xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 SND_DECLARE_FILE("$FreeBSD$");
55 
56 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
57 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
58 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
59 
60 #define HDAC_QUIRK_64BIT	(1 << 0)
61 #define HDAC_QUIRK_DMAPOS	(1 << 1)
62 #define HDAC_QUIRK_MSI		(1 << 2)
63 
64 static const struct {
65 	const char *key;
66 	uint32_t value;
67 } hdac_quirks_tab[] = {
68 	{ "64bit", HDAC_QUIRK_64BIT },
69 	{ "dmapos", HDAC_QUIRK_DMAPOS },
70 	{ "msi", HDAC_QUIRK_MSI },
71 };
72 
73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
74 
75 static const struct {
76 	uint32_t	model;
77 	const char	*desc;
78 	char		quirks_on;
79 	char		quirks_off;
80 } hdac_devices[] = {
81 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
82 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
83 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
84 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
85 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
87 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
88 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
89 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
90 	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
91 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
92 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
93 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
94 	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
95 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
96 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
97 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
98 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
99 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
100 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
101 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
102 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
103 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
104 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
105 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
106 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
107 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
108 	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
109 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
110 	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
111 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
112 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
113 	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
114 	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
115 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
116 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
117 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
118 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
119 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
120 	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
121 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
122 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
123 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
124 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
125 	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
126 	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
127 	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
128 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
129 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
130 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
131 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
132 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
133 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
134 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
135 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
136 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
137 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
138 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
139 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
140 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
141 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
142 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
143 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
144 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
145 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
146 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
147 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
148 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
149 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
150 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
151 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
152 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
153 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
154 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
155 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
156 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
157 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
158 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
159 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
160 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
161 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
162 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
163 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
164 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
165 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
166 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
167 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
168 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
169 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
170 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
171 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
172 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
173 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
174 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
175 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
176 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
177 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
178 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
179 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
180 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
181 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
182 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
183 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
184 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
185 	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
186 	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
187 	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
188 	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
189 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
190 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
191 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
192 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
193 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
194 	/* Unknown */
195 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
196 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
197 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
198 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
199 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
200 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
201 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
202 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
203 };
204 
205 static const struct {
206 	uint16_t vendor;
207 	uint8_t reg;
208 	uint8_t mask;
209 	uint8_t enable;
210 } hdac_pcie_snoop[] = {
211 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
212 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
213 	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
214 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
215 };
216 
217 /****************************************************************************
218  * Function prototypes
219  ****************************************************************************/
220 static void	hdac_intr_handler(void *);
221 static int	hdac_reset(struct hdac_softc *, bool);
222 static int	hdac_get_capabilities(struct hdac_softc *);
223 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
224 static int	hdac_dma_alloc(struct hdac_softc *,
225 					struct hdac_dma *, bus_size_t);
226 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
227 static int	hdac_mem_alloc(struct hdac_softc *);
228 static void	hdac_mem_free(struct hdac_softc *);
229 static int	hdac_irq_alloc(struct hdac_softc *);
230 static void	hdac_irq_free(struct hdac_softc *);
231 static void	hdac_corb_init(struct hdac_softc *);
232 static void	hdac_rirb_init(struct hdac_softc *);
233 static void	hdac_corb_start(struct hdac_softc *);
234 static void	hdac_rirb_start(struct hdac_softc *);
235 
236 static void	hdac_attach2(void *);
237 
238 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
239 
240 static int	hdac_probe(device_t);
241 static int	hdac_attach(device_t);
242 static int	hdac_detach(device_t);
243 static int	hdac_suspend(device_t);
244 static int	hdac_resume(device_t);
245 
246 static int	hdac_rirb_flush(struct hdac_softc *sc);
247 static int	hdac_unsolq_flush(struct hdac_softc *sc);
248 
249 /* This function surely going to make its way into upper level someday. */
250 static void
251 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
252 {
253 	const char *res = NULL;
254 	int i = 0, j, k, len, inv;
255 
256 	if (resource_string_value(device_get_name(sc->dev),
257 	    device_get_unit(sc->dev), "config", &res) != 0)
258 		return;
259 	if (!(res != NULL && strlen(res) > 0))
260 		return;
261 	HDA_BOOTVERBOSE(
262 		device_printf(sc->dev, "Config options:");
263 	);
264 	for (;;) {
265 		while (res[i] != '\0' &&
266 		    (res[i] == ',' || isspace(res[i]) != 0))
267 			i++;
268 		if (res[i] == '\0') {
269 			HDA_BOOTVERBOSE(
270 				printf("\n");
271 			);
272 			return;
273 		}
274 		j = i;
275 		while (res[j] != '\0' &&
276 		    !(res[j] == ',' || isspace(res[j]) != 0))
277 			j++;
278 		len = j - i;
279 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
280 			inv = 2;
281 		else
282 			inv = 0;
283 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
284 			if (strncmp(res + i + inv,
285 			    hdac_quirks_tab[k].key, len - inv) != 0)
286 				continue;
287 			if (len - inv != strlen(hdac_quirks_tab[k].key))
288 				continue;
289 			HDA_BOOTVERBOSE(
290 				printf(" %s%s", (inv != 0) ? "no" : "",
291 				    hdac_quirks_tab[k].key);
292 			);
293 			if (inv == 0) {
294 				*on |= hdac_quirks_tab[k].value;
295 				*off &= ~hdac_quirks_tab[k].value;
296 			} else if (inv != 0) {
297 				*off |= hdac_quirks_tab[k].value;
298 				*on &= ~hdac_quirks_tab[k].value;
299 			}
300 			break;
301 		}
302 		i = j;
303 	}
304 }
305 
306 static void
307 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
308 {
309 	device_t dev;
310 	uint8_t rirbsts;
311 	int i;
312 
313 	/* Was this a controller interrupt? */
314 	if (intsts & HDAC_INTSTS_CIS) {
315 		/*
316 		 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
317 		 * we will need to check and clear HDAC_STATESTS.
318 		 * That event is used to report codec status changes such as
319 		 * a reset or a wake-up event.
320 		 */
321 		/*
322 		 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
323 		 * will need to check and clear HDAC_CORBSTS_CMEI in
324 		 * HDAC_CORBSTS.
325 		 * That event is used to report CORB memory errors.
326 		 */
327 		/*
328 		 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
329 		 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
330 		 * HDAC_RIRBSTS.
331 		 * That event is used to report response FIFO overruns.
332 		 */
333 
334 		/* Get as many responses that we can */
335 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
336 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
337 			HDAC_WRITE_1(&sc->mem,
338 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
339 			hdac_rirb_flush(sc);
340 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
341 		}
342 		if (sc->unsolq_rp != sc->unsolq_wp)
343 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
344 	}
345 
346 	if (intsts & HDAC_INTSTS_SIS_MASK) {
347 		for (i = 0; i < sc->num_ss; i++) {
348 			if ((intsts & (1 << i)) == 0)
349 				continue;
350 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
351 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
352 			if ((dev = sc->streams[i].dev) != NULL) {
353 				HDAC_STREAM_INTR(dev,
354 				    sc->streams[i].dir, sc->streams[i].stream);
355 			}
356 		}
357 	}
358 }
359 
360 /****************************************************************************
361  * void hdac_intr_handler(void *)
362  *
363  * Interrupt handler. Processes interrupts received from the hdac.
364  ****************************************************************************/
365 static void
366 hdac_intr_handler(void *context)
367 {
368 	struct hdac_softc *sc;
369 	uint32_t intsts;
370 
371 	sc = (struct hdac_softc *)context;
372 
373 	/*
374 	 * Loop until HDAC_INTSTS_GIS gets clear.
