xref: /freebsd/sys/dev/sk/if_sk.c (revision e28a4053)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109 
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/ip.h>
113 
114 #include <machine/bus.h>
115 #include <machine/in_cksum.h>
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/brgphyreg.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129 
130 #include <dev/sk/if_skreg.h>
131 #include <dev/sk/xmaciireg.h>
132 #include <dev/sk/yukonreg.h>
133 
134 MODULE_DEPEND(sk, pci, 1, 1, 1);
135 MODULE_DEPEND(sk, ether, 1, 1, 1);
136 MODULE_DEPEND(sk, miibus, 1, 1, 1);
137 
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 #ifndef lint
142 static const char rcsid[] =
143   "$FreeBSD$";
144 #endif
145 
146 static struct sk_type sk_devs[] = {
147 	{
148 		VENDORID_SK,
149 		DEVICEID_SK_V1,
150 		"SysKonnect Gigabit Ethernet (V1.0)"
151 	},
152 	{
153 		VENDORID_SK,
154 		DEVICEID_SK_V2,
155 		"SysKonnect Gigabit Ethernet (V2.0)"
156 	},
157 	{
158 		VENDORID_MARVELL,
159 		DEVICEID_SK_V2,
160 		"Marvell Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_MARVELL,
164 		DEVICEID_BELKIN_5005,
165 		"Belkin F5D5005 Gigabit Ethernet"
166 	},
167 	{
168 		VENDORID_3COM,
169 		DEVICEID_3COM_3C940,
170 		"3Com 3C940 Gigabit Ethernet"
171 	},
172 	{
173 		VENDORID_LINKSYS,
174 		DEVICEID_LINKSYS_EG1032,
175 		"Linksys EG1032 Gigabit Ethernet"
176 	},
177 	{
178 		VENDORID_DLINK,
179 		DEVICEID_DLINK_DGE530T_A1,
180 		"D-Link DGE-530T Gigabit Ethernet"
181 	},
182 	{
183 		VENDORID_DLINK,
184 		DEVICEID_DLINK_DGE530T_B1,
185 		"D-Link DGE-530T Gigabit Ethernet"
186 	},
187 	{ 0, 0, NULL }
188 };
189 
190 static int skc_probe(device_t);
191 static int skc_attach(device_t);
192 static int skc_detach(device_t);
193 static int skc_shutdown(device_t);
194 static int skc_suspend(device_t);
195 static int skc_resume(device_t);
196 static int sk_detach(device_t);
197 static int sk_probe(device_t);
198 static int sk_attach(device_t);
199 static void sk_tick(void *);
200 static void sk_yukon_tick(void *);
201 static void sk_intr(void *);
202 static void sk_intr_xmac(struct sk_if_softc *);
203 static void sk_intr_bcom(struct sk_if_softc *);
204 static void sk_intr_yukon(struct sk_if_softc *);
205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
207 static void sk_rxeof(struct sk_if_softc *);
208 static void sk_jumbo_rxeof(struct sk_if_softc *);
209 static void sk_txeof(struct sk_if_softc *);
210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
211 static int sk_encap(struct sk_if_softc *, struct mbuf **);
212 static void sk_start(struct ifnet *);
213 static void sk_start_locked(struct ifnet *);
214 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
215 static void sk_init(void *);
216 static void sk_init_locked(struct sk_if_softc *);
217 static void sk_init_xmac(struct sk_if_softc *);
218 static void sk_init_yukon(struct sk_if_softc *);
219 static void sk_stop(struct sk_if_softc *);
220 static void sk_watchdog(void *);
221 static int sk_ifmedia_upd(struct ifnet *);
222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
223 static void sk_reset(struct sk_softc *);
224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
226 static int sk_newbuf(struct sk_if_softc *, int);
227 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
229 static int sk_dma_alloc(struct sk_if_softc *);
230 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
231 static void sk_dma_free(struct sk_if_softc *);
232 static void sk_dma_jumbo_free(struct sk_if_softc *);
233 static int sk_init_rx_ring(struct sk_if_softc *);
234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
235 static void sk_init_tx_ring(struct sk_if_softc *);
236 static u_int32_t sk_win_read_4(struct sk_softc *, int);
237 static u_int16_t sk_win_read_2(struct sk_softc *, int);
238 static u_int8_t sk_win_read_1(struct sk_softc *, int);
239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
242 
243 static int sk_miibus_readreg(device_t, int, int);
244 static int sk_miibus_writereg(device_t, int, int, int);
245 static void sk_miibus_statchg(device_t);
246 
247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
249 						int);
250 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
251 
252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
254 						int);
255 static void sk_marv_miibus_statchg(struct sk_if_softc *);
256 
257 static uint32_t sk_xmchash(const uint8_t *);
258 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
259 static void sk_rxfilter(struct sk_if_softc *);
260 static void sk_rxfilter_genesis(struct sk_if_softc *);
261 static void sk_rxfilter_yukon(struct sk_if_softc *);
262 
263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
265 
266 /* Tunables. */
267 static int jumbo_disable = 0;
268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
269 
270 /*
271  * It seems that SK-NET GENESIS supports very simple checksum offload
272  * capability for Tx and I believe it can generate 0 checksum value for
273  * UDP packets in Tx as the hardware can't differenciate UDP packets from
274  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
275  * means sender didn't perforam checksum computation. For the safety I
276  * disabled UDP checksum offload capability at the moment. Alternatively
277  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
278  * offload routine.
279  */
280 #define SK_CSUM_FEATURES	(CSUM_TCP)
281 
282 /*
283  * Note that we have newbus methods for both the GEnesis controller
284  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
285  * the miibus code is a child of the XMACs. We need to do it this way
286  * so that the miibus drivers can access the PHY registers on the
287  * right PHY. It's not quite what I had in mind, but it's the only
288  * design that achieves the desired effect.
289  */
290 static device_method_t skc_methods[] = {
291 	/* Device interface */
292 	DEVMETHOD(device_probe,		skc_probe),
293 	DEVMETHOD(device_attach,	skc_attach),
294 	DEVMETHOD(device_detach,	skc_detach),
295 	DEVMETHOD(device_suspend,	skc_suspend),
296 	DEVMETHOD(device_resume,	skc_resume),
297 	DEVMETHOD(device_shutdown,	skc_shutdown),
298 
299 	/* bus interface */
300 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
301 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
302 
303 	{ 0, 0 }
304 };
305 
306 static driver_t skc_driver = {
307 	"skc",
308 	skc_methods,
309 	sizeof(struct sk_softc)
310 };
311 
312 static devclass_t skc_devclass;
313 
314 static device_method_t sk_methods[] = {
315 	/* Device interface */
316 	DEVMETHOD(device_probe,		sk_probe),
317 	DEVMETHOD(device_attach,	sk_attach),
318 	DEVMETHOD(device_detach,	sk_detach),
319 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
320 
321 	/* bus interface */
322 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
323 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
324 
325 	/* MII interface */
326 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
327 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
328 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
329 
330 	{ 0, 0 }
331 };
332 
333 static driver_t sk_driver = {
334 	"sk",
335 	sk_methods,
336 	sizeof(struct sk_if_softc)
337 };
338 
339 static devclass_t sk_devclass;
340 
341 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
342 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
343 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
344 
345 static struct resource_spec sk_res_spec_io[] = {
346 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
347 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
348 	{ -1,			0,		0 }
349 };
350 
351 static struct resource_spec sk_res_spec_mem[] = {
352 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
353 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
354 	{ -1,			0,		0 }
355 };
356 
357 #define SK_SETBIT(sc, reg, x)		\
358 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
359 
360 #define SK_CLRBIT(sc, reg, x)		\
361 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
362 
363 #define SK_WIN_SETBIT_4(sc, reg, x)	\
364 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
365 
366 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
367 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
368 
369 #define SK_WIN_SETBIT_2(sc, reg, x)	\
370 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
371 
372 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
373 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
374 
375 static u_int32_t
376 sk_win_read_4(sc, reg)
377 	struct sk_softc		*sc;
378 	int			reg;
379 {
380 #ifdef SK_USEIOSPACE
381 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
382 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
383 #else
384 	return(CSR_READ_4(sc, reg));
385 #endif
386 }
387 
388 static u_int16_t
389 sk_win_read_2(sc, reg)
390 	struct sk_softc		*sc;
391 	int			reg;
392 {
393 #ifdef SK_USEIOSPACE
394 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
395 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
396 #else
397 	return(CSR_READ_2(sc, reg));
398 #endif
399 }
400 
401 static u_int8_t
402 sk_win_read_1(sc, reg)
403 	struct sk_softc		*sc;
404 	int			reg;
405 {
406 #ifdef SK_USEIOSPACE
407 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
409 #else
410 	return(CSR_READ_1(sc, reg));
411 #endif
412 }
413 
414 static void
415 sk_win_write_4(sc, reg, val)
416 	struct sk_softc		*sc;
417 	int			reg;
418 	u_int32_t		val;
419 {
420 #ifdef SK_USEIOSPACE
421 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
422 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
423 #else
424 	CSR_WRITE_4(sc, reg, val);
425 #endif
426 	return;
427 }
428 
429 static void
430 sk_win_write_2(sc, reg, val)
431 	struct sk_softc		*sc;
432 	int			reg;
433 	u_int32_t		val;
434 {
435 #ifdef SK_USEIOSPACE
436 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
437 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
438 #else
439 	CSR_WRITE_2(sc, reg, val);
440 #endif
441 	return;
442 }
443 
444 static void
445 sk_win_write_1(sc, reg, val)
446 	struct sk_softc		*sc;
447 	int			reg;
448 	u_int32_t		val;
449 {
450 #ifdef SK_USEIOSPACE
451 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
452 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
453 #else
454 	CSR_WRITE_1(sc, reg, val);
455 #endif
456 	return;
457 }
458 
459 static int
460 sk_miibus_readreg(dev, phy, reg)
461 	device_t		dev;
462 	int			phy, reg;
463 {
464 	struct sk_if_softc	*sc_if;
465 	int			v;
466 
467 	sc_if = device_get_softc(dev);
468 
469 	SK_IF_MII_LOCK(sc_if);
470 	switch(sc_if->sk_softc->sk_type) {
471 	case SK_GENESIS:
472 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
473 		break;
474 	case SK_YUKON:
475 	case SK_YUKON_LITE:
476 	case SK_YUKON_LP:
477 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
478 		break;
479 	default:
480 		v = 0;
481 		break;
482 	}
483 	SK_IF_MII_UNLOCK(sc_if);
484 
485 	return (v);
486 }
487 
488 static int
489 sk_miibus_writereg(dev, phy, reg, val)
490 	device_t		dev;
491 	int			phy, reg, val;
492 {
493 	struct sk_if_softc	*sc_if;
494 	int			v;
495 
496 	sc_if = device_get_softc(dev);
497 
498 	SK_IF_MII_LOCK(sc_if);
499 	switch(sc_if->sk_softc->sk_type) {
500 	case SK_GENESIS:
501 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
502 		break;
503 	case SK_YUKON:
504 	case SK_YUKON_LITE:
505 	case SK_YUKON_LP:
506 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
507 		break;
508 	default:
509 		v = 0;
510 		break;
511 	}
512 	SK_IF_MII_UNLOCK(sc_if);
513 
514 	return (v);
515 }
516 
517 static void
518 sk_miibus_statchg(dev)
519 	device_t		dev;
520 {
521 	struct sk_if_softc	*sc_if;
522 
523 	sc_if = device_get_softc(dev);
524 
525 	SK_IF_MII_LOCK(sc_if);
526 	switch(sc_if->sk_softc->sk_type) {
527 	case SK_GENESIS:
528 		sk_xmac_miibus_statchg(sc_if);
529 		break;
530 	case SK_YUKON:
531 	case SK_YUKON_LITE:
532 	case SK_YUKON_LP:
533 		sk_marv_miibus_statchg(sc_if);
534 		break;
535 	}
536 	SK_IF_MII_UNLOCK(sc_if);
537 
538 	return;
539 }
540 
541 static int
542 sk_xmac_miibus_readreg(sc_if, phy, reg)
543 	struct sk_if_softc	*sc_if;
544 	int			phy, reg;
545 {
546 	int			i;
547 
548 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
549 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
550 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
551 		for (i = 0; i < SK_TIMEOUT; i++) {
552 			DELAY(1);
553 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
554 			    XM_MMUCMD_PHYDATARDY)
555 				break;
556 		}
557 
558 		if (i == SK_TIMEOUT) {
559 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
560 			return(0);
561 		}
562 	}
563 	DELAY(1);
564 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
565 
566 	return(i);
567 }
568 
569 static int
570 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
571 	struct sk_if_softc	*sc_if;
572 	int			phy, reg, val;
573 {
574 	int			i;
575 
576 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
577 	for (i = 0; i < SK_TIMEOUT; i++) {
578 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
579 			break;
580 	}
581 
582 	if (i == SK_TIMEOUT) {
583 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
584 		return (ETIMEDOUT);
585 	}
586 
587 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
588 	for (i = 0; i < SK_TIMEOUT; i++) {
589 		DELAY(1);
590 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
591 			break;
592 	}
593 	if (i == SK_TIMEOUT)
594 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
595 
596 	return(0);
597 }
598 
599 static void
600 sk_xmac_miibus_statchg(sc_if)
601 	struct sk_if_softc	*sc_if;
602 {
603 	struct mii_data		*mii;
604 
605 	mii = device_get_softc(sc_if->sk_miibus);
606 
607 	/*
608 	 * If this is a GMII PHY, manually set the XMAC's
609 	 * duplex mode accordingly.
