xref: /freebsd/sys/dev/sound/pci/csa.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 1999 Seigo Tanimura
3  * All rights reserved.
4  *
5  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
6  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
7  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <machine/resource.h>
38 #include <machine/bus.h>
39 #include <sys/rman.h>
40 
41 #ifdef HAVE_KERNEL_OPTION_HEADERS
42 #include "opt_snd.h"
43 #endif
44 
45 #include <dev/sound/pcm/sound.h>
46 #include <dev/sound/chip.h>
47 #include <dev/sound/pci/csareg.h>
48 #include <dev/sound/pci/csavar.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <gnu/dev/sound/pci/csaimg.h>
54 
55 SND_DECLARE_FILE("$FreeBSD$");
56 
57 /* This is the pci device id. */
58 #define CS4610_PCI_ID 0x60011013
59 #define CS4614_PCI_ID 0x60031013
60 #define CS4615_PCI_ID 0x60041013
61 
62 /* Here is the parameter structure per a device. */
63 struct csa_softc {
64 	device_t dev; /* device */
65 	csa_res res; /* resources */
66 
67 	device_t pcm; /* pcm device */
68 	driver_intr_t* pcmintr; /* pcm intr */
69 	void *pcmintr_arg; /* pcm intr arg */
70 	device_t midi; /* midi device */
71 	driver_intr_t* midiintr; /* midi intr */
72 	void *midiintr_arg; /* midi intr arg */
73 	void *ih; /* cookie */
74 
75 	struct csa_card *card;
76 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
77 };
78 
79 typedef struct csa_softc *sc_p;
80 
81 static int csa_probe(device_t dev);
82 static int csa_attach(device_t dev);
83 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
84 					      u_long start, u_long end, u_long count, u_int flags);
85 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
86 				   struct resource *r);
87 static int csa_setup_intr(device_t bus, device_t child,
88 			  struct resource *irq, int flags,
89 #if __FreeBSD_version >= 700031
90 			  driver_filter_t *filter,
91 #endif
92 			  driver_intr_t *intr,  void *arg, void **cookiep);
93 static int csa_teardown_intr(device_t bus, device_t child,
94 			     struct resource *irq, void *cookie);
95 static driver_intr_t csa_intr;
96 static int csa_initialize(sc_p scp);
97 static int csa_downloadimage(csa_res *resp);
98 
99 static devclass_t csa_devclass;
100 
101 static void
102 amp_none(void)
103 {
104 }
105 
106 static void
107 amp_voyetra(void)
108 {
109 }
110 
111 static int
112 clkrun_hack(int run)
113 {
114 #ifdef __i386__
115 	devclass_t		pci_devclass;
116 	device_t		*pci_devices, *pci_children, *busp, *childp;
117 	int			pci_count = 0, pci_childcount = 0;
118 	int			i, j, port;
119 	u_int16_t		control;
120 	bus_space_tag_t		btag;
121 
122 	if ((pci_devclass = devclass_find("pci")) == NULL) {
123 		return ENXIO;
124 	}
125 
126 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
127 
128 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
129 		pci_childcount = 0;
130 		if (device_get_children(*busp, &pci_children, &pci_childcount))
131 			continue;
132 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
133 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
134 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
135 				/* XXX */
136 				btag = X86_BUS_SPACE_IO;
137 
138 				control = bus_space_read_2(btag, 0x0, port);
139 				control &= ~0x2000;
140 				control |= run? 0 : 0x2000;
141 				bus_space_write_2(btag, 0x0, port, control);
142 				free(pci_devices, M_TEMP);
143 				free(pci_children, M_TEMP);
144 				return 0;
145 			}
146 		}
147 		free(pci_children, M_TEMP);
148 	}
149 
150 	free(pci_devices, M_TEMP);
151 	return ENXIO;
152 #else
153 	return 0;
154 #endif
155 }
156 
157 static struct csa_card cards_4610[] = {
158 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
159 };
160 
161 static struct csa_card cards_4614[] = {
162 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
163 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
164 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
165 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
