xref: /freebsd/sys/dev/ste/if_ste.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #ifdef HAVE_KERNEL_OPTION_HEADERS
39 #include "opt_device_polling.h"
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/rman.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/ethernet.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/mii_bitbang.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 
76 #include <dev/ste/if_stereg.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 
81 MODULE_DEPEND(ste, pci, 1, 1, 1);
82 MODULE_DEPEND(ste, ether, 1, 1, 1);
83 MODULE_DEPEND(ste, miibus, 1, 1, 1);
84 
85 /* Define to show Tx error status. */
86 #define	STE_SHOW_TXERRORS
87 
88 /*
89  * Various supported device vendors/types and their names.
90  */
91 static const struct ste_type ste_devs[] = {
92 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
93 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
94 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
95 	{ 0, 0, NULL }
96 };
97 
98 static int	ste_attach(device_t);
99 static int	ste_detach(device_t);
100 static int	ste_probe(device_t);
101 static int	ste_resume(device_t);
102 static int	ste_shutdown(device_t);
103 static int	ste_suspend(device_t);
104 
105 static int	ste_dma_alloc(struct ste_softc *);
106 static void	ste_dma_free(struct ste_softc *);
107 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
108 static int 	ste_eeprom_wait(struct ste_softc *);
109 static int	ste_encap(struct ste_softc *, struct mbuf **,
110 		    struct ste_chain *);
111 static int	ste_ifmedia_upd(struct ifnet *);
112 static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
113 static void	ste_init(void *);
114 static void	ste_init_locked(struct ste_softc *);
115 static int	ste_init_rx_list(struct ste_softc *);
116 static void	ste_init_tx_list(struct ste_softc *);
117 static void	ste_intr(void *);
118 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
119 static uint32_t ste_mii_bitbang_read(device_t);
120 static void	ste_mii_bitbang_write(device_t, uint32_t);
121 static int	ste_miibus_readreg(device_t, int, int);
122 static void	ste_miibus_statchg(device_t);
123 static int	ste_miibus_writereg(device_t, int, int, int);
124 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
125 static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
126 static void	ste_reset(struct ste_softc *);
127 static void	ste_restart_tx(struct ste_softc *);
128 static int	ste_rxeof(struct ste_softc *, int);
129 static void	ste_rxfilter(struct ste_softc *);
130 static void	ste_setwol(struct ste_softc *);
131 static void	ste_start(struct ifnet *);
132 static void	ste_start_locked(struct ifnet *);
133 static void	ste_stats_clear(struct ste_softc *);
134 static void	ste_stats_update(struct ste_softc *);
135 static void	ste_stop(struct ste_softc *);
136 static void	ste_sysctl_node(struct ste_softc *);
137 static void	ste_tick(void *);
138 static void	ste_txeoc(struct ste_softc *);
139 static void	ste_txeof(struct ste_softc *);
140 static void	ste_wait(struct ste_softc *);
141 static void	ste_watchdog(struct ste_softc *);
142 
143 /*
144  * MII bit-bang glue
145  */
146 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
147 	ste_mii_bitbang_read,
148 	ste_mii_bitbang_write,
149 	{
150 		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
151 		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
152 		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
153 		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
154 		0,			/* MII_BIT_DIR_PHY_HOST */
155 	}
156 };
157 
158 static device_method_t ste_methods[] = {
159 	/* Device interface */
160 	DEVMETHOD(device_probe,		ste_probe),
161 	DEVMETHOD(device_attach,	ste_attach),
162 	DEVMETHOD(device_detach,	ste_detach),
163 	DEVMETHOD(device_shutdown,	ste_shutdown),
164 	DEVMETHOD(device_suspend,	ste_suspend),
165 	DEVMETHOD(device_resume,	ste_resume),
166 
167 	/* MII interface */
168 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
169 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
170 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
171 
172 	DEVMETHOD_END
173 };
174 
175 static driver_t ste_driver = {
176 	"ste",
177 	ste_methods,
178 	sizeof(struct ste_softc)
179 };
180 
181 static devclass_t ste_devclass;
182 
183 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
184 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
185 
186 #define STE_SETBIT4(sc, reg, x)				\
187 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
188 
189 #define STE_CLRBIT4(sc, reg, x)				\
190 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
191 
192 #define STE_SETBIT2(sc, reg, x)				\
193 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
194 
195 #define STE_CLRBIT2(sc, reg, x)				\
196 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
197 
198 #define STE_SETBIT1(sc, reg, x)				\
199 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
200 
201 #define STE_CLRBIT1(sc, reg, x)				\
202 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
203 
204 /*
205  * Read the MII serial port for the MII bit-bang module.
