xref: /freebsd/sys/dev/sk/if_sk.c (revision d6b92ffa)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_var.h>
105 #include <net/if_arp.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/if_vlan_var.h>
110 
111 #include <netinet/in.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/ip.h>
114 
115 #include <machine/bus.h>
116 #include <machine/in_cksum.h>
117 #include <machine/resource.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/brgphyreg.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #if 0
128 #define SK_USEIOSPACE
129 #endif
130 
131 #include <dev/sk/if_skreg.h>
132 #include <dev/sk/xmaciireg.h>
133 #include <dev/sk/yukonreg.h>
134 
135 MODULE_DEPEND(sk, pci, 1, 1, 1);
136 MODULE_DEPEND(sk, ether, 1, 1, 1);
137 MODULE_DEPEND(sk, miibus, 1, 1, 1);
138 
139 /* "device miibus" required.  See GENERIC if you get errors here. */
140 #include "miibus_if.h"
141 
142 static const struct sk_type sk_devs[] = {
143 	{
144 		VENDORID_SK,
145 		DEVICEID_SK_V1,
146 		"SysKonnect Gigabit Ethernet (V1.0)"
147 	},
148 	{
149 		VENDORID_SK,
150 		DEVICEID_SK_V2,
151 		"SysKonnect Gigabit Ethernet (V2.0)"
152 	},
153 	{
154 		VENDORID_MARVELL,
155 		DEVICEID_SK_V2,
156 		"Marvell Gigabit Ethernet"
157 	},
158 	{
159 		VENDORID_MARVELL,
160 		DEVICEID_BELKIN_5005,
161 		"Belkin F5D5005 Gigabit Ethernet"
162 	},
163 	{
164 		VENDORID_3COM,
165 		DEVICEID_3COM_3C940,
166 		"3Com 3C940 Gigabit Ethernet"
167 	},
168 	{
169 		VENDORID_LINKSYS,
170 		DEVICEID_LINKSYS_EG1032,
171 		"Linksys EG1032 Gigabit Ethernet"
172 	},
173 	{
174 		VENDORID_DLINK,
175 		DEVICEID_DLINK_DGE530T_A1,
176 		"D-Link DGE-530T Gigabit Ethernet"
177 	},
178 	{
179 		VENDORID_DLINK,
180 		DEVICEID_DLINK_DGE530T_B1,
181 		"D-Link DGE-530T Gigabit Ethernet"
182 	},
183 	{ 0, 0, NULL }
184 };
185 
186 static int skc_probe(device_t);
187 static int skc_attach(device_t);
188 static int skc_detach(device_t);
189 static int skc_shutdown(device_t);
190 static int skc_suspend(device_t);
191 static int skc_resume(device_t);
192 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
193 static int sk_detach(device_t);
194 static int sk_probe(device_t);
195 static int sk_attach(device_t);
196 static void sk_tick(void *);
197 static void sk_yukon_tick(void *);
198 static void sk_intr(void *);
199 static void sk_intr_xmac(struct sk_if_softc *);
200 static void sk_intr_bcom(struct sk_if_softc *);
201 static void sk_intr_yukon(struct sk_if_softc *);
202 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
203 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
204 static void sk_rxeof(struct sk_if_softc *);
205 static void sk_jumbo_rxeof(struct sk_if_softc *);
206 static void sk_txeof(struct sk_if_softc *);
207 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
208 static int sk_encap(struct sk_if_softc *, struct mbuf **);
209 static void sk_start(struct ifnet *);
210 static void sk_start_locked(struct ifnet *);
211 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
212 static void sk_init(void *);
213 static void sk_init_locked(struct sk_if_softc *);
214 static void sk_init_xmac(struct sk_if_softc *);
215 static void sk_init_yukon(struct sk_if_softc *);
216 static void sk_stop(struct sk_if_softc *);
217 static void sk_watchdog(void *);
218 static int sk_ifmedia_upd(struct ifnet *);
219 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
220 static void sk_reset(struct sk_softc *);
221 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
222 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
223 static int sk_newbuf(struct sk_if_softc *, int);
224 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
225 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
226 static int sk_dma_alloc(struct sk_if_softc *);
227 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
228 static void sk_dma_free(struct sk_if_softc *);
229 static void sk_dma_jumbo_free(struct sk_if_softc *);
230 static int sk_init_rx_ring(struct sk_if_softc *);
231 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
232 static void sk_init_tx_ring(struct sk_if_softc *);
233 static u_int32_t sk_win_read_4(struct sk_softc *, int);
234 static u_int16_t sk_win_read_2(struct sk_softc *, int);
235 static u_int8_t sk_win_read_1(struct sk_softc *, int);
236 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
237 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
238 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
239 
240 static int sk_miibus_readreg(device_t, int, int);
241 static int sk_miibus_writereg(device_t, int, int, int);
242 static void sk_miibus_statchg(device_t);
243 
244 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
245 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
246 						int);
247 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
248 
249 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
250 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
251 						int);
252 static void sk_marv_miibus_statchg(struct sk_if_softc *);
253 
254 static uint32_t sk_xmchash(const uint8_t *);
255 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
256 static void sk_rxfilter(struct sk_if_softc *);
257 static void sk_rxfilter_genesis(struct sk_if_softc *);
258 static void sk_rxfilter_yukon(struct sk_if_softc *);
259 
260 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
261 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
262 
263 /* Tunables. */
264 static int jumbo_disable = 0;
265 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
266 
267 /*
268  * It seems that SK-NET GENESIS supports very simple checksum offload
269  * capability for Tx and I believe it can generate 0 checksum value for
270  * UDP packets in Tx as the hardware can't differenciate UDP packets from
271  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
272  * means sender didn't perforam checksum computation. For the safety I
273  * disabled UDP checksum offload capability at the moment. Alternatively
274  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
275  * offload routine.
276  */
277 #define SK_CSUM_FEATURES	(CSUM_TCP)
278 
279 /*
280  * Note that we have newbus methods for both the GEnesis controller
281  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
282  * the miibus code is a child of the XMACs. We need to do it this way
283  * so that the miibus drivers can access the PHY registers on the
284  * right PHY. It's not quite what I had in mind, but it's the only
285  * design that achieves the desired effect.
286  */
287 static device_method_t skc_methods[] = {
288 	/* Device interface */
289 	DEVMETHOD(device_probe,		skc_probe),
290 	DEVMETHOD(device_attach,	skc_attach),
291 	DEVMETHOD(device_detach,	skc_detach),
292 	DEVMETHOD(device_suspend,	skc_suspend),
293 	DEVMETHOD(device_resume,	skc_resume),
294 	DEVMETHOD(device_shutdown,	skc_shutdown),
295 
296 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
297 
298 	DEVMETHOD_END
299 };
300 
301 static driver_t skc_driver = {
302 	"skc",
303 	skc_methods,
304 	sizeof(struct sk_softc)
305 };
306 
307 static devclass_t skc_devclass;
308 
309 static device_method_t sk_methods[] = {
310 	/* Device interface */
311 	DEVMETHOD(device_probe,		sk_probe),
312 	DEVMETHOD(device_attach,	sk_attach),
313 	DEVMETHOD(device_detach,	sk_detach),
314 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
315 
316 	/* MII interface */
317 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
318 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
319 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
320 
321 	DEVMETHOD_END
322 };
323 
324 static driver_t sk_driver = {
325 	"sk",
326 	sk_methods,
327 	sizeof(struct sk_if_softc)
328 };
329 
330 static devclass_t sk_devclass;
331 
332 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
333 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
334 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
335 
336 static struct resource_spec sk_res_spec_io[] = {
337 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
338 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
339 	{ -1,			0,		0 }
340 };
341 
342 static struct resource_spec sk_res_spec_mem[] = {
343 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
344 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
345 	{ -1,			0,		0 }
346 };
347 
348 #define SK_SETBIT(sc, reg, x)		\
349 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
350 
351 #define SK_CLRBIT(sc, reg, x)		\
352 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
353 
354 #define SK_WIN_SETBIT_4(sc, reg, x)	\
355 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
356 
357 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
358 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
359 
360 #define SK_WIN_SETBIT_2(sc, reg, x)	\
361 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
362 
363 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
364 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
365 
366 static u_int32_t
367 sk_win_read_4(sc, reg)
368 	struct sk_softc		*sc;
369 	int			reg;
370 {
371 #ifdef SK_USEIOSPACE
372 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
373 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
374 #else
375 	return(CSR_READ_4(sc, reg));
376 #endif
377 }
378 
379 static u_int16_t
380 sk_win_read_2(sc, reg)
381 	struct sk_softc		*sc;
382 	int			reg;
383 {
384 #ifdef SK_USEIOSPACE
385 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
386 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
387 #else
388 	return(CSR_READ_2(sc, reg));
389 #endif
390 }
391 
392 static u_int8_t
393 sk_win_read_1(sc, reg)
394 	struct sk_softc		*sc;
395 	int			reg;
396 {
397 #ifdef SK_USEIOSPACE
398 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
399 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
400 #else
401 	return(CSR_READ_1(sc, reg));
402 #endif
403 }
404 
405 static void
406 sk_win_write_4(sc, reg, val)
407 	struct sk_softc		*sc;
408 	int			reg;
409 	u_int32_t		val;
410 {
411 #ifdef SK_USEIOSPACE
412 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
413 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
414 #else
415 	CSR_WRITE_4(sc, reg, val);
416 #endif
417 	return;
418 }
419 
420 static void
421 sk_win_write_2(sc, reg, val)
422 	struct sk_softc		*sc;
423 	int			reg;
424 	u_int32_t		val;
425 {
426 #ifdef SK_USEIOSPACE
427 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
428 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
429 #else
430 	CSR_WRITE_2(sc, reg, val);
431 #endif
432 	return;
433 }
434 
435 static void
436 sk_win_write_1(sc, reg, val)
437 	struct sk_softc		*sc;
438 	int			reg;
439 	u_int32_t		val;
440 {
441 #ifdef SK_USEIOSPACE
442 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
443 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
444 #else
445 	CSR_WRITE_1(sc, reg, val);
446 #endif
447 	return;
448 }
449 
450 static int
451 sk_miibus_readreg(dev, phy, reg)
452 	device_t		dev;
453 	int			phy, reg;
454 {
455 	struct sk_if_softc	*sc_if;
456 	int			v;
457 
458 	sc_if = device_get_softc(dev);
459 
460 	SK_IF_MII_LOCK(sc_if);
461 	switch(sc_if->sk_softc->sk_type) {
462 	case SK_GENESIS:
463 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
464 		break;
465 	case SK_YUKON:
466 	case SK_YUKON_LITE:
467 	case SK_YUKON_LP:
468 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
469 		break;
470 	default:
471 		v = 0;
472 		break;
473 	}
474 	SK_IF_MII_UNLOCK(sc_if);
475 
476 	return (v);
477 }
478 
479 static int
480 sk_miibus_writereg(dev, phy, reg, val)
481 	device_t		dev;
482 	int			phy, reg, val;
483 {
484 	struct sk_if_softc	*sc_if;
485 	int			v;
486 
487 	sc_if = device_get_softc(dev);
488 
489 	SK_IF_MII_LOCK(sc_if);
490 	switch(sc_if->sk_softc->sk_type) {
491 	case SK_GENESIS:
492 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
493 		break;
494 	case SK_YUKON:
495 	case SK_YUKON_LITE:
496 	case SK_YUKON_LP:
497 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
498 		break;
499 	default:
500 		v = 0;
501 		break;
502 	}
503 	SK_IF_MII_UNLOCK(sc_if);
504 
505 	return (v);
506 }
507 
508 static void
509 sk_miibus_statchg(dev)
510 	device_t		dev;
511 {
512 	struct sk_if_softc	*sc_if;
513 
514 	sc_if = device_get_softc(dev);
515 
516 	SK_IF_MII_LOCK(sc_if);
517 	switch(sc_if->sk_softc->sk_type) {
518 	case SK_GENESIS:
519 		sk_xmac_miibus_statchg(sc_if);
520 		break;
521 	case SK_YUKON:
522 	case SK_YUKON_LITE:
523 	case SK_YUKON_LP:
524 		sk_marv_miibus_statchg(sc_if);
525 		break;
526 	}
527 	SK_IF_MII_UNLOCK(sc_if);
528 
529 	return;
530 }
531 
532 static int
533 sk_xmac_miibus_readreg(sc_if, phy, reg)
534 	struct sk_if_softc	*sc_if;
535 	int			phy, reg;
536 {
537 	int			i;
538 
539 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
540 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
541 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
542 		for (i = 0; i < SK_TIMEOUT; i++) {
543 			DELAY(1);
544 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
545 			    XM_MMUCMD_PHYDATARDY)
546 				break;
547 		}
548 
549 		if (i == SK_TIMEOUT) {
550 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
551 			return(0);
552 		}
553 	}
554 	DELAY(1);
555 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
556 
557 	return(i);
558 }
559 
560 static int
561 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
562 	struct sk_if_softc	*sc_if;
563 	int			phy, reg, val;
564 {
565 	int			i;
566 
567 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
568 	for (i = 0; i < SK_TIMEOUT; i++) {
569 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
570 			break;
571 	}
572 
573 	if (i == SK_TIMEOUT) {
574 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
575 		return (ETIMEDOUT);
576 	}
577 
578 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
579 	for (i = 0; i < SK_TIMEOUT; i++) {
580 		DELAY(1);
581 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
582 			break;
583 	}
584 	if (i == SK_TIMEOUT)
585 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
586 
587 	return(0);
588 }
589 
590 static void
591 sk_xmac_miibus_statchg(sc_if)
592 	struct sk_if_softc	*sc_if;
593 {
594 	struct mii_data		*mii;
595 
596 	mii = device_get_softc(sc_if->sk_miibus);
597 
598 	/*
599 	 * If this is a GMII PHY, manually set the XMAC's
600 	 * duplex mode accordingly.
