xref: /freebsd/sys/dev/sis/if_sis.c (revision 39beb93c)
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3  * Copyright (c) 1997, 1998, 1999
4  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39  * available from http://www.sis.com.tw.
40  *
41  * This driver also supports the NatSemi DP83815. Datasheets are
42  * available from http://www.national.com.
43  *
44  * Written by Bill Paul <wpaul@ee.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #ifdef HAVE_KERNEL_OPTION_HEADERS
62 #include "opt_device_polling.h"
63 #endif
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/sockio.h>
68 #include <sys/mbuf.h>
69 #include <sys/malloc.h>
70 #include <sys/kernel.h>
71 #include <sys/module.h>
72 #include <sys/socket.h>
73 
74 #include <net/if.h>
75 #include <net/if_arp.h>
76 #include <net/ethernet.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_vlan_var.h>
81 
82 #include <net/bpf.h>
83 
84 #include <machine/bus.h>
85 #include <machine/resource.h>
86 #include <sys/bus.h>
87 #include <sys/rman.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #define SIS_USEIOSPACE
96 
97 #include <dev/sis/if_sisreg.h>
98 
99 MODULE_DEPEND(sis, pci, 1, 1, 1);
100 MODULE_DEPEND(sis, ether, 1, 1, 1);
101 MODULE_DEPEND(sis, miibus, 1, 1, 1);
102 
103 /* "device miibus" required.  See GENERIC if you get errors here. */
104 #include "miibus_if.h"
105 
106 #define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
107 #define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
108 #define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
109 
110 /*
111  * register space access macros
112  */
113 #define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
114 
115 #define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
116 
117 #define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
118 
119 /*
120  * Various supported device vendors/types and their names.
121  */
122 static struct sis_type sis_devs[] = {
123 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
124 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
125 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
126 	{ 0, 0, NULL }
127 };
128 
129 static int sis_detach(device_t);
130 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 static int sis_ifmedia_upd(struct ifnet *);
132 static void sis_init(void *);
133 static void sis_initl(struct sis_softc *);
134 static void sis_intr(void *);
135 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
136 static int sis_newbuf(struct sis_softc *, struct sis_desc *, struct mbuf *);
137 static void sis_start(struct ifnet *);
138 static void sis_startl(struct ifnet *);
139 static void sis_stop(struct sis_softc *);
140 static void sis_watchdog(struct sis_softc *);
141 
142 
143 static struct resource_spec sis_res_spec[] = {
144 #ifdef SIS_USEIOSPACE
145 	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
146 #else
147 	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
148 #endif
149 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
150 	{ -1, 0 }
151 };
152 
153 #define SIS_SETBIT(sc, reg, x)				\
154 	CSR_WRITE_4(sc, reg,				\
155 		CSR_READ_4(sc, reg) | (x))
156 
157 #define SIS_CLRBIT(sc, reg, x)				\
158 	CSR_WRITE_4(sc, reg,				\
159 		CSR_READ_4(sc, reg) & ~(x))
160 
161 #define SIO_SET(x)					\
162 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
163 
164 #define SIO_CLR(x)					\
165 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
166 
167 static void
168 sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
169 {
170 	struct sis_desc	*r;
171 
172 	r = arg;
173 	r->sis_next = segs->ds_addr;
174 }
175 
176 static void
177 sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
178 {
179 	struct sis_desc	*r;
180 
181 	r = arg;
182 	r->sis_ptr = segs->ds_addr;
183 }
184 
185 static void
186 sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
187 {
188 	u_int32_t *p;
189 
190 	p = arg;
191 	*p = segs->ds_addr;
192 }
193 
194 /*
195  * Routine to reverse the bits in a word. Stolen almost
196  * verbatim from /usr/games/fortune.
197  */
198 static uint16_t
199 sis_reverse(uint16_t n)
200 {
201 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
202 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
203 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
204 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
205 
206 	return(n);
207 }
208 
209 static void
210 sis_delay(struct sis_softc *sc)
211 {
212 	int			idx;
213 
214 	for (idx = (300 / 33) + 1; idx > 0; idx--)
215 		CSR_READ_4(sc, SIS_CSR);
216 }
217 
218 static void
219 sis_eeprom_idle(struct sis_softc *sc)
220 {
221 	int		i;
222 
223 	SIO_SET(SIS_EECTL_CSEL);
224 	sis_delay(sc);
225 	SIO_SET(SIS_EECTL_CLK);
226 	sis_delay(sc);
227 
228 	for (i = 0; i < 25; i++) {
229 		SIO_CLR(SIS_EECTL_CLK);
230 		sis_delay(sc);
231 		SIO_SET(SIS_EECTL_CLK);
232 		sis_delay(sc);
233 	}
234 
235 	SIO_CLR(SIS_EECTL_CLK);
236 	sis_delay(sc);
237 	SIO_CLR(SIS_EECTL_CSEL);
238 	sis_delay(sc);
239 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
240 }
241 
242 /*
243  * Send a read command and address to the EEPROM, check for ACK.
244  */
245 static void
246 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
247 {
248 	int		d, i;
249 
250 	d = addr | SIS_EECMD_READ;
251 
252 	/*
253 	 * Feed in each bit and stobe the clock.
254 	 */
255 	for (i = 0x400; i; i >>= 1) {
256 		if (d & i) {
257 			SIO_SET(SIS_EECTL_DIN);
258 		} else {
259 			SIO_CLR(SIS_EECTL_DIN);
260 		}
261 		sis_delay(sc);
262 		SIO_SET(SIS_EECTL_CLK);
263 		sis_delay(sc);
264 		SIO_CLR(SIS_EECTL_CLK);
265 		sis_delay(sc);
266 	}
267 }
268 
269 /*
270  * Read a word of data stored in the EEPROM at address 'addr.'
271  */
272 static void
273 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
274 {
275 	int		i;
276 	u_int16_t		word = 0;
277 
278 	/* Force EEPROM to idle state. */
279 	sis_eeprom_idle(sc);
280 
281 	/* Enter EEPROM access mode. */
282 	sis_delay(sc);
283 	SIO_CLR(SIS_EECTL_CLK);
284 	sis_delay(sc);
285 	SIO_SET(SIS_EECTL_CSEL);
286 	sis_delay(sc);
287 
288 	/*
289 	 * Send address of word we want to read.
290 	 */
291 	sis_eeprom_putbyte(sc, addr);
292 
293 	/*
294 	 * Start reading bits from EEPROM.
295 	 */
296 	for (i = 0x8000; i; i >>= 1) {
297 		SIO_SET(SIS_EECTL_CLK);
298 		sis_delay(sc);
299 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
300 			word |= i;
301 		sis_delay(sc);
302 		SIO_CLR(SIS_EECTL_CLK);
303 		sis_delay(sc);
304 	}
305 
306 	/* Turn off EEPROM access mode. */
307 	sis_eeprom_idle(sc);
308 
309 	*dest = word;
310 }
311 
312 /*
313  * Read a sequence of words from the EEPROM.
314  */
315 static void
316 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
317 {
318 	int			i;
319 	u_int16_t		word = 0, *ptr;
320 
321 	for (i = 0; i < cnt; i++) {
322 		sis_eeprom_getword(sc, off + i, &word);
323 		ptr = (u_int16_t *)(dest + (i * 2));
324 		if (swap)
325 			*ptr = ntohs(word);
326 		else
327 			*ptr = word;
328 	}
329 }
330 
331 #if defined(__i386__) || defined(__amd64__)
332 static device_t
333 sis_find_bridge(device_t dev)
334 {
335 	devclass_t		pci_devclass;
336 	device_t		*pci_devices;
337 	int			pci_count = 0;
338 	device_t		*pci_children;
339 	int			pci_childcount = 0;
340 	device_t		*busp, *childp;
341 	device_t		child = NULL;
342 	int			i, j;
343 
344 	if ((pci_devclass = devclass_find("pci")) == NULL)
345 		return(NULL);
346 
347 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
348 
349 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
350 		if (device_get_children(*busp, &pci_children, &pci_childcount))
351 			continue;
352 		for (j = 0, childp = pci_children;
353 		    j < pci_childcount; j++, childp++) {
354 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
355 			    pci_get_device(*childp) == 0x0008) {
356 				child = *childp;
357 				free(pci_children, M_TEMP);
358 				goto done;
359 			}
360 		}
361 		free(pci_children, M_TEMP);
362 	}
363 
364 done:
365 	free(pci_devices, M_TEMP);
366 	return(child);
367 }
368 
369 static void
370 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
371 {
372 	device_t		bridge;
373 	u_int8_t		reg;
374 	int			i;
375 	bus_space_tag_t		btag;
376 
377 	bridge = sis_find_bridge(dev);
378 	if (bridge == NULL)
379 		return;
380 	reg = pci_read_config(bridge, 0x48, 1);
381 	pci_write_config(bridge, 0x48, reg|0x40, 1);
382 
383 	/* XXX */
384 #if defined(__i386__)
385 	btag = I386_BUS_SPACE_IO;
386 #elif defined(__amd64__)
387 	btag = AMD64_BUS_SPACE_IO;
388 #endif
389 
390 	for (i = 0; i < cnt; i++) {
391 		bus_space_write_1(btag, 0x0, 0x70, i + off);
392 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
393 	}
394 
395 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
396 	return;
397 }
398 
399 static void
400 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
401 {
402 	u_int32_t		filtsave, csrsave;
403 
404 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
405 	csrsave = CSR_READ_4(sc, SIS_CSR);
406 
407 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
408 	CSR_WRITE_4(sc, SIS_CSR, 0);
409 
410 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
411 
412 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
413 	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
414 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
415 	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
416 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
417 	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
418 
419 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
420 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
421 	return;
422 }
423 #endif
424 
425 /*
426  * Sync the PHYs by setting data bit and strobing the clock 32 times.
