xref: /freebsd/sys/dev/sound/pci/csa.c (revision 4e8d558c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1999 Seigo Tanimura
5  * All rights reserved.
6  *
7  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
8  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
9  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <machine/resource.h>
40 #include <machine/bus.h>
41 #include <sys/rman.h>
42 
43 #ifdef HAVE_KERNEL_OPTION_HEADERS
44 #include "opt_snd.h"
45 #endif
46 
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/chip.h>
49 #include <dev/sound/pci/csareg.h>
50 #include <dev/sound/pci/csavar.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 
55 #include <dev/sound/pci/cs461x_dsp.h>
56 
57 SND_DECLARE_FILE("$FreeBSD$");
58 
59 /* This is the pci device id. */
60 #define CS4610_PCI_ID 0x60011013
61 #define CS4614_PCI_ID 0x60031013
62 #define CS4615_PCI_ID 0x60041013
63 
64 /* Here is the parameter structure per a device. */
65 struct csa_softc {
66 	device_t dev; /* device */
67 	csa_res res; /* resources */
68 
69 	device_t pcm; /* pcm device */
70 	driver_intr_t* pcmintr; /* pcm intr */
71 	void *pcmintr_arg; /* pcm intr arg */
72 	device_t midi; /* midi device */
73 	driver_intr_t* midiintr; /* midi intr */
74 	void *midiintr_arg; /* midi intr arg */
75 	void *ih; /* cookie */
76 
77 	struct csa_card *card;
78 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
79 };
80 
81 typedef struct csa_softc *sc_p;
82 
83 static int csa_probe(device_t dev);
84 static int csa_attach(device_t dev);
85 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
86 					      rman_res_t start, rman_res_t end,
87 					      rman_res_t count, u_int flags);
88 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
89 				   struct resource *r);
90 static int csa_setup_intr(device_t bus, device_t child,
91 			  struct resource *irq, int flags,
92 			  driver_filter_t *filter,
93 			  driver_intr_t *intr,  void *arg, void **cookiep);
94 static int csa_teardown_intr(device_t bus, device_t child,
95 			     struct resource *irq, void *cookie);
96 static driver_intr_t csa_intr;
97 static int csa_initialize(sc_p scp);
98 static int csa_downloadimage(csa_res *resp);
99 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
100 
101 static void
102 amp_none(void)
103 {
104 }
105 
106 static void
107 amp_voyetra(void)
108 {
109 }
110 
111 static int
112 clkrun_hack(int run)
113 {
114 #ifdef __i386__
115 	devclass_t		pci_devclass;
116 	device_t		*pci_devices, *pci_children, *busp, *childp;
117 	int			pci_count = 0, pci_childcount = 0;
118 	int			i, j, port;
119 	u_int16_t		control;
120 	bus_space_tag_t		btag;
121 
122 	if ((pci_devclass = devclass_find("pci")) == NULL) {
123 		return ENXIO;
124 	}
125 
126 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
127 
128 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
129 		pci_childcount = 0;
130 		if (device_get_children(*busp, &pci_children, &pci_childcount))
131 			continue;
132 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
133 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
134 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
135 				/* XXX */
136 				btag = X86_BUS_SPACE_IO;
137 
138 				control = bus_space_read_2(btag, 0x0, port);
139 				control &= ~0x2000;
140 				control |= run? 0 : 0x2000;
141 				bus_space_write_2(btag, 0x0, port, control);
142 				free(pci_devices, M_TEMP);
143 				free(pci_children, M_TEMP);
144 				return 0;
145 			}
146 		}
147 		free(pci_children, M_TEMP);
148 	}
149 
150 	free(pci_devices, M_TEMP);
151 	return ENXIO;
152 #else
153 	return 0;
154 #endif
155 }
156 
157 static struct csa_card cards_4610[] = {
158 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
159 };
160 
161 static struct csa_card cards_4614[] = {
162 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
163 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
164 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
165 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
166 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
167 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
168 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
169 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
