xref: /freebsd/sys/dev/sound/pci/hdspe-pcm.c (revision 1edb7116)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012-2021 Ruslan Bukin <br@bsdpad.com>
5  * Copyright (c) 2023-2024 Florian Walpen <dev@submerge.ch>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * RME HDSPe driver for FreeBSD (pcm-part).
32  * Supported cards: AIO, RayDAT.
33  */
34 
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pci/hdspe.h>
37 #include <dev/sound/chip.h>
38 
39 #include <dev/pci/pcireg.h>
40 #include <dev/pci/pcivar.h>
41 
42 #include <mixer_if.h>
43 
44 struct hdspe_latency {
45 	uint32_t n;
46 	uint32_t period;
47 	float ms;
48 };
49 
50 static struct hdspe_latency latency_map[] = {
51 	{ 7,   32, 0.7 },
52 	{ 0,   64, 1.5 },
53 	{ 1,  128,   3 },
54 	{ 2,  256,   6 },
55 	{ 3,  512,  12 },
56 	{ 4, 1024,  23 },
57 	{ 5, 2048,  46 },
58 	{ 6, 4096,  93 },
59 
60 	{ 0,    0,   0 },
61 };
62 
63 struct hdspe_rate {
64 	uint32_t speed;
65 	uint32_t reg;
66 };
67 
68 static struct hdspe_rate rate_map[] = {
69 	{  32000, (HDSPE_FREQ_32000) },
70 	{  44100, (HDSPE_FREQ_44100) },
71 	{  48000, (HDSPE_FREQ_48000) },
72 	{  64000, (HDSPE_FREQ_32000 | HDSPE_FREQ_DOUBLE) },
73 	{  88200, (HDSPE_FREQ_44100 | HDSPE_FREQ_DOUBLE) },
74 	{  96000, (HDSPE_FREQ_48000 | HDSPE_FREQ_DOUBLE) },
75 	{ 128000, (HDSPE_FREQ_32000 | HDSPE_FREQ_QUAD)   },
76 	{ 176400, (HDSPE_FREQ_44100 | HDSPE_FREQ_QUAD)   },
77 	{ 192000, (HDSPE_FREQ_48000 | HDSPE_FREQ_QUAD)   },
78 
79 	{ 0, 0 },
80 };
81 
82 static uint32_t
83 hdspe_channel_play_ports(struct hdspe_channel *hc)
84 {
85 	return (hc->ports & (HDSPE_CHAN_AIO_ALL | HDSPE_CHAN_RAY_ALL));
86 }
87 
88 static uint32_t
89 hdspe_channel_rec_ports(struct hdspe_channel *hc)
90 {
91 	return (hc->ports & (HDSPE_CHAN_AIO_ALL_REC | HDSPE_CHAN_RAY_ALL));
92 }
93 
94 static unsigned int
95 hdspe_adat_width(uint32_t speed)
96 {
97 	if (speed > 96000)
98 		return (2);
99 	if (speed > 48000)
100 		return (4);
101 	return (8);
102 }
103 
104 static uint32_t
105 hdspe_port_first(uint32_t ports)
106 {
107 	return (ports & (~(ports - 1)));	/* Extract first bit set. */
108 }
109 
110 static uint32_t
111 hdspe_port_first_row(uint32_t ports)
112 {
113 	uint32_t ends;
114 
115 	/* Restrict ports to one set with contiguous slots. */
116 	if (ports & HDSPE_CHAN_AIO_LINE)
117 		ports = HDSPE_CHAN_AIO_LINE;	/* Gap in the AIO slots here. */
118 	else if (ports & HDSPE_CHAN_AIO_ALL)
119 		ports &= HDSPE_CHAN_AIO_ALL;	/* Rest of the AIO slots. */
120 	else if (ports & HDSPE_CHAN_RAY_ALL)
121 		ports &= HDSPE_CHAN_RAY_ALL;	/* All RayDAT slots. */
122 
123 	/* Ends of port rows are followed by a port which is not in the set. */
124 	ends = ports & (~(ports >> 1));
125 	/* First row of contiguous ports ends in the first row end. */
126 	return (ports & (ends ^ (ends - 1)));
127 }
128 
129 static unsigned int
130 hdspe_channel_count(uint32_t ports, uint32_t adat_width)
131 {
132 	unsigned int count = 0;
133 
134 	if (ports & HDSPE_CHAN_AIO_ALL) {
135 		/* AIO ports. */
136 		if (ports & HDSPE_CHAN_AIO_LINE)
137 			count += 2;
138 		if (ports & HDSPE_CHAN_AIO_PHONE)
139 			count += 2;
140 		if (ports & HDSPE_CHAN_AIO_AES)
141 			count += 2;
142 		if (ports & HDSPE_CHAN_AIO_SPDIF)
143 			count += 2;
144 		if (ports & HDSPE_CHAN_AIO_ADAT)
145 			count += adat_width;
146 	} else if (ports & HDSPE_CHAN_RAY_ALL) {
147 		/* RayDAT ports. */
148 		if (ports & HDSPE_CHAN_RAY_AES)
149 			count += 2;
150 		if (ports & HDSPE_CHAN_RAY_SPDIF)
151 			count += 2;
152 		if (ports & HDSPE_CHAN_RAY_ADAT1)
