev,
839 		    "could not allocate DMA'able memory for Tx ring.\n");
840 		goto fail;
841 	}
842 	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
843 	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
844 	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
845 	if (error != 0) {
846 		device_printf(sc->sge_dev,
847 		    "could not load DMA'able memory for Rx ring.\n");
848 		goto fail;
849 	}
850 
851 	/* Create DMA tag for Tx buffers. */
852 	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
853 	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
854 	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
855 	if (error != 0) {
856 		device_printf(sc->sge_dev,
857 		    "could not create Tx mbuf DMA tag.\n");
858 		goto fail;
859 	}
860 
861 	/* Create DMA tag for Rx buffers. */
862 	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
863 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
864 	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
865 	if (error != 0) {
866 		device_printf(sc->sge_dev,
867 		    "could not create Rx mbuf DMA tag.\n");
868 		goto fail;
869 	}
870 
871 	/* Create DMA maps for Tx buffers. */
872 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
873 		txd = &cd->sge_txdesc[i];
874 		txd->tx_m = NULL;
875 		txd->tx_dmamap = NULL;
876 		txd->tx_ndesc = 0;
877 		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
878 		    &txd->tx_dmamap);
879 		if (error != 0) {
880 			device_printf(sc->sge_dev,
881 			    "could not create Tx DMA map.\n");
882 			goto fail;
883 		}
884 	}
885 	/* Create spare DMA map for Rx buffer. */
886 	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
887 	if (error != 0) {
888 		device_printf(sc->sge_dev,
889 		    "could not create spare Rx DMA map.\n");
890 		goto fail;
891 	}
892 	/* Create DMA maps for Rx buffers. */
893 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
894 		rxd = &cd->sge_rxdesc[i];
895 		rxd->rx_m = NULL;
896 		rxd->rx_dmamap = NULL;
897 		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
898 		    &rxd->rx_dmamap);
899 		if (error) {
900 			device_printf(sc->sge_dev,
901 			    "could not create Rx DMA map.\n");
902 			goto fail;
903 		}
904 	}
905 fail:
906 	return (error);
907 }
908 
909 static void
910 sge_dma_free(struct sge_softc *sc)
911 {
912 	struct sge_chain_data *cd;
913 	struct sge_list_data *ld;
914 	struct sge_rxdesc *rxd;
915 	struct sge_txdesc *txd;
916 	int i;
917 
918 	cd = &sc->sge_cdata;
919 	ld = &sc->sge_ldata;
920 	/* Rx ring. */
921 	if (cd->sge_rx_tag != NULL) {
922 		if (cd->sge_rx_dmamap != NULL)
923 			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
924 		if (cd->sge_rx_dmamap != NULL && ld->sge_rx_ring != NULL)
925 			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
926 			    cd->sge_rx_dmamap);
927 		ld->sge_rx_ring = NULL;
928 		cd->sge_rx_dmamap = NULL;
929 		bus_dma_tag_destroy(cd->sge_rx_tag);
930 		cd->sge_rx_tag = NULL;
931 	}
932 	/* Tx ring. */
933 	if (cd->sge_tx_tag != NULL) {
934 		if (cd->sge_tx_dmamap != NULL)
935 			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
936 		if (cd->sge_tx_dmamap != NULL && ld->sge_tx_ring != NULL)
937 			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
938 			    cd->sge_tx_dmamap);
939 		ld->sge_tx_ring = NULL;
940 		cd->sge_tx_dmamap = NULL;
941 		bus_dma_tag_destroy(cd->sge_tx_tag);
942 		cd->sge_tx_tag = NULL;
943 	}
944 	/* Rx buffers. */
945 	if (cd->sge_rxmbuf_tag != NULL) {
946 		for (i = 0; i < SGE_RX_RING_CNT; i++) {
947 			rxd = &cd->sge_rxdesc[i];
948 			if (rxd->rx_dmamap != NULL) {
949 				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
950 				    rxd->rx_dmamap);
951 				rxd->rx_dmamap = NULL;
952 			}
953 		}
954 		if (cd->sge_rx_spare_map != NULL) {
955 			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
956 			    cd->sge_rx_spare_map);
957 			cd->sge_rx_spare_map = NULL;
958 		}
959 		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
960 		cd->sge_rxmbuf_tag = NULL;
961 	}
962 	/* Tx buffers. */
963 	if (cd->sge_txmbuf_tag != NULL) {
964 		for (i = 0; i < SGE_TX_RING_CNT; i++) {
965 			txd = &cd->sge_txdesc[i];
966 			if (txd->tx_dmamap != NULL) {
967 				bus_dmamap_destroy(cd->sge_txmbuf_tag,
968 				    txd->tx_dmamap);
969 				txd->tx_dmamap = NULL;
970 			}
971 		}
972 		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
973 		cd->sge_txmbuf_tag = NULL;
974 	}
975 	if (cd->sge_tag != NULL)
976 		bus_dma_tag_destroy(cd->sge_tag);
977 	cd->sge_tag = NULL;
978 }
979 
980 /*
981  * Initialize the TX descriptors.