170 	{0x153b, 0x1136, "Terratec SiXPack 5.1+", NULL, NULL, NULL, 0},
171 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
172 };
173 
174 static struct csa_card cards_4615[] = {
175 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
176 };
177 
178 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
179 
180 struct card_type {
181 	u_int32_t devid;
182 	char *name;
183 	struct csa_card *cards;
184 };
185 
186 static struct card_type cards[] = {
187 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
188 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
189 	{CS4615_PCI_ID, "CS4615", cards_4615},
190 	{0, NULL, NULL},
191 };
192 
193 static struct card_type *
194 csa_findcard(device_t dev)
195 {
196 	int i;
197 
198 	i = 0;
199 	while (cards[i].devid != 0) {
200 		if (pci_get_devid(dev) == cards[i].devid)
201 			return &cards[i];
202 		i++;
203 	}
204 	return NULL;
205 }
206 
207 struct csa_card *
208 csa_findsubcard(device_t dev)
209 {
210 	int i;
211 	struct card_type *card;
212 	struct csa_card *subcard;
213 
214 	card = csa_findcard(dev);
215 	if (card == NULL)
216 		return &nocard;
217 	subcard = card->cards;
218 	i = 0;
219 	while (subcard[i].subvendor != 0) {
220 		if (pci_get_subvendor(dev) == subcard[i].subvendor
221 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
222 			return &subcard[i];
223 		}
224 		i++;
225 	}
226 	return &subcard[i];
227 }
228 
229 static int
230 csa_probe(device_t dev)
231 {
232 	struct card_type *card;
233 
234 	card = csa_findcard(dev);
235 	if (card) {
236 		device_set_desc(dev, card->name);
237 		return BUS_PROBE_DEFAULT;
238 	}
239 	return ENXIO;
240 }
241 
242 static int
243 csa_attach(device_t dev)
244 {
245 	sc_p scp;
246 	csa_res *resp;
247 	struct sndcard_func *func;
248 	int error = ENXIO;
249 
250 	scp = device_get_softc(dev);
251 
252 	/* Fill in the softc. */
253 	bzero(scp, sizeof(*scp));
254 	scp->dev = dev;
255 
256 	pci_enable_busmaster(dev);
257 
258 	/* Allocate the resources. */
259 	resp = &scp->res;
260 	scp->card = csa_findsubcard(dev);
261 	scp->binfo.card = scp->card;
262 	printf("csa: card is %s\n", scp->card->name);
263 	resp->io_rid = PCIR_BAR(0);
264 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
265 		&resp->io_rid, RF_ACTIVE);
266 	if (resp->io == NULL)
267 		return (ENXIO);
268 	resp->mem_rid = PCIR_BAR(1);
269 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
270 		&resp->mem_rid, RF_ACTIVE);
271 	if (resp->mem == NULL)
272 		goto err_io;
273 	resp->irq_rid = 0;
274 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
275 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
276 	if (resp->irq == NULL)
277 		goto err_mem;
278 
279 	/* Enable interrupt. */
280 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
281 		goto err_intr;
282 #if 0
283 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
284 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
285 #endif
286 
287 	/* Initialize the chip. */
288 	if (csa_initialize(scp))
289 		goto err_teardown;
290 
291 	/* Reset the Processor. */
292 	csa_resetdsp(resp);
293 
294 	/* Download the Processor Image to the processor. */
295 	if (csa_downloadimage(resp))
296 		goto err_teardown;
297 
298 	/* Attach the children. */
299 
300 	/* PCM Audio */
301 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
302 	if (func == NULL) {
303 		error = ENOMEM;
304 		goto err_teardown;
305 	}
306 	func->varinfo = &scp->binfo;
307 	func->func = SCF_PCM;
308 	scp->pcm = device_add_child(dev, "pcm", -1);
309 	device_set_ivars(scp->pcm, func);
310 
311 	/* Midi Interface */
312 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
313 	if (func == NULL) {
314 		error = ENOMEM;
315 		goto err_teardown;
316 	}
317 	func->varinfo = &scp->binfo;
318 	func->func = SCF_MIDI;
319 	scp->midi = device_add_child(dev, "midi", -1);
320 	device_set_ivars(scp->midi, func);
321 
322 	bus_generic_attach(dev);
323 
324 	return (0);
325 
326 err_teardown:
327 	bus_teardown_intr(dev, resp->irq, scp->ih);
328 err_intr:
329 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
330 err_mem:
331 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
332 err_io:
333 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