153 			count += adat_width;
154 		if (ports & HDSPE_CHAN_RAY_ADAT2)
155 			count += adat_width;
156 		if (ports & HDSPE_CHAN_RAY_ADAT3)
157 			count += adat_width;
158 		if (ports & HDSPE_CHAN_RAY_ADAT4)
159 			count += adat_width;
160 	}
161 
162 	return (count);
163 }
164 
165 static unsigned int
166 hdspe_channel_offset(uint32_t subset, uint32_t ports, unsigned int adat_width)
167 {
168 	uint32_t preceding;
169 
170 	/* Make sure we have a subset of ports. */
171 	subset &= ports;
172 	/* Include all ports preceding the first one of the subset. */
173 	preceding = ports & (~subset & (subset - 1));
174 
175 	if (preceding & HDSPE_CHAN_AIO_ALL)
176 		preceding &= HDSPE_CHAN_AIO_ALL;	/* Contiguous AIO slots. */
177 	else if (preceding & HDSPE_CHAN_RAY_ALL)
178 		preceding &= HDSPE_CHAN_RAY_ALL;	/* Contiguous RayDAT slots. */
179 
180 	return (hdspe_channel_count(preceding, adat_width));
181 }
182 
183 static unsigned int
184 hdspe_port_slot_offset(uint32_t port, unsigned int adat_width)
185 {
186 	/* Exctract the first port (lowest bit) if set of ports. */
187 	switch (hdspe_port_first(port)) {
188 	/* AIO ports */
189 	case HDSPE_CHAN_AIO_LINE:
190 		return (0);
191 	case HDSPE_CHAN_AIO_PHONE:
192 		return (6);
193 	case HDSPE_CHAN_AIO_AES:
194 		return (8);
195 	case HDSPE_CHAN_AIO_SPDIF:
196 		return (10);
197 	case HDSPE_CHAN_AIO_ADAT:
198 		return (12);
199 
200 	/* RayDAT ports */
201 	case HDSPE_CHAN_RAY_AES:
202 		return (0);
203 	case HDSPE_CHAN_RAY_SPDIF:
204 		return (2);
205 	case HDSPE_CHAN_RAY_ADAT1:
206 		return (4);
207 	case HDSPE_CHAN_RAY_ADAT2:
208 		return (4 + adat_width);
209 	case HDSPE_CHAN_RAY_ADAT3:
210 		return (4 + 2 * adat_width);
211 	case HDSPE_CHAN_RAY_ADAT4:
212 		return (4 + 3 * adat_width);
213 	default:
214 		return (0);
215 	}
216 }
217 
218 static unsigned int
219 hdspe_port_slot_width(uint32_t ports, unsigned int adat_width)
220 {
221 	uint32_t row;
222 
223 	/* Count number of contiguous slots from the first physical port. */
224 	row = hdspe_port_first_row(ports);
225 	return (hdspe_channel_count(row, adat_width));
226 }
227 
228 static int
229 hdspe_hw_mixer(struct sc_chinfo *ch, unsigned int dst,
230     unsigned int src, unsigned short data)
231 {
232 	struct sc_pcminfo *scp;
233 	struct sc_info *sc;
234 	int offs;
235 
236 	scp = ch->parent;
237 	sc = scp->sc;
238 
239 	offs = 0;
240 	if (ch->dir == PCMDIR_PLAY)
241 		offs = 64;
242 
243 	hdspe_write_4(sc, HDSPE_MIXER_BASE +
244 	    ((offs + src + 128 * dst) * sizeof(uint32_t)),
245 	    data & 0xFFFF);
246 
247 	return (0);
248 };
249 
250 static int
251 hdspechan_setgain(struct sc_chinfo *ch)
252 {
253 	struct sc_info *sc;
254 	uint32_t port, ports;
255 	unsigned int slot, end_slot;
256 	unsigned short volume;
257 
258 	sc = ch->parent->sc;
259 
260 	/* Iterate through all physical ports of the channel. */
261 	ports = ch->ports;
262 	port = hdspe_port_first(ports);
263 	while (port != 0) {
264 		/* Get slot range of the physical port. */
265 		slot =
266 		    hdspe_port_slot_offset(port, hdspe_adat_width(sc->speed));
267 		end_slot = slot +
268 		    hdspe_port_slot_width(port, hdspe_adat_width(sc->speed));
269 
270 		/* Treat first slot as left channel. */
271 		volume = ch->lvol * HDSPE_MAX_GAIN / 100;
272 		for (; slot < end_slot; slot++) {
273 			hdspe_hw_mixer(ch, slot, slot, volume);
274 			/* Subsequent slots all get the right channel volume. */
275 			volume = ch->rvol * HDSPE_MAX_GAIN / 100;
276 		}
277 
278 		ports &= ~port;
279 		port = hdspe_port_first(ports);
280 	}
281 
282 	return (0);
