xref: /freebsd/sys/dev/sis/if_sis.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3  * Copyright (c) 1997, 1998, 1999
4  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39  * available from http://www.sis.com.tw.
40  *
41  * This driver also supports the NatSemi DP83815. Datasheets are
42  * available from http://www.national.com.
43  *
44  * Written by Bill Paul <wpaul@ee.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #ifdef HAVE_KERNEL_OPTION_HEADERS
62 #include "opt_device_polling.h"
63 #endif
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/bus.h>
68 #include <sys/endian.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/module.h>
74 #include <sys/socket.h>
75 #include <sys/sockio.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_arp.h>
81 #include <net/ethernet.h>
82 #include <net/if_dl.h>
83 #include <net/if_media.h>
84 #include <net/if_types.h>
85 #include <net/if_vlan_var.h>
86 
87 #include <net/bpf.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <sys/rman.h>
92 
93 #include <dev/mii/mii.h>
94 #include <dev/mii/mii_bitbang.h>
95 #include <dev/mii/miivar.h>
96 
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 
100 #define SIS_USEIOSPACE
101 
102 #include <dev/sis/if_sisreg.h>
103 
104 MODULE_DEPEND(sis, pci, 1, 1, 1);
105 MODULE_DEPEND(sis, ether, 1, 1, 1);
106 MODULE_DEPEND(sis, miibus, 1, 1, 1);
107 
108 /* "device miibus" required.  See GENERIC if you get errors here. */
109 #include "miibus_if.h"
110 
111 #define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
112 #define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
113 #define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
114 
115 /*
116  * register space access macros
117  */
118 #define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
119 
120 #define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
121 
122 #define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
123 
124 #define	CSR_BARRIER(sc, reg, length, flags)				\
125 	bus_barrier(sc->sis_res[0], reg, length, flags)
126 
127 /*
128  * Various supported device vendors/types and their names.
129  */
130 static const struct sis_type sis_devs[] = {
131 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
132 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
133 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
134 	{ 0, 0, NULL }
135 };
136 
137 static int sis_detach(device_t);
138 static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
139 static int sis_dma_alloc(struct sis_softc *);
140 static void sis_dma_free(struct sis_softc *);
141 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
142     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
143 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
144 #ifndef __NO_STRICT_ALIGNMENT
145 static __inline void sis_fixup_rx(struct mbuf *);
146 #endif
147 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
148 static int sis_ifmedia_upd(struct ifnet *);
149 static void sis_init(void *);
150 static void sis_initl(struct sis_softc *);
151 static void sis_intr(void *);
152 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
153 static uint32_t sis_mii_bitbang_read(device_t);
154 static void sis_mii_bitbang_write(device_t, uint32_t);
155 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
156 static int sis_resume(device_t);
157 static int sis_rxeof(struct sis_softc *);
158 static void sis_rxfilter(struct sis_softc *);
159 static void sis_rxfilter_ns(struct sis_softc *);
160 static void sis_rxfilter_sis(struct sis_softc *);
161 static void sis_start(struct ifnet *);
162 static void sis_startl(struct ifnet *);
163 static void sis_stop(struct sis_softc *);
164 static int sis_suspend(device_t);
165 static void sis_add_sysctls(struct sis_softc *);
166 static void sis_watchdog(struct sis_softc *);
167 static void sis_wol(struct sis_softc *);
168 
169 /*
170  * MII bit-bang glue
171  */
172 static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
173 	sis_mii_bitbang_read,
174 	sis_mii_bitbang_write,
175 	{
176 		SIS_MII_DATA,		/* MII_BIT_MDO */
177 		SIS_MII_DATA,		/* MII_BIT_MDI */
178 		SIS_MII_CLK,		/* MII_BIT_MDC */
179 		SIS_MII_DIR,		/* MII_BIT_DIR_HOST_PHY */
180 		0,			/* MII_BIT_DIR_PHY_HOST */
181 	}
182 };
183 
184 static struct resource_spec sis_res_spec[] = {
185 #ifdef SIS_USEIOSPACE
186 	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
187 #else
188 	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
189 #endif
190 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
191 	{ -1, 0 }
192 };
193 
194 #define SIS_SETBIT(sc, reg, x)				\
195 	CSR_WRITE_4(sc, reg,				\
196 		CSR_READ_4(sc, reg) | (x))
197 
198 #define SIS_CLRBIT(sc, reg, x)				\
199 	CSR_WRITE_4(sc, reg,				\
200 		CSR_READ_4(sc, reg) & ~(x))
201 
202 #define SIO_SET(x)					\
203 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
204 
205 #define SIO_CLR(x)					\
206 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
207 
208 /*
209  * Routine to reverse the bits in a word. Stolen almost
210  * verbatim from /usr/games/fortune.
211  */
212 static uint16_t
213 sis_reverse(uint16_t n)
214 {
215 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
216 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
217 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
218 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
219 
220 	return (n);
221 }
222 
223 static void
224 sis_delay(struct sis_softc *sc)
225 {
226 	int			idx;
227 
228 	for (idx = (300 / 33) + 1; idx > 0; idx--)
229 		CSR_READ_4(sc, SIS_CSR);
230 }
231 
232 static void
233 sis_eeprom_idle(struct sis_softc *sc)
234 {
235 	int		i;
236 
237 	SIO_SET(SIS_EECTL_CSEL);
238 	sis_delay(sc);
239 	SIO_SET(SIS_EECTL_CLK);
240 	sis_delay(sc);
241 
242 	for (i = 0; i < 25; i++) {
243 		SIO_CLR(SIS_EECTL_CLK);
244 		sis_delay(sc);
245 		SIO_SET(SIS_EECTL_CLK);
246 		sis_delay(sc);
247 	}
248 
249 	SIO_CLR(SIS_EECTL_CLK);
250 	sis_delay(sc);
251 	SIO_CLR(SIS_EECTL_CSEL);
252 	sis_delay(sc);
253 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
254 }
255 
256 /*
257  * Send a read command and address to the EEPROM, check for ACK.
258  */
259 static void
260 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
261 {
262 	int		d, i;
263 
264 	d = addr | SIS_EECMD_READ;
265 
266 	/*
267 	 * Feed in each bit and stobe the clock.
268 	 */
269 	for (i = 0x400; i; i >>= 1) {
270 		if (d & i) {
271 			SIO_SET(SIS_EECTL_DIN);
272 		} else {
273 			SIO_CLR(SIS_EECTL_DIN);
274 		}
275 		sis_delay(sc);
276 		SIO_SET(SIS_EECTL_CLK);
277 		sis_delay(sc);
278 		SIO_CLR(SIS_EECTL_CLK);
279 		sis_delay(sc);
280 	}
281 }
282 
283 /*
284  * Read a word of data stored in the EEPROM at address 'addr.'
285  */
286 static void
287 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
288 {
289 	int		i;
290 	uint16_t	word = 0;
291 
292 	/* Force EEPROM to idle state. */
293 	sis_eeprom_idle(sc);
294 
295 	/* Enter EEPROM access mode. */
296 	sis_delay(sc);
297 	SIO_CLR(SIS_EECTL_CLK);
298 	sis_delay(sc);
299 	SIO_SET(SIS_EECTL_CSEL);
300 	sis_delay(sc);
301 
302 	/*
303 	 * Send address of word we want to read.
304 	 */
305 	sis_eeprom_putbyte(sc, addr);
306 
307 	/*
308 	 * Start reading bits from EEPROM.
309 	 */
310 	for (i = 0x8000; i; i >>= 1) {
311 		SIO_SET(SIS_EECTL_CLK);
312 		sis_delay(sc);
313 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
314 			word |= i;
315 		sis_delay(sc);
316 		SIO_CLR(SIS_EECTL_CLK);
317 		sis_delay(sc);
318 	}
319 
320 	/* Turn off EEPROM access mode. */
321 	sis_eeprom_idle(sc);
322 
323 	*dest = word;
324 }
325 
326 /*
327  * Read a sequence of words from the EEPROM.