334 	return (error);
335 }
336 
337 static int
338 csa_detach(device_t dev)
339 {
340 	csa_res *resp;
341 	sc_p scp;
342 	struct sndcard_func *func;
343 	int err;
344 
345 	scp = device_get_softc(dev);
346 	resp = &scp->res;
347 
348 	if (scp->midi != NULL) {
349 		func = device_get_ivars(scp->midi);
350 		err = device_delete_child(dev, scp->midi);
351 		if (err != 0)
352 			return err;
353 		if (func != NULL)
354 			free(func, M_DEVBUF);
355 		scp->midi = NULL;
356 	}
357 
358 	if (scp->pcm != NULL) {
359 		func = device_get_ivars(scp->pcm);
360 		err = device_delete_child(dev, scp->pcm);
361 		if (err != 0)
362 			return err;
363 		if (func != NULL)
364 			free(func, M_DEVBUF);
365 		scp->pcm = NULL;
366 	}
367 
368 	bus_teardown_intr(dev, resp->irq, scp->ih);
369 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
370 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
371 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
372 
373 	return bus_generic_detach(dev);
374 }
375 
376 static int
377 csa_resume(device_t dev)
378 {
379 	csa_res *resp;
380 	sc_p scp;
381 
382 	scp = device_get_softc(dev);
383 	resp = &scp->res;
384 
385 	/* Initialize the chip. */
386 	if (csa_initialize(scp))
387 		return (ENXIO);
388 
389 	/* Reset the Processor. */
390 	csa_resetdsp(resp);
391 
392 	/* Download the Processor Image to the processor. */
393 	if (csa_downloadimage(resp))
394 		return (ENXIO);
395 
396 	return (bus_generic_resume(dev));
397 }
398 
399 static struct resource *
400 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
401 		   rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
402 {
403 	sc_p scp;
404 	csa_res *resp;
405 	struct resource *res;
406 
407 	scp = device_get_softc(bus);
408 	resp = &scp->res;
409 	switch (type) {
410 	case SYS_RES_IRQ:
411 		if (*rid != 0)
412 			return (NULL);
413 		res = resp->irq;
414 		break;
415 	case SYS_RES_MEMORY:
416 		switch (*rid) {
417 		case PCIR_BAR(0):
418 			res = resp->io;
419 			break;
420 		case PCIR_BAR(1):
421 			res = resp->mem;
422 			break;
423 		default:
424 			return (NULL);
425 		}
426 		break;
427 	default:
428 		return (NULL);
429 	}
430 
431 	return res;
432 }
433 
434 static int
435 csa_release_resource(device_t bus, device_t child, int type, int rid,
436 			struct resource *r)
437 {
438 	return (0);
439 }
440 
441 /*
442  * The following three functions deal with interrupt handling.
443  * An interrupt is primarily handled by the bridge driver.
444  * The bridge driver then determines the child devices to pass
445  * the interrupt. Certain information of the device can be read
446  * only once(eg the value of HISR). The bridge driver is responsible
447  * to pass such the information to the children.
448  */
449 
450 static int
451 csa_setup_intr(device_t bus, device_t child,
452 	       struct resource *irq, int flags,
453 	       driver_filter_t *filter,
454 	       driver_intr_t *intr, void *arg, void **cookiep)
455 {
456 	sc_p scp;
457 	csa_res *resp;
458 	struct sndcard_func *func;
459 
460 	if (filter != NULL) {
461 		printf("ata-csa.c: we cannot use a filter here\n");
462 		return (EINVAL);
463 	}
464 	scp = device_get_softc(bus);
465 	resp = &scp->res;
466 
467 	/*
468 	 * Look at the function code of the child to determine
469 	 * the appropriate handler for it.
470 	 */
471 	func = device_get_ivars(child);
472 	if (func == NULL || irq != resp->irq)
473 		return (EINVAL);
474 
475 	switch (func->func) {
476 	case SCF_PCM:
477 		scp->pcmintr = intr;
478 		scp->pcmintr_arg = arg;
479 		break;
480 
481 	case SCF_MIDI:
482 		scp->midiintr = intr;
483 		scp->midiintr_arg = arg;
484 		break;
485 
486 	default:
487 		return (EINVAL);
488 	}
489 	*cookiep = scp;
490 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
491 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
492 
493 	return (0);
494 }
495 
496 static int
497 csa_teardown_intr(device_t bus, device_t child,
498 		  struct resource *irq, void *cookie)
499 {
500 	sc_p scp;
501 	csa_res *resp;
502 	struct sndcard_func *func;
503 
504 	scp = device_get_softc(bus);
505 	resp = &scp->res;
506 
507 	/*
508 	 * Look at the function code of the child to determine
509 	 * the appropriate handler for it.