283 }
284 
285 static int
286 hdspemixer_init(struct snd_mixer *m)
287 {
288 	struct sc_pcminfo *scp;
289 	struct sc_info *sc;
290 	int mask;
291 
292 	scp = mix_getdevinfo(m);
293 	sc = scp->sc;
294 	if (sc == NULL)
295 		return (-1);
296 
297 	mask = SOUND_MASK_PCM;
298 
299 	if (hdspe_channel_play_ports(scp->hc))
300 		mask |= SOUND_MASK_VOLUME;
301 
302 	if (hdspe_channel_rec_ports(scp->hc))
303 		mask |= SOUND_MASK_RECLEV;
304 
305 	snd_mtxlock(sc->lock);
306 	pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
307 	mix_setdevs(m, mask);
308 	snd_mtxunlock(sc->lock);
309 
310 	return (0);
311 }
312 
313 static int
314 hdspemixer_set(struct snd_mixer *m, unsigned dev,
315     unsigned left, unsigned right)
316 {
317 	struct sc_pcminfo *scp;
318 	struct sc_chinfo *ch;
319 	int i;
320 
321 	scp = mix_getdevinfo(m);
322 
323 #if 0
324 	device_printf(scp->dev, "hdspemixer_set() %d %d\n",
325 	    left, right);
326 #endif
327 
328 	for (i = 0; i < scp->chnum; i++) {
329 		ch = &scp->chan[i];
330 		if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) ||
331 		    (dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) {
332 			ch->lvol = left;
333 			ch->rvol = right;
334 			if (ch->run)
335 				hdspechan_setgain(ch);
336 		}
337 	}
338 
339 	return (0);
340 }
341 
342 static kobj_method_t hdspemixer_methods[] = {
343 	KOBJMETHOD(mixer_init,      hdspemixer_init),
344 	KOBJMETHOD(mixer_set,       hdspemixer_set),
345 	KOBJMETHOD_END
346 };
347 MIXER_DECLARE(hdspemixer);
348 
349 static void
350 hdspechan_enable(struct sc_chinfo *ch, int value)
351 {
352 	struct sc_pcminfo *scp;
353 	struct sc_info *sc;
354 	uint32_t row, ports;
355 	int reg;
356 	unsigned int slot, end_slot;
357 
358 	scp = ch->parent;
359 	sc = scp->sc;
360 
361 	if (ch->dir == PCMDIR_PLAY)
362 		reg = HDSPE_OUT_ENABLE_BASE;
363 	else
364 		reg = HDSPE_IN_ENABLE_BASE;
365 
366 	ch->run = value;
367 
368 	/* Iterate through rows of ports with contiguous slots. */
369 	ports = ch->ports;
370 	row = hdspe_port_first_row(ports);
371 	while (row != 0) {
372 		slot =
373 		    hdspe_port_slot_offset(row, hdspe_adat_width(sc->speed));
374 		end_slot = slot +
375 		    hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
376 
377 		for (; slot < end_slot; slot++) {
378 			hdspe_write_1(sc, reg + (4 * slot), value);
379 		}
380 
381 		ports &= ~row;
382 		row = hdspe_port_first_row(ports);
383 	}
384 }
385 
386 static int
387 hdspe_running(struct sc_info *sc)
388 {
389 	struct sc_pcminfo *scp;
390 	struct sc_chinfo *ch;
391 	device_t *devlist;
392 	int devcount;
393 	int i, j;
394 	int err;
395 
396 	if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
397 		goto bad;
398 
399 	for (i = 0; i < devcount; i++) {
400 		scp = device_get_ivars(devlist[i]);
401 		for (j = 0; j < scp->chnum; j++) {
402 			ch = &scp->chan[j];
403 			if (ch->run)
404 				goto bad;
405 		}
406 	}
407 
408 	free(devlist, M_TEMP);
409 
410 	return (0);
411 bad:
412 
413 #if 0
414 	device_printf(sc->dev, "hdspe is running\n");
415 #endif
416 
417 	free(devlist, M_TEMP);
418 
419 	return (1);
420 }
421 
422 static void
423 hdspe_start_audio(struct sc_info *sc)
424 {
425 
426 	sc->ctrl_register |= (HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
427 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
428 }
429 
430 static void
431 hdspe_stop_audio(struct sc_info *sc)
432 {
433 
434 	if (hdspe_running(sc) == 1)
435 		return;
436 
437 	sc->ctrl_register &= ~(HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