328  */
329 static void
330 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
331 {
332 	int			i;
333 	uint16_t		word = 0, *ptr;
334 
335 	for (i = 0; i < cnt; i++) {
336 		sis_eeprom_getword(sc, off + i, &word);
337 		ptr = (uint16_t *)(dest + (i * 2));
338 		if (swap)
339 			*ptr = ntohs(word);
340 		else
341 			*ptr = word;
342 	}
343 }
344 
345 #if defined(__i386__) || defined(__amd64__)
346 static device_t
347 sis_find_bridge(device_t dev)
348 {
349 	devclass_t		pci_devclass;
350 	device_t		*pci_devices;
351 	int			pci_count = 0;
352 	device_t		*pci_children;
353 	int			pci_childcount = 0;
354 	device_t		*busp, *childp;
355 	device_t		child = NULL;
356 	int			i, j;
357 
358 	if ((pci_devclass = devclass_find("pci")) == NULL)
359 		return (NULL);
360 
361 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
362 
363 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
364 		if (device_get_children(*busp, &pci_children, &pci_childcount))
365 			continue;
366 		for (j = 0, childp = pci_children;
367 		    j < pci_childcount; j++, childp++) {
368 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
369 			    pci_get_device(*childp) == 0x0008) {
370 				child = *childp;
371 				free(pci_children, M_TEMP);
372 				goto done;
373 			}
374 		}
375 		free(pci_children, M_TEMP);
376 	}
377 
378 done:
379 	free(pci_devices, M_TEMP);
380 	return (child);
381 }
382 
383 static void
384 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
385 {
386 	device_t		bridge;
387 	uint8_t			reg;
388 	int			i;
389 	bus_space_tag_t		btag;
390 
391 	bridge = sis_find_bridge(dev);
392 	if (bridge == NULL)
393 		return;
394 	reg = pci_read_config(bridge, 0x48, 1);
395 	pci_write_config(bridge, 0x48, reg|0x40, 1);
396 
397 	/* XXX */
398 #if defined(__amd64__) || defined(__i386__)
399 	btag = X86_BUS_SPACE_IO;
400 #endif
401 
402 	for (i = 0; i < cnt; i++) {
403 		bus_space_write_1(btag, 0x0, 0x70, i + off);
404 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
405 	}
406 
407 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
408 }
409 
410 static void
411 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
412 {
413 	uint32_t		filtsave, csrsave;
414 
415 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
416 	csrsave = CSR_READ_4(sc, SIS_CSR);
417 
418 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
419 	CSR_WRITE_4(sc, SIS_CSR, 0);
420 
421 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
422 
423 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
424 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
425 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
426 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
427 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
428 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
429 
430 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
431 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
432 }
433 #endif
434 
435 /*
436  * Read the MII serial port for the MII bit-bang module.
437  */
438 static uint32_t
439 sis_mii_bitbang_read(device_t dev)
440 {
441 	struct sis_softc	*sc;
442 	uint32_t		val;
443 
444 	sc = device_get_softc(dev);
445 
446 	val = CSR_READ_4(sc, SIS_EECTL);
447 	CSR_BARRIER(sc, SIS_EECTL, 4,
448 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
449 	return (val);
450 }
451 
452 /*
453  * Write the MII serial port for the MII bit-bang module.
454  */
455 static void
456 sis_mii_bitbang_write(device_t dev, uint32_t val)
457 {
458 	struct sis_softc	*sc;
459 
460 	sc = device_get_softc(dev);
461 
462 	CSR_WRITE_4(sc, SIS_EECTL, val);
463 	CSR_BARRIER(sc, SIS_EECTL, 4,
464 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
465 }
466 
467 static int
468 sis_miibus_readreg(device_t dev, int phy, int reg)
469 {
470 	struct sis_softc	*sc;
471 
472 	sc = device_get_softc(dev);
473 
474 	if (sc->sis_type == SIS_TYPE_83815) {
475 		if (phy != 0)
476 			return (0);
477 		/*
478 		 * The NatSemi chip can take a while after
479 		 * a reset to come ready, during which the BMSR
480 		 * returns a value of 0. This is *never* supposed
481 		 * to happen: some of the BMSR bits are meant to
482 		 * be hardwired in the on position, and this can
483 		 * confuse the miibus code a bit during the probe
484 		 * and attach phase. So we make an effort to check
485 		 * for this condition and wait for it to clear.
486 		 */
487 		if (!CSR_READ_4(sc, NS_BMSR))
488 			DELAY(1000);
489 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
490 	}
491 
492 	/*
493 	 * Chipsets < SIS_635 seem not to be able to read/write
494 	 * through mdio. Use the enhanced PHY access register
495 	 * again for them.
496 	 */
497 	if (sc->sis_type == SIS_TYPE_900 &&
498 	    sc->sis_rev < SIS_REV_635) {
499 		int i, val = 0;
500 
501 		if (phy != 0)
502 			return (0);
503 
504 		CSR_WRITE_4(sc, SIS_PHYCTL,
505 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
506 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
507 
508 		for (i = 0; i < SIS_TIMEOUT; i++) {
509 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
510 				break;
511 		}
512 
513 		if (i == SIS_TIMEOUT) {
514 			device_printf(sc->sis_dev,
515 			    "PHY failed to come ready\n");
516 			return (0);
517 		}
518 
519 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
520 
521 		if (val == 0xFFFF)
522 			return (0);
523 
524 		return (val);
525 	} else
526 		return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
527 		    reg));
528 }
529 
530 static int
531 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
532 {
533 	struct sis_softc	*sc;
534 
535 	sc = device_get_softc(dev);
536 
537 	if (sc->sis_type == SIS_TYPE_83815) {
538 		if (phy != 0)
539 			return (0);
540 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
541 		return (0);
542 	}
543 
544 	/*
545 	 * Chipsets < SIS_635 seem not to be able to read/write
546 	 * through mdio. Use the enhanced PHY access register
547 	 * again for them.
548 	 */
549 	if (sc->sis_type == SIS_TYPE_900 &&
550 	    sc->sis_rev < SIS_REV_635) {
551 		int i;
552 
553 		if (phy != 0)
554 			return (0);
555 
556 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
557 		    (reg << 6) | SIS_PHYOP_WRITE);
558 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
559 
560 		for (i = 0; i < SIS_TIMEOUT; i++) {
561 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
562 				break;
563 		}
564 
565 		if (i == SIS_TIMEOUT)
566 			device_printf(sc->sis_dev,
567 			    "PHY failed to come ready\n");
568 	} else
569 		mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
570 		    data);
571 	return (0);
572 }
573 
574 static void
575 sis_miibus_statchg(device_t dev)
576 {
577 	struct sis_softc	*sc;
578 	struct mii_data		*mii;
579 	struct ifnet		*ifp;
580 	uint32_t		reg;
581 
582 	sc = device_get_softc(dev);
583 	SIS_LOCK_ASSERT(sc);
584 
585 	mii = device_get_softc(sc->sis_miibus);
586 	ifp = sc->sis_ifp;
587 	if (mii == NULL || ifp == NULL ||
588 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
589 		return;
590 
591 	sc->sis_flags &= ~SIS_FLAG_LINK;
592 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
593 	    (IFM_ACTIVE | IFM_AVALID)) {
594 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
595 		case IFM_10_T:
596 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
597 			sc->sis_flags |= SIS_FLAG_LINK;
598 			break;
599 		case IFM_100_TX:
600 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
601 			sc->sis_flags |= SIS_FLAG_LINK;
602 			break;
603 		default:
604 			break;
605 		}
606 	}
607 
608 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
609 		/*
610 		 * Stopping MACs seem to reset SIS_TX_LISTPTR and
611 		 * SIS_RX_LISTPTR which in turn requires resetting
612 		 * TX/RX buffers.  So just don't do anything for
613 		 * lost link.
614 		 */
615 		return;
616 	}
617 
618 	/* Set full/half duplex mode. */
619 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
620 		SIS_SETBIT(sc, SIS_TX_CFG,
621 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
622 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
623 	} else {
624 		SIS_CLRBIT(sc, SIS_TX_CFG,
625 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
626 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
627 	}
628 
629 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
630 		/*
631 		 * MPII03.D: Half Duplex Excessive Collisions.
632 		 * Also page 49 in 83816 manual
633 		 */
634 		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
635 	}
636 
637 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
638 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
639 		/*
640 		 * Short Cable Receive Errors (MP21.E)
641 		 */
642 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
643 		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
644 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
645 		DELAY(100);
646 		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
647 		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
648 			device_printf(sc->sis_dev,
649 			    "Applying short cable fix (reg=%x)\n", reg);
650 			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
651 			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
652 		}
653 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
654 	}
655 	/* Enable TX/RX MACs. */
656 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
657 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
658 }
659 
660 static uint32_t
661 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
662 {
663 	uint32_t		crc;
664 
665 	/* Compute CRC for the address value. */
666 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
667 
668 	/*
669 	 * return the filter bit position
670 	 *
671 	 * The NatSemi chip has a 512-bit filter, which is
672 	 * different than the SiS, so we special-case it.
673 	 */
674 	if (sc->sis_type == SIS_TYPE_83815)
675 		return (crc >> 23);
676 	else if (sc->sis_rev >= SIS_REV_635 ||
677 	    sc->sis_rev == SIS_REV_900B)
678 		return (crc >> 24);
679 	else
680 		return (crc >> 25);
681 }
682 
683 static void
684 sis_rxfilter(struct sis_softc *sc)
685 {
686 
687 	SIS_LOCK_ASSERT(sc);
688 
689 	if (sc->sis_type == SIS_TYPE_83815)
690 		sis_rxfilter_ns(sc);
691 	else
692 		sis_rxfilter_sis(sc);
693 }
694 
695 static void
696 sis_rxfilter_ns(struct sis_softc *sc)
697 {
698 	struct ifnet		*ifp;
699 	struct ifmultiaddr	*ifma;
700 	uint32_t		h, i, filter;
701 	int			bit, index;
702 
703 	ifp = sc->sis_ifp;
704 	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
705 	if (filter & SIS_RXFILTCTL_ENABLE) {
706 		/*
707 		 * Filter should be disabled to program other bits.