510 	 */
511 	func = device_get_ivars(child);
512 	if (func == NULL || irq != resp->irq || cookie != scp)
513 		return (EINVAL);
514 
515 	switch (func->func) {
516 	case SCF_PCM:
517 		scp->pcmintr = NULL;
518 		scp->pcmintr_arg = NULL;
519 		break;
520 
521 	case SCF_MIDI:
522 		scp->midiintr = NULL;
523 		scp->midiintr_arg = NULL;
524 		break;
525 
526 	default:
527 		return (EINVAL);
528 	}
529 
530 	return (0);
531 }
532 
533 /* The interrupt handler */
534 static void
535 csa_intr(void *arg)
536 {
537 	sc_p scp = arg;
538 	csa_res *resp;
539 	u_int32_t hisr;
540 
541 	resp = &scp->res;
542 
543 	/* Is this interrupt for us? */
544 	hisr = csa_readio(resp, BA0_HISR);
545 	if ((hisr & 0x7fffffff) == 0) {
546 		/* Throw an eoi. */
547 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
548 		return;
549 	}
550 
551 	/*
552 	 * Pass the value of HISR via struct csa_bridgeinfo.
553 	 * The children get access through their ivars.
554 	 */
555 	scp->binfo.hisr = hisr;
556 
557 	/* Invoke the handlers of the children. */
558 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
559 		scp->pcmintr(scp->pcmintr_arg);
560 		hisr &= ~(HISR_VC0 | HISR_VC1);
561 	}
562 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
563 		scp->midiintr(scp->midiintr_arg);
564 		hisr &= ~HISR_MIDI;
565 	}
566 
567 	/* Throw an eoi. */
568 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
569 }
570 
571 static int
572 csa_initialize(sc_p scp)
573 {
574 	int i;
575 	u_int32_t acsts, acisv;
576 	csa_res *resp;
577 
578 	resp = &scp->res;
579 
580 	/*
581 	 * First, blast the clock control register to zero so that the PLL starts
582 	 * out in a known state, and blast the master serial port control register
583 	 * to zero so that the serial ports also start out in a known state.
584 	 */
585 	csa_writeio(resp, BA0_CLKCR1, 0);
586 	csa_writeio(resp, BA0_SERMC1, 0);
587 
588 	/*
589 	 * If we are in AC97 mode, then we must set the part to a host controlled
590 	 * AC-link.  Otherwise, we won't be able to bring up the link.
591 	 */
592 #if 1
593 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
594 #else
595 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
596 #endif /* 1 */
597 
598 	/*
599 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
600 	 * spec) and then drive it high.  This is done for non AC97 modes since
601 	 * there might be logic external to the CS461x that uses the ARST# line
602 	 * for a reset.
603 	 */
604 	csa_writeio(resp, BA0_ACCTL, 1);
605 	DELAY(50);
606 	csa_writeio(resp, BA0_ACCTL, 0);
607 	DELAY(50);
608 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
609 
610 	/*
611 	 * The first thing we do here is to enable sync generation.  As soon
612 	 * as we start receiving bit clock, we'll start producing the SYNC
613 	 * signal.
614 	 */
615 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
616 
617 	/*
618 	 * Now wait for a short while to allow the AC97 part to start
619 	 * generating bit clock (so we don't try to start the PLL without an
620 	 * input clock).
621 	 */
622 	DELAY(50000);
623 
624 	/*
625 	 * Set the serial port timing configuration, so that
626 	 * the clock control circuit gets its clock from the correct place.
627 	 */
628 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
629 	DELAY(700000);
630 
631 	/*
632 	 * Write the selected clock control setup to the hardware.  Do not turn on
633 	 * SWCE yet (if requested), so that the devices clocked by the output of
634 	 * PLL are not clocked until the PLL is stable.
635 	 */
636 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
637 	csa_writeio(resp, BA0_PLLM, 0x3a);
638 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
639 
640 	/*
641 	 * Power up the PLL.
642 	 */
643 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
644 
645 	/*
646 	 * Wait until the PLL has stabilized.
647 	 */
648 	DELAY(5000);
649 
650 	/*
651 	 * Turn on clocking of the core so that we can setup the serial ports.