610 	 */
611 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
612 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
613 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
614 		} else {
615 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
616 		}
617 	}
618 }
619 
620 static int
621 sk_marv_miibus_readreg(sc_if, phy, reg)
622 	struct sk_if_softc	*sc_if;
623 	int			phy, reg;
624 {
625 	u_int16_t		val;
626 	int			i;
627 
628 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
629 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
630 		return(0);
631 	}
632 
633         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
634 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
635 
636 	for (i = 0; i < SK_TIMEOUT; i++) {
637 		DELAY(1);
638 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
639 		if (val & YU_SMICR_READ_VALID)
640 			break;
641 	}
642 
643 	if (i == SK_TIMEOUT) {
644 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
645 		return(0);
646 	}
647 
648 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
649 
650 	return(val);
651 }
652 
653 static int
654 sk_marv_miibus_writereg(sc_if, phy, reg, val)
655 	struct sk_if_softc	*sc_if;
656 	int			phy, reg, val;
657 {
658 	int			i;
659 
660 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
661 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
662 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
663 
664 	for (i = 0; i < SK_TIMEOUT; i++) {
665 		DELAY(1);
666 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
667 			break;
668 	}
669 	if (i == SK_TIMEOUT)
670 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
671 
672 	return(0);
673 }
674 
675 static void
676 sk_marv_miibus_statchg(sc_if)
677 	struct sk_if_softc	*sc_if;
678 {
679 	return;
680 }
681 
682 #define HASH_BITS		6
683 
684 static u_int32_t
685 sk_xmchash(addr)
686 	const uint8_t *addr;
687 {
688 	uint32_t crc;
689 
690 	/* Compute CRC for the address value. */
691 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
692 
693 	return (~crc & ((1 << HASH_BITS) - 1));
694 }
695 
696 static void
697 sk_setfilt(sc_if, addr, slot)
698 	struct sk_if_softc	*sc_if;
699 	u_int16_t		*addr;
700 	int			slot;
701 {
702 	int			base;
703 
704 	base = XM_RXFILT_ENTRY(slot);
705 
706 	SK_XM_WRITE_2(sc_if, base, addr[0]);
707 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
708 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
709 
710 	return;
711 }
712 
713 static void
714 sk_rxfilter(sc_if)
715 	struct sk_if_softc	*sc_if;
716 {
717 	struct sk_softc		*sc;
718 
719 	SK_IF_LOCK_ASSERT(sc_if);
720 
721 	sc = sc_if->sk_softc;
722 	if (sc->sk_type == SK_GENESIS)
723 		sk_rxfilter_genesis(sc_if);
724 	else
725 		sk_rxfilter_yukon(sc_if);
726 }
727 
728 static void
729 sk_rxfilter_genesis(sc_if)
730 	struct sk_if_softc	*sc_if;
731 {
732 	struct ifnet		*ifp = sc_if->sk_ifp;
733 	u_int32_t		hashes[2] = { 0, 0 }, mode;
734 	int			h = 0, i;
735 	struct ifmultiaddr	*ifma;
736 	u_int16_t		dummy[] = { 0, 0, 0 };
737 	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
738 
739 	SK_IF_LOCK_ASSERT(sc_if);
740 
741 	mode = SK_XM_READ_4(sc_if, XM_MODE);
742 	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
743 	    XM_MODE_RX_USE_PERFECT);
744 	/* First, zot all the existing perfect filters. */
745 	for (i = 1; i < XM_RXFILT_MAX; i++)
746 		sk_setfilt(sc_if, dummy, i);
747 
748 	/* Now program new ones. */
749 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
750 		if (ifp->if_flags & IFF_ALLMULTI)
751 			mode |= XM_MODE_RX_USE_HASH;
752 		if (ifp->if_flags & IFF_PROMISC)
753 			mode |= XM_MODE_RX_PROMISC;
754 		hashes[0] = 0xFFFFFFFF;
755 		hashes[1] = 0xFFFFFFFF;
756 	} else {
757 		i = 1;
758 		if_maddr_rlock(ifp);
759 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
760 		    ifma_link) {
761 			if (ifma->ifma_addr->sa_family != AF_LINK)
762 				continue;
763 			/*
764 			 * Program the first XM_RXFILT_MAX multicast groups
765 			 * into the perfect filter.
766 			 */
767 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
768 			    maddr, ETHER_ADDR_LEN);
769 			if (i < XM_RXFILT_MAX) {
770 				sk_setfilt(sc_if, maddr, i);
771 				mode |= XM_MODE_RX_USE_PERFECT;
772 				i++;
773 				continue;
774 			}
775 			h = sk_xmchash((const uint8_t *)maddr);
776 			if (h < 32)
777 				hashes[0] |= (1 << h);
778 			else
779 				hashes[1] |= (1 << (h - 32));
780 			mode |= XM_MODE_RX_USE_HASH;
781 		}
782 		if_maddr_runlock(ifp);
783 	}
784 
785 	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
786 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
787 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
788 }
789 
790 static void
791 sk_rxfilter_yukon(sc_if)
792 	struct sk_if_softc	*sc_if;
793 {
794 	struct ifnet		*ifp;
795 	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
796 	struct ifmultiaddr	*ifma;
797 
798 	SK_IF_LOCK_ASSERT(sc_if);
799 
800 	ifp = sc_if->sk_ifp;
801 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
802 	if (ifp->if_flags & IFF_PROMISC)
803 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
804 	else if (ifp->if_flags & IFF_ALLMULTI) {
805 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
806 		hashes[0] = 0xFFFFFFFF;
807 		hashes[1] = 0xFFFFFFFF;
808 	} else {
809 		mode |= YU_RCR_UFLEN;
810 		if_maddr_rlock(ifp);
811 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
812 			if (ifma->ifma_addr->sa_family != AF_LINK)
813 				continue;
814 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
815 			    ifma->ifma_addr), ETHER_ADDR_LEN);
816 			/* Just want the 6 least significant bits. */
817 			crc &= 0x3f;
818 			/* Set the corresponding bit in the hash table. */
819 			hashes[crc >> 5] |= 1 << (crc & 0x1f);
820 		}
821 		if_maddr_runlock(ifp);
822 		if (hashes[0] != 0 || hashes[1] != 0)
823 			mode |= YU_RCR_MUFLEN;
824 	}
825 
826 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
827 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
828 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
829 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
830 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
831 }
832 
833 static int
834 sk_init_rx_ring(sc_if)
835 	struct sk_if_softc	*sc_if;
836 {
837 	struct sk_ring_data	*rd;
838 	bus_addr_t		addr;
839 	u_int32_t		csum_start;
840 	int			i;
841 
842 	sc_if->sk_cdata.sk_rx_cons = 0;
843 
844 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
845 	    ETHER_HDR_LEN;
846 	rd = &sc_if->sk_rdata;
847 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
848 	for (i = 0; i < SK_RX_RING_CNT; i++) {
849 		if (sk_newbuf(sc_if, i) != 0)
850 			return (ENOBUFS);
851 		if (i == (SK_RX_RING_CNT - 1))
852 			addr = SK_RX_RING_ADDR(sc_if, 0);
853 		else
854 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
855 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
856 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
857 	}
858 
859 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
860 	    sc_if->sk_cdata.sk_rx_ring_map,
861 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
862 
863 	return(0);
864 }
865 
866 static int
867 sk_init_jumbo_rx_ring(sc_if)
868 	struct sk_if_softc	*sc_if;
869 {
870 	struct sk_ring_data	*rd;
871 	bus_addr_t		addr;
872 	u_int32_t		csum_start;
873 	int			i;
874 
875 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
876 
877 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
878 	    ETHER_HDR_LEN;
879 	rd = &sc_if->sk_rdata;
880 	bzero(rd->sk_jumbo_rx_ring,
881 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
882 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
883 		if (sk_jumbo_newbuf(sc_if, i) != 0)
884 			return (ENOBUFS);
885 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
886 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
887 		else
888 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
889 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
890 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
891 	}
892 
893 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
894 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
895 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
896 
897 	return (0);
898 }
899 
900 static void
901 sk_init_tx_ring(sc_if)
902 	struct sk_if_softc	*sc_if;
903 {
904 	struct sk_ring_data	*rd;
905 	struct sk_txdesc	*txd;
906 	bus_addr_t		addr;
907 	int			i;
908 
909 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
910 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
911 
912 	sc_if->sk_cdata.sk_tx_prod = 0;
913 	sc_if->sk_cdata.sk_tx_cons = 0;
914 	sc_if->sk_cdata.sk_tx_cnt = 0;
915 
916 	rd = &sc_if->sk_rdata;
917 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
918 	for (i = 0; i < SK_TX_RING_CNT; i++) {
919 		if (i == (SK_TX_RING_CNT - 1))
920 			addr = SK_TX_RING_ADDR(sc_if, 0);
921 		else
922 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
923 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
924 		txd = &sc_if->sk_cdata.sk_txdesc[i];
925 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
926 	}
927 
928 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
929 	    sc_if->sk_cdata.sk_tx_ring_map,
930 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
931 }
932 
933 static __inline void
934 sk_discard_rxbuf(sc_if, idx)
935 	struct sk_if_softc	*sc_if;
936 	int			idx;
937 {
938 	struct sk_rx_desc	*r;
939 	struct sk_rxdesc	*rxd;
940 	struct mbuf		*m;
941 
942 
943 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
944 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
945 	m = rxd->rx_m;
946 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
947 }
948 
949 static __inline void
950 sk_discard_jumbo_rxbuf(sc_if, idx)
951 	struct sk_if_softc	*sc_if;
952 	int			idx;
953 {
954 	struct sk_rx_desc	*r;
955 	struct sk_rxdesc	*rxd;
956 	struct mbuf		*m;
957 
958 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
959 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
960 	m = rxd->rx_m;
961 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
962 }
963 
964 static int
965 sk_newbuf(sc_if, idx)
966 	struct sk_if_softc	*sc_if;
967 	int 			idx;
968 {
969 	struct sk_rx_desc	*r;
970 	struct sk_rxdesc	*rxd;
971 	struct mbuf		*m;
972 	bus_dma_segment_t	segs[1];
973 	bus_dmamap_t		map;
974 	int			nsegs;
975 
976 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
977 	if (m == NULL)
978 		return (ENOBUFS);
979 	m->m_len = m->m_pkthdr.len = MCLBYTES;
980 	m_adj(m, ETHER_ALIGN);
981 
982 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
983 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
984 		m_freem(m);
985 		return (ENOBUFS);
986 	}
987 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
988 
989 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
990 	if (rxd->rx_m != NULL) {
991 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
992 		    BUS_DMASYNC_POSTREAD);
993 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
994 	}
995 	map = rxd->rx_dmamap;
996 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
997 	sc_if->sk_cdata.sk_rx_sparemap = map;
998 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
999 	    BUS_DMASYNC_PREREAD);
1000 	rxd->rx_m = m;
1001 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
1002 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1003 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1004 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1005 
1006 	return (0);
1007 }
1008 
1009 static int
1010 sk_jumbo_newbuf(sc_if, idx)
1011 	struct sk_if_softc	*sc_if;
1012 	int			idx;
1013 {
1014 	struct sk_rx_desc	*r;
1015 	struct sk_rxdesc	*rxd;
1016 	struct mbuf		*m;
1017 	bus_dma_segment_t	segs[1];
1018 	bus_dmamap_t		map;
1019 	int			nsegs;
1020 
1021 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1022 	if (m == NULL)
1023 		return (ENOBUFS);
1024 	if ((m->m_flags & M_EXT) == 0) {
1025 		m_freem(m);
1026 		return (ENOBUFS);
1027 	}
1028 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1029 	/*
1030 	 * Adjust alignment so packet payload begins on a
1031 	 * longword boundary. Mandatory for Alpha, useful on
1032 	 * x86 too.
1033 	 */
1034 	m_adj(m, ETHER_ALIGN);
1035 
1036 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1037 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1038 		m_freem(m);
1039 		return (ENOBUFS);
1040 	}
1041 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1042 
1043 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1044 	if (rxd->rx_m != NULL) {
1045 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1046 		    BUS_DMASYNC_POSTREAD);
1047 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1048 		    rxd->rx_dmamap);
1049 	}
1050 	map = rxd->rx_dmamap;
1051 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1052 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1053 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1054 	    BUS_DMASYNC_PREREAD);
1055 	rxd->rx_m = m;
1056 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1057 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1058 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1059 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1060 
1061 	return (0);
1062 }
1063 
1064 /*
1065  * Set media options.
1066  */
1067 static int
1068 sk_ifmedia_upd(ifp)
1069 	struct ifnet		*ifp;
1070 {
1071 	struct sk_if_softc	*sc_if = ifp->if_softc;
1072 	struct mii_data		*mii;
1073 
1074 	mii = device_get_softc(sc_if->sk_miibus);
1075 	sk_init(sc_if);
1076 	mii_mediachg(mii);
1077 
1078 	return(0);
1079 }
1080 
1081 /*
1082  * Report current media status.
