xref: /freebsd/sys/dev/sis/if_sis.c (revision 1f1e2261)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
5  * Copyright (c) 1997, 1998, 1999
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
41  * available from http://www.sis.com.tw.
42  *
43  * This driver also supports the NatSemi DP83815. Datasheets are
44  * available from http://www.national.com.
45  *
46  * Written by Bill Paul <wpaul@ee.columbia.edu>
47  * Electrical Engineering Department
48  * Columbia University, New York City
49  */
50 /*
51  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
52  * simple TX and RX descriptors of 3 longwords in size. The receiver
53  * has a single perfect filter entry for the station address and a
54  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
55  * transceiver while the 7016 requires an external transceiver chip.
56  * Both chips offer the standard bit-bang MII interface as well as
57  * an enchanced PHY interface which simplifies accessing MII registers.
58  *
59  * The only downside to this chipset is that RX descriptors must be
60  * longword aligned.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/module.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <net/bpf.h>
90 
91 #include <machine/bus.h>
92 #include <machine/resource.h>
93 #include <sys/rman.h>
94 
95 #include <dev/mii/mii.h>
96 #include <dev/mii/mii_bitbang.h>
97 #include <dev/mii/miivar.h>
98 
99 #include <dev/pci/pcireg.h>
100 #include <dev/pci/pcivar.h>
101 
102 #define SIS_USEIOSPACE
103 
104 #include <dev/sis/if_sisreg.h>
105 
106 MODULE_DEPEND(sis, pci, 1, 1, 1);
107 MODULE_DEPEND(sis, ether, 1, 1, 1);
108 MODULE_DEPEND(sis, miibus, 1, 1, 1);
109 
110 /* "device miibus" required.  See GENERIC if you get errors here. */
111 #include "miibus_if.h"
112 
113 #define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
114 #define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
115 #define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
116 
117 /*
118  * register space access macros
119  */
120 #define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
121 
122 #define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
123 
124 #define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
125 
126 #define	CSR_BARRIER(sc, reg, length, flags)				\
127 	bus_barrier(sc->sis_res[0], reg, length, flags)
128 
129 /*
130  * Various supported device vendors/types and their names.
131  */
132 static const struct sis_type sis_devs[] = {
133 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
134 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
135 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
136 	{ 0, 0, NULL }
137 };
138 
139 static int sis_detach(device_t);
140 static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
141 static int sis_dma_alloc(struct sis_softc *);
142 static void sis_dma_free(struct sis_softc *);
143 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
144     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
145 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
146 #ifndef __NO_STRICT_ALIGNMENT
147 static __inline void sis_fixup_rx(struct mbuf *);
148 #endif
149 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
150 static int sis_ifmedia_upd(struct ifnet *);
151 static void sis_init(void *);
152 static void sis_initl(struct sis_softc *);
153 static void sis_intr(void *);
154 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
155 static uint32_t sis_mii_bitbang_read(device_t);
156 static void sis_mii_bitbang_write(device_t, uint32_t);
157 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
158 static int sis_resume(device_t);
159 static int sis_rxeof(struct sis_softc *);
160 static void sis_rxfilter(struct sis_softc *);
161 static void sis_rxfilter_ns(struct sis_softc *);
162 static void sis_rxfilter_sis(struct sis_softc *);
163 static void sis_start(struct ifnet *);
164 static void sis_startl(struct ifnet *);
165 static void sis_stop(struct sis_softc *);
166 static int sis_suspend(device_t);
167 static void sis_add_sysctls(struct sis_softc *);
168 static void sis_watchdog(struct sis_softc *);
169 static void sis_wol(struct sis_softc *);
170 
171 /*
172  * MII bit-bang glue
173  */
174 static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
175 	sis_mii_bitbang_read,
176 	sis_mii_bitbang_write,
177 	{
178 		SIS_MII_DATA,		/* MII_BIT_MDO */
179 		SIS_MII_DATA,		/* MII_BIT_MDI */
180 		SIS_MII_CLK,		/* MII_BIT_MDC */
181 		SIS_MII_DIR,		/* MII_BIT_DIR_HOST_PHY */
182 		0,			/* MII_BIT_DIR_PHY_HOST */
183 	}
184 };
185 
186 static struct resource_spec sis_res_spec[] = {
187 #ifdef SIS_USEIOSPACE
188 	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
189 #else
190 	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
191 #endif
192 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
193 	{ -1, 0 }
194 };
195 
196 #define SIS_SETBIT(sc, reg, x)				\
197 	CSR_WRITE_4(sc, reg,				\
198 		CSR_READ_4(sc, reg) | (x))
199 
200 #define SIS_CLRBIT(sc, reg, x)				\
201 	CSR_WRITE_4(sc, reg,				\
202 		CSR_READ_4(sc, reg) & ~(x))
203 
204 #define SIO_SET(x)					\
205 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
206 
207 #define SIO_CLR(x)					\
208 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
209 
210 /*
211  * Routine to reverse the bits in a word. Stolen almost
212  * verbatim from /usr/games/fortune.
213  */
214 static uint16_t
215 sis_reverse(uint16_t n)
216 {
217 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
218 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
219 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
220 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
221 
222 	return (n);
223 }
224 
225 static void
226 sis_delay(struct sis_softc *sc)
227 {
228 	int			idx;
229 
230 	for (idx = (300 / 33) + 1; idx > 0; idx--)
231 		CSR_READ_4(sc, SIS_CSR);
232 }
233 
234 static void
235 sis_eeprom_idle(struct sis_softc *sc)
236 {
237 	int		i;
238 
239 	SIO_SET(SIS_EECTL_CSEL);
240 	sis_delay(sc);
241 	SIO_SET(SIS_EECTL_CLK);
242 	sis_delay(sc);
243 
244 	for (i = 0; i < 25; i++) {
245 		SIO_CLR(SIS_EECTL_CLK);
246 		sis_delay(sc);
247 		SIO_SET(SIS_EECTL_CLK);
248 		sis_delay(sc);
249 	}
250 
251 	SIO_CLR(SIS_EECTL_CLK);
252 	sis_delay(sc);
253 	SIO_CLR(SIS_EECTL_CSEL);
254 	sis_delay(sc);
255 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
256 }
257 
258 /*
259  * Send a read command and address to the EEPROM, check for ACK.
260  */
261 static void
262 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
263 {
264 	int		d, i;
265 
266 	d = addr | SIS_EECMD_READ;
267 
268 	/*
269 	 * Feed in each bit and stobe the clock.
270 	 */
271 	for (i = 0x400; i; i >>= 1) {
272 		if (d & i) {
273 			SIO_SET(SIS_EECTL_DIN);
274 		} else {
275 			SIO_CLR(SIS_EECTL_DIN);
276 		}
277 		sis_delay(sc);
278 		SIO_SET(SIS_EECTL_CLK);
279 		sis_delay(sc);
280 		SIO_CLR(SIS_EECTL_CLK);
281 		sis_delay(sc);
282 	}
283 }
284 
285 /*
286  * Read a word of data stored in the EEPROM at address 'addr.'
287  */
288 static void
289 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
290 {
291 	int		i;
292 	uint16_t	word = 0;
293 
294 	/* Force EEPROM to idle state. */
295 	sis_eeprom_idle(sc);
296 
297 	/* Enter EEPROM access mode. */
298 	sis_delay(sc);
299 	SIO_CLR(SIS_EECTL_CLK);
300 	sis_delay(sc);
301 	SIO_SET(SIS_EECTL_CSEL);
302 	sis_delay(sc);
303 
304 	/*
305 	 * Send address of word we want to read.
306 	 */
307 	sis_eeprom_putbyte(sc, addr);
308 
309 	/*
310 	 * Start reading bits from EEPROM.
311 	 */
312 	for (i = 0x8000; i; i >>= 1) {
313 		SIO_SET(SIS_EECTL_CLK);
314 		sis_delay(sc);
315 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
316 			word |= i;
317 		sis_delay(sc);
318 		SIO_CLR(SIS_EECTL_CLK);
319 		sis_delay(sc);
320 	}
321 
322 	/* Turn off EEPROM access mode. */
323 	sis_eeprom_idle(sc);
324 
325 	*dest = word;
326 }
327 
328 /*
329  * Read a sequence of words from the EEPROM.