652 	 */
653 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
654 
655 	/*
656 	 * Fill the serial port FIFOs with silence.
657 	 */
658 	csa_clearserialfifos(resp);
659 
660 	/*
661 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
662 	 */
663 #ifdef notdef
664 	csa_writeio(resp, BA0_SERBSP, 0);
665 #endif /* notdef */
666 
667 	/*
668 	 *  Write the serial port configuration to the part.  The master
669 	 *  enable bit is not set until all other values have been written.
670 	 */
671 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
672 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
673 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
674 
675 	/*
676 	 * Wait for the codec ready signal from the AC97 codec.
677 	 */
678 	acsts = 0;
679 	for (i = 0 ; i < 1000 ; i++) {
680 		/*
681 		 * First, lets wait a short while to let things settle out a bit,
682 		 * and to prevent retrying the read too quickly.
683 		 */
684 		DELAY(125);
685 
686 		/*
687 		 * Read the AC97 status register to see if we've seen a CODEC READY
688 		 * signal from the AC97 codec.
689 		 */
690 		acsts = csa_readio(resp, BA0_ACSTS);
691 		if ((acsts & ACSTS_CRDY) != 0)
692 			break;
693 	}
694 
695 	/*
696 	 * Make sure we sampled CODEC READY.
697 	 */
698 	if ((acsts & ACSTS_CRDY) == 0)
699 		return (ENXIO);
700 
701 	/*
702 	 * Assert the vaid frame signal so that we can start sending commands
703 	 * to the AC97 codec.
704 	 */
705 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
706 
707 	/*
708 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
709 	 * the codec is pumping ADC data across the AC-link.
710 	 */
711 	acisv = 0;
712 	for (i = 0 ; i < 2000 ; i++) {
713 		/*
714 		 * First, lets wait a short while to let things settle out a bit,
715 		 * and to prevent retrying the read too quickly.
716 		 */
717 #ifdef notdef
718 		DELAY(10000000L); /* clw */
719 #else
720 		DELAY(1000);
721 #endif /* notdef */
722 		/*
723 		 * Read the input slot valid register and see if input slots 3 and
724 		 * 4 are valid yet.
725 		 */
726 		acisv = csa_readio(resp, BA0_ACISV);
727 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
728 			break;
729 	}
730 	/*
731 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
732 	 * an error.
733 	 */
734 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
735 		return (ENXIO);
736 
737 	/*
738 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
739 	 * commense the transfer of digital audio data to the AC97 codec.
740 	 */
741 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
742 
743 	/*
744 	 * Power down the DAC and ADC.  We will power them up (if) when we need
745 	 * them.
746 	 */
747 #ifdef notdef
748 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
749 #endif /* notdef */
750 
751 	/*
752 	 * Turn off the Processor by turning off the software clock enable flag in
753 	 * the clock control register.
754 	 */
755 #ifdef notdef
756 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
757 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
758 #endif /* notdef */
759 
760 	/*
761 	 * Enable interrupts on the part.
762 	 */
763 #if 0
764 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
765 #endif /* notdef */
766 
767 	return (0);
768 }
769 
770 void
771 csa_clearserialfifos(csa_res *resp)
772 {
773 	int i, j, pwr;
774 	u_int8_t clkcr1, serbst;
775 
776 	/*
777 	 * See if the devices are powered down.  If so, we must power them up first
778 	 * or they will not respond.
779 	 */
780 	pwr = 1;
781 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
782 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
783 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
784 		pwr = 0;
785 	}
786 
787 	/*
788 	 * We want to clear out the serial port FIFOs so we don't end up playing
789 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
790 	 * with zero (silence).
791 	 */
792 	csa_writeio(resp, BA0_SERBWP, 0);
793 
794 	/* Fill all 256 sample FIFO locations. */
795 	serbst = 0;
796 	for (i = 0 ; i < 256 ; i++) {
797 		/* Make sure the previous FIFO write operation has completed. */
798 		for (j = 0 ; j < 5 ; j++) {
799 			DELAY(100);
800 			serbst = csa_readio(resp, BA0_SERBST);
801 			if ((serbst & SERBST_WBSY) == 0)
802 				break;
803 		}
804 		if ((serbst & SERBST_WBSY) != 0) {
805 			if (!pwr)
806 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
807 		}
808 		/* Write the serial port FIFO index. */
809 		csa_writeio(resp, BA0_SERBAD, i);
810 		/* Tell the serial port to load the new value into the FIFO location. */
811 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
812 	}
813 	/*
814 	 *  Now, if we powered up the devices, then power them back down again.