708 		 */
709 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
710 		CSR_READ_4(sc, SIS_RXFILT_CTL);
711 	}
712 	filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
713 	    NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
714 	    SIS_RXFILTCTL_ALLMULTI);
715 
716 	if (ifp->if_flags & IFF_BROADCAST)
717 		filter |= SIS_RXFILTCTL_BROAD;
718 	/*
719 	 * For the NatSemi chip, we have to explicitly enable the
720 	 * reception of ARP frames, as well as turn on the 'perfect
721 	 * match' filter where we store the station address, otherwise
722 	 * we won't receive unicasts meant for this host.
723 	 */
724 	filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
725 
726 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
727 		filter |= SIS_RXFILTCTL_ALLMULTI;
728 		if (ifp->if_flags & IFF_PROMISC)
729 			filter |= SIS_RXFILTCTL_ALLPHYS;
730 	} else {
731 		/*
732 		 * We have to explicitly enable the multicast hash table
733 		 * on the NatSemi chip if we want to use it, which we do.
734 		 */
735 		filter |= NS_RXFILTCTL_MCHASH;
736 
737 		/* first, zot all the existing hash bits */
738 		for (i = 0; i < 32; i++) {
739 			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
740 			    (i * 2));
741 			CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
742 		}
743 
744 		if_maddr_rlock(ifp);
745 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
746 			if (ifma->ifma_addr->sa_family != AF_LINK)
747 				continue;
748 			h = sis_mchash(sc,
749 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
750 			index = h >> 3;
751 			bit = h & 0x1F;
752 			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
753 			    index);
754 			if (bit > 0xF)
755 				bit -= 0x10;
756 			SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
757 		}
758 		if_maddr_runlock(ifp);
759 	}
760 
761 	/* Turn the receive filter on */
762 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
763 	CSR_READ_4(sc, SIS_RXFILT_CTL);
764 }
765 
766 static void
767 sis_rxfilter_sis(struct sis_softc *sc)
768 {
769 	struct ifnet		*ifp;
770 	struct ifmultiaddr	*ifma;
771 	uint32_t		filter, h, i, n;
772 	uint16_t		hashes[16];
773 
774 	ifp = sc->sis_ifp;
775 
776 	/* hash table size */
777 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
778 		n = 16;
779 	else
780 		n = 8;
781 
782 	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
783 	if (filter & SIS_RXFILTCTL_ENABLE) {
784 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
785 		CSR_READ_4(sc, SIS_RXFILT_CTL);
786 	}
787 	filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
788 	    SIS_RXFILTCTL_ALLMULTI);
789 	if (ifp->if_flags & IFF_BROADCAST)
790 		filter |= SIS_RXFILTCTL_BROAD;
791 
792 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
793 		filter |= SIS_RXFILTCTL_ALLMULTI;
794 		if (ifp->if_flags & IFF_PROMISC)
795 			filter |= SIS_RXFILTCTL_ALLPHYS;
796 		for (i = 0; i < n; i++)
797 			hashes[i] = ~0;
798 	} else {
799 		for (i = 0; i < n; i++)
800 			hashes[i] = 0;
801 		i = 0;
802 		if_maddr_rlock(ifp);
803 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
804 			if (ifma->ifma_addr->sa_family != AF_LINK)
805 			continue;
806 			h = sis_mchash(sc,
807 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
808 			hashes[h >> 4] |= 1 << (h & 0xf);
809 			i++;
810 		}
811 		if_maddr_runlock(ifp);
812 		if (i > n) {
813 			filter |= SIS_RXFILTCTL_ALLMULTI;
814 			for (i = 0; i < n; i++)
815 				hashes[i] = ~0;
816 		}
817 	}
818 
819 	for (i = 0; i < n; i++) {
820 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
821 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
822 	}
823 
824 	/* Turn the receive filter on */
825 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
826 	CSR_READ_4(sc, SIS_RXFILT_CTL);
827 }
828 
829 static void
830 sis_reset(struct sis_softc *sc)
831 {
832 	int		i;
833 
834 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
835 
836 	for (i = 0; i < SIS_TIMEOUT; i++) {
837 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
838 			break;
839 	}
840 
841 	if (i == SIS_TIMEOUT)
842 		device_printf(sc->sis_dev, "reset never completed\n");
843 
844 	/* Wait a little while for the chip to get its brains in order. */
845 	DELAY(1000);
846 
847 	/*
848 	 * If this is a NetSemi chip, make sure to clear
849 	 * PME mode.
850 	 */
851 	if (sc->sis_type == SIS_TYPE_83815) {
852 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
853 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
854 	} else {
855 		/* Disable WOL functions. */
856 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
857 	}
858 }
859 
860 /*
861  * Probe for an SiS chip. Check the PCI vendor and device
862  * IDs against our list and return a device name if we find a match.
863  */
864 static int
865 sis_probe(device_t dev)
866 {
867 	const struct sis_type	*t;
868 
869 	t = sis_devs;
870 
871 	while (t->sis_name != NULL) {
872 		if ((pci_get_vendor(dev) == t->sis_vid) &&
873 		    (pci_get_device(dev) == t->sis_did)) {
874 			device_set_desc(dev, t->sis_name);
875 			return (BUS_PROBE_DEFAULT);
876 		}
877 		t++;
878 	}
879 
880 	return (ENXIO);
881 }
882 
883 /*
884  * Attach the interface. Allocate softc structures, do ifmedia
885  * setup and ethernet/BPF attach.
886  */
887 static int
888 sis_attach(device_t dev)
889 {
890 	u_char			eaddr[ETHER_ADDR_LEN];
891 	struct sis_softc	*sc;
892 	struct ifnet		*ifp;
893 	int			error = 0, pmc, waittime = 0;
894 
895 	waittime = 0;
896 	sc = device_get_softc(dev);
897 
898 	sc->sis_dev = dev;
899 
900 	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
901 	    MTX_DEF);
902 	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
903 
904 	if (pci_get_device(dev) == SIS_DEVICEID_900)
905 		sc->sis_type = SIS_TYPE_900;
906 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
907 		sc->sis_type = SIS_TYPE_7016;
908 	if (pci_get_vendor(dev) == NS_VENDORID)
909 		sc->sis_type = SIS_TYPE_83815;
910 
911 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
912 	/*
913 	 * Map control/status registers.
914 	 */
915 	pci_enable_busmaster(dev);
916 
917 	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
918 	if (error) {
919 		device_printf(dev, "couldn't allocate resources\n");
920 		goto fail;
921 	}
922 
923 	/* Reset the adapter. */
924 	sis_reset(sc);
925 
926 	if (sc->sis_type == SIS_TYPE_900 &&
927 	    (sc->sis_rev == SIS_REV_635 ||
928 	    sc->sis_rev == SIS_REV_900B)) {
929 		SIO_SET(SIS_CFG_RND_CNT);
930 		SIO_SET(SIS_CFG_PERR_DETECT);
931 	}
932 
933 	/*
934 	 * Get station address from the EEPROM.
935 	 */
936 	switch (pci_get_vendor(dev)) {
937 	case NS_VENDORID:
938 		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
939 
940 		/* We can't update the device description, so spew */
941 		if (sc->sis_srr == NS_SRR_15C)
942 			device_printf(dev, "Silicon Revision: DP83815C\n");
943 		else if (sc->sis_srr == NS_SRR_15D)
944 			device_printf(dev, "Silicon Revision: DP83815D\n");
945 		else if (sc->sis_srr == NS_SRR_16A)
946 			device_printf(dev, "Silicon Revision: DP83816A\n");
947 		else
948 			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
949 
950 		/*
951 		 * Reading the MAC address out of the EEPROM on
952 		 * the NatSemi chip takes a bit more work than
953 		 * you'd expect. The address spans 4 16-bit words,
954 		 * with the first word containing only a single bit.
955 		 * You have to shift everything over one bit to
956 		 * get it aligned properly. Also, the bits are
957 		 * stored backwards (the LSB is really the MSB,
958 		 * and so on) so you have to reverse them in order
959 		 * to get the MAC address into the form we want.
960 		 * Why? Who the hell knows.