330  */
331 static void
332 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
333 {
334 	int			i;
335 	uint16_t		word = 0, *ptr;
336 
337 	for (i = 0; i < cnt; i++) {
338 		sis_eeprom_getword(sc, off + i, &word);
339 		ptr = (uint16_t *)(dest + (i * 2));
340 		if (swap)
341 			*ptr = ntohs(word);
342 		else
343 			*ptr = word;
344 	}
345 }
346 
347 #if defined(__i386__) || defined(__amd64__)
348 static device_t
349 sis_find_bridge(device_t dev)
350 {
351 	devclass_t		pci_devclass;
352 	device_t		*pci_devices;
353 	int			pci_count = 0;
354 	device_t		*pci_children;
355 	int			pci_childcount = 0;
356 	device_t		*busp, *childp;
357 	device_t		child = NULL;
358 	int			i, j;
359 
360 	if ((pci_devclass = devclass_find("pci")) == NULL)
361 		return (NULL);
362 
363 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
364 
365 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
366 		if (device_get_children(*busp, &pci_children, &pci_childcount))
367 			continue;
368 		for (j = 0, childp = pci_children;
369 		    j < pci_childcount; j++, childp++) {
370 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
371 			    pci_get_device(*childp) == 0x0008) {
372 				child = *childp;
373 				free(pci_children, M_TEMP);
374 				goto done;
375 			}
376 		}
377 		free(pci_children, M_TEMP);
378 	}
379 
380 done:
381 	free(pci_devices, M_TEMP);
382 	return (child);
383 }
384 
385 static void
386 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
387 {
388 	device_t		bridge;
389 	uint8_t			reg;
390 	int			i;
391 	bus_space_tag_t		btag;
392 
393 	bridge = sis_find_bridge(dev);
394 	if (bridge == NULL)
395 		return;
396 	reg = pci_read_config(bridge, 0x48, 1);
397 	pci_write_config(bridge, 0x48, reg|0x40, 1);
398 
399 	/* XXX */
400 #if defined(__amd64__) || defined(__i386__)
401 	btag = X86_BUS_SPACE_IO;
402 #endif
403 
404 	for (i = 0; i < cnt; i++) {
405 		bus_space_write_1(btag, 0x0, 0x70, i + off);
406 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
407 	}
408 
409 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
410 }
411 
412 static void
413 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
414 {
415 	uint32_t		filtsave, csrsave;
416 
417 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
418 	csrsave = CSR_READ_4(sc, SIS_CSR);
419 
420 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
421 	CSR_WRITE_4(sc, SIS_CSR, 0);
422 
423 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
424 
425 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
426 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
427 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
428 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
429 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
430 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
431 
432 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
433 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
434 }
435 #endif
436 
437 /*
438  * Read the MII serial port for the MII bit-bang module.
439  */
440 static uint32_t
441 sis_mii_bitbang_read(device_t dev)
442 {
443 	struct sis_softc	*sc;
444 	uint32_t		val;
445 
446 	sc = device_get_softc(dev);
447 
448 	val = CSR_READ_4(sc, SIS_EECTL);
449 	CSR_BARRIER(sc, SIS_EECTL, 4,
450 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
451 	return (val);
452 }
453 
454 /*
455  * Write the MII serial port for the MII bit-bang module.
456  */
457 static void
458 sis_mii_bitbang_write(device_t dev, uint32_t val)
459 {
460 	struct sis_softc	*sc;
461 
462 	sc = device_get_softc(dev);
463 
464 	CSR_WRITE_4(sc, SIS_EECTL, val);
465 	CSR_BARRIER(sc, SIS_EECTL, 4,
466 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
467 }
468 
469 static int
470 sis_miibus_readreg(device_t dev, int phy, int reg)
471 {
472 	struct sis_softc	*sc;
473 
474 	sc = device_get_softc(dev);
475 
476 	if (sc->sis_type == SIS_TYPE_83815) {
477 		if (phy != 0)
478 			return (0);
479 		/*
480 		 * The NatSemi chip can take a while after
481 		 * a reset to come ready, during which the BMSR
482 		 * returns a value of 0. This is *never* supposed
483 		 * to happen: some of the BMSR bits are meant to
484 		 * be hardwired in the on position, and this can
485 		 * confuse the miibus code a bit during the probe
486 		 * and attach phase. So we make an effort to check
487 		 * for this condition and wait for it to clear.
488 		 */
489 		if (!CSR_READ_4(sc, NS_BMSR))
490 			DELAY(1000);
491 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
492 	}
493 
494 	/*
495 	 * Chipsets < SIS_635 seem not to be able to read/write
496 	 * through mdio. Use the enhanced PHY access register
497 	 * again for them.
498 	 */
499 	if (sc->sis_type == SIS_TYPE_900 &&
500 	    sc->sis_rev < SIS_REV_635) {
501 		int i, val = 0;
502 
503 		if (phy != 0)
504 			return (0);
505 
506 		CSR_WRITE_4(sc, SIS_PHYCTL,
507 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
508 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
509 
510 		for (i = 0; i < SIS_TIMEOUT; i++) {
511 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
512 				break;
513 		}
514 
515 		if (i == SIS_TIMEOUT) {
516 			device_printf(sc->sis_dev,
517 			    "PHY failed to come ready\n");
518 			return (0);
519 		}
520 
521 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
522 
523 		if (val == 0xFFFF)
524 			return (0);
525 
526 		return (val);
527 	} else
528 		return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
529 		    reg));
530 }
531 
532 static int
533 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
534 {
535 	struct sis_softc	*sc;
536 
537 	sc = device_get_softc(dev);
538 
539 	if (sc->sis_type == SIS_TYPE_83815) {
540 		if (phy != 0)
541 			return (0);
542 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
543 		return (0);
544 	}
545 
546 	/*
547 	 * Chipsets < SIS_635 seem not to be able to read/write
548 	 * through mdio. Use the enhanced PHY access register
549 	 * again for them.
550 	 */
551 	if (sc->sis_type == SIS_TYPE_900 &&
552 	    sc->sis_rev < SIS_REV_635) {
553 		int i;
554 
555 		if (phy != 0)
556 			return (0);
557 
558 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
559 		    (reg << 6) | SIS_PHYOP_WRITE);
560 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
561 
562 		for (i = 0; i < SIS_TIMEOUT; i++) {
563 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
564 				break;
565 		}
566 
567 		if (i == SIS_TIMEOUT)
568 			device_printf(sc->sis_dev,
569 			    "PHY failed to come ready\n");
570 	} else
571 		mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
572 		    data);
573 	return (0);
574 }
575 
576 static void
577 sis_miibus_statchg(device_t dev)
578 {
579 	struct sis_softc	*sc;
580 	struct mii_data		*mii;
581 	struct ifnet		*ifp;
582 	uint32_t		reg;
583 
584 	sc = device_get_softc(dev);
585 	SIS_LOCK_ASSERT(sc);
586 
587 	mii = device_get_softc(sc->sis_miibus);
588 	ifp = sc->sis_ifp;
589 	if (mii == NULL || ifp == NULL ||
590 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
591 		return;
592 
593 	sc->sis_flags &= ~SIS_FLAG_LINK;
594 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
595 	    (IFM_ACTIVE | IFM_AVALID)) {
596 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
597 		case IFM_10_T:
598 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
599 			sc->sis_flags |= SIS_FLAG_LINK;
600 			break;
601 		case IFM_100_TX:
602 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
603 			sc->sis_flags |= SIS_FLAG_LINK;
604 			break;
605 		default:
606 			break;
607 		}
608 	}
609 
610 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
611 		/*
612 		 * Stopping MACs seem to reset SIS_TX_LISTPTR and
613 		 * SIS_RX_LISTPTR which in turn requires resetting
614 		 * TX/RX buffers.  So just don't do anything for
615 		 * lost link.
616 		 */
617 		return;
618 	}
619 
620 	/* Set full/half duplex mode. */
621 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
622 		SIS_SETBIT(sc, SIS_TX_CFG,
623 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
624 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
625 	} else {
626 		SIS_CLRBIT(sc, SIS_TX_CFG,
627 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
628 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
629 	}
630 
631 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
632 		/*
633 		 * MPII03.D: Half Duplex Excessive Collisions.
634 		 * Also page 49 in 83816 manual
635 		 */
636 		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
637 	}
638 
639 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
640 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
641 		/*
642 		 * Short Cable Receive Errors (MP21.E)
643 		 */
644 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
645 		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
646 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
647 		DELAY(100);
648 		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
649 		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
650 			device_printf(sc->sis_dev,
651 			    "Applying short cable fix (reg=%x)\n", reg);
652 			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
653 			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
654 		}
655 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
656 	}
657 	/* Enable TX/RX MACs. */
658 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
659 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
660 }
661 
662 static uint32_t
663 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
664 {
665 	uint32_t		crc;
666 
667 	/* Compute CRC for the address value. */
668 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
669 
670 	/*
671 	 * return the filter bit position
672 	 *
673 	 * The NatSemi chip has a 512-bit filter, which is
674 	 * different than the SiS, so we special-case it.