601 	 */
602 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
603 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
604 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
605 		} else {
606 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
607 		}
608 	}
609 }
610 
611 static int
612 sk_marv_miibus_readreg(sc_if, phy, reg)
613 	struct sk_if_softc	*sc_if;
614 	int			phy, reg;
615 {
616 	u_int16_t		val;
617 	int			i;
618 
619 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
620 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
621 		return(0);
622 	}
623 
624         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
625 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
626 
627 	for (i = 0; i < SK_TIMEOUT; i++) {
628 		DELAY(1);
629 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
630 		if (val & YU_SMICR_READ_VALID)
631 			break;
632 	}
633 
634 	if (i == SK_TIMEOUT) {
635 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
636 		return(0);
637 	}
638 
639 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
640 
641 	return(val);
642 }
643 
644 static int
645 sk_marv_miibus_writereg(sc_if, phy, reg, val)
646 	struct sk_if_softc	*sc_if;
647 	int			phy, reg, val;
648 {
649 	int			i;
650 
651 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
652 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
653 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
654 
655 	for (i = 0; i < SK_TIMEOUT; i++) {
656 		DELAY(1);
657 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
658 			break;
659 	}
660 	if (i == SK_TIMEOUT)
661 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
662 
663 	return(0);
664 }
665 
666 static void
667 sk_marv_miibus_statchg(sc_if)
668 	struct sk_if_softc	*sc_if;
669 {
670 	return;
671 }
672 
673 #define HASH_BITS		6
674 
675 static u_int32_t
676 sk_xmchash(addr)
677 	const uint8_t *addr;
678 {
679 	uint32_t crc;
680 
681 	/* Compute CRC for the address value. */
682 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
683 
684 	return (~crc & ((1 << HASH_BITS) - 1));
685 }
686 
687 static void
688 sk_setfilt(sc_if, addr, slot)
689 	struct sk_if_softc	*sc_if;
690 	u_int16_t		*addr;
691 	int			slot;
692 {
693 	int			base;
694 
695 	base = XM_RXFILT_ENTRY(slot);
696 
697 	SK_XM_WRITE_2(sc_if, base, addr[0]);
698 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
699 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
700 
701 	return;
702 }
703 
704 static void
705 sk_rxfilter(sc_if)
706 	struct sk_if_softc	*sc_if;
707 {
708 	struct sk_softc		*sc;
709 
710 	SK_IF_LOCK_ASSERT(sc_if);
711 
712 	sc = sc_if->sk_softc;
713 	if (sc->sk_type == SK_GENESIS)
714 		sk_rxfilter_genesis(sc_if);
715 	else
716 		sk_rxfilter_yukon(sc_if);
717 }
718 
719 static void
720 sk_rxfilter_genesis(sc_if)
721 	struct sk_if_softc	*sc_if;
722 {
723 	struct ifnet		*ifp = sc_if->sk_ifp;
724 	u_int32_t		hashes[2] = { 0, 0 }, mode;
725 	int			h = 0, i;
726 	struct ifmultiaddr	*ifma;
727 	u_int16_t		dummy[] = { 0, 0, 0 };
728 	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
729 
730 	SK_IF_LOCK_ASSERT(sc_if);
731 
732 	mode = SK_XM_READ_4(sc_if, XM_MODE);
733 	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
734 	    XM_MODE_RX_USE_PERFECT);
735 	/* First, zot all the existing perfect filters. */
736 	for (i = 1; i < XM_RXFILT_MAX; i++)
737 		sk_setfilt(sc_if, dummy, i);
738 
739 	/* Now program new ones. */
740 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
741 		if (ifp->if_flags & IFF_ALLMULTI)
742 			mode |= XM_MODE_RX_USE_HASH;
743 		if (ifp->if_flags & IFF_PROMISC)
744 			mode |= XM_MODE_RX_PROMISC;
745 		hashes[0] = 0xFFFFFFFF;
746 		hashes[1] = 0xFFFFFFFF;
747 	} else {
748 		i = 1;
749 		if_maddr_rlock(ifp);
750 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
751 		    ifma_link) {
752 			if (ifma->ifma_addr->sa_family != AF_LINK)
753 				continue;
754 			/*
755 			 * Program the first XM_RXFILT_MAX multicast groups
756 			 * into the perfect filter.
757 			 */
758 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
759 			    maddr, ETHER_ADDR_LEN);
760 			if (i < XM_RXFILT_MAX) {
761 				sk_setfilt(sc_if, maddr, i);
762 				mode |= XM_MODE_RX_USE_PERFECT;
763 				i++;
764 				continue;
765 			}
766 			h = sk_xmchash((const uint8_t *)maddr);
767 			if (h < 32)
768 				hashes[0] |= (1 << h);
769 			else
770 				hashes[1] |= (1 << (h - 32));
771 			mode |= XM_MODE_RX_USE_HASH;
772 		}
773 		if_maddr_runlock(ifp);
774 	}
775 
776 	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
777 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
778 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
779 }
780 
781 static void
782 sk_rxfilter_yukon(sc_if)
783 	struct sk_if_softc	*sc_if;
784 {
785 	struct ifnet		*ifp;
786 	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
787 	struct ifmultiaddr	*ifma;
788 
789 	SK_IF_LOCK_ASSERT(sc_if);
790 
791 	ifp = sc_if->sk_ifp;
792 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
793 	if (ifp->if_flags & IFF_PROMISC)
794 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
795 	else if (ifp->if_flags & IFF_ALLMULTI) {
796 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
797 		hashes[0] = 0xFFFFFFFF;
798 		hashes[1] = 0xFFFFFFFF;
799 	} else {
800 		mode |= YU_RCR_UFLEN;
801 		if_maddr_rlock(ifp);
802 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
803 			if (ifma->ifma_addr->sa_family != AF_LINK)
804 				continue;
805 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
806 			    ifma->ifma_addr), ETHER_ADDR_LEN);
807 			/* Just want the 6 least significant bits. */
808 			crc &= 0x3f;
809 			/* Set the corresponding bit in the hash table. */
810 			hashes[crc >> 5] |= 1 << (crc & 0x1f);
811 		}
812 		if_maddr_runlock(ifp);
813 		if (hashes[0] != 0 || hashes[1] != 0)
814 			mode |= YU_RCR_MUFLEN;
815 	}
816 
817 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
818 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
819 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
820 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
821 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
822 }
823 
824 static int
825 sk_init_rx_ring(sc_if)
826 	struct sk_if_softc	*sc_if;
827 {
828 	struct sk_ring_data	*rd;
829 	bus_addr_t		addr;
830 	u_int32_t		csum_start;
831 	int			i;
832 
833 	sc_if->sk_cdata.sk_rx_cons = 0;
834 
835 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
836 	    ETHER_HDR_LEN;
837 	rd = &sc_if->sk_rdata;
838 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
839 	for (i = 0; i < SK_RX_RING_CNT; i++) {
840 		if (sk_newbuf(sc_if, i) != 0)
841 			return (ENOBUFS);
842 		if (i == (SK_RX_RING_CNT - 1))
843 			addr = SK_RX_RING_ADDR(sc_if, 0);
844 		else
845 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
846 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
847 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
848 	}
849 
850 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
851 	    sc_if->sk_cdata.sk_rx_ring_map,
852 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
853 
854 	return(0);
855 }
856 
857 static int
858 sk_init_jumbo_rx_ring(sc_if)
859 	struct sk_if_softc	*sc_if;
860 {
861 	struct sk_ring_data	*rd;
862 	bus_addr_t		addr;
863 	u_int32_t		csum_start;
864 	int			i;
865 
866 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
867 
868 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
869 	    ETHER_HDR_LEN;
870 	rd = &sc_if->sk_rdata;
871 	bzero(rd->sk_jumbo_rx_ring,
872 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
873 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
874 		if (sk_jumbo_newbuf(sc_if, i) != 0)
875 			return (ENOBUFS);
876 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
877 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
878 		else
879 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
880 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
881 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
882 	}
883 
884 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
885 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
886 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
887 
888 	return (0);
889 }
890 
891 static void
892 sk_init_tx_ring(sc_if)
893 	struct sk_if_softc	*sc_if;
894 {
895 	struct sk_ring_data	*rd;
896 	struct sk_txdesc	*txd;
897 	bus_addr_t		addr;
898 	int			i;
899 
900 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
901 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
902 
903 	sc_if->sk_cdata.sk_tx_prod = 0;
904 	sc_if->sk_cdata.sk_tx_cons = 0;
905 	sc_if->sk_cdata.sk_tx_cnt = 0;
906 
907 	rd = &sc_if->sk_rdata;
908 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
909 	for (i = 0; i < SK_TX_RING_CNT; i++) {
910 		if (i == (SK_TX_RING_CNT - 1))
911 			addr = SK_TX_RING_ADDR(sc_if, 0);
912 		else
913 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
914 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
915 		txd = &sc_if->sk_cdata.sk_txdesc[i];
916 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
917 	}
918 
919 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
920 	    sc_if->sk_cdata.sk_tx_ring_map,
921 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
922 }
923 
924 static __inline void
925 sk_discard_rxbuf(sc_if, idx)
926 	struct sk_if_softc	*sc_if;
927 	int			idx;
928 {
929 	struct sk_rx_desc	*r;
930 	struct sk_rxdesc	*rxd;
931 	struct mbuf		*m;
932 
933 
934 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
935 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
936 	m = rxd->rx_m;
937 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
938 }
939 
940 static __inline void
941 sk_discard_jumbo_rxbuf(sc_if, idx)
942 	struct sk_if_softc	*sc_if;
943 	int			idx;
944 {
945 	struct sk_rx_desc	*r;
946 	struct sk_rxdesc	*rxd;
947 	struct mbuf		*m;
948 
949 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
950 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
951 	m = rxd->rx_m;
952 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
953 }
954 
955 static int
956 sk_newbuf(sc_if, idx)
957 	struct sk_if_softc	*sc_if;
958 	int 			idx;
959 {
960 	struct sk_rx_desc	*r;
961 	struct sk_rxdesc	*rxd;
962 	struct mbuf		*m;
963 	bus_dma_segment_t	segs[1];
964 	bus_dmamap_t		map;
965 	int			nsegs;
966 
967 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
968 	if (m == NULL)
969 		return (ENOBUFS);
970 	m->m_len = m->m_pkthdr.len = MCLBYTES;
971 	m_adj(m, ETHER_ALIGN);
972 
973 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
974 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
975 		m_freem(m);
976 		return (ENOBUFS);
977 	}
978 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
979 
980 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
981 	if (rxd->rx_m != NULL) {
982 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
983 		    BUS_DMASYNC_POSTREAD);
984 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
985 	}
986 	map = rxd->rx_dmamap;
987 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
988 	sc_if->sk_cdata.sk_rx_sparemap = map;
989 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
990 	    BUS_DMASYNC_PREREAD);
991 	rxd->rx_m = m;
992 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
993 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
994 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
995 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
996 
997 	return (0);
998 }
999 
1000 static int
1001 sk_jumbo_newbuf(sc_if, idx)
1002 	struct sk_if_softc	*sc_if;
1003 	int			idx;
1004 {
1005 	struct sk_rx_desc	*r;
1006 	struct sk_rxdesc	*rxd;
1007 	struct mbuf		*m;
1008 	bus_dma_segment_t	segs[1];
1009 	bus_dmamap_t		map;
1010 	int			nsegs;
1011 
1012 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1013 	if (m == NULL)
1014 		return (ENOBUFS);
1015 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1016 	/*
1017 	 * Adjust alignment so packet payload begins on a
1018 	 * longword boundary. Mandatory for Alpha, useful on
1019 	 * x86 too.
1020 	 */
1021 	m_adj(m, ETHER_ALIGN);
1022 
1023 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1024 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1025 		m_freem(m);
1026 		return (ENOBUFS);
1027 	}
1028 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1029 
1030 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1031 	if (rxd->rx_m != NULL) {
1032 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1033 		    BUS_DMASYNC_POSTREAD);
1034 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1035 		    rxd->rx_dmamap);
1036 	}
1037 	map = rxd->rx_dmamap;
1038 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1039 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1040 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1041 	    BUS_DMASYNC_PREREAD);
1042 	rxd->rx_m = m;
1043 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1044 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1045 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1046 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1047 
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Set media options.
1053  */
1054 static int
1055 sk_ifmedia_upd(ifp)
1056 	struct ifnet		*ifp;
1057 {
1058 	struct sk_if_softc	*sc_if = ifp->if_softc;
1059 	struct mii_data		*mii;
1060 
1061 	mii = device_get_softc(sc_if->sk_miibus);
1062 	sk_init(sc_if);
1063 	mii_mediachg(mii);
1064 
1065 	return(0);
1066 }
1067 
1068 /*
1069  * Report current media status.