1083  */
1084 static void
1085 sk_ifmedia_sts(ifp, ifmr)
1086 	struct ifnet		*ifp;
1087 	struct ifmediareq	*ifmr;
1088 {
1089 	struct sk_if_softc	*sc_if;
1090 	struct mii_data		*mii;
1091 
1092 	sc_if = ifp->if_softc;
1093 	mii = device_get_softc(sc_if->sk_miibus);
1094 
1095 	mii_pollstat(mii);
1096 	ifmr->ifm_active = mii->mii_media_active;
1097 	ifmr->ifm_status = mii->mii_media_status;
1098 
1099 	return;
1100 }
1101 
1102 static int
1103 sk_ioctl(ifp, command, data)
1104 	struct ifnet		*ifp;
1105 	u_long			command;
1106 	caddr_t			data;
1107 {
1108 	struct sk_if_softc	*sc_if = ifp->if_softc;
1109 	struct ifreq		*ifr = (struct ifreq *) data;
1110 	int			error, mask;
1111 	struct mii_data		*mii;
1112 
1113 	error = 0;
1114 	switch(command) {
1115 	case SIOCSIFMTU:
1116 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1117 			error = EINVAL;
1118 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1119 			if (sc_if->sk_jumbo_disable != 0 &&
1120 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1121 				error = EINVAL;
1122 			else {
1123 				SK_IF_LOCK(sc_if);
1124 				ifp->if_mtu = ifr->ifr_mtu;
1125 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1126 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1127 					sk_init_locked(sc_if);
1128 				}
1129 				SK_IF_UNLOCK(sc_if);
1130 			}
1131 		}
1132 		break;
1133 	case SIOCSIFFLAGS:
1134 		SK_IF_LOCK(sc_if);
1135 		if (ifp->if_flags & IFF_UP) {
1136 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1137 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1138 				    & (IFF_PROMISC | IFF_ALLMULTI))
1139 					sk_rxfilter(sc_if);
1140 			} else
1141 				sk_init_locked(sc_if);
1142 		} else {
1143 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1144 				sk_stop(sc_if);
1145 		}
1146 		sc_if->sk_if_flags = ifp->if_flags;
1147 		SK_IF_UNLOCK(sc_if);
1148 		break;
1149 	case SIOCADDMULTI:
1150 	case SIOCDELMULTI:
1151 		SK_IF_LOCK(sc_if);
1152 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1153 			sk_rxfilter(sc_if);
1154 		SK_IF_UNLOCK(sc_if);
1155 		break;
1156 	case SIOCGIFMEDIA:
1157 	case SIOCSIFMEDIA:
1158 		mii = device_get_softc(sc_if->sk_miibus);
1159 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1160 		break;
1161 	case SIOCSIFCAP:
1162 		SK_IF_LOCK(sc_if);
1163 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1164 			SK_IF_UNLOCK(sc_if);
1165 			break;
1166 		}
1167 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1168 		if ((mask & IFCAP_TXCSUM) != 0 &&
1169 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1170 			ifp->if_capenable ^= IFCAP_TXCSUM;
1171 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1172 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1173 			else
1174 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1175 		}
1176 		if ((mask & IFCAP_RXCSUM) != 0 &&
1177 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1178 			ifp->if_capenable ^= IFCAP_RXCSUM;
1179 		SK_IF_UNLOCK(sc_if);
1180 		break;
1181 	default:
1182 		error = ether_ioctl(ifp, command, data);
1183 		break;
1184 	}
1185 
1186 	return (error);
1187 }
1188 
1189 /*
1190  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1191  * IDs against our list and return a device name if we find a match.
1192  */
1193 static int
1194 skc_probe(dev)
1195 	device_t		dev;
1196 {
1197 	struct sk_type		*t = sk_devs;
1198 
1199 	while(t->sk_name != NULL) {
1200 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1201 		    (pci_get_device(dev) == t->sk_did)) {
1202 			/*
1203 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1204 			 * Rev. 3 is supported by re(4).
1205 			 */
1206 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1207 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1208 				(pci_get_subdevice(dev) !=
1209 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1210 				t++;
1211 				continue;
1212 			}
1213 			device_set_desc(dev, t->sk_name);
1214 			return (BUS_PROBE_DEFAULT);
1215 		}
1216 		t++;
1217 	}
1218 
1219 	return(ENXIO);
1220 }
1221 
1222 /*
1223  * Force the GEnesis into reset, then bring it out of reset.
1224  */
1225 static void
1226 sk_reset(sc)
1227 	struct sk_softc		*sc;
1228 {
1229 
1230 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1231 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1232 	if (SK_YUKON_FAMILY(sc->sk_type))
1233 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1234 
1235 	DELAY(1000);
1236 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1237 	DELAY(2);
1238 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1239 	if (SK_YUKON_FAMILY(sc->sk_type))
1240 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1241 
1242 	if (sc->sk_type == SK_GENESIS) {
1243 		/* Configure packet arbiter */
1244 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1245 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1246 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1247 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1248 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1249 	}
1250 
1251 	/* Enable RAM interface */
1252 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1253 
1254 	/*
1255          * Configure interrupt moderation. The moderation timer
1256 	 * defers interrupts specified in the interrupt moderation
1257 	 * timer mask based on the timeout specified in the interrupt
1258 	 * moderation timer init register. Each bit in the timer
1259 	 * register represents one tick, so to specify a timeout in
1260 	 * microseconds, we have to multiply by the correct number of
1261 	 * ticks-per-microsecond.
1262 	 */
1263 	switch (sc->sk_type) {
1264 	case SK_GENESIS:
1265 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1266 		break;
1267 	default:
1268 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1269 		break;
1270 	}
1271 	if (bootverbose)
1272 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1273 		    sc->sk_int_mod);
1274 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1275 	    sc->sk_int_ticks));
1276 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1277 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1278 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1279 
1280 	return;
1281 }
1282 
1283 static int
1284 sk_probe(dev)
1285 	device_t		dev;
1286 {
1287 	struct sk_softc		*sc;
1288 
1289 	sc = device_get_softc(device_get_parent(dev));
1290 
1291 	/*
1292 	 * Not much to do here. We always know there will be
1293 	 * at least one XMAC present, and if there are two,
1294 	 * skc_attach() will create a second device instance
1295 	 * for us.
1296 	 */
1297 	switch (sc->sk_type) {
1298 	case SK_GENESIS:
1299 		device_set_desc(dev, "XaQti Corp. XMAC II");
1300 		break;
1301 	case SK_YUKON:
1302 	case SK_YUKON_LITE:
1303 	case SK_YUKON_LP:
1304 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1305 		break;
1306 	}
1307 
1308 	return (BUS_PROBE_DEFAULT);
1309 }
1310 
1311 /*
1312  * Each XMAC chip is attached as a separate logical IP interface.
1313  * Single port cards will have only one logical interface of course.
1314  */
1315 static int
1316 sk_attach(dev)
1317 	device_t		dev;
1318 {
1319 	struct sk_softc		*sc;
1320 	struct sk_if_softc	*sc_if;
1321 	struct ifnet		*ifp;
1322 	int			error, i, phy, port;
1323 	u_char			eaddr[6];
1324 
1325 	if (dev == NULL)
1326 		return(EINVAL);
1327 
1328 	error = 0;
1329 	sc_if = device_get_softc(dev);
1330 	sc = device_get_softc(device_get_parent(dev));
1331 	port = *(int *)device_get_ivars(dev);
1332 
1333 	sc_if->sk_if_dev = dev;
1334 	sc_if->sk_port = port;
1335 	sc_if->sk_softc = sc;
1336 	sc->sk_if[port] = sc_if;
1337 	if (port == SK_PORT_A)
1338 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1339 	if (port == SK_PORT_B)
1340 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1341 
1342 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1343 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1344 
1345 	if (sk_dma_alloc(sc_if) != 0) {
1346 		error = ENOMEM;
1347 		goto fail;
1348 	}
1349 	sk_dma_jumbo_alloc(sc_if);
1350 
1351 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1352 	if (ifp == NULL) {
1353 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1354 		error = ENOSPC;
1355 		goto fail;
1356 	}
1357 	ifp->if_softc = sc_if;
1358 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1359 	ifp->if_mtu = ETHERMTU;
1360 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1361 	/*
1362 	 * SK_GENESIS has a bug in checksum offload - From linux.
1363 	 */
1364 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1365 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1366 		ifp->if_hwassist = 0;
1367 	} else {
1368 		ifp->if_capabilities = 0;
1369 		ifp->if_hwassist = 0;
1370 	}
1371 	ifp->if_capenable = ifp->if_capabilities;
1372 	/*
1373 	 * Some revision of Yukon controller generates corrupted
1374 	 * frame when TX checksum offloading is enabled.  The
1375 	 * frame has a valid checksum value so payload might be
1376 	 * modified during TX checksum calculation. Disable TX
1377 	 * checksum offloading but give users chance to enable it
1378 	 * when they know their controller works without problems
1379 	 * with TX checksum offloading.
1380 	 */
1381 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1382 	ifp->if_ioctl = sk_ioctl;
1383 	ifp->if_start = sk_start;
1384 	ifp->if_init = sk_init;
1385 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1386 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1387 	IFQ_SET_READY(&ifp->if_snd);
1388 
1389 	/*
1390 	 * Get station address for this interface. Note that
1391 	 * dual port cards actually come with three station
1392 	 * addresses: one for each port, plus an extra. The
1393 	 * extra one is used by the SysKonnect driver software
1394 	 * as a 'virtual' station address for when both ports
1395 	 * are operating in failover mode. Currently we don't
1396 	 * use this extra address.
1397 	 */
1398 	SK_IF_LOCK(sc_if);
1399 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1400 		eaddr[i] =
1401 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1402 
1403 	/*
1404 	 * Set up RAM buffer addresses. The NIC will have a certain
1405 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1406 	 * need to divide this up a) between the transmitter and
1407  	 * receiver and b) between the two XMACs, if this is a
1408 	 * dual port NIC. Our algotithm is to divide up the memory
1409 	 * evenly so that everyone gets a fair share.
1410 	 *
1411 	 * Just to be contrary, Yukon2 appears to have separate memory
1412 	 * for each MAC.
1413 	 */
1414 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1415 		u_int32_t		chunk, val;
1416 
1417 		chunk = sc->sk_ramsize / 2;
1418 		val = sc->sk_rboff / sizeof(u_int64_t);
1419 		sc_if->sk_rx_ramstart = val;
1420 		val += (chunk / sizeof(u_int64_t));
1421 		sc_if->sk_rx_ramend = val - 1;
1422 		sc_if->sk_tx_ramstart = val;
1423 		val += (chunk / sizeof(u_int64_t));
1424 		sc_if->sk_tx_ramend = val - 1;
1425 	} else {
1426 		u_int32_t		chunk, val;
1427 
1428 		chunk = sc->sk_ramsize / 4;
1429 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1430 		    sizeof(u_int64_t);
1431 		sc_if->sk_rx_ramstart = val;
1432 		val += (chunk / sizeof(u_int64_t));
1433 		sc_if->sk_rx_ramend = val - 1;
1434 		sc_if->sk_tx_ramstart = val;
1435 		val += (chunk / sizeof(u_int64_t));
1436 		sc_if->sk_tx_ramend = val - 1;
1437 	}
1438 
1439 	/* Read and save PHY type and set PHY address */
1440 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1441 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1442 		switch(sc_if->sk_phytype) {
1443 		case SK_PHYTYPE_XMAC:
1444 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1445 			break;
1446 		case SK_PHYTYPE_BCOM:
1447 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1448 			break;
1449 		default:
1450 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1451 			    sc_if->sk_phytype);
1452 			error = ENODEV;
1453 			SK_IF_UNLOCK(sc_if);
1454 			goto fail;
1455 		}
1456 	} else {
1457 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1458 		    sc->sk_pmd != 'S') {
1459 			/* not initialized, punt */
1460 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1461 			sc->sk_coppertype = 1;
1462 		}
1463 
1464 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1465 
1466 		if (!(sc->sk_coppertype))
1467 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1468 	}
1469 
1470 	/*
1471 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1472 	 */
1473 	SK_IF_UNLOCK(sc_if);
1474 	ether_ifattach(ifp, eaddr);
1475 	SK_IF_LOCK(sc_if);
1476 
1477 	/*
1478 	 * The hardware should be ready for VLAN_MTU by default:
1479 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1480 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1481 	 *
1482 	 */
1483         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1484         ifp->if_capenable |= IFCAP_VLAN_MTU;
1485 	/*
1486 	 * Tell the upper layer(s) we support long frames.
1487 	 * Must appear after the call to ether_ifattach() because
1488 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1489 	 */
1490         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1491 
1492 	/*
1493 	 * Do miibus setup.
1494 	 */
1495 	phy = MII_PHY_ANY;
1496 	switch (sc->sk_type) {
1497 	case SK_GENESIS:
1498 		sk_init_xmac(sc_if);
1499 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1500 			phy = 0;
1501 		break;
1502 	case SK_YUKON:
1503 	case SK_YUKON_LITE:
1504 	case SK_YUKON_LP:
1505 		sk_init_yukon(sc_if);
1506 		phy = 0;
1507 		break;
1508 	}
1509 
1510 	SK_IF_UNLOCK(sc_if);
1511 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1512 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1513 	if (error != 0) {
1514 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1515 		ether_ifdetach(ifp);
1516 		goto fail;
1517 	}
1518 
1519 fail:
1520 	if (error) {
1521 		/* Access should be ok even though lock has been dropped */
1522 		sc->sk_if[port] = NULL;
1523 		sk_detach(dev);
1524 	}
1525 
1526 	return(error);
1527 }
1528 
1529 /*
1530  * Attach the interface. Allocate softc structures, do ifmedia
1531  * setup and ethernet/BPF attach.
1532  */
1533 static int
1534 skc_attach(dev)
1535 	device_t		dev;
1536 {
1537 	struct sk_softc		*sc;
1538 	int			error = 0, *port;
1539 	uint8_t			skrs;
1540 	const char		*pname = NULL;
1541 	char			*revstr;
1542 
1543 	sc = device_get_softc(dev);
1544 	sc->sk_dev = dev;
1545 
1546 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1547 	    MTX_DEF);
1548 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1549 	/*
1550 	 * Map control/status registers.