675 	 */
676 	if (sc->sis_type == SIS_TYPE_83815)
677 		return (crc >> 23);
678 	else if (sc->sis_rev >= SIS_REV_635 ||
679 	    sc->sis_rev == SIS_REV_900B)
680 		return (crc >> 24);
681 	else
682 		return (crc >> 25);
683 }
684 
685 static void
686 sis_rxfilter(struct sis_softc *sc)
687 {
688 
689 	SIS_LOCK_ASSERT(sc);
690 
691 	if (sc->sis_type == SIS_TYPE_83815)
692 		sis_rxfilter_ns(sc);
693 	else
694 		sis_rxfilter_sis(sc);
695 }
696 
697 static u_int
698 sis_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
699 {
700 	struct sis_softc *sc = arg;
701 	uint32_t h;
702 	int bit, index;
703 
704 	h = sis_mchash(sc, LLADDR(sdl));
705 	index = h >> 3;
706 	bit = h & 0x1F;
707 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
708 	if (bit > 0xF)
709 		bit -= 0x10;
710 	SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
711 
712 	return (1);
713 }
714 
715 static void
716 sis_rxfilter_ns(struct sis_softc *sc)
717 {
718 	struct ifnet		*ifp;
719 	uint32_t		i, filter;
720 
721 	ifp = sc->sis_ifp;
722 	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
723 	if (filter & SIS_RXFILTCTL_ENABLE) {
724 		/*
725 		 * Filter should be disabled to program other bits.
726 		 */
727 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
728 		CSR_READ_4(sc, SIS_RXFILT_CTL);
729 	}
730 	filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
731 	    NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
732 	    SIS_RXFILTCTL_ALLMULTI);
733 
734 	if (ifp->if_flags & IFF_BROADCAST)
735 		filter |= SIS_RXFILTCTL_BROAD;
736 	/*
737 	 * For the NatSemi chip, we have to explicitly enable the
738 	 * reception of ARP frames, as well as turn on the 'perfect
739 	 * match' filter where we store the station address, otherwise
740 	 * we won't receive unicasts meant for this host.
741 	 */
742 	filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
743 
744 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
745 		filter |= SIS_RXFILTCTL_ALLMULTI;
746 		if (ifp->if_flags & IFF_PROMISC)
747 			filter |= SIS_RXFILTCTL_ALLPHYS;
748 	} else {
749 		/*
750 		 * We have to explicitly enable the multicast hash table
751 		 * on the NatSemi chip if we want to use it, which we do.
752 		 */
753 		filter |= NS_RXFILTCTL_MCHASH;
754 
755 		/* first, zot all the existing hash bits */
756 		for (i = 0; i < 32; i++) {
757 			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
758 			    (i * 2));
759 			CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
760 		}
761 
762 		if_foreach_llmaddr(ifp, sis_write_maddr, sc);
763 	}
764 
765 	/* Turn the receive filter on */
766 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
767 	CSR_READ_4(sc, SIS_RXFILT_CTL);
768 }
769 
770 struct sis_hash_maddr_ctx {
771 	struct sis_softc *sc;
772 	uint16_t hashes[16];
773 };
774 
775 static u_int
776 sis_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
777 {
778 	struct sis_hash_maddr_ctx *ctx = arg;
779 	uint32_t h;
780 
781 	h = sis_mchash(ctx->sc, LLADDR(sdl));
782 	ctx->hashes[h >> 4] |= 1 << (h & 0xf);
783 
784 	return (1);
785 }
786 
787 static void
788 sis_rxfilter_sis(struct sis_softc *sc)
789 {
790 	struct ifnet		*ifp;
791 	struct sis_hash_maddr_ctx ctx;
792 	uint32_t		filter, i, n;
793 
794 	ifp = sc->sis_ifp;
795 
796 	/* hash table size */
797 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
798 		n = 16;
799 	else
800 		n = 8;
801 
802 	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
803 	if (filter & SIS_RXFILTCTL_ENABLE) {
804 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
805 		CSR_READ_4(sc, SIS_RXFILT_CTL);
806 	}
807 	filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
808 	    SIS_RXFILTCTL_ALLMULTI);
809 	if (ifp->if_flags & IFF_BROADCAST)
810 		filter |= SIS_RXFILTCTL_BROAD;
811 
812 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
813 		filter |= SIS_RXFILTCTL_ALLMULTI;
814 		if (ifp->if_flags & IFF_PROMISC)
815 			filter |= SIS_RXFILTCTL_ALLPHYS;
816 		for (i = 0; i < n; i++)
817 			ctx.hashes[i] = ~0;
818 	} else {
819 		for (i = 0; i < n; i++)
820 			ctx.hashes[i] = 0;
821 		ctx.sc = sc;
822 		if (if_foreach_llmaddr(ifp, sis_hash_maddr, &ctx) > n) {
823 			filter |= SIS_RXFILTCTL_ALLMULTI;
824 			for (i = 0; i < n; i++)
825 				ctx.hashes[i] = ~0;
826 		}
827 	}
828 
829 	for (i = 0; i < n; i++) {
830 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
831 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, ctx.hashes[i]);
832 	}
833 
834 	/* Turn the receive filter on */
835 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
836 	CSR_READ_4(sc, SIS_RXFILT_CTL);
837 }
838 
839 static void
840 sis_reset(struct sis_softc *sc)
841 {
842 	int		i;
843 
844 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
845 
846 	for (i = 0; i < SIS_TIMEOUT; i++) {
847 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
848 			break;
849 	}
850 
851 	if (i == SIS_TIMEOUT)
852 		device_printf(sc->sis_dev, "reset never completed\n");
853 
854 	/* Wait a little while for the chip to get its brains in order. */
855 	DELAY(1000);
856 
857 	/*
858 	 * If this is a NetSemi chip, make sure to clear
859 	 * PME mode.
860 	 */
861 	if (sc->sis_type == SIS_TYPE_83815) {
862 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
863 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
864 	} else {
865 		/* Disable WOL functions. */
866 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
867 	}
868 }
869 
870 /*
871  * Probe for an SiS chip. Check the PCI vendor and device
872  * IDs against our list and return a device name if we find a match.
873  */
874 static int
875 sis_probe(device_t dev)
876 {
877 	const struct sis_type	*t;
878 
879 	t = sis_devs;
880 
881 	while (t->sis_name != NULL) {
882 		if ((pci_get_vendor(dev) == t->sis_vid) &&
883 		    (pci_get_device(dev) == t->sis_did)) {
884 			device_set_desc(dev, t->sis_name);
885 			return (BUS_PROBE_DEFAULT);
886 		}
887 		t++;
888 	}
889 
890 	return (ENXIO);
891 }
892 
893 /*
894  * Attach the interface. Allocate softc structures, do ifmedia
895  * setup and ethernet/BPF attach.
896  */
897 static int
898 sis_attach(device_t dev)
899 {
900 	u_char			eaddr[ETHER_ADDR_LEN];
901 	struct sis_softc	*sc;
902 	struct ifnet		*ifp;
903 	int			error = 0, pmc;
904 
905 	sc = device_get_softc(dev);
906 
907 	sc->sis_dev = dev;
908 
909 	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
910 	    MTX_DEF);
911 	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
912 
913 	if (pci_get_device(dev) == SIS_DEVICEID_900)
914 		sc->sis_type = SIS_TYPE_900;
915 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
916 		sc->sis_type = SIS_TYPE_7016;
917 	if (pci_get_vendor(dev) == NS_VENDORID)
918 		sc->sis_type = SIS_TYPE_83815;
919 
920 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
921 	/*
922 	 * Map control/status registers.
923 	 */
924 	pci_enable_busmaster(dev);
925 
926 	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
927 	if (error) {
928 		device_printf(dev, "couldn't allocate resources\n");
929 		goto fail;
930 	}
931 
932 	/* Reset the adapter. */
933 	sis_reset(sc);
934 
935 	if (sc->sis_type == SIS_TYPE_900 &&
936 	    (sc->sis_rev == SIS_REV_635 ||
937 	    sc->sis_rev == SIS_REV_900B)) {
938 		SIO_SET(SIS_CFG_RND_CNT);
939 		SIO_SET(SIS_CFG_PERR_DETECT);
940 	}
941 
942 	/*
943 	 * Get station address from the EEPROM.
944 	 */
945 	switch (pci_get_vendor(dev)) {
946 	case NS_VENDORID:
947 		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
948 
949 		/* We can't update the device description, so spew */
950 		if (sc->sis_srr == NS_SRR_15C)
951 			device_printf(dev, "Silicon Revision: DP83815C\n");
952 		else if (sc->sis_srr == NS_SRR_15D)
953 			device_printf(dev, "Silicon Revision: DP83815D\n");
954 		else if (sc->sis_srr == NS_SRR_16A)
955 			device_printf(dev, "Silicon Revision: DP83816A\n");
956 		else
957 			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
958 
959 		/*
960 		 * Reading the MAC address out of the EEPROM on
961 		 * the NatSemi chip takes a bit more work than
962 		 * you'd expect. The address spans 4 16-bit words,
963 		 * with the first word containing only a single bit.
964 		 * You have to shift everything over one bit to
965 		 * get it aligned properly. Also, the bits are
966 		 * stored backwards (the LSB is really the MSB,
967 		 * and so on) so you have to reverse them in order
968 		 * to get the MAC address into the form we want.
969 		 * Why? Who the hell knows.