815 	 *  This is kinda ugly, but should never happen.
816 	 */
817 	if (!pwr)
818 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
819 }
820 
821 void
822 csa_resetdsp(csa_res *resp)
823 {
824 	int i;
825 
826 	/*
827 	 * Write the reset bit of the SP control register.
828 	 */
829 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
830 
831 	/*
832 	 * Write the control register.
833 	 */
834 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
835 
836 	/*
837 	 * Clear the trap registers.
838 	 */
839 	for (i = 0 ; i < 8 ; i++) {
840 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
841 		csa_writemem(resp, BA1_TWPR, 0xffff);
842 	}
843 	csa_writemem(resp, BA1_DREG, 0);
844 
845 	/*
846 	 * Set the frame timer to reflect the number of cycles per frame.
847 	 */
848 	csa_writemem(resp, BA1_FRMT, 0xadf);
849 }
850 
851 static int
852 csa_downloadimage(csa_res *resp)
853 {
854 	int ret;
855 	u_long ul, offset;
856 
857 	for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
858 	        /*
859 	         * DMA this block from host memory to the appropriate
860 	         * memory on the CSDevice.
861 	         */
862 		ret = csa_transferimage(resp,
863 		    cs461x_firmware.BA1Array + offset,
864 		    cs461x_firmware.MemoryStat[ul].ulDestAddr,
865 		    cs461x_firmware.MemoryStat[ul].ulSourceSize);
866 		if (ret)
867 			return (ret);
868 		offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
869 	}
870 	return (0);
871 }
872 
873 static int
874 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
875 {
876 	u_long ul;
877 
878 	/*
879 	 * We do not allow DMAs from host memory to host memory (although the DMA
880 	 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
881 	 * in size (because that DMA can not do that).  Return an error if either
882 	 * of these conditions exist.
883 	 */
884 	if ((len & 0x3) != 0)
885 		return (EINVAL);
886 
887 	/* Check the destination address that it is a multiple of 4 */
888 	if ((dest & 0x3) != 0)
889 		return (EINVAL);
890 
891 	/* Write the buffer out. */
892 	for (ul = 0 ; ul < len ; ul += 4)
893 		csa_writemem(resp, dest + ul, src[ul >> 2]);
894 	return (0);
895 }
896 
897 int
898 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
899 {
900 	int i;
901 	u_int32_t acctl, acsts;
902 
903 	/*
904 	 * Make sure that there is not data sitting around from a previous
905 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
906 	 */
907 	csa_readio(resp, BA0_ACSDA);
908 
909 	/*
910 	 * Setup the AC97 control registers on the CS461x to send the
911 	 * appropriate command to the AC97 to perform the read.
912 	 * ACCAD = Command Address Register = 46Ch
913 	 * ACCDA = Command Data Register = 470h
914 	 * ACCTL = Control Register = 460h
915 	 * set DCV - will clear when process completed
916 	 * set CRW - Read command
917 	 * set VFRM - valid frame enabled
918 	 * set ESYN - ASYNC generation enabled
919 	 * set RSTN - ARST# inactive, AC97 codec not reset
920 	 */
921 
922 	/*
923 	 * Get the actual AC97 register from the offset
924 	 */
925 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
926 	csa_writeio(resp, BA0_ACCDA, 0);
927 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
928 
929 	/*
930 	 * Wait for the read to occur.
931 	 */
932 	acctl = 0;
933 	for (i = 0 ; i < 10 ; i++) {
934 		/*
935 		 * First, we want to wait for a short time.
936 		 */
937 		DELAY(25);
938 
939 		/*
940 		 * Now, check to see if the read has completed.
941 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
942 		 */
943 		acctl = csa_readio(resp, BA0_ACCTL);
944 		if ((acctl & ACCTL_DCV) == 0)
945 			break;
946 	}
947 
948 	/*
949 	 * Make sure the read completed.
950 	 */
951 	if ((acctl & ACCTL_DCV) != 0)
952 		return (EAGAIN);
953 
954 	/*
955 	 * Wait for the valid status bit to go active.