206  */
207 static uint32_t
208 ste_mii_bitbang_read(device_t dev)
209 {
210 	struct ste_softc *sc;
211 	uint32_t val;
212 
213 	sc = device_get_softc(dev);
214 
215 	val = CSR_READ_1(sc, STE_PHYCTL);
216 	CSR_BARRIER(sc, STE_PHYCTL, 1,
217 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
218 
219 	return (val);
220 }
221 
222 /*
223  * Write the MII serial port for the MII bit-bang module.
224  */
225 static void
226 ste_mii_bitbang_write(device_t dev, uint32_t val)
227 {
228 	struct ste_softc *sc;
229 
230 	sc = device_get_softc(dev);
231 
232 	CSR_WRITE_1(sc, STE_PHYCTL, val);
233 	CSR_BARRIER(sc, STE_PHYCTL, 1,
234 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
235 }
236 
237 static int
238 ste_miibus_readreg(device_t dev, int phy, int reg)
239 {
240 
241 	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
242 }
243 
244 static int
245 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
246 {
247 
248 	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
249 
250 	return (0);
251 }
252 
253 static void
254 ste_miibus_statchg(device_t dev)
255 {
256 	struct ste_softc *sc;
257 	struct mii_data *mii;
258 	struct ifnet *ifp;
259 	uint16_t cfg;
260 
261 	sc = device_get_softc(dev);
262 
263 	mii = device_get_softc(sc->ste_miibus);
264 	ifp = sc->ste_ifp;
265 	if (mii == NULL || ifp == NULL ||
266 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
267 		return;
268 
269 	sc->ste_flags &= ~STE_FLAG_LINK;
270 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
271 	    (IFM_ACTIVE | IFM_AVALID)) {
272 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
273 		case IFM_10_T:
274 		case IFM_100_TX:
275 		case IFM_100_FX:
276 		case IFM_100_T4:
277 			sc->ste_flags |= STE_FLAG_LINK;
278 		default:
279 			break;
280 		}
281 	}
282 
283 	/* Program MACs with resolved speed/duplex/flow-control. */
284 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
285 		cfg = CSR_READ_2(sc, STE_MACCTL0);
286 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
287 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
288 			/*
289 			 * ST201 data sheet says driver should enable receiving
290 			 * MAC control frames bit of receive mode register to
291 			 * receive flow-control frames but the register has no
292 			 * such bits. In addition the controller has no ability
293 			 * to send pause frames so it should be handled in
294 			 * driver. Implementing pause timer handling in driver
295 			 * layer is not trivial, so don't enable flow-control
296 			 * here.
297 			 */
298 			cfg |= STE_MACCTL0_FULLDUPLEX;
299 		}
300 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
301 	}
302 }
303 
304 static int
305 ste_ifmedia_upd(struct ifnet *ifp)
306 {
307 	struct ste_softc *sc;
308 	struct mii_data	*mii;
309 	struct mii_softc *miisc;
310 	int error;
311 
312 	sc = ifp->if_softc;
313 	STE_LOCK(sc);
314 	mii = device_get_softc(sc->ste_miibus);
315 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
316 		PHY_RESET(miisc);
317 	error = mii_mediachg(mii);
318 	STE_UNLOCK(sc);
319 
320 	return (error);
321 }
322 
323 static void
324 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
325 {
326 	struct ste_softc *sc;
327 	struct mii_data *mii;
328 
329 	sc = ifp->if_softc;
330 	mii = device_get_softc(sc->ste_miibus);
331 
332 	STE_LOCK(sc);
333 	if ((ifp->if_flags & IFF_UP) == 0) {
334 		STE_UNLOCK(sc);
335 		return;
336 	}
337 	mii_pollstat(mii);
338 	ifmr->ifm_active = mii->mii_media_active;
339 	ifmr->ifm_status = mii->mii_media_status;
340 	STE_UNLOCK(sc);
341 }
342 
343 static void
344 ste_wait(struct ste_softc *sc)
345 {
346 	int i;
347 
348 	for (i = 0; i < STE_TIMEOUT; i++) {
349 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
350 			break;
351 		DELAY(1);
352 	}
353 
354 	if (i == STE_TIMEOUT)
355 		device_printf(sc->ste_dev, "command never completed!\n");
356 }
357 
358 /*
359  * The EEPROM is slow: give it time to come ready after issuing
360  * it a command.