982  */
983 static int
984 sge_list_tx_init(struct sge_softc *sc)
985 {
986 	struct sge_list_data *ld;
987 	struct sge_chain_data *cd;
988 
989 	SGE_LOCK_ASSERT(sc);
990 	ld = &sc->sge_ldata;
991 	cd = &sc->sge_cdata;
992 	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
993 	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
994 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
995 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
996 	cd->sge_tx_prod = 0;
997 	cd->sge_tx_cons = 0;
998 	cd->sge_tx_cnt = 0;
999 	return (0);
1000 }
1001 
1002 static int
1003 sge_list_tx_free(struct sge_softc *sc)
1004 {
1005 	struct sge_chain_data *cd;
1006 	struct sge_txdesc *txd;
1007 	int i;
1008 
1009 	SGE_LOCK_ASSERT(sc);
1010 	cd = &sc->sge_cdata;
1011 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1012 		txd = &cd->sge_txdesc[i];
1013 		if (txd->tx_m != NULL) {
1014 			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1015 			    BUS_DMASYNC_POSTWRITE);
1016 			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1017 			m_freem(txd->tx_m);
1018 			txd->tx_m = NULL;
1019 			txd->tx_ndesc = 0;
1020 		}
1021 	}
1022 
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1028  * we arrange the descriptors in a closed ring, so that the last descriptor
1029  * has RING_END flag set.
1030  */
1031 static int
1032 sge_list_rx_init(struct sge_softc *sc)
1033 {
1034 	struct sge_chain_data *cd;
1035 	int i;
1036 
1037 	SGE_LOCK_ASSERT(sc);
1038 	cd = &sc->sge_cdata;
1039 	cd->sge_rx_cons = 0;
1040 	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1041 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1042 		if (sge_newbuf(sc, i) != 0)
1043 			return (ENOBUFS);
1044 	}
1045 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1046 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1047 	return (0);
1048 }
1049 
1050 static int
1051 sge_list_rx_free(struct sge_softc *sc)
1052 {
1053 	struct sge_chain_data *cd;
1054 	struct sge_rxdesc *rxd;
1055 	int i;
1056 
1057 	SGE_LOCK_ASSERT(sc);
1058 	cd = &sc->sge_cdata;
1059 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1060 		rxd = &cd->sge_rxdesc[i];
1061 		if (rxd->rx_m != NULL) {
1062 			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1063 			    BUS_DMASYNC_POSTREAD);
1064 			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1065 			    rxd->rx_dmamap);
1066 			m_freem(rxd->rx_m);
1067 			rxd->rx_m = NULL;
1068 		}
1069 	}
1070 	return (0);
1071 }
1072 
1073 /*
1074  * Initialize an RX descriptor and attach an MBUF cluster.