1551 	 */
1552 	pci_enable_busmaster(dev);
1553 
1554 	/* Allocate resources */
1555 #ifdef SK_USEIOSPACE
1556 	sc->sk_res_spec = sk_res_spec_io;
1557 #else
1558 	sc->sk_res_spec = sk_res_spec_mem;
1559 #endif
1560 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1561 	if (error) {
1562 		if (sc->sk_res_spec == sk_res_spec_mem)
1563 			sc->sk_res_spec = sk_res_spec_io;
1564 		else
1565 			sc->sk_res_spec = sk_res_spec_mem;
1566 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1567 		if (error) {
1568 			device_printf(dev, "couldn't allocate %s resources\n",
1569 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1570 			    "I/O");
1571 			goto fail;
1572 		}
1573 	}
1574 
1575 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1576 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1577 
1578 	/* Bail out if chip is not recognized. */
1579 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1580 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1581 		    sc->sk_type, sc->sk_rev);
1582 		error = ENXIO;
1583 		goto fail;
1584 	}
1585 
1586 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1587 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1588 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1589 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1590 		"SK interrupt moderation");
1591 
1592 	/* Pull in device tunables. */
1593 	sc->sk_int_mod = SK_IM_DEFAULT;
1594 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1595 		"int_mod", &sc->sk_int_mod);
1596 	if (error == 0) {
1597 		if (sc->sk_int_mod < SK_IM_MIN ||
1598 		    sc->sk_int_mod > SK_IM_MAX) {
1599 			device_printf(dev, "int_mod value out of range; "
1600 			    "using default: %d\n", SK_IM_DEFAULT);
1601 			sc->sk_int_mod = SK_IM_DEFAULT;
1602 		}
1603 	}
1604 
1605 	/* Reset the adapter. */
1606 	sk_reset(sc);
1607 
1608 	skrs = sk_win_read_1(sc, SK_EPROM0);
1609 	if (sc->sk_type == SK_GENESIS) {
1610 		/* Read and save RAM size and RAMbuffer offset */
1611 		switch(skrs) {
1612 		case SK_RAMSIZE_512K_64:
1613 			sc->sk_ramsize = 0x80000;
1614 			sc->sk_rboff = SK_RBOFF_0;
1615 			break;
1616 		case SK_RAMSIZE_1024K_64:
1617 			sc->sk_ramsize = 0x100000;
1618 			sc->sk_rboff = SK_RBOFF_80000;
1619 			break;
1620 		case SK_RAMSIZE_1024K_128:
1621 			sc->sk_ramsize = 0x100000;
1622 			sc->sk_rboff = SK_RBOFF_0;
1623 			break;
1624 		case SK_RAMSIZE_2048K_128:
1625 			sc->sk_ramsize = 0x200000;
1626 			sc->sk_rboff = SK_RBOFF_0;
1627 			break;
1628 		default:
1629 			device_printf(dev, "unknown ram size: %d\n", skrs);
1630 			error = ENXIO;
1631 			goto fail;
1632 		}
1633 	} else { /* SK_YUKON_FAMILY */
1634 		if (skrs == 0x00)
1635 			sc->sk_ramsize = 0x20000;
1636 		else
1637 			sc->sk_ramsize = skrs * (1<<12);
1638 		sc->sk_rboff = SK_RBOFF_0;
1639 	}
1640 
1641 	/* Read and save physical media type */
1642 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1643 
1644 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1645 		 sc->sk_coppertype = 1;
1646 	 else
1647 		 sc->sk_coppertype = 0;
1648 
1649 	/* Determine whether to name it with VPD PN or just make it up.
1650 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1651 	switch (pci_get_device(dev)) {
1652 	case DEVICEID_SK_V1:
1653 	case DEVICEID_BELKIN_5005:
1654 	case DEVICEID_3COM_3C940:
1655 	case DEVICEID_LINKSYS_EG1032:
1656 	case DEVICEID_DLINK_DGE530T_A1:
1657 	case DEVICEID_DLINK_DGE530T_B1:
1658 		/* Stay with VPD PN. */
1659 		(void) pci_get_vpd_ident(dev, &pname);
1660 		break;
1661 	case DEVICEID_SK_V2:
1662 		/* YUKON VPD PN might bear no resemblance to reality. */
1663 		switch (sc->sk_type) {
1664 		case SK_GENESIS:
1665 			/* Stay with VPD PN. */
1666 			(void) pci_get_vpd_ident(dev, &pname);
1667 			break;
1668 		case SK_YUKON:
1669 			pname = "Marvell Yukon Gigabit Ethernet";
1670 			break;
1671 		case SK_YUKON_LITE:
1672 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1673 			break;
1674 		case SK_YUKON_LP:
1675 			pname = "Marvell Yukon LP Gigabit Ethernet";
1676 			break;
1677 		default:
1678 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1679 			break;
1680 		}
1681 
1682 		/* Yukon Lite Rev. A0 needs special test. */
1683 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1684 			u_int32_t far;
1685 			u_int8_t testbyte;
1686 
1687 			/* Save flash address register before testing. */
1688 			far = sk_win_read_4(sc, SK_EP_ADDR);
1689 
1690 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1691 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1692 
1693 			if (testbyte != 0x00) {
1694 				/* Yukon Lite Rev. A0 detected. */
1695 				sc->sk_type = SK_YUKON_LITE;
1696 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1697 				/* Restore flash address register. */
1698 				sk_win_write_4(sc, SK_EP_ADDR, far);
1699 			}
1700 		}
1701 		break;
1702 	default:
1703 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1704 			"chipver=%02x, rev=%x\n",
1705 			pci_get_vendor(dev), pci_get_device(dev),
1706 			sc->sk_type, sc->sk_rev);
1707 		error = ENXIO;
1708 		goto fail;
1709 	}
1710 
1711 	if (sc->sk_type == SK_YUKON_LITE) {
1712 		switch (sc->sk_rev) {
1713 		case SK_YUKON_LITE_REV_A0:
1714 			revstr = "A0";
1715 			break;
1716 		case SK_YUKON_LITE_REV_A1:
1717 			revstr = "A1";
1718 			break;
1719 		case SK_YUKON_LITE_REV_A3:
1720 			revstr = "A3";
1721 			break;
1722 		default:
1723 			revstr = "";
1724 			break;
1725 		}
1726 	} else {
1727 		revstr = "";
1728 	}
1729 
1730 	/* Announce the product name and more VPD data if there. */
1731 	if (pname != NULL)
1732 		device_printf(dev, "%s rev. %s(0x%x)\n",
1733 			pname, revstr, sc->sk_rev);
1734 
1735 	if (bootverbose) {
1736 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1737 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1738 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1739 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1740 	}
1741 
1742 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1743 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1744 		device_printf(dev, "failed to add child for PORT_A\n");
1745 		error = ENXIO;
1746 		goto fail;
1747 	}
1748 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1749 	if (port == NULL) {
1750 		device_printf(dev, "failed to allocate memory for "
1751 		    "ivars of PORT_A\n");
1752 		error = ENXIO;
1753 		goto fail;
1754 	}
1755 	*port = SK_PORT_A;
1756 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1757 
1758 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1759 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1760 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1761 			device_printf(dev, "failed to add child for PORT_B\n");
1762 			error = ENXIO;
1763 			goto fail;
1764 		}
1765 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1766 		if (port == NULL) {
1767 			device_printf(dev, "failed to allocate memory for "
1768 			    "ivars of PORT_B\n");
1769 			error = ENXIO;
1770 			goto fail;
1771 		}
1772 		*port = SK_PORT_B;
1773 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1774 	}
1775 
1776 	/* Turn on the 'driver is loaded' LED. */
1777 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1778 
1779 	error = bus_generic_attach(dev);
1780 	if (error) {
1781 		device_printf(dev, "failed to attach port(s)\n");
1782 		goto fail;
1783 	}
1784 
1785 	/* Hook interrupt last to avoid having to lock softc */
1786 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1787 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1788 
1789 	if (error) {
1790 		device_printf(dev, "couldn't set up irq\n");
1791 		goto fail;
1792 	}
1793 
1794 fail:
1795 	if (error)
1796 		skc_detach(dev);
1797 
1798 	return(error);
1799 }
1800 
1801 /*
1802  * Shutdown hardware and free up resources. This can be called any
1803  * time after the mutex has been initialized. It is called in both
1804  * the error case in attach and the normal detach case so it needs
1805  * to be careful about only freeing resources that have actually been
1806  * allocated.
1807  */
1808 static int
1809 sk_detach(dev)
1810 	device_t		dev;
1811 {
1812 	struct sk_if_softc	*sc_if;
1813 	struct ifnet		*ifp;
1814 
1815 	sc_if = device_get_softc(dev);
1816 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1817 	    ("sk mutex not initialized in sk_detach"));
1818 	SK_IF_LOCK(sc_if);
1819 
1820 	ifp = sc_if->sk_ifp;
1821 	/* These should only be active if attach_xmac succeeded */
1822 	if (device_is_attached(dev)) {
1823 		sk_stop(sc_if);
1824 		/* Can't hold locks while calling detach */
1825 		SK_IF_UNLOCK(sc_if);
1826 		callout_drain(&sc_if->sk_tick_ch);
1827 		callout_drain(&sc_if->sk_watchdog_ch);
1828 		ether_ifdetach(ifp);
1829 		SK_IF_LOCK(sc_if);
1830 	}
1831 	if (ifp)
1832 		if_free(ifp);
1833 	/*
1834 	 * We're generally called from skc_detach() which is using
1835 	 * device_delete_child() to get to here. It's already trashed
1836 	 * miibus for us, so don't do it here or we'll panic.
1837 	 */
1838 	/*
1839 	if (sc_if->sk_miibus != NULL)
1840 		device_delete_child(dev, sc_if->sk_miibus);
1841 	*/
1842 	bus_generic_detach(dev);
1843 	sk_dma_jumbo_free(sc_if);
1844 	sk_dma_free(sc_if);
1845 	SK_IF_UNLOCK(sc_if);
1846 
1847 	return(0);
1848 }
1849 
1850 static int
1851 skc_detach(dev)
1852 	device_t		dev;
1853 {
1854 	struct sk_softc		*sc;
1855 
1856 	sc = device_get_softc(dev);
1857 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1858 
1859 	if (device_is_alive(dev)) {
1860 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1861 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1862 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1863 		}
1864 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1865 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1866 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1867 		}
1868 		bus_generic_detach(dev);
1869 	}
1870 
1871 	if (sc->sk_intrhand)
1872 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1873 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1874 
1875 	mtx_destroy(&sc->sk_mii_mtx);
1876 	mtx_destroy(&sc->sk_mtx);
1877 
1878 	return(0);
1879 }
1880 
1881 struct sk_dmamap_arg {
1882 	bus_addr_t	sk_busaddr;
1883 };
1884 
1885 static void
1886 sk_dmamap_cb(arg, segs, nseg, error)
1887 	void			*arg;
1888 	bus_dma_segment_t	*segs;
1889 	int			nseg;
1890 	int			error;
1891 {
1892 	struct sk_dmamap_arg	*ctx;
1893 
1894 	if (error != 0)
1895 		return;
1896 
1897 	ctx = arg;
1898 	ctx->sk_busaddr = segs[0].ds_addr;
1899 }
1900 
1901 /*
1902  * Allocate jumbo buffer storage. The SysKonnect adapters support
1903  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1904  * use them in their drivers. In order for us to use them, we need
1905  * large 9K receive buffers, however standard mbuf clusters are only
1906  * 2048 bytes in size. Consequently, we need to allocate and manage
1907  * our own jumbo buffer pool. Fortunately, this does not require an
1908  * excessive amount of additional code.
1909  */
1910 static int
1911 sk_dma_alloc(sc_if)
1912 	struct sk_if_softc	*sc_if;
1913 {
1914 	struct sk_dmamap_arg	ctx;
1915 	struct sk_txdesc	*txd;
1916 	struct sk_rxdesc	*rxd;
1917 	int			error, i;
1918 
1919 	/* create parent tag */
1920 	/*
1921 	 * XXX
1922 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1923 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1924 	 * However bz@ reported that it does not work on amd64 with > 4GB
1925 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1926 	 * by limiting DMA address to be in 32bit address space.