375 	 * It is plausible that hardware interrupts a host only when GIS goes
376 	 * from zero to one.  GIS is formed by OR-ing multiple hardware
377 	 * statuses, so it's possible that a previously cleared status gets set
378 	 * again while another status has not been cleared yet.  Thus, there
379 	 * will be no new interrupt as GIS always stayed set.  If we don't
380 	 * re-examine GIS then we can leave it set and never get an interrupt
381 	 * again.
382 	 */
383 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
384 	while ((intsts & HDAC_INTSTS_GIS) != 0) {
385 		hdac_lock(sc);
386 		hdac_one_intr(sc, intsts);
387 		hdac_unlock(sc);
388 		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
389 	}
390 }
391 
392 static void
393 hdac_poll_callback(void *arg)
394 {
395 	struct hdac_softc *sc = arg;
396 
397 	if (sc == NULL)
398 		return;
399 
400 	hdac_lock(sc);
401 	if (sc->polling == 0) {
402 		hdac_unlock(sc);
403 		return;
404 	}
405 	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
406 	hdac_unlock(sc);
407 
408 	hdac_intr_handler(sc);
409 }
410 
411 /****************************************************************************
412  * int hdac_reset(hdac_softc *, bool)
413  *
414  * Reset the hdac to a quiescent and known state.
415  ****************************************************************************/
416 static int
417 hdac_reset(struct hdac_softc *sc, bool wakeup)
418 {
419 	uint32_t gctl;
420 	int count, i;
421 
422 	/*
423 	 * Stop all Streams DMA engine
424 	 */
425 	for (i = 0; i < sc->num_iss; i++)
426 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
427 	for (i = 0; i < sc->num_oss; i++)
428 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
429 	for (i = 0; i < sc->num_bss; i++)
430 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
431 
432 	/*
433 	 * Stop Control DMA engines.
434 	 */
435 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
436 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
437 
438 	/*
439 	 * Reset DMA position buffer.
440 	 */
441 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
442 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
443 
444 	/*
445 	 * Reset the controller. The reset must remain asserted for
446 	 * a minimum of 100us.
447 	 */
448 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
449 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
450 	count = 10000;
451 	do {
452 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
453 		if (!(gctl & HDAC_GCTL_CRST))
454 			break;
455 		DELAY(10);
456 	} while (--count);
457 	if (gctl & HDAC_GCTL_CRST) {
458 		device_printf(sc->dev, "Unable to put hdac in reset\n");
459 		return (ENXIO);
460 	}
461 
462 	/* If wakeup is not requested - leave the controller in reset state. */
463 	if (!wakeup)
464 		return (0);
465 
466 	DELAY(100);
467 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
468 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
469 	count = 10000;
470 	do {
471 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
472 		if (gctl & HDAC_GCTL_CRST)
473 			break;
474 		DELAY(10);
475 	} while (--count);
476 	if (!(gctl & HDAC_GCTL_CRST)) {
477 		device_printf(sc->dev, "Device stuck in reset\n");
478 		return (ENXIO);
479 	}
480 
481 	/*
482 	 * Wait for codecs to finish their own reset sequence. The delay here
483 	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
484 	 */
485 	DELAY(1000);
486 
487 	return (0);
488 }
489 
490 /****************************************************************************
491  * int hdac_get_capabilities(struct hdac_softc *);
492  *
493  * Retreive the general capabilities of the hdac;
494  *	Number of Input Streams
495  *	Number of Output Streams
496  *	Number of bidirectional Streams
497  *	64bit ready
498  *	CORB and RIRB sizes
499  ****************************************************************************/
500 static int
501 hdac_get_capabilities(struct hdac_softc *sc)
502 {
503 	uint16_t gcap;
504 	uint8_t corbsize, rirbsize;
505 
506 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
507 	sc->num_iss = HDAC_GCAP_ISS(gcap);
508 	sc->num_oss = HDAC_GCAP_OSS(gcap);
509 	sc->num_bss = HDAC_GCAP_BSS(gcap);
510 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
511 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
512 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
513 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
514 		sc->support_64bit = 1;
515 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
516 		sc->support_64bit = 0;
517 
518 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
519 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
520 	    HDAC_CORBSIZE_CORBSZCAP_256)
521 		sc->corb_size = 256;
522 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
523 	    HDAC_CORBSIZE_CORBSZCAP_16)
524 		sc->corb_size = 16;
525 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
526 	    HDAC_CORBSIZE_CORBSZCAP_2)
527 		sc->corb_size = 2;
528 	else {
529 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
530 		    __func__, corbsize);
531 		return (ENXIO);
532 	}
533 
534 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
535 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
536 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
537 		sc->rirb_size = 256;
538 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
539 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
540 		sc->rirb_size = 16;
541 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
542 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
543 		sc->rirb_size = 2;
544 	else {
545 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
546 		    __func__, rirbsize);
547 		return (ENXIO);
548 	}
549 
550 	HDA_BOOTVERBOSE(
551 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
552 		    "NSDO %d%s, CORB %d, RIRB %d\n",
553 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
554 		    sc->support_64bit ? ", 64bit" : "",
555 		    sc->corb_size, sc->rirb_size);
556 	);
557 
558 	return (0);
559 }
560 
561 
562 /****************************************************************************
563  * void hdac_dma_cb
564  *
565  * This function is called by bus_dmamap_load when the mapping has been
566  * established. We just record the physical address of the mapping into
567  * the struct hdac_dma passed in.
568  ****************************************************************************/
569 static void
570 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
571 {
572 	struct hdac_dma *dma;
573 
574 	if (error == 0) {
575 		dma = (struct hdac_dma *)callback_arg;
576 		dma->dma_paddr = segs[0].ds_addr;
577 	}
578 }
579 
580 
581 /****************************************************************************
582  * int hdac_dma_alloc
583  *
584  * This function allocate and setup a dma region (struct hdac_dma).
585  * It must be freed by a corresponding hdac_dma_free.
586  ****************************************************************************/
587 static int
588 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
589 {
590 	bus_size_t roundsz;
591 	int result;
592 
593 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
594 	bzero(dma, sizeof(*dma));
595 
596 	/*
597 	 * Create a DMA tag
598 	 */
599 	result = bus_dma_tag_create(
600 	    bus_get_dma_tag(sc->dev),		/* parent */
601 	    HDA_DMA_ALIGNMENT,			/* alignment */
602 	    0,					/* boundary */
603 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
604 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
605 	    BUS_SPACE_MAXADDR,			/* highaddr */
606 	    NULL,				/* filtfunc */
607 	    NULL,				/* fistfuncarg */
608 	    roundsz, 				/* maxsize */
609 	    1,					/* nsegments */
610 	    roundsz, 				/* maxsegsz */
611 	    0,					/* flags */
612 	    NULL,				/* lockfunc */
613 	    NULL,				/* lockfuncarg */
614 	    &dma->dma_tag);			/* dmat */
615 	if (result != 0) {
616 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
617 		    __func__, result);
618 		goto hdac_dma_alloc_fail;
619 	}
620 
621 	/*
622 	 * Allocate DMA memory
623 	 */
624 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
625 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
626 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
627 	     BUS_DMA_COHERENT),
628 	    &dma->dma_map);
629 	if (result != 0) {
630 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
631 		    __func__, result);
632 		goto hdac_dma_alloc_fail;
633 	}
634 
635 	dma->dma_size = roundsz;
636 
637 	/*
638 	 * Map the memory
639 	 */
640 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
641 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
642 	if (result != 0 || dma->dma_paddr == 0) {
643 		if (result == 0)
644 			result = ENOMEM;
645 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
646 		    __func__, result);
647 		goto hdac_dma_alloc_fail;
648 	}
649 
650 	HDA_BOOTHVERBOSE(
651 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
652 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
653 	);
654 
655 	return (0);
656 
657 hdac_dma_alloc_fail:
658 	hdac_dma_free(sc, dma);
659 
660 	return (result);
661 }
662 
663 /****************************************************************************
664  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
665  *
666  * Free a struct hdac_dma that has been previously allocated via the
667  * hdac_dma_alloc function.