1075  */
1076 static int
1077 sge_newbuf(struct sge_softc *sc, int prod)
1078 {
1079 	struct mbuf *m;
1080 	struct sge_desc *desc;
1081 	struct sge_chain_data *cd;
1082 	struct sge_rxdesc *rxd;
1083 	bus_dma_segment_t segs[1];
1084 	bus_dmamap_t map;
1085 	int error, nsegs;
1086 
1087 	SGE_LOCK_ASSERT(sc);
1088 
1089 	cd = &sc->sge_cdata;
1090 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1091 	if (m == NULL)
1092 		return (ENOBUFS);
1093 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1094 	m_adj(m, SGE_RX_BUF_ALIGN);
1095 	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1096 	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1097 	if (error != 0) {
1098 		m_freem(m);
1099 		return (error);
1100 	}
1101 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1102 	rxd = &cd->sge_rxdesc[prod];
1103 	if (rxd->rx_m != NULL) {
1104 		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1105 		    BUS_DMASYNC_POSTREAD);
1106 		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1107 	}
1108 	map = rxd->rx_dmamap;
1109 	rxd->rx_dmamap = cd->sge_rx_spare_map;
1110 	cd->sge_rx_spare_map = map;
1111 	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1112 	    BUS_DMASYNC_PREREAD);
1113 	rxd->rx_m = m;
1114 
1115 	desc = &sc->sge_ldata.sge_rx_ring[prod];
1116 	desc->sge_sts_size = 0;
1117 	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1118 	desc->sge_flags = htole32(segs[0].ds_len);
1119 	if (prod == SGE_RX_RING_CNT - 1)
1120 		desc->sge_flags |= htole32(RING_END);
1121 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1122 	return (0);
1123 }
1124 
1125 static __inline void
1126 sge_discard_rxbuf(struct sge_softc *sc, int index)
1127 {
1128 	struct sge_desc *desc;
1129 
1130 	desc = &sc->sge_ldata.sge_rx_ring[index];
1131 	desc->sge_sts_size = 0;
1132 	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1133 	if (index == SGE_RX_RING_CNT - 1)
1134 		desc->sge_flags |= htole32(RING_END);
1135 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1136 }
1137 
1138 /*
1139  * A frame has been uploaded: pass the resulting mbuf chain up to
1140  * the higher level protocols.
1141  */
1142 static void
1143 sge_rxeof(struct sge_softc *sc)
1144 {
1145         struct ifnet *ifp;
1146         struct mbuf *m;
1147 	struct sge_chain_data *cd;
1148 	struct sge_desc	*cur_rx;
1149 	uint32_t rxinfo, rxstat;
1150 	int cons, prog;
1151 
1152 	SGE_LOCK_ASSERT(sc);
1153 
1154 	ifp = sc->sge_ifp;
1155 	cd = &sc->sge_cdata;
1156 
1157 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1158 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1159 	cons = cd->sge_rx_cons;
1160 	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1161 	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1162 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1163 			break;
1164 		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1165 		rxinfo = le32toh(cur_rx->sge_cmdsts);
1166 		if ((rxinfo & RDC_OWN) != 0)
1167 			break;
1168 		rxstat = le32toh(cur_rx->sge_sts_size);
1169 		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1170 		    SGE_RX_NSEGS(rxstat) != 1) {
1171 			/* XXX We don't support multi-segment frames yet. */
1172 #ifdef SGE_SHOW_ERRORS
1173 			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1174 			    RX_ERR_BITS);
1175 #endif
1176 			sge_discard_rxbuf(sc, cons);
1177 			ifp->if_ierrors++;
1178 			continue;
1179 		}
1180 		m = cd->sge_rxdesc[cons].rx_m;
1181 		if (sge_newbuf(sc, cons) != 0) {
1182 			sge_discard_rxbuf(sc, cons);
1183 			ifp->if_iqdrops++;
1184 			continue;
1185 		}
1186 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1187 			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1188 			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1189 				m->m_pkthdr.csum_flags |=
1190 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1191 			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1192 			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1193 			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1194 			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1195 				m->m_pkthdr.csum_flags |=
1196 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1197 				m->m_pkthdr.csum_data = 0xffff;
1198 			}
1199 		}
1200 		/* Check for VLAN tagged frame. */
1201 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1202 		    (rxstat & RDS_VLAN) != 0) {
1203 			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1204 			m->m_flags |= M_VLANTAG;
1205 		}
1206 		/*
1207 		 * Account for 10bytes auto padding which is used
1208 		 * to align IP header on 32bit boundary.  Also note,
1209 		 * CRC bytes is automatically removed by the
1210 		 * hardware.
1211 		 */
1212 		m->m_data += SGE_RX_PAD_BYTES;
1213 		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1214 		    SGE_RX_PAD_BYTES;
1215 		m->m_pkthdr.rcvif = ifp;
1216 		ifp->if_ipackets++;
1217 		SGE_UNLOCK(sc);
1218 		(*ifp->if_input)(ifp, m);
1219 		SGE_LOCK(sc);
1220 	}
1221 
1222 	if (prog > 0) {
1223 		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1224 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1225 		cd->sge_rx_cons = cons;
1226 	}
1227 }
1228 
1229 /*
1230  * A frame was downloaded to the chip.  It's safe for us to clean up
1231  * the list buffers.