166 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
167 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
168 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
169 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
170 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
171 };
172 
173 static struct csa_card cards_4615[] = {
174 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
175 };
176 
177 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
178 
179 struct card_type {
180 	u_int32_t devid;
181 	char *name;
182 	struct csa_card *cards;
183 };
184 
185 static struct card_type cards[] = {
186 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
187 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
188 	{CS4615_PCI_ID, "CS4615", cards_4615},
189 	{0, NULL, NULL},
190 };
191 
192 static struct card_type *
193 csa_findcard(device_t dev)
194 {
195 	int i;
196 
197 	i = 0;
198 	while (cards[i].devid != 0) {
199 		if (pci_get_devid(dev) == cards[i].devid)
200 			return &cards[i];
201 		i++;
202 	}
203 	return NULL;
204 }
205 
206 struct csa_card *
207 csa_findsubcard(device_t dev)
208 {
209 	int i;
210 	struct card_type *card;
211 	struct csa_card *subcard;
212 
213 	card = csa_findcard(dev);
214 	if (card == NULL)
215 		return &nocard;
216 	subcard = card->cards;
217 	i = 0;
218 	while (subcard[i].subvendor != 0) {
219 		if (pci_get_subvendor(dev) == subcard[i].subvendor
220 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
221 			return &subcard[i];
222 		}
223 		i++;
224 	}
225 	return &subcard[i];
226 }
227 
228 static int
229 csa_probe(device_t dev)
230 {
231 	struct card_type *card;
232 
233 	card = csa_findcard(dev);
234 	if (card) {
235 		device_set_desc(dev, card->name);
236 		return BUS_PROBE_DEFAULT;
237 	}
238 	return ENXIO;
239 }
240 
241 static int
242 csa_attach(device_t dev)
243 {
244 	u_int32_t stcmd;
245 	sc_p scp;
246 	csa_res *resp;
247 	struct sndcard_func *func;
248 	int error = ENXIO;
249 
250 	scp = device_get_softc(dev);
251 
252 	/* Fill in the softc. */
253 	bzero(scp, sizeof(*scp));
254 	scp->dev = dev;
255 
256 	/* Wake up the device. */
257 	stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
258 	if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
259 		stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
260 		pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
261 	}
262 
263 	/* Allocate the resources. */
264 	resp = &scp->res;
265 	scp->card = csa_findsubcard(dev);
266 	scp->binfo.card = scp->card;
267 	printf("csa: card is %s\n", scp->card->name);
268 	resp->io_rid = PCIR_BAR(0);
269 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
270 		&resp->io_rid, RF_ACTIVE);
271 	if (resp->io == NULL)
272 		return (ENXIO);
273 	resp->mem_rid = PCIR_BAR(1);
274 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
275 		&resp->mem_rid, RF_ACTIVE);
276 	if (resp->mem == NULL)
277 		goto err_io;
278 	resp->irq_rid = 0;
279 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
280 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
281 	if (resp->irq == NULL)
282 		goto err_mem;
283 
284 	/* Enable interrupt. */
285 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
286 		goto err_intr;
287 #if 0
288 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
289 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
290 #endif
291 
292 	/* Initialize the chip. */
293 	if (csa_initialize(scp))
294 		goto err_teardown;
295 
296 	/* Reset the Processor. */
297 	csa_resetdsp(resp);
298 
299 	/* Download the Processor Image to the processor. */
300 	if (csa_downloadimage(resp))
301 		goto err_teardown;
302 
303 	/* Attach the children. */
304 
305 	/* PCM Audio */
306 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
307 	if (func == NULL) {
308 		error = ENOMEM;
309 		goto err_teardown;
310 	}
311 	func->varinfo = &scp->binfo;
312 	func->func = SCF_PCM;
313 	scp->pcm = device_add_child(dev, "pcm", -1);
314 	device_set_ivars(scp->pcm, func);
315 
316 	/* Midi Interface */