668  ****************************************************************************/
669 static void
670 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
671 {
672 	if (dma->dma_paddr != 0) {
673 		/* Flush caches */
674 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
675 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
676 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
677 		dma->dma_paddr = 0;
678 	}
679 	if (dma->dma_vaddr != NULL) {
680 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
681 		dma->dma_vaddr = NULL;
682 	}
683 	if (dma->dma_tag != NULL) {
684 		bus_dma_tag_destroy(dma->dma_tag);
685 		dma->dma_tag = NULL;
686 	}
687 	dma->dma_size = 0;
688 }
689 
690 /****************************************************************************
691  * int hdac_mem_alloc(struct hdac_softc *)
692  *
693  * Allocate all the bus resources necessary to speak with the physical
694  * controller.
695  ****************************************************************************/
696 static int
697 hdac_mem_alloc(struct hdac_softc *sc)
698 {
699 	struct hdac_mem *mem;
700 
701 	mem = &sc->mem;
702 	mem->mem_rid = PCIR_BAR(0);
703 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
704 	    &mem->mem_rid, RF_ACTIVE);
705 	if (mem->mem_res == NULL) {
706 		device_printf(sc->dev,
707 		    "%s: Unable to allocate memory resource\n", __func__);
708 		return (ENOMEM);
709 	}
710 	mem->mem_tag = rman_get_bustag(mem->mem_res);
711 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
712 
713 	return (0);
714 }
715 
716 /****************************************************************************
717  * void hdac_mem_free(struct hdac_softc *)
718  *
719  * Free up resources previously allocated by hdac_mem_alloc.
720  ****************************************************************************/
721 static void
722 hdac_mem_free(struct hdac_softc *sc)
723 {
724 	struct hdac_mem *mem;
725 
726 	mem = &sc->mem;
727 	if (mem->mem_res != NULL)
728 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
729 		    mem->mem_res);
730 	mem->mem_res = NULL;
731 }
732 
733 /****************************************************************************
734  * int hdac_irq_alloc(struct hdac_softc *)
735  *
736  * Allocate and setup the resources necessary for interrupt handling.
737  ****************************************************************************/
738 static int
739 hdac_irq_alloc(struct hdac_softc *sc)
740 {
741 	struct hdac_irq *irq;
742 	int result;
743 
744 	irq = &sc->irq;
745 	irq->irq_rid = 0x0;
746 
747 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
748 	    (result = pci_msi_count(sc->dev)) == 1 &&
749 	    pci_alloc_msi(sc->dev, &result) == 0)
750 		irq->irq_rid = 0x1;
751 
752 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
753 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
754 	if (irq->irq_res == NULL) {
755 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
756 		    __func__);
757 		goto hdac_irq_alloc_fail;
758 	}
759 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
760 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
761 	if (result != 0) {
762 		device_printf(sc->dev,
763 		    "%s: Unable to setup interrupt handler (%d)\n",
764 		    __func__, result);
765 		goto hdac_irq_alloc_fail;
766 	}
767 
768 	return (0);
769 
770 hdac_irq_alloc_fail:
771 	hdac_irq_free(sc);
772 
773 	return (ENXIO);
774 }
775 
776 /****************************************************************************
777  * void hdac_irq_free(struct hdac_softc *)
778  *
779  * Free up resources previously allocated by hdac_irq_alloc.
780  ****************************************************************************/
781 static void
782 hdac_irq_free(struct hdac_softc *sc)
783 {
784 	struct hdac_irq *irq;
785 
786 	irq = &sc->irq;
787 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
788 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
789 	if (irq->irq_res != NULL)
790 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
791 		    irq->irq_res);
792 	if (irq->irq_rid == 0x1)
793 		pci_release_msi(sc->dev);
794 	irq->irq_handle = NULL;
795 	irq->irq_res = NULL;
796 	irq->irq_rid = 0x0;
797 }
798 
799 /****************************************************************************
800  * void hdac_corb_init(struct hdac_softc *)
801  *
802  * Initialize the corb registers for operations but do not start it up yet.
803  * The CORB engine must not be running when this function is called.
804  ****************************************************************************/
805 static void
806 hdac_corb_init(struct hdac_softc *sc)
807 {
808 	uint8_t corbsize;
809 	uint64_t corbpaddr;
810 
811 	/* Setup the CORB size. */
812 	switch (sc->corb_size) {
813 	case 256:
814 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
815 		break;
816 	case 16:
817 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
818 		break;
819 	case 2:
820 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
821 		break;
822 	default:
823 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
824 	}
825 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
826 
827 	/* Setup the CORB Address in the hdac */
828 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
829 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
830 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
831 
832 	/* Set the WP and RP */
833 	sc->corb_wp = 0;
834 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
835 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
836 	/*
837 	 * The HDA specification indicates that the CORBRPRST bit will always
838 	 * read as zero. Unfortunately, it seems that at least the 82801G
839 	 * doesn't reset the bit to zero, which stalls the corb engine.
840 	 * manually reset the bit to zero before continuing.
841 	 */
842 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
843 
844 	/* Enable CORB error reporting */
845 #if 0
846 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
847 #endif
848 }
849 
850 /****************************************************************************
851  * void hdac_rirb_init(struct hdac_softc *)
852  *
853  * Initialize the rirb registers for operations but do not start it up yet.
854  * The RIRB engine must not be running when this function is called.
855  ****************************************************************************/
856 static void
857 hdac_rirb_init(struct hdac_softc *sc)
858 {
859 	uint8_t rirbsize;
860 	uint64_t rirbpaddr;
861 
862 	/* Setup the RIRB size. */
863 	switch (sc->rirb_size) {
864 	case 256:
865 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
866 		break;
867 	case 16:
868 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
869 		break;
870 	case 2:
871 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
872 		break;
873 	default:
874 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
875 	}
876 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
877 
878 	/* Setup the RIRB Address in the hdac */
879 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
880 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
881 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
882 
883 	/* Setup the WP and RP */
884 	sc->rirb_rp = 0;
885 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
886 
887 	/* Setup the interrupt threshold */
888 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
889 
890 	/* Enable Overrun and response received reporting */
891 #if 0
892 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
893 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
894 #else
895 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
896 #endif
897 
898 	/*
899 	 * Make sure that the Host CPU cache doesn't contain any dirty
900 	 * cache lines that falls in the rirb. If I understood correctly, it
901 	 * should be sufficient to do this only once as the rirb is purely
902 	 * read-only from now on.