438 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
439 }
440 
441 static void
442 buffer_mux_write(uint32_t *dma, uint32_t *pcm, unsigned int pos,
443     unsigned int samples, unsigned int slots, unsigned int channels)
444 {
445 	int slot;
446 
447 	for (; samples > 0; samples--) {
448 		for (slot = 0; slot < slots; slot++) {
449 			dma[slot * HDSPE_CHANBUF_SAMPLES + pos] =
450 			    pcm[pos * channels + slot];
451 		}
452 		pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
453 	}
454 }
455 
456 static void
457 buffer_mux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
458     unsigned int pos, unsigned int samples, unsigned int adat_width,
459     unsigned int pcm_width)
460 {
461 	unsigned int slot_offset, slots;
462 	unsigned int channels, chan_pos;
463 
464 	/* Translate DMA slot offset to DMA buffer offset. */
465 	slot_offset = hdspe_port_slot_offset(subset, adat_width);
466 	dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
467 
468 	/* Channel position of the port subset and total number of channels. */
469 	chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
470 	pcm += chan_pos;
471 	channels = hdspe_channel_count(ports, pcm_width);
472 
473 	/* Only copy as much as supported by both hardware and pcm channel. */
474 	slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
475 
476 	/* Let the compiler inline and loop unroll common cases. */
477 	if (slots == 2)
478 		buffer_mux_write(dma, pcm, pos, samples, 2, channels);
479 	else if (slots == 4)
480 		buffer_mux_write(dma, pcm, pos, samples, 4, channels);
481 	else if (slots == 8)
482 		buffer_mux_write(dma, pcm, pos, samples, 8, channels);
483 	else
484 		buffer_mux_write(dma, pcm, pos, samples, slots, channels);
485 }
486 
487 static void
488 buffer_demux_read(uint32_t *dma, uint32_t *pcm, unsigned int pos,
489     unsigned int samples, unsigned int slots, unsigned int channels)
490 {
491 	int slot;
492 
493 	for (; samples > 0; samples--) {
494 		for (slot = 0; slot < slots; slot++) {
495 			pcm[pos * channels + slot] =
496 			    dma[slot * HDSPE_CHANBUF_SAMPLES + pos];
497 		}
498 		pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
499 	}
500 }
501 
502 static void
503 buffer_demux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
504     unsigned int pos, unsigned int samples, unsigned int adat_width,
505     unsigned int pcm_width)
506 {
507 	unsigned int slot_offset, slots;
508 	unsigned int channels, chan_pos;
509 
510 	/* Translate port slot offset to DMA buffer offset. */
511 	slot_offset = hdspe_port_slot_offset(subset, adat_width);
512 	dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
513 
514 	/* Channel position of the port subset and total number of channels. */
515 	chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
516 	pcm += chan_pos;
517 	channels = hdspe_channel_count(ports, pcm_width);
518 
519 	/* Only copy as much as supported by both hardware and pcm channel. */
520 	slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
521 
522 	/* Let the compiler inline and loop unroll common cases. */
523 	if (slots == 2)
524 		buffer_demux_read(dma, pcm, pos, samples, 2, channels);
525 	else if (slots == 4)
526 		buffer_demux_read(dma, pcm, pos, samples, 4, channels);
527 	else if (slots == 8)
528 		buffer_demux_read(dma, pcm, pos, samples, 8, channels);
529 	else
530 		buffer_demux_read(dma, pcm, pos, samples, slots, channels);
531 }
532 
533 
534 /* Copy data between DMA and PCM buffers. */
535 static void
536 buffer_copy(struct sc_chinfo *ch)
537 {
538 	struct sc_pcminfo *scp;