427  */
428 static void
429 sis_mii_sync(struct sis_softc *sc)
430 {
431 	int		i;
432 
433  	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
434 
435  	for (i = 0; i < 32; i++) {
436  		SIO_SET(SIS_MII_CLK);
437  		DELAY(1);
438  		SIO_CLR(SIS_MII_CLK);
439  		DELAY(1);
440  	}
441 }
442 
443 /*
444  * Clock a series of bits through the MII.
445  */
446 static void
447 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
448 {
449 	int			i;
450 
451 	SIO_CLR(SIS_MII_CLK);
452 
453 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
454 		if (bits & i) {
455 			SIO_SET(SIS_MII_DATA);
456 		} else {
457 			SIO_CLR(SIS_MII_DATA);
458 		}
459 		DELAY(1);
460 		SIO_CLR(SIS_MII_CLK);
461 		DELAY(1);
462 		SIO_SET(SIS_MII_CLK);
463 	}
464 }
465 
466 /*
467  * Read an PHY register through the MII.
468  */
469 static int
470 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
471 {
472 	int			i, ack;
473 
474 	/*
475 	 * Set up frame for RX.
476 	 */
477 	frame->mii_stdelim = SIS_MII_STARTDELIM;
478 	frame->mii_opcode = SIS_MII_READOP;
479 	frame->mii_turnaround = 0;
480 	frame->mii_data = 0;
481 
482 	/*
483  	 * Turn on data xmit.
484 	 */
485 	SIO_SET(SIS_MII_DIR);
486 
487 	sis_mii_sync(sc);
488 
489 	/*
490 	 * Send command/address info.
491 	 */
492 	sis_mii_send(sc, frame->mii_stdelim, 2);
493 	sis_mii_send(sc, frame->mii_opcode, 2);
494 	sis_mii_send(sc, frame->mii_phyaddr, 5);
495 	sis_mii_send(sc, frame->mii_regaddr, 5);
496 
497 	/* Idle bit */
498 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
499 	DELAY(1);
500 	SIO_SET(SIS_MII_CLK);
501 	DELAY(1);
502 
503 	/* Turn off xmit. */
504 	SIO_CLR(SIS_MII_DIR);
505 
506 	/* Check for ack */
507 	SIO_CLR(SIS_MII_CLK);
508 	DELAY(1);
509 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
510 	SIO_SET(SIS_MII_CLK);
511 	DELAY(1);
512 
513 	/*
514 	 * Now try reading data bits. If the ack failed, we still
515 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
516 	 */
517 	if (ack) {
518 		for(i = 0; i < 16; i++) {
519 			SIO_CLR(SIS_MII_CLK);
520 			DELAY(1);
521 			SIO_SET(SIS_MII_CLK);
522 			DELAY(1);
523 		}
524 		goto fail;
525 	}
526 
527 	for (i = 0x8000; i; i >>= 1) {
528 		SIO_CLR(SIS_MII_CLK);
529 		DELAY(1);
530 		if (!ack) {
531 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
532 				frame->mii_data |= i;
533 			DELAY(1);
534 		}
535 		SIO_SET(SIS_MII_CLK);
536 		DELAY(1);
537 	}
538 
539 fail:
540 
541 	SIO_CLR(SIS_MII_CLK);
542 	DELAY(1);
543 	SIO_SET(SIS_MII_CLK);
544 	DELAY(1);
545 
546 	if (ack)
547 		return(1);
548 	return(0);
549 }
550 
551 /*
552  * Write to a PHY register through the MII.
553  */
554 static int
555 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
556 {
557 
558  	/*
559  	 * Set up frame for TX.
560  	 */
561 
562  	frame->mii_stdelim = SIS_MII_STARTDELIM;
563  	frame->mii_opcode = SIS_MII_WRITEOP;
564  	frame->mii_turnaround = SIS_MII_TURNAROUND;
565 
566  	/*
567   	 * Turn on data output.
568  	 */
569  	SIO_SET(SIS_MII_DIR);
570 
571  	sis_mii_sync(sc);
572 
573  	sis_mii_send(sc, frame->mii_stdelim, 2);
574  	sis_mii_send(sc, frame->mii_opcode, 2);
575  	sis_mii_send(sc, frame->mii_phyaddr, 5);
576  	sis_mii_send(sc, frame->mii_regaddr, 5);
577  	sis_mii_send(sc, frame->mii_turnaround, 2);
578  	sis_mii_send(sc, frame->mii_data, 16);
579 
580  	/* Idle bit. */
581  	SIO_SET(SIS_MII_CLK);
582  	DELAY(1);
583  	SIO_CLR(SIS_MII_CLK);
584  	DELAY(1);
585 
586  	/*
587  	 * Turn off xmit.
588  	 */
589  	SIO_CLR(SIS_MII_DIR);
590 
591  	return(0);
592 }
593 
594 static int
595 sis_miibus_readreg(device_t dev, int phy, int reg)
596 {
597 	struct sis_softc	*sc;
598 	struct sis_mii_frame    frame;
599 
600 	sc = device_get_softc(dev);
601 
602 	if (sc->sis_type == SIS_TYPE_83815) {
603 		if (phy != 0)
604 			return(0);
605 		/*
606 		 * The NatSemi chip can take a while after
607 		 * a reset to come ready, during which the BMSR
608 		 * returns a value of 0. This is *never* supposed
609 		 * to happen: some of the BMSR bits are meant to
610 		 * be hardwired in the on position, and this can
611 		 * confuse the miibus code a bit during the probe
612 		 * and attach phase. So we make an effort to check
613 		 * for this condition and wait for it to clear.
614 		 */
615 		if (!CSR_READ_4(sc, NS_BMSR))
616 			DELAY(1000);
617 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
618 	}
619 
620 	/*
621 	 * Chipsets < SIS_635 seem not to be able to read/write
622 	 * through mdio. Use the enhanced PHY access register
623 	 * again for them.
624 	 */
625 	if (sc->sis_type == SIS_TYPE_900 &&
626 	    sc->sis_rev < SIS_REV_635) {
627 		int i, val = 0;
628 
629 		if (phy != 0)
630 			return(0);
631 
632 		CSR_WRITE_4(sc, SIS_PHYCTL,
633 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
634 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
635 
636 		for (i = 0; i < SIS_TIMEOUT; i++) {
637 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
638 				break;
639 		}
640 
641 		if (i == SIS_TIMEOUT) {
642 			device_printf(sc->sis_dev, "PHY failed to come ready\n");
643 			return(0);
644 		}
645 
646 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
647 
648 		if (val == 0xFFFF)
649 			return(0);
650 
651 		return(val);
652 	} else {
653 		bzero((char *)&frame, sizeof(frame));
654 
655 		frame.mii_phyaddr = phy;
656 		frame.mii_regaddr = reg;
657 		sis_mii_readreg(sc, &frame);
658 
659 		return(frame.mii_data);
660 	}
661 }
662 
663 static int
664 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
665 {
666 	struct sis_softc	*sc;
667 	struct sis_mii_frame	frame;
668 
669 	sc = device_get_softc(dev);
670 
671 	if (sc->sis_type == SIS_TYPE_83815) {
672 		if (phy != 0)
673 			return(0);
674 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
675 		return(0);
676 	}
677 
678 	/*
679 	 * Chipsets < SIS_635 seem not to be able to read/write
680 	 * through mdio. Use the enhanced PHY access register
681 	 * again for them.