961 		 */
962 		{
963 			uint16_t		tmp[4];
964 
965 			sis_read_eeprom(sc, (caddr_t)&tmp,
966 			    NS_EE_NODEADDR, 4, 0);
967 
968 			/* Shift everything over one bit. */
969 			tmp[3] = tmp[3] >> 1;
970 			tmp[3] |= tmp[2] << 15;
971 			tmp[2] = tmp[2] >> 1;
972 			tmp[2] |= tmp[1] << 15;
973 			tmp[1] = tmp[1] >> 1;
974 			tmp[1] |= tmp[0] << 15;
975 
976 			/* Now reverse all the bits. */
977 			tmp[3] = sis_reverse(tmp[3]);
978 			tmp[2] = sis_reverse(tmp[2]);
979 			tmp[1] = sis_reverse(tmp[1]);
980 
981 			eaddr[0] = (tmp[1] >> 0) & 0xFF;
982 			eaddr[1] = (tmp[1] >> 8) & 0xFF;
983 			eaddr[2] = (tmp[2] >> 0) & 0xFF;
984 			eaddr[3] = (tmp[2] >> 8) & 0xFF;
985 			eaddr[4] = (tmp[3] >> 0) & 0xFF;
986 			eaddr[5] = (tmp[3] >> 8) & 0xFF;
987 		}
988 		break;
989 	case SIS_VENDORID:
990 	default:
991 #if defined(__i386__) || defined(__amd64__)
992 		/*
993 		 * If this is a SiS 630E chipset with an embedded
994 		 * SiS 900 controller, we have to read the MAC address
995 		 * from the APC CMOS RAM. Our method for doing this
996 		 * is very ugly since we have to reach out and grab
997 		 * ahold of hardware for which we cannot properly
998 		 * allocate resources. This code is only compiled on
999 		 * the i386 architecture since the SiS 630E chipset
1000 		 * is for x86 motherboards only. Note that there are
1001 		 * a lot of magic numbers in this hack. These are
1002 		 * taken from SiS's Linux driver. I'd like to replace
1003 		 * them with proper symbolic definitions, but that
1004 		 * requires some datasheets that I don't have access
1005 		 * to at the moment.
1006 		 */
1007 		if (sc->sis_rev == SIS_REV_630S ||
1008 		    sc->sis_rev == SIS_REV_630E ||
1009 		    sc->sis_rev == SIS_REV_630EA1)
1010 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1011 
1012 		else if (sc->sis_rev == SIS_REV_635 ||
1013 			 sc->sis_rev == SIS_REV_630ET)
1014 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1015 		else if (sc->sis_rev == SIS_REV_96x) {
1016 			/* Allow to read EEPROM from LAN. It is shared
1017 			 * between a 1394 controller and the NIC and each
1018 			 * time we access it, we need to set SIS_EECMD_REQ.
1019 			 */
1020 			SIO_SET(SIS_EECMD_REQ);
1021 			for (waittime = 0; waittime < SIS_TIMEOUT;
1022 			    waittime++) {
1023 				/* Force EEPROM to idle state. */
1024 				sis_eeprom_idle(sc);
1025 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1026 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1027 					    SIS_EE_NODEADDR, 3, 0);
1028 					break;
1029 				}
1030 				DELAY(1);
1031 			}
1032 			/*
1033 			 * Set SIS_EECTL_CLK to high, so a other master
1034 			 * can operate on the i2c bus.
1035 			 */
1036 			SIO_SET(SIS_EECTL_CLK);
1037 			/* Refuse EEPROM access by LAN */
1038 			SIO_SET(SIS_EECMD_DONE);
1039 		} else
1040 #endif
1041 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1042 			    SIS_EE_NODEADDR, 3, 0);
1043 		break;
1044 	}
1045 
1046 	sis_add_sysctls(sc);
1047 
1048 	/* Allocate DMA'able memory. */
1049 	if ((error = sis_dma_alloc(sc)) != 0)
1050 		goto fail;
1051 
1052 	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1053 	if (ifp == NULL) {
1054 		device_printf(dev, "can not if_alloc()\n");
1055 		error = ENOSPC;
1056 		goto fail;
1057 	}
1058 	ifp->if_softc = sc;
1059 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1060 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1061 	ifp->if_ioctl = sis_ioctl;
1062 	ifp->if_start = sis_start;
1063 	ifp->if_init = sis_init;
1064 	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1065 	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1066 	IFQ_SET_READY(&ifp->if_snd);
1067 
1068 	if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1069 		if (sc->sis_type == SIS_TYPE_83815)
1070 			ifp->if_capabilities |= IFCAP_WOL;
1071 		else
1072 			ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1073 		ifp->if_capenable = ifp->if_capabilities;
1074 	}
1075 
1076 	/*
1077 	 * Do MII setup.
1078 	 */
1079 	error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1080 	    sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1081 	if (error != 0) {
1082 		device_printf(dev, "attaching PHYs failed\n");
1083 		goto fail;
1084 	}
1085 
1086 	/*
1087 	 * Call MI attach routine.
1088 	 */
1089 	ether_ifattach(ifp, eaddr);
1090 
1091 	/*
1092 	 * Tell the upper layer(s) we support long frames.
1093 	 */
1094 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1095 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1096 	ifp->if_capenable = ifp->if_capabilities;
1097 #ifdef DEVICE_POLLING
1098 	ifp->if_capabilities |= IFCAP_POLLING;
1099 #endif
1100 
1101 	/* Hook interrupt last to avoid having to lock softc */
1102 	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1103 	    NULL, sis_intr, sc, &sc->sis_intrhand);
1104 
1105 	if (error) {
1106 		device_printf(dev, "couldn't set up irq\n");
1107 		ether_ifdetach(ifp);
1108 		goto fail;
1109 	}
1110 
1111 fail:
1112 	if (error)
1113 		sis_detach(dev);
1114 
1115 	return (error);
1116 }
1117 
1118 /*
1119  * Shutdown hardware and free up resources. This can be called any
1120  * time after the mutex has been initialized. It is called in both
1121  * the error case in attach and the normal detach case so it needs
1122  * to be careful about only freeing resources that have actually been
1123  * allocated.
1124  */
1125 static int
1126 sis_detach(device_t dev)
1127 {
1128 	struct sis_softc	*sc;
1129 	struct ifnet		*ifp;
1130 
1131 	sc = device_get_softc(dev);
1132 	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1133 	ifp = sc->sis_ifp;
1134 
1135 #ifdef DEVICE_POLLING
1136 	if (ifp->if_capenable & IFCAP_POLLING)
1137 		ether_poll_deregister(ifp);
1138 #endif
1139 
1140 	/* These should only be active if attach succeeded. */
1141 	if (device_is_attached(dev)) {
1142 		SIS_LOCK(sc);
1143 		sis_stop(sc);
1144 		SIS_UNLOCK(sc);
1145 		callout_drain(&sc->sis_stat_ch);
1146 		ether_ifdetach(ifp);
1147 	}
1148 	if (sc->sis_miibus)
1149 		device_delete_child(dev, sc->sis_miibus);
1150 	bus_generic_detach(dev);
1151 
1152 	if (sc->sis_intrhand)
1153 		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1154 	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1155 
1156 	if (ifp)
1157 		if_free(ifp);
1158 
1159 	sis_dma_free(sc);
1160 
1161 	mtx_destroy(&sc->sis_mtx);
1162 
1163 	return (0);
1164 }
1165 
1166 struct sis_dmamap_arg {
1167 	bus_addr_t	sis_busaddr;
1168 };
1169 
1170 static void
1171 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1172 {
1173 	struct sis_dmamap_arg	*ctx;
1174 
1175 	if (error != 0)
1176 		return;
1177 
1178 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1179 
1180 	ctx = (struct sis_dmamap_arg *)arg;
1181 	ctx->sis_busaddr = segs[0].ds_addr;
1182 }
1183 
1184 static int
1185 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1186     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1187     bus_addr_t *paddr, const char *msg)
1188 {
1189 	struct sis_dmamap_arg	ctx;
1190 	int			error;
1191 
1192 	error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1193 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1194 	    maxsize, 0, NULL, NULL, tag);
1195 	if (error != 0) {
1196 		device_printf(sc->sis_dev,
1197 		    "could not create %s dma tag\n", msg);
1198 		return (ENOMEM);
1199 	}
1200 	/* Allocate DMA'able memory for ring. */
1201 	error = bus_dmamem_alloc(*tag, (void **)ring,
1202 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1203 	if (error != 0) {
1204 		device_printf(sc->sis_dev,
1205 		    "could not allocate DMA'able memory for %s\n", msg);
1206 		return (ENOMEM);
1207 	}
1208 	/* Load the address of the ring. */
1209 	ctx.sis_busaddr = 0;
1210 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1211 	    &ctx, BUS_DMA_NOWAIT);
1212 	if (error != 0) {
1213 		device_printf(sc->sis_dev,
1214 		    "could not load DMA'able memory for %s\n", msg);
1215 		return (ENOMEM);
1216 	}
1217 	*paddr = ctx.sis_busaddr;
1218 	return (0);
1219 }
1220 
1221 static int
1222 sis_dma_alloc(struct sis_softc *sc)
1223 {
1224 	struct sis_rxdesc	*rxd;
1225 	struct sis_txdesc	*txd;
1226 	int			error, i;
1227 
1228 	/* Allocate the parent bus DMA tag appropriate for PCI. */
1229 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1230 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1231 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1232 	    0, NULL, NULL, &sc->sis_parent_tag);
1233 	if (error != 0) {
1234 		device_printf(sc->sis_dev,
1235 		    "could not allocate parent dma tag\n");
1236 		return (ENOMEM);
1237 	}
1238 
1239 	/* Create RX ring. */
1240 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1241 	    &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1242 	    &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1243 	if (error)
1244 		return (error);
1245 
1246 	/* Create TX ring. */
1247 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1248 	    &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1249 	    &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1250 	if (error)