539 	struct sc_info *sc;
540 	uint32_t row, ports;
541 	unsigned int pos;
542 	unsigned int n;
543 	unsigned int adat_width, pcm_width;
544 
545 	scp = ch->parent;
546 	sc = scp->sc;
547 
548 	n = AFMT_CHANNEL(ch->format); /* n channels */
549 
550 	/* Let pcm formats differ from current hardware ADAT width. */
551 	adat_width = hdspe_adat_width(sc->speed);
552 	if (n == hdspe_channel_count(ch->ports, 2))
553 		pcm_width = 2;
554 	else if (n == hdspe_channel_count(ch->ports, 4))
555 		pcm_width = 4;
556 	else
557 		pcm_width = 8;
558 
559 	if (ch->dir == PCMDIR_PLAY)
560 		pos = sndbuf_getreadyptr(ch->buffer);
561 	else
562 		pos = sndbuf_getfreeptr(ch->buffer);
563 
564 	pos /= 4; /* Bytes per sample. */
565 	pos /= n; /* Destination buffer n-times smaller. */
566 
567 	/* Iterate through rows of ports with contiguous slots. */
568 	ports = ch->ports;
569 	if (pcm_width == adat_width)
570 		row = hdspe_port_first_row(ports);
571 	else
572 		row = hdspe_port_first(ports);
573 
574 	while (row != 0) {
575 		if (ch->dir == PCMDIR_PLAY)
576 			buffer_mux_port(sc->pbuf, ch->data, row, ch->ports, pos,
577 			    sc->period * 2, adat_width, pcm_width);
578 		else
579 			buffer_demux_port(sc->rbuf, ch->data, row, ch->ports,
580 			    pos, sc->period * 2, adat_width, pcm_width);
581 
582 		ports &= ~row;
583 		if (pcm_width == adat_width)
584 			row = hdspe_port_first_row(ports);
585 		else
586 			row = hdspe_port_first(ports);
587 	}
588 }
589 
590 static int
591 clean(struct sc_chinfo *ch)
592 {
593 	struct sc_pcminfo *scp;
594 	struct sc_info *sc;
595 	uint32_t *buf;
596 	uint32_t row, ports;
597 	unsigned int offset, slots;
598 
599 	scp = ch->parent;
600 	sc = scp->sc;
601 	buf = sc->rbuf;
602 
603 	if (ch->dir == PCMDIR_PLAY)
604 		buf = sc->pbuf;
605 
606 	/* Iterate through rows of ports with contiguous slots. */
607 	ports = ch->ports;
608 	row = hdspe_port_first_row(ports);
609 	while (row != 0) {
610 		offset = hdspe_port_slot_offset(row,
611 		    hdspe_adat_width(sc->speed));
612 		slots = hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
613 
614 		bzero(buf + offset * HDSPE_CHANBUF_SAMPLES,
615 		    slots * HDSPE_CHANBUF_SIZE);
616 
617 		ports &= ~row;
618 		row = hdspe_port_first_row(ports);
619 	}
620 
621 	return (0);
622 }
623 
624 /* Channel interface. */
625 static void *
626 hdspechan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
627     struct pcm_channel *c, int dir)
628 {
629 	struct sc_pcminfo *scp;
630 	struct sc_chinfo *ch;
631 	struct sc_info *sc;
632 	int num;
633 
634 	scp = devinfo;
635 	sc = scp->sc;
636 
637 	snd_mtxlock(sc->lock);
638 	num = scp->chnum;
639 
640 	ch = &scp->chan[num];
641 
642 	if (dir == PCMDIR_PLAY)
643 		ch->ports = hdspe_channel_play_ports(scp->hc);
644 	else
645 		ch->ports = hdspe_channel_rec_ports(scp->hc);
646 
647 	ch->run = 0;
648 	ch->lvol = 0;
649 	ch->rvol = 0;
650 
651 	/* Support all possible ADAT widths as channel formats. */
652 	ch->cap_fmts[0] =
653 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 2), 0);
654 	ch->cap_fmts[1] =
655 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 4), 0);
656 	ch->cap_fmts[2] =
657 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 8), 0);
658 	ch->cap_fmts[3] = 0;
659 	ch->caps = malloc(sizeof(struct pcmchan_caps), M_HDSPE, M_NOWAIT);
660 	*(ch->caps) = (struct pcmchan_caps) {32000, 192000, ch->cap_fmts, 0};
661 
662 	/* Allocate maximum buffer size. */
663 	ch->size = HDSPE_CHANBUF_SIZE * hdspe_channel_count(ch->ports, 8);
664 	ch->data = malloc(ch->size, M_HDSPE, M_NOWAIT);