1232  */
1233 static void
1234 sge_txeof(struct sge_softc *sc)
1235 {
1236 	struct ifnet *ifp;
1237 	struct sge_list_data *ld;
1238 	struct sge_chain_data *cd;
1239 	struct sge_txdesc *txd;
1240 	uint32_t txstat;
1241 	int cons, nsegs, prod;
1242 
1243 	SGE_LOCK_ASSERT(sc);
1244 
1245 	ifp = sc->sge_ifp;
1246 	ld = &sc->sge_ldata;
1247 	cd = &sc->sge_cdata;
1248 
1249 	if (cd->sge_tx_cnt == 0)
1250 		return;
1251 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1252 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1253 	cons = cd->sge_tx_cons;
1254 	prod = cd->sge_tx_prod;
1255 	for (; cons != prod;) {
1256 		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1257 		if ((txstat & TDC_OWN) != 0)
1258 			break;
1259 		/*
1260 		 * Only the first descriptor of multi-descriptor transmission
1261 		 * is updated by controller.  Driver should skip entire
1262 		 * chained buffers for the transmitted frame. In other words
1263 		 * TDC_OWN bit is valid only at the first descriptor of a
1264 		 * multi-descriptor transmission.
1265 		 */
1266 		if (SGE_TX_ERROR(txstat) != 0) {
1267 #ifdef SGE_SHOW_ERRORS
1268 			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1269 			    txstat, TX_ERR_BITS);
1270 #endif
1271 			ifp->if_oerrors++;
1272 		} else {
1273 #ifdef notyet
1274 			ifp->if_collisions += (txstat & 0xFFFF) - 1;
1275 #endif
1276 			ifp->if_opackets++;
1277 		}
1278 		txd = &cd->sge_txdesc[cons];
1279 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1280 			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1281 			SGE_INC(cons, SGE_TX_RING_CNT);
1282 		}
1283 		/* Reclaim transmitted mbuf. */
1284 		KASSERT(txd->tx_m != NULL,
1285 		    ("%s: freeing NULL mbuf\n", __func__));
1286 		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1287 		    BUS_DMASYNC_POSTWRITE);
1288 		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1289 		m_freem(txd->tx_m);
1290 		txd->tx_m = NULL;
1291 		cd->sge_tx_cnt -= txd->tx_ndesc;
1292 		KASSERT(cd->sge_tx_cnt >= 0,
1293 		    ("%s: Active Tx desc counter was garbled\n", __func__));
1294 		txd->tx_ndesc = 0;
1295 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1296 	}
1297 	cd->sge_tx_cons = cons;
1298 	if (cd->sge_tx_cnt == 0)
1299 		sc->sge_timer = 0;
1300 }
1301 
1302 static void
1303 sge_tick(void *arg)
1304 {
1305 	struct sge_softc *sc;
1306 	struct mii_data *mii;
1307 	struct ifnet *ifp;
1308 
1309 	sc = arg;
1310 	SGE_LOCK_ASSERT(sc);
1311 
1312 	ifp = sc->sge_ifp;
1313 	mii = device_get_softc(sc->sge_miibus);
1314 	mii_tick(mii);
1315 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1316 		sge_miibus_statchg(sc->sge_dev);
1317 		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1318 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1319 			sge_start_locked(ifp);
1320 	}
1321 	/*
1322 	 * Reclaim transmitted frames here as we do not request
1323 	 * Tx completion interrupt for every queued frames to
1324 	 * reduce excessive interrupts.
1325 	 */
1326 	sge_txeof(sc);
1327 	sge_watchdog(sc);
1328 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1329 }
1330 
1331 static void
1332 sge_intr(void *arg)
1333 {
1334 	struct sge_softc *sc;
1335 	struct ifnet *ifp;
1336 	uint32_t status;
1337 
1338 	sc = arg;
1339 	SGE_LOCK(sc);
1340 	ifp = sc->sge_ifp;
1341 
1342 	status = CSR_READ_4(sc, IntrStatus);
1343 	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1344 		/* Not ours. */
1345 		SGE_UNLOCK(sc);
1346 		return;
1347 	}
1348 	/* Acknowledge interrupts. */
1349 	CSR_WRITE_4(sc, IntrStatus, status);
1350 	/* Disable further interrupts. */
1351 	CSR_WRITE_4(sc, IntrMask, 0);
1352 	/*
1353 	 * It seems the controller supports some kind of interrupt
1354 	 * moderation mechanism but we still don't know how to
1355 	 * enable that.  To reduce number of generated interrupts
1356 	 * under load we check pending interrupts in a loop.  This
1357 	 * will increase number of register access and is not correct
1358 	 * way to handle interrupt moderation but there seems to be
1359 	 * no other way at this time.