1251 		return (error);
1252 
1253 	/* Create tag for RX mbufs. */
1254 	error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1255 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1256 	    MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1257 	if (error) {
1258 		device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1259 		return (error);
1260 	}
1261 
1262 	/* Create tag for TX mbufs. */
1263 	error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1264 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1265 	    MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1266 	    &sc->sis_tx_tag);
1267 	if (error) {
1268 		device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1269 		return (error);
1270 	}
1271 
1272 	/* Create DMA maps for RX buffers. */
1273 	error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1274 	if (error) {
1275 		device_printf(sc->sis_dev,
1276 		    "can't create spare DMA map for RX\n");
1277 		return (error);
1278 	}
1279 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1280 		rxd = &sc->sis_rxdesc[i];
1281 		rxd->rx_m = NULL;
1282 		error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1283 		if (error) {
1284 			device_printf(sc->sis_dev,
1285 			    "can't create DMA map for RX\n");
1286 			return (error);
1287 		}
1288 	}
1289 
1290 	/* Create DMA maps for TX buffers. */
1291 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1292 		txd = &sc->sis_txdesc[i];
1293 		txd->tx_m = NULL;
1294 		error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1295 		if (error) {
1296 			device_printf(sc->sis_dev,
1297 			    "can't create DMA map for TX\n");
1298 			return (error);
1299 		}
1300 	}
1301 
1302 	return (0);
1303 }
1304 
1305 static void
1306 sis_dma_free(struct sis_softc *sc)
1307 {
1308 	struct sis_rxdesc	*rxd;
1309 	struct sis_txdesc	*txd;
1310 	int			i;
1311 
1312 	/* Destroy DMA maps for RX buffers. */
1313 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1314 		rxd = &sc->sis_rxdesc[i];
1315 		if (rxd->rx_dmamap)
1316 			bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1317 	}
1318 	if (sc->sis_rx_sparemap)
1319 		bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1320 
1321 	/* Destroy DMA maps for TX buffers. */
1322 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1323 		txd = &sc->sis_txdesc[i];
1324 		if (txd->tx_dmamap)
1325 			bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1326 	}
1327 
1328 	if (sc->sis_rx_tag)
1329 		bus_dma_tag_destroy(sc->sis_rx_tag);
1330 	if (sc->sis_tx_tag)
1331 		bus_dma_tag_destroy(sc->sis_tx_tag);
1332 
1333 	/* Destroy RX ring. */
1334 	if (sc->sis_rx_paddr)
1335 		bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1336 	if (sc->sis_rx_list)
1337 		bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1338 		    sc->sis_rx_list_map);
1339 
1340 	if (sc->sis_rx_list_tag)
1341 		bus_dma_tag_destroy(sc->sis_rx_list_tag);
1342 
1343 	/* Destroy TX ring. */
1344 	if (sc->sis_tx_paddr)
1345 		bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1346 
1347 	if (sc->sis_tx_list)
1348 		bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1349 		    sc->sis_tx_list_map);
1350 
1351 	if (sc->sis_tx_list_tag)
1352 		bus_dma_tag_destroy(sc->sis_tx_list_tag);
1353 
1354 	/* Destroy the parent tag. */
1355 	if (sc->sis_parent_tag)
1356 		bus_dma_tag_destroy(sc->sis_parent_tag);
1357 }
1358 
1359 /*
1360  * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1361  * we arrange the descriptors in a closed ring, so that the last descriptor
1362  * points back to the first.
1363  */
1364 static int
1365 sis_ring_init(struct sis_softc *sc)
1366 {
1367 	struct sis_rxdesc	*rxd;
1368 	struct sis_txdesc	*txd;
1369 	bus_addr_t		next;
1370 	int			error, i;
1371 
1372 	bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1373 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1374 		txd = &sc->sis_txdesc[i];
1375 		txd->tx_m = NULL;
1376 		if (i == SIS_TX_LIST_CNT - 1)
1377 			next = SIS_TX_RING_ADDR(sc, 0);
1378 		else
1379 			next = SIS_TX_RING_ADDR(sc, i + 1);
1380 		sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1381 	}
1382 	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1383 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1384 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1385 
1386 	sc->sis_rx_cons = 0;
1387 	bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1388 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1389 		rxd = &sc->sis_rxdesc[i];
1390 		rxd->rx_desc = &sc->sis_rx_list[i];
1391 		if (i == SIS_RX_LIST_CNT - 1)
1392 			next = SIS_RX_RING_ADDR(sc, 0);
1393 		else
1394 			next = SIS_RX_RING_ADDR(sc, i + 1);
1395 		rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1396 		error = sis_newbuf(sc, rxd);
1397 		if (error)
1398 			return (error);
1399 	}
1400 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1401 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1402 
1403 	return (0);
1404 }
1405 
1406 /*
1407  * Initialize an RX descriptor and attach an MBUF cluster.
1408  */
1409 static int
1410 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1411 {
1412 	struct mbuf		*m;
1413 	bus_dma_segment_t	segs[1];
1414 	bus_dmamap_t		map;
1415 	int nsegs;
1416 
1417 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1418 	if (m == NULL)
1419 		return (ENOBUFS);
1420 	m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1421 #ifndef __NO_STRICT_ALIGNMENT
1422 	m_adj(m, SIS_RX_BUF_ALIGN);
1423 #endif
1424 
1425 	if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1426 	    segs, &nsegs, 0) != 0) {
1427 		m_freem(m);
1428 		return (ENOBUFS);
1429 	}
1430 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1431 
1432 	if (rxd->rx_m != NULL) {
1433 		bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1434 		    BUS_DMASYNC_POSTREAD);
1435 		bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1436 	}
1437 	map = rxd->rx_dmamap;
1438 	rxd->rx_dmamap = sc->sis_rx_sparemap;
1439 	sc->sis_rx_sparemap = map;
1440 	bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1441 	rxd->rx_m = m;
1442 	rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1443 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1444 	return (0);
1445 }
1446 
1447 static __inline void
1448 sis_discard_rxbuf(struct sis_rxdesc *rxd)
1449 {
1450 
1451 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1452 }
1453 
1454 #ifndef __NO_STRICT_ALIGNMENT
1455 static __inline void
1456 sis_fixup_rx(struct mbuf *m)
1457 {
1458 	uint16_t		*src, *dst;
1459 	int			i;
1460 
1461 	src = mtod(m, uint16_t *);
1462 	dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1463 
1464 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1465 		*dst++ = *src++;
1466 
1467 	m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1468 }
1469 #endif
1470 
1471 /*
1472  * A frame has been uploaded: pass the resulting mbuf chain up to
1473  * the higher level protocols.
1474  */
1475 static int
1476 sis_rxeof(struct sis_softc *sc)
1477 {
1478 	struct mbuf		*m;
1479 	struct ifnet		*ifp;
1480 	struct sis_rxdesc	*rxd;
1481 	struct sis_desc		*cur_rx;
1482 	int			prog, rx_cons, rx_npkts = 0, total_len;
1483 	uint32_t		rxstat;
1484 
1485 	SIS_LOCK_ASSERT(sc);
1486 
1487 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1488 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1489 
1490 	rx_cons = sc->sis_rx_cons;
1491 	ifp = sc->sis_ifp;
1492 
1493 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1494 	    SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1495 #ifdef DEVICE_POLLING
1496 		if (ifp->if_capenable & IFCAP_POLLING) {
1497 			if (sc->rxcycles <= 0)
1498 				break;
1499 			sc->rxcycles--;
1500 		}
1501 #endif
1502 		cur_rx = &sc->sis_rx_list[rx_cons];
1503 		rxstat = le32toh(cur_rx->sis_cmdsts);
1504 		if ((rxstat & SIS_CMDSTS_OWN) == 0)
1505 			break;
1506 		rxd = &sc->sis_rxdesc[rx_cons];
1507 
1508 		total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1509 		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1510 		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1511 		    ETHER_CRC_LEN))
1512 			rxstat &= ~SIS_RXSTAT_GIANT;
1513 		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1514 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1515 			if (rxstat & SIS_RXSTAT_COLL)
1516 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1517 			sis_discard_rxbuf(rxd);
1518 			continue;
1519 		}
1520 
1521 		/* Add a new receive buffer to the ring. */
1522 		m = rxd->rx_m;
1523 		if (sis_newbuf(sc, rxd) != 0) {
1524 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1525 			sis_discard_rxbuf(rxd);
1526 			continue;
1527 		}
1528 
1529 		/* No errors; receive the packet. */
1530 		m->m_pkthdr.len = m->m_len = total_len;
1531 #ifndef __NO_STRICT_ALIGNMENT
1532 		/*
1533 		 * On architectures without alignment problems we try to
1534 		 * allocate a new buffer for the receive ring, and pass up
1535 		 * the one where the packet is already, saving the expensive
1536 		 * copy operation.