970 		 */
971 		{
972 			uint16_t		tmp[4];
973 
974 			sis_read_eeprom(sc, (caddr_t)&tmp,
975 			    NS_EE_NODEADDR, 4, 0);
976 
977 			/* Shift everything over one bit. */
978 			tmp[3] = tmp[3] >> 1;
979 			tmp[3] |= tmp[2] << 15;
980 			tmp[2] = tmp[2] >> 1;
981 			tmp[2] |= tmp[1] << 15;
982 			tmp[1] = tmp[1] >> 1;
983 			tmp[1] |= tmp[0] << 15;
984 
985 			/* Now reverse all the bits. */
986 			tmp[3] = sis_reverse(tmp[3]);
987 			tmp[2] = sis_reverse(tmp[2]);
988 			tmp[1] = sis_reverse(tmp[1]);
989 
990 			eaddr[0] = (tmp[1] >> 0) & 0xFF;
991 			eaddr[1] = (tmp[1] >> 8) & 0xFF;
992 			eaddr[2] = (tmp[2] >> 0) & 0xFF;
993 			eaddr[3] = (tmp[2] >> 8) & 0xFF;
994 			eaddr[4] = (tmp[3] >> 0) & 0xFF;
995 			eaddr[5] = (tmp[3] >> 8) & 0xFF;
996 		}
997 		break;
998 	case SIS_VENDORID:
999 	default:
1000 #if defined(__i386__) || defined(__amd64__)
1001 		/*
1002 		 * If this is a SiS 630E chipset with an embedded
1003 		 * SiS 900 controller, we have to read the MAC address
1004 		 * from the APC CMOS RAM. Our method for doing this
1005 		 * is very ugly since we have to reach out and grab
1006 		 * ahold of hardware for which we cannot properly
1007 		 * allocate resources. This code is only compiled on
1008 		 * the i386 architecture since the SiS 630E chipset
1009 		 * is for x86 motherboards only. Note that there are
1010 		 * a lot of magic numbers in this hack. These are
1011 		 * taken from SiS's Linux driver. I'd like to replace
1012 		 * them with proper symbolic definitions, but that
1013 		 * requires some datasheets that I don't have access
1014 		 * to at the moment.
1015 		 */
1016 		if (sc->sis_rev == SIS_REV_630S ||
1017 		    sc->sis_rev == SIS_REV_630E ||
1018 		    sc->sis_rev == SIS_REV_630EA1)
1019 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1020 
1021 		else if (sc->sis_rev == SIS_REV_635 ||
1022 			 sc->sis_rev == SIS_REV_630ET)
1023 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1024 		else if (sc->sis_rev == SIS_REV_96x) {
1025 			/* Allow to read EEPROM from LAN. It is shared
1026 			 * between a 1394 controller and the NIC and each
1027 			 * time we access it, we need to set SIS_EECMD_REQ.
1028 			 */
1029 			SIO_SET(SIS_EECMD_REQ);
1030 			for (int waittime = 0; waittime < SIS_TIMEOUT;
1031 			    waittime++) {
1032 				/* Force EEPROM to idle state. */
1033 				sis_eeprom_idle(sc);
1034 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1035 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1036 					    SIS_EE_NODEADDR, 3, 0);
1037 					break;
1038 				}
1039 				DELAY(1);
1040 			}
1041 			/*
1042 			 * Set SIS_EECTL_CLK to high, so a other master
1043 			 * can operate on the i2c bus.
1044 			 */
1045 			SIO_SET(SIS_EECTL_CLK);
1046 			/* Refuse EEPROM access by LAN */
1047 			SIO_SET(SIS_EECMD_DONE);
1048 		} else
1049 #endif
1050 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1051 			    SIS_EE_NODEADDR, 3, 0);
1052 		break;
1053 	}
1054 
1055 	sis_add_sysctls(sc);
1056 
1057 	/* Allocate DMA'able memory. */
1058 	if ((error = sis_dma_alloc(sc)) != 0)
1059 		goto fail;
1060 
1061 	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1062 	if (ifp == NULL) {
1063 		device_printf(dev, "can not if_alloc()\n");
1064 		error = ENOSPC;
1065 		goto fail;
1066 	}
1067 	ifp->if_softc = sc;
1068 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1069 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1070 	ifp->if_ioctl = sis_ioctl;
1071 	ifp->if_start = sis_start;
1072 	ifp->if_init = sis_init;
1073 	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1074 	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1075 	IFQ_SET_READY(&ifp->if_snd);
1076 
1077 	if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1078 		if (sc->sis_type == SIS_TYPE_83815)
1079 			ifp->if_capabilities |= IFCAP_WOL;
1080 		else
1081 			ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1082 		ifp->if_capenable = ifp->if_capabilities;
1083 	}
1084 
1085 	/*
1086 	 * Do MII setup.
1087 	 */
1088 	error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1089 	    sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1090 	if (error != 0) {
1091 		device_printf(dev, "attaching PHYs failed\n");
1092 		goto fail;
1093 	}
1094 
1095 	/*
1096 	 * Call MI attach routine.
1097 	 */
1098 	ether_ifattach(ifp, eaddr);
1099 
1100 	/*
1101 	 * Tell the upper layer(s) we support long frames.
1102 	 */
1103 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1104 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1105 	ifp->if_capenable = ifp->if_capabilities;
1106 #ifdef DEVICE_POLLING
1107 	ifp->if_capabilities |= IFCAP_POLLING;
1108 #endif
1109 
1110 	/* Hook interrupt last to avoid having to lock softc */
1111 	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1112 	    NULL, sis_intr, sc, &sc->sis_intrhand);
1113 
1114 	if (error) {
1115 		device_printf(dev, "couldn't set up irq\n");
1116 		ether_ifdetach(ifp);
1117 		goto fail;
1118 	}
1119 
1120 fail:
1121 	if (error)
1122 		sis_detach(dev);
1123 
1124 	return (error);
1125 }
1126 
1127 /*
1128  * Shutdown hardware and free up resources. This can be called any
1129  * time after the mutex has been initialized. It is called in both
1130  * the error case in attach and the normal detach case so it needs
1131  * to be careful about only freeing resources that have actually been
1132  * allocated.
1133  */
1134 static int
1135 sis_detach(device_t dev)
1136 {
1137 	struct sis_softc	*sc;
1138 	struct ifnet		*ifp;
1139 
1140 	sc = device_get_softc(dev);
1141 	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1142 	ifp = sc->sis_ifp;
1143 
1144 #ifdef DEVICE_POLLING
1145 	if (ifp->if_capenable & IFCAP_POLLING)
1146 		ether_poll_deregister(ifp);
1147 #endif
1148 
1149 	/* These should only be active if attach succeeded. */
1150 	if (device_is_attached(dev)) {
1151 		SIS_LOCK(sc);
1152 		sis_stop(sc);
1153 		SIS_UNLOCK(sc);
1154 		callout_drain(&sc->sis_stat_ch);
1155 		ether_ifdetach(ifp);
1156 	}
1157 	if (sc->sis_miibus)
1158 		device_delete_child(dev, sc->sis_miibus);
1159 	bus_generic_detach(dev);
1160 
1161 	if (sc->sis_intrhand)
1162 		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1163 	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1164 
1165 	if (ifp)
1166 		if_free(ifp);
1167 
1168 	sis_dma_free(sc);
1169 
1170 	mtx_destroy(&sc->sis_mtx);
1171 
1172 	return (0);
1173 }
1174 
1175 struct sis_dmamap_arg {
1176 	bus_addr_t	sis_busaddr;
1177 };
1178 
1179 static void
1180 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1181 {
1182 	struct sis_dmamap_arg	*ctx;
1183 
1184 	if (error != 0)
1185 		return;
1186 
1187 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1188 
1189 	ctx = (struct sis_dmamap_arg *)arg;
1190 	ctx->sis_busaddr = segs[0].ds_addr;
1191 }
1192 
1193 static int
1194 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1195     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1196     bus_addr_t *paddr, const char *msg)
1197 {
1198 	struct sis_dmamap_arg	ctx;
1199 	int			error;
1200 
1201 	error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1202 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1203 	    maxsize, 0, NULL, NULL, tag);
1204 	if (error != 0) {
1205 		device_printf(sc->sis_dev,
1206 		    "could not create %s dma tag\n", msg);
1207 		return (ENOMEM);
1208 	}
1209 	/* Allocate DMA'able memory for ring. */
1210 	error = bus_dmamem_alloc(*tag, (void **)ring,
1211 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1212 	if (error != 0) {
1213 		device_printf(sc->sis_dev,
1214 		    "could not allocate DMA'able memory for %s\n", msg);
1215 		return (ENOMEM);
1216 	}
1217 	/* Load the address of the ring. */
1218 	ctx.sis_busaddr = 0;
1219 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1220 	    &ctx, BUS_DMA_NOWAIT);
1221 	if (error != 0) {
1222 		device_printf(sc->sis_dev,
1223 		    "could not load DMA'able memory for %s\n", msg);
1224 		return (ENOMEM);
1225 	}
1226 	*paddr = ctx.sis_busaddr;
1227 	return (0);
1228 }
1229 
1230 static int
1231 sis_dma_alloc(struct sis_softc *sc)
1232 {
1233 	struct sis_rxdesc	*rxd;
1234 	struct sis_txdesc	*txd;
1235 	int			error, i;
1236 
1237 	/* Allocate the parent bus DMA tag appropriate for PCI. */
1238 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1239 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1240 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1241 	    0, NULL, NULL, &sc->sis_parent_tag);
1242 	if (error != 0) {
1243 		device_printf(sc->sis_dev,
1244 		    "could not allocate parent dma tag\n");
1245 		return (ENOMEM);
1246 	}
1247 
1248 	/* Create RX ring. */
1249 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1250 	    &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1251 	    &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1252 	if (error)
1253 		return (error);
1254 
1255 	/* Create TX ring. */
1256 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1257 	    &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1258 	    &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1259 	if (error)