361  */
362 static int
363 ste_eeprom_wait(struct ste_softc *sc)
364 {
365 	int i;
366 
367 	DELAY(1000);
368 
369 	for (i = 0; i < 100; i++) {
370 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
371 			DELAY(1000);
372 		else
373 			break;
374 	}
375 
376 	if (i == 100) {
377 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
378 		return (1);
379 	}
380 
381 	return (0);
382 }
383 
384 /*
385  * Read a sequence of words from the EEPROM. Note that ethernet address
386  * data is stored in the EEPROM in network byte order.
387  */
388 static int
389 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
390 {
391 	int err = 0, i;
392 
393 	if (ste_eeprom_wait(sc))
394 		return (1);
395 
396 	for (i = 0; i < cnt; i++) {
397 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
398 		err = ste_eeprom_wait(sc);
399 		if (err)
400 			break;
401 		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
402 		dest++;
403 	}
404 
405 	return (err ? 1 : 0);
406 }
407 
408 static void
409 ste_rxfilter(struct ste_softc *sc)
410 {
411 	struct ifnet *ifp;
412 	struct ifmultiaddr *ifma;
413 	uint32_t hashes[2] = { 0, 0 };
414 	uint8_t rxcfg;
415 	int h;
416 
417 	STE_LOCK_ASSERT(sc);
418 
419 	ifp = sc->ste_ifp;
420 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
421 	rxcfg |= STE_RXMODE_UNICAST;
422 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
423 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
424 	if (ifp->if_flags & IFF_BROADCAST)
425 		rxcfg |= STE_RXMODE_BROADCAST;
426 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
427 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
428 			rxcfg |= STE_RXMODE_ALLMULTI;
429 		if ((ifp->if_flags & IFF_PROMISC) != 0)
430 			rxcfg |= STE_RXMODE_PROMISC;
431 		goto chipit;
432 	}
433 
434 	rxcfg |= STE_RXMODE_MULTIHASH;
435 	/* Now program new ones. */
436 	if_maddr_rlock(ifp);
437 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
438 		if (ifma->ifma_addr->sa_family != AF_LINK)
439 			continue;
440 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
441 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
442 		if (h < 32)
443 			hashes[0] |= (1 << h);
444 		else
445 			hashes[1] |= (1 << (h - 32));
446 	}
447 	if_maddr_runlock(ifp);
448 
449 chipit:
450 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
451 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
452 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
453 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
454 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
455 	CSR_READ_1(sc, STE_RX_MODE);
456 }
457 
458 #ifdef DEVICE_POLLING
459 static poll_handler_t ste_poll, ste_poll_locked;
460 
461 static int
462 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
463 {
464 	struct ste_softc *sc = ifp->if_softc;
465 	int rx_npkts = 0;
466 
467 	STE_LOCK(sc);
468 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
469 		rx_npkts = ste_poll_locked(ifp, cmd, count);
470 	STE_UNLOCK(sc);
471 	return (rx_npkts);
472 }
473 
474 static int
475 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
476 {
477 	struct ste_softc *sc = ifp->if_softc;
478 	int rx_npkts;
479 
480 	STE_LOCK_ASSERT(sc);
481 
482 	rx_npkts = ste_rxeof(sc, count);
483 	ste_txeof(sc);
484 	ste_txeoc(sc);
485 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
486 		ste_start_locked(ifp);
487 
488 	if (cmd == POLL_AND_CHECK_STATUS) {
489 		uint16_t status;
490 
491 		status = CSR_READ_2(sc, STE_ISR_ACK);
492 
493 		if (status & STE_ISR_STATS_OFLOW)
494 			ste_stats_update(sc);
495 
496 		if (status & STE_ISR_HOSTERR) {
497 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
498 			ste_init_locked(sc);
499 		}
500 	}