1537 		 */
1538 		sis_fixup_rx(m);
1539 #endif
1540 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1541 		m->m_pkthdr.rcvif = ifp;
1542 
1543 		SIS_UNLOCK(sc);
1544 		(*ifp->if_input)(ifp, m);
1545 		SIS_LOCK(sc);
1546 		rx_npkts++;
1547 	}
1548 
1549 	if (prog > 0) {
1550 		sc->sis_rx_cons = rx_cons;
1551 		bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1552 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1553 	}
1554 
1555 	return (rx_npkts);
1556 }
1557 
1558 /*
1559  * A frame was downloaded to the chip. It's safe for us to clean up
1560  * the list buffers.
1561  */
1562 
1563 static void
1564 sis_txeof(struct sis_softc *sc)
1565 {
1566 	struct ifnet		*ifp;
1567 	struct sis_desc		*cur_tx;
1568 	struct sis_txdesc	*txd;
1569 	uint32_t		cons, txstat;
1570 
1571 	SIS_LOCK_ASSERT(sc);
1572 
1573 	cons = sc->sis_tx_cons;
1574 	if (cons == sc->sis_tx_prod)
1575 		return;
1576 
1577 	ifp = sc->sis_ifp;
1578 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1579 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1580 
1581 	/*
1582 	 * Go through our tx list and free mbufs for those
1583 	 * frames that have been transmitted.
1584 	 */
1585 	for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1586 		cur_tx = &sc->sis_tx_list[cons];
1587 		txstat = le32toh(cur_tx->sis_cmdsts);
1588 		if ((txstat & SIS_CMDSTS_OWN) != 0)
1589 			break;
1590 		txd = &sc->sis_txdesc[cons];
1591 		if (txd->tx_m != NULL) {
1592 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1593 			    BUS_DMASYNC_POSTWRITE);
1594 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1595 			m_freem(txd->tx_m);
1596 			txd->tx_m = NULL;
1597 			if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1598 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1599 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1600 				    (txstat & SIS_TXSTAT_COLLCNT) >> 16);
1601 			} else {
1602 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1603 				if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1604 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1605 				if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1606 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1607 			}
1608 		}
1609 		sc->sis_tx_cnt--;
1610 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1611 	}
1612 	sc->sis_tx_cons = cons;
1613 	if (sc->sis_tx_cnt == 0)
1614 		sc->sis_watchdog_timer = 0;
1615 }
1616 
1617 static void
1618 sis_tick(void *xsc)
1619 {
1620 	struct sis_softc	*sc;
1621 	struct mii_data		*mii;
1622 
1623 	sc = xsc;
1624 	SIS_LOCK_ASSERT(sc);
1625 
1626 	mii = device_get_softc(sc->sis_miibus);
1627 	mii_tick(mii);
1628 	sis_watchdog(sc);
1629 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1630 		sis_miibus_statchg(sc->sis_dev);
1631 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1632 }
1633 
1634 #ifdef DEVICE_POLLING
1635 static poll_handler_t sis_poll;
1636 
1637 static int
1638 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1639 {
1640 	struct	sis_softc *sc = ifp->if_softc;
1641 	int rx_npkts = 0;
1642 
1643 	SIS_LOCK(sc);
1644 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1645 		SIS_UNLOCK(sc);
1646 		return (rx_npkts);
1647 	}
1648 
1649 	/*
1650 	 * On the sis, reading the status register also clears it.
1651 	 * So before returning to intr mode we must make sure that all
1652 	 * possible pending sources of interrupts have been served.
1653 	 * In practice this means run to completion the *eof routines,
1654 	 * and then call the interrupt routine
1655 	 */
1656 	sc->rxcycles = count;
1657 	rx_npkts = sis_rxeof(sc);
1658 	sis_txeof(sc);
1659 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1660 		sis_startl(ifp);
1661 
1662 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1663 		uint32_t	status;
1664 
1665 		/* Reading the ISR register clears all interrupts. */
1666 		status = CSR_READ_4(sc, SIS_ISR);
1667 
1668 		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1669 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1670 
1671 		if (status & (SIS_ISR_RX_IDLE))
1672 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1673 
1674 		if (status & SIS_ISR_SYSERR) {
1675 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1676 			sis_initl(sc);
1677 		}
1678 	}
1679 
1680 	SIS_UNLOCK(sc);
1681 	return (rx_npkts);
1682 }
1683 #endif /* DEVICE_POLLING */
1684 
1685 static void
1686 sis_intr(void *arg)
1687 {
1688 	struct sis_softc	*sc;
1689 	struct ifnet		*ifp;
1690 	uint32_t		status;
1691 
1692 	sc = arg;
1693 	ifp = sc->sis_ifp;
1694 
1695 	SIS_LOCK(sc);
1696 #ifdef DEVICE_POLLING
1697 	if (ifp->if_capenable & IFCAP_POLLING) {
1698 		SIS_UNLOCK(sc);
1699 		return;
1700 	}
1701 #endif
1702 
1703 	/* Reading the ISR register clears all interrupts. */
1704 	status = CSR_READ_4(sc, SIS_ISR);
1705 	if ((status & SIS_INTRS) == 0) {
1706 		/* Not ours. */
1707 		SIS_UNLOCK(sc);
1708 		return;
1709 	}
1710 
1711 	/* Disable interrupts. */
1712 	CSR_WRITE_4(sc, SIS_IER, 0);
1713 
1714 	for (;(status & SIS_INTRS) != 0;) {
1715 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1716 			break;
1717 		if (status &
1718 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1719 		    SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1720 			sis_txeof(sc);
1721 
1722 		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1723 		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1724 			sis_rxeof(sc);
1725 
1726 		if (status & SIS_ISR_RX_OFLOW)
1727 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1728 
1729 		if (status & (SIS_ISR_RX_IDLE))
1730 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1731 
1732 		if (status & SIS_ISR_SYSERR) {
1733 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1734 			sis_initl(sc);
1735 			SIS_UNLOCK(sc);
1736 			return;
1737 		}
1738 		status = CSR_READ_4(sc, SIS_ISR);
1739 	}
1740 
1741 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1742 		/* Re-enable interrupts. */
1743 		CSR_WRITE_4(sc, SIS_IER, 1);
1744 
1745 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1746 			sis_startl(ifp);
1747 	}
1748 
1749 	SIS_UNLOCK(sc);
1750 }
1751 
1752 /*
1753  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1754  * pointers to the fragment pointers.
1755  */
1756 static int
1757 sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1758 {
1759 	struct mbuf		*m;
1760 	struct sis_txdesc	*txd;
1761 	struct sis_desc		*f;
1762 	bus_dma_segment_t	segs[SIS_MAXTXSEGS];
1763 	bus_dmamap_t		map;
1764 	int			error, i, frag, nsegs, prod;
1765 	int			padlen;
1766 
1767 	prod = sc->sis_tx_prod;
1768 	txd = &sc->sis_txdesc[prod];
1769 	if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1770 	    (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1771 		m = *m_head;
1772 		padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1773 		if (M_WRITABLE(m) == 0) {
1774 			/* Get a writable copy. */
1775 			m = m_dup(*m_head, M_NOWAIT);
1776 			m_freem(*m_head);
1777 			if (m == NULL) {
1778 				*m_head = NULL;
1779 				return (ENOBUFS);
1780 			}
1781 			*m_head = m;
1782 		}
1783 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1784 			m = m_defrag(m, M_NOWAIT);
1785 			if (m == NULL) {
1786 				m_freem(*m_head);
1787 				*m_head = NULL;
1788 				return (ENOBUFS);
1789 			}
1790 		}
1791 		/*
1792 		 * Manually pad short frames, and zero the pad space
1793 		 * to avoid leaking data.