1360 	 */
1361 	for (;;) {
1362 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1363 			break;
1364 		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1365 			sge_rxeof(sc);
1366 			/* Wakeup Rx MAC. */
1367 			if ((status & INTR_RX_IDLE) != 0)
1368 				CSR_WRITE_4(sc, RX_CTL,
1369 				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1370 		}
1371 		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1372 			sge_txeof(sc);
1373 		status = CSR_READ_4(sc, IntrStatus);
1374 		if ((status & SGE_INTRS) == 0)
1375 			break;
1376 		/* Acknowledge interrupts. */
1377 		CSR_WRITE_4(sc, IntrStatus, status);
1378 	}
1379 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1380 		/* Re-enable interrupts */
1381 		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1382 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1383 			sge_start_locked(ifp);
1384 	}
1385 	SGE_UNLOCK(sc);
1386 }
1387 
1388 /*
1389  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1390  * pointers to the fragment pointers.
1391  */
1392 static int
1393 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1394 {
1395 	struct mbuf *m;
1396 	struct sge_desc *desc;
1397 	struct sge_txdesc *txd;
1398 	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1399 	uint32_t cflags, mss;
1400 	int error, i, nsegs, prod, si;
1401 
1402 	SGE_LOCK_ASSERT(sc);
1403 
1404 	si = prod = sc->sge_cdata.sge_tx_prod;
1405 	txd = &sc->sge_cdata.sge_txdesc[prod];
1406 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1407 		struct ether_header *eh;
1408 		struct ip *ip;
1409 		struct tcphdr *tcp;
1410 		uint32_t ip_off, poff;
1411 
1412 		if (M_WRITABLE(*m_head) == 0) {
1413 			/* Get a writable copy. */
1414 			m = m_dup(*m_head, M_DONTWAIT);
1415 			m_freem(*m_head);
1416 			if (m == NULL) {
1417 				*m_head = NULL;
1418 				return (ENOBUFS);
1419 			}
1420 			*m_head = m;
1421 		}
1422 		ip_off = sizeof(struct ether_header);
1423 		m = m_pullup(*m_head, ip_off);
1424 		if (m == NULL) {
1425 			*m_head = NULL;
1426 			return (ENOBUFS);
1427 		}
1428 		eh = mtod(m, struct ether_header *);
1429 		/* Check the existence of VLAN tag. */
1430 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1431 			ip_off = sizeof(struct ether_vlan_header);
1432 			m = m_pullup(m, ip_off);
1433 			if (m == NULL) {
1434 				*m_head = NULL;
1435 				return (ENOBUFS);
1436 			}
1437 		}
1438 		m = m_pullup(m, ip_off + sizeof(struct ip));
1439 		if (m == NULL) {
1440 			*m_head = NULL;
1441 			return (ENOBUFS);
1442 		}
1443 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1444 		poff = ip_off + (ip->ip_hl << 2);
1445 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1446 		if (m == NULL) {
1447 			*m_head = NULL;
1448 			return (ENOBUFS);
1449 		}
1450 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1451 		m = m_pullup(m, poff + (tcp->th_off << 2));
1452 		if (m == NULL) {
1453 			*m_head = NULL;
1454 			return (ENOBUFS);
1455 		}
1456 		/*
1457 		 * Reset IP checksum and recompute TCP pseudo
1458 		 * checksum that NDIS specification requires.