1070  */
1071 static void
1072 sk_ifmedia_sts(ifp, ifmr)
1073 	struct ifnet		*ifp;
1074 	struct ifmediareq	*ifmr;
1075 {
1076 	struct sk_if_softc	*sc_if;
1077 	struct mii_data		*mii;
1078 
1079 	sc_if = ifp->if_softc;
1080 	mii = device_get_softc(sc_if->sk_miibus);
1081 
1082 	mii_pollstat(mii);
1083 	ifmr->ifm_active = mii->mii_media_active;
1084 	ifmr->ifm_status = mii->mii_media_status;
1085 
1086 	return;
1087 }
1088 
1089 static int
1090 sk_ioctl(ifp, command, data)
1091 	struct ifnet		*ifp;
1092 	u_long			command;
1093 	caddr_t			data;
1094 {
1095 	struct sk_if_softc	*sc_if = ifp->if_softc;
1096 	struct ifreq		*ifr = (struct ifreq *) data;
1097 	int			error, mask;
1098 	struct mii_data		*mii;
1099 
1100 	error = 0;
1101 	switch(command) {
1102 	case SIOCSIFMTU:
1103 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1104 			error = EINVAL;
1105 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1106 			if (sc_if->sk_jumbo_disable != 0 &&
1107 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1108 				error = EINVAL;
1109 			else {
1110 				SK_IF_LOCK(sc_if);
1111 				ifp->if_mtu = ifr->ifr_mtu;
1112 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1113 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1114 					sk_init_locked(sc_if);
1115 				}
1116 				SK_IF_UNLOCK(sc_if);
1117 			}
1118 		}
1119 		break;
1120 	case SIOCSIFFLAGS:
1121 		SK_IF_LOCK(sc_if);
1122 		if (ifp->if_flags & IFF_UP) {
1123 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1124 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1125 				    & (IFF_PROMISC | IFF_ALLMULTI))
1126 					sk_rxfilter(sc_if);
1127 			} else
1128 				sk_init_locked(sc_if);
1129 		} else {
1130 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1131 				sk_stop(sc_if);
1132 		}
1133 		sc_if->sk_if_flags = ifp->if_flags;
1134 		SK_IF_UNLOCK(sc_if);
1135 		break;
1136 	case SIOCADDMULTI:
1137 	case SIOCDELMULTI:
1138 		SK_IF_LOCK(sc_if);
1139 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1140 			sk_rxfilter(sc_if);
1141 		SK_IF_UNLOCK(sc_if);
1142 		break;
1143 	case SIOCGIFMEDIA:
1144 	case SIOCSIFMEDIA:
1145 		mii = device_get_softc(sc_if->sk_miibus);
1146 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1147 		break;
1148 	case SIOCSIFCAP:
1149 		SK_IF_LOCK(sc_if);
1150 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1151 			SK_IF_UNLOCK(sc_if);
1152 			break;
1153 		}
1154 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1155 		if ((mask & IFCAP_TXCSUM) != 0 &&
1156 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1157 			ifp->if_capenable ^= IFCAP_TXCSUM;
1158 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1159 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1160 			else
1161 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1162 		}
1163 		if ((mask & IFCAP_RXCSUM) != 0 &&
1164 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1165 			ifp->if_capenable ^= IFCAP_RXCSUM;
1166 		SK_IF_UNLOCK(sc_if);
1167 		break;
1168 	default:
1169 		error = ether_ioctl(ifp, command, data);
1170 		break;
1171 	}
1172 
1173 	return (error);
1174 }
1175 
1176 /*
1177  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1178  * IDs against our list and return a device name if we find a match.
1179  */
1180 static int
1181 skc_probe(dev)
1182 	device_t		dev;
1183 {
1184 	const struct sk_type	*t = sk_devs;
1185 
1186 	while(t->sk_name != NULL) {
1187 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1188 		    (pci_get_device(dev) == t->sk_did)) {
1189 			/*
1190 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1191 			 * Rev. 3 is supported by re(4).
1192 			 */
1193 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1194 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1195 				(pci_get_subdevice(dev) !=
1196 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1197 				t++;
1198 				continue;
1199 			}
1200 			device_set_desc(dev, t->sk_name);
1201 			return (BUS_PROBE_DEFAULT);
1202 		}
1203 		t++;
1204 	}
1205 
1206 	return(ENXIO);
1207 }
1208 
1209 /*
1210  * Force the GEnesis into reset, then bring it out of reset.
1211  */
1212 static void
1213 sk_reset(sc)
1214 	struct sk_softc		*sc;
1215 {
1216 
1217 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1218 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1219 	if (SK_YUKON_FAMILY(sc->sk_type))
1220 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1221 
1222 	DELAY(1000);
1223 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1224 	DELAY(2);
1225 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1226 	if (SK_YUKON_FAMILY(sc->sk_type))
1227 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1228 
1229 	if (sc->sk_type == SK_GENESIS) {
1230 		/* Configure packet arbiter */
1231 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1232 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1233 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1234 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1235 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1236 	}
1237 
1238 	/* Enable RAM interface */
1239 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1240 
1241 	/*
1242          * Configure interrupt moderation. The moderation timer
1243 	 * defers interrupts specified in the interrupt moderation
1244 	 * timer mask based on the timeout specified in the interrupt
1245 	 * moderation timer init register. Each bit in the timer
1246 	 * register represents one tick, so to specify a timeout in
1247 	 * microseconds, we have to multiply by the correct number of
1248 	 * ticks-per-microsecond.
1249 	 */
1250 	switch (sc->sk_type) {
1251 	case SK_GENESIS:
1252 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1253 		break;
1254 	default:
1255 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1256 		break;
1257 	}
1258 	if (bootverbose)
1259 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1260 		    sc->sk_int_mod);
1261 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1262 	    sc->sk_int_ticks));
1263 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1264 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1265 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1266 
1267 	return;
1268 }
1269 
1270 static int
1271 sk_probe(dev)
1272 	device_t		dev;
1273 {
1274 	struct sk_softc		*sc;
1275 
1276 	sc = device_get_softc(device_get_parent(dev));
1277 
1278 	/*
1279 	 * Not much to do here. We always know there will be
1280 	 * at least one XMAC present, and if there are two,
1281 	 * skc_attach() will create a second device instance
1282 	 * for us.
1283 	 */
1284 	switch (sc->sk_type) {
1285 	case SK_GENESIS:
1286 		device_set_desc(dev, "XaQti Corp. XMAC II");
1287 		break;
1288 	case SK_YUKON:
1289 	case SK_YUKON_LITE:
1290 	case SK_YUKON_LP:
1291 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1292 		break;
1293 	}
1294 
1295 	return (BUS_PROBE_DEFAULT);
1296 }
1297 
1298 /*
1299  * Each XMAC chip is attached as a separate logical IP interface.
1300  * Single port cards will have only one logical interface of course.
1301  */
1302 static int
1303 sk_attach(dev)
1304 	device_t		dev;
1305 {
1306 	struct sk_softc		*sc;
1307 	struct sk_if_softc	*sc_if;
1308 	struct ifnet		*ifp;
1309 	u_int32_t		r;
1310 	int			error, i, phy, port;
1311 	u_char			eaddr[6];
1312 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1313 
1314 	if (dev == NULL)
1315 		return(EINVAL);
1316 
1317 	error = 0;
1318 	sc_if = device_get_softc(dev);
1319 	sc = device_get_softc(device_get_parent(dev));
1320 	port = *(int *)device_get_ivars(dev);
1321 
1322 	sc_if->sk_if_dev = dev;
1323 	sc_if->sk_port = port;
1324 	sc_if->sk_softc = sc;
1325 	sc->sk_if[port] = sc_if;
1326 	if (port == SK_PORT_A)
1327 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1328 	if (port == SK_PORT_B)
1329 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1330 
1331 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1332 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1333 
1334 	if (sk_dma_alloc(sc_if) != 0) {
1335 		error = ENOMEM;
1336 		goto fail;
1337 	}
1338 	sk_dma_jumbo_alloc(sc_if);
1339 
1340 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1341 	if (ifp == NULL) {
1342 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1343 		error = ENOSPC;
1344 		goto fail;
1345 	}
1346 	ifp->if_softc = sc_if;
1347 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1348 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1349 	/*
1350 	 * SK_GENESIS has a bug in checksum offload - From linux.
1351 	 */
1352 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1353 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1354 		ifp->if_hwassist = 0;
1355 	} else {
1356 		ifp->if_capabilities = 0;
1357 		ifp->if_hwassist = 0;
1358 	}
1359 	ifp->if_capenable = ifp->if_capabilities;
1360 	/*
1361 	 * Some revision of Yukon controller generates corrupted
1362 	 * frame when TX checksum offloading is enabled.  The
1363 	 * frame has a valid checksum value so payload might be
1364 	 * modified during TX checksum calculation. Disable TX
1365 	 * checksum offloading but give users chance to enable it
1366 	 * when they know their controller works without problems
1367 	 * with TX checksum offloading.
1368 	 */
1369 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1370 	ifp->if_ioctl = sk_ioctl;
1371 	ifp->if_start = sk_start;
1372 	ifp->if_init = sk_init;
1373 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1374 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1375 	IFQ_SET_READY(&ifp->if_snd);
1376 
1377 	/*
1378 	 * Get station address for this interface. Note that
1379 	 * dual port cards actually come with three station
1380 	 * addresses: one for each port, plus an extra. The
1381 	 * extra one is used by the SysKonnect driver software
1382 	 * as a 'virtual' station address for when both ports
1383 	 * are operating in failover mode. Currently we don't
1384 	 * use this extra address.
1385 	 */
1386 	SK_IF_LOCK(sc_if);
1387 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1388 		eaddr[i] =
1389 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1390 
1391 	/* Verify whether the station address is invalid or not. */
1392 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1393 		device_printf(sc_if->sk_if_dev,
1394 		    "Generating random ethernet address\n");
1395 		r = arc4random();
1396 		/*
1397 		 * Set OUI to convenient locally assigned address.  'b'
1398 		 * is 0x62, which has the locally assigned bit set, and
1399 		 * the broadcast/multicast bit clear.
1400 		 */
1401 		eaddr[0] = 'b';
1402 		eaddr[1] = 's';
1403 		eaddr[2] = 'd';
1404 		eaddr[3] = (r >> 16) & 0xff;
1405 		eaddr[4] = (r >>  8) & 0xff;
1406 		eaddr[5] = (r >>  0) & 0xff;
1407 	}
1408 	/*
1409 	 * Set up RAM buffer addresses. The NIC will have a certain
1410 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1411 	 * need to divide this up a) between the transmitter and
1412  	 * receiver and b) between the two XMACs, if this is a
1413 	 * dual port NIC. Our algotithm is to divide up the memory
1414 	 * evenly so that everyone gets a fair share.
1415 	 *
1416 	 * Just to be contrary, Yukon2 appears to have separate memory
1417 	 * for each MAC.
1418 	 */
1419 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1420 		u_int32_t		chunk, val;
1421 
1422 		chunk = sc->sk_ramsize / 2;
1423 		val = sc->sk_rboff / sizeof(u_int64_t);
1424 		sc_if->sk_rx_ramstart = val;
1425 		val += (chunk / sizeof(u_int64_t));
1426 		sc_if->sk_rx_ramend = val - 1;
1427 		sc_if->sk_tx_ramstart = val;
1428 		val += (chunk / sizeof(u_int64_t));
1429 		sc_if->sk_tx_ramend = val - 1;
1430 	} else {
1431 		u_int32_t		chunk, val;
1432 
1433 		chunk = sc->sk_ramsize / 4;
1434 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1435 		    sizeof(u_int64_t);
1436 		sc_if->sk_rx_ramstart = val;
1437 		val += (chunk / sizeof(u_int64_t));
1438 		sc_if->sk_rx_ramend = val - 1;
1439 		sc_if->sk_tx_ramstart = val;
1440 		val += (chunk / sizeof(u_int64_t));
1441 		sc_if->sk_tx_ramend = val - 1;
1442 	}
1443 
1444 	/* Read and save PHY type and set PHY address */
1445 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1446 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1447 		switch(sc_if->sk_phytype) {
1448 		case SK_PHYTYPE_XMAC:
1449 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1450 			break;
1451 		case SK_PHYTYPE_BCOM:
1452 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1453 			break;
1454 		default:
1455 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1456 			    sc_if->sk_phytype);
1457 			error = ENODEV;
1458 			SK_IF_UNLOCK(sc_if);
1459 			goto fail;
1460 		}
1461 	} else {
1462 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1463 		    sc->sk_pmd != 'S') {
1464 			/* not initialized, punt */
1465 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1466 			sc->sk_coppertype = 1;
1467 		}
1468 
1469 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1470 
1471 		if (!(sc->sk_coppertype))
1472 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1473 	}
1474 
1475 	/*
1476 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1477 	 */
1478 	SK_IF_UNLOCK(sc_if);
1479 	ether_ifattach(ifp, eaddr);
1480 	SK_IF_LOCK(sc_if);
1481 
1482 	/*
1483 	 * The hardware should be ready for VLAN_MTU by default:
1484 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1485 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1486 	 *
1487 	 */
1488         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1489         ifp->if_capenable |= IFCAP_VLAN_MTU;
1490 	/*
1491 	 * Tell the upper layer(s) we support long frames.
1492 	 * Must appear after the call to ether_ifattach() because
1493 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1494 	 */
1495         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1496 
1497 	/*
1498 	 * Do miibus setup.
1499 	 */
1500 	phy = MII_PHY_ANY;
1501 	switch (sc->sk_type) {
1502 	case SK_GENESIS:
1503 		sk_init_xmac(sc_if);
1504 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1505 			phy = 0;
1506 		break;
1507 	case SK_YUKON:
1508 	case SK_YUKON_LITE:
1509 	case SK_YUKON_LP:
1510 		sk_init_yukon(sc_if);
1511 		phy = 0;
1512 		break;
1513 	}
1514 
1515 	SK_IF_UNLOCK(sc_if);
1516 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1517 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1518 	if (error != 0) {
1519 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1520 		ether_ifdetach(ifp);
1521 		goto fail;
1522 	}
1523 
1524 fail:
1525 	if (error) {
1526 		/* Access should be ok even though lock has been dropped */
1527 		sc->sk_if[port] = NULL;
1528 		sk_detach(dev);
1529 	}
1530 
1531 	return(error);
1532 }
1533 
1534 /*
1535  * Attach the interface. Allocate softc structures, do ifmedia
1536  * setup and ethernet/BPF attach.