682 	 */
683 	if (sc->sis_type == SIS_TYPE_900 &&
684 	    sc->sis_rev < SIS_REV_635) {
685 		int i;
686 
687 		if (phy != 0)
688 			return(0);
689 
690 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
691 		    (reg << 6) | SIS_PHYOP_WRITE);
692 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
693 
694 		for (i = 0; i < SIS_TIMEOUT; i++) {
695 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
696 				break;
697 		}
698 
699 		if (i == SIS_TIMEOUT)
700 			device_printf(sc->sis_dev, "PHY failed to come ready\n");
701 	} else {
702 		bzero((char *)&frame, sizeof(frame));
703 
704 		frame.mii_phyaddr = phy;
705 		frame.mii_regaddr = reg;
706 		frame.mii_data = data;
707 		sis_mii_writereg(sc, &frame);
708 	}
709 	return(0);
710 }
711 
712 static void
713 sis_miibus_statchg(device_t dev)
714 {
715 	struct sis_softc	*sc;
716 
717 	sc = device_get_softc(dev);
718 	SIS_LOCK_ASSERT(sc);
719 	sis_initl(sc);
720 }
721 
722 static uint32_t
723 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
724 {
725 	uint32_t		crc;
726 
727 	/* Compute CRC for the address value. */
728 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
729 
730 	/*
731 	 * return the filter bit position
732 	 *
733 	 * The NatSemi chip has a 512-bit filter, which is
734 	 * different than the SiS, so we special-case it.
735 	 */
736 	if (sc->sis_type == SIS_TYPE_83815)
737 		return (crc >> 23);
738 	else if (sc->sis_rev >= SIS_REV_635 ||
739 	    sc->sis_rev == SIS_REV_900B)
740 		return (crc >> 24);
741 	else
742 		return (crc >> 25);
743 }
744 
745 static void
746 sis_setmulti_ns(struct sis_softc *sc)
747 {
748 	struct ifnet		*ifp;
749 	struct ifmultiaddr	*ifma;
750 	u_int32_t		h = 0, i, filtsave;
751 	int			bit, index;
752 
753 	ifp = sc->sis_ifp;
754 
755 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
756 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
757 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
758 		return;
759 	}
760 
761 	/*
762 	 * We have to explicitly enable the multicast hash table
763 	 * on the NatSemi chip if we want to use it, which we do.
764 	 */
765 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
766 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
767 
768 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
769 
770 	/* first, zot all the existing hash bits */
771 	for (i = 0; i < 32; i++) {
772 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
773 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
774 	}
775 
776 	IF_ADDR_LOCK(ifp);
777 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
778 		if (ifma->ifma_addr->sa_family != AF_LINK)
779 			continue;
780 		h = sis_mchash(sc,
781 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
782 		index = h >> 3;
783 		bit = h & 0x1F;
784 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
785 		if (bit > 0xF)
786 			bit -= 0x10;
787 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
788 	}
789 	IF_ADDR_UNLOCK(ifp);
790 
791 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
792 
793 	return;
794 }
795 
796 static void
797 sis_setmulti_sis(struct sis_softc *sc)
798 {
799 	struct ifnet		*ifp;
800 	struct ifmultiaddr	*ifma;
801 	u_int32_t		h, i, n, ctl;
802 	u_int16_t		hashes[16];
803 
804 	ifp = sc->sis_ifp;
805 
806 	/* hash table size */
807 	if (sc->sis_rev >= SIS_REV_635 ||
808 	    sc->sis_rev == SIS_REV_900B)
809 		n = 16;
810 	else
811 		n = 8;
812 
813 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
814 
815 	if (ifp->if_flags & IFF_BROADCAST)
816 		ctl |= SIS_RXFILTCTL_BROAD;
817 
818 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
819 		ctl |= SIS_RXFILTCTL_ALLMULTI;
820 		if (ifp->if_flags & IFF_PROMISC)
821 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
822 		for (i = 0; i < n; i++)
823 			hashes[i] = ~0;
824 	} else {
825 		for (i = 0; i < n; i++)
826 			hashes[i] = 0;
827 		i = 0;
828 		IF_ADDR_LOCK(ifp);
829 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
830 			if (ifma->ifma_addr->sa_family != AF_LINK)
831 			continue;
832 			h = sis_mchash(sc,
833 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
834 			hashes[h >> 4] |= 1 << (h & 0xf);
835 			i++;
836 		}
837 		IF_ADDR_UNLOCK(ifp);
838 		if (i > n) {
839 			ctl |= SIS_RXFILTCTL_ALLMULTI;
840 			for (i = 0; i < n; i++)
841 				hashes[i] = ~0;
842 		}
843 	}
844 
845 	for (i = 0; i < n; i++) {
846 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
847 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
848 	}
849 
850 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
851 }
852 
853 static void
854 sis_reset(struct sis_softc *sc)
855 {
856 	int		i;
857 
858 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
859 
860 	for (i = 0; i < SIS_TIMEOUT; i++) {
861 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
862 			break;
863 	}
864 
865 	if (i == SIS_TIMEOUT)
866 		device_printf(sc->sis_dev, "reset never completed\n");
867 
868 	/* Wait a little while for the chip to get its brains in order. */
869 	DELAY(1000);
870 
871 	/*
872 	 * If this is a NetSemi chip, make sure to clear
873 	 * PME mode.
874 	 */
875 	if (sc->sis_type == SIS_TYPE_83815) {
876 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
877 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
878 	}
879 
880         return;
881 }
882 
883 /*
884  * Probe for an SiS chip. Check the PCI vendor and device
885  * IDs against our list and return a device name if we find a match.
886  */
887 static int
888 sis_probe(device_t dev)
889 {
890 	struct sis_type		*t;
891 
892 	t = sis_devs;
893 
894 	while(t->sis_name != NULL) {
895 		if ((pci_get_vendor(dev) == t->sis_vid) &&
896 		    (pci_get_device(dev) == t->sis_did)) {
897 			device_set_desc(dev, t->sis_name);
898 			return (BUS_PROBE_DEFAULT);
899 		}
900 		t++;
901 	}
902 
903 	return(ENXIO);
904 }
905 
906 /*
907  * Attach the interface. Allocate softc structures, do ifmedia
908  * setup and ethernet/BPF attach.
909  */
910 static int
911 sis_attach(device_t dev)
912 {
913 	u_char			eaddr[ETHER_ADDR_LEN];
914 	struct sis_softc	*sc;
915 	struct ifnet		*ifp;
916 	int			error = 0, waittime = 0;
917 
918 	waittime = 0;
919 	sc = device_get_softc(dev);
920 
921 	sc->sis_dev = dev;
922 
923 	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
924 	    MTX_DEF);
925 	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
926 
927 	if (pci_get_device(dev) == SIS_DEVICEID_900)
928 		sc->sis_type = SIS_TYPE_900;
929 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
930 		sc->sis_type = SIS_TYPE_7016;
931 	if (pci_get_vendor(dev) == NS_VENDORID)
932 		sc->sis_type = SIS_TYPE_83815;
933 
934 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
935 	/*
936 	 * Map control/status registers.
937 	 */
938 	pci_enable_busmaster(dev);
939 
940 	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
941 	if (error) {
942 		device_printf(dev, "couldn't allocate resources\n");
943 		goto fail;
944 	}
945 
946 	/* Reset the adapter. */
947 	sis_reset(sc);
948 
949 	if (sc->sis_type == SIS_TYPE_900 &&
950             (sc->sis_rev == SIS_REV_635 ||
951             sc->sis_rev == SIS_REV_900B)) {
952 		SIO_SET(SIS_CFG_RND_CNT);
953 		SIO_SET(SIS_CFG_PERR_DETECT);
954 	}
955 
956 	/*
957 	 * Get station address from the EEPROM.
958 	 */
959 	switch (pci_get_vendor(dev)) {
960 	case NS_VENDORID:
961 		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
962 
963 		/* We can't update the device description, so spew */
964 		if (sc->sis_srr == NS_SRR_15C)
965 			device_printf(dev, "Silicon Revision: DP83815C\n");
966 		else if (sc->sis_srr == NS_SRR_15D)
967 			device_printf(dev, "Silicon Revision: DP83815D\n");
968 		else if (sc->sis_srr == NS_SRR_16A)
969 			device_printf(dev, "Silicon Revision: DP83816A\n");
970 		else
971 			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
972 
973 		/*
974 		 * Reading the MAC address out of the EEPROM on
975 		 * the NatSemi chip takes a bit more work than
976 		 * you'd expect. The address spans 4 16-bit words,
977 		 * with the first word containing only a single bit.
978 		 * You have to shift everything over one bit to
979 		 * get it aligned properly. Also, the bits are
980 		 * stored backwards (the LSB is really the MSB,
981 		 * and so on) so you have to reverse them in order
982 		 * to get the MAC address into the form we want.