1459 		 */
1460 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1461 		ip->ip_sum = 0;
1462 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1463 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1464 		    htons(IPPROTO_TCP));
1465 		*m_head = m;
1466 	}
1467 
1468 	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1469 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1470 	if (error == EFBIG) {
1471 		m = m_collapse(*m_head, M_DONTWAIT, SGE_MAXTXSEGS);
1472 		if (m == NULL) {
1473 			m_freem(*m_head);
1474 			*m_head = NULL;
1475 			return (ENOBUFS);
1476 		}
1477 		*m_head = m;
1478 		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1479 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1480 		if (error != 0) {
1481 			m_freem(*m_head);
1482 			*m_head = NULL;
1483 			return (error);
1484 		}
1485 	} else if (error != 0)
1486 		return (error);
1487 
1488 	KASSERT(nsegs != 0, ("zero segment returned"));
1489 	/* Check descriptor overrun. */
1490 	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1491 		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1492 		return (ENOBUFS);
1493 	}
1494 	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1495 	    BUS_DMASYNC_PREWRITE);
1496 
1497 	m = *m_head;
1498 	cflags = 0;
1499 	mss = 0;
1500 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1501 		cflags |= TDC_LS;
1502 		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1503 		mss <<= 16;
1504 	} else {
1505 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1506 			cflags |= TDC_IP_CSUM;
1507 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1508 			cflags |= TDC_TCP_CSUM;
1509 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1510 			cflags |= TDC_UDP_CSUM;
1511 	}
1512 	for (i = 0; i < nsegs; i++) {
1513 		desc = &sc->sge_ldata.sge_tx_ring[prod];
1514 		if (i == 0) {
1515 			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1516 			desc->sge_cmdsts = 0;
1517 		} else {
1518 			desc->sge_sts_size = 0;
1519 			desc->sge_cmdsts = htole32(TDC_OWN);
1520 		}
1521 		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1522 		desc->sge_flags = htole32(txsegs[i].ds_len);
1523 		if (prod == SGE_TX_RING_CNT - 1)
1524 			desc->sge_flags |= htole32(RING_END);
1525 		sc->sge_cdata.sge_tx_cnt++;
1526 		SGE_INC(prod, SGE_TX_RING_CNT);
1527 	}
1528 	/* Update producer index. */
1529 	sc->sge_cdata.sge_tx_prod = prod;
1530 
1531 	desc = &sc->sge_ldata.sge_tx_ring[si];
1532 	/* Configure VLAN. */
1533 	if((m->m_flags & M_VLANTAG) != 0) {
1534 		cflags |= m->m_pkthdr.ether_vtag;
1535 		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1536 	}
1537 	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1538 #if 1
1539 	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1540 		desc->sge_cmdsts |= htole32(TDC_BST);
1541 #else
1542 	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1543 		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1544 		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1545 			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1546 	}
1547 #endif
1548 	/* Request interrupt and give ownership to controller. */
1549 	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1550 	txd->tx_m = m;
1551 	txd->tx_ndesc = nsegs;
1552 	return (0);
1553 }
1554 
1555 static void
1556 sge_start(struct ifnet *ifp)
1557 {
1558 	struct sge_softc *sc;
1559 
1560 	sc = ifp->if_softc;
1561 	SGE_LOCK(sc);
1562 	sge_start_locked(ifp);
1563 	SGE_UNLOCK(sc);
1564 }
1565 
1566 static void
1567 sge_start_locked(struct ifnet *ifp)
1568 {
1569 	struct sge_softc *sc;
1570 	struct mbuf *m_head;
1571 	int queued = 0;
1572 
1573 	sc = ifp->if_softc;
1574 	SGE_LOCK_ASSERT(sc);
1575 
1576 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1577 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1578 	    IFF_DRV_RUNNING)
1579 		return;
1580 
1581 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1582 		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1583 		    SGE_MAXTXSEGS)) {
1584 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1585 			break;
1586 		}
1587 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1588 		if (m_head == NULL)
1589 			break;
1590 		if (sge_encap(sc, &m_head)) {
1591 			if (m_head == NULL)
1592 				break;
1593 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1594 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1595 			break;
1596 		}
1597 		queued++;
1598 		/*
1599 		 * If there's a BPF listener, bounce a copy of this frame
1600 		 * to him.
1601 		 */
1602 		BPF_MTAP(ifp, m_head);
1603 	}
1604 
1605 	if (queued > 0) {
1606 		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1607 		    sc->sge_cdata.sge_tx_dmamap,
1608 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1609 		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1610 		sc->sge_timer = 5;
1611 	}
1612 }
1613 
1614 static void
1615 sge_init(void *arg)
1616 {
1617 	struct sge_softc *sc;
1618 
1619 	sc = arg;
1620 	SGE_LOCK(sc);
1621 	sge_init_locked(sc);
1622 	SGE_UNLOCK(sc);
1623 }
1624 
1625 static void
1626 sge_init_locked(struct sge_softc *sc)
1627 {
1628 	struct ifnet *ifp;
1629 	struct mii_data *mii;
1630 	uint16_t rxfilt;
1631 	int i;
1632 
1633 	SGE_LOCK_ASSERT(sc);
1634 	ifp = sc->sge_ifp;
1635 	mii = device_get_softc(sc->sge_miibus);
1636 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1637 		return;
1638 	/*
1639 	 * Cancel pending I/O and free all RX/TX buffers.