665 
666 	ch->buffer = b;
667 	ch->channel = c;
668 	ch->parent = scp;
669 
670 	ch->dir = dir;
671 
672 	snd_mtxunlock(sc->lock);
673 
674 	if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) {
675 		device_printf(scp->dev, "Can't setup sndbuf.\n");
676 		return (NULL);
677 	}
678 
679 	return (ch);
680 }
681 
682 static int
683 hdspechan_trigger(kobj_t obj, void *data, int go)
684 {
685 	struct sc_pcminfo *scp;
686 	struct sc_chinfo *ch;
687 	struct sc_info *sc;
688 
689 	ch = data;
690 	scp = ch->parent;
691 	sc = scp->sc;
692 
693 	snd_mtxlock(sc->lock);
694 	switch (go) {
695 	case PCMTRIG_START:
696 #if 0
697 		device_printf(scp->dev, "hdspechan_trigger(): start\n");
698 #endif
699 		hdspechan_enable(ch, 1);
700 		hdspechan_setgain(ch);
701 		hdspe_start_audio(sc);
702 		break;
703 
704 	case PCMTRIG_STOP:
705 	case PCMTRIG_ABORT:
706 #if 0
707 		device_printf(scp->dev, "hdspechan_trigger(): stop or abort\n");
708 #endif
709 		clean(ch);
710 		hdspechan_enable(ch, 0);
711 		hdspe_stop_audio(sc);
712 		break;
713 
714 	case PCMTRIG_EMLDMAWR:
715 	case PCMTRIG_EMLDMARD:
716 		if(ch->run)
717 			buffer_copy(ch);
718 		break;
719 	}
720 
721 	snd_mtxunlock(sc->lock);
722 
723 	return (0);
724 }
725 
726 static uint32_t
727 hdspechan_getptr(kobj_t obj, void *data)
728 {
729 	struct sc_pcminfo *scp;
730 	struct sc_chinfo *ch;
731 	struct sc_info *sc;
732 	uint32_t ret, pos;
733 
734 	ch = data;
735 	scp = ch->parent;
736 	sc = scp->sc;
737 
738 	snd_mtxlock(sc->lock);
739 	ret = hdspe_read_2(sc, HDSPE_STATUS_REG);
740 	snd_mtxunlock(sc->lock);
741 
742 	pos = ret & HDSPE_BUF_POSITION_MASK;
743 	pos *= AFMT_CHANNEL(ch->format); /* Hardbuf with multiple channels. */
744 
745 	return (pos);
746 }
747 
748 static int
749 hdspechan_free(kobj_t obj, void *data)
750 {
751 	struct sc_pcminfo *scp;
752 	struct sc_chinfo *ch;
753 	struct sc_info *sc;
754 
755 	ch = data;
756 	scp = ch->parent;
757 	sc = scp->sc;
758 
759 #if 0
760 	device_printf(scp->dev, "hdspechan_free()\n");
761 #endif
762 
763 	snd_mtxlock(sc->lock);
764 	if (ch->data != NULL) {
765 		free(ch->data, M_HDSPE);
766 		ch->data = NULL;
767 	}
768 	if (ch->caps != NULL) {
769 		free(ch->caps, M_HDSPE);
770 		ch->caps = NULL;
771 	}
772 	snd_mtxunlock(sc->lock);
773 
774 	return (0);
775 }
776 
777 static int
778 hdspechan_setformat(kobj_t obj, void *data, uint32_t format)
779 {
780 	struct sc_chinfo *ch;
781 
782 	ch = data;
783 
784 #if 0
785 	struct sc_pcminfo *scp = ch->parent;
786 	device_printf(scp->dev, "hdspechan_setformat(%d)\n", format);
787 #endif
788 
789 	ch->format = format;
790 
791 	return (0);
792 }
793 
794 static uint32_t
795 hdspechan_setspeed(kobj_t obj, void *data, uint32_t speed)
796 {
797 	struct sc_pcminfo *scp;
798 	struct hdspe_rate *hr;
799 	struct sc_chinfo *ch;
800 	struct sc_info *sc;
801 	long long period;
802 	int threshold;
803 	int i;
804 
805 	ch = data;
806 	scp = ch->parent;
807 	sc = scp->sc;
808 	hr = NULL;
809 
810 #if 0
811 	device_printf(scp->dev, "hdspechan_setspeed(%d)\n", speed);
812 #endif
813 
814 	if (hdspe_running(sc) == 1)
815 		goto end;
816 
817 	if (sc->force_speed > 0)
818 		speed = sc->force_speed;
819 
820 	/* First look for equal frequency. */
821 	for (i = 0; rate_map[i].speed != 0; i++) {
822 		if (rate_map[i].speed == speed)
823 			hr = &rate_map[i];
824 	}
825 
826 	/* If no match, just find nearest. */
827 	if (hr == NULL) {
828 		for (i = 0; rate_map[i].speed != 0; i++) {
829 			hr = &rate_map[i];
830 			threshold = hr->speed + ((rate_map[i + 1].speed != 0) ?