1537  */
1538 static int
1539 skc_attach(dev)
1540 	device_t		dev;
1541 {
1542 	struct sk_softc		*sc;
1543 	int			error = 0, *port;
1544 	uint8_t			skrs;
1545 	const char		*pname = NULL;
1546 	char			*revstr;
1547 
1548 	sc = device_get_softc(dev);
1549 	sc->sk_dev = dev;
1550 
1551 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1552 	    MTX_DEF);
1553 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1554 	/*
1555 	 * Map control/status registers.
1556 	 */
1557 	pci_enable_busmaster(dev);
1558 
1559 	/* Allocate resources */
1560 #ifdef SK_USEIOSPACE
1561 	sc->sk_res_spec = sk_res_spec_io;
1562 #else
1563 	sc->sk_res_spec = sk_res_spec_mem;
1564 #endif
1565 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1566 	if (error) {
1567 		if (sc->sk_res_spec == sk_res_spec_mem)
1568 			sc->sk_res_spec = sk_res_spec_io;
1569 		else
1570 			sc->sk_res_spec = sk_res_spec_mem;
1571 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1572 		if (error) {
1573 			device_printf(dev, "couldn't allocate %s resources\n",
1574 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1575 			    "I/O");
1576 			goto fail;
1577 		}
1578 	}
1579 
1580 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1581 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1582 
1583 	/* Bail out if chip is not recognized. */
1584 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1585 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1586 		    sc->sk_type, sc->sk_rev);
1587 		error = ENXIO;
1588 		goto fail;
1589 	}
1590 
1591 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1592 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1593 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1594 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1595 		"SK interrupt moderation");
1596 
1597 	/* Pull in device tunables. */
1598 	sc->sk_int_mod = SK_IM_DEFAULT;
1599 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1600 		"int_mod", &sc->sk_int_mod);
1601 	if (error == 0) {
1602 		if (sc->sk_int_mod < SK_IM_MIN ||
1603 		    sc->sk_int_mod > SK_IM_MAX) {
1604 			device_printf(dev, "int_mod value out of range; "
1605 			    "using default: %d\n", SK_IM_DEFAULT);
1606 			sc->sk_int_mod = SK_IM_DEFAULT;
1607 		}
1608 	}
1609 
1610 	/* Reset the adapter. */
1611 	sk_reset(sc);
1612 
1613 	skrs = sk_win_read_1(sc, SK_EPROM0);
1614 	if (sc->sk_type == SK_GENESIS) {
1615 		/* Read and save RAM size and RAMbuffer offset */
1616 		switch(skrs) {
1617 		case SK_RAMSIZE_512K_64:
1618 			sc->sk_ramsize = 0x80000;
1619 			sc->sk_rboff = SK_RBOFF_0;
1620 			break;
1621 		case SK_RAMSIZE_1024K_64:
1622 			sc->sk_ramsize = 0x100000;
1623 			sc->sk_rboff = SK_RBOFF_80000;
1624 			break;
1625 		case SK_RAMSIZE_1024K_128:
1626 			sc->sk_ramsize = 0x100000;
1627 			sc->sk_rboff = SK_RBOFF_0;
1628 			break;
1629 		case SK_RAMSIZE_2048K_128:
1630 			sc->sk_ramsize = 0x200000;
1631 			sc->sk_rboff = SK_RBOFF_0;
1632 			break;
1633 		default:
1634 			device_printf(dev, "unknown ram size: %d\n", skrs);
1635 			error = ENXIO;
1636 			goto fail;
1637 		}
1638 	} else { /* SK_YUKON_FAMILY */
1639 		if (skrs == 0x00)
1640 			sc->sk_ramsize = 0x20000;
1641 		else
1642 			sc->sk_ramsize = skrs * (1<<12);
1643 		sc->sk_rboff = SK_RBOFF_0;
1644 	}
1645 
1646 	/* Read and save physical media type */
1647 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1648 
1649 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1650 		 sc->sk_coppertype = 1;
1651 	 else
1652 		 sc->sk_coppertype = 0;
1653 
1654 	/* Determine whether to name it with VPD PN or just make it up.
1655 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1656 	switch (pci_get_device(dev)) {
1657 	case DEVICEID_SK_V1:
1658 	case DEVICEID_BELKIN_5005:
1659 	case DEVICEID_3COM_3C940:
1660 	case DEVICEID_LINKSYS_EG1032:
1661 	case DEVICEID_DLINK_DGE530T_A1:
1662 	case DEVICEID_DLINK_DGE530T_B1:
1663 		/* Stay with VPD PN. */
1664 		(void) pci_get_vpd_ident(dev, &pname);
1665 		break;
1666 	case DEVICEID_SK_V2:
1667 		/* YUKON VPD PN might bear no resemblance to reality. */
1668 		switch (sc->sk_type) {
1669 		case SK_GENESIS:
1670 			/* Stay with VPD PN. */
1671 			(void) pci_get_vpd_ident(dev, &pname);
1672 			break;
1673 		case SK_YUKON:
1674 			pname = "Marvell Yukon Gigabit Ethernet";
1675 			break;
1676 		case SK_YUKON_LITE:
1677 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1678 			break;
1679 		case SK_YUKON_LP:
1680 			pname = "Marvell Yukon LP Gigabit Ethernet";
1681 			break;
1682 		default:
1683 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1684 			break;
1685 		}
1686 
1687 		/* Yukon Lite Rev. A0 needs special test. */
1688 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1689 			u_int32_t far;
1690 			u_int8_t testbyte;
1691 
1692 			/* Save flash address register before testing. */
1693 			far = sk_win_read_4(sc, SK_EP_ADDR);
1694 
1695 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1696 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1697 
1698 			if (testbyte != 0x00) {
1699 				/* Yukon Lite Rev. A0 detected. */
1700 				sc->sk_type = SK_YUKON_LITE;
1701 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1702 				/* Restore flash address register. */
1703 				sk_win_write_4(sc, SK_EP_ADDR, far);
1704 			}
1705 		}
1706 		break;
1707 	default:
1708 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1709 			"chipver=%02x, rev=%x\n",
1710 			pci_get_vendor(dev), pci_get_device(dev),
1711 			sc->sk_type, sc->sk_rev);
1712 		error = ENXIO;
1713 		goto fail;
1714 	}
1715 
1716 	if (sc->sk_type == SK_YUKON_LITE) {
1717 		switch (sc->sk_rev) {
1718 		case SK_YUKON_LITE_REV_A0:
1719 			revstr = "A0";
1720 			break;
1721 		case SK_YUKON_LITE_REV_A1:
1722 			revstr = "A1";
1723 			break;
1724 		case SK_YUKON_LITE_REV_A3:
1725 			revstr = "A3";
1726 			break;
1727 		default:
1728 			revstr = "";
1729 			break;
1730 		}
1731 	} else {
1732 		revstr = "";
1733 	}
1734 
1735 	/* Announce the product name and more VPD data if there. */
1736 	if (pname != NULL)
1737 		device_printf(dev, "%s rev. %s(0x%x)\n",
1738 			pname, revstr, sc->sk_rev);
1739 
1740 	if (bootverbose) {
1741 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1742 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1743 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1744 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1745 	}
1746 
1747 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1748 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1749 		device_printf(dev, "failed to add child for PORT_A\n");
1750 		error = ENXIO;
1751 		goto fail;
1752 	}
1753 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1754 	if (port == NULL) {
1755 		device_printf(dev, "failed to allocate memory for "
1756 		    "ivars of PORT_A\n");
1757 		error = ENXIO;
1758 		goto fail;
1759 	}
1760 	*port = SK_PORT_A;
1761 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1762 
1763 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1764 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1765 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1766 			device_printf(dev, "failed to add child for PORT_B\n");
1767 			error = ENXIO;
1768 			goto fail;
1769 		}
1770 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1771 		if (port == NULL) {
1772 			device_printf(dev, "failed to allocate memory for "
1773 			    "ivars of PORT_B\n");
1774 			error = ENXIO;
1775 			goto fail;
1776 		}
1777 		*port = SK_PORT_B;
1778 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1779 	}
1780 
1781 	/* Turn on the 'driver is loaded' LED. */
1782 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1783 
1784 	error = bus_generic_attach(dev);
1785 	if (error) {
1786 		device_printf(dev, "failed to attach port(s)\n");
1787 		goto fail;
1788 	}
1789 
1790 	/* Hook interrupt last to avoid having to lock softc */
1791 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1792 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1793 
1794 	if (error) {
1795 		device_printf(dev, "couldn't set up irq\n");
1796 		goto fail;
1797 	}
1798 
1799 fail:
1800 	if (error)
1801 		skc_detach(dev);
1802 
1803 	return(error);
1804 }
1805 
1806 /*
1807  * Shutdown hardware and free up resources. This can be called any
1808  * time after the mutex has been initialized. It is called in both
1809  * the error case in attach and the normal detach case so it needs
1810  * to be careful about only freeing resources that have actually been
1811  * allocated.
1812  */
1813 static int
1814 sk_detach(dev)
1815 	device_t		dev;
1816 {
1817 	struct sk_if_softc	*sc_if;
1818 	struct ifnet		*ifp;
1819 
1820 	sc_if = device_get_softc(dev);
1821 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1822 	    ("sk mutex not initialized in sk_detach"));
1823 	SK_IF_LOCK(sc_if);
1824 
1825 	ifp = sc_if->sk_ifp;
1826 	/* These should only be active if attach_xmac succeeded */
1827 	if (device_is_attached(dev)) {
1828 		sk_stop(sc_if);
1829 		/* Can't hold locks while calling detach */
1830 		SK_IF_UNLOCK(sc_if);
1831 		callout_drain(&sc_if->sk_tick_ch);
1832 		callout_drain(&sc_if->sk_watchdog_ch);
1833 		ether_ifdetach(ifp);
1834 		SK_IF_LOCK(sc_if);
1835 	}
1836 	/*
1837 	 * We're generally called from skc_detach() which is using
1838 	 * device_delete_child() to get to here. It's already trashed
1839 	 * miibus for us, so don't do it here or we'll panic.
1840 	 */
1841 	/*
1842 	if (sc_if->sk_miibus != NULL)
1843 		device_delete_child(dev, sc_if->sk_miibus);
1844 	*/
1845 	bus_generic_detach(dev);
1846 	sk_dma_jumbo_free(sc_if);
1847 	sk_dma_free(sc_if);
1848 	SK_IF_UNLOCK(sc_if);
1849 	if (ifp)
1850 		if_free(ifp);
1851 
1852 	return(0);
1853 }
1854 
1855 static int
1856 skc_detach(dev)
1857 	device_t		dev;
1858 {
1859 	struct sk_softc		*sc;
1860 
1861 	sc = device_get_softc(dev);
1862 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1863 
1864 	if (device_is_alive(dev)) {
1865 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1866 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1867 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1868 		}
1869 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1870 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1871 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1872 		}
1873 		bus_generic_detach(dev);
1874 	}
1875 
1876 	if (sc->sk_intrhand)
1877 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1878 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1879 
1880 	mtx_destroy(&sc->sk_mii_mtx);
1881 	mtx_destroy(&sc->sk_mtx);
1882 
1883 	return(0);
1884 }
1885 
1886 static bus_dma_tag_t
1887 skc_get_dma_tag(device_t bus, device_t child __unused)
1888 {
1889 
1890 	return (bus_get_dma_tag(bus));
1891 }
1892 
1893 struct sk_dmamap_arg {
1894 	bus_addr_t	sk_busaddr;
1895 };
1896 
1897 static void
1898 sk_dmamap_cb(arg, segs, nseg, error)
1899 	void			*arg;
1900 	bus_dma_segment_t	*segs;
1901 	int			nseg;
1902 	int			error;
1903 {
1904 	struct sk_dmamap_arg	*ctx;
1905 
1906 	if (error != 0)
1907 		return;
1908 
1909 	ctx = arg;
1910 	ctx->sk_busaddr = segs[0].ds_addr;
1911 }
1912 
1913 /*
1914  * Allocate jumbo buffer storage. The SysKonnect adapters support
1915  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1916  * use them in their drivers. In order for us to use them, we need
1917  * large 9K receive buffers, however standard mbuf clusters are only
1918  * 2048 bytes in size. Consequently, we need to allocate and manage
1919  * our own jumbo buffer pool. Fortunately, this does not require an
1920  * excessive amount of additional code.
1921  */
1922 static int
1923 sk_dma_alloc(sc_if)
1924 	struct sk_if_softc	*sc_if;
1925 {
1926 	struct sk_dmamap_arg	ctx;
1927 	struct sk_txdesc	*txd;
1928 	struct sk_rxdesc	*rxd;
1929 	int			error, i;
1930 
1931 	/* create parent tag */
1932 	/*
1933 	 * XXX
1934 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1935 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1936 	 * However bz@ reported that it does not work on amd64 with > 4GB
1937 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1938 	 * by limiting DMA address to be in 32bit address space.