983 		 * Why? Who the hell knows.
984 		 */
985 		{
986 			u_int16_t		tmp[4];
987 
988 			sis_read_eeprom(sc, (caddr_t)&tmp,
989 			    NS_EE_NODEADDR, 4, 0);
990 
991 			/* Shift everything over one bit. */
992 			tmp[3] = tmp[3] >> 1;
993 			tmp[3] |= tmp[2] << 15;
994 			tmp[2] = tmp[2] >> 1;
995 			tmp[2] |= tmp[1] << 15;
996 			tmp[1] = tmp[1] >> 1;
997 			tmp[1] |= tmp[0] << 15;
998 
999 			/* Now reverse all the bits. */
1000 			tmp[3] = sis_reverse(tmp[3]);
1001 			tmp[2] = sis_reverse(tmp[2]);
1002 			tmp[1] = sis_reverse(tmp[1]);
1003 
1004 			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1005 		}
1006 		break;
1007 	case SIS_VENDORID:
1008 	default:
1009 #if defined(__i386__) || defined(__amd64__)
1010 		/*
1011 		 * If this is a SiS 630E chipset with an embedded
1012 		 * SiS 900 controller, we have to read the MAC address
1013 		 * from the APC CMOS RAM. Our method for doing this
1014 		 * is very ugly since we have to reach out and grab
1015 		 * ahold of hardware for which we cannot properly
1016 		 * allocate resources. This code is only compiled on
1017 		 * the i386 architecture since the SiS 630E chipset
1018 		 * is for x86 motherboards only. Note that there are
1019 		 * a lot of magic numbers in this hack. These are
1020 		 * taken from SiS's Linux driver. I'd like to replace
1021 		 * them with proper symbolic definitions, but that
1022 		 * requires some datasheets that I don't have access
1023 		 * to at the moment.
1024 		 */
1025 		if (sc->sis_rev == SIS_REV_630S ||
1026 		    sc->sis_rev == SIS_REV_630E ||
1027 		    sc->sis_rev == SIS_REV_630EA1)
1028 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1029 
1030 		else if (sc->sis_rev == SIS_REV_635 ||
1031 			 sc->sis_rev == SIS_REV_630ET)
1032 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1033 		else if (sc->sis_rev == SIS_REV_96x) {
1034 			/* Allow to read EEPROM from LAN. It is shared
1035 			 * between a 1394 controller and the NIC and each
1036 			 * time we access it, we need to set SIS_EECMD_REQ.
1037 			 */
1038 			SIO_SET(SIS_EECMD_REQ);
1039 			for (waittime = 0; waittime < SIS_TIMEOUT;
1040 			    waittime++) {
1041 				/* Force EEPROM to idle state. */
1042 				sis_eeprom_idle(sc);
1043 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1044 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1045 					    SIS_EE_NODEADDR, 3, 0);
1046 					break;
1047 				}
1048 				DELAY(1);
1049 			}
1050 			/*
1051 			 * Set SIS_EECTL_CLK to high, so a other master
1052 			 * can operate on the i2c bus.
1053 			 */
1054 			SIO_SET(SIS_EECTL_CLK);
1055 			/* Refuse EEPROM access by LAN */
1056 			SIO_SET(SIS_EECMD_DONE);
1057 		} else
1058 #endif
1059 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1060 			    SIS_EE_NODEADDR, 3, 0);
1061 		break;
1062 	}
1063 
1064 	/*
1065 	 * Allocate the parent bus DMA tag appropriate for PCI.
1066 	 */
1067 #define SIS_NSEG_NEW 32
1068 	 error = bus_dma_tag_create(NULL,	/* parent */
1069 			1, 0,			/* alignment, boundary */
1070 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1071 			BUS_SPACE_MAXADDR,	/* highaddr */
1072 			NULL, NULL,		/* filter, filterarg */
1073 			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1074 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1075 			BUS_DMA_ALLOCNOW,	/* flags */
1076 			NULL, NULL,		/* lockfunc, lockarg */
1077 			&sc->sis_parent_tag);
1078 	if (error)
1079 		goto fail;
1080 
1081 	/*
1082 	 * Now allocate a tag for the DMA descriptor lists and a chunk
1083 	 * of DMA-able memory based on the tag.  Also obtain the physical
1084 	 * addresses of the RX and TX ring, which we'll need later.
1085 	 * All of our lists are allocated as a contiguous block
1086 	 * of memory.
1087 	 */
1088 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1089 			1, 0,			/* alignment, boundary */
1090 			BUS_SPACE_MAXADDR,	/* lowaddr */
1091 			BUS_SPACE_MAXADDR,	/* highaddr */
1092 			NULL, NULL,		/* filter, filterarg */
1093 			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1094 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1095 			0,			/* flags */
1096 			busdma_lock_mutex,	/* lockfunc */
1097 			&Giant,			/* lockarg */
1098 			&sc->sis_rx_tag);
1099 	if (error)
1100 		goto fail;
1101 
1102 	error = bus_dmamem_alloc(sc->sis_rx_tag,
1103 	    (void **)&sc->sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1104 	    &sc->sis_rx_dmamap);
1105 
1106 	if (error) {
1107 		device_printf(dev, "no memory for rx list buffers!\n");
1108 		bus_dma_tag_destroy(sc->sis_rx_tag);
1109 		sc->sis_rx_tag = NULL;
1110 		goto fail;
1111 	}
1112 
1113 	error = bus_dmamap_load(sc->sis_rx_tag,
1114 	    sc->sis_rx_dmamap, &(sc->sis_rx_list[0]),
1115 	    sizeof(struct sis_desc), sis_dma_map_ring,
1116 	    &sc->sis_rx_paddr, 0);
1117 
1118 	if (error) {
1119 		device_printf(dev, "cannot get address of the rx ring!\n");
1120 		bus_dmamem_free(sc->sis_rx_tag,
1121 		    sc->sis_rx_list, sc->sis_rx_dmamap);
1122 		bus_dma_tag_destroy(sc->sis_rx_tag);
1123 		sc->sis_rx_tag = NULL;
1124 		goto fail;
1125 	}
1126 
1127 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1128 			1, 0,			/* alignment, boundary */
1129 			BUS_SPACE_MAXADDR,	/* lowaddr */
1130 			BUS_SPACE_MAXADDR,	/* highaddr */
1131 			NULL, NULL,		/* filter, filterarg */
1132 			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1133 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1134 			0,			/* flags */
1135 			busdma_lock_mutex,	/* lockfunc */
1136 			&Giant,			/* lockarg */
1137 			&sc->sis_tx_tag);
1138 	if (error)
1139 		goto fail;
1140 
1141 	error = bus_dmamem_alloc(sc->sis_tx_tag,
1142 	    (void **)&sc->sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1143 	    &sc->sis_tx_dmamap);
1144 
1145 	if (error) {
1146 		device_printf(dev, "no memory for tx list buffers!\n");
1147 		bus_dma_tag_destroy(sc->sis_tx_tag);
1148 		sc->sis_tx_tag = NULL;
1149 		goto fail;
1150 	}
1151 
1152 	error = bus_dmamap_load(sc->sis_tx_tag,
1153 	    sc->sis_tx_dmamap, &(sc->sis_tx_list[0]),
1154 	    sizeof(struct sis_desc), sis_dma_map_ring,
1155 	    &sc->sis_tx_paddr, 0);
1156 
1157 	if (error) {
1158 		device_printf(dev, "cannot get address of the tx ring!\n");
1159 		bus_dmamem_free(sc->sis_tx_tag,
1160 		    sc->sis_tx_list, sc->sis_tx_dmamap);
1161 		bus_dma_tag_destroy(sc->sis_tx_tag);
1162 		sc->sis_tx_tag = NULL;
1163 		goto fail;
1164 	}
1165 
1166 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1167 			1, 0,			/* alignment, boundary */
1168 			BUS_SPACE_MAXADDR,	/* lowaddr */
1169 			BUS_SPACE_MAXADDR,	/* highaddr */
1170 			NULL, NULL,		/* filter, filterarg */
1171 			MCLBYTES, 1,		/* maxsize,nsegments */
1172 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1173 			0,			/* flags */
1174 			busdma_lock_mutex,	/* lockfunc */
1175 			&Giant,			/* lockarg */
1176 			&sc->sis_tag);
1177 	if (error)
1178 		goto fail;
1179 
1180 	/*
1181 	 * Obtain the physical addresses of the RX and TX
1182 	 * rings which we'll need later in the init routine.