501 	return (rx_npkts);
502 }
503 #endif /* DEVICE_POLLING */
504 
505 static void
506 ste_intr(void *xsc)
507 {
508 	struct ste_softc *sc;
509 	struct ifnet *ifp;
510 	uint16_t intrs, status;
511 
512 	sc = xsc;
513 	STE_LOCK(sc);
514 	ifp = sc->ste_ifp;
515 
516 #ifdef DEVICE_POLLING
517 	if (ifp->if_capenable & IFCAP_POLLING) {
518 		STE_UNLOCK(sc);
519 		return;
520 	}
521 #endif
522 	/* Reading STE_ISR_ACK clears STE_IMR register. */
523 	status = CSR_READ_2(sc, STE_ISR_ACK);
524 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
525 		STE_UNLOCK(sc);
526 		return;
527 	}
528 
529 	intrs = STE_INTRS;
530 	if (status == 0xFFFF || (status & intrs) == 0)
531 		goto done;
532 
533 	if (sc->ste_int_rx_act > 0) {
534 		status &= ~STE_ISR_RX_DMADONE;
535 		intrs &= ~STE_IMR_RX_DMADONE;
536 	}
537 
538 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
539 		ste_rxeof(sc, -1);
540 		/*
541 		 * The controller has no ability to Rx interrupt
542 		 * moderation feature. Receiving 64 bytes frames
543 		 * from wire generates too many interrupts which in
544 		 * turn make system useless to process other useful
545 		 * things. Fortunately ST201 supports single shot
546 		 * timer so use the timer to implement Rx interrupt
547 		 * moderation in driver. This adds more register
548 		 * access but it greatly reduces number of Rx
549 		 * interrupts under high network load.
550 		 */
551 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
552 		    (sc->ste_int_rx_mod != 0)) {
553 			if ((status & STE_ISR_RX_DMADONE) != 0) {
554 				CSR_WRITE_2(sc, STE_COUNTDOWN,
555 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
556 				intrs &= ~STE_IMR_RX_DMADONE;
557 				sc->ste_int_rx_act = 1;
558 			} else {
559 				intrs |= STE_IMR_RX_DMADONE;
560 				sc->ste_int_rx_act = 0;
561 			}
562 		}
563 	}
564 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
565 		if ((status & STE_ISR_TX_DMADONE) != 0)
566 			ste_txeof(sc);
567 		if ((status & STE_ISR_TX_DONE) != 0)
568 			ste_txeoc(sc);
569 		if ((status & STE_ISR_STATS_OFLOW) != 0)
570 			ste_stats_update(sc);
571 		if ((status & STE_ISR_HOSTERR) != 0) {
572 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
573 			ste_init_locked(sc);
574 			STE_UNLOCK(sc);
575 			return;
576 		}
577 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
578 			ste_start_locked(ifp);
579 done:
580 		/* Re-enable interrupts */
581 		CSR_WRITE_2(sc, STE_IMR, intrs);
582 	}
583 	STE_UNLOCK(sc);
584 }
585 
586 /*
587  * A frame has been uploaded: pass the resulting mbuf chain up to
588  * the higher level protocols.
589  */
590 static int
591 ste_rxeof(struct ste_softc *sc, int count)
592 {
593         struct mbuf *m;
594         struct ifnet *ifp;
595 	struct ste_chain_onefrag *cur_rx;
596 	uint32_t rxstat;
597 	int total_len, rx_npkts;
598 
599 	ifp = sc->ste_ifp;
600 
601 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
602 	    sc->ste_cdata.ste_rx_list_map,
603 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
604 
605 	cur_rx = sc->ste_cdata.ste_rx_head;
606 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
607 	    cur_rx = cur_rx->ste_next) {
608 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
609 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
610 			break;
611 #ifdef DEVICE_POLLING
612 		if (ifp->if_capenable & IFCAP_POLLING) {
613 			if (count == 0)
614 				break;
615 			count--;
616 		}
617 #endif
618 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
619 			break;
620 		/*
621 		 * If an error occurs, update stats, clear the
622 		 * status word and leave the mbuf cluster in place:
623 		 * it should simply get re-used next time this descriptor
624 	 	 * comes up in the ring.