1640 	 */
1641 	sge_stop(sc);
1642 	sge_reset(sc);
1643 
1644 	/* Init circular RX list. */
1645 	if (sge_list_rx_init(sc) == ENOBUFS) {
1646 		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1647 		sge_stop(sc);
1648 		return;
1649 	}
1650 	/* Init TX descriptors. */
1651 	sge_list_tx_init(sc);
1652 	/*
1653 	 * Load the address of the RX and TX lists.
1654 	 */
1655 	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1656 	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1657 
1658 	CSR_WRITE_4(sc, TxMacControl, 0x60);
1659 	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1660 	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1661 	/* Allow receiving VLAN frames. */
1662 	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1663 	    SGE_RX_PAD_BYTES);
1664 
1665 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1666 		CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1667 	/* Configure RX MAC. */
1668 	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1669 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1670 	sge_rxfilter(sc);
1671 	sge_setvlan(sc);
1672 
1673 	/* Initialize default speed/duplex information. */
1674 	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1675 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1676 	sc->sge_flags |= SGE_FLAG_FDX;
1677 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1678 		CSR_WRITE_4(sc, StationControl, 0x04008001);
1679 	else
1680 		CSR_WRITE_4(sc, StationControl, 0x04000001);
1681 	/*
1682 	 * XXX Try to mitigate interrupts.
1683 	 */
1684 	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1685 #ifdef notyet
1686 	if (sc->sge_intrcontrol != 0)
1687 		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1688 	if (sc->sge_intrtimer != 0)
1689 		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1690 #endif
1691 
1692 	/*
1693 	 * Clear and enable interrupts.
1694 	 */
1695 	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1696 	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1697 
1698 	/* Enable receiver and transmitter. */
1699 	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1700 	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1701 
1702 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1703 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1704 
1705 	sc->sge_flags &= ~SGE_FLAG_LINK;
1706 	mii_mediachg(mii);
1707 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1708 }
1709 
1710 /*
1711  * Set media options.
1712  */
1713 static int
1714 sge_ifmedia_upd(struct ifnet *ifp)
1715 {
1716 	struct sge_softc *sc;
1717 	struct mii_data *mii;
1718 	int error;
1719 
1720 	sc = ifp->if_softc;
1721 	SGE_LOCK(sc);
1722 	mii = device_get_softc(sc->sge_miibus);
1723 	if (mii->mii_instance) {
1724 		struct mii_softc *miisc;
1725 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1726 			mii_phy_reset(miisc);
1727 	}
1728 	error = mii_mediachg(mii);
1729 	SGE_UNLOCK(sc);
1730 
1731 	return (error);
1732 }
1733 
1734 /*
1735  * Report current media status.