903 	 */
904 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
905 	    BUS_DMASYNC_PREREAD);
906 }
907 
908 /****************************************************************************
909  * void hdac_corb_start(hdac_softc *)
910  *
911  * Startup the corb DMA engine
912  ****************************************************************************/
913 static void
914 hdac_corb_start(struct hdac_softc *sc)
915 {
916 	uint32_t corbctl;
917 
918 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
919 	corbctl |= HDAC_CORBCTL_CORBRUN;
920 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
921 }
922 
923 /****************************************************************************
924  * void hdac_rirb_start(hdac_softc *)
925  *
926  * Startup the rirb DMA engine
927  ****************************************************************************/
928 static void
929 hdac_rirb_start(struct hdac_softc *sc)
930 {
931 	uint32_t rirbctl;
932 
933 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
934 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
935 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
936 }
937 
938 static int
939 hdac_rirb_flush(struct hdac_softc *sc)
940 {
941 	struct hdac_rirb *rirb_base, *rirb;
942 	nid_t cad;
943 	uint32_t resp, resp_ex;
944 	uint8_t rirbwp;
945 	int ret;
946 
947 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
948 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
949 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
950 	    BUS_DMASYNC_POSTREAD);
951 
952 	ret = 0;
953 	while (sc->rirb_rp != rirbwp) {
954 		sc->rirb_rp++;
955 		sc->rirb_rp %= sc->rirb_size;
956 		rirb = &rirb_base[sc->rirb_rp];
957 		resp = le32toh(rirb->response);
958 		resp_ex = le32toh(rirb->response_ex);
959 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
960 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
961 			sc->unsolq[sc->unsolq_wp++] = resp;
962 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
963 			sc->unsolq[sc->unsolq_wp++] = cad;
964 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
965 		} else if (sc->codecs[cad].pending <= 0) {
966 			device_printf(sc->dev, "Unexpected unsolicited "
967 			    "response from address %d: %08x\n", cad, resp);
968 		} else {
969 			sc->codecs[cad].response = resp;
970 			sc->codecs[cad].pending--;
971 		}
972 		ret++;
973 	}
974 
975 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
976 	    BUS_DMASYNC_PREREAD);
977 	return (ret);
978 }
979 
980 static int
981 hdac_unsolq_flush(struct hdac_softc *sc)
982 {
983 	device_t child;
984 	nid_t cad;
985 	uint32_t resp;
986 	int ret = 0;
987 
988 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
989 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
990 		while (sc->unsolq_rp != sc->unsolq_wp) {
991 			resp = sc->unsolq[sc->unsolq_rp++];
992 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
993 			cad = sc->unsolq[sc->unsolq_rp++];
994 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
995 			if ((child = sc->codecs[cad].dev) != NULL)
996 				HDAC_UNSOL_INTR(child, resp);
997 			ret++;
998 		}
999 		sc->unsolq_st = HDAC_UNSOLQ_READY;
1000 	}
1001 
1002 	return (ret);
1003 }
1004 
1005 /****************************************************************************
1006  * uint32_t hdac_send_command
1007  *
1008  * Wrapper function that sends only one command to a given codec
1009  ****************************************************************************/
1010 static uint32_t
1011 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
1012 {
1013 	int timeout;
1014 	uint32_t *corb;
1015 
1016 	hdac_lockassert(sc);
1017 	verb &= ~HDA_CMD_CAD_MASK;
1018 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1019 	sc->codecs[cad].response = HDA_INVALID;
1020 
1021 	sc->codecs[cad].pending++;
1022 	sc->corb_wp++;
1023 	sc->corb_wp %= sc->corb_size;
1024 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1025 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1026 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1027 	corb[sc->corb_wp] = htole32(verb);
1028 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1029 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1030 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1031 
1032 	timeout = 10000;
1033 	do {
1034 		if (hdac_rirb_flush(sc) == 0)
1035 			DELAY(10);
1036 	} while (sc->codecs[cad].pending != 0 && --timeout);
1037 
1038 	if (sc->codecs[cad].pending != 0) {
1039 		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1040 		    verb, cad);
1041 		sc->codecs[cad].pending = 0;
1042 	}
1043 
1044 	if (sc->unsolq_rp != sc->unsolq_wp)
1045 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1046 	return (sc->codecs[cad].response);
1047 }
1048 
1049 /****************************************************************************
1050  * Device Methods
1051  ****************************************************************************/
1052 
1053 /****************************************************************************
1054  * int hdac_probe(device_t)
1055  *
1056  * Probe for the presence of an hdac. If none is found, check for a generic
1057  * match using the subclass of the device.
1058  ****************************************************************************/
1059 static int
1060 hdac_probe(device_t dev)
1061 {
1062 	int i, result;
1063 	uint32_t model;
1064 	uint16_t class, subclass;
1065 	char desc[64];
1066 
1067 	model = (uint32_t)pci_get_device(dev) << 16;
1068 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1069 	class = pci_get_class(dev);
1070 	subclass = pci_get_subclass(dev);
1071 
1072 	bzero(desc, sizeof(desc));
1073 	result = ENXIO;
1074 	for (i = 0; i < nitems(hdac_devices); i++) {
1075 		if (hdac_devices[i].model == model) {
1076 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1077 			result = BUS_PROBE_DEFAULT;
1078 			break;
1079 		}
1080 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1081 		    class == PCIC_MULTIMEDIA &&
1082 		    subclass == PCIS_MULTIMEDIA_HDA) {
1083 			snprintf(desc, sizeof(desc), "%s (0x%04x)",
1084 			    hdac_devices[i].desc, pci_get_device(dev));
1085 			result = BUS_PROBE_GENERIC;
1086 			break;
1087 		}
1088 	}
1089 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1090 	    subclass == PCIS_MULTIMEDIA_HDA) {
1091 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1092 		result = BUS_PROBE_GENERIC;
1093 	}
1094 	if (result != ENXIO) {
1095 		strlcat(desc, " HDA Controller", sizeof(desc));
1096 		device_set_desc_copy(dev, desc);
1097 	}
1098 
1099 	return (result);
1100 }
1101 
1102 static void
1103 hdac_unsolq_task(void *context, int pending)
1104 {
1105 	struct hdac_softc *sc;
1106 
1107 	sc = (struct hdac_softc *)context;
1108 
1109 	hdac_lock(sc);
1110 	hdac_unsolq_flush(sc);
1111 	hdac_unlock(sc);
1112 }
1113 
1114 /****************************************************************************
1115  * int hdac_attach(device_t)
1116  *
1117  * Attach the device into the kernel. Interrupts usually won't be enabled
1118  * when this function is called. Setup everything that doesn't require
1119  * interrupts and defer probing of codecs until interrupts are enabled.
1120  ****************************************************************************/
1121 static int
1122 hdac_attach(device_t dev)
1123 {
1124 	struct hdac_softc *sc;
1125 	int result;
1126 	int i, devid = -1;
1127 	uint32_t model;
1128 	uint16_t class, subclass;
1129 	uint16_t vendor;
1130 	uint8_t v;
1131 
1132 	sc = device_get_softc(dev);
1133 	HDA_BOOTVERBOSE(
1134 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1135 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1136 		device_printf(dev, "HDA Driver Revision: %s\n",
1137 		    HDA_DRV_TEST_REV);
1138 	);
1139 
1140 	model = (uint32_t)pci_get_device(dev) << 16;
1141 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1142 	class = pci_get_class(dev);
1143 	subclass = pci_get_subclass(dev);
1144 
1145 	for (i = 0; i < nitems(hdac_devices); i++) {
1146 		if (hdac_devices[i].model == model) {
1147 			devid = i;
1148 			break;
1149 		}
1150 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1151 		    class == PCIC_MULTIMEDIA &&
1152 		    subclass == PCIS_MULTIMEDIA_HDA) {
1153 			devid = i;
1154 			break;
1155 		}
1156 	}
1157 
1158 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1159 	sc->dev = dev;
1160 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1161 	callout_init(&sc->poll_callout, 1);
1162 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1163 		sc->codecs[i].dev = NULL;
1164 	if (devid >= 0) {
1165 		sc->quirks_on = hdac_devices[devid].quirks_on;
1166 		sc->quirks_off = hdac_devices[devid].quirks_off;
1167 	} else {
1168 		sc->quirks_on = 0;
1169 		sc->quirks_off = 0;
1170 	}
1171 	if (resource_int_value(device_get_name(dev),
1172 	    device_get_unit(dev), "msi", &i) == 0) {
1173 		if (i == 0)
1174 			sc->quirks_off |= HDAC_QUIRK_MSI;
1175 		else {
1176 			sc->quirks_on |= HDAC_QUIRK_MSI;
1177 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1178 		}
1179 	}
1180 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1181 	HDA_BOOTVERBOSE(
1182 		device_printf(sc->dev,
1183 		    "Config options: on=0x%08x off=0x%08x\n",
1184 		    sc->quirks_on, sc->quirks_off);
1185 	);
1186 	sc->poll_ival = hz;
1187 	if (resource_int_value(device_get_name(dev),
1188 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1189 		sc->polling = 1;
1190 	else
1191 		sc->polling = 0;
1192 
1193 	pci_enable_busmaster(dev);
1194 
1195 	vendor = pci_get_vendor(dev);
1196 	if (vendor == INTEL_VENDORID) {
1197 		/* TCSEL -> TC0 */
1198 		v = pci_read_config(dev, 0x44, 1);
1199 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1200 		HDA_BOOTHVERBOSE(
1201 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1202 			    pci_read_config(dev, 0x44, 1));
1203 		);
1204 	}
1205 
1206 #if defined(__i386__) || defined(__amd64__)
1207 	sc->flags |= HDAC_F_DMA_NOCACHE;
1208 
1209 	if (resource_int_value(device_get_name(dev),
1210 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1211 #else
1212 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1213 #endif
1214 		/*
1215 		 * Try to enable PCIe snoop to avoid messing around with
1216 		 * uncacheable DMA attribute. Since PCIe snoop register
1217 		 * config is pretty much vendor specific, there are no
1218 		 * general solutions on how to enable it, forcing us (even
1219 		 * Microsoft) to enable uncacheable or write combined DMA
1220 		 * by default.