625 		 */
626 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
627 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
628 			cur_rx->ste_ptr->ste_status = 0;
629 			continue;
630 		}
631 
632 		/* No errors; receive the packet. */
633 		m = cur_rx->ste_mbuf;
634 		total_len = STE_RX_BYTES(rxstat);
635 
636 		/*
637 		 * Try to conjure up a new mbuf cluster. If that
638 		 * fails, it means we have an out of memory condition and
639 		 * should leave the buffer in place and continue. This will
640 		 * result in a lost packet, but there's little else we
641 		 * can do in this situation.
642 		 */
643 		if (ste_newbuf(sc, cur_rx) != 0) {
644 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
645 			cur_rx->ste_ptr->ste_status = 0;
646 			continue;
647 		}
648 
649 		m->m_pkthdr.rcvif = ifp;
650 		m->m_pkthdr.len = m->m_len = total_len;
651 
652 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
653 		STE_UNLOCK(sc);
654 		(*ifp->if_input)(ifp, m);
655 		STE_LOCK(sc);
656 	}
657 
658 	if (rx_npkts > 0) {
659 		sc->ste_cdata.ste_rx_head = cur_rx;
660 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
661 		    sc->ste_cdata.ste_rx_list_map,
662 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
663 	}
664 
665 	return (rx_npkts);
666 }
667 
668 static void
669 ste_txeoc(struct ste_softc *sc)
670 {
671 	uint16_t txstat;
672 	struct ifnet *ifp;
673 
674 	STE_LOCK_ASSERT(sc);
675 
676 	ifp = sc->ste_ifp;
677 
678 	/*
679 	 * STE_TX_STATUS register implements a queue of up to 31
680 	 * transmit status byte. Writing an arbitrary value to the
681 	 * register will advance the queue to the next transmit
682 	 * status byte. This means if driver does not read
683 	 * STE_TX_STATUS register after completing sending more
684 	 * than 31 frames the controller would be stalled so driver
685 	 * should re-wake the Tx MAC. This is the most severe
686 	 * limitation of ST201 based controller.
687 	 */
688 	for (;;) {
689 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
690 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
691 			break;
692 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
693 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
694 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
695 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
696 #ifdef	STE_SHOW_TXERRORS
697 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
698 			    txstat & 0xFF, STE_ERR_BITS);
699 #endif
700 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
701 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
702 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
703 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
704 					sc->ste_tx_thresh = STE_PACKET_SIZE;
705 				device_printf(sc->ste_dev,
706 				    "TX underrun, increasing TX"
707 				    " start threshold to %d bytes\n",
708 				    sc->ste_tx_thresh);
709 				/* Make sure to disable active DMA cycles. */
710 				STE_SETBIT4(sc, STE_DMACTL,
711 				    STE_DMACTL_TXDMA_STALL);
712 				ste_wait(sc);
713 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
714 				ste_init_locked(sc);
715 				break;
716 			}
717 			/* Restart Tx. */
718 			ste_restart_tx(sc);
719 		}
720 		/*
721 		 * Advance to next status and ACK TxComplete
722 		 * interrupt. ST201 data sheet was wrong here, to
723 		 * get next Tx status, we have to write both
724 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
725 		 * Otherwise controller returns the same status
726 		 * as well as not acknowledge Tx completion
727 		 * interrupt.
728 		 */
729 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
730 	}
731 }
732 
733 static void
734 ste_tick(void *arg)
735 {
736 	struct ste_softc *sc;
737 	struct mii_data *mii;
738 
739 	sc = (struct ste_softc *)arg;
740 
741 	STE_LOCK_ASSERT(sc);
742 
743 	mii = device_get_softc(sc->ste_miibus);
744 	mii_tick(mii);
745 	/*
746 	 * ukphy(4) does not seem to generate CB that reports
747 	 * resolved link state so if we know we lost a link,
748 	 * explicitly check the link state.
749 	 */
750 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
751 		ste_miibus_statchg(sc->ste_dev);
752 	/*
753 	 * Because we are not generating Tx completion
754 	 * interrupt for every frame, reclaim transmitted
755 	 * buffers here.