317 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
318 	if (func == NULL) {
319 		error = ENOMEM;
320 		goto err_teardown;
321 	}
322 	func->varinfo = &scp->binfo;
323 	func->func = SCF_MIDI;
324 	scp->midi = device_add_child(dev, "midi", -1);
325 	device_set_ivars(scp->midi, func);
326 
327 	bus_generic_attach(dev);
328 
329 	return (0);
330 
331 err_teardown:
332 	bus_teardown_intr(dev, resp->irq, scp->ih);
333 err_intr:
334 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
335 err_mem:
336 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
337 err_io:
338 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
339 	return (error);
340 }
341 
342 static int
343 csa_detach(device_t dev)
344 {
345 	csa_res *resp;
346 	sc_p scp;
347 	struct sndcard_func *func;
348 	int err;
349 
350 	scp = device_get_softc(dev);
351 	resp = &scp->res;
352 
353 	if (scp->midi != NULL) {
354 		func = device_get_ivars(scp->midi);
355 		err = device_delete_child(dev, scp->midi);
356 		if (err != 0)
357 			return err;
358 		if (func != NULL)
359 			free(func, M_DEVBUF);
360 		scp->midi = NULL;
361 	}
362 
363 	if (scp->pcm != NULL) {
364 		func = device_get_ivars(scp->pcm);
365 		err = device_delete_child(dev, scp->pcm);
366 		if (err != 0)
367 			return err;
368 		if (func != NULL)
369 			free(func, M_DEVBUF);
370 		scp->pcm = NULL;
371 	}
372 
373 	bus_teardown_intr(dev, resp->irq, scp->ih);
374 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
375 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
376 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
377 
378 	return bus_generic_detach(dev);
379 }
380 
381 static int
382 csa_resume(device_t dev)
383 {
384 	csa_res *resp;
385 	sc_p scp;
386 
387 	scp = device_get_softc(dev);
388 	resp = &scp->res;
389 
390 	/* Initialize the chip. */
391 	if (csa_initialize(scp))
392 		return (ENXIO);
393 
394 	/* Reset the Processor. */
395 	csa_resetdsp(resp);
396 
397 	/* Download the Processor Image to the processor. */
398 	if (csa_downloadimage(resp))
399 		return (ENXIO);
400 
401 	return (bus_generic_resume(dev));
402 }
403 
404 static struct resource *
405 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
406 		      u_long start, u_long end, u_long count, u_int flags)
407 {
408 	sc_p scp;
409 	csa_res *resp;
410 	struct resource *res;
411 
412 	scp = device_get_softc(bus);
413 	resp = &scp->res;
414 	switch (type) {
415 	case SYS_RES_IRQ:
416 		if (*rid != 0)
417 			return (NULL);
418 		res = resp->irq;
419 		break;
420 	case SYS_RES_MEMORY:
421 		switch (*rid) {
422 		case PCIR_BAR(0):
423 			res = resp->io;
424 			break;
425 		case PCIR_BAR(1):
426 			res = resp->mem;
427 			break;
428 		default:
429 			return (NULL);
430 		}
431 		break;
432 	default:
433 		return (NULL);
434 	}
435 
436 	return res;
437 }
438 
439 static int
440 csa_release_resource(device_t bus, device_t child, int type, int rid,
441 			struct resource *r)
442 {
443 	return (0);
444 }
445 
446 /*
447  * The following three functions deal with interrupt handling.
448  * An interrupt is primarily handled by the bridge driver.
449  * The bridge driver then determines the child devices to pass
450  * the interrupt. Certain information of the device can be read
451  * only once(eg the value of HISR). The bridge driver is responsible
452  * to pass such the information to the children.
453  */
454 
455 static int
456 csa_setup_intr(device_t bus, device_t child,
457 	       struct resource *irq, int flags,
458 #if __FreeBSD_version >= 700031
459 	       driver_filter_t *filter,
460 #endif
461 	       driver_intr_t *intr, void *arg, void **cookiep)
462 {
463 	sc_p scp;
464 	csa_res *resp;
465 	struct sndcard_func *func;
466 
467 #if __FreeBSD_version >= 700031
468 	if (filter != NULL) {
469 		printf("ata-csa.c: we cannot use a filter here\n");
470 		return (EINVAL);
471 	}
472 #endif
473 	scp = device_get_softc(bus);
474 	resp = &scp->res;
475 
476 	/*
477 	 * Look at the function code of the child to determine
478 	 * the appropriate hander for it.