1927 	 */
1928 	error = bus_dma_tag_create(
1929 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1930 		    1, 0,			/* algnmnt, boundary */
1931 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1932 		    BUS_SPACE_MAXADDR,		/* highaddr */
1933 		    NULL, NULL,			/* filter, filterarg */
1934 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1935 		    0,				/* nsegments */
1936 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1937 		    0,				/* flags */
1938 		    NULL, NULL,			/* lockfunc, lockarg */
1939 		    &sc_if->sk_cdata.sk_parent_tag);
1940 	if (error != 0) {
1941 		device_printf(sc_if->sk_if_dev,
1942 		    "failed to create parent DMA tag\n");
1943 		goto fail;
1944 	}
1945 
1946 	/* create tag for Tx ring */
1947 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1948 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1949 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1950 		    BUS_SPACE_MAXADDR,		/* highaddr */
1951 		    NULL, NULL,			/* filter, filterarg */
1952 		    SK_TX_RING_SZ,		/* maxsize */
1953 		    1,				/* nsegments */
1954 		    SK_TX_RING_SZ,		/* maxsegsize */
1955 		    0,				/* flags */
1956 		    NULL, NULL,			/* lockfunc, lockarg */
1957 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1958 	if (error != 0) {
1959 		device_printf(sc_if->sk_if_dev,
1960 		    "failed to allocate Tx ring DMA tag\n");
1961 		goto fail;
1962 	}
1963 
1964 	/* create tag for Rx ring */
1965 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1966 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1967 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1968 		    BUS_SPACE_MAXADDR,		/* highaddr */
1969 		    NULL, NULL,			/* filter, filterarg */
1970 		    SK_RX_RING_SZ,		/* maxsize */
1971 		    1,				/* nsegments */
1972 		    SK_RX_RING_SZ,		/* maxsegsize */
1973 		    0,				/* flags */
1974 		    NULL, NULL,			/* lockfunc, lockarg */
1975 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1976 	if (error != 0) {
1977 		device_printf(sc_if->sk_if_dev,
1978 		    "failed to allocate Rx ring DMA tag\n");
1979 		goto fail;
1980 	}
1981 
1982 	/* create tag for Tx buffers */
1983 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1984 		    1, 0,			/* algnmnt, boundary */
1985 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1986 		    BUS_SPACE_MAXADDR,		/* highaddr */
1987 		    NULL, NULL,			/* filter, filterarg */
1988 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
1989 		    SK_MAXTXSEGS,		/* nsegments */
1990 		    MCLBYTES,			/* maxsegsize */
1991 		    0,				/* flags */
1992 		    NULL, NULL,			/* lockfunc, lockarg */
1993 		    &sc_if->sk_cdata.sk_tx_tag);
1994 	if (error != 0) {
1995 		device_printf(sc_if->sk_if_dev,
1996 		    "failed to allocate Tx DMA tag\n");
1997 		goto fail;
1998 	}
1999 
2000 	/* create tag for Rx buffers */
2001 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2002 		    1, 0,			/* algnmnt, boundary */
2003 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2004 		    BUS_SPACE_MAXADDR,		/* highaddr */
2005 		    NULL, NULL,			/* filter, filterarg */
2006 		    MCLBYTES,			/* maxsize */
2007 		    1,				/* nsegments */
2008 		    MCLBYTES,			/* maxsegsize */
2009 		    0,				/* flags */
2010 		    NULL, NULL,			/* lockfunc, lockarg */
2011 		    &sc_if->sk_cdata.sk_rx_tag);
2012 	if (error != 0) {
2013 		device_printf(sc_if->sk_if_dev,
2014 		    "failed to allocate Rx DMA tag\n");
2015 		goto fail;
2016 	}
2017 
2018 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2019 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2020 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2021 	    &sc_if->sk_cdata.sk_tx_ring_map);
2022 	if (error != 0) {
2023 		device_printf(sc_if->sk_if_dev,
2024 		    "failed to allocate DMA'able memory for Tx ring\n");
2025 		goto fail;
2026 	}
2027 
2028 	ctx.sk_busaddr = 0;
2029 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2030 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2031 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2032 	if (error != 0) {
2033 		device_printf(sc_if->sk_if_dev,
2034 		    "failed to load DMA'able memory for Tx ring\n");
2035 		goto fail;
2036 	}
2037 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2038 
2039 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2040 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2041 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2042 	    &sc_if->sk_cdata.sk_rx_ring_map);
2043 	if (error != 0) {
2044 		device_printf(sc_if->sk_if_dev,
2045 		    "failed to allocate DMA'able memory for Rx ring\n");
2046 		goto fail;
2047 	}
2048 
2049 	ctx.sk_busaddr = 0;
2050 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2051 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2052 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2053 	if (error != 0) {
2054 		device_printf(sc_if->sk_if_dev,
2055 		    "failed to load DMA'able memory for Rx ring\n");
2056 		goto fail;
2057 	}
2058 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2059 
2060 	/* create DMA maps for Tx buffers */
2061 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2062 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2063 		txd->tx_m = NULL;
2064 		txd->tx_dmamap = NULL;
2065 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2066 		    &txd->tx_dmamap);
2067 		if (error != 0) {
2068 			device_printf(sc_if->sk_if_dev,
2069 			    "failed to create Tx dmamap\n");
2070 			goto fail;
2071 		}
2072 	}
2073 
2074 	/* create DMA maps for Rx buffers */
2075 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2076 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2077 		device_printf(sc_if->sk_if_dev,
2078 		    "failed to create spare Rx dmamap\n");
2079 		goto fail;
2080 	}
2081 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2082 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2083 		rxd->rx_m = NULL;
2084 		rxd->rx_dmamap = NULL;
2085 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2086 		    &rxd->rx_dmamap);
2087 		if (error != 0) {
2088 			device_printf(sc_if->sk_if_dev,
2089 			    "failed to create Rx dmamap\n");
2090 			goto fail;
2091 		}
2092 	}
2093 
2094 fail:
2095 	return (error);
2096 }
2097 
2098 static int
2099 sk_dma_jumbo_alloc(sc_if)
2100 	struct sk_if_softc	*sc_if;
2101 {
2102 	struct sk_dmamap_arg	ctx;
2103 	struct sk_rxdesc	*jrxd;
2104 	int			error, i;
2105 
2106 	if (jumbo_disable != 0) {
2107 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2108 		sc_if->sk_jumbo_disable = 1;
2109 		return (0);
2110 	}
2111 	/* create tag for jumbo Rx ring */
2112 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2113 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2114 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2115 		    BUS_SPACE_MAXADDR,		/* highaddr */
2116 		    NULL, NULL,			/* filter, filterarg */
2117 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2118 		    1,				/* nsegments */
2119 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2120 		    0,				/* flags */
2121 		    NULL, NULL,			/* lockfunc, lockarg */
2122 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2123 	if (error != 0) {
2124 		device_printf(sc_if->sk_if_dev,
2125 		    "failed to allocate jumbo Rx ring DMA tag\n");
2126 		goto jumbo_fail;
2127 	}
2128 
2129 	/* create tag for jumbo Rx buffers */
2130 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2131 		    1, 0,			/* algnmnt, boundary */
2132 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2133 		    BUS_SPACE_MAXADDR,		/* highaddr */
2134 		    NULL, NULL,			/* filter, filterarg */
2135 		    MJUM9BYTES,			/* maxsize */
2136 		    1,				/* nsegments */
2137 		    MJUM9BYTES,			/* maxsegsize */
2138 		    0,				/* flags */
2139 		    NULL, NULL,			/* lockfunc, lockarg */
2140 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2141 	if (error != 0) {
2142 		device_printf(sc_if->sk_if_dev,
2143 		    "failed to allocate jumbo Rx DMA tag\n");
2144 		goto jumbo_fail;
2145 	}
2146 
2147 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2148 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2149 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring,
2150 	    BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2151 	if (error != 0) {
2152 		device_printf(sc_if->sk_if_dev,
2153 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2154 		goto jumbo_fail;
2155 	}
2156 
2157 	ctx.sk_busaddr = 0;
2158 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2159 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2160 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2161 	    &ctx, BUS_DMA_NOWAIT);
2162 	if (error != 0) {
2163 		device_printf(sc_if->sk_if_dev,
2164 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2165 		goto jumbo_fail;
2166 	}
2167 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2168 
2169 	/* create DMA maps for jumbo Rx buffers */
2170 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2171 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2172 		device_printf(sc_if->sk_if_dev,
2173 		    "failed to create spare jumbo Rx dmamap\n");
2174 		goto jumbo_fail;
2175 	}
2176 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2177 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2178 		jrxd->rx_m = NULL;
2179 		jrxd->rx_dmamap = NULL;
2180 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2181 		    &jrxd->rx_dmamap);
2182 		if (error != 0) {
2183 			device_printf(sc_if->sk_if_dev,
2184 			    "failed to create jumbo Rx dmamap\n");
2185 			goto jumbo_fail;
2186 		}
2187 	}
2188 
2189 	return (0);
2190 
2191 jumbo_fail:
2192 	sk_dma_jumbo_free(sc_if);
2193 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2194 	    "resource shortage\n");
2195 	sc_if->sk_jumbo_disable = 1;
2196 	return (0);
2197 }
2198 
2199 static void
2200 sk_dma_free(sc_if)
2201 	struct sk_if_softc	*sc_if;
2202 {
2203 	struct sk_txdesc	*txd;
2204 	struct sk_rxdesc	*rxd;
2205 	int			i;
2206 
2207 	/* Tx ring */
2208 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2209 		if (sc_if->sk_cdata.sk_tx_ring_map)
2210 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2211 			    sc_if->sk_cdata.sk_tx_ring_map);
2212 		if (sc_if->sk_cdata.sk_tx_ring_map &&
2213 		    sc_if->sk_rdata.sk_tx_ring)
2214 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2215 			    sc_if->sk_rdata.sk_tx_ring,
2216 			    sc_if->sk_cdata.sk_tx_ring_map);
2217 		sc_if->sk_rdata.sk_tx_ring = NULL;
2218 		sc_if->sk_cdata.sk_tx_ring_map = NULL;
2219 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2220 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2221 	}
2222 	/* Rx ring */
2223 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2224 		if (sc_if->sk_cdata.sk_rx_ring_map)
2225 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2226 			    sc_if->sk_cdata.sk_rx_ring_map);
2227 		if (sc_if->sk_cdata.sk_rx_ring_map &&
2228 		    sc_if->sk_rdata.sk_rx_ring)
2229 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2230 			    sc_if->sk_rdata.sk_rx_ring,
2231 			    sc_if->sk_cdata.sk_rx_ring_map);
2232 		sc_if->sk_rdata.sk_rx_ring = NULL;
2233 		sc_if->sk_cdata.sk_rx_ring_map = NULL;
2234 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2235 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2236 	}
2237 	/* Tx buffers */
2238 	if (sc_if->sk_cdata.sk_tx_tag) {
2239 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2240 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2241 			if (txd->tx_dmamap) {
2242 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2243 				    txd->tx_dmamap);
2244 				txd->tx_dmamap = NULL;
2245 			}
2246 		}
2247 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2248 		sc_if->sk_cdata.sk_tx_tag = NULL;
2249 	}
2250 	/* Rx buffers */
2251 	if (sc_if->sk_cdata.sk_rx_tag) {
2252 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2253 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2254 			if (rxd->rx_dmamap) {
2255 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2256 				    rxd->rx_dmamap);
2257 				rxd->rx_dmamap = NULL;
2258 			}
2259 		}
2260 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2261 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2262 			    sc_if->sk_cdata.sk_rx_sparemap);
2263 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2264 		}
2265 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2266 		sc_if->sk_cdata.sk_rx_tag = NULL;
2267 	}
2268 
2269 	if (sc_if->sk_cdata.sk_parent_tag) {
2270 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2271 		sc_if->sk_cdata.sk_parent_tag = NULL;
2272 	}
2273 }
2274 
2275 static void
2276 sk_dma_jumbo_free(sc_if)
2277 	struct sk_if_softc	*sc_if;
2278 {
2279 	struct sk_rxdesc	*jrxd;
2280 	int			i;
2281 
2282 	/* jumbo Rx ring */
2283 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2284 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2285 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2286 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2287 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2288 		    sc_if->sk_rdata.sk_jumbo_rx_ring)
2289 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2290 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2291 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2292 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2293 		sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2294 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2295 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2296 	}
2297 
2298 	/* jumbo Rx buffers */
2299 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2300 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2301 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2302 			if (jrxd->rx_dmamap) {
2303 				bus_dmamap_destroy(
2304 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2305 				    jrxd->rx_dmamap);
2306 				jrxd->rx_dmamap = NULL;
2307 			}
2308 		}
2309 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2310 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2311 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2312 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2313 		}
2314 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2315 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2316 	}
2317 }
2318 
2319 static void
2320 sk_txcksum(ifp, m, f)
2321 	struct ifnet		*ifp;
2322 	struct mbuf		*m;
2323 	struct sk_tx_desc	*f;
2324 {
2325 	struct ip		*ip;
2326 	u_int16_t		offset;
2327 	u_int8_t 		*p;
2328 
2329 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2330 	for(; m && m->m_len == 0; m = m->m_next)
2331 		;
2332 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2333 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2334 		/* checksum may be corrupted */
2335 		goto sendit;
2336 	}
2337 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2338 		if (m->m_len != ETHER_HDR_LEN) {
2339 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2340 			    __func__);
2341 			/* checksum may be corrupted */
2342 			goto sendit;
2343 		}
2344 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2345 			;
2346 		if (m == NULL) {
2347 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2348 			/* checksum may be corrupted */
2349 			goto sendit;
2350 		}
2351 		ip = mtod(m, struct ip *);
2352 	} else {
2353 		p = mtod(m, u_int8_t *);
2354 		p += ETHER_HDR_LEN;
2355 		ip = (struct ip *)p;
2356 	}
2357 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2358 
2359 sendit:
2360 	f->sk_csum_startval = 0;
2361 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2362 	    (offset << 16));
2363 }
2364 
2365 static int
2366 sk_encap(sc_if, m_head)
2367         struct sk_if_softc	*sc_if;
2368         struct mbuf		**m_head;
2369 {
2370 	struct sk_txdesc	*txd;
2371 	struct sk_tx_desc	*f = NULL;
2372 	struct mbuf		*m;
2373 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2374 	u_int32_t		cflags, frag, si, sk_ctl;
2375 	int			error, i, nseg;
2376 
2377 	SK_IF_LOCK_ASSERT(sc_if);
2378 
2379 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2380 		return (ENOBUFS);
2381 
2382 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2383 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2384 	if (error == EFBIG) {
2385 		m = m_defrag(*m_head, M_DONTWAIT);
2386 		if (m == NULL) {
2387 			m_freem(*m_head);
2388 			*m_head = NULL;
2389 			return (ENOMEM);
2390 		}
2391 		*m_head = m;
2392 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2393 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2394 		if (error != 0) {
2395 			m_freem(*m_head);
2396 			*m_head = NULL;
2397 			return (error);
2398 		}
2399 	} else if (error != 0)
2400 		return (error);
2401 	if (nseg == 0) {
2402 		m_freem(*m_head);
2403 		*m_head = NULL;
2404 		return (EIO);
2405 	}
2406 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2407 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2408 		return (ENOBUFS);
2409 	}
2410 
2411 	m = *m_head;
2412 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2413 		cflags = SK_OPCODE_CSUM;
2414 	else
2415 		cflags = SK_OPCODE_DEFAULT;
2416 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2417 	for (i = 0; i < nseg; i++) {
2418 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2419 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2420 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2421 		sk_ctl = txsegs[i].ds_len | cflags;
2422 		if (i == 0) {
2423 			if (cflags == SK_OPCODE_CSUM)
2424 				sk_txcksum(sc_if->sk_ifp, m, f);
2425 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2426 		} else
2427 			sk_ctl |= SK_TXCTL_OWN;
2428 		f->sk_ctl = htole32(sk_ctl);
2429 		sc_if->sk_cdata.sk_tx_cnt++;
2430 		SK_INC(frag, SK_TX_RING_CNT);
2431 	}
2432 	sc_if->sk_cdata.sk_tx_prod = frag;
2433 
2434 	/* set EOF on the last desciptor */
2435 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2436 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2437 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2438 
2439 	/* turn the first descriptor ownership to NIC */
2440 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2441 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2442 
2443 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2444 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2445 	txd->tx_m = m;
2446 
2447 	/* sync descriptors */
2448 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2449 	    BUS_DMASYNC_PREWRITE);
2450 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2451 	    sc_if->sk_cdata.sk_tx_ring_map,
2452 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2453 
2454 	return (0);
2455 }
2456 
2457 static void
2458 sk_start(ifp)
2459 	struct ifnet		*ifp;
2460 {
2461 	struct sk_if_softc *sc_if;
2462 
2463 	sc_if = ifp->if_softc;
2464 
2465 	SK_IF_LOCK(sc_if);
2466 	sk_start_locked(ifp);
2467 	SK_IF_UNLOCK(sc_if);
2468 
2469 	return;
2470 }
2471 
2472 static void
2473 sk_start_locked(ifp)
2474 	struct ifnet		*ifp;
2475 {
2476         struct sk_softc		*sc;
2477         struct sk_if_softc	*sc_if;
2478         struct mbuf		*m_head;
2479 	int			enq;
2480 
2481 	sc_if = ifp->if_softc;
2482 	sc = sc_if->sk_softc;
2483 
2484 	SK_IF_LOCK_ASSERT(sc_if);
2485 
2486 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2487 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2488 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2489 		if (m_head == NULL)
2490 			break;
2491 
2492 		/*
2493 		 * Pack the data into the transmit ring. If we
2494 		 * don't have room, set the OACTIVE flag and wait
2495 		 * for the NIC to drain the ring.