1183 	 */
1184 
1185 	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1186 	if (ifp == NULL) {
1187 		device_printf(dev, "can not if_alloc()\n");
1188 		error = ENOSPC;
1189 		goto fail;
1190 	}
1191 	ifp->if_softc = sc;
1192 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1193 	ifp->if_mtu = ETHERMTU;
1194 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1195 	ifp->if_ioctl = sis_ioctl;
1196 	ifp->if_start = sis_start;
1197 	ifp->if_init = sis_init;
1198 	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1199 	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1200 	IFQ_SET_READY(&ifp->if_snd);
1201 
1202 	/*
1203 	 * Do MII setup.
1204 	 */
1205 	if (mii_phy_probe(dev, &sc->sis_miibus,
1206 	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1207 		device_printf(dev, "MII without any PHY!\n");
1208 		error = ENXIO;
1209 		goto fail;
1210 	}
1211 
1212 	/*
1213 	 * Call MI attach routine.
1214 	 */
1215 	ether_ifattach(ifp, eaddr);
1216 
1217 	/*
1218 	 * Tell the upper layer(s) we support long frames.
1219 	 */
1220 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1221 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1222 	ifp->if_capenable = ifp->if_capabilities;
1223 #ifdef DEVICE_POLLING
1224 	ifp->if_capabilities |= IFCAP_POLLING;
1225 #endif
1226 
1227 	/* Hook interrupt last to avoid having to lock softc */
1228 	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1229 	    NULL, sis_intr, sc, &sc->sis_intrhand);
1230 
1231 	if (error) {
1232 		device_printf(dev, "couldn't set up irq\n");
1233 		ether_ifdetach(ifp);
1234 		goto fail;
1235 	}
1236 
1237 fail:
1238 	if (error)
1239 		sis_detach(dev);
1240 
1241 	return(error);
1242 }
1243 
1244 /*
1245  * Shutdown hardware and free up resources. This can be called any
1246  * time after the mutex has been initialized. It is called in both
1247  * the error case in attach and the normal detach case so it needs
1248  * to be careful about only freeing resources that have actually been
1249  * allocated.
1250  */
1251 static int
1252 sis_detach(device_t dev)
1253 {
1254 	struct sis_softc	*sc;
1255 	struct ifnet		*ifp;
1256 
1257 	sc = device_get_softc(dev);
1258 	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1259 	ifp = sc->sis_ifp;
1260 
1261 #ifdef DEVICE_POLLING
1262 	if (ifp->if_capenable & IFCAP_POLLING)
1263 		ether_poll_deregister(ifp);
1264 #endif
1265 
1266 	/* These should only be active if attach succeeded. */
1267 	if (device_is_attached(dev)) {
1268 		SIS_LOCK(sc);
1269 		sis_reset(sc);
1270 		sis_stop(sc);
1271 		SIS_UNLOCK(sc);
1272 		callout_drain(&sc->sis_stat_ch);
1273 		ether_ifdetach(ifp);
1274 	}
1275 	if (sc->sis_miibus)
1276 		device_delete_child(dev, sc->sis_miibus);
1277 	bus_generic_detach(dev);
1278 
1279 	if (sc->sis_intrhand)
1280 		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1281 	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1282 
1283 	if (ifp)
1284 		if_free(ifp);
1285 
1286 	if (sc->sis_rx_tag) {
1287 		bus_dmamap_unload(sc->sis_rx_tag,
1288 		    sc->sis_rx_dmamap);
1289 		bus_dmamem_free(sc->sis_rx_tag,
1290 		    sc->sis_rx_list, sc->sis_rx_dmamap);
1291 		bus_dma_tag_destroy(sc->sis_rx_tag);
1292 	}
1293 	if (sc->sis_tx_tag) {
1294 		bus_dmamap_unload(sc->sis_tx_tag,
1295 		    sc->sis_tx_dmamap);
1296 		bus_dmamem_free(sc->sis_tx_tag,
1297 		    sc->sis_tx_list, sc->sis_tx_dmamap);
1298 		bus_dma_tag_destroy(sc->sis_tx_tag);
1299 	}
1300 	if (sc->sis_parent_tag)
1301 		bus_dma_tag_destroy(sc->sis_parent_tag);
1302 	if (sc->sis_tag)
1303 		bus_dma_tag_destroy(sc->sis_tag);
1304 
1305 	mtx_destroy(&sc->sis_mtx);
1306 
1307 	return(0);
1308 }
1309 
1310 /*
1311  * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1312  * we arrange the descriptors in a closed ring, so that the last descriptor
1313  * points back to the first.
1314  */
1315 static int
1316 sis_ring_init(struct sis_softc *sc)
1317 {
1318 	int i, error;
1319 	struct sis_desc *dp;
1320 
1321 	dp = &sc->sis_tx_list[0];
1322 	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
1323 		if (i == (SIS_TX_LIST_CNT - 1))
1324 			dp->sis_nextdesc = &sc->sis_tx_list[0];
1325 		else
1326 			dp->sis_nextdesc = dp + 1;
1327 		bus_dmamap_load(sc->sis_tx_tag,
1328 		    sc->sis_tx_dmamap,
1329 		    dp->sis_nextdesc, sizeof(struct sis_desc),
1330 		    sis_dma_map_desc_next, dp, 0);
1331 		dp->sis_mbuf = NULL;
1332 		dp->sis_ptr = 0;
1333 		dp->sis_ctl = 0;
1334 	}
1335 
1336 	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1337 
1338 	bus_dmamap_sync(sc->sis_tx_tag,
1339 	    sc->sis_tx_dmamap, BUS_DMASYNC_PREWRITE);
1340 
1341 	dp = &sc->sis_rx_list[0];
1342 	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
1343 		error = sis_newbuf(sc, dp, NULL);
1344 		if (error)
1345 			return(error);
1346 		if (i == (SIS_RX_LIST_CNT - 1))
1347 			dp->sis_nextdesc = &sc->sis_rx_list[0];
1348 		else
1349 			dp->sis_nextdesc = dp + 1;
1350 		bus_dmamap_load(sc->sis_rx_tag,
1351 		    sc->sis_rx_dmamap,
1352 		    dp->sis_nextdesc, sizeof(struct sis_desc),
1353 		    sis_dma_map_desc_next, dp, 0);
1354 		}
1355 
1356 	bus_dmamap_sync(sc->sis_rx_tag,
1357 	    sc->sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1358 
1359 	sc->sis_rx_pdsc = &sc->sis_rx_list[0];
1360 
1361 	return(0);
1362 }
1363 
1364 /*
1365  * Initialize an RX descriptor and attach an MBUF cluster.
1366  */
1367 static int
1368 sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1369 {
1370 
1371 	if (c == NULL)
1372 		return(EINVAL);
1373 
1374 	if (m == NULL) {
1375 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1376 		if (m == NULL)
1377 			return(ENOBUFS);
1378 	} else
1379 		m->m_data = m->m_ext.ext_buf;
1380 
1381 	c->sis_mbuf = m;
1382 	c->sis_ctl = SIS_RXLEN;
1383 
1384 	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1385 	bus_dmamap_load(sc->sis_tag, c->sis_map,
1386 	    mtod(m, void *), MCLBYTES,
1387 	    sis_dma_map_desc_ptr, c, 0);
1388 	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREREAD);
1389 
1390 	return(0);
1391 }
1392 
1393 /*
1394  * A frame has been uploaded: pass the resulting mbuf chain up to
1395  * the higher level protocols.
1396  */
1397 static void
1398 sis_rxeof(struct sis_softc *sc)
1399 {
1400 	struct mbuf		*m, *m0;
1401 	struct ifnet		*ifp;
1402 	struct sis_desc		*cur_rx;
1403 	int			total_len = 0;
1404 	u_int32_t		rxstat;
1405 
1406 	SIS_LOCK_ASSERT(sc);
1407 
1408 	ifp = sc->sis_ifp;
1409 
1410 	for(cur_rx = sc->sis_rx_pdsc; SIS_OWNDESC(cur_rx);
1411 	    cur_rx = cur_rx->sis_nextdesc) {
1412 
1413 #ifdef DEVICE_POLLING
1414 		if (ifp->if_capenable & IFCAP_POLLING) {
1415 			if (sc->rxcycles <= 0)
1416 				break;
1417 			sc->rxcycles--;
1418 		}
1419 #endif
1420 		rxstat = cur_rx->sis_rxstat;
1421 		bus_dmamap_sync(sc->sis_tag,
1422 		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1423 		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1424 		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1425 		m = cur_rx->sis_mbuf;
1426 		cur_rx->sis_mbuf = NULL;
1427 		total_len = SIS_RXBYTES(cur_rx);
1428 
1429 		/*
1430 		 * If an error occurs, update stats, clear the
1431 		 * status word and leave the mbuf cluster in place:
1432 		 * it should simply get re-used next time this descriptor
1433 	 	 * comes up in the ring.