479 	 */
480 	func = device_get_ivars(child);
481 	if (func == NULL || irq != resp->irq)
482 		return (EINVAL);
483 
484 	switch (func->func) {
485 	case SCF_PCM:
486 		scp->pcmintr = intr;
487 		scp->pcmintr_arg = arg;
488 		break;
489 
490 	case SCF_MIDI:
491 		scp->midiintr = intr;
492 		scp->midiintr_arg = arg;
493 		break;
494 
495 	default:
496 		return (EINVAL);
497 	}
498 	*cookiep = scp;
499 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
500 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
501 
502 	return (0);
503 }
504 
505 static int
506 csa_teardown_intr(device_t bus, device_t child,
507 		  struct resource *irq, void *cookie)
508 {
509 	sc_p scp;
510 	csa_res *resp;
511 	struct sndcard_func *func;
512 
513 	scp = device_get_softc(bus);
514 	resp = &scp->res;
515 
516 	/*
517 	 * Look at the function code of the child to determine
518 	 * the appropriate hander for it.
519 	 */
520 	func = device_get_ivars(child);
521 	if (func == NULL || irq != resp->irq || cookie != scp)
522 		return (EINVAL);
523 
524 	switch (func->func) {
525 	case SCF_PCM:
526 		scp->pcmintr = NULL;
527 		scp->pcmintr_arg = NULL;
528 		break;
529 
530 	case SCF_MIDI:
531 		scp->midiintr = NULL;
532 		scp->midiintr_arg = NULL;
533 		break;
534 
535 	default:
536 		return (EINVAL);
537 	}
538 
539 	return (0);
540 }
541 
542 /* The interrupt handler */
543 static void
544 csa_intr(void *arg)
545 {
546 	sc_p scp = arg;
547 	csa_res *resp;
548 	u_int32_t hisr;
549 
550 	resp = &scp->res;
551 
552 	/* Is this interrupt for us? */
553 	hisr = csa_readio(resp, BA0_HISR);
554 	if ((hisr & 0x7fffffff) == 0) {
555 		/* Throw an eoi. */
556 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
557 		return;
558 	}
559 
560 	/*
561 	 * Pass the value of HISR via struct csa_bridgeinfo.
562 	 * The children get access through their ivars.
563 	 */
564 	scp->binfo.hisr = hisr;
565 
566 	/* Invoke the handlers of the children. */
567 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
568 		scp->pcmintr(scp->pcmintr_arg);
569 		hisr &= ~(HISR_VC0 | HISR_VC1);
570 	}
571 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
572 		scp->midiintr(scp->midiintr_arg);
573 		hisr &= ~HISR_MIDI;
574 	}
575 
576 	/* Throw an eoi. */
577 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
578 }
579 
580 static int
581 csa_initialize(sc_p scp)
582 {
583 	int i;
584 	u_int32_t acsts, acisv;
585 	csa_res *resp;
586 
587 	resp = &scp->res;
588 
589 	/*
590 	 * First, blast the clock control register to zero so that the PLL starts
591 	 * out in a known state, and blast the master serial port control register
592 	 * to zero so that the serial ports also start out in a known state.
593 	 */
594 	csa_writeio(resp, BA0_CLKCR1, 0);
595 	csa_writeio(resp, BA0_SERMC1, 0);
596 
597 	/*
598 	 * If we are in AC97 mode, then we must set the part to a host controlled
599 	 * AC-link.  Otherwise, we won't be able to bring up the link.
600 	 */
601 #if 1
602 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
603 #else
604 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
605 #endif /* 1 */
606 
607 	/*
608 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
609 	 * spec) and then drive it high.  This is done for non AC97 modes since
610 	 * there might be logic external to the CS461x that uses the ARST# line
611 	 * for a reset.
612 	 */
613 	csa_writeio(resp, BA0_ACCTL, 1);
614 	DELAY(50);
615 	csa_writeio(resp, BA0_ACCTL, 0);
616 	DELAY(50);
617 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
618 
619 	/*
620 	 * The first thing we do here is to enable sync generation.  As soon
621 	 * as we start receiving bit clock, we'll start producing the SYNC
622 	 * signal.
623 	 */
624 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
625 
626 	/*
627 	 * Now wait for a short while to allow the AC97 part to start
628 	 * generating bit clock (so we don't try to start the PLL without an
629 	 * input clock).
630 	 */
631 	DELAY(50000);
632 
633 	/*
634 	 * Set the serial port timing configuration, so that
635 	 * the clock control circuit gets its clock from the correct place.
636 	 */
637 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
638 	DELAY(700000);
639 
640 	/*
641 	 * Write the selected clock control setup to the hardware.  Do not turn on
642 	 * SWCE yet (if requested), so that the devices clocked by the output of
643 	 * PLL are not clocked until the PLL is stable.