1939 	 */
1940 	error = bus_dma_tag_create(
1941 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1942 		    1, 0,			/* algnmnt, boundary */
1943 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1944 		    BUS_SPACE_MAXADDR,		/* highaddr */
1945 		    NULL, NULL,			/* filter, filterarg */
1946 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1947 		    0,				/* nsegments */
1948 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1949 		    0,				/* flags */
1950 		    NULL, NULL,			/* lockfunc, lockarg */
1951 		    &sc_if->sk_cdata.sk_parent_tag);
1952 	if (error != 0) {
1953 		device_printf(sc_if->sk_if_dev,
1954 		    "failed to create parent DMA tag\n");
1955 		goto fail;
1956 	}
1957 
1958 	/* create tag for Tx ring */
1959 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1960 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1961 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1962 		    BUS_SPACE_MAXADDR,		/* highaddr */
1963 		    NULL, NULL,			/* filter, filterarg */
1964 		    SK_TX_RING_SZ,		/* maxsize */
1965 		    1,				/* nsegments */
1966 		    SK_TX_RING_SZ,		/* maxsegsize */
1967 		    0,				/* flags */
1968 		    NULL, NULL,			/* lockfunc, lockarg */
1969 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1970 	if (error != 0) {
1971 		device_printf(sc_if->sk_if_dev,
1972 		    "failed to allocate Tx ring DMA tag\n");
1973 		goto fail;
1974 	}
1975 
1976 	/* create tag for Rx ring */
1977 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1978 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1979 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1980 		    BUS_SPACE_MAXADDR,		/* highaddr */
1981 		    NULL, NULL,			/* filter, filterarg */
1982 		    SK_RX_RING_SZ,		/* maxsize */
1983 		    1,				/* nsegments */
1984 		    SK_RX_RING_SZ,		/* maxsegsize */
1985 		    0,				/* flags */
1986 		    NULL, NULL,			/* lockfunc, lockarg */
1987 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1988 	if (error != 0) {
1989 		device_printf(sc_if->sk_if_dev,
1990 		    "failed to allocate Rx ring DMA tag\n");
1991 		goto fail;
1992 	}
1993 
1994 	/* create tag for Tx buffers */
1995 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1996 		    1, 0,			/* algnmnt, boundary */
1997 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1998 		    BUS_SPACE_MAXADDR,		/* highaddr */
1999 		    NULL, NULL,			/* filter, filterarg */
2000 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2001 		    SK_MAXTXSEGS,		/* nsegments */
2002 		    MCLBYTES,			/* maxsegsize */
2003 		    0,				/* flags */
2004 		    NULL, NULL,			/* lockfunc, lockarg */
2005 		    &sc_if->sk_cdata.sk_tx_tag);
2006 	if (error != 0) {
2007 		device_printf(sc_if->sk_if_dev,
2008 		    "failed to allocate Tx DMA tag\n");
2009 		goto fail;
2010 	}
2011 
2012 	/* create tag for Rx buffers */
2013 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2014 		    1, 0,			/* algnmnt, boundary */
2015 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2016 		    BUS_SPACE_MAXADDR,		/* highaddr */
2017 		    NULL, NULL,			/* filter, filterarg */
2018 		    MCLBYTES,			/* maxsize */
2019 		    1,				/* nsegments */
2020 		    MCLBYTES,			/* maxsegsize */
2021 		    0,				/* flags */
2022 		    NULL, NULL,			/* lockfunc, lockarg */
2023 		    &sc_if->sk_cdata.sk_rx_tag);
2024 	if (error != 0) {
2025 		device_printf(sc_if->sk_if_dev,
2026 		    "failed to allocate Rx DMA tag\n");
2027 		goto fail;
2028 	}
2029 
2030 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2031 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2032 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2033 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2034 	if (error != 0) {
2035 		device_printf(sc_if->sk_if_dev,
2036 		    "failed to allocate DMA'able memory for Tx ring\n");
2037 		goto fail;
2038 	}
2039 
2040 	ctx.sk_busaddr = 0;
2041 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2042 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2043 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2044 	if (error != 0) {
2045 		device_printf(sc_if->sk_if_dev,
2046 		    "failed to load DMA'able memory for Tx ring\n");
2047 		goto fail;
2048 	}
2049 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2050 
2051 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2052 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2053 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2054 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2055 	if (error != 0) {
2056 		device_printf(sc_if->sk_if_dev,
2057 		    "failed to allocate DMA'able memory for Rx ring\n");
2058 		goto fail;
2059 	}
2060 
2061 	ctx.sk_busaddr = 0;
2062 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2063 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2064 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2065 	if (error != 0) {
2066 		device_printf(sc_if->sk_if_dev,
2067 		    "failed to load DMA'able memory for Rx ring\n");
2068 		goto fail;
2069 	}
2070 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2071 
2072 	/* create DMA maps for Tx buffers */
2073 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2074 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2075 		txd->tx_m = NULL;
2076 		txd->tx_dmamap = NULL;
2077 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2078 		    &txd->tx_dmamap);
2079 		if (error != 0) {
2080 			device_printf(sc_if->sk_if_dev,
2081 			    "failed to create Tx dmamap\n");
2082 			goto fail;
2083 		}
2084 	}
2085 
2086 	/* create DMA maps for Rx buffers */
2087 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2088 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2089 		device_printf(sc_if->sk_if_dev,
2090 		    "failed to create spare Rx dmamap\n");
2091 		goto fail;
2092 	}
2093 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2094 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2095 		rxd->rx_m = NULL;
2096 		rxd->rx_dmamap = NULL;
2097 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2098 		    &rxd->rx_dmamap);
2099 		if (error != 0) {
2100 			device_printf(sc_if->sk_if_dev,
2101 			    "failed to create Rx dmamap\n");
2102 			goto fail;
2103 		}
2104 	}
2105 
2106 fail:
2107 	return (error);
2108 }
2109 
2110 static int
2111 sk_dma_jumbo_alloc(sc_if)
2112 	struct sk_if_softc	*sc_if;
2113 {
2114 	struct sk_dmamap_arg	ctx;
2115 	struct sk_rxdesc	*jrxd;
2116 	int			error, i;
2117 
2118 	if (jumbo_disable != 0) {
2119 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2120 		sc_if->sk_jumbo_disable = 1;
2121 		return (0);
2122 	}
2123 	/* create tag for jumbo Rx ring */
2124 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2125 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2126 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2127 		    BUS_SPACE_MAXADDR,		/* highaddr */
2128 		    NULL, NULL,			/* filter, filterarg */
2129 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2130 		    1,				/* nsegments */
2131 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2132 		    0,				/* flags */
2133 		    NULL, NULL,			/* lockfunc, lockarg */
2134 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2135 	if (error != 0) {
2136 		device_printf(sc_if->sk_if_dev,
2137 		    "failed to allocate jumbo Rx ring DMA tag\n");
2138 		goto jumbo_fail;
2139 	}
2140 
2141 	/* create tag for jumbo Rx buffers */
2142 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2143 		    1, 0,			/* algnmnt, boundary */
2144 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2145 		    BUS_SPACE_MAXADDR,		/* highaddr */
2146 		    NULL, NULL,			/* filter, filterarg */
2147 		    MJUM9BYTES,			/* maxsize */
2148 		    1,				/* nsegments */
2149 		    MJUM9BYTES,			/* maxsegsize */
2150 		    0,				/* flags */
2151 		    NULL, NULL,			/* lockfunc, lockarg */
2152 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2153 	if (error != 0) {
2154 		device_printf(sc_if->sk_if_dev,
2155 		    "failed to allocate jumbo Rx DMA tag\n");
2156 		goto jumbo_fail;
2157 	}
2158 
2159 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2160 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2161 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2162 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2163 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2164 	if (error != 0) {
2165 		device_printf(sc_if->sk_if_dev,
2166 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2167 		goto jumbo_fail;
2168 	}
2169 
2170 	ctx.sk_busaddr = 0;
2171 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2172 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2173 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2174 	    &ctx, BUS_DMA_NOWAIT);
2175 	if (error != 0) {
2176 		device_printf(sc_if->sk_if_dev,
2177 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2178 		goto jumbo_fail;
2179 	}
2180 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2181 
2182 	/* create DMA maps for jumbo Rx buffers */
2183 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2184 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2185 		device_printf(sc_if->sk_if_dev,
2186 		    "failed to create spare jumbo Rx dmamap\n");
2187 		goto jumbo_fail;
2188 	}
2189 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2190 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2191 		jrxd->rx_m = NULL;
2192 		jrxd->rx_dmamap = NULL;
2193 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2194 		    &jrxd->rx_dmamap);
2195 		if (error != 0) {
2196 			device_printf(sc_if->sk_if_dev,
2197 			    "failed to create jumbo Rx dmamap\n");
2198 			goto jumbo_fail;
2199 		}
2200 	}
2201 
2202 	return (0);
2203 
2204 jumbo_fail:
2205 	sk_dma_jumbo_free(sc_if);
2206 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2207 	    "resource shortage\n");
2208 	sc_if->sk_jumbo_disable = 1;
2209 	return (0);
2210 }
2211 
2212 static void
2213 sk_dma_free(sc_if)
2214 	struct sk_if_softc	*sc_if;
2215 {
2216 	struct sk_txdesc	*txd;
2217 	struct sk_rxdesc	*rxd;
2218 	int			i;
2219 
2220 	/* Tx ring */
2221 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2222 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2223 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2224 			    sc_if->sk_cdata.sk_tx_ring_map);
2225 		if (sc_if->sk_rdata.sk_tx_ring)
2226 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2227 			    sc_if->sk_rdata.sk_tx_ring,
2228 			    sc_if->sk_cdata.sk_tx_ring_map);
2229 		sc_if->sk_rdata.sk_tx_ring = NULL;
2230 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2231 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2232 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2233 	}
2234 	/* Rx ring */
2235 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2236 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2237 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2238 			    sc_if->sk_cdata.sk_rx_ring_map);
2239 		if (sc_if->sk_rdata.sk_rx_ring)
2240 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2241 			    sc_if->sk_rdata.sk_rx_ring,
2242 			    sc_if->sk_cdata.sk_rx_ring_map);
2243 		sc_if->sk_rdata.sk_rx_ring = NULL;
2244 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2245 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2246 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2247 	}
2248 	/* Tx buffers */
2249 	if (sc_if->sk_cdata.sk_tx_tag) {
2250 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2251 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2252 			if (txd->tx_dmamap) {
2253 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2254 				    txd->tx_dmamap);
2255 				txd->tx_dmamap = NULL;
2256 			}
2257 		}
2258 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2259 		sc_if->sk_cdata.sk_tx_tag = NULL;
2260 	}
2261 	/* Rx buffers */
2262 	if (sc_if->sk_cdata.sk_rx_tag) {
2263 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2264 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2265 			if (rxd->rx_dmamap) {
2266 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2267 				    rxd->rx_dmamap);
2268 				rxd->rx_dmamap = NULL;
2269 			}
2270 		}
2271 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2272 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2273 			    sc_if->sk_cdata.sk_rx_sparemap);
2274 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2275 		}
2276 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2277 		sc_if->sk_cdata.sk_rx_tag = NULL;
2278 	}
2279 
2280 	if (sc_if->sk_cdata.sk_parent_tag) {
2281 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2282 		sc_if->sk_cdata.sk_parent_tag = NULL;
2283 	}
2284 }
2285 
2286 static void
2287 sk_dma_jumbo_free(sc_if)
2288 	struct sk_if_softc	*sc_if;
2289 {
2290 	struct sk_rxdesc	*jrxd;
2291 	int			i;
2292 
2293 	/* jumbo Rx ring */
2294 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2295 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2296 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2297 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2298 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2299 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2300 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2301 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2302 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2303 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2304 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2305 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2306 	}
2307 
2308 	/* jumbo Rx buffers */
2309 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2310 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2311 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2312 			if (jrxd->rx_dmamap) {
2313 				bus_dmamap_destroy(
2314 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2315 				    jrxd->rx_dmamap);
2316 				jrxd->rx_dmamap = NULL;
2317 			}
2318 		}
2319 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2320 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2321 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2322 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2323 		}
2324 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2325 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2326 	}
2327 }
2328 
2329 static void
2330 sk_txcksum(ifp, m, f)
2331 	struct ifnet		*ifp;
2332 	struct mbuf		*m;
2333 	struct sk_tx_desc	*f;
2334 {
2335 	struct ip		*ip;
2336 	u_int16_t		offset;
2337 	u_int8_t 		*p;
2338 
2339 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2340 	for(; m && m->m_len == 0; m = m->m_next)
2341 		;
2342 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2343 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2344 		/* checksum may be corrupted */
2345 		goto sendit;
2346 	}
2347 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2348 		if (m->m_len != ETHER_HDR_LEN) {
2349 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2350 			    __func__);
2351 			/* checksum may be corrupted */
2352 			goto sendit;
2353 		}
2354 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2355 			;
2356 		if (m == NULL) {
2357 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2358 			/* checksum may be corrupted */
2359 			goto sendit;
2360 		}
2361 		ip = mtod(m, struct ip *);
2362 	} else {
2363 		p = mtod(m, u_int8_t *);
2364 		p += ETHER_HDR_LEN;
2365 		ip = (struct ip *)p;
2366 	}
2367 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2368 
2369 sendit:
2370 	f->sk_csum_startval = 0;
2371 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2372 	    (offset << 16));
2373 }
2374 
2375 static int
2376 sk_encap(sc_if, m_head)
2377         struct sk_if_softc	*sc_if;
2378         struct mbuf		**m_head;
2379 {
2380 	struct sk_txdesc	*txd;
2381 	struct sk_tx_desc	*f = NULL;
2382 	struct mbuf		*m;
2383 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2384 	u_int32_t		cflags, frag, si, sk_ctl;
2385 	int			error, i, nseg;
2386 
2387 	SK_IF_LOCK_ASSERT(sc_if);
2388 
2389 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2390 		return (ENOBUFS);
2391 
2392 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2393 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2394 	if (error == EFBIG) {
2395 		m = m_defrag(*m_head, M_NOWAIT);
2396 		if (m == NULL) {
2397 			m_freem(*m_head);
2398 			*m_head = NULL;
2399 			return (ENOMEM);
2400 		}
2401 		*m_head = m;
2402 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2403 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2404 		if (error != 0) {
2405 			m_freem(*m_head);
2406 			*m_head = NULL;
2407 			return (error);
2408 		}
2409 	} else if (error != 0)
2410 		return (error);
2411 	if (nseg == 0) {
2412 		m_freem(*m_head);
2413 		*m_head = NULL;
2414 		return (EIO);
2415 	}
2416 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2417 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2418 		return (ENOBUFS);
2419 	}
2420 
2421 	m = *m_head;
2422 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2423 		cflags = SK_OPCODE_CSUM;
2424 	else
2425 		cflags = SK_OPCODE_DEFAULT;
2426 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2427 	for (i = 0; i < nseg; i++) {
2428 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2429 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2430 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2431 		sk_ctl = txsegs[i].ds_len | cflags;
2432 		if (i == 0) {
2433 			if (cflags == SK_OPCODE_CSUM)
2434 				sk_txcksum(sc_if->sk_ifp, m, f);
2435 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2436 		} else
2437 			sk_ctl |= SK_TXCTL_OWN;
2438 		f->sk_ctl = htole32(sk_ctl);
2439 		sc_if->sk_cdata.sk_tx_cnt++;
2440 		SK_INC(frag, SK_TX_RING_CNT);
2441 	}
2442 	sc_if->sk_cdata.sk_tx_prod = frag;
2443 
2444 	/* set EOF on the last desciptor */
2445 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2446 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2447 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2448 
2449 	/* turn the first descriptor ownership to NIC */
2450 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2451 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2452 
2453 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2454 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2455 	txd->tx_m = m;
2456 
2457 	/* sync descriptors */
2458 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2459 	    BUS_DMASYNC_PREWRITE);
2460 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2461 	    sc_if->sk_cdata.sk_tx_ring_map,
2462 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2463 
2464 	return (0);
2465 }
2466 
2467 static void
2468 sk_start(ifp)
2469 	struct ifnet		*ifp;
2470 {
2471 	struct sk_if_softc *sc_if;
2472 
2473 	sc_if = ifp->if_softc;
2474 
2475 	SK_IF_LOCK(sc_if);
2476 	sk_start_locked(ifp);
2477 	SK_IF_UNLOCK(sc_if);
2478 
2479 	return;
2480 }
2481 
2482 static void
2483 sk_start_locked(ifp)
2484 	struct ifnet		*ifp;
2485 {
2486         struct sk_softc		*sc;
2487         struct sk_if_softc	*sc_if;
2488         struct mbuf		*m_head;
2489 	int			enq;
2490 
2491 	sc_if = ifp->if_softc;
2492 	sc = sc_if->sk_softc;
2493 
2494 	SK_IF_LOCK_ASSERT(sc_if);
2495 
2496 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2497 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2498 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2499 		if (m_head == NULL)
2500 			break;
2501 
2502 		/*
2503 		 * Pack the data into the transmit ring. If we
2504 		 * don't have room, set the OACTIVE flag and wait
2505 		 * for the NIC to drain the ring.