1221 		 *
1222 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1223 		 */
1224 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1225 			if (hdac_pcie_snoop[i].vendor != vendor)
1226 				continue;
1227 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1228 			if (hdac_pcie_snoop[i].reg == 0x00)
1229 				break;
1230 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1231 			if ((v & hdac_pcie_snoop[i].enable) ==
1232 			    hdac_pcie_snoop[i].enable)
1233 				break;
1234 			v &= hdac_pcie_snoop[i].mask;
1235 			v |= hdac_pcie_snoop[i].enable;
1236 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1237 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1238 			if ((v & hdac_pcie_snoop[i].enable) !=
1239 			    hdac_pcie_snoop[i].enable) {
1240 				HDA_BOOTVERBOSE(
1241 					device_printf(dev,
1242 					    "WARNING: Failed to enable PCIe "
1243 					    "snoop!\n");
1244 				);
1245 #if defined(__i386__) || defined(__amd64__)
1246 				sc->flags |= HDAC_F_DMA_NOCACHE;
1247 #endif
1248 			}
1249 			break;
1250 		}
1251 #if defined(__i386__) || defined(__amd64__)
1252 	}
1253 #endif
1254 
1255 	HDA_BOOTHVERBOSE(
1256 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1257 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1258 		    "Uncacheable" : "PCIe snoop", vendor);
1259 	);
1260 
1261 	/* Allocate resources */
1262 	result = hdac_mem_alloc(sc);
1263 	if (result != 0)
1264 		goto hdac_attach_fail;
1265 	result = hdac_irq_alloc(sc);
1266 	if (result != 0)
1267 		goto hdac_attach_fail;
1268 
1269 	/* Get Capabilities */
1270 	result = hdac_get_capabilities(sc);
1271 	if (result != 0)
1272 		goto hdac_attach_fail;
1273 
1274 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1275 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1276 	    sc->corb_size * sizeof(uint32_t));
1277 	if (result != 0)
1278 		goto hdac_attach_fail;
1279 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1280 	    sc->rirb_size * sizeof(struct hdac_rirb));
1281 	if (result != 0)
1282 		goto hdac_attach_fail;
1283 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1284 	    M_HDAC, M_ZERO | M_WAITOK);
1285 	for (i = 0; i < sc->num_ss; i++) {
1286 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1287 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1288 		if (result != 0)
1289 			goto hdac_attach_fail;
1290 	}
1291 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1292 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1293 			HDA_BOOTVERBOSE(
1294 				device_printf(dev, "Failed to "
1295 				    "allocate DMA pos buffer "
1296 				    "(non-fatal)\n");
1297 			);
1298 		} else {
1299 			uint64_t addr = sc->pos_dma.dma_paddr;
1300 
1301 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1302 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1303 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1304 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1305 		}
1306 	}
1307 
1308 	result = bus_dma_tag_create(
1309 	    bus_get_dma_tag(sc->dev),		/* parent */
1310 	    HDA_DMA_ALIGNMENT,			/* alignment */
1311 	    0,					/* boundary */
1312 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1313 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1314 	    BUS_SPACE_MAXADDR,			/* highaddr */
1315 	    NULL,				/* filtfunc */
1316 	    NULL,				/* fistfuncarg */
1317 	    HDA_BUFSZ_MAX, 			/* maxsize */
1318 	    1,					/* nsegments */
1319 	    HDA_BUFSZ_MAX, 			/* maxsegsz */
1320 	    0,					/* flags */
1321 	    NULL,				/* lockfunc */
1322 	    NULL,				/* lockfuncarg */
1323 	    &sc->chan_dmat);			/* dmat */
1324 	if (result != 0) {
1325 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1326 		     __func__, result);
1327 		goto hdac_attach_fail;
1328 	}
1329 
1330 	/* Quiesce everything */
1331 	HDA_BOOTHVERBOSE(
1332 		device_printf(dev, "Reset controller...\n");
1333 	);
1334 	hdac_reset(sc, true);
1335 
1336 	/* Initialize the CORB and RIRB */
1337 	hdac_corb_init(sc);
1338 	hdac_rirb_init(sc);
1339 
1340 	/* Defer remaining of initialization until interrupts are enabled */
1341 	sc->intrhook.ich_func = hdac_attach2;
1342 	sc->intrhook.ich_arg = (void *)sc;
1343 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1344 		sc->intrhook.ich_func = NULL;
1345 		hdac_attach2((void *)sc);
1346 	}
1347 
1348 	return (0);
1349 
1350 hdac_attach_fail:
1351 	hdac_irq_free(sc);
1352 	if (sc->streams != NULL)
1353 		for (i = 0; i < sc->num_ss; i++)
1354 			hdac_dma_free(sc, &sc->streams[i].bdl);
1355 	free(sc->streams, M_HDAC);
1356 	hdac_dma_free(sc, &sc->rirb_dma);
1357 	hdac_dma_free(sc, &sc->corb_dma);
1358 	hdac_mem_free(sc);
1359 	snd_mtxfree(sc->lock);
1360 
1361 	return (ENXIO);
1362 }
1363 
1364 static int
1365 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1366 {
1367 	struct hdac_softc *sc;
1368 	device_t *devlist;
1369 	device_t dev;
1370 	int devcount, i, err, val;
1371 
1372 	dev = oidp->oid_arg1;
1373 	sc = device_get_softc(dev);
1374 	if (sc == NULL)
1375 		return (EINVAL);
1376 	val = 0;
1377 	err = sysctl_handle_int(oidp, &val, 0, req);
1378 	if (err != 0 || req->newptr == NULL || val == 0)
1379 		return (err);
1380 
1381 	/* XXX: Temporary. For debugging. */
1382 	if (val == 100) {
1383 		hdac_suspend(dev);
1384 		return (0);
1385 	} else if (val == 101) {
1386 		hdac_resume(dev);
1387 		return (0);
1388 	}
1389 
1390 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1391 		return (err);
1392 	hdac_lock(sc);
1393 	for (i = 0; i < devcount; i++)
1394 		HDAC_PINDUMP(devlist[i]);
1395 	hdac_unlock(sc);
1396 	free(devlist, M_TEMP);
1397 	return (0);
1398 }
1399 
1400 static int
1401 hdac_mdata_rate(uint16_t fmt)
1402 {
1403 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1404 	int rate, bits;
1405 
1406 	if (fmt & (1 << 14))
1407 		rate = 44100;
1408 	else
1409 		rate = 48000;
1410 	rate *= ((fmt >> 11) & 0x07) + 1;
1411 	rate /= ((fmt >> 8) & 0x07) + 1;
1412 	bits = mbits[(fmt >> 4) & 0x03];
1413 	bits *= (fmt & 0x0f) + 1;
1414 	return (rate * bits);
1415 }
1416 
1417 static int
1418 hdac_bdata_rate(uint16_t fmt, int output)
1419 {
1420 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1421 	int rate, bits;
1422 
1423 	rate = 48000;
1424 	rate *= ((fmt >> 11) & 0x07) + 1;
1425 	bits = bbits[(fmt >> 4) & 0x03];
1426 	bits *= (fmt & 0x0f) + 1;
1427 	if (!output)
1428 		bits = ((bits + 7) & ~0x07) + 10;
1429 	return (rate * bits);
1430 }
1431 
1432 static void
1433 hdac_poll_reinit(struct hdac_softc *sc)
1434 {
1435 	int i, pollticks, min = 1000000;
1436 	struct hdac_stream *s;
1437 
1438 	if (sc->polling == 0)
1439 		return;
1440 	if (sc->unsol_registered > 0)
1441 		min = hz / 2;