644 	 */
645 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
646 	csa_writeio(resp, BA0_PLLM, 0x3a);
647 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
648 
649 	/*
650 	 * Power up the PLL.
651 	 */
652 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
653 
654 	/*
655 	 * Wait until the PLL has stabilized.
656 	 */
657 	DELAY(5000);
658 
659 	/*
660 	 * Turn on clocking of the core so that we can setup the serial ports.
661 	 */
662 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
663 
664 	/*
665 	 * Fill the serial port FIFOs with silence.
666 	 */
667 	csa_clearserialfifos(resp);
668 
669 	/*
670 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
671 	 */
672 #ifdef notdef
673 	csa_writeio(resp, BA0_SERBSP, 0);
674 #endif /* notdef */
675 
676 	/*
677 	 *  Write the serial port configuration to the part.  The master
678 	 *  enable bit is not set until all other values have been written.
679 	 */
680 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
681 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
682 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
683 
684 	/*
685 	 * Wait for the codec ready signal from the AC97 codec.
686 	 */
687 	acsts = 0;
688 	for (i = 0 ; i < 1000 ; i++) {
689 		/*
690 		 * First, lets wait a short while to let things settle out a bit,
691 		 * and to prevent retrying the read too quickly.
692 		 */
693 		DELAY(125);
694 
695 		/*
696 		 * Read the AC97 status register to see if we've seen a CODEC READY
697 		 * signal from the AC97 codec.
698 		 */
699 		acsts = csa_readio(resp, BA0_ACSTS);
700 		if ((acsts & ACSTS_CRDY) != 0)
701 			break;
702 	}
703 
704 	/*
705 	 * Make sure we sampled CODEC READY.
706 	 */
707 	if ((acsts & ACSTS_CRDY) == 0)
708 		return (ENXIO);
709 
710 	/*
711 	 * Assert the vaid frame signal so that we can start sending commands
712 	 * to the AC97 codec.
713 	 */
714 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
715 
716 	/*
717 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
718 	 * the codec is pumping ADC data across the AC-link.
719 	 */
720 	acisv = 0;
721 	for (i = 0 ; i < 1000 ; i++) {
722 		/*
723 		 * First, lets wait a short while to let things settle out a bit,
724 		 * and to prevent retrying the read too quickly.
725 		 */
726 #ifdef notdef
727 		DELAY(10000000L); /* clw */
728 #else
729 		DELAY(1000);
730 #endif /* notdef */
731 		/*
732 		 * Read the input slot valid register and see if input slots 3 and
733 		 * 4 are valid yet.
734 		 */
735 		acisv = csa_readio(resp, BA0_ACISV);
736 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
737 			break;
738 	}
739 	/*
740 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
741 	 * an error.
742 	 */
743 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
744 		return (ENXIO);
745 
746 	/*
747 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
748 	 * commense the transfer of digital audio data to the AC97 codec.
749 	 */
750 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
751 
752 	/*
753 	 * Power down the DAC and ADC.  We will power them up (if) when we need
754 	 * them.
755 	 */
756 #ifdef notdef
757 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
758 #endif /* notdef */
759 
760 	/*
761 	 * Turn off the Processor by turning off the software clock enable flag in
762 	 * the clock control register.
763 	 */
764 #ifdef notdef
765 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
766 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
767 #endif /* notdef */
768 
769 	/*
770 	 * Enable interrupts on the part.
771 	 */
772 #if 0
773 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
774 #endif /* notdef */
775 
776 	return (0);
777 }
778 
779 void
780 csa_clearserialfifos(csa_res *resp)
781 {
782 	int i, j, pwr;
783 	u_int8_t clkcr1, serbst;
784 
785 	/*
786 	 * See if the devices are powered down.  If so, we must power them up first
787 	 * or they will not respond.
788 	 */
789 	pwr = 1;
790 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
791 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
792 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
793 		pwr = 0;
794 	}
795 
796 	/*
797 	 * We want to clear out the serial port FIFOs so we don't end up playing
798 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
799 	 * with zero (silence).