2506 		 */
2507 		if (sk_encap(sc_if, &m_head)) {
2508 			if (m_head == NULL)
2509 				break;
2510 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2511 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2512 			break;
2513 		}
2514 
2515 		enq++;
2516 		/*
2517 		 * If there's a BPF listener, bounce a copy of this frame
2518 		 * to him.
2519 		 */
2520 		BPF_MTAP(ifp, m_head);
2521 	}
2522 
2523 	if (enq > 0) {
2524 		/* Transmit */
2525 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2526 
2527 		/* Set a timeout in case the chip goes out to lunch. */
2528 		sc_if->sk_watchdog_timer = 5;
2529 	}
2530 }
2531 
2532 
2533 static void
2534 sk_watchdog(arg)
2535 	void			*arg;
2536 {
2537 	struct sk_if_softc	*sc_if;
2538 	struct ifnet		*ifp;
2539 
2540 	ifp = arg;
2541 	sc_if = ifp->if_softc;
2542 
2543 	SK_IF_LOCK_ASSERT(sc_if);
2544 
2545 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2546 		goto done;
2547 
2548 	/*
2549 	 * Reclaim first as there is a possibility of losing Tx completion
2550 	 * interrupts.
2551 	 */
2552 	sk_txeof(sc_if);
2553 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2554 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2555 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2556 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2557 		sk_init_locked(sc_if);
2558 	}
2559 
2560 done:
2561 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2562 
2563 	return;
2564 }
2565 
2566 static int
2567 skc_shutdown(dev)
2568 	device_t		dev;
2569 {
2570 	struct sk_softc		*sc;
2571 
2572 	sc = device_get_softc(dev);
2573 	SK_LOCK(sc);
2574 
2575 	/* Turn off the 'driver is loaded' LED. */
2576 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2577 
2578 	/*
2579 	 * Reset the GEnesis controller. Doing this should also
2580 	 * assert the resets on the attached XMAC(s).
2581 	 */
2582 	sk_reset(sc);
2583 	SK_UNLOCK(sc);
2584 
2585 	return (0);
2586 }
2587 
2588 static int
2589 skc_suspend(dev)
2590 	device_t		dev;
2591 {
2592 	struct sk_softc		*sc;
2593 	struct sk_if_softc	*sc_if0, *sc_if1;
2594 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2595 
2596 	sc = device_get_softc(dev);
2597 
2598 	SK_LOCK(sc);
2599 
2600 	sc_if0 = sc->sk_if[SK_PORT_A];
2601 	sc_if1 = sc->sk_if[SK_PORT_B];
2602 	if (sc_if0 != NULL)
2603 		ifp0 = sc_if0->sk_ifp;
2604 	if (sc_if1 != NULL)
2605 		ifp1 = sc_if1->sk_ifp;
2606 	if (ifp0 != NULL)
2607 		sk_stop(sc_if0);
2608 	if (ifp1 != NULL)
2609 		sk_stop(sc_if1);
2610 	sc->sk_suspended = 1;
2611 
2612 	SK_UNLOCK(sc);
2613 
2614 	return (0);
2615 }
2616 
2617 static int
2618 skc_resume(dev)
2619 	device_t		dev;
2620 {
2621 	struct sk_softc		*sc;
2622 	struct sk_if_softc	*sc_if0, *sc_if1;
2623 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2624 
2625 	sc = device_get_softc(dev);
2626 
2627 	SK_LOCK(sc);
2628 
2629 	sc_if0 = sc->sk_if[SK_PORT_A];
2630 	sc_if1 = sc->sk_if[SK_PORT_B];
2631 	if (sc_if0 != NULL)
2632 		ifp0 = sc_if0->sk_ifp;
2633 	if (sc_if1 != NULL)
2634 		ifp1 = sc_if1->sk_ifp;
2635 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2636 		sk_init_locked(sc_if0);
2637 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2638 		sk_init_locked(sc_if1);
2639 	sc->sk_suspended = 0;
2640 
2641 	SK_UNLOCK(sc);
2642 
2643 	return (0);
2644 }
2645 
2646 /*
2647  * According to the data sheet from SK-NET GENESIS the hardware can compute
2648  * two Rx checksums at the same time(Each checksum start position is
2649  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2650  * does not work at least on my Yukon hardware. I tried every possible ways
2651  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2652  * checksum offload was disabled at the moment and only IP checksum offload
2653  * was enabled.
2654  * As nomral IP header size is 20 bytes I can't expect it would give an
2655  * increase in throughput. However it seems it doesn't hurt performance in
2656  * my testing. If there is a more detailed information for checksum secret
2657  * of the hardware in question please contact yongari@FreeBSD.org to add
2658  * TCP/UDP checksum offload support.
2659  */
2660 static __inline void
2661 sk_rxcksum(ifp, m, csum)
2662 	struct ifnet		*ifp;
2663 	struct mbuf		*m;
2664 	u_int32_t		csum;
2665 {
2666 	struct ether_header	*eh;
2667 	struct ip		*ip;
2668 	int32_t			hlen, len, pktlen;
2669 	u_int16_t		csum1, csum2, ipcsum;
2670 
2671 	pktlen = m->m_pkthdr.len;
2672 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2673 		return;
2674 	eh = mtod(m, struct ether_header *);
2675 	if (eh->ether_type != htons(ETHERTYPE_IP))
2676 		return;
2677 	ip = (struct ip *)(eh + 1);
2678 	if (ip->ip_v != IPVERSION)
2679 		return;
2680 	hlen = ip->ip_hl << 2;
2681 	pktlen -= sizeof(struct ether_header);
2682 	if (hlen < sizeof(struct ip))
2683 		return;
2684 	if (ntohs(ip->ip_len) < hlen)
2685 		return;
2686 	if (ntohs(ip->ip_len) != pktlen)
2687 		return;
2688 
2689 	csum1 = htons(csum & 0xffff);
2690 	csum2 = htons((csum >> 16) & 0xffff);
2691 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2692 	/* checksum fixup for IP options */
2693 	len = hlen - sizeof(struct ip);
2694 	if (len > 0) {
2695 		/*
2696 		 * If the second checksum value is correct we can compute IP
2697 		 * checksum with simple math. Unfortunately the second checksum
2698 		 * value is wrong so we can't verify the checksum from the
2699 		 * value(It seems there is some magic here to get correct
2700 		 * value). If the second checksum value is correct it also
2701 		 * means we can get TCP/UDP checksum) here. However, it still
2702 		 * needs pseudo header checksum calculation due to hardware
2703 		 * limitations.
2704 		 */
2705 		return;
2706 	}
2707 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2708 	if (ipcsum == 0xffff)
2709 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2710 }
2711 
2712 static __inline int
2713 sk_rxvalid(sc, stat, len)
2714 	struct sk_softc		*sc;
2715 	u_int32_t		stat, len;
2716 {
2717 
2718 	if (sc->sk_type == SK_GENESIS) {
2719 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2720 		    XM_RXSTAT_BYTES(stat) != len)
2721 			return (0);
2722 	} else {
2723 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2724 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2725 		    YU_RXSTAT_JABBER)) != 0 ||
2726 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2727 		    YU_RXSTAT_BYTES(stat) != len)
2728 			return (0);
2729 	}
2730 
2731 	return (1);
2732 }
2733 
2734 static void
2735 sk_rxeof(sc_if)
2736 	struct sk_if_softc	*sc_if;
2737 {
2738 	struct sk_softc		*sc;
2739 	struct mbuf		*m;
2740 	struct ifnet		*ifp;
2741 	struct sk_rx_desc	*cur_rx;
2742 	struct sk_rxdesc	*rxd;
2743 	int			cons, prog;
2744 	u_int32_t		csum, rxstat, sk_ctl;
2745 
2746 	sc = sc_if->sk_softc;
2747 	ifp = sc_if->sk_ifp;
2748 
2749 	SK_IF_LOCK_ASSERT(sc_if);
2750 
2751 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2752 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2753 
2754 	prog = 0;
2755 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2756 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2757 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2758 		sk_ctl = le32toh(cur_rx->sk_ctl);
2759 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2760 			break;
2761 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2762 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2763 
2764 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2765 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2766 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2767 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2768 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2769 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2770 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2771 			sk_discard_rxbuf(sc_if, cons);
2772 			continue;
2773 		}
2774 
2775 		m = rxd->rx_m;
2776 		csum = le32toh(cur_rx->sk_csum);
2777 		if (sk_newbuf(sc_if, cons) != 0) {
2778 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2779 			/* reuse old buffer */
2780 			sk_discard_rxbuf(sc_if, cons);
2781 			continue;
2782 		}
2783 		m->m_pkthdr.rcvif = ifp;
2784 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2785 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2786 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2787 			sk_rxcksum(ifp, m, csum);
2788 		SK_IF_UNLOCK(sc_if);
2789 		(*ifp->if_input)(ifp, m);
2790 		SK_IF_LOCK(sc_if);
2791 	}
2792 
2793 	if (prog > 0) {
2794 		sc_if->sk_cdata.sk_rx_cons = cons;
2795 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2796 		    sc_if->sk_cdata.sk_rx_ring_map,
2797 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2798 	}
2799 }
2800 
2801 static void
2802 sk_jumbo_rxeof(sc_if)
2803 	struct sk_if_softc	*sc_if;
2804 {
2805 	struct sk_softc		*sc;
2806 	struct mbuf		*m;
2807 	struct ifnet		*ifp;
2808 	struct sk_rx_desc	*cur_rx;
2809 	struct sk_rxdesc	*jrxd;
2810 	int			cons, prog;
2811 	u_int32_t		csum, rxstat, sk_ctl;
2812 
2813 	sc = sc_if->sk_softc;
2814 	ifp = sc_if->sk_ifp;
2815 
2816 	SK_IF_LOCK_ASSERT(sc_if);
2817 
2818 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2819 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2820 
2821 	prog = 0;
2822 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2823 	    prog < SK_JUMBO_RX_RING_CNT;
2824 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2825 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2826 		sk_ctl = le32toh(cur_rx->sk_ctl);
2827 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2828 			break;
2829 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2830 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2831 
2832 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2833 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2834 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2835 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2836 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2837 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2838 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2839 			sk_discard_jumbo_rxbuf(sc_if, cons);
2840 			continue;
2841 		}
2842 
2843 		m = jrxd->rx_m;
2844 		csum = le32toh(cur_rx->sk_csum);
2845 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2846 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2847 			/* reuse old buffer */
2848 			sk_discard_jumbo_rxbuf(sc_if, cons);
2849 			continue;
2850 		}
2851 		m->m_pkthdr.rcvif = ifp;
2852 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2853 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2854 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2855 			sk_rxcksum(ifp, m, csum);
2856 		SK_IF_UNLOCK(sc_if);
2857 		(*ifp->if_input)(ifp, m);
2858 		SK_IF_LOCK(sc_if);
2859 	}
2860 
2861 	if (prog > 0) {
2862 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2863 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2864 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2865 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2866 	}
2867 }
2868 
2869 static void
2870 sk_txeof(sc_if)
2871 	struct sk_if_softc	*sc_if;
2872 {
2873 	struct sk_txdesc	*txd;
2874 	struct sk_tx_desc	*cur_tx;
2875 	struct ifnet		*ifp;
2876 	u_int32_t		idx, sk_ctl;
2877 
2878 	ifp = sc_if->sk_ifp;
2879 
2880 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2881 	if (txd == NULL)
2882 		return;
2883 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2884 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2885 	/*
2886 	 * Go through our tx ring and free mbufs for those
2887 	 * frames that have been sent.