1434 		 */
1435 		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1436 		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1437 		    ETHER_CRC_LEN))
1438 			rxstat &= ~SIS_RXSTAT_GIANT;
1439 		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1440 			ifp->if_ierrors++;
1441 			if (rxstat & SIS_RXSTAT_COLL)
1442 				ifp->if_collisions++;
1443 			sis_newbuf(sc, cur_rx, m);
1444 			continue;
1445 		}
1446 
1447 		/* No errors; receive the packet. */
1448 #ifdef __NO_STRICT_ALIGNMENT
1449 		/*
1450 		 * On architectures without alignment problems we try to
1451 		 * allocate a new buffer for the receive ring, and pass up
1452 		 * the one where the packet is already, saving the expensive
1453 		 * copy done in m_devget().
1454 		 * If we are on an architecture with alignment problems, or
1455 		 * if the allocation fails, then use m_devget and leave the
1456 		 * existing buffer in the receive ring.
1457 		 */
1458 		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1459 			m->m_pkthdr.len = m->m_len = total_len;
1460 		else
1461 #endif
1462 		{
1463 			m0 = m_devget(mtod(m, char *), total_len,
1464 				ETHER_ALIGN, ifp, NULL);
1465 			sis_newbuf(sc, cur_rx, m);
1466 			if (m0 == NULL) {
1467 				ifp->if_ierrors++;
1468 				continue;
1469 			}
1470 			m = m0;
1471 		}
1472 
1473 		ifp->if_ipackets++;
1474 		m->m_pkthdr.rcvif = ifp;
1475 
1476 		SIS_UNLOCK(sc);
1477 		(*ifp->if_input)(ifp, m);
1478 		SIS_LOCK(sc);
1479 	}
1480 
1481 	sc->sis_rx_pdsc = cur_rx;
1482 }
1483 
1484 static void
1485 sis_rxeoc(struct sis_softc *sc)
1486 {
1487 
1488 	SIS_LOCK_ASSERT(sc);
1489 	sis_rxeof(sc);
1490 	sis_initl(sc);
1491 }
1492 
1493 /*
1494  * A frame was downloaded to the chip. It's safe for us to clean up
1495  * the list buffers.
1496  */
1497 
1498 static void
1499 sis_txeof(struct sis_softc *sc)
1500 {
1501 	struct ifnet		*ifp;
1502 	u_int32_t		idx;
1503 
1504 	SIS_LOCK_ASSERT(sc);
1505 	ifp = sc->sis_ifp;
1506 
1507 	/*
1508 	 * Go through our tx list and free mbufs for those
1509 	 * frames that have been transmitted.
1510 	 */
1511 	for (idx = sc->sis_tx_cons; sc->sis_tx_cnt > 0;
1512 	    sc->sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1513 		struct sis_desc *cur_tx = &sc->sis_tx_list[idx];
1514 
1515 		if (SIS_OWNDESC(cur_tx))
1516 			break;
1517 
1518 		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1519 			continue;
1520 
1521 		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1522 			ifp->if_oerrors++;
1523 			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1524 				ifp->if_collisions++;
1525 			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1526 				ifp->if_collisions++;
1527 		}
1528 
1529 		ifp->if_collisions +=
1530 		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1531 
1532 		ifp->if_opackets++;
1533 		if (cur_tx->sis_mbuf != NULL) {
1534 			m_freem(cur_tx->sis_mbuf);
1535 			cur_tx->sis_mbuf = NULL;
1536 			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1537 			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1538 		}
1539 	}
1540 
1541 	if (idx != sc->sis_tx_cons) {
1542 		/* we freed up some buffers */
1543 		sc->sis_tx_cons = idx;
1544 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1545 	}
1546 
1547 	sc->sis_watchdog_timer = (sc->sis_tx_cnt == 0) ? 0 : 5;
1548 
1549 	return;
1550 }
1551 
1552 static void
1553 sis_tick(void *xsc)
1554 {
1555 	struct sis_softc	*sc;
1556 	struct mii_data		*mii;
1557 	struct ifnet		*ifp;
1558 
1559 	sc = xsc;
1560 	SIS_LOCK_ASSERT(sc);
1561 	sc->in_tick = 1;
1562 	ifp = sc->sis_ifp;
1563 
1564 	mii = device_get_softc(sc->sis_miibus);
1565 	mii_tick(mii);
1566 
1567 	sis_watchdog(sc);
1568 
1569 	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1570 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1571 		sc->sis_link++;
1572 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1573 			sis_startl(ifp);
1574 	}
1575 
1576 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1577 	sc->in_tick = 0;
1578 }
1579 
1580 #ifdef DEVICE_POLLING
1581 static poll_handler_t sis_poll;
1582 
1583 static void
1584 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1585 {
1586 	struct	sis_softc *sc = ifp->if_softc;
1587 
1588 	SIS_LOCK(sc);
1589 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1590 		SIS_UNLOCK(sc);
1591 		return;
1592 	}
1593 
1594 	/*
1595 	 * On the sis, reading the status register also clears it.
1596 	 * So before returning to intr mode we must make sure that all
1597 	 * possible pending sources of interrupts have been served.
1598 	 * In practice this means run to completion the *eof routines,
1599 	 * and then call the interrupt routine
1600 	 */
1601 	sc->rxcycles = count;
1602 	sis_rxeof(sc);
1603 	sis_txeof(sc);
1604 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1605 		sis_startl(ifp);
1606 
1607 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1608 		u_int32_t	status;
1609 
1610 		/* Reading the ISR register clears all interrupts. */
1611 		status = CSR_READ_4(sc, SIS_ISR);
1612 
1613 		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1614 			sis_rxeoc(sc);
1615 
1616 		if (status & (SIS_ISR_RX_IDLE))
1617 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1618 
1619 		if (status & SIS_ISR_SYSERR) {
1620 			sis_reset(sc);
1621 			sis_initl(sc);
1622 		}
1623 	}
1624 
1625 	SIS_UNLOCK(sc);
1626 }
1627 #endif /* DEVICE_POLLING */
1628 
1629 static void
1630 sis_intr(void *arg)
1631 {
1632 	struct sis_softc	*sc;
1633 	struct ifnet		*ifp;
1634 	u_int32_t		status;
1635 
1636 	sc = arg;
1637 	ifp = sc->sis_ifp;
1638 
1639 	if (sc->sis_stopped)	/* Most likely shared interrupt */
1640 		return;
1641 
1642 	SIS_LOCK(sc);
1643 #ifdef DEVICE_POLLING
1644 	if (ifp->if_capenable & IFCAP_POLLING) {
1645 		SIS_UNLOCK(sc);
1646 		return;
1647 	}
1648 #endif
1649 
1650 	/* Disable interrupts. */
1651 	CSR_WRITE_4(sc, SIS_IER, 0);
1652 
1653 	for (;;) {
1654 		SIS_LOCK_ASSERT(sc);
1655 		/* Reading the ISR register clears all interrupts. */
1656 		status = CSR_READ_4(sc, SIS_ISR);
1657 
1658 		if ((status & SIS_INTRS) == 0)
1659 			break;
1660 
1661 		if (status &
1662 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1663 		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1664 			sis_txeof(sc);
1665 
1666 		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1667 		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1668 			sis_rxeof(sc);
1669 
1670 		if (status & SIS_ISR_RX_OFLOW)
1671 			sis_rxeoc(sc);
1672 
1673 		if (status & (SIS_ISR_RX_IDLE))
1674 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1675 
1676 		if (status & SIS_ISR_SYSERR) {
1677 			sis_reset(sc);
1678 			sis_initl(sc);
1679 		}
1680 	}
1681 
1682 	/* Re-enable interrupts. */
1683 	CSR_WRITE_4(sc, SIS_IER, 1);
1684 
1685 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1686 		sis_startl(ifp);
1687 
1688 	SIS_UNLOCK(sc);
1689 }
1690 
1691 /*
1692  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1693  * pointers to the fragment pointers.
1694  */
1695 static int
1696 sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx)
1697 {
1698 	struct sis_desc		*f = NULL;
1699 	struct mbuf		*m;
1700 	int			frag, cur, cnt = 0, chainlen = 0;
1701 
1702 	/*
1703 	 * If there's no way we can send any packets, return now.
1704 	 */
1705 	if (SIS_TX_LIST_CNT - sc->sis_tx_cnt < 2)
1706 		return (ENOBUFS);
1707 
1708 	/*
1709 	 * Count the number of frags in this chain to see if
1710 	 * we need to m_defrag.  Since the descriptor list is shared
1711 	 * by all packets, we'll m_defrag long chains so that they
1712 	 * do not use up the entire list, even if they would fit.