800 	 */
801 	csa_writeio(resp, BA0_SERBWP, 0);
802 
803 	/* Fill all 256 sample FIFO locations. */
804 	serbst = 0;
805 	for (i = 0 ; i < 256 ; i++) {
806 		/* Make sure the previous FIFO write operation has completed. */
807 		for (j = 0 ; j < 5 ; j++) {
808 			DELAY(100);
809 			serbst = csa_readio(resp, BA0_SERBST);
810 			if ((serbst & SERBST_WBSY) == 0)
811 				break;
812 		}
813 		if ((serbst & SERBST_WBSY) != 0) {
814 			if (!pwr)
815 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
816 		}
817 		/* Write the serial port FIFO index. */
818 		csa_writeio(resp, BA0_SERBAD, i);
819 		/* Tell the serial port to load the new value into the FIFO location. */
820 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
821 	}
822 	/*
823 	 *  Now, if we powered up the devices, then power them back down again.
824 	 *  This is kinda ugly, but should never happen.
825 	 */
826 	if (!pwr)
827 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
828 }
829 
830 void
831 csa_resetdsp(csa_res *resp)
832 {
833 	int i;
834 
835 	/*
836 	 * Write the reset bit of the SP control register.
837 	 */
838 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
839 
840 	/*
841 	 * Write the control register.
842 	 */
843 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
844 
845 	/*
846 	 * Clear the trap registers.
847 	 */
848 	for (i = 0 ; i < 8 ; i++) {
849 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
850 		csa_writemem(resp, BA1_TWPR, 0xffff);
851 	}
852 	csa_writemem(resp, BA1_DREG, 0);
853 
854 	/*
855 	 * Set the frame timer to reflect the number of cycles per frame.
856 	 */
857 	csa_writemem(resp, BA1_FRMT, 0xadf);
858 }
859 
860 static int
861 csa_downloadimage(csa_res *resp)
862 {
863 	int i;
864 	u_int32_t tmp, src, dst, count, data;
865 
866 	for (i = 0; i < CLEAR__COUNT; i++) {
867 		dst = ClrStat[i].BA1__DestByteOffset;
868 		count = ClrStat[i].BA1__SourceSize;
869 		for (tmp = 0; tmp < count; tmp += 4)
870 			csa_writemem(resp, dst + tmp, 0x00000000);
871 	}
872 
873 	for (i = 0; i < FILL__COUNT; i++) {
874 		src = 0;
875 		dst = FillStat[i].Offset;
876 		count = FillStat[i].Size;
877 		for (tmp = 0; tmp < count; tmp += 4) {
878 			data = FillStat[i].pFill[src];
879 			csa_writemem(resp, dst + tmp, data);
880 			src++;
881 		}
882 	}
883 
884 	return (0);
885 }
886 
887 int
888 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
889 {
890 	int i;
891 	u_int32_t acctl, acsts;
892 
893 	/*
894 	 * Make sure that there is not data sitting around from a previous
895 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
896 	 */
897 	csa_readio(resp, BA0_ACSDA);
898 
899 	/*
900 	 * Setup the AC97 control registers on the CS461x to send the
901 	 * appropriate command to the AC97 to perform the read.
902 	 * ACCAD = Command Address Register = 46Ch
903 	 * ACCDA = Command Data Register = 470h
904 	 * ACCTL = Control Register = 460h
905 	 * set DCV - will clear when process completed
906 	 * set CRW - Read command
907 	 * set VFRM - valid frame enabled
908 	 * set ESYN - ASYNC generation enabled
909 	 * set RSTN - ARST# inactive, AC97 codec not reset
910 	 */
911 
912 	/*
913 	 * Get the actual AC97 register from the offset
914 	 */
915 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
916 	csa_writeio(resp, BA0_ACCDA, 0);
917 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
918 
919 	/*
920 	 * Wait for the read to occur.
921 	 */
922 	acctl = 0;
923 	for (i = 0 ; i < 10 ; i++) {
924 		/*
925 		 * First, we want to wait for a short time.
926 		 */
927 		DELAY(25);
928 
929 		/*
930 		 * Now, check to see if the read has completed.
931 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
932 		 */
933 		acctl = csa_readio(resp, BA0_ACCTL);
934 		if ((acctl & ACCTL_DCV) == 0)
935 			break;
936 	}
937 
938 	/*
939 	 * Make sure the read completed.
940 	 */
941 	if ((acctl & ACCTL_DCV) != 0)
942 		return (EAGAIN);
943 
944 	/*
945 	 * Wait for the valid status bit to go active.