2888 	 */
2889 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2890 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2891 			break;
2892 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2893 		sk_ctl = le32toh(cur_tx->sk_ctl);
2894 		if (sk_ctl & SK_TXCTL_OWN)
2895 			break;
2896 		sc_if->sk_cdata.sk_tx_cnt--;
2897 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2898 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2899 			continue;
2900 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2901 		    BUS_DMASYNC_POSTWRITE);
2902 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2903 
2904 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2905 		m_freem(txd->tx_m);
2906 		txd->tx_m = NULL;
2907 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2908 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2909 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2910 	}
2911 	sc_if->sk_cdata.sk_tx_cons = idx;
2912 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2913 
2914 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2915 	    sc_if->sk_cdata.sk_tx_ring_map,
2916 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2917 }
2918 
2919 static void
2920 sk_tick(xsc_if)
2921 	void			*xsc_if;
2922 {
2923 	struct sk_if_softc	*sc_if;
2924 	struct mii_data		*mii;
2925 	struct ifnet		*ifp;
2926 	int			i;
2927 
2928 	sc_if = xsc_if;
2929 	ifp = sc_if->sk_ifp;
2930 	mii = device_get_softc(sc_if->sk_miibus);
2931 
2932 	if (!(ifp->if_flags & IFF_UP))
2933 		return;
2934 
2935 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2936 		sk_intr_bcom(sc_if);
2937 		return;
2938 	}
2939 
2940 	/*
2941 	 * According to SysKonnect, the correct way to verify that
2942 	 * the link has come back up is to poll bit 0 of the GPIO
2943 	 * register three times. This pin has the signal from the
2944 	 * link_sync pin connected to it; if we read the same link
2945 	 * state 3 times in a row, we know the link is up.
2946 	 */
2947 	for (i = 0; i < 3; i++) {
2948 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2949 			break;
2950 	}
2951 
2952 	if (i != 3) {
2953 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2954 		return;
2955 	}
2956 
2957 	/* Turn the GP0 interrupt back on. */
2958 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2959 	SK_XM_READ_2(sc_if, XM_ISR);
2960 	mii_tick(mii);
2961 	callout_stop(&sc_if->sk_tick_ch);
2962 }
2963 
2964 static void
2965 sk_yukon_tick(xsc_if)
2966 	void			*xsc_if;
2967 {
2968 	struct sk_if_softc	*sc_if;
2969 	struct mii_data		*mii;
2970 
2971 	sc_if = xsc_if;
2972 	mii = device_get_softc(sc_if->sk_miibus);
2973 
2974 	mii_tick(mii);
2975 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2976 }
2977 
2978 static void
2979 sk_intr_bcom(sc_if)
2980 	struct sk_if_softc	*sc_if;
2981 {
2982 	struct mii_data		*mii;
2983 	struct ifnet		*ifp;
2984 	int			status;
2985 	mii = device_get_softc(sc_if->sk_miibus);
2986 	ifp = sc_if->sk_ifp;
2987 
2988 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2989 
2990 	/*
2991 	 * Read the PHY interrupt register to make sure
2992 	 * we clear any pending interrupts.
2993 	 */
2994 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2995 
2996 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2997 		sk_init_xmac(sc_if);
2998 		return;
2999 	}
3000 
3001 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3002 		int			lstat;
3003 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3004 		    BRGPHY_MII_AUXSTS);
3005 
3006 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3007 			mii_mediachg(mii);
3008 			/* Turn off the link LED. */
3009 			SK_IF_WRITE_1(sc_if, 0,
3010 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3011 			sc_if->sk_link = 0;
3012 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3013 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3014 	    		    BRGPHY_MII_IMR, 0xFF00);
3015 			mii_tick(mii);
3016 			sc_if->sk_link = 1;
3017 			/* Turn on the link LED. */
3018 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3019 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3020 			    SK_LINKLED_BLINK_OFF);
3021 		} else {
3022 			mii_tick(mii);
3023 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3024 		}
3025 	}
3026 
3027 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3028 
3029 	return;
3030 }
3031 
3032 static void
3033 sk_intr_xmac(sc_if)
3034 	struct sk_if_softc	*sc_if;
3035 {
3036 	struct sk_softc		*sc;
3037 	u_int16_t		status;
3038 
3039 	sc = sc_if->sk_softc;
3040 	status = SK_XM_READ_2(sc_if, XM_ISR);
3041 
3042 	/*
3043 	 * Link has gone down. Start MII tick timeout to
3044 	 * watch for link resync.
3045 	 */
3046 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3047 		if (status & XM_ISR_GP0_SET) {
3048 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3049 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3050 		}
3051 
3052 		if (status & XM_ISR_AUTONEG_DONE) {
3053 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3054 		}
3055 	}
3056 
3057 	if (status & XM_IMR_TX_UNDERRUN)
3058 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3059 
3060 	if (status & XM_IMR_RX_OVERRUN)
3061 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3062 
3063 	status = SK_XM_READ_2(sc_if, XM_ISR);
3064 
3065 	return;
3066 }
3067 
3068 static void
3069 sk_intr_yukon(sc_if)
3070 	struct sk_if_softc	*sc_if;
3071 {
3072 	u_int8_t status;
3073 
3074 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3075 	/* RX overrun */
3076 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3077 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3078 		    SK_RFCTL_RX_FIFO_OVER);
3079 	}
3080 	/* TX underrun */
3081 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3082 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3083 		    SK_TFCTL_TX_FIFO_UNDER);
3084 	}
3085 }
3086 
3087 static void
3088 sk_intr(xsc)
3089 	void			*xsc;
3090 {
3091 	struct sk_softc		*sc = xsc;
3092 	struct sk_if_softc	*sc_if0, *sc_if1;
3093 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3094 	u_int32_t		status;
3095 
3096 	SK_LOCK(sc);
3097 
3098 	status = CSR_READ_4(sc, SK_ISSR);
3099 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3100 		goto done_locked;
3101 
3102 	sc_if0 = sc->sk_if[SK_PORT_A];
3103 	sc_if1 = sc->sk_if[SK_PORT_B];
3104 
3105 	if (sc_if0 != NULL)
3106 		ifp0 = sc_if0->sk_ifp;
3107 	if (sc_if1 != NULL)
3108 		ifp1 = sc_if1->sk_ifp;
3109 
3110 	for (; (status &= sc->sk_intrmask) != 0;) {
3111 		/* Handle receive interrupts first. */
3112 		if (status & SK_ISR_RX1_EOF) {
3113 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3114 				sk_jumbo_rxeof(sc_if0);
3115 			else
3116 				sk_rxeof(sc_if0);
3117 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3118 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3119 		}
3120 		if (status & SK_ISR_RX2_EOF) {
3121 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3122 				sk_jumbo_rxeof(sc_if1);
3123 			else
3124 				sk_rxeof(sc_if1);
3125 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3126 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3127 		}
3128 
3129 		/* Then transmit interrupts. */
3130 		if (status & SK_ISR_TX1_S_EOF) {
3131 			sk_txeof(sc_if0);
3132 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3133 		}
3134 		if (status & SK_ISR_TX2_S_EOF) {
3135 			sk_txeof(sc_if1);
3136 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3137 		}
3138 
3139 		/* Then MAC interrupts. */
3140 		if (status & SK_ISR_MAC1 &&
3141 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3142 			if (sc->sk_type == SK_GENESIS)
3143 				sk_intr_xmac(sc_if0);
3144 			else
3145 				sk_intr_yukon(sc_if0);
3146 		}
3147 
3148 		if (status & SK_ISR_MAC2 &&
3149 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3150 			if (sc->sk_type == SK_GENESIS)
3151 				sk_intr_xmac(sc_if1);
3152 			else
3153 				sk_intr_yukon(sc_if1);
3154 		}
3155 
3156 		if (status & SK_ISR_EXTERNAL_REG) {
3157 			if (ifp0 != NULL &&
3158 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3159 				sk_intr_bcom(sc_if0);
3160 			if (ifp1 != NULL &&
3161 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3162 				sk_intr_bcom(sc_if1);
3163 		}
3164 		status = CSR_READ_4(sc, SK_ISSR);
3165 	}
3166 
3167 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3168 
3169 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3170 		sk_start_locked(ifp0);
3171 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3172 		sk_start_locked(ifp1);
3173 
3174 done_locked:
3175 	SK_UNLOCK(sc);
3176 }
3177 
3178 static void
3179 sk_init_xmac(sc_if)
3180 	struct sk_if_softc	*sc_if;
3181 {
3182 	struct sk_softc		*sc;
3183 	struct ifnet		*ifp;
3184 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3185 	static const struct sk_bcom_hack bhack[] = {
3186 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3187 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3188 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3189 	{ 0, 0 } };
3190 
3191 	SK_IF_LOCK_ASSERT(sc_if);
3192 
3193 	sc = sc_if->sk_softc;
3194 	ifp = sc_if->sk_ifp;
3195 
3196 	/* Unreset the XMAC. */
3197 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3198 	DELAY(1000);
3199 
3200 	/* Reset the XMAC's internal state. */
3201 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3202 
3203 	/* Save the XMAC II revision */
3204 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3205 
3206 	/*
3207 	 * Perform additional initialization for external PHYs,
3208 	 * namely for the 1000baseTX cards that use the XMAC's
3209 	 * GMII mode.
3210 	 */
3211 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3212 		int			i = 0;
3213 		u_int32_t		val;
3214 
3215 		/* Take PHY out of reset. */
3216 		val = sk_win_read_4(sc, SK_GPIO);
3217 		if (sc_if->sk_port == SK_PORT_A)
3218 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3219 		else
3220 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3221 		sk_win_write_4(sc, SK_GPIO, val);
3222 
3223 		/* Enable GMII mode on the XMAC. */
3224 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3225 
3226 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3227 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3228 		DELAY(10000);
3229 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3230 		    BRGPHY_MII_IMR, 0xFFF0);
3231 
3232 		/*
3233 		 * Early versions of the BCM5400 apparently have
3234 		 * a bug that requires them to have their reserved
3235 		 * registers initialized to some magic values. I don't
3236 		 * know what the numbers do, I'm just the messenger.
3237 		 */
3238 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3239 		    == 0x6041) {
3240 			while(bhack[i].reg) {
3241 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3242 				    bhack[i].reg, bhack[i].val);
3243 				i++;
3244 			}
3245 		}
3246 	}
3247 
3248 	/* Set station address */
3249 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3250 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3251 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3252 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3253 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3254 
3255 	if (ifp->if_flags & IFF_BROADCAST) {
3256 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3257 	} else {
3258 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3259 	}
3260 
3261 	/* We don't need the FCS appended to the packet. */
3262 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3263 
3264 	/* We want short frames padded to 60 bytes. */
3265 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3266 
3267 	/*
3268 	 * Enable the reception of all error frames. This is is
3269 	 * a necessary evil due to the design of the XMAC. The
3270 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3271 	 * frames can be up to 9000 bytes in length. When bad
3272 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3273 	 * in 'store and forward' mode. For this to work, the
3274 	 * entire frame has to fit into the FIFO, but that means
3275 	 * that jumbo frames larger than 8192 bytes will be
3276 	 * truncated. Disabling all bad frame filtering causes
3277 	 * the RX FIFO to operate in streaming mode, in which
3278 	 * case the XMAC will start transferring frames out of the
3279 	 * RX FIFO as soon as the FIFO threshold is reached.
3280 	 */
3281 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3282 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3283 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3284 		    XM_MODE_RX_INRANGELEN);
3285 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3286 	} else
3287 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3288 
3289 	/*
3290 	 * Bump up the transmit threshold. This helps hold off transmit
3291 	 * underruns when we're blasting traffic from both ports at once.
3292 	 */
3293 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3294 
3295 	/* Set Rx filter */
3296 	sk_rxfilter_genesis(sc_if);
3297 
3298 	/* Clear and enable interrupts */
3299 	SK_XM_READ_2(sc_if, XM_ISR);
3300 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3301 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3302 	else
3303 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3304 
3305 	/* Configure MAC arbiter */
3306 	switch(sc_if->sk_xmac_rev) {
3307 	case XM_XMAC_REV_B2:
3308 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3309 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3310 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3311 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3312 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3313 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3314 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3315 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3316 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3317 		break;
3318 	case XM_XMAC_REV_C1:
3319 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3320 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3321 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3322 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3323 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3324 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3325 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3326 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3327 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3328 		break;
3329 	default:
3330 		break;
3331 	}
3332 	sk_win_write_2(sc, SK_MACARB_CTL,
3333 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3334 
3335 	sc_if->sk_link = 1;
3336 
3337 	return;
3338 }
3339 
3340 static void
3341 sk_init_yukon(sc_if)
3342 	struct sk_if_softc	*sc_if;
3343 {
3344 	u_int32_t		phy, v;
3345 	u_int16_t		reg;
3346 	struct sk_softc		*sc;
3347 	struct ifnet		*ifp;
3348 	u_int8_t		*eaddr;
3349 	int			i;
3350 
3351 	SK_IF_LOCK_ASSERT(sc_if);
3352 
3353 	sc = sc_if->sk_softc;
3354 	ifp = sc_if->sk_ifp;
3355 
3356 	if (sc->sk_type == SK_YUKON_LITE &&
3357 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3358 		/*
3359 		 * Workaround code for COMA mode, set PHY reset.