1442 	for (i = 0; i < sc->num_ss; i++) {
1443 		s = &sc->streams[i];
1444 		if (s->running == 0)
1445 			continue;
1446 		pollticks = ((uint64_t)hz * s->blksz) /
1447 		    (hdac_mdata_rate(s->format) / 8);
1448 		pollticks >>= 1;
1449 		if (pollticks > hz)
1450 			pollticks = hz;
1451 		if (pollticks < 1)
1452 			pollticks = 1;
1453 		if (min > pollticks)
1454 			min = pollticks;
1455 	}
1456 	sc->poll_ival = min;
1457 	if (min == 1000000)
1458 		callout_stop(&sc->poll_callout);
1459 	else
1460 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1461 }
1462 
1463 static int
1464 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1465 {
1466 	struct hdac_softc *sc;
1467 	device_t dev;
1468 	uint32_t ctl;
1469 	int err, val;
1470 
1471 	dev = oidp->oid_arg1;
1472 	sc = device_get_softc(dev);
1473 	if (sc == NULL)
1474 		return (EINVAL);
1475 	hdac_lock(sc);
1476 	val = sc->polling;
1477 	hdac_unlock(sc);
1478 	err = sysctl_handle_int(oidp, &val, 0, req);
1479 
1480 	if (err != 0 || req->newptr == NULL)
1481 		return (err);
1482 	if (val < 0 || val > 1)
1483 		return (EINVAL);
1484 
1485 	hdac_lock(sc);
1486 	if (val != sc->polling) {
1487 		if (val == 0) {
1488 			callout_stop(&sc->poll_callout);
1489 			hdac_unlock(sc);
1490 			callout_drain(&sc->poll_callout);
1491 			hdac_lock(sc);
1492 			sc->polling = 0;
1493 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1494 			ctl |= HDAC_INTCTL_GIE;
1495 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1496 		} else {
1497 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1498 			ctl &= ~HDAC_INTCTL_GIE;
1499 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1500 			sc->polling = 1;
1501 			hdac_poll_reinit(sc);
1502 		}
1503 	}
1504 	hdac_unlock(sc);
1505 
1506 	return (err);
1507 }
1508 
1509 static void
1510 hdac_attach2(void *arg)
1511 {
1512 	struct hdac_softc *sc;
1513 	device_t child;
1514 	uint32_t vendorid, revisionid;
1515 	int i;
1516 	uint16_t statests;
1517 
1518 	sc = (struct hdac_softc *)arg;
1519 
1520 	hdac_lock(sc);
1521 
1522 	/* Remove ourselves from the config hooks */
1523 	if (sc->intrhook.ich_func != NULL) {
1524 		config_intrhook_disestablish(&sc->intrhook);
1525 		sc->intrhook.ich_func = NULL;
1526 	}
1527 
1528 	HDA_BOOTHVERBOSE(
1529 		device_printf(sc->dev, "Starting CORB Engine...\n");
1530 	);
1531 	hdac_corb_start(sc);
1532 	HDA_BOOTHVERBOSE(
1533 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1534 	);
1535 	hdac_rirb_start(sc);
1536 
1537 	/*
1538 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1539 	 * (status change) interrupts.  The documentation says that we
1540 	 * should not make any assumptions about the state of this register
1541 	 * and set it explicitly.
1542 	 * NB: this needs to be done before the interrupt is enabled as
1543 	 * the handler does not expect this interrupt source.
1544 	 */
1545 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1546 
1547 	/*
1548 	 * Read and clear post-reset SDI wake status.
1549 	 * Each set bit corresponds to a codec that came out of reset.
1550 	 */
1551 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1552 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
1553 
1554 	HDA_BOOTHVERBOSE(
1555 		device_printf(sc->dev,
1556 		    "Enabling controller interrupt...\n");
1557 	);
1558 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1559 	    HDAC_GCTL_UNSOL);
1560 	if (sc->polling == 0) {
1561 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1562 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1563 	}
1564 	DELAY(1000);
1565 
1566 	HDA_BOOTHVERBOSE(
1567 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1568 	);
1569 	hdac_unlock(sc);
1570 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1571 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1572 			HDA_BOOTHVERBOSE(
1573 				device_printf(sc->dev,
1574 				    "Found CODEC at address %d\n", i);
1575 			);
1576 			hdac_lock(sc);
1577 			vendorid = hdac_send_command(sc, i,
1578 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1579 			revisionid = hdac_send_command(sc, i,
1580 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1581 			hdac_unlock(sc);
1582 			if (vendorid == HDA_INVALID &&
1583 			    revisionid == HDA_INVALID) {
1584 				device_printf(sc->dev,
1585 				    "CODEC at address %d not responding!\n", i);
1586 				continue;
1587 			}
1588 			sc->codecs[i].vendor_id =
1589 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1590 			sc->codecs[i].device_id =
1591 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1592 			sc->codecs[i].revision_id =
1593 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1594 			sc->codecs[i].stepping_id =
1595 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1596 			child = device_add_child(sc->dev, "hdacc", -1);
1597 			if (child == NULL) {
1598 				device_printf(sc->dev,
1599 				    "Failed to add CODEC device\n");
1600 				continue;
1601 			}
1602 			device_set_ivars(child, (void *)(intptr_t)i);
1603 			sc->codecs[i].dev = child;
1604 		}
1605 	}
1606 	bus_generic_attach(sc->dev);
1607 
1608 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1609 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1610 	    "pindump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
1611 	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1612 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1613 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1614 	    "polling", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
1615 	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1616 }
1617 
1618 /****************************************************************************
1619  * int hdac_suspend(device_t)
1620  *
1621  * Suspend and power down HDA bus and codecs.
1622  ****************************************************************************/
1623 static int
1624 hdac_suspend(device_t dev)
1625 {
1626 	struct hdac_softc *sc = device_get_softc(dev);
1627 
1628 	HDA_BOOTHVERBOSE(
1629 		device_printf(dev, "Suspend...\n");
1630 	);
1631 	bus_generic_suspend(dev);
1632 
1633 	hdac_lock(sc);
1634 	HDA_BOOTHVERBOSE(
1635 		device_printf(dev, "Reset controller...\n");
1636 	);
1637 	callout_stop(&sc->poll_callout);
1638 	hdac_reset(sc, false);
1639 	hdac_unlock(sc);
1640 	callout_drain(&sc->poll_callout);
1641 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1642 	HDA_BOOTHVERBOSE(
1643 		device_printf(dev, "Suspend done\n");
1644 	);
1645 	return (0);
1646 }
1647 
1648 /****************************************************************************
1649  * int hdac_resume(device_t)
1650  *
1651  * Powerup and restore HDA bus and codecs state.