831 			    ((rate_map[i + 1].speed - hr->speed) >> 1) : 0);
832 			if (speed < threshold)
833 				break;
834 		}
835 	}
836 
837 	switch (sc->type) {
838 	case HDSPE_RAYDAT:
839 	case HDSPE_AIO:
840 		period = HDSPE_FREQ_AIO;
841 		break;
842 	default:
843 		/* Unsupported card. */
844 		goto end;
845 	}
846 
847 	/* Write frequency on the device. */
848 	sc->ctrl_register &= ~HDSPE_FREQ_MASK;
849 	sc->ctrl_register |= hr->reg;
850 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
851 
852 	speed = hr->speed;
853 	if (speed > 96000)
854 		speed /= 4;
855 	else if (speed > 48000)
856 		speed /= 2;
857 
858 	/* Set DDS value. */
859 	period /= speed;
860 	hdspe_write_4(sc, HDSPE_FREQ_REG, period);
861 
862 	sc->speed = hr->speed;
863 end:
864 
865 	return (sc->speed);
866 }
867 
868 static uint32_t
869 hdspechan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
870 {
871 	struct hdspe_latency *hl;
872 	struct sc_pcminfo *scp;
873 	struct sc_chinfo *ch;
874 	struct sc_info *sc;
875 	int threshold;
876 	int i;
877 
878 	ch = data;
879 	scp = ch->parent;
880 	sc = scp->sc;
881 	hl = NULL;
882 
883 #if 0
884 	device_printf(scp->dev, "hdspechan_setblocksize(%d)\n", blocksize);
885 #endif
886 
887 	if (hdspe_running(sc) == 1)
888 		goto end;
889 
890 	if (blocksize > HDSPE_LAT_BYTES_MAX)
891 		blocksize = HDSPE_LAT_BYTES_MAX;
892 	else if (blocksize < HDSPE_LAT_BYTES_MIN)
893 		blocksize = HDSPE_LAT_BYTES_MIN;
894 
895 	blocksize /= 4 /* samples */;
896 
897 	if (sc->force_period > 0)
898 		blocksize = sc->force_period;
899 
900 	/* First look for equal latency. */
901 	for (i = 0; latency_map[i].period != 0; i++) {
902 		if (latency_map[i].period == blocksize)
903 			hl = &latency_map[i];
904 	}
905 
906 	/* If no match, just find nearest. */
907 	if (hl == NULL) {
908 		for (i = 0; latency_map[i].period != 0; i++) {
909 			hl = &latency_map[i];
910 			threshold = hl->period + ((latency_map[i + 1].period != 0) ?
911 			    ((latency_map[i + 1].period - hl->period) >> 1) : 0);
912 			if (blocksize < threshold)
913 				break;
914 		}
915 	}
916 
917 	snd_mtxlock(sc->lock);
918 	sc->ctrl_register &= ~HDSPE_LAT_MASK;
919 	sc->ctrl_register |= hdspe_encode_latency(hl->n);
920 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
921 	sc->period = hl->period;
922 	snd_mtxunlock(sc->lock);
923 
924 #if 0
925 	device_printf(scp->dev, "New period=%d\n", sc->period);
926 #endif
927 
928 	sndbuf_resize(ch->buffer,
929 	    (HDSPE_CHANBUF_SIZE * AFMT_CHANNEL(ch->format)) / (sc->period * 4),
930 	    (sc->period * 4));
931 end:
932 
933 	return (sndbuf_getblksz(ch->buffer));
934 }
935 
936 static uint32_t hdspe_bkp_fmt[] = {
937 	SND_FORMAT(AFMT_S32_LE, 2, 0),
938 	0
939 };
940 
941 static struct pcmchan_caps hdspe_bkp_caps = {32000, 192000, hdspe_bkp_fmt, 0};
942 
943 static struct pcmchan_caps *
944 hdspechan_getcaps(kobj_t obj, void *data)
945 {
946 	struct sc_chinfo *ch;
947 
948 	ch = data;
949 
950 #if 0
951 	struct sc_pcminfo *scl = ch->parent;
952 	device_printf(scp->dev, "hdspechan_getcaps()\n");
953 #endif
954 
955 	if (ch->caps != NULL)
956 		return (ch->caps);
957 
958 	return (&hdspe_bkp_caps);
959 }
960 
961 static kobj_method_t hdspechan_methods[] = {
962 	KOBJMETHOD(channel_init,         hdspechan_init),
963 	KOBJMETHOD(channel_free,         hdspechan_free),