1260 		return (error);
1261 
1262 	/* Create tag for RX mbufs. */
1263 	error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1264 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1265 	    MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1266 	if (error) {
1267 		device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1268 		return (error);
1269 	}
1270 
1271 	/* Create tag for TX mbufs. */
1272 	error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1273 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1274 	    MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1275 	    &sc->sis_tx_tag);
1276 	if (error) {
1277 		device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1278 		return (error);
1279 	}
1280 
1281 	/* Create DMA maps for RX buffers. */
1282 	error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1283 	if (error) {
1284 		device_printf(sc->sis_dev,
1285 		    "can't create spare DMA map for RX\n");
1286 		return (error);
1287 	}
1288 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1289 		rxd = &sc->sis_rxdesc[i];
1290 		rxd->rx_m = NULL;
1291 		error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1292 		if (error) {
1293 			device_printf(sc->sis_dev,
1294 			    "can't create DMA map for RX\n");
1295 			return (error);
1296 		}
1297 	}
1298 
1299 	/* Create DMA maps for TX buffers. */
1300 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1301 		txd = &sc->sis_txdesc[i];
1302 		txd->tx_m = NULL;
1303 		error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1304 		if (error) {
1305 			device_printf(sc->sis_dev,
1306 			    "can't create DMA map for TX\n");
1307 			return (error);
1308 		}
1309 	}
1310 
1311 	return (0);
1312 }
1313 
1314 static void
1315 sis_dma_free(struct sis_softc *sc)
1316 {
1317 	struct sis_rxdesc	*rxd;
1318 	struct sis_txdesc	*txd;
1319 	int			i;
1320 
1321 	/* Destroy DMA maps for RX buffers. */
1322 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1323 		rxd = &sc->sis_rxdesc[i];
1324 		if (rxd->rx_dmamap)
1325 			bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1326 	}
1327 	if (sc->sis_rx_sparemap)
1328 		bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1329 
1330 	/* Destroy DMA maps for TX buffers. */
1331 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1332 		txd = &sc->sis_txdesc[i];
1333 		if (txd->tx_dmamap)
1334 			bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1335 	}
1336 
1337 	if (sc->sis_rx_tag)
1338 		bus_dma_tag_destroy(sc->sis_rx_tag);
1339 	if (sc->sis_tx_tag)
1340 		bus_dma_tag_destroy(sc->sis_tx_tag);
1341 
1342 	/* Destroy RX ring. */
1343 	if (sc->sis_rx_paddr)
1344 		bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1345 	if (sc->sis_rx_list)
1346 		bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1347 		    sc->sis_rx_list_map);
1348 
1349 	if (sc->sis_rx_list_tag)
1350 		bus_dma_tag_destroy(sc->sis_rx_list_tag);
1351 
1352 	/* Destroy TX ring. */
1353 	if (sc->sis_tx_paddr)
1354 		bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1355 
1356 	if (sc->sis_tx_list)
1357 		bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1358 		    sc->sis_tx_list_map);
1359 
1360 	if (sc->sis_tx_list_tag)
1361 		bus_dma_tag_destroy(sc->sis_tx_list_tag);
1362 
1363 	/* Destroy the parent tag. */
1364 	if (sc->sis_parent_tag)
1365 		bus_dma_tag_destroy(sc->sis_parent_tag);
1366 }
1367 
1368 /*
1369  * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1370  * we arrange the descriptors in a closed ring, so that the last descriptor
1371  * points back to the first.
1372  */
1373 static int
1374 sis_ring_init(struct sis_softc *sc)
1375 {
1376 	struct sis_rxdesc	*rxd;
1377 	struct sis_txdesc	*txd;
1378 	bus_addr_t		next;
1379 	int			error, i;
1380 
1381 	bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1382 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1383 		txd = &sc->sis_txdesc[i];
1384 		txd->tx_m = NULL;
1385 		if (i == SIS_TX_LIST_CNT - 1)
1386 			next = SIS_TX_RING_ADDR(sc, 0);
1387 		else
1388 			next = SIS_TX_RING_ADDR(sc, i + 1);
1389 		sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1390 	}
1391 	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1392 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1393 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1394 
1395 	sc->sis_rx_cons = 0;
1396 	bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1397 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1398 		rxd = &sc->sis_rxdesc[i];
1399 		rxd->rx_desc = &sc->sis_rx_list[i];
1400 		if (i == SIS_RX_LIST_CNT - 1)
1401 			next = SIS_RX_RING_ADDR(sc, 0);
1402 		else
1403 			next = SIS_RX_RING_ADDR(sc, i + 1);
1404 		rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1405 		error = sis_newbuf(sc, rxd);
1406 		if (error)
1407 			return (error);
1408 	}
1409 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1410 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1411 
1412 	return (0);
1413 }
1414 
1415 /*
1416  * Initialize an RX descriptor and attach an MBUF cluster.
1417  */
1418 static int
1419 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1420 {
1421 	struct mbuf		*m;
1422 	bus_dma_segment_t	segs[1];
1423 	bus_dmamap_t		map;
1424 	int nsegs;
1425 
1426 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1427 	if (m == NULL)
1428 		return (ENOBUFS);
1429 	m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1430 #ifndef __NO_STRICT_ALIGNMENT
1431 	m_adj(m, SIS_RX_BUF_ALIGN);
1432 #endif
1433 
1434 	if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1435 	    segs, &nsegs, 0) != 0) {
1436 		m_freem(m);
1437 		return (ENOBUFS);
1438 	}
1439 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1440 
1441 	if (rxd->rx_m != NULL) {
1442 		bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1443 		    BUS_DMASYNC_POSTREAD);
1444 		bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1445 	}
1446 	map = rxd->rx_dmamap;
1447 	rxd->rx_dmamap = sc->sis_rx_sparemap;
1448 	sc->sis_rx_sparemap = map;
1449 	bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1450 	rxd->rx_m = m;
1451 	rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1452 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1453 	return (0);
1454 }
1455 
1456 static __inline void
1457 sis_discard_rxbuf(struct sis_rxdesc *rxd)
1458 {
1459 
1460 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1461 }
1462 
1463 #ifndef __NO_STRICT_ALIGNMENT
1464 static __inline void
1465 sis_fixup_rx(struct mbuf *m)
1466 {
1467 	uint16_t		*src, *dst;
1468 	int			i;
1469 
1470 	src = mtod(m, uint16_t *);
1471 	dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1472 
1473 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1474 		*dst++ = *src++;
1475 
1476 	m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1477 }
1478 #endif
1479 
1480 /*
1481  * A frame has been uploaded: pass the resulting mbuf chain up to
1482  * the higher level protocols.
1483  */
1484 static int
1485 sis_rxeof(struct sis_softc *sc)
1486 {
1487 	struct mbuf		*m;
1488 	struct ifnet		*ifp;
1489 	struct sis_rxdesc	*rxd;
1490 	struct sis_desc		*cur_rx;
1491 	int			prog, rx_cons, rx_npkts = 0, total_len;
1492 	uint32_t		rxstat;
1493 
1494 	SIS_LOCK_ASSERT(sc);
1495 
1496 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1497 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1498 
1499 	rx_cons = sc->sis_rx_cons;
1500 	ifp = sc->sis_ifp;
1501 
1502 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1503 	    SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1504 #ifdef DEVICE_POLLING
1505 		if (ifp->if_capenable & IFCAP_POLLING) {
1506 			if (sc->rxcycles <= 0)
1507 				break;
1508 			sc->rxcycles--;
1509 		}
1510 #endif
1511 		cur_rx = &sc->sis_rx_list[rx_cons];
1512 		rxstat = le32toh(cur_rx->sis_cmdsts);
1513 		if ((rxstat & SIS_CMDSTS_OWN) == 0)
1514 			break;
1515 		rxd = &sc->sis_rxdesc[rx_cons];
1516 
1517 		total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1518 		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1519 		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1520 		    ETHER_CRC_LEN))
1521 			rxstat &= ~SIS_RXSTAT_GIANT;
1522 		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1523 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1524 			if (rxstat & SIS_RXSTAT_COLL)
1525 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1526 			sis_discard_rxbuf(rxd);
1527 			continue;
1528 		}
1529 
1530 		/* Add a new receive buffer to the ring. */
1531 		m = rxd->rx_m;
1532 		if (sis_newbuf(sc, rxd) != 0) {
1533 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1534 			sis_discard_rxbuf(rxd);
1535 			continue;
1536 		}
1537 
1538 		/* No errors; receive the packet. */
1539 		m->m_pkthdr.len = m->m_len = total_len;
1540 #ifndef __NO_STRICT_ALIGNMENT
1541 		/*
1542 		 * On architectures without alignment problems we try to
1543 		 * allocate a new buffer for the receive ring, and pass up
1544 		 * the one where the packet is already, saving the expensive
1545 		 * copy operation.