1794 		 */
1795 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1796 		m->m_pkthdr.len += padlen;
1797 		m->m_len = m->m_pkthdr.len;
1798 		*m_head = m;
1799 	}
1800 	error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1801 	    *m_head, segs, &nsegs, 0);
1802 	if (error == EFBIG) {
1803 		m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
1804 		if (m == NULL) {
1805 			m_freem(*m_head);
1806 			*m_head = NULL;
1807 			return (ENOBUFS);
1808 		}
1809 		*m_head = m;
1810 		error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1811 		    *m_head, segs, &nsegs, 0);
1812 		if (error != 0) {
1813 			m_freem(*m_head);
1814 			*m_head = NULL;
1815 			return (error);
1816 		}
1817 	} else if (error != 0)
1818 		return (error);
1819 
1820 	/* Check for descriptor overruns. */
1821 	if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1822 		bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1823 		return (ENOBUFS);
1824 	}
1825 
1826 	bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1827 
1828 	frag = prod;
1829 	for (i = 0; i < nsegs; i++) {
1830 		f = &sc->sis_tx_list[prod];
1831 		if (i == 0)
1832 			f->sis_cmdsts = htole32(segs[i].ds_len |
1833 			    SIS_CMDSTS_MORE);
1834 		else
1835 			f->sis_cmdsts = htole32(segs[i].ds_len |
1836 			    SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1837 		f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1838 		SIS_INC(prod, SIS_TX_LIST_CNT);
1839 		sc->sis_tx_cnt++;
1840 	}
1841 
1842 	/* Update producer index. */
1843 	sc->sis_tx_prod = prod;
1844 
1845 	/* Remove MORE flag on the last descriptor. */
1846 	prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1847 	f = &sc->sis_tx_list[prod];
1848 	f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1849 
1850 	/* Lastly transfer ownership of packet to the controller. */
1851 	f = &sc->sis_tx_list[frag];
1852 	f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1853 
1854 	/* Swap the last and the first dmamaps. */
1855 	map = txd->tx_dmamap;
1856 	txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1857 	sc->sis_txdesc[prod].tx_dmamap = map;
1858 	sc->sis_txdesc[prod].tx_m = *m_head;
1859 
1860 	return (0);
1861 }
1862 
1863 static void
1864 sis_start(struct ifnet *ifp)
1865 {
1866 	struct sis_softc	*sc;
1867 
1868 	sc = ifp->if_softc;
1869 	SIS_LOCK(sc);
1870 	sis_startl(ifp);
1871 	SIS_UNLOCK(sc);
1872 }
1873 
1874 static void
1875 sis_startl(struct ifnet *ifp)
1876 {
1877 	struct sis_softc	*sc;
1878 	struct mbuf		*m_head;
1879 	int			queued;
1880 
1881 	sc = ifp->if_softc;
1882 
1883 	SIS_LOCK_ASSERT(sc);
1884 
1885 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1886 	    IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
1887 		return;
1888 
1889 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1890 	    sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
1891 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1892 		if (m_head == NULL)
1893 			break;
1894 
1895 		if (sis_encap(sc, &m_head) != 0) {
1896 			if (m_head == NULL)
1897 				break;
1898 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1899 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1900 			break;
1901 		}
1902 
1903 		queued++;
1904 
1905 		/*
1906 		 * If there's a BPF listener, bounce a copy of this frame
1907 		 * to him.
1908 		 */
1909 		BPF_MTAP(ifp, m_head);
1910 	}
1911 
1912 	if (queued) {
1913 		/* Transmit */
1914 		bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1915 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1916 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1917 
1918 		/*
1919 		 * Set a timeout in case the chip goes out to lunch.
1920 		 */
1921 		sc->sis_watchdog_timer = 5;
1922 	}
1923 }
1924 
1925 static void
1926 sis_init(void *xsc)
1927 {
1928 	struct sis_softc	*sc = xsc;
1929 
1930 	SIS_LOCK(sc);
1931 	sis_initl(sc);
1932 	SIS_UNLOCK(sc);
1933 }
1934 
1935 static void
1936 sis_initl(struct sis_softc *sc)
1937 {
1938 	struct ifnet		*ifp = sc->sis_ifp;
1939 	struct mii_data		*mii;
1940 	uint8_t			*eaddr;
1941 
1942 	SIS_LOCK_ASSERT(sc);
1943 
1944 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1945 		return;
1946 
1947 	/*
1948 	 * Cancel pending I/O and free all RX/TX buffers.
1949 	 */
1950 	sis_stop(sc);
1951 	/*
1952 	 * Reset the chip to a known state.
1953 	 */
1954 	sis_reset(sc);
1955 #ifdef notyet
1956 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1957 		/*
1958 		 * Configure 400usec of interrupt holdoff.  This is based
1959 		 * on emperical tests on a Soekris 4801.
1960  		 */
1961 		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1962 	}
1963 #endif
1964 
1965 	mii = device_get_softc(sc->sis_miibus);
1966 
1967 	/* Set MAC address */
1968 	eaddr = IF_LLADDR(sc->sis_ifp);
1969 	if (sc->sis_type == SIS_TYPE_83815) {
1970 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1971 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1972 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1973 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1974 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1975 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1976 	} else {
1977 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1978 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1979 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1980 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1981 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1982 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1983 	}
1984 
1985 	/* Init circular TX/RX lists. */
1986 	if (sis_ring_init(sc) != 0) {
1987 		device_printf(sc->sis_dev,
1988 		    "initialization failed: no memory for rx buffers\n");
1989 		sis_stop(sc);
1990 		return;
1991 	}
1992 
1993 	if (sc->sis_type == SIS_TYPE_83815) {
1994 		if (sc->sis_manual_pad != 0)
1995 			sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
1996 		else
1997 			sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
1998 	}
1999 
2000 	/*
2001 	 * Short Cable Receive Errors (MP21.E)
2002 	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2003 	 * recommends the following register settings "for optimum
2004 	 * performance." for rev 15C.  Set this also for 15D parts as
2005 	 * they require it in practice.
2006 	 */
2007 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2008 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2009 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2010 		/* set val for c2 */
2011 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2012 		/* load/kill c2 */
2013 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2014 		/* rais SD off, from 4 to c */
2015 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2016 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2017 	}
2018 
2019 	sis_rxfilter(sc);
2020 
2021 	/*
2022 	 * Load the address of the RX and TX lists.
2023 	 */
2024 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2025 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2026 
2027 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2028 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2029 	 * for TX/RX DMA should be no larger than 16 double words.
2030 	 */
2031 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2032 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2033 	} else {
2034 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2035 	}
2036 
2037 	/* Accept Long Packets for VLAN support */
2038 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2039 
2040 	/*
2041 	 * Assume 100Mbps link, actual MAC configuration is done
2042 	 * after getting a valid link.
2043 	 */
2044 	CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2045 
2046 	/*
2047 	 * Enable interrupts.
2048 	 */
2049 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2050 #ifdef DEVICE_POLLING
2051 	/*
2052 	 * ... only enable interrupts if we are not polling, make sure
2053 	 * they are off otherwise.
2054 	 */
2055 	if (ifp->if_capenable & IFCAP_POLLING)
2056 		CSR_WRITE_4(sc, SIS_IER, 0);
2057 	else
2058 #endif
2059 	CSR_WRITE_4(sc, SIS_IER, 1);
2060 
2061 	/* Clear MAC disable. */
2062 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2063 
2064 	sc->sis_flags &= ~SIS_FLAG_LINK;
2065 	mii_mediachg(mii);
2066 
2067 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2068 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2069 
2070 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2071 }
2072 
2073 /*
2074  * Set media options.
2075  */
2076 static int
2077 sis_ifmedia_upd(struct ifnet *ifp)
2078 {
2079 	struct sis_softc	*sc;
2080 	struct mii_data		*mii;
2081 	struct mii_softc	*miisc;
2082 	int			error;
2083 
2084 	sc = ifp->if_softc;
2085 
2086 	SIS_LOCK(sc);
2087 	mii = device_get_softc(sc->sis_miibus);
2088 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2089 		PHY_RESET(miisc);
2090 	error = mii_mediachg(mii);
2091 	SIS_UNLOCK(sc);
2092 
2093 	return (error);
2094 }
2095 
2096 /*
2097  * Report current media status.