1713 	 */
1714 
1715 	for (m = *m_head; m != NULL; m = m->m_next)
1716 		chainlen++;
1717 
1718 	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1719 	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_tx_cnt)) < 2)) {
1720 		m = m_defrag(*m_head, M_DONTWAIT);
1721 		if (m == NULL)
1722 			return (ENOBUFS);
1723 		*m_head = m;
1724 	}
1725 
1726 	/*
1727  	 * Start packing the mbufs in this chain into
1728 	 * the fragment pointers. Stop when we run out
1729  	 * of fragments or hit the end of the mbuf chain.
1730 	 */
1731 	cur = frag = *txidx;
1732 
1733 	for (m = *m_head; m != NULL; m = m->m_next) {
1734 		if (m->m_len != 0) {
1735 			if ((SIS_TX_LIST_CNT -
1736 			    (sc->sis_tx_cnt + cnt)) < 2)
1737 				return(ENOBUFS);
1738 			f = &sc->sis_tx_list[frag];
1739 			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1740 			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1741 			bus_dmamap_load(sc->sis_tag, f->sis_map,
1742 			    mtod(m, void *), m->m_len,
1743 			    sis_dma_map_desc_ptr, f, 0);
1744 			bus_dmamap_sync(sc->sis_tag,
1745 			    f->sis_map, BUS_DMASYNC_PREREAD);
1746 			if (cnt != 0)
1747 				f->sis_ctl |= SIS_CMDSTS_OWN;
1748 			cur = frag;
1749 			SIS_INC(frag, SIS_TX_LIST_CNT);
1750 			cnt++;
1751 		}
1752 	}
1753 
1754 	if (m != NULL)
1755 		return(ENOBUFS);
1756 
1757 	sc->sis_tx_list[cur].sis_mbuf = *m_head;
1758 	sc->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1759 	sc->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1760 	sc->sis_tx_cnt += cnt;
1761 	*txidx = frag;
1762 
1763 	return(0);
1764 }
1765 
1766 /*
1767  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1768  * to the mbuf data regions directly in the transmit lists. We also save a
1769  * copy of the pointers since the transmit list fragment pointers are
1770  * physical addresses.
1771  */
1772 
1773 static void
1774 sis_start(struct ifnet *ifp)
1775 {
1776 	struct sis_softc	*sc;
1777 
1778 	sc = ifp->if_softc;
1779 	SIS_LOCK(sc);
1780 	sis_startl(ifp);
1781 	SIS_UNLOCK(sc);
1782 }
1783 
1784 static void
1785 sis_startl(struct ifnet *ifp)
1786 {
1787 	struct sis_softc	*sc;
1788 	struct mbuf		*m_head = NULL;
1789 	u_int32_t		idx, queued = 0;
1790 
1791 	sc = ifp->if_softc;
1792 
1793 	SIS_LOCK_ASSERT(sc);
1794 
1795 	if (!sc->sis_link)
1796 		return;
1797 
1798 	idx = sc->sis_tx_prod;
1799 
1800 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1801 		return;
1802 
1803 	while(sc->sis_tx_list[idx].sis_mbuf == NULL) {
1804 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1805 		if (m_head == NULL)
1806 			break;
1807 
1808 		if (sis_encap(sc, &m_head, &idx)) {
1809 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1810 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1811 			break;
1812 		}
1813 
1814 		queued++;
1815 
1816 		/*
1817 		 * If there's a BPF listener, bounce a copy of this frame
1818 		 * to him.
1819 		 */
1820 		BPF_MTAP(ifp, m_head);
1821 
1822 	}
1823 
1824 	if (queued) {
1825 		/* Transmit */
1826 		sc->sis_tx_prod = idx;
1827 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1828 
1829 		/*
1830 		 * Set a timeout in case the chip goes out to lunch.
1831 		 */
1832 		sc->sis_watchdog_timer = 5;
1833 	}
1834 }
1835 
1836 static void
1837 sis_init(void *xsc)
1838 {
1839 	struct sis_softc	*sc = xsc;
1840 
1841 	SIS_LOCK(sc);
1842 	sis_initl(sc);
1843 	SIS_UNLOCK(sc);
1844 }
1845 
1846 static void
1847 sis_initl(struct sis_softc *sc)
1848 {
1849 	struct ifnet		*ifp = sc->sis_ifp;
1850 	struct mii_data		*mii;
1851 
1852 	SIS_LOCK_ASSERT(sc);
1853 
1854 	/*
1855 	 * Cancel pending I/O and free all RX/TX buffers.
1856 	 */
1857 	sis_stop(sc);
1858 	sc->sis_stopped = 0;
1859 
1860 #ifdef notyet
1861 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1862 		/*
1863 		 * Configure 400usec of interrupt holdoff.  This is based
1864 		 * on emperical tests on a Soekris 4801.
1865  		 */
1866 		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1867 	}
1868 #endif
1869 
1870 	mii = device_get_softc(sc->sis_miibus);
1871 
1872 	/* Set MAC address */
1873 	if (sc->sis_type == SIS_TYPE_83815) {
1874 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1875 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1876 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1877 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1878 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1879 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1880 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1881 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1882 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1883 	} else {
1884 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1885 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1886 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1887 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1888 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1889 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1890 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1891 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1892 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1893 	}
1894 
1895 	/* Init circular TX/RX lists. */
1896 	if (sis_ring_init(sc) != 0) {
1897 		device_printf(sc->sis_dev,
1898 		    "initialization failed: no memory for rx buffers\n");
1899 		sis_stop(sc);
1900 		return;
1901 	}
1902 
1903 	/*
1904 	 * Short Cable Receive Errors (MP21.E)
1905 	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
1906 	 * recommends the following register settings "for optimum
1907 	 * performance." for rev 15C.  Set this also for 15D parts as
1908 	 * they require it in practice.
1909 	 */
1910 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
1911 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1912 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1913 		/* set val for c2 */
1914 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1915 		/* load/kill c2 */
1916 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1917 		/* rais SD off, from 4 to c */
1918 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1919 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
1920 	}
1921 
1922 
1923 	/*
1924 	 * For the NatSemi chip, we have to explicitly enable the
1925 	 * reception of ARP frames, as well as turn on the 'perfect
1926 	 * match' filter where we store the station address, otherwise
1927 	 * we won't receive unicasts meant for this host.
1928 	 */
1929 	if (sc->sis_type == SIS_TYPE_83815) {
1930 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1931 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1932 	}
1933 
1934 	 /* If we want promiscuous mode, set the allframes bit. */
1935 	if (ifp->if_flags & IFF_PROMISC) {
1936 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1937 	} else {
1938 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1939 	}
1940 
1941 	/*
1942 	 * Set the capture broadcast bit to capture broadcast frames.
1943 	 */
1944 	if (ifp->if_flags & IFF_BROADCAST) {
1945 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1946 	} else {
1947 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1948 	}
1949 
1950 	/*
1951 	 * Load the multicast filter.
1952 	 */
1953 	if (sc->sis_type == SIS_TYPE_83815)
1954 		sis_setmulti_ns(sc);
1955 	else
1956 		sis_setmulti_sis(sc);
1957 
1958 	/* Turn the receive filter on */
1959 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1960 
1961 	/*
1962 	 * Load the address of the RX and TX lists.
1963 	 */
1964 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_rx_paddr);
1965 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_tx_paddr);
1966 
1967 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1968 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1969 	 * for TX/RX DMA should be no larger than 16 double words.
1970 	 */
1971 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
1972 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1973 	} else {
1974 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1975 	}
1976 
1977 	/* Accept Long Packets for VLAN support */
1978 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1979 
1980 	/* Set TX configuration */
1981 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
1982 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1983 	} else {
1984 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1985 	}
1986 
1987 	/* Set full/half duplex mode. */
1988 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1989 		SIS_SETBIT(sc, SIS_TX_CFG,
1990 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1991 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1992 	} else {
1993 		SIS_CLRBIT(sc, SIS_TX_CFG,
1994 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1995 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1996 	}
1997 
1998 	if (sc->sis_type == SIS_TYPE_83816) {
1999 		/*
2000 		 * MPII03.D: Half Duplex Excessive Collisions.
2001 		 * Also page 49 in 83816 manual
2002 		 */
2003 		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
2004 	}
2005 
2006 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2007 	     IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2008 		uint32_t reg;
2009 
2010 		/*
2011 		 * Short Cable Receive Errors (MP21.E)
2012 		 */
2013 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2014 		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
2015 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
2016 		DELAY(100000);
2017 		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
2018 		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
2019 			device_printf(sc->sis_dev,
2020 			    "Applying short cable fix (reg=%x)\n", reg);
2021 			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2022 			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
2023 		}
2024 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2025 	}
2026 
2027 	/*
2028 	 * Enable interrupts.