1546 		 */
1547 		sis_fixup_rx(m);
1548 #endif
1549 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1550 		m->m_pkthdr.rcvif = ifp;
1551 
1552 		SIS_UNLOCK(sc);
1553 		(*ifp->if_input)(ifp, m);
1554 		SIS_LOCK(sc);
1555 		rx_npkts++;
1556 	}
1557 
1558 	if (prog > 0) {
1559 		sc->sis_rx_cons = rx_cons;
1560 		bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1561 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1562 	}
1563 
1564 	return (rx_npkts);
1565 }
1566 
1567 /*
1568  * A frame was downloaded to the chip. It's safe for us to clean up
1569  * the list buffers.
1570  */
1571 
1572 static void
1573 sis_txeof(struct sis_softc *sc)
1574 {
1575 	struct ifnet		*ifp;
1576 	struct sis_desc		*cur_tx;
1577 	struct sis_txdesc	*txd;
1578 	uint32_t		cons, txstat;
1579 
1580 	SIS_LOCK_ASSERT(sc);
1581 
1582 	cons = sc->sis_tx_cons;
1583 	if (cons == sc->sis_tx_prod)
1584 		return;
1585 
1586 	ifp = sc->sis_ifp;
1587 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1588 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1589 
1590 	/*
1591 	 * Go through our tx list and free mbufs for those
1592 	 * frames that have been transmitted.
1593 	 */
1594 	for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1595 		cur_tx = &sc->sis_tx_list[cons];
1596 		txstat = le32toh(cur_tx->sis_cmdsts);
1597 		if ((txstat & SIS_CMDSTS_OWN) != 0)
1598 			break;
1599 		txd = &sc->sis_txdesc[cons];
1600 		if (txd->tx_m != NULL) {
1601 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1602 			    BUS_DMASYNC_POSTWRITE);
1603 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1604 			m_freem(txd->tx_m);
1605 			txd->tx_m = NULL;
1606 			if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1607 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1608 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1609 				    (txstat & SIS_TXSTAT_COLLCNT) >> 16);
1610 			} else {
1611 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1612 				if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1613 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1614 				if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1615 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1616 			}
1617 		}
1618 		sc->sis_tx_cnt--;
1619 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1620 	}
1621 	sc->sis_tx_cons = cons;
1622 	if (sc->sis_tx_cnt == 0)
1623 		sc->sis_watchdog_timer = 0;
1624 }
1625 
1626 static void
1627 sis_tick(void *xsc)
1628 {
1629 	struct sis_softc	*sc;
1630 	struct mii_data		*mii;
1631 
1632 	sc = xsc;
1633 	SIS_LOCK_ASSERT(sc);
1634 
1635 	mii = device_get_softc(sc->sis_miibus);
1636 	mii_tick(mii);
1637 	sis_watchdog(sc);
1638 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1639 		sis_miibus_statchg(sc->sis_dev);
1640 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1641 }
1642 
1643 #ifdef DEVICE_POLLING
1644 static poll_handler_t sis_poll;
1645 
1646 static int
1647 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1648 {
1649 	struct	sis_softc *sc = ifp->if_softc;
1650 	int rx_npkts = 0;
1651 
1652 	SIS_LOCK(sc);
1653 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1654 		SIS_UNLOCK(sc);
1655 		return (rx_npkts);
1656 	}
1657 
1658 	/*
1659 	 * On the sis, reading the status register also clears it.
1660 	 * So before returning to intr mode we must make sure that all
1661 	 * possible pending sources of interrupts have been served.
1662 	 * In practice this means run to completion the *eof routines,
1663 	 * and then call the interrupt routine
1664 	 */
1665 	sc->rxcycles = count;
1666 	rx_npkts = sis_rxeof(sc);
1667 	sis_txeof(sc);
1668 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1669 		sis_startl(ifp);
1670 
1671 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1672 		uint32_t	status;
1673 
1674 		/* Reading the ISR register clears all interrupts. */
1675 		status = CSR_READ_4(sc, SIS_ISR);
1676 
1677 		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1678 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1679 
1680 		if (status & (SIS_ISR_RX_IDLE))
1681 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1682 
1683 		if (status & SIS_ISR_SYSERR) {
1684 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1685 			sis_initl(sc);
1686 		}
1687 	}
1688 
1689 	SIS_UNLOCK(sc);
1690 	return (rx_npkts);
1691 }
1692 #endif /* DEVICE_POLLING */
1693 
1694 static void
1695 sis_intr(void *arg)
1696 {
1697 	struct sis_softc	*sc;
1698 	struct ifnet		*ifp;
1699 	uint32_t		status;
1700 
1701 	sc = arg;
1702 	ifp = sc->sis_ifp;
1703 
1704 	SIS_LOCK(sc);
1705 #ifdef DEVICE_POLLING
1706 	if (ifp->if_capenable & IFCAP_POLLING) {
1707 		SIS_UNLOCK(sc);
1708 		return;
1709 	}
1710 #endif
1711 
1712 	/* Reading the ISR register clears all interrupts. */
1713 	status = CSR_READ_4(sc, SIS_ISR);
1714 	if ((status & SIS_INTRS) == 0) {
1715 		/* Not ours. */
1716 		SIS_UNLOCK(sc);
1717 		return;
1718 	}
1719 
1720 	/* Disable interrupts. */
1721 	CSR_WRITE_4(sc, SIS_IER, 0);
1722 
1723 	for (;(status & SIS_INTRS) != 0;) {
1724 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1725 			break;
1726 		if (status &
1727 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1728 		    SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1729 			sis_txeof(sc);
1730 
1731 		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1732 		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1733 			sis_rxeof(sc);
1734 
1735 		if (status & SIS_ISR_RX_OFLOW)
1736 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1737 
1738 		if (status & (SIS_ISR_RX_IDLE))
1739 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1740 
1741 		if (status & SIS_ISR_SYSERR) {
1742 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1743 			sis_initl(sc);
1744 			SIS_UNLOCK(sc);
1745 			return;
1746 		}
1747 		status = CSR_READ_4(sc, SIS_ISR);
1748 	}
1749 
1750 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1751 		/* Re-enable interrupts. */
1752 		CSR_WRITE_4(sc, SIS_IER, 1);
1753 
1754 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1755 			sis_startl(ifp);
1756 	}
1757 
1758 	SIS_UNLOCK(sc);
1759 }
1760 
1761 /*
1762  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1763  * pointers to the fragment pointers.
1764  */
1765 static int
1766 sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1767 {
1768 	struct mbuf		*m;
1769 	struct sis_txdesc	*txd;
1770 	struct sis_desc		*f;
1771 	bus_dma_segment_t	segs[SIS_MAXTXSEGS];
1772 	bus_dmamap_t		map;
1773 	int			error, i, frag, nsegs, prod;
1774 	int			padlen;
1775 
1776 	prod = sc->sis_tx_prod;
1777 	txd = &sc->sis_txdesc[prod];
1778 	if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1779 	    (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1780 		m = *m_head;
1781 		padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1782 		if (M_WRITABLE(m) == 0) {
1783 			/* Get a writable copy. */
1784 			m = m_dup(*m_head, M_NOWAIT);
1785 			m_freem(*m_head);
1786 			if (m == NULL) {
1787 				*m_head = NULL;
1788 				return (ENOBUFS);
1789 			}
1790 			*m_head = m;
1791 		}
1792 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1793 			m = m_defrag(m, M_NOWAIT);
1794 			if (m == NULL) {
1795 				m_freem(*m_head);
1796 				*m_head = NULL;
1797 				return (ENOBUFS);
1798 			}
1799 		}
1800 		/*
1801 		 * Manually pad short frames, and zero the pad space
1802 		 * to avoid leaking data.