2496 		 */
2497 		if (sk_encap(sc_if, &m_head)) {
2498 			if (m_head == NULL)
2499 				break;
2500 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2501 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2502 			break;
2503 		}
2504 
2505 		enq++;
2506 		/*
2507 		 * If there's a BPF listener, bounce a copy of this frame
2508 		 * to him.
2509 		 */
2510 		BPF_MTAP(ifp, m_head);
2511 	}
2512 
2513 	if (enq > 0) {
2514 		/* Transmit */
2515 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2516 
2517 		/* Set a timeout in case the chip goes out to lunch. */
2518 		sc_if->sk_watchdog_timer = 5;
2519 	}
2520 }
2521 
2522 
2523 static void
2524 sk_watchdog(arg)
2525 	void			*arg;
2526 {
2527 	struct sk_if_softc	*sc_if;
2528 	struct ifnet		*ifp;
2529 
2530 	ifp = arg;
2531 	sc_if = ifp->if_softc;
2532 
2533 	SK_IF_LOCK_ASSERT(sc_if);
2534 
2535 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2536 		goto done;
2537 
2538 	/*
2539 	 * Reclaim first as there is a possibility of losing Tx completion
2540 	 * interrupts.
2541 	 */
2542 	sk_txeof(sc_if);
2543 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2544 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2545 		ifp->if_oerrors++;
2546 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2547 		sk_init_locked(sc_if);
2548 	}
2549 
2550 done:
2551 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2552 
2553 	return;
2554 }
2555 
2556 static int
2557 skc_shutdown(dev)
2558 	device_t		dev;
2559 {
2560 	struct sk_softc		*sc;
2561 
2562 	sc = device_get_softc(dev);
2563 	SK_LOCK(sc);
2564 
2565 	/* Turn off the 'driver is loaded' LED. */
2566 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2567 
2568 	/*
2569 	 * Reset the GEnesis controller. Doing this should also
2570 	 * assert the resets on the attached XMAC(s).
2571 	 */
2572 	sk_reset(sc);
2573 	SK_UNLOCK(sc);
2574 
2575 	return (0);
2576 }
2577 
2578 static int
2579 skc_suspend(dev)
2580 	device_t		dev;
2581 {
2582 	struct sk_softc		*sc;
2583 	struct sk_if_softc	*sc_if0, *sc_if1;
2584 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2585 
2586 	sc = device_get_softc(dev);
2587 
2588 	SK_LOCK(sc);
2589 
2590 	sc_if0 = sc->sk_if[SK_PORT_A];
2591 	sc_if1 = sc->sk_if[SK_PORT_B];
2592 	if (sc_if0 != NULL)
2593 		ifp0 = sc_if0->sk_ifp;
2594 	if (sc_if1 != NULL)
2595 		ifp1 = sc_if1->sk_ifp;
2596 	if (ifp0 != NULL)
2597 		sk_stop(sc_if0);
2598 	if (ifp1 != NULL)
2599 		sk_stop(sc_if1);
2600 	sc->sk_suspended = 1;
2601 
2602 	SK_UNLOCK(sc);
2603 
2604 	return (0);
2605 }
2606 
2607 static int
2608 skc_resume(dev)
2609 	device_t		dev;
2610 {
2611 	struct sk_softc		*sc;
2612 	struct sk_if_softc	*sc_if0, *sc_if1;
2613 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2614 
2615 	sc = device_get_softc(dev);
2616 
2617 	SK_LOCK(sc);
2618 
2619 	sc_if0 = sc->sk_if[SK_PORT_A];
2620 	sc_if1 = sc->sk_if[SK_PORT_B];
2621 	if (sc_if0 != NULL)
2622 		ifp0 = sc_if0->sk_ifp;
2623 	if (sc_if1 != NULL)
2624 		ifp1 = sc_if1->sk_ifp;
2625 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2626 		sk_init_locked(sc_if0);
2627 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2628 		sk_init_locked(sc_if1);
2629 	sc->sk_suspended = 0;
2630 
2631 	SK_UNLOCK(sc);
2632 
2633 	return (0);
2634 }
2635 
2636 /*
2637  * According to the data sheet from SK-NET GENESIS the hardware can compute
2638  * two Rx checksums at the same time(Each checksum start position is
2639  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2640  * does not work at least on my Yukon hardware. I tried every possible ways
2641  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2642  * checksum offload was disabled at the moment and only IP checksum offload
2643  * was enabled.
2644  * As nomral IP header size is 20 bytes I can't expect it would give an
2645  * increase in throughput. However it seems it doesn't hurt performance in
2646  * my testing. If there is a more detailed information for checksum secret
2647  * of the hardware in question please contact yongari@FreeBSD.org to add
2648  * TCP/UDP checksum offload support.
2649  */
2650 static __inline void
2651 sk_rxcksum(ifp, m, csum)
2652 	struct ifnet		*ifp;
2653 	struct mbuf		*m;
2654 	u_int32_t		csum;
2655 {
2656 	struct ether_header	*eh;
2657 	struct ip		*ip;
2658 	int32_t			hlen, len, pktlen;
2659 	u_int16_t		csum1, csum2, ipcsum;
2660 
2661 	pktlen = m->m_pkthdr.len;
2662 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2663 		return;
2664 	eh = mtod(m, struct ether_header *);
2665 	if (eh->ether_type != htons(ETHERTYPE_IP))
2666 		return;
2667 	ip = (struct ip *)(eh + 1);
2668 	if (ip->ip_v != IPVERSION)
2669 		return;
2670 	hlen = ip->ip_hl << 2;
2671 	pktlen -= sizeof(struct ether_header);
2672 	if (hlen < sizeof(struct ip))
2673 		return;
2674 	if (ntohs(ip->ip_len) < hlen)
2675 		return;
2676 	if (ntohs(ip->ip_len) != pktlen)
2677 		return;
2678 
2679 	csum1 = htons(csum & 0xffff);
2680 	csum2 = htons((csum >> 16) & 0xffff);
2681 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2682 	/* checksum fixup for IP options */
2683 	len = hlen - sizeof(struct ip);
2684 	if (len > 0) {
2685 		/*
2686 		 * If the second checksum value is correct we can compute IP
2687 		 * checksum with simple math. Unfortunately the second checksum
2688 		 * value is wrong so we can't verify the checksum from the
2689 		 * value(It seems there is some magic here to get correct
2690 		 * value). If the second checksum value is correct it also
2691 		 * means we can get TCP/UDP checksum) here. However, it still
2692 		 * needs pseudo header checksum calculation due to hardware
2693 		 * limitations.
2694 		 */
2695 		return;
2696 	}
2697 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2698 	if (ipcsum == 0xffff)
2699 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2700 }
2701 
2702 static __inline int
2703 sk_rxvalid(sc, stat, len)
2704 	struct sk_softc		*sc;
2705 	u_int32_t		stat, len;
2706 {
2707 
2708 	if (sc->sk_type == SK_GENESIS) {
2709 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2710 		    XM_RXSTAT_BYTES(stat) != len)
2711 			return (0);
2712 	} else {
2713 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2714 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2715 		    YU_RXSTAT_JABBER)) != 0 ||
2716 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2717 		    YU_RXSTAT_BYTES(stat) != len)
2718 			return (0);
2719 	}
2720 
2721 	return (1);
2722 }
2723 
2724 static void
2725 sk_rxeof(sc_if)
2726 	struct sk_if_softc	*sc_if;
2727 {
2728 	struct sk_softc		*sc;
2729 	struct mbuf		*m;
2730 	struct ifnet		*ifp;
2731 	struct sk_rx_desc	*cur_rx;
2732 	struct sk_rxdesc	*rxd;
2733 	int			cons, prog;
2734 	u_int32_t		csum, rxstat, sk_ctl;
2735 
2736 	sc = sc_if->sk_softc;
2737 	ifp = sc_if->sk_ifp;
2738 
2739 	SK_IF_LOCK_ASSERT(sc_if);
2740 
2741 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2742 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2743 
2744 	prog = 0;
2745 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2746 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2747 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2748 		sk_ctl = le32toh(cur_rx->sk_ctl);
2749 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2750 			break;
2751 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2752 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2753 
2754 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2755 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2756 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2757 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2758 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2759 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2760 			ifp->if_ierrors++;
2761 			sk_discard_rxbuf(sc_if, cons);
2762 			continue;
2763 		}
2764 
2765 		m = rxd->rx_m;
2766 		csum = le32toh(cur_rx->sk_csum);
2767 		if (sk_newbuf(sc_if, cons) != 0) {
2768 			ifp->if_iqdrops++;
2769 			/* reuse old buffer */
2770 			sk_discard_rxbuf(sc_if, cons);
2771 			continue;
2772 		}
2773 		m->m_pkthdr.rcvif = ifp;
2774 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2775 		ifp->if_ipackets++;
2776 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2777 			sk_rxcksum(ifp, m, csum);
2778 		SK_IF_UNLOCK(sc_if);
2779 		(*ifp->if_input)(ifp, m);
2780 		SK_IF_LOCK(sc_if);
2781 	}
2782 
2783 	if (prog > 0) {
2784 		sc_if->sk_cdata.sk_rx_cons = cons;
2785 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2786 		    sc_if->sk_cdata.sk_rx_ring_map,
2787 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2788 	}
2789 }
2790 
2791 static void
2792 sk_jumbo_rxeof(sc_if)
2793 	struct sk_if_softc	*sc_if;
2794 {
2795 	struct sk_softc		*sc;
2796 	struct mbuf		*m;
2797 	struct ifnet		*ifp;
2798 	struct sk_rx_desc	*cur_rx;
2799 	struct sk_rxdesc	*jrxd;
2800 	int			cons, prog;
2801 	u_int32_t		csum, rxstat, sk_ctl;
2802 
2803 	sc = sc_if->sk_softc;
2804 	ifp = sc_if->sk_ifp;
2805 
2806 	SK_IF_LOCK_ASSERT(sc_if);
2807 
2808 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2809 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2810 
2811 	prog = 0;
2812 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2813 	    prog < SK_JUMBO_RX_RING_CNT;
2814 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2815 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2816 		sk_ctl = le32toh(cur_rx->sk_ctl);
2817 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2818 			break;
2819 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2820 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2821 
2822 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2823 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2824 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2825 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2826 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2827 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2828 			ifp->if_ierrors++;
2829 			sk_discard_jumbo_rxbuf(sc_if, cons);
2830 			continue;
2831 		}
2832 
2833 		m = jrxd->rx_m;
2834 		csum = le32toh(cur_rx->sk_csum);
2835 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2836 			ifp->if_iqdrops++;
2837 			/* reuse old buffer */
2838 			sk_discard_jumbo_rxbuf(sc_if, cons);
2839 			continue;
2840 		}
2841 		m->m_pkthdr.rcvif = ifp;
2842 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2843 		ifp->if_ipackets++;
2844 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2845 			sk_rxcksum(ifp, m, csum);
2846 		SK_IF_UNLOCK(sc_if);
2847 		(*ifp->if_input)(ifp, m);
2848 		SK_IF_LOCK(sc_if);
2849 	}
2850 
2851 	if (prog > 0) {
2852 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2853 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2854 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2855 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2856 	}
2857 }
2858 
2859 static void
2860 sk_txeof(sc_if)
2861 	struct sk_if_softc	*sc_if;
2862 {
2863 	struct sk_softc		*sc;
2864 	struct sk_txdesc	*txd;
2865 	struct sk_tx_desc	*cur_tx;
2866 	struct ifnet		*ifp;
2867 	u_int32_t		idx, sk_ctl;
2868 
2869 	sc = sc_if->sk_softc;
2870 	ifp = sc_if->sk_ifp;
2871 
2872 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2873 	if (txd == NULL)
2874 		return;
2875 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2876 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2877 	/*
2878 	 * Go through our tx ring and free mbufs for those
2879 	 * frames that have been sent.