2029 	 */
2030 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2031 #ifdef DEVICE_POLLING
2032 	/*
2033 	 * ... only enable interrupts if we are not polling, make sure
2034 	 * they are off otherwise.
2035 	 */
2036 	if (ifp->if_capenable & IFCAP_POLLING)
2037 		CSR_WRITE_4(sc, SIS_IER, 0);
2038 	else
2039 #endif
2040 	CSR_WRITE_4(sc, SIS_IER, 1);
2041 
2042 	/* Enable receiver and transmitter. */
2043 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2044 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2045 
2046 #ifdef notdef
2047 	mii_mediachg(mii);
2048 #endif
2049 
2050 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2051 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2052 
2053 	if (!sc->in_tick)
2054 		callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2055 }
2056 
2057 /*
2058  * Set media options.
2059  */
2060 static int
2061 sis_ifmedia_upd(struct ifnet *ifp)
2062 {
2063 	struct sis_softc	*sc;
2064 	struct mii_data		*mii;
2065 
2066 	sc = ifp->if_softc;
2067 
2068 	SIS_LOCK(sc);
2069 	mii = device_get_softc(sc->sis_miibus);
2070 	sc->sis_link = 0;
2071 	if (mii->mii_instance) {
2072 		struct mii_softc	*miisc;
2073 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2074 			mii_phy_reset(miisc);
2075 	}
2076 	mii_mediachg(mii);
2077 	SIS_UNLOCK(sc);
2078 
2079 	return(0);
2080 }
2081 
2082 /*
2083  * Report current media status.
2084  */
2085 static void
2086 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2087 {
2088 	struct sis_softc	*sc;
2089 	struct mii_data		*mii;
2090 
2091 	sc = ifp->if_softc;
2092 
2093 	SIS_LOCK(sc);
2094 	mii = device_get_softc(sc->sis_miibus);
2095 	mii_pollstat(mii);
2096 	SIS_UNLOCK(sc);
2097 	ifmr->ifm_active = mii->mii_media_active;
2098 	ifmr->ifm_status = mii->mii_media_status;
2099 }
2100 
2101 static int
2102 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2103 {
2104 	struct sis_softc	*sc = ifp->if_softc;
2105 	struct ifreq		*ifr = (struct ifreq *) data;
2106 	struct mii_data		*mii;
2107 	int			error = 0;
2108 
2109 	switch(command) {
2110 	case SIOCSIFFLAGS:
2111 		SIS_LOCK(sc);
2112 		if (ifp->if_flags & IFF_UP) {
2113 			sis_initl(sc);
2114 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2115 			sis_stop(sc);
2116 		}
2117 		SIS_UNLOCK(sc);
2118 		error = 0;
2119 		break;
2120 	case SIOCADDMULTI:
2121 	case SIOCDELMULTI:
2122 		SIS_LOCK(sc);
2123 		if (sc->sis_type == SIS_TYPE_83815)
2124 			sis_setmulti_ns(sc);
2125 		else
2126 			sis_setmulti_sis(sc);
2127 		SIS_UNLOCK(sc);
2128 		error = 0;
2129 		break;
2130 	case SIOCGIFMEDIA:
2131 	case SIOCSIFMEDIA:
2132 		mii = device_get_softc(sc->sis_miibus);
2133 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2134 		break;
2135 	case SIOCSIFCAP:
2136 		/* ok, disable interrupts */
2137 #ifdef DEVICE_POLLING
2138 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
2139 		    !(ifp->if_capenable & IFCAP_POLLING)) {
2140 			error = ether_poll_register(sis_poll, ifp);
2141 			if (error)
2142 				return(error);
2143 			SIS_LOCK(sc);
2144 			/* Disable interrupts */
2145 			CSR_WRITE_4(sc, SIS_IER, 0);
2146 			ifp->if_capenable |= IFCAP_POLLING;
2147 			SIS_UNLOCK(sc);
2148 			return (error);
2149 
2150 		}
2151 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
2152 		    ifp->if_capenable & IFCAP_POLLING) {
2153 			error = ether_poll_deregister(ifp);
2154 			/* Enable interrupts. */
2155 			SIS_LOCK(sc);
2156 			CSR_WRITE_4(sc, SIS_IER, 1);
2157 			ifp->if_capenable &= ~IFCAP_POLLING;
2158 			SIS_UNLOCK(sc);
2159 			return (error);
2160 		}
2161 #endif /* DEVICE_POLLING */
2162 		break;
2163 	default:
2164 		error = ether_ioctl(ifp, command, data);
2165 		break;
2166 	}
2167 
2168 	return(error);
2169 }
2170 
2171 static void
2172 sis_watchdog(struct sis_softc *sc)
2173 {
2174 
2175 	SIS_LOCK_ASSERT(sc);
2176 	if (sc->sis_stopped) {
2177 		SIS_UNLOCK(sc);
2178 		return;
2179 	}
2180 
2181 	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2182 		return;
2183 
2184 	device_printf(sc->sis_dev, "watchdog timeout\n");
2185 	sc->sis_ifp->if_oerrors++;
2186 
2187 	sis_stop(sc);
2188 	sis_reset(sc);
2189 	sis_initl(sc);
2190 
2191 	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2192 		sis_startl(sc->sis_ifp);
2193 }
2194 
2195 /*
2196  * Stop the adapter and free any mbufs allocated to the
2197  * RX and TX lists.
2198  */
2199 static void
2200 sis_stop(struct sis_softc *sc)
2201 {
2202 	int i;
2203 	struct ifnet *ifp;
2204 	struct sis_desc *dp;
2205 
2206 	if (sc->sis_stopped)
2207 		return;
2208 	SIS_LOCK_ASSERT(sc);
2209 	ifp = sc->sis_ifp;
2210 	sc->sis_watchdog_timer = 0;
2211 
2212 	callout_stop(&sc->sis_stat_ch);
2213 
2214 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2215 	CSR_WRITE_4(sc, SIS_IER, 0);
2216 	CSR_WRITE_4(sc, SIS_IMR, 0);
2217 	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2218 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2219 	DELAY(1000);
2220 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2221 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2222 
2223 	sc->sis_link = 0;
2224 
2225 	/*
2226 	 * Free data in the RX lists.
2227 	 */
2228 	dp = &sc->sis_rx_list[0];
2229 	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
2230 		if (dp->sis_mbuf == NULL)
2231 			continue;
2232 		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2233 		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2234 		m_freem(dp->sis_mbuf);
2235 		dp->sis_mbuf = NULL;
2236 	}
2237 	bzero(sc->sis_rx_list, SIS_RX_LIST_SZ);
2238 
2239 	/*
2240 	 * Free the TX list buffers.
2241 	 */
2242 	dp = &sc->sis_tx_list[0];
2243 	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
2244 		if (dp->sis_mbuf == NULL)
2245 			continue;
2246 		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2247 		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2248 		m_freem(dp->sis_mbuf);
2249 		dp->sis_mbuf = NULL;
2250 	}
2251 
2252 	bzero(sc->sis_tx_list, SIS_TX_LIST_SZ);
2253 
2254 	sc->sis_stopped = 1;
2255 }
2256 
2257 /*
2258  * Stop all chip I/O so that the kernel's probe routines don't
2259  * get confused by errant DMAs when rebooting.
2260  */
2261 static int
2262 sis_shutdown(device_t dev)
2263 {
2264 	struct sis_softc	*sc;
2265 
2266 	sc = device_get_softc(dev);
2267 	SIS_LOCK(sc);
2268 	sis_reset(sc);
2269 	sis_stop(sc);
2270 	SIS_UNLOCK(sc);
2271 	return (0);
2272 }
2273 
2274 static device_method_t sis_methods[] = {
2275 	/* Device interface */
2276 	DEVMETHOD(device_probe,		sis_probe),
2277 	DEVMETHOD(device_attach,	sis_attach),
2278 	DEVMETHOD(device_detach,	sis_detach),
2279 	DEVMETHOD(device_shutdown,	sis_shutdown),
2280 
2281 	/* bus interface */
2282 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
2283 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2284 
2285 	/* MII interface */
2286 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2287 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2288 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2289 
2290 	{ 0, 0 }
2291 };
2292 
2293 static driver_t sis_driver = {
2294 	"sis",
2295 	sis_methods,
2296 	sizeof(struct sis_softc)
2297 };
2298 
2299 static devclass_t sis_devclass;
2300 
2301 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2302 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2303