1803 		 */
1804 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1805 		m->m_pkthdr.len += padlen;
1806 		m->m_len = m->m_pkthdr.len;
1807 		*m_head = m;
1808 	}
1809 	error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1810 	    *m_head, segs, &nsegs, 0);
1811 	if (error == EFBIG) {
1812 		m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
1813 		if (m == NULL) {
1814 			m_freem(*m_head);
1815 			*m_head = NULL;
1816 			return (ENOBUFS);
1817 		}
1818 		*m_head = m;
1819 		error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1820 		    *m_head, segs, &nsegs, 0);
1821 		if (error != 0) {
1822 			m_freem(*m_head);
1823 			*m_head = NULL;
1824 			return (error);
1825 		}
1826 	} else if (error != 0)
1827 		return (error);
1828 
1829 	/* Check for descriptor overruns. */
1830 	if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1831 		bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1832 		return (ENOBUFS);
1833 	}
1834 
1835 	bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1836 
1837 	frag = prod;
1838 	for (i = 0; i < nsegs; i++) {
1839 		f = &sc->sis_tx_list[prod];
1840 		if (i == 0)
1841 			f->sis_cmdsts = htole32(segs[i].ds_len |
1842 			    SIS_CMDSTS_MORE);
1843 		else
1844 			f->sis_cmdsts = htole32(segs[i].ds_len |
1845 			    SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1846 		f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1847 		SIS_INC(prod, SIS_TX_LIST_CNT);
1848 		sc->sis_tx_cnt++;
1849 	}
1850 
1851 	/* Update producer index. */
1852 	sc->sis_tx_prod = prod;
1853 
1854 	/* Remove MORE flag on the last descriptor. */
1855 	prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1856 	f = &sc->sis_tx_list[prod];
1857 	f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1858 
1859 	/* Lastly transfer ownership of packet to the controller. */
1860 	f = &sc->sis_tx_list[frag];
1861 	f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1862 
1863 	/* Swap the last and the first dmamaps. */
1864 	map = txd->tx_dmamap;
1865 	txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1866 	sc->sis_txdesc[prod].tx_dmamap = map;
1867 	sc->sis_txdesc[prod].tx_m = *m_head;
1868 
1869 	return (0);
1870 }
1871 
1872 static void
1873 sis_start(struct ifnet *ifp)
1874 {
1875 	struct sis_softc	*sc;
1876 
1877 	sc = ifp->if_softc;
1878 	SIS_LOCK(sc);
1879 	sis_startl(ifp);
1880 	SIS_UNLOCK(sc);
1881 }
1882 
1883 static void
1884 sis_startl(struct ifnet *ifp)
1885 {
1886 	struct sis_softc	*sc;
1887 	struct mbuf		*m_head;
1888 	int			queued;
1889 
1890 	sc = ifp->if_softc;
1891 
1892 	SIS_LOCK_ASSERT(sc);
1893 
1894 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1895 	    IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
1896 		return;
1897 
1898 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1899 	    sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
1900 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1901 		if (m_head == NULL)
1902 			break;
1903 
1904 		if (sis_encap(sc, &m_head) != 0) {
1905 			if (m_head == NULL)
1906 				break;
1907 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1908 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1909 			break;
1910 		}
1911 
1912 		queued++;
1913 
1914 		/*
1915 		 * If there's a BPF listener, bounce a copy of this frame
1916 		 * to him.
1917 		 */
1918 		BPF_MTAP(ifp, m_head);
1919 	}
1920 
1921 	if (queued) {
1922 		/* Transmit */
1923 		bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1924 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1925 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1926 
1927 		/*
1928 		 * Set a timeout in case the chip goes out to lunch.
1929 		 */
1930 		sc->sis_watchdog_timer = 5;
1931 	}
1932 }
1933 
1934 static void
1935 sis_init(void *xsc)
1936 {
1937 	struct sis_softc	*sc = xsc;
1938 
1939 	SIS_LOCK(sc);
1940 	sis_initl(sc);
1941 	SIS_UNLOCK(sc);
1942 }
1943 
1944 static void
1945 sis_initl(struct sis_softc *sc)
1946 {
1947 	struct ifnet		*ifp = sc->sis_ifp;
1948 	struct mii_data		*mii;
1949 	uint8_t			*eaddr;
1950 
1951 	SIS_LOCK_ASSERT(sc);
1952 
1953 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1954 		return;
1955 
1956 	/*
1957 	 * Cancel pending I/O and free all RX/TX buffers.
1958 	 */
1959 	sis_stop(sc);
1960 	/*
1961 	 * Reset the chip to a known state.
1962 	 */
1963 	sis_reset(sc);
1964 #ifdef notyet
1965 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1966 		/*
1967 		 * Configure 400usec of interrupt holdoff.  This is based
1968 		 * on empirical tests on a Soekris 4801.
1969  		 */
1970 		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1971 	}
1972 #endif
1973 
1974 	mii = device_get_softc(sc->sis_miibus);
1975 
1976 	/* Set MAC address */
1977 	eaddr = IF_LLADDR(sc->sis_ifp);
1978 	if (sc->sis_type == SIS_TYPE_83815) {
1979 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1980 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1981 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1982 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1983 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1984 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1985 	} else {
1986 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1987 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1988 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1989 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1990 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1991 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1992 	}
1993 
1994 	/* Init circular TX/RX lists. */
1995 	if (sis_ring_init(sc) != 0) {
1996 		device_printf(sc->sis_dev,
1997 		    "initialization failed: no memory for rx buffers\n");
1998 		sis_stop(sc);
1999 		return;
2000 	}
2001 
2002 	if (sc->sis_type == SIS_TYPE_83815) {
2003 		if (sc->sis_manual_pad != 0)
2004 			sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
2005 		else
2006 			sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
2007 	}
2008 
2009 	/*
2010 	 * Short Cable Receive Errors (MP21.E)
2011 	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2012 	 * recommends the following register settings "for optimum
2013 	 * performance." for rev 15C.  Set this also for 15D parts as
2014 	 * they require it in practice.
2015 	 */
2016 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2017 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2018 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2019 		/* set val for c2 */
2020 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2021 		/* load/kill c2 */
2022 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2023 		/* rais SD off, from 4 to c */
2024 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2025 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2026 	}
2027 
2028 	sis_rxfilter(sc);
2029 
2030 	/*
2031 	 * Load the address of the RX and TX lists.
2032 	 */
2033 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2034 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2035 
2036 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2037 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2038 	 * for TX/RX DMA should be no larger than 16 double words.
2039 	 */
2040 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2041 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2042 	} else {
2043 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2044 	}
2045 
2046 	/* Accept Long Packets for VLAN support */
2047 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2048 
2049 	/*
2050 	 * Assume 100Mbps link, actual MAC configuration is done
2051 	 * after getting a valid link.
2052 	 */
2053 	CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2054 
2055 	/*
2056 	 * Enable interrupts.
2057 	 */
2058 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2059 #ifdef DEVICE_POLLING
2060 	/*
2061 	 * ... only enable interrupts if we are not polling, make sure
2062 	 * they are off otherwise.
2063 	 */
2064 	if (ifp->if_capenable & IFCAP_POLLING)
2065 		CSR_WRITE_4(sc, SIS_IER, 0);
2066 	else
2067 #endif
2068 	CSR_WRITE_4(sc, SIS_IER, 1);
2069 
2070 	/* Clear MAC disable. */
2071 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2072 
2073 	sc->sis_flags &= ~SIS_FLAG_LINK;
2074 	mii_mediachg(mii);
2075 
2076 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2077 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2078 
2079 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2080 }
2081 
2082 /*
2083  * Set media options.
2084  */
2085 static int
2086 sis_ifmedia_upd(struct ifnet *ifp)
2087 {
2088 	struct sis_softc	*sc;
2089 	struct mii_data		*mii;
2090 	struct mii_softc	*miisc;
2091 	int			error;
2092 
2093 	sc = ifp->if_softc;
2094 
2095 	SIS_LOCK(sc);
2096 	mii = device_get_softc(sc->sis_miibus);
2097 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2098 		PHY_RESET(miisc);
2099 	error = mii_mediachg(mii);
2100 	SIS_UNLOCK(sc);
2101 
2102 	return (error);
2103 }
2104 
2105 /*
2106  * Report current media status.