2880 	 */
2881 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2882 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2883 			break;
2884 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2885 		sk_ctl = le32toh(cur_tx->sk_ctl);
2886 		if (sk_ctl & SK_TXCTL_OWN)
2887 			break;
2888 		sc_if->sk_cdata.sk_tx_cnt--;
2889 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2890 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2891 			continue;
2892 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2893 		    BUS_DMASYNC_POSTWRITE);
2894 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2895 
2896 		ifp->if_opackets++;
2897 		m_freem(txd->tx_m);
2898 		txd->tx_m = NULL;
2899 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2900 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2901 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2902 	}
2903 	sc_if->sk_cdata.sk_tx_cons = idx;
2904 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2905 
2906 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2907 	    sc_if->sk_cdata.sk_tx_ring_map,
2908 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2909 }
2910 
2911 static void
2912 sk_tick(xsc_if)
2913 	void			*xsc_if;
2914 {
2915 	struct sk_if_softc	*sc_if;
2916 	struct mii_data		*mii;
2917 	struct ifnet		*ifp;
2918 	int			i;
2919 
2920 	sc_if = xsc_if;
2921 	ifp = sc_if->sk_ifp;
2922 	mii = device_get_softc(sc_if->sk_miibus);
2923 
2924 	if (!(ifp->if_flags & IFF_UP))
2925 		return;
2926 
2927 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2928 		sk_intr_bcom(sc_if);
2929 		return;
2930 	}
2931 
2932 	/*
2933 	 * According to SysKonnect, the correct way to verify that
2934 	 * the link has come back up is to poll bit 0 of the GPIO
2935 	 * register three times. This pin has the signal from the
2936 	 * link_sync pin connected to it; if we read the same link
2937 	 * state 3 times in a row, we know the link is up.
2938 	 */
2939 	for (i = 0; i < 3; i++) {
2940 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2941 			break;
2942 	}
2943 
2944 	if (i != 3) {
2945 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2946 		return;
2947 	}
2948 
2949 	/* Turn the GP0 interrupt back on. */
2950 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2951 	SK_XM_READ_2(sc_if, XM_ISR);
2952 	mii_tick(mii);
2953 	callout_stop(&sc_if->sk_tick_ch);
2954 }
2955 
2956 static void
2957 sk_yukon_tick(xsc_if)
2958 	void			*xsc_if;
2959 {
2960 	struct sk_if_softc	*sc_if;
2961 	struct mii_data		*mii;
2962 
2963 	sc_if = xsc_if;
2964 	mii = device_get_softc(sc_if->sk_miibus);
2965 
2966 	mii_tick(mii);
2967 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2968 }
2969 
2970 static void
2971 sk_intr_bcom(sc_if)
2972 	struct sk_if_softc	*sc_if;
2973 {
2974 	struct mii_data		*mii;
2975 	struct ifnet		*ifp;
2976 	int			status;
2977 	mii = device_get_softc(sc_if->sk_miibus);
2978 	ifp = sc_if->sk_ifp;
2979 
2980 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2981 
2982 	/*
2983 	 * Read the PHY interrupt register to make sure
2984 	 * we clear any pending interrupts.
2985 	 */
2986 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2987 
2988 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2989 		sk_init_xmac(sc_if);
2990 		return;
2991 	}
2992 
2993 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2994 		int			lstat;
2995 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2996 		    BRGPHY_MII_AUXSTS);
2997 
2998 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2999 			mii_mediachg(mii);
3000 			/* Turn off the link LED. */
3001 			SK_IF_WRITE_1(sc_if, 0,
3002 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3003 			sc_if->sk_link = 0;
3004 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3005 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3006 	    		    BRGPHY_MII_IMR, 0xFF00);
3007 			mii_tick(mii);
3008 			sc_if->sk_link = 1;
3009 			/* Turn on the link LED. */
3010 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3011 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3012 			    SK_LINKLED_BLINK_OFF);
3013 		} else {
3014 			mii_tick(mii);
3015 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3016 		}
3017 	}
3018 
3019 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3020 
3021 	return;
3022 }
3023 
3024 static void
3025 sk_intr_xmac(sc_if)
3026 	struct sk_if_softc	*sc_if;
3027 {
3028 	struct sk_softc		*sc;
3029 	u_int16_t		status;
3030 
3031 	sc = sc_if->sk_softc;
3032 	status = SK_XM_READ_2(sc_if, XM_ISR);
3033 
3034 	/*
3035 	 * Link has gone down. Start MII tick timeout to
3036 	 * watch for link resync.
3037 	 */
3038 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3039 		if (status & XM_ISR_GP0_SET) {
3040 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3041 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3042 		}
3043 
3044 		if (status & XM_ISR_AUTONEG_DONE) {
3045 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3046 		}
3047 	}
3048 
3049 	if (status & XM_IMR_TX_UNDERRUN)
3050 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3051 
3052 	if (status & XM_IMR_RX_OVERRUN)
3053 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3054 
3055 	status = SK_XM_READ_2(sc_if, XM_ISR);
3056 
3057 	return;
3058 }
3059 
3060 static void
3061 sk_intr_yukon(sc_if)
3062 	struct sk_if_softc	*sc_if;
3063 {
3064 	u_int8_t status;
3065 
3066 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3067 	/* RX overrun */
3068 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3069 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3070 		    SK_RFCTL_RX_FIFO_OVER);
3071 	}
3072 	/* TX underrun */
3073 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3074 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3075 		    SK_TFCTL_TX_FIFO_UNDER);
3076 	}
3077 }
3078 
3079 static void
3080 sk_intr(xsc)
3081 	void			*xsc;
3082 {
3083 	struct sk_softc		*sc = xsc;
3084 	struct sk_if_softc	*sc_if0, *sc_if1;
3085 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3086 	u_int32_t		status;
3087 
3088 	SK_LOCK(sc);
3089 
3090 	status = CSR_READ_4(sc, SK_ISSR);
3091 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3092 		goto done_locked;
3093 
3094 	sc_if0 = sc->sk_if[SK_PORT_A];
3095 	sc_if1 = sc->sk_if[SK_PORT_B];
3096 
3097 	if (sc_if0 != NULL)
3098 		ifp0 = sc_if0->sk_ifp;
3099 	if (sc_if1 != NULL)
3100 		ifp1 = sc_if1->sk_ifp;
3101 
3102 	for (; (status &= sc->sk_intrmask) != 0;) {
3103 		/* Handle receive interrupts first. */
3104 		if (status & SK_ISR_RX1_EOF) {
3105 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3106 				sk_jumbo_rxeof(sc_if0);
3107 			else
3108 				sk_rxeof(sc_if0);
3109 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3110 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3111 		}
3112 		if (status & SK_ISR_RX2_EOF) {
3113 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3114 				sk_jumbo_rxeof(sc_if1);
3115 			else
3116 				sk_rxeof(sc_if1);
3117 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3118 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3119 		}
3120 
3121 		/* Then transmit interrupts. */
3122 		if (status & SK_ISR_TX1_S_EOF) {
3123 			sk_txeof(sc_if0);
3124 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3125 		}
3126 		if (status & SK_ISR_TX2_S_EOF) {
3127 			sk_txeof(sc_if1);
3128 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3129 		}
3130 
3131 		/* Then MAC interrupts. */
3132 		if (status & SK_ISR_MAC1 &&
3133 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3134 			if (sc->sk_type == SK_GENESIS)
3135 				sk_intr_xmac(sc_if0);
3136 			else
3137 				sk_intr_yukon(sc_if0);
3138 		}
3139 
3140 		if (status & SK_ISR_MAC2 &&
3141 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3142 			if (sc->sk_type == SK_GENESIS)
3143 				sk_intr_xmac(sc_if1);
3144 			else
3145 				sk_intr_yukon(sc_if1);
3146 		}
3147 
3148 		if (status & SK_ISR_EXTERNAL_REG) {
3149 			if (ifp0 != NULL &&
3150 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3151 				sk_intr_bcom(sc_if0);
3152 			if (ifp1 != NULL &&
3153 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3154 				sk_intr_bcom(sc_if1);
3155 		}
3156 		status = CSR_READ_4(sc, SK_ISSR);
3157 	}
3158 
3159 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3160 
3161 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3162 		sk_start_locked(ifp0);
3163 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3164 		sk_start_locked(ifp1);
3165 
3166 done_locked:
3167 	SK_UNLOCK(sc);
3168 }
3169 
3170 static void
3171 sk_init_xmac(sc_if)
3172 	struct sk_if_softc	*sc_if;
3173 {
3174 	struct sk_softc		*sc;
3175 	struct ifnet		*ifp;
3176 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3177 	struct sk_bcom_hack	bhack[] = {
3178 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3179 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3180 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3181 	{ 0, 0 } };
3182 
3183 	SK_IF_LOCK_ASSERT(sc_if);
3184 
3185 	sc = sc_if->sk_softc;
3186 	ifp = sc_if->sk_ifp;
3187 
3188 	/* Unreset the XMAC. */
3189 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3190 	DELAY(1000);
3191 
3192 	/* Reset the XMAC's internal state. */
3193 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3194 
3195 	/* Save the XMAC II revision */
3196 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3197 
3198 	/*
3199 	 * Perform additional initialization for external PHYs,
3200 	 * namely for the 1000baseTX cards that use the XMAC's
3201 	 * GMII mode.
3202 	 */
3203 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3204 		int			i = 0;
3205 		u_int32_t		val;
3206 
3207 		/* Take PHY out of reset. */
3208 		val = sk_win_read_4(sc, SK_GPIO);
3209 		if (sc_if->sk_port == SK_PORT_A)
3210 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3211 		else
3212 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3213 		sk_win_write_4(sc, SK_GPIO, val);
3214 
3215 		/* Enable GMII mode on the XMAC. */
3216 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3217 
3218 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3219 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3220 		DELAY(10000);
3221 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3222 		    BRGPHY_MII_IMR, 0xFFF0);
3223 
3224 		/*
3225 		 * Early versions of the BCM5400 apparently have
3226 		 * a bug that requires them to have their reserved
3227 		 * registers initialized to some magic values. I don't
3228 		 * know what the numbers do, I'm just the messenger.
3229 		 */
3230 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3231 		    == 0x6041) {
3232 			while(bhack[i].reg) {
3233 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3234 				    bhack[i].reg, bhack[i].val);
3235 				i++;
3236 			}
3237 		}
3238 	}
3239 
3240 	/* Set station address */
3241 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3242 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3243 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3244 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3245 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3246 
3247 	if (ifp->if_flags & IFF_BROADCAST) {
3248 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3249 	} else {
3250 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3251 	}
3252 
3253 	/* We don't need the FCS appended to the packet. */
3254 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3255 
3256 	/* We want short frames padded to 60 bytes. */
3257 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3258 
3259 	/*
3260 	 * Enable the reception of all error frames. This is is
3261 	 * a necessary evil due to the design of the XMAC. The
3262 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3263 	 * frames can be up to 9000 bytes in length. When bad
3264 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3265 	 * in 'store and forward' mode. For this to work, the
3266 	 * entire frame has to fit into the FIFO, but that means
3267 	 * that jumbo frames larger than 8192 bytes will be
3268 	 * truncated. Disabling all bad frame filtering causes
3269 	 * the RX FIFO to operate in streaming mode, in which
3270 	 * case the XMAC will start transfering frames out of the
3271 	 * RX FIFO as soon as the FIFO threshold is reached.
3272 	 */
3273 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3274 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3275 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3276 		    XM_MODE_RX_INRANGELEN);
3277 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3278 	} else
3279 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3280 
3281 	/*
3282 	 * Bump up the transmit threshold. This helps hold off transmit
3283 	 * underruns when we're blasting traffic from both ports at once.
3284 	 */
3285 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3286 
3287 	/* Set Rx filter */
3288 	sk_rxfilter_genesis(sc_if);
3289 
3290 	/* Clear and enable interrupts */
3291 	SK_XM_READ_2(sc_if, XM_ISR);
3292 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3293 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3294 	else
3295 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3296 
3297 	/* Configure MAC arbiter */
3298 	switch(sc_if->sk_xmac_rev) {
3299 	case XM_XMAC_REV_B2:
3300 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3301 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3302 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3303 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3304 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3305 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3306 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3307 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3308 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3309 		break;
3310 	case XM_XMAC_REV_C1:
3311 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3312 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3313 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3314 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3315 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3316 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3317 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3318 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3319 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3320 		break;
3321 	default:
3322 		break;
3323 	}
3324 	sk_win_write_2(sc, SK_MACARB_CTL,
3325 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3326 
3327 	sc_if->sk_link = 1;
3328 
3329 	return;
3330 }
3331 
3332 static void
3333 sk_init_yukon(sc_if)
3334 	struct sk_if_softc	*sc_if;
3335 {
3336 	u_int32_t		phy, v;
3337 	u_int16_t		reg;
3338 	struct sk_softc		*sc;
3339 	struct ifnet		*ifp;
3340 	int			i;
3341 
3342 	SK_IF_LOCK_ASSERT(sc_if);
3343 
3344 	sc = sc_if->sk_softc;
3345 	ifp = sc_if->sk_ifp;
3346 
3347 	if (sc->sk_type == SK_YUKON_LITE &&
3348 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3349 		/*
3350 		 * Workaround code for COMA mode, set PHY reset.