2098  */
2099 static void
2100 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2101 {
2102 	struct sis_softc	*sc;
2103 	struct mii_data		*mii;
2104 
2105 	sc = ifp->if_softc;
2106 
2107 	SIS_LOCK(sc);
2108 	mii = device_get_softc(sc->sis_miibus);
2109 	mii_pollstat(mii);
2110 	ifmr->ifm_active = mii->mii_media_active;
2111 	ifmr->ifm_status = mii->mii_media_status;
2112 	SIS_UNLOCK(sc);
2113 }
2114 
2115 static int
2116 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2117 {
2118 	struct sis_softc	*sc = ifp->if_softc;
2119 	struct ifreq		*ifr = (struct ifreq *) data;
2120 	struct mii_data		*mii;
2121 	int			error = 0, mask;
2122 
2123 	switch (command) {
2124 	case SIOCSIFFLAGS:
2125 		SIS_LOCK(sc);
2126 		if (ifp->if_flags & IFF_UP) {
2127 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2128 			    ((ifp->if_flags ^ sc->sis_if_flags) &
2129 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2130 				sis_rxfilter(sc);
2131 			else
2132 				sis_initl(sc);
2133 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2134 			sis_stop(sc);
2135 		sc->sis_if_flags = ifp->if_flags;
2136 		SIS_UNLOCK(sc);
2137 		break;
2138 	case SIOCADDMULTI:
2139 	case SIOCDELMULTI:
2140 		SIS_LOCK(sc);
2141 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2142 			sis_rxfilter(sc);
2143 		SIS_UNLOCK(sc);
2144 		break;
2145 	case SIOCGIFMEDIA:
2146 	case SIOCSIFMEDIA:
2147 		mii = device_get_softc(sc->sis_miibus);
2148 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2149 		break;
2150 	case SIOCSIFCAP:
2151 		SIS_LOCK(sc);
2152 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2153 #ifdef DEVICE_POLLING
2154 		if ((mask & IFCAP_POLLING) != 0 &&
2155 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2156 			ifp->if_capenable ^= IFCAP_POLLING;
2157 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2158 				error = ether_poll_register(sis_poll, ifp);
2159 				if (error != 0) {
2160 					SIS_UNLOCK(sc);
2161 					break;
2162 				}
2163 				/* Disable interrupts. */
2164 				CSR_WRITE_4(sc, SIS_IER, 0);
2165                         } else {
2166                                 error = ether_poll_deregister(ifp);
2167                                 /* Enable interrupts. */
2168 				CSR_WRITE_4(sc, SIS_IER, 1);
2169                         }
2170 		}
2171 #endif /* DEVICE_POLLING */
2172 		if ((mask & IFCAP_WOL) != 0 &&
2173 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2174 			if ((mask & IFCAP_WOL_UCAST) != 0)
2175 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2176 			if ((mask & IFCAP_WOL_MCAST) != 0)
2177 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2178 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2179 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2180 		}
2181 		SIS_UNLOCK(sc);
2182 		break;
2183 	default:
2184 		error = ether_ioctl(ifp, command, data);
2185 		break;
2186 	}
2187 
2188 	return (error);
2189 }
2190 
2191 static void
2192 sis_watchdog(struct sis_softc *sc)
2193 {
2194 
2195 	SIS_LOCK_ASSERT(sc);
2196 
2197 	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2198 		return;
2199 
2200 	device_printf(sc->sis_dev, "watchdog timeout\n");
2201 	if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1);
2202 
2203 	sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2204 	sis_initl(sc);
2205 
2206 	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2207 		sis_startl(sc->sis_ifp);
2208 }
2209 
2210 /*
2211  * Stop the adapter and free any mbufs allocated to the
2212  * RX and TX lists.
2213  */
2214 static void
2215 sis_stop(struct sis_softc *sc)
2216 {
2217 	struct ifnet *ifp;
2218 	struct sis_rxdesc *rxd;
2219 	struct sis_txdesc *txd;
2220 	int i;
2221 
2222 	SIS_LOCK_ASSERT(sc);
2223 
2224 	ifp = sc->sis_ifp;
2225 	sc->sis_watchdog_timer = 0;
2226 
2227 	callout_stop(&sc->sis_stat_ch);
2228 
2229 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2230 	CSR_WRITE_4(sc, SIS_IER, 0);
2231 	CSR_WRITE_4(sc, SIS_IMR, 0);
2232 	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2233 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2234 	DELAY(1000);
2235 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2236 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2237 
2238 	sc->sis_flags &= ~SIS_FLAG_LINK;
2239 
2240 	/*
2241 	 * Free data in the RX lists.
2242 	 */
2243 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2244 		rxd = &sc->sis_rxdesc[i];
2245 		if (rxd->rx_m != NULL) {
2246 			bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2247 			    BUS_DMASYNC_POSTREAD);
2248 			bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2249 			m_freem(rxd->rx_m);
2250 			rxd->rx_m = NULL;
2251 		}
2252 	}
2253 
2254 	/*
2255 	 * Free the TX list buffers.
2256 	 */
2257 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2258 		txd = &sc->sis_txdesc[i];
2259 		if (txd->tx_m != NULL) {
2260 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2261 			    BUS_DMASYNC_POSTWRITE);
2262 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2263 			m_freem(txd->tx_m);
2264 			txd->tx_m = NULL;
2265 		}
2266 	}
2267 }
2268 
2269 /*
2270  * Stop all chip I/O so that the kernel's probe routines don't
2271  * get confused by errant DMAs when rebooting.
2272  */
2273 static int
2274 sis_shutdown(device_t dev)
2275 {
2276 
2277 	return (sis_suspend(dev));
2278 }
2279 
2280 static int
2281 sis_suspend(device_t dev)
2282 {
2283 	struct sis_softc	*sc;
2284 
2285 	sc = device_get_softc(dev);
2286 	SIS_LOCK(sc);
2287 	sis_stop(sc);
2288 	sis_wol(sc);
2289 	SIS_UNLOCK(sc);
2290 	return (0);
2291 }
2292 
2293 static int
2294 sis_resume(device_t dev)
2295 {
2296 	struct sis_softc	*sc;
2297 	struct ifnet		*ifp;
2298 
2299 	sc = device_get_softc(dev);
2300 	SIS_LOCK(sc);
2301 	ifp = sc->sis_ifp;
2302 	if ((ifp->if_flags & IFF_UP) != 0) {
2303 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2304 		sis_initl(sc);
2305 	}
2306 	SIS_UNLOCK(sc);
2307 	return (0);
2308 }
2309 
2310 static void
2311 sis_wol(struct sis_softc *sc)
2312 {
2313 	struct ifnet		*ifp;
2314 	uint32_t		val;
2315 	uint16_t		pmstat;
2316 	int			pmc;
2317 
2318 	ifp = sc->sis_ifp;
2319 	if ((ifp->if_capenable & IFCAP_WOL) == 0)
2320 		return;
2321 
2322 	if (sc->sis_type == SIS_TYPE_83815) {
2323 		/* Reset RXDP. */
2324 		CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2325 
2326 		/* Configure WOL events. */
2327 		CSR_READ_4(sc, NS_WCSR);
2328 		val = 0;
2329 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2330 			val |= NS_WCSR_WAKE_UCAST;
2331 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2332 			val |= NS_WCSR_WAKE_MCAST;
2333 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2334 			val |= NS_WCSR_WAKE_MAGIC;
2335 		CSR_WRITE_4(sc, NS_WCSR, val);
2336 		/* Enable PME and clear PMESTS. */
2337 		val = CSR_READ_4(sc, NS_CLKRUN);
2338 		val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2339 		CSR_WRITE_4(sc, NS_CLKRUN, val);
2340 		/* Enable silent RX mode. */
2341 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2342 	} else {
2343 		if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2344 			return;
2345 		val = 0;
2346 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2347 			val |= SIS_PWRMAN_WOL_MAGIC;
2348 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2349 		/* Request PME. */
2350 		pmstat = pci_read_config(sc->sis_dev,
2351 		    pmc + PCIR_POWER_STATUS, 2);
2352 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2353 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2354 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2355 		pci_write_config(sc->sis_dev,
2356 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
2357 	}
2358 }
2359 
2360 static void
2361 sis_add_sysctls(struct sis_softc *sc)
2362 {
2363 	struct sysctl_ctx_list *ctx;
2364 	struct sysctl_oid_list *children;
2365 	int unit;
2366 
2367 	ctx = device_get_sysctl_ctx(sc->sis_dev);
2368 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2369 
2370 	unit = device_get_unit(sc->sis_dev);
2371 	/*
2372 	 * Unlike most other controllers, NS DP83815/DP83816 controllers
2373 	 * seem to pad with 0xFF when it encounter short frames.  According
2374 	 * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
2375 	 * on will have driver pad manully but it's disabled by default
2376 	 * because it will consume extra CPU cycles for short frames.
2377 	 */
2378 	sc->sis_manual_pad = 0;
2379 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2380 	    CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames");
2381 }
2382 
2383 static device_method_t sis_methods[] = {
2384 	/* Device interface */
2385 	DEVMETHOD(device_probe,		sis_probe),
2386 	DEVMETHOD(device_attach,	sis_attach),
2387 	DEVMETHOD(device_detach,	sis_detach),
2388 	DEVMETHOD(device_shutdown,	sis_shutdown),
2389 	DEVMETHOD(device_suspend,	sis_suspend),
2390 	DEVMETHOD(device_resume,	sis_resume),
2391 
2392 	/* MII interface */
2393 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2394 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2395 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2396 
2397 	DEVMETHOD_END
2398 };
2399 
2400 static driver_t sis_driver = {
2401 	"sis",
2402 	sis_methods,
2403 	sizeof(struct sis_softc)
2404 };
2405 
2406 static devclass_t sis_devclass;
2407 
2408 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2409 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2410