2107  */
2108 static void
2109 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2110 {
2111 	struct sis_softc	*sc;
2112 	struct mii_data		*mii;
2113 
2114 	sc = ifp->if_softc;
2115 
2116 	SIS_LOCK(sc);
2117 	mii = device_get_softc(sc->sis_miibus);
2118 	mii_pollstat(mii);
2119 	ifmr->ifm_active = mii->mii_media_active;
2120 	ifmr->ifm_status = mii->mii_media_status;
2121 	SIS_UNLOCK(sc);
2122 }
2123 
2124 static int
2125 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2126 {
2127 	struct sis_softc	*sc = ifp->if_softc;
2128 	struct ifreq		*ifr = (struct ifreq *) data;
2129 	struct mii_data		*mii;
2130 	int			error = 0, mask;
2131 
2132 	switch (command) {
2133 	case SIOCSIFFLAGS:
2134 		SIS_LOCK(sc);
2135 		if (ifp->if_flags & IFF_UP) {
2136 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2137 			    ((ifp->if_flags ^ sc->sis_if_flags) &
2138 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2139 				sis_rxfilter(sc);
2140 			else
2141 				sis_initl(sc);
2142 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2143 			sis_stop(sc);
2144 		sc->sis_if_flags = ifp->if_flags;
2145 		SIS_UNLOCK(sc);
2146 		break;
2147 	case SIOCADDMULTI:
2148 	case SIOCDELMULTI:
2149 		SIS_LOCK(sc);
2150 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2151 			sis_rxfilter(sc);
2152 		SIS_UNLOCK(sc);
2153 		break;
2154 	case SIOCGIFMEDIA:
2155 	case SIOCSIFMEDIA:
2156 		mii = device_get_softc(sc->sis_miibus);
2157 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2158 		break;
2159 	case SIOCSIFCAP:
2160 		SIS_LOCK(sc);
2161 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2162 #ifdef DEVICE_POLLING
2163 		if ((mask & IFCAP_POLLING) != 0 &&
2164 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2165 			ifp->if_capenable ^= IFCAP_POLLING;
2166 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2167 				error = ether_poll_register(sis_poll, ifp);
2168 				if (error != 0) {
2169 					SIS_UNLOCK(sc);
2170 					break;
2171 				}
2172 				/* Disable interrupts. */
2173 				CSR_WRITE_4(sc, SIS_IER, 0);
2174                         } else {
2175                                 error = ether_poll_deregister(ifp);
2176                                 /* Enable interrupts. */
2177 				CSR_WRITE_4(sc, SIS_IER, 1);
2178                         }
2179 		}
2180 #endif /* DEVICE_POLLING */
2181 		if ((mask & IFCAP_WOL) != 0 &&
2182 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2183 			if ((mask & IFCAP_WOL_UCAST) != 0)
2184 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2185 			if ((mask & IFCAP_WOL_MCAST) != 0)
2186 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2187 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2188 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2189 		}
2190 		SIS_UNLOCK(sc);
2191 		break;
2192 	default:
2193 		error = ether_ioctl(ifp, command, data);
2194 		break;
2195 	}
2196 
2197 	return (error);
2198 }
2199 
2200 static void
2201 sis_watchdog(struct sis_softc *sc)
2202 {
2203 
2204 	SIS_LOCK_ASSERT(sc);
2205 
2206 	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2207 		return;
2208 
2209 	device_printf(sc->sis_dev, "watchdog timeout\n");
2210 	if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1);
2211 
2212 	sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2213 	sis_initl(sc);
2214 
2215 	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2216 		sis_startl(sc->sis_ifp);
2217 }
2218 
2219 /*
2220  * Stop the adapter and free any mbufs allocated to the
2221  * RX and TX lists.
2222  */
2223 static void
2224 sis_stop(struct sis_softc *sc)
2225 {
2226 	struct ifnet *ifp;
2227 	struct sis_rxdesc *rxd;
2228 	struct sis_txdesc *txd;
2229 	int i;
2230 
2231 	SIS_LOCK_ASSERT(sc);
2232 
2233 	ifp = sc->sis_ifp;
2234 	sc->sis_watchdog_timer = 0;
2235 
2236 	callout_stop(&sc->sis_stat_ch);
2237 
2238 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2239 	CSR_WRITE_4(sc, SIS_IER, 0);
2240 	CSR_WRITE_4(sc, SIS_IMR, 0);
2241 	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2242 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2243 	DELAY(1000);
2244 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2245 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2246 
2247 	sc->sis_flags &= ~SIS_FLAG_LINK;
2248 
2249 	/*
2250 	 * Free data in the RX lists.
2251 	 */
2252 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2253 		rxd = &sc->sis_rxdesc[i];
2254 		if (rxd->rx_m != NULL) {
2255 			bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2256 			    BUS_DMASYNC_POSTREAD);
2257 			bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2258 			m_freem(rxd->rx_m);
2259 			rxd->rx_m = NULL;
2260 		}
2261 	}
2262 
2263 	/*
2264 	 * Free the TX list buffers.
2265 	 */
2266 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2267 		txd = &sc->sis_txdesc[i];
2268 		if (txd->tx_m != NULL) {
2269 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2270 			    BUS_DMASYNC_POSTWRITE);
2271 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2272 			m_freem(txd->tx_m);
2273 			txd->tx_m = NULL;
2274 		}
2275 	}
2276 }
2277 
2278 /*
2279  * Stop all chip I/O so that the kernel's probe routines don't
2280  * get confused by errant DMAs when rebooting.
2281  */
2282 static int
2283 sis_shutdown(device_t dev)
2284 {
2285 
2286 	return (sis_suspend(dev));
2287 }
2288 
2289 static int
2290 sis_suspend(device_t dev)
2291 {
2292 	struct sis_softc	*sc;
2293 
2294 	sc = device_get_softc(dev);
2295 	SIS_LOCK(sc);
2296 	sis_stop(sc);
2297 	sis_wol(sc);
2298 	SIS_UNLOCK(sc);
2299 	return (0);
2300 }
2301 
2302 static int
2303 sis_resume(device_t dev)
2304 {
2305 	struct sis_softc	*sc;
2306 	struct ifnet		*ifp;
2307 
2308 	sc = device_get_softc(dev);
2309 	SIS_LOCK(sc);
2310 	ifp = sc->sis_ifp;
2311 	if ((ifp->if_flags & IFF_UP) != 0) {
2312 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2313 		sis_initl(sc);
2314 	}
2315 	SIS_UNLOCK(sc);
2316 	return (0);
2317 }
2318 
2319 static void
2320 sis_wol(struct sis_softc *sc)
2321 {
2322 	struct ifnet		*ifp;
2323 	uint32_t		val;
2324 	uint16_t		pmstat;
2325 	int			pmc;
2326 
2327 	ifp = sc->sis_ifp;
2328 	if ((ifp->if_capenable & IFCAP_WOL) == 0)
2329 		return;
2330 
2331 	if (sc->sis_type == SIS_TYPE_83815) {
2332 		/* Reset RXDP. */
2333 		CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2334 
2335 		/* Configure WOL events. */
2336 		CSR_READ_4(sc, NS_WCSR);
2337 		val = 0;
2338 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2339 			val |= NS_WCSR_WAKE_UCAST;
2340 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2341 			val |= NS_WCSR_WAKE_MCAST;
2342 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2343 			val |= NS_WCSR_WAKE_MAGIC;
2344 		CSR_WRITE_4(sc, NS_WCSR, val);
2345 		/* Enable PME and clear PMESTS. */
2346 		val = CSR_READ_4(sc, NS_CLKRUN);
2347 		val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2348 		CSR_WRITE_4(sc, NS_CLKRUN, val);
2349 		/* Enable silent RX mode. */
2350 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2351 	} else {
2352 		if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2353 			return;
2354 		val = 0;
2355 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2356 			val |= SIS_PWRMAN_WOL_MAGIC;
2357 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2358 		/* Request PME. */
2359 		pmstat = pci_read_config(sc->sis_dev,
2360 		    pmc + PCIR_POWER_STATUS, 2);
2361 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2362 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2363 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2364 		pci_write_config(sc->sis_dev,
2365 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
2366 	}
2367 }
2368 
2369 static void
2370 sis_add_sysctls(struct sis_softc *sc)
2371 {
2372 	struct sysctl_ctx_list *ctx;
2373 	struct sysctl_oid_list *children;
2374 
2375 	ctx = device_get_sysctl_ctx(sc->sis_dev);
2376 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2377 
2378 	/*
2379 	 * Unlike most other controllers, NS DP83815/DP83816 controllers
2380 	 * seem to pad with 0xFF when it encounter short frames.  According
2381 	 * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
2382 	 * on will have driver pad manully but it's disabled by default
2383 	 * because it will consume extra CPU cycles for short frames.
2384 	 */
2385 	sc->sis_manual_pad = 0;
2386 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2387 	    CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames");
2388 }
2389 
2390 static device_method_t sis_methods[] = {
2391 	/* Device interface */
2392 	DEVMETHOD(device_probe,		sis_probe),
2393 	DEVMETHOD(device_attach,	sis_attach),
2394 	DEVMETHOD(device_detach,	sis_detach),
2395 	DEVMETHOD(device_shutdown,	sis_shutdown),
2396 	DEVMETHOD(device_suspend,	sis_suspend),
2397 	DEVMETHOD(device_resume,	sis_resume),
2398 
2399 	/* MII interface */
2400 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2401 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2402 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2403 
2404 	DEVMETHOD_END
2405 };
2406 
2407 static driver_t sis_driver = {
2408 	"sis",
2409 	sis_methods,
2410 	sizeof(struct sis_softc)
2411 };
2412 
2413 DRIVER_MODULE(sis, pci, sis_driver, 0, 0);
2414 DRIVER_MODULE(miibus, sis, miibus_driver, 0, 0);
2415