1736  */
1737 static void
1738 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1739 {
1740 	struct sge_softc *sc;
1741 	struct mii_data *mii;
1742 
1743 	sc = ifp->if_softc;
1744 	SGE_LOCK(sc);
1745 	mii = device_get_softc(sc->sge_miibus);
1746 	if ((ifp->if_flags & IFF_UP) == 0) {
1747 		SGE_UNLOCK(sc);
1748 		return;
1749 	}
1750 	mii_pollstat(mii);
1751 	SGE_UNLOCK(sc);
1752 	ifmr->ifm_active = mii->mii_media_active;
1753 	ifmr->ifm_status = mii->mii_media_status;
1754 }
1755 
1756 static int
1757 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1758 {
1759 	struct sge_softc *sc;
1760 	struct ifreq *ifr;
1761 	struct mii_data *mii;
1762 	int error = 0, mask, reinit;
1763 
1764 	sc = ifp->if_softc;
1765 	ifr = (struct ifreq *)data;
1766 
1767 	switch(command) {
1768 	case SIOCSIFFLAGS:
1769 		SGE_LOCK(sc);
1770 		if ((ifp->if_flags & IFF_UP) != 0) {
1771 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1772 			    ((ifp->if_flags ^ sc->sge_if_flags) &
1773 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1774 				sge_rxfilter(sc);
1775 			else
1776 				sge_init_locked(sc);
1777 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1778 			sge_stop(sc);
1779 		sc->sge_if_flags = ifp->if_flags;
1780 		SGE_UNLOCK(sc);
1781 		break;
1782 	case SIOCSIFCAP:
1783 		SGE_LOCK(sc);
1784 		reinit = 0;
1785 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1786 		if ((mask & IFCAP_TXCSUM) != 0 &&
1787 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1788 			ifp->if_capenable ^= IFCAP_TXCSUM;
1789 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1790 				ifp->if_hwassist |= SGE_CSUM_FEATURES;
1791 			else
1792 				ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1793 		}
1794 		if ((mask & IFCAP_RXCSUM) != 0 &&
1795 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1796 			ifp->if_capenable ^= IFCAP_RXCSUM;
1797 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1798 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1799 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1800 		if ((mask & IFCAP_TSO4) != 0 &&
1801 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1802 			ifp->if_capenable ^= IFCAP_TSO4;
1803 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1804 				ifp->if_hwassist |= CSUM_TSO;
1805 			else
1806 				ifp->if_hwassist &= ~CSUM_TSO;
1807 		}
1808 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1809 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1810 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1811 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1812 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1813 			/*
1814 			 * Due to unknown reason, toggling VLAN hardware
1815 			 * tagging require interface reinitialization.
1816 			 */
1817 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1818 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1819 				ifp->if_capenable &=
1820 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1821 			reinit = 1;
1822 		}
1823 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1824 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1825 			sge_init_locked(sc);
1826 		}
1827 		SGE_UNLOCK(sc);
1828 		VLAN_CAPABILITIES(ifp);
1829 		break;
1830 	case SIOCADDMULTI:
1831 	case SIOCDELMULTI:
1832 		SGE_LOCK(sc);
1833 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1834 			sge_rxfilter(sc);
1835 		SGE_UNLOCK(sc);
1836 		break;
1837 	case SIOCGIFMEDIA:
1838 	case SIOCSIFMEDIA:
1839 		mii = device_get_softc(sc->sge_miibus);
1840 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1841 		break;
1842 	default:
1843 		error = ether_ioctl(ifp, command, data);
1844 		break;
1845 	}
1846 
1847 	return (error);
1848 }
1849 
1850 static void
1851 sge_watchdog(struct sge_softc *sc)
1852 {
1853 	struct ifnet *ifp;
1854 
1855 	SGE_LOCK_ASSERT(sc);
1856 	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1857 		return;
1858 
1859 	ifp = sc->sge_ifp;
1860 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1861 		if (1 || bootverbose)
1862 			device_printf(sc->sge_dev,
1863 			    "watchdog timeout (lost link)\n");
1864 		ifp->if_oerrors++;
1865 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1866 		sge_init_locked(sc);
1867 		return;
1868 	}
1869 	device_printf(sc->sge_dev, "watchdog timeout\n");
1870 	ifp->if_oerrors++;
1871 
1872 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1873 	sge_init_locked(sc);
1874 	if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1875 		sge_start_locked(ifp);
1876 }
1877 
1878 /*
1879  * Stop the adapter and free any mbufs allocated to the
1880  * RX and TX lists.
1881  */
1882 static void
1883 sge_stop(struct sge_softc *sc)
1884 {
1885 	struct ifnet *ifp;
1886 
1887 	ifp = sc->sge_ifp;
1888 
1889 	SGE_LOCK_ASSERT(sc);
1890 
1891 	sc->sge_timer = 0;
1892 	callout_stop(&sc->sge_stat_ch);
1893 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1894 
1895 	CSR_WRITE_4(sc, IntrMask, 0);
1896 	CSR_READ_4(sc, IntrMask);
1897 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1898 	/* Stop TX/RX MAC. */
1899 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1900 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1901 	/* XXX Can we assume active DMA cycles gone? */
1902 	DELAY(2000);
1903 	CSR_WRITE_4(sc, IntrMask, 0);
1904 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1905 
1906 	sc->sge_flags &= ~SGE_FLAG_LINK;
1907 	sge_list_rx_free(sc);
1908 	sge_list_tx_free(sc);
1909 }
1910