964 	KOBJMETHOD(channel_setformat,    hdspechan_setformat),
965 	KOBJMETHOD(channel_setspeed,     hdspechan_setspeed),
966 	KOBJMETHOD(channel_setblocksize, hdspechan_setblocksize),
967 	KOBJMETHOD(channel_trigger,      hdspechan_trigger),
968 	KOBJMETHOD(channel_getptr,       hdspechan_getptr),
969 	KOBJMETHOD(channel_getcaps,      hdspechan_getcaps),
970 	KOBJMETHOD_END
971 };
972 CHANNEL_DECLARE(hdspechan);
973 
974 static int
975 hdspe_pcm_probe(device_t dev)
976 {
977 
978 #if 0
979 	device_printf(dev,"hdspe_pcm_probe()\n");
980 #endif
981 
982 	return (0);
983 }
984 
985 static uint32_t
986 hdspe_pcm_intr(struct sc_pcminfo *scp)
987 {
988 	struct sc_chinfo *ch;
989 	struct sc_info *sc;
990 	int i;
991 
992 	sc = scp->sc;
993 
994 	for (i = 0; i < scp->chnum; i++) {
995 		ch = &scp->chan[i];
996 		snd_mtxunlock(sc->lock);
997 		chn_intr(ch->channel);
998 		snd_mtxlock(sc->lock);
999 	}
1000 
1001 	return (0);
1002 }
1003 
1004 static int
1005 hdspe_pcm_attach(device_t dev)
1006 {
1007 	char status[SND_STATUSLEN];
1008 	struct sc_pcminfo *scp;
1009 	const char *buf;
1010 	int err;
1011 	int play, rec;
1012 
1013 	scp = device_get_ivars(dev);
1014 	scp->ih = &hdspe_pcm_intr;
1015 
1016 	if (scp->hc->ports & HDSPE_CHAN_AIO_ALL)
1017 		buf = "AIO";
1018 	else if (scp->hc->ports & HDSPE_CHAN_RAY_ALL)
1019 		buf = "RayDAT";
1020 	else
1021 		buf = "?";
1022 	device_set_descf(dev, "HDSPe %s [%s]", buf, scp->hc->descr);
1023 
1024 	/*
1025 	 * We don't register interrupt handler with snd_setup_intr
1026 	 * in pcm device. Mark pcm device as MPSAFE manually.
1027 	 */
1028 	pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
1029 
1030 	play = (hdspe_channel_play_ports(scp->hc)) ? 1 : 0;
1031 	rec = (hdspe_channel_rec_ports(scp->hc)) ? 1 : 0;
1032 	err = pcm_register(dev, scp, play, rec);
1033 	if (err) {
1034 		device_printf(dev, "Can't register pcm.\n");
1035 		return (ENXIO);
1036 	}
1037 
1038 	scp->chnum = 0;
1039 	if (play) {
1040 		pcm_addchan(dev, PCMDIR_PLAY, &hdspechan_class, scp);
1041 		scp->chnum++;
1042 	}
1043 
1044 	if (rec) {
1045 		pcm_addchan(dev, PCMDIR_REC, &hdspechan_class, scp);
1046 		scp->chnum++;
1047 	}
1048 
1049 	snprintf(status, SND_STATUSLEN, "port 0x%jx irq %jd on %s",
1050 	    rman_get_start(scp->sc->cs),
1051 	    rman_get_start(scp->sc->irq),
1052 	    device_get_nameunit(device_get_parent(dev)));
1053 	pcm_setstatus(dev, status);
1054 
1055 	mixer_init(dev, &hdspemixer_class, scp);
1056 
1057 	return (0);
1058 }
1059 
1060 static int
1061 hdspe_pcm_detach(device_t dev)
1062 {
1063 	int err;
1064 
1065 	err = pcm_unregister(dev);
1066 	if (err) {
1067 		device_printf(dev, "Can't unregister device.\n");
1068 		return (err);
1069 	}
1070 
1071 	return (0);
1072 }
1073 
1074 static device_method_t hdspe_pcm_methods[] = {
1075 	DEVMETHOD(device_probe,     hdspe_pcm_probe),
1076 	DEVMETHOD(device_attach,    hdspe_pcm_attach),
1077 	DEVMETHOD(device_detach,    hdspe_pcm_detach),
1078 	{ 0, 0 }
1079 };
1080 
1081 static driver_t hdspe_pcm_driver = {
1082 	"pcm",
1083 	hdspe_pcm_methods,
1084 	PCM_SOFTC_SIZE,
1085 };
1086 
1087 DRIVER_MODULE(snd_hdspe_pcm, hdspe, hdspe_pcm_driver, 0, 0);
1088 MODULE_DEPEND(snd_hdspe, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1089 MODULE_VERSION(snd_hdspe, 1);
1090