956 	 */
957 	acsts = 0;
958 	for (i = 0 ; i < 10 ; i++) {
959 		/*
960 		 * Read the AC97 status register.
961 		 * ACSTS = Status Register = 464h
962 		 */
963 		acsts = csa_readio(resp, BA0_ACSTS);
964 		/*
965 		 * See if we have valid status.
966 		 * VSTS - Valid Status
967 		 */
968 		if ((acsts & ACSTS_VSTS) != 0)
969 			break;
970 		/*
971 		 * Wait for a short while.
972 		 */
973 		 DELAY(25);
974 	}
975 
976 	/*
977 	 * Make sure we got valid status.
978 	 */
979 	if ((acsts & ACSTS_VSTS) == 0)
980 		return (EAGAIN);
981 
982 	/*
983 	 * Read the data returned from the AC97 register.
984 	 * ACSDA = Status Data Register = 474h
985 	 */
986 	*data = csa_readio(resp, BA0_ACSDA);
987 
988 	return (0);
989 }
990 
991 int
992 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
993 {
994 	int i;
995 	u_int32_t acctl;
996 
997 	/*
998 	 * Setup the AC97 control registers on the CS461x to send the
999 	 * appropriate command to the AC97 to perform the write.
1000 	 * ACCAD = Command Address Register = 46Ch
1001 	 * ACCDA = Command Data Register = 470h
1002 	 * ACCTL = Control Register = 460h
1003 	 * set DCV - will clear when process completed
1004 	 * set VFRM - valid frame enabled
1005 	 * set ESYN - ASYNC generation enabled
1006 	 * set RSTN - ARST# inactive, AC97 codec not reset
1007 	 */
1008 
1009 	/*
1010 	 * Get the actual AC97 register from the offset
1011 	 */
1012 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
1013 	csa_writeio(resp, BA0_ACCDA, data);
1014 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1015 
1016 	/*
1017 	 * Wait for the write to occur.
1018 	 */
1019 	acctl = 0;
1020 	for (i = 0 ; i < 10 ; i++) {
1021 		/*
1022 		 * First, we want to wait for a short time.
1023 		 */
1024 		DELAY(25);
1025 
1026 		/*
1027 		 * Now, check to see if the read has completed.
1028 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1029 		 */
1030 		acctl = csa_readio(resp, BA0_ACCTL);
1031 		if ((acctl & ACCTL_DCV) == 0)
1032 			break;
1033 	}
1034 
1035 	/*
1036 	 * Make sure the write completed.
1037 	 */
1038 	if ((acctl & ACCTL_DCV) != 0)
1039 		return (EAGAIN);
1040 
1041 	return (0);
1042 }
1043 
1044 u_int32_t
1045 csa_readio(csa_res *resp, u_long offset)
1046 {
1047 	u_int32_t ul;
1048 
1049 	if (offset < BA0_AC97_RESET)
1050 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1051 	else {
1052 		if (csa_readcodec(resp, offset, &ul))
1053 			ul = 0;
1054 		return (ul);
1055 	}
1056 }
1057 
1058 void
1059 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1060 {
1061 	if (offset < BA0_AC97_RESET)
1062 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1063 	else
1064 		csa_writecodec(resp, offset, data);
1065 }
1066 
1067 u_int32_t
1068 csa_readmem(csa_res *resp, u_long offset)
1069 {
1070 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1071 }
1072 
1073 void
1074 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1075 {
1076 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1077 }
1078 
1079 static device_method_t csa_methods[] = {
1080 	/* Device interface */
1081 	DEVMETHOD(device_probe,		csa_probe),
1082 	DEVMETHOD(device_attach,	csa_attach),
1083 	DEVMETHOD(device_detach,	csa_detach),
1084 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1085 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1086 	DEVMETHOD(device_resume,	csa_resume),
1087 
1088 	/* Bus interface */
1089 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1090 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1091 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1092 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1093 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1094 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1095 
1096 	DEVMETHOD_END
1097 };
1098 
1099 static driver_t csa_driver = {
1100 	"csa",
1101 	csa_methods,
1102 	sizeof(struct csa_softc),
1103 };
1104 
1105 /*
1106  * csa can be attached to a pci bus.
1107  */
1108 DRIVER_MODULE(snd_csa, pci, csa_driver, 0, 0);
1109 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1110 MODULE_VERSION(snd_csa, 1);
1111