1652  ****************************************************************************/
1653 static int
1654 hdac_resume(device_t dev)
1655 {
1656 	struct hdac_softc *sc = device_get_softc(dev);
1657 	int error;
1658 
1659 	HDA_BOOTHVERBOSE(
1660 		device_printf(dev, "Resume...\n");
1661 	);
1662 	hdac_lock(sc);
1663 
1664 	/* Quiesce everything */
1665 	HDA_BOOTHVERBOSE(
1666 		device_printf(dev, "Reset controller...\n");
1667 	);
1668 	hdac_reset(sc, true);
1669 
1670 	/* Initialize the CORB and RIRB */
1671 	hdac_corb_init(sc);
1672 	hdac_rirb_init(sc);
1673 
1674 	HDA_BOOTHVERBOSE(
1675 		device_printf(dev, "Starting CORB Engine...\n");
1676 	);
1677 	hdac_corb_start(sc);
1678 	HDA_BOOTHVERBOSE(
1679 		device_printf(dev, "Starting RIRB Engine...\n");
1680 	);
1681 	hdac_rirb_start(sc);
1682 
1683 	/*
1684 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1685 	 * (status change) events.  The documentation says that we should
1686 	 * not make any assumptions about the state of this register and
1687 	 * set it explicitly.
1688 	 * Also, clear HDAC_STATESTS.
1689 	 * NB: this needs to be done before the interrupt is enabled as
1690 	 * the handler does not expect this interrupt source.
1691 	 */
1692 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1693 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
1694 
1695 	HDA_BOOTHVERBOSE(
1696 		device_printf(dev, "Enabling controller interrupt...\n");
1697 	);
1698 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1699 	    HDAC_GCTL_UNSOL);
1700 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1701 	DELAY(1000);
1702 	hdac_poll_reinit(sc);
1703 	hdac_unlock(sc);
1704 
1705 	error = bus_generic_resume(dev);
1706 	HDA_BOOTHVERBOSE(
1707 		device_printf(dev, "Resume done\n");
1708 	);
1709 	return (error);
1710 }
1711 
1712 /****************************************************************************
1713  * int hdac_detach(device_t)
1714  *
1715  * Detach and free up resources utilized by the hdac device.
1716  ****************************************************************************/
1717 static int
1718 hdac_detach(device_t dev)
1719 {
1720 	struct hdac_softc *sc = device_get_softc(dev);
1721 	device_t *devlist;
1722 	int cad, i, devcount, error;
1723 
1724 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1725 		return (error);
1726 	for (i = 0; i < devcount; i++) {
1727 		cad = (intptr_t)device_get_ivars(devlist[i]);
1728 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1729 			free(devlist, M_TEMP);
1730 			return (error);
1731 		}
1732 		sc->codecs[cad].dev = NULL;
1733 	}
1734 	free(devlist, M_TEMP);
1735 
1736 	hdac_lock(sc);
1737 	hdac_reset(sc, false);
1738 	hdac_unlock(sc);
1739 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1740 	hdac_irq_free(sc);
1741 
1742 	for (i = 0; i < sc->num_ss; i++)
1743 		hdac_dma_free(sc, &sc->streams[i].bdl);
1744 	free(sc->streams, M_HDAC);
1745 	hdac_dma_free(sc, &sc->pos_dma);
1746 	hdac_dma_free(sc, &sc->rirb_dma);
1747 	hdac_dma_free(sc, &sc->corb_dma);
1748 	if (sc->chan_dmat != NULL) {
1749 		bus_dma_tag_destroy(sc->chan_dmat);
1750 		sc->chan_dmat = NULL;
1751 	}
1752 	hdac_mem_free(sc);
1753 	snd_mtxfree(sc->lock);
1754 	return (0);
1755 }
1756 
1757 static bus_dma_tag_t
1758 hdac_get_dma_tag(device_t dev, device_t child)
1759 {
1760 	struct hdac_softc *sc = device_get_softc(dev);
1761 
1762 	return (sc->chan_dmat);
1763 }
1764 
1765 static int
1766 hdac_print_child(device_t dev, device_t child)
1767 {
1768 	int retval;
1769 
1770 	retval = bus_print_child_header(dev, child);
1771 	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1772 	retval += bus_print_child_footer(dev, child);
1773 
1774 	return (retval);
1775 }
1776 
1777 static int
1778 hdac_child_location_str(device_t dev, device_t child, char *buf, size_t buflen)
1779 {
1780 
1781 	snprintf(buf, buflen, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1782 	return (0);
1783 }
1784 
1785 static int
1786 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1787     size_t buflen)
1788 {
1789 	struct hdac_softc *sc = device_get_softc(dev);
1790 	nid_t cad = (uintptr_t)device_get_ivars(child);
1791 
1792 	snprintf(buf, buflen,
1793 	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1794 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1795 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1796 	return (0);
1797 }
1798 
1799 static int
1800 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1801 {
1802 	struct hdac_softc *sc = device_get_softc(dev);
1803 	nid_t cad = (uintptr_t)device_get_ivars(child);
1804 
1805 	switch (which) {
1806 	case HDA_IVAR_CODEC_ID:
1807 		*result = cad;
1808 		break;
1809 	case HDA_IVAR_VENDOR_ID:
1810 		*result = sc->codecs[cad].vendor_id;
1811 		break;
1812 	case HDA_IVAR_DEVICE_ID:
1813 		*result = sc->codecs[cad].device_id;
1814 		break;
1815 	case HDA_IVAR_REVISION_ID:
1816 		*result = sc->codecs[cad].revision_id;
1817 		break;
1818 	case HDA_IVAR_STEPPING_ID:
1819 		*result = sc->codecs[cad].stepping_id;
1820 		break;
1821 	case HDA_IVAR_SUBVENDOR_ID:
1822 		*result = pci_get_subvendor(dev);
1823 		break;
1824 	case HDA_IVAR_SUBDEVICE_ID:
1825 		*result = pci_get_subdevice(dev);
1826 		break;
1827 	case HDA_IVAR_DMA_NOCACHE:
1828 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1829 		break;
1830 	case HDA_IVAR_STRIPES_MASK:
1831 		*result = (1 << (1 << sc->num_sdo)) - 1;
1832 		break;
1833 	default:
1834 		return (ENOENT);
1835 	}
1836 	return (0);
1837 }
1838 
1839 static struct mtx *
1840 hdac_get_mtx(device_t dev, device_t child)
1841 {
1842 	struct hdac_softc *sc = device_get_softc(dev);
1843 
1844 	return (sc->lock);
1845 }
1846 
1847 static uint32_t
1848 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1849 {
1850 
1851 	return (hdac_send_command(device_get_softc(dev),
1852 	    (intptr_t)device_get_ivars(child), verb));
1853 }
1854 
1855 static int
1856 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1857 {
1858 	int i, ss;
1859 
1860 	ss = -1;
1861 	/* Allocate ISS/OSS first. */
1862 	if (dir == 0) {
1863 		for (i = 0; i < sc->num_iss; i++) {
1864 			if (sc->streams[i].stream == stream) {
1865 				ss = i;
1866 				break;
1867 			}
1868 		}
1869 	} else {
1870 		for (i = 0; i < sc->num_oss; i++) {
1871 			if (sc->streams[i + sc->num_iss].stream == stream) {
1872 				ss = i + sc->num_iss;
1873 				break;
1874 			}
1875 		}
1876 	}
1877 	/* Fallback to BSS. */
1878 	if (ss == -1) {
1879 		for (i = 0; i < sc->num_bss; i++) {
1880 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1881 			    == stream) {
1882 				ss = i + sc->num_iss + sc->num_oss;
1883 				break;
1884 			}
1885 		}
1886 	}
1887 	return (ss);
1888 }
1889 
1890 static int
1891 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1892     uint32_t **dmapos)
1893 {
1894 	struct hdac_softc *sc = device_get_softc(dev);
1895 	nid_t cad = (uintptr_t)device_get_ivars(child);
1896 	int stream, ss, bw, maxbw, prevbw;
1897 
1898 	/* Look for empty stream. */
1899 	ss = hdac_find_stream(sc, dir, 0);
1900 
1901 	/* Return if found nothing. */
1902 	if (ss < 0)
1903 		return (0);
1904 
1905 	/* Check bus bandwidth. */
1906 	bw = hdac_bdata_rate(format, dir);
1907 	if (dir == 1) {
1908 		bw *= 1 << (sc->num_sdo - stripe);
1909 		prevbw = sc->sdo_bw_used;
1910 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1911 	} else {
1912 		prevbw = sc->codecs[cad].sdi_bw_used;
1913 		maxbw = 48000 * 464;
1914 	}
1915 	HDA_BOOTHVERBOSE(
1916 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1917 		    (bw + prevbw) / 1000, maxbw / 1000,
1918 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1919 	);
1920 	if (bw + prevbw > maxbw)
1921 		return (0);
1922 	if (dir == 1)
1923 		sc->sdo_bw_used += bw;
1924 	else
1925 		sc->codecs[cad].sdi_bw_used += bw;
1926 