3351 		 * Otherwise it will not correctly take chip out of
3352 		 * powerdown (coma)
3353 		 */
3354 		v = sk_win_read_4(sc, SK_GPIO);
3355 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3356 		sk_win_write_4(sc, SK_GPIO, v);
3357 	}
3358 
3359 	/* GMAC and GPHY Reset */
3360 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3361 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3362 	DELAY(1000);
3363 
3364 	if (sc->sk_type == SK_YUKON_LITE &&
3365 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3366 		/*
3367 		 * Workaround code for COMA mode, clear PHY reset
3368 		 */
3369 		v = sk_win_read_4(sc, SK_GPIO);
3370 		v |= SK_GPIO_DIR9;
3371 		v &= ~SK_GPIO_DAT9;
3372 		sk_win_write_4(sc, SK_GPIO, v);
3373 	}
3374 
3375 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3376 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3377 
3378 	if (sc->sk_coppertype)
3379 		phy |= SK_GPHY_COPPER;
3380 	else
3381 		phy |= SK_GPHY_FIBER;
3382 
3383 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3384 	DELAY(1000);
3385 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3386 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3387 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3388 
3389 	/* unused read of the interrupt source register */
3390 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3391 
3392 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3393 
3394 	/* MIB Counter Clear Mode set */
3395 	reg |= YU_PAR_MIB_CLR;
3396 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3397 
3398 	/* MIB Counter Clear Mode clear */
3399 	reg &= ~YU_PAR_MIB_CLR;
3400 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3401 
3402 	/* receive control reg */
3403 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3404 
3405 	/* transmit parameter register */
3406 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3407 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3408 
3409 	/* serial mode register */
3410 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3411 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3412 		reg |= YU_SMR_MFL_JUMBO;
3413 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3414 
3415 	/* Setup Yukon's address */
3416 	for (i = 0; i < 3; i++) {
3417 		/* Write Source Address 1 (unicast filter) */
3418 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3419 			      IF_LLADDR(sc_if->sk_ifp)[i * 2] |
3420 			      IF_LLADDR(sc_if->sk_ifp)[i * 2 + 1] << 8);
3421 	}
3422 
3423 	for (i = 0; i < 3; i++) {
3424 		reg = sk_win_read_2(sc_if->sk_softc,
3425 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
3426 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
3427 	}
3428 
3429 	/* Set Rx filter */
3430 	sk_rxfilter_yukon(sc_if);
3431 
3432 	/* enable interrupt mask for counter overflows */
3433 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3434 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3435 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3436 
3437 	/* Configure RX MAC FIFO Flush Mask */
3438 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3439 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3440 	    YU_RXSTAT_JABBER;
3441 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3442 
3443 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3444 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3445 		v = SK_TFCTL_OPERATION_ON;
3446 	else
3447 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3448 	/* Configure RX MAC FIFO */
3449 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3450 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3451 
3452 	/* Increase flush threshould to 64 bytes */
3453 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3454 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3455 
3456 	/* Configure TX MAC FIFO */
3457 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3458 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3459 }
3460 
3461 /*
3462  * Note that to properly initialize any part of the GEnesis chip,
3463  * you first have to take it out of reset mode.
3464  */
3465 static void
3466 sk_init(xsc)
3467 	void			*xsc;
3468 {
3469 	struct sk_if_softc	*sc_if = xsc;
3470 
3471 	SK_IF_LOCK(sc_if);
3472 	sk_init_locked(sc_if);
3473 	SK_IF_UNLOCK(sc_if);
3474 
3475 	return;
3476 }
3477 
3478 static void
3479 sk_init_locked(sc_if)
3480 	struct sk_if_softc	*sc_if;
3481 {
3482 	struct sk_softc		*sc;
3483 	struct ifnet		*ifp;
3484 	struct mii_data		*mii;
3485 	u_int16_t		reg;
3486 	u_int32_t		imr;
3487 	int			error;
3488 
3489 	SK_IF_LOCK_ASSERT(sc_if);
3490 
3491 	ifp = sc_if->sk_ifp;
3492 	sc = sc_if->sk_softc;
3493 	mii = device_get_softc(sc_if->sk_miibus);
3494 
3495 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3496 		return;
3497 
3498 	/* Cancel pending I/O and free all RX/TX buffers. */
3499 	sk_stop(sc_if);
3500 
3501 	if (sc->sk_type == SK_GENESIS) {
3502 		/* Configure LINK_SYNC LED */
3503 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3504 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3505 			SK_LINKLED_LINKSYNC_ON);
3506 
3507 		/* Configure RX LED */
3508 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3509 			SK_RXLEDCTL_COUNTER_START);
3510 
3511 		/* Configure TX LED */
3512 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3513 			SK_TXLEDCTL_COUNTER_START);
3514 	}
3515 
3516 	/*
3517 	 * Configure descriptor poll timer
3518 	 *
3519 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3520 	 * transmit command due to CPU/cache related interim storage problems
3521 	 * under certain conditions. The document recommends a polling
3522 	 * mechanism to send a Start transmit command to initiate transfer
3523 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3524 	 * enables descriptor poll timer to initiate descriptor processing
3525 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3526 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3527 	 * command instead of waiting for next descriptor polling time.
3528 	 * The same rule may apply to Rx side too but it seems that is not
3529 	 * needed at the moment.
3530 	 * Since sk(4) uses descriptor polling as a last resort there is no
3531 	 * need to set smaller polling time than maximum allowable one.
3532 	 */
3533 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3534 
3535 	/* Configure I2C registers */
3536 
3537 	/* Configure XMAC(s) */
3538 	switch (sc->sk_type) {
3539 	case SK_GENESIS:
3540 		sk_init_xmac(sc_if);
3541 		break;
3542 	case SK_YUKON:
3543 	case SK_YUKON_LITE:
3544 	case SK_YUKON_LP:
3545 		sk_init_yukon(sc_if);
3546 		break;
3547 	}
3548 	mii_mediachg(mii);
3549 
3550 	if (sc->sk_type == SK_GENESIS) {
3551 		/* Configure MAC FIFOs */
3552 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3553 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3554 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3555 
3556 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3557 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3558 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3559 	}
3560 
3561 	/* Configure transmit arbiter(s) */
3562 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3563 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3564 
3565 	/* Configure RAMbuffers */
3566 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3567 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3568 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3569 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3570 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3571 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3572 
3573 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3574 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3575 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3576 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3577 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3578 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3579 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3580 
3581 	/* Configure BMUs */
3582 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3583 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3584 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3585 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3586 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3587 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3588 	} else {
3589 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3590 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3591 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3592 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3593 	}
3594 
3595 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3596 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3597 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3598 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3599 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3600 
3601 	/* Init descriptors */
3602 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3603 		error = sk_init_jumbo_rx_ring(sc_if);
3604 	else
3605 		error = sk_init_rx_ring(sc_if);
3606 	if (error != 0) {
3607 		device_printf(sc_if->sk_if_dev,
3608 		    "initialization failed: no memory for rx buffers\n");
3609 		sk_stop(sc_if);
3610 		return;
3611 	}
3612 	sk_init_tx_ring(sc_if);
3613 
3614 	/* Set interrupt moderation if changed via sysctl. */
3615 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3616 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3617 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3618 		    sc->sk_int_ticks));
3619 		if (bootverbose)
3620 			device_printf(sc_if->sk_if_dev,
3621 			    "interrupt moderation is %d us.\n",
3622 			    sc->sk_int_mod);
3623 	}
3624 
3625 	/* Configure interrupt handling */
3626 	CSR_READ_4(sc, SK_ISSR);
3627 	if (sc_if->sk_port == SK_PORT_A)
3628 		sc->sk_intrmask |= SK_INTRS1;
3629 	else
3630 		sc->sk_intrmask |= SK_INTRS2;
3631 
3632 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3633 
3634 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3635 
3636 	/* Start BMUs. */
3637 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3638 
3639 	switch(sc->sk_type) {
3640 	case SK_GENESIS:
3641 		/* Enable XMACs TX and RX state machines */
3642 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3643 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3644 		break;
3645 	case SK_YUKON:
3646 	case SK_YUKON_LITE:
3647 	case SK_YUKON_LP:
3648 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3649 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3650 #if 0
3651 		/* XXX disable 100Mbps and full duplex mode? */
3652 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3653 #endif
3654 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3655 	}
3656 
3657 	/* Activate descriptor polling timer */
3658 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3659 	/* start transfer of Tx descriptors */
3660 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3661 
3662 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3663 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3664 
3665 	switch (sc->sk_type) {
3666 	case SK_YUKON:
3667 	case SK_YUKON_LITE:
3668 	case SK_YUKON_LP:
3669 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3670 		break;
3671 	}
3672 
3673 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3674 
3675 	return;
3676 }
3677 
3678 static void
3679 sk_stop(sc_if)
3680 	struct sk_if_softc	*sc_if;
3681 {
3682 	int			i;
3683 	struct sk_softc		*sc;
3684 	struct sk_txdesc	*txd;
3685 	struct sk_rxdesc	*rxd;
3686 	struct sk_rxdesc	*jrxd;
3687 	struct ifnet		*ifp;
3688 	u_int32_t		val;
3689 
3690 	SK_IF_LOCK_ASSERT(sc_if);
3691 	sc = sc_if->sk_softc;
3692 	ifp = sc_if->sk_ifp;
3693 
3694 	callout_stop(&sc_if->sk_tick_ch);
3695 	callout_stop(&sc_if->sk_watchdog_ch);
3696 
3697 	/* stop Tx descriptor polling timer */
3698 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3699 	/* stop transfer of Tx descriptors */
3700 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3701 	for (i = 0; i < SK_TIMEOUT; i++) {
3702 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3703 		if ((val & SK_TXBMU_TX_STOP) == 0)
3704 			break;
3705 		DELAY(1);
3706 	}
3707 	if (i == SK_TIMEOUT)
3708 		device_printf(sc_if->sk_if_dev,
3709 		    "can not stop transfer of Tx descriptor\n");
3710 	/* stop transfer of Rx descriptors */
3711 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3712 	for (i = 0; i < SK_TIMEOUT; i++) {
3713 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3714 		if ((val & SK_RXBMU_RX_STOP) == 0)
3715 			break;
3716 		DELAY(1);
3717 	}
3718 	if (i == SK_TIMEOUT)
3719 		device_printf(sc_if->sk_if_dev,
3720 		    "can not stop transfer of Rx descriptor\n");
3721 
3722 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3723 		/* Put PHY back into reset. */
3724 		val = sk_win_read_4(sc, SK_GPIO);
3725 		if (sc_if->sk_port == SK_PORT_A) {
3726 			val |= SK_GPIO_DIR0;
3727 			val &= ~SK_GPIO_DAT0;
3728 		} else {
3729 			val |= SK_GPIO_DIR2;
3730 			val &= ~SK_GPIO_DAT2;
3731 		}
3732 		sk_win_write_4(sc, SK_GPIO, val);
3733 	}
3734 
3735 	/* Turn off various components of this interface. */
3736 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3737 	switch (sc->sk_type) {
3738 	case SK_GENESIS:
3739 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3740 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3741 		break;
3742 	case SK_YUKON:
3743 	case SK_YUKON_LITE:
3744 	case SK_YUKON_LP:
3745 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3746 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3747 		break;
3748 	}
3749 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3750 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3751 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3752 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3753 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3754 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3755 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3756 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3757 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3758 
3759 	/* Disable interrupts */
3760 	if (sc_if->sk_port == SK_PORT_A)
3761 		sc->sk_intrmask &= ~SK_INTRS1;
3762 	else
3763 		sc->sk_intrmask &= ~SK_INTRS2;
3764 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3765 
3766 	SK_XM_READ_2(sc_if, XM_ISR);
3767 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3768 
3769 	/* Free RX and TX mbufs still in the queues. */
3770 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3771 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3772 		if (rxd->rx_m != NULL) {
3773 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3774 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3775 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3776 			    rxd->rx_dmamap);
3777 			m_freem(rxd->rx_m);
3778 			rxd->rx_m = NULL;
3779 		}
3780 	}
3781 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3782 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3783 		if (jrxd->rx_m != NULL) {
3784 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3785 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3786 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3787 			    jrxd->rx_dmamap);
3788 			m_freem(jrxd->rx_m);
3789 			jrxd->rx_m = NULL;
3790 		}
3791 	}
3792 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3793 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3794 		if (txd->tx_m != NULL) {
3795 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3796 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3797 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3798 			    txd->tx_dmamap);
3799 			m_freem(txd->tx_m);
3800 			txd->tx_m = NULL;
3801 		}
3802 	}
3803 
3804 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3805 
3806 	return;
3807 }
3808 
3809 static int
3810 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3811 {
3812 	int error, value;
3813 
3814 	if (!arg1)
3815 		return (EINVAL);
3816 	value = *(int *)arg1;
3817 	error = sysctl_handle_int(oidp, &value, 0, req);
3818 	if (error || !req->newptr)
3819 		return (error);
3820 	if (value < low || value > high)
3821 		return (EINVAL);
3822 	*(int *)arg1 = value;
3823 	return (0);
3824 }
3825 
3826 static int
3827 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3828 {
3829 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3830 }
3831