946 	 */
947 	acsts = 0;
948 	for (i = 0 ; i < 10 ; i++) {
949 		/*
950 		 * Read the AC97 status register.
951 		 * ACSTS = Status Register = 464h
952 		 */
953 		acsts = csa_readio(resp, BA0_ACSTS);
954 		/*
955 		 * See if we have valid status.
956 		 * VSTS - Valid Status
957 		 */
958 		if ((acsts & ACSTS_VSTS) != 0)
959 			break;
960 		/*
961 		 * Wait for a short while.
962 		 */
963 		 DELAY(25);
964 	}
965 
966 	/*
967 	 * Make sure we got valid status.
968 	 */
969 	if ((acsts & ACSTS_VSTS) == 0)
970 		return (EAGAIN);
971 
972 	/*
973 	 * Read the data returned from the AC97 register.
974 	 * ACSDA = Status Data Register = 474h
975 	 */
976 	*data = csa_readio(resp, BA0_ACSDA);
977 
978 	return (0);
979 }
980 
981 int
982 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
983 {
984 	int i;
985 	u_int32_t acctl;
986 
987 	/*
988 	 * Setup the AC97 control registers on the CS461x to send the
989 	 * appropriate command to the AC97 to perform the write.
990 	 * ACCAD = Command Address Register = 46Ch
991 	 * ACCDA = Command Data Register = 470h
992 	 * ACCTL = Control Register = 460h
993 	 * set DCV - will clear when process completed
994 	 * set VFRM - valid frame enabled
995 	 * set ESYN - ASYNC generation enabled
996 	 * set RSTN - ARST# inactive, AC97 codec not reset
997 	 */
998 
999 	/*
1000 	 * Get the actual AC97 register from the offset
1001 	 */
1002 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
1003 	csa_writeio(resp, BA0_ACCDA, data);
1004 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1005 
1006 	/*
1007 	 * Wait for the write to occur.
1008 	 */
1009 	acctl = 0;
1010 	for (i = 0 ; i < 10 ; i++) {
1011 		/*
1012 		 * First, we want to wait for a short time.
1013 		 */
1014 		DELAY(25);
1015 
1016 		/*
1017 		 * Now, check to see if the read has completed.
1018 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1019 		 */
1020 		acctl = csa_readio(resp, BA0_ACCTL);
1021 		if ((acctl & ACCTL_DCV) == 0)
1022 			break;
1023 	}
1024 
1025 	/*
1026 	 * Make sure the write completed.
1027 	 */
1028 	if ((acctl & ACCTL_DCV) != 0)
1029 		return (EAGAIN);
1030 
1031 	return (0);
1032 }
1033 
1034 u_int32_t
1035 csa_readio(csa_res *resp, u_long offset)
1036 {
1037 	u_int32_t ul;
1038 
1039 	if (offset < BA0_AC97_RESET)
1040 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1041 	else {
1042 		if (csa_readcodec(resp, offset, &ul))
1043 			ul = 0;
1044 		return (ul);
1045 	}
1046 }
1047 
1048 void
1049 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1050 {
1051 	if (offset < BA0_AC97_RESET)
1052 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1053 	else
1054 		csa_writecodec(resp, offset, data);
1055 }
1056 
1057 u_int32_t
1058 csa_readmem(csa_res *resp, u_long offset)
1059 {
1060 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1061 }
1062 
1063 void
1064 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1065 {
1066 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1067 }
1068 
1069 static device_method_t csa_methods[] = {
1070 	/* Device interface */
1071 	DEVMETHOD(device_probe,		csa_probe),
1072 	DEVMETHOD(device_attach,	csa_attach),
1073 	DEVMETHOD(device_detach,	csa_detach),
1074 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1075 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1076 	DEVMETHOD(device_resume,	csa_resume),
1077 
1078 	/* Bus interface */
1079 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
1080 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1081 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1082 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1083 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1084 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1085 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1086 
1087 	{ 0, 0 }
1088 };
1089 
1090 static driver_t csa_driver = {
1091 	"csa",
1092 	csa_methods,
1093 	sizeof(struct csa_softc),
1094 };
1095 
1096 /*
1097  * csa can be attached to a pci bus.
1098  */
1099 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1100 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1101 MODULE_VERSION(snd_csa, 1);
1102