3360 		 * Otherwise it will not correctly take chip out of
3361 		 * powerdown (coma)
3362 		 */
3363 		v = sk_win_read_4(sc, SK_GPIO);
3364 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3365 		sk_win_write_4(sc, SK_GPIO, v);
3366 	}
3367 
3368 	/* GMAC and GPHY Reset */
3369 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3370 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3371 	DELAY(1000);
3372 
3373 	if (sc->sk_type == SK_YUKON_LITE &&
3374 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3375 		/*
3376 		 * Workaround code for COMA mode, clear PHY reset
3377 		 */
3378 		v = sk_win_read_4(sc, SK_GPIO);
3379 		v |= SK_GPIO_DIR9;
3380 		v &= ~SK_GPIO_DAT9;
3381 		sk_win_write_4(sc, SK_GPIO, v);
3382 	}
3383 
3384 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3385 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3386 
3387 	if (sc->sk_coppertype)
3388 		phy |= SK_GPHY_COPPER;
3389 	else
3390 		phy |= SK_GPHY_FIBER;
3391 
3392 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3393 	DELAY(1000);
3394 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3395 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3396 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3397 
3398 	/* unused read of the interrupt source register */
3399 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3400 
3401 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3402 
3403 	/* MIB Counter Clear Mode set */
3404 	reg |= YU_PAR_MIB_CLR;
3405 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3406 
3407 	/* MIB Counter Clear Mode clear */
3408 	reg &= ~YU_PAR_MIB_CLR;
3409 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3410 
3411 	/* receive control reg */
3412 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3413 
3414 	/* transmit parameter register */
3415 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3416 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3417 
3418 	/* serial mode register */
3419 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3420 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3421 		reg |= YU_SMR_MFL_JUMBO;
3422 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3423 
3424 	/* Setup Yukon's station address */
3425 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3426 	for (i = 0; i < 3; i++)
3427 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3428 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3429 	/* Set GMAC source address of flow control. */
3430 	for (i = 0; i < 3; i++)
3431 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3432 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3433 	/* Set GMAC virtual address. */
3434 	for (i = 0; i < 3; i++)
3435 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3436 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3437 
3438 	/* Set Rx filter */
3439 	sk_rxfilter_yukon(sc_if);
3440 
3441 	/* enable interrupt mask for counter overflows */
3442 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3443 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3444 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3445 
3446 	/* Configure RX MAC FIFO Flush Mask */
3447 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3448 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3449 	    YU_RXSTAT_JABBER;
3450 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3451 
3452 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3453 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3454 		v = SK_TFCTL_OPERATION_ON;
3455 	else
3456 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3457 	/* Configure RX MAC FIFO */
3458 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3459 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3460 
3461 	/* Increase flush threshould to 64 bytes */
3462 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3463 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3464 
3465 	/* Configure TX MAC FIFO */
3466 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3467 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3468 }
3469 
3470 /*
3471  * Note that to properly initialize any part of the GEnesis chip,
3472  * you first have to take it out of reset mode.
3473  */
3474 static void
3475 sk_init(xsc)
3476 	void			*xsc;
3477 {
3478 	struct sk_if_softc	*sc_if = xsc;
3479 
3480 	SK_IF_LOCK(sc_if);
3481 	sk_init_locked(sc_if);
3482 	SK_IF_UNLOCK(sc_if);
3483 
3484 	return;
3485 }
3486 
3487 static void
3488 sk_init_locked(sc_if)
3489 	struct sk_if_softc	*sc_if;
3490 {
3491 	struct sk_softc		*sc;
3492 	struct ifnet		*ifp;
3493 	struct mii_data		*mii;
3494 	u_int16_t		reg;
3495 	u_int32_t		imr;
3496 	int			error;
3497 
3498 	SK_IF_LOCK_ASSERT(sc_if);
3499 
3500 	ifp = sc_if->sk_ifp;
3501 	sc = sc_if->sk_softc;
3502 	mii = device_get_softc(sc_if->sk_miibus);
3503 
3504 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3505 		return;
3506 
3507 	/* Cancel pending I/O and free all RX/TX buffers. */
3508 	sk_stop(sc_if);
3509 
3510 	if (sc->sk_type == SK_GENESIS) {
3511 		/* Configure LINK_SYNC LED */
3512 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3513 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3514 			SK_LINKLED_LINKSYNC_ON);
3515 
3516 		/* Configure RX LED */
3517 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3518 			SK_RXLEDCTL_COUNTER_START);
3519 
3520 		/* Configure TX LED */
3521 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3522 			SK_TXLEDCTL_COUNTER_START);
3523 	}
3524 
3525 	/*
3526 	 * Configure descriptor poll timer
3527 	 *
3528 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3529 	 * transmit command due to CPU/cache related interim storage problems
3530 	 * under certain conditions. The document recommends a polling
3531 	 * mechanism to send a Start transmit command to initiate transfer
3532 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3533 	 * enables descriptor poll timer to initiate descriptor processing
3534 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3535 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3536 	 * command instead of waiting for next descriptor polling time.
3537 	 * The same rule may apply to Rx side too but it seems that is not
3538 	 * needed at the moment.
3539 	 * Since sk(4) uses descriptor polling as a last resort there is no
3540 	 * need to set smaller polling time than maximum allowable one.
3541 	 */
3542 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3543 
3544 	/* Configure I2C registers */
3545 
3546 	/* Configure XMAC(s) */
3547 	switch (sc->sk_type) {
3548 	case SK_GENESIS:
3549 		sk_init_xmac(sc_if);
3550 		break;
3551 	case SK_YUKON:
3552 	case SK_YUKON_LITE:
3553 	case SK_YUKON_LP:
3554 		sk_init_yukon(sc_if);
3555 		break;
3556 	}
3557 	mii_mediachg(mii);
3558 
3559 	if (sc->sk_type == SK_GENESIS) {
3560 		/* Configure MAC FIFOs */
3561 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3562 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3563 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3564 
3565 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3566 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3567 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3568 	}
3569 
3570 	/* Configure transmit arbiter(s) */
3571 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3572 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3573 
3574 	/* Configure RAMbuffers */
3575 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3576 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3577 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3578 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3579 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3580 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3581 
3582 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3583 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3584 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3585 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3586 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3587 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3588 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3589 
3590 	/* Configure BMUs */
3591 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3592 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3593 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3594 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3595 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3596 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3597 	} else {
3598 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3599 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3600 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3601 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3602 	}
3603 
3604 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3605 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3606 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3607 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3608 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3609 
3610 	/* Init descriptors */
3611 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3612 		error = sk_init_jumbo_rx_ring(sc_if);
3613 	else
3614 		error = sk_init_rx_ring(sc_if);
3615 	if (error != 0) {
3616 		device_printf(sc_if->sk_if_dev,
3617 		    "initialization failed: no memory for rx buffers\n");
3618 		sk_stop(sc_if);
3619 		return;
3620 	}
3621 	sk_init_tx_ring(sc_if);
3622 
3623 	/* Set interrupt moderation if changed via sysctl. */
3624 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3625 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3626 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3627 		    sc->sk_int_ticks));
3628 		if (bootverbose)
3629 			device_printf(sc_if->sk_if_dev,
3630 			    "interrupt moderation is %d us.\n",
3631 			    sc->sk_int_mod);
3632 	}
3633 
3634 	/* Configure interrupt handling */
3635 	CSR_READ_4(sc, SK_ISSR);
3636 	if (sc_if->sk_port == SK_PORT_A)
3637 		sc->sk_intrmask |= SK_INTRS1;
3638 	else
3639 		sc->sk_intrmask |= SK_INTRS2;
3640 
3641 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3642 
3643 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3644 
3645 	/* Start BMUs. */
3646 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3647 
3648 	switch(sc->sk_type) {
3649 	case SK_GENESIS:
3650 		/* Enable XMACs TX and RX state machines */
3651 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3652 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3653 		break;
3654 	case SK_YUKON:
3655 	case SK_YUKON_LITE:
3656 	case SK_YUKON_LP:
3657 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3658 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3659 #if 0
3660 		/* XXX disable 100Mbps and full duplex mode? */
3661 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3662 #endif
3663 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3664 	}
3665 
3666 	/* Activate descriptor polling timer */
3667 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3668 	/* start transfer of Tx descriptors */
3669 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3670 
3671 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3672 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3673 
3674 	switch (sc->sk_type) {
3675 	case SK_YUKON:
3676 	case SK_YUKON_LITE:
3677 	case SK_YUKON_LP:
3678 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3679 		break;
3680 	}
3681 
3682 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3683 
3684 	return;
3685 }
3686 
3687 static void
3688 sk_stop(sc_if)
3689 	struct sk_if_softc	*sc_if;
3690 {
3691 	int			i;
3692 	struct sk_softc		*sc;
3693 	struct sk_txdesc	*txd;
3694 	struct sk_rxdesc	*rxd;
3695 	struct sk_rxdesc	*jrxd;
3696 	struct ifnet		*ifp;
3697 	u_int32_t		val;
3698 
3699 	SK_IF_LOCK_ASSERT(sc_if);
3700 	sc = sc_if->sk_softc;
3701 	ifp = sc_if->sk_ifp;
3702 
3703 	callout_stop(&sc_if->sk_tick_ch);
3704 	callout_stop(&sc_if->sk_watchdog_ch);
3705 
3706 	/* stop Tx descriptor polling timer */
3707 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3708 	/* stop transfer of Tx descriptors */
3709 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3710 	for (i = 0; i < SK_TIMEOUT; i++) {
3711 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3712 		if ((val & SK_TXBMU_TX_STOP) == 0)
3713 			break;
3714 		DELAY(1);
3715 	}
3716 	if (i == SK_TIMEOUT)
3717 		device_printf(sc_if->sk_if_dev,
3718 		    "can not stop transfer of Tx descriptor\n");
3719 	/* stop transfer of Rx descriptors */
3720 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3721 	for (i = 0; i < SK_TIMEOUT; i++) {
3722 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3723 		if ((val & SK_RXBMU_RX_STOP) == 0)
3724 			break;
3725 		DELAY(1);
3726 	}
3727 	if (i == SK_TIMEOUT)
3728 		device_printf(sc_if->sk_if_dev,
3729 		    "can not stop transfer of Rx descriptor\n");
3730 
3731 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3732 		/* Put PHY back into reset. */
3733 		val = sk_win_read_4(sc, SK_GPIO);
3734 		if (sc_if->sk_port == SK_PORT_A) {
3735 			val |= SK_GPIO_DIR0;
3736 			val &= ~SK_GPIO_DAT0;
3737 		} else {
3738 			val |= SK_GPIO_DIR2;
3739 			val &= ~SK_GPIO_DAT2;
3740 		}
3741 		sk_win_write_4(sc, SK_GPIO, val);
3742 	}
3743 
3744 	/* Turn off various components of this interface. */
3745 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3746 	switch (sc->sk_type) {
3747 	case SK_GENESIS:
3748 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3749 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3750 		break;
3751 	case SK_YUKON:
3752 	case SK_YUKON_LITE:
3753 	case SK_YUKON_LP:
3754 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3755 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3756 		break;
3757 	}
3758 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3759 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3760 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3761 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3762 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3763 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3764 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3765 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3766 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3767 
3768 	/* Disable interrupts */
3769 	if (sc_if->sk_port == SK_PORT_A)
3770 		sc->sk_intrmask &= ~SK_INTRS1;
3771 	else
3772 		sc->sk_intrmask &= ~SK_INTRS2;
3773 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3774 
3775 	SK_XM_READ_2(sc_if, XM_ISR);
3776 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3777 
3778 	/* Free RX and TX mbufs still in the queues. */
3779 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3780 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3781 		if (rxd->rx_m != NULL) {
3782 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3783 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3784 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3785 			    rxd->rx_dmamap);
3786 			m_freem(rxd->rx_m);
3787 			rxd->rx_m = NULL;
3788 		}
3789 	}
3790 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3791 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3792 		if (jrxd->rx_m != NULL) {
3793 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3794 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3795 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3796 			    jrxd->rx_dmamap);
3797 			m_freem(jrxd->rx_m);
3798 			jrxd->rx_m = NULL;
3799 		}
3800 	}
3801 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3802 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3803 		if (txd->tx_m != NULL) {
3804 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3805 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3806 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3807 			    txd->tx_dmamap);
3808 			m_freem(txd->tx_m);
3809 			txd->tx_m = NULL;
3810 		}
3811 	}
3812 
3813 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3814 
3815 	return;
3816 }
3817 
3818 static int
3819 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3820 {
3821 	int error, value;
3822 
3823 	if (!arg1)
3824 		return (EINVAL);
3825 	value = *(int *)arg1;
3826 	error = sysctl_handle_int(oidp, &value, 0, req);
3827 	if (error || !req->newptr)
3828 		return (error);
3829 	if (value < low || value > high)
3830 		return (EINVAL);
3831 	*(int *)arg1 = value;
3832 	return (0);
3833 }
3834 
3835 static int
3836 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3837 {
3838 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3839 }
3840