1927 	/* Allocate stream number */
1928 	if (ss >= sc->num_iss + sc->num_oss)
1929 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1930 	else if (ss >= sc->num_iss)
1931 		stream = ss - sc->num_iss + 1;
1932 	else
1933 		stream = ss + 1;
1934 
1935 	sc->streams[ss].dev = child;
1936 	sc->streams[ss].dir = dir;
1937 	sc->streams[ss].stream = stream;
1938 	sc->streams[ss].bw = bw;
1939 	sc->streams[ss].format = format;
1940 	sc->streams[ss].stripe = stripe;
1941 	if (dmapos != NULL) {
1942 		if (sc->pos_dma.dma_vaddr != NULL)
1943 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1944 		else
1945 			*dmapos = NULL;
1946 	}
1947 	return (stream);
1948 }
1949 
1950 static void
1951 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1952 {
1953 	struct hdac_softc *sc = device_get_softc(dev);
1954 	nid_t cad = (uintptr_t)device_get_ivars(child);
1955 	int ss;
1956 
1957 	ss = hdac_find_stream(sc, dir, stream);
1958 	KASSERT(ss >= 0,
1959 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1960 	if (dir == 1)
1961 		sc->sdo_bw_used -= sc->streams[ss].bw;
1962 	else
1963 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1964 	sc->streams[ss].stream = 0;
1965 	sc->streams[ss].dev = NULL;
1966 }
1967 
1968 static int
1969 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
1970     bus_addr_t buf, int blksz, int blkcnt)
1971 {
1972 	struct hdac_softc *sc = device_get_softc(dev);
1973 	struct hdac_bdle *bdle;
1974 	uint64_t addr;
1975 	int i, ss, off;
1976 	uint32_t ctl;
1977 
1978 	ss = hdac_find_stream(sc, dir, stream);
1979 	KASSERT(ss >= 0,
1980 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
1981 
1982 	addr = (uint64_t)buf;
1983 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1984 	for (i = 0; i < blkcnt; i++, bdle++) {
1985 		bdle->addrl = htole32((uint32_t)addr);
1986 		bdle->addrh = htole32((uint32_t)(addr >> 32));
1987 		bdle->len = htole32(blksz);
1988 		bdle->ioc = htole32(1);
1989 		addr += blksz;
1990 	}
1991 
1992 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1993 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
1994 
1995 	off = ss << 5;
1996 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1997 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1998 	addr = sc->streams[ss].bdl.dma_paddr;
1999 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
2000 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
2001 
2002 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
2003 	if (dir)
2004 		ctl |= HDAC_SDCTL2_DIR;
2005 	else
2006 		ctl &= ~HDAC_SDCTL2_DIR;
2007 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
2008 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
2009 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
2010 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
2011 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
2012 
2013 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
2014 
2015 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2016 	ctl |= 1 << ss;
2017 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2018 
2019 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
2020 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
2021 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2022 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2023 	    HDAC_SDCTL_RUN;
2024 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2025 
2026 	sc->streams[ss].blksz = blksz;
2027 	sc->streams[ss].running = 1;
2028 	hdac_poll_reinit(sc);
2029 	return (0);
2030 }
2031 
2032 static void
2033 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
2034 {
2035 	struct hdac_softc *sc = device_get_softc(dev);
2036 	int ss, off;
2037 	uint32_t ctl;
2038 
2039 	ss = hdac_find_stream(sc, dir, stream);
2040 	KASSERT(ss >= 0,
2041 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
2042 
2043 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2044 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
2045 
2046 	off = ss << 5;
2047 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2048 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2049 	    HDAC_SDCTL_RUN);
2050 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2051 
2052 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2053 	ctl &= ~(1 << ss);
2054 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2055 
2056 	sc->streams[ss].running = 0;
2057 	hdac_poll_reinit(sc);
2058 }
2059 
2060 static void
2061 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2062 {
2063 	struct hdac_softc *sc = device_get_softc(dev);
2064 	int timeout = 1000;
2065 	int to = timeout;
2066 	int ss, off;
2067 	uint32_t ctl;
2068 
2069 	ss = hdac_find_stream(sc, dir, stream);
2070 	KASSERT(ss >= 0,
2071 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2072 
2073 	off = ss << 5;
2074 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2075 	ctl |= HDAC_SDCTL_SRST;
2076 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2077 	do {
2078 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2079 		if (ctl & HDAC_SDCTL_SRST)
2080 			break;
2081 		DELAY(10);
2082 	} while (--to);
2083 	if (!(ctl & HDAC_SDCTL_SRST))
2084 		device_printf(dev, "Reset setting timeout\n");
2085 	ctl &= ~HDAC_SDCTL_SRST;
2086 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2087 	to = timeout;
2088 	do {
2089 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2090 		if (!(ctl & HDAC_SDCTL_SRST))
2091 			break;
2092 		DELAY(10);
2093 	} while (--to);
2094 	if (ctl & HDAC_SDCTL_SRST)
2095 		device_printf(dev, "Reset timeout!\n");
2096 }
2097 
2098 static uint32_t
2099 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2100 {
2101 	struct hdac_softc *sc = device_get_softc(dev);
2102 	int ss, off;
2103 
2104 	ss = hdac_find_stream(sc, dir, stream);
2105 	KASSERT(ss >= 0,
2106 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2107 
2108 	off = ss << 5;
2109 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2110 }
2111 
2112 static int
2113 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2114 {
2115 	struct hdac_softc *sc = device_get_softc(dev);
2116 
2117 	sc->unsol_registered++;
2118 	hdac_poll_reinit(sc);
2119 	return (tag);
2120 }
2121 
2122 static void
2123 hdac_unsol_free(device_t dev, device_t child, int tag)
2124 {
2125 	struct hdac_softc *sc = device_get_softc(dev);
2126 
2127 	sc->unsol_registered--;
2128 	hdac_poll_reinit(sc);
2129 }
2130 
2131 static device_method_t hdac_methods[] = {
2132 	/* device interface */
2133 	DEVMETHOD(device_probe,		hdac_probe),
2134 	DEVMETHOD(device_attach,	hdac_attach),
2135 	DEVMETHOD(device_detach,	hdac_detach),
2136 	DEVMETHOD(device_suspend,	hdac_suspend),
2137 	DEVMETHOD(device_resume,	hdac_resume),
2138 	/* Bus interface */
2139 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2140 	DEVMETHOD(bus_print_child,	hdac_print_child),
2141 	DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2142 	DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2143 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2144 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2145 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2146 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2147 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2148 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2149 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2150 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2151 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2152 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2153 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2154 	DEVMETHOD_END
2155 };
2156 
2157 static driver_t hdac_driver = {
2158 	"hdac",
2159 	hdac_methods,
2160 	sizeof(struct hdac_softc),
2161 };
2162 
2163 static devclass_t hdac_devclass;
2164 
2165 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);
2166