756 	 */
757 	ste_txeof(sc);
758 	ste_txeoc(sc);
759 	ste_stats_update(sc);
760 	ste_watchdog(sc);
761 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
762 }
763 
764 static void
765 ste_txeof(struct ste_softc *sc)
766 {
767 	struct ifnet *ifp;
768 	struct ste_chain *cur_tx;
769 	uint32_t txstat;
770 	int idx;
771 
772 	STE_LOCK_ASSERT(sc);
773 
774 	ifp = sc->ste_ifp;
775 	idx = sc->ste_cdata.ste_tx_cons;
776 	if (idx == sc->ste_cdata.ste_tx_prod)
777 		return;
778 
779 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
780 	    sc->ste_cdata.ste_tx_list_map,
781 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
782 
783 	while (idx != sc->ste_cdata.ste_tx_prod) {
784 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
785 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
786 		if ((txstat & STE_TXCTL_DMADONE) == 0)
787 			break;
788 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
789 		    BUS_DMASYNC_POSTWRITE);
790 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
791 		KASSERT(cur_tx->ste_mbuf != NULL,
792 		    ("%s: freeing NULL mbuf!\n", __func__));
793 		m_freem(cur_tx->ste_mbuf);
794 		cur_tx->ste_mbuf = NULL;
795 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
796 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
797 		sc->ste_cdata.ste_tx_cnt--;
798 		STE_INC(idx, STE_TX_LIST_CNT);
799 	}
800 
801 	sc->ste_cdata.ste_tx_cons = idx;
802 	if (sc->ste_cdata.ste_tx_cnt == 0)
803 		sc->ste_timer = 0;
804 }
805 
806 static void
807 ste_stats_clear(struct ste_softc *sc)
808 {
809 
810 	STE_LOCK_ASSERT(sc);
811 
812 	/* Rx stats. */
813 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
814 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
815 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
816 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
817 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
818 	CSR_READ_1(sc, STE_STAT_RX_LOST);
819 	/* Tx stats. */
820 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
821 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
822 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
823 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
824 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
825 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
826 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
827 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
828 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
829 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
830 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
831 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
832 }
833 
834 static void
835 ste_stats_update(struct ste_softc *sc)
836 {
837 	struct ifnet *ifp;
838 	struct ste_hw_stats *stats;
839 	uint32_t val;
840 
841 	STE_LOCK_ASSERT(sc);
842 
843 	ifp = sc->ste_ifp;
844 	stats = &sc->ste_stats;
845 	/* Rx stats. */
846 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
847 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
848 	val &= 0x000FFFFF;
849 	stats->rx_bytes += val;
850 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
851 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
852 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
853 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
854 	/* Tx stats. */
855 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
856 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
857 	val &= 0x000FFFFF;
858 	stats->tx_bytes += val;
859 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
860 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
861 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
862 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
863 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
864 	stats->tx_single_colls += val;
865 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
866 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
867 	stats->tx_multi_colls += val;
868 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
869 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
870 	stats->tx_late_colls += val;
871 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
872 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
873 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
874 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
875 }
876 
877 /*
878  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
879  * IDs against our list and return a device name if we find a match.
880  */
881 static int
882 ste_probe(device_t dev)
883 {
884 	const struct ste_type *t;
885 
886 	t = ste_devs;
887 
888 	while (t->ste_name != NULL) {
889 		if ((pci_get_vendor(dev) == t->ste_vid) &&
890 		    (pci_get_device(dev) == t->ste_did)) {
891 			device_set_desc(dev, t->ste_name);
892 			return (BUS_PROBE_DEFAULT);
893 		}
894 		t++;
895 	}
896 
897 	return (ENXIO);
898 }
899 
900 /*
901  * Attach the interface. Allocate softc structures, do ifmedia
902  * setup and ethernet/BPF attach.
903  */
904 static int
905 ste_attach(device_t dev)
906 {
907 	struct ste_softc *sc;
908 	struct ifnet *ifp;
909 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
910 	int error = 0, phy, pmc, prefer_iomap, rid;
911 
912 	sc = device_get_softc(dev);
913 	sc->ste_dev = dev;
914 
915 	/*
916 	 * Only use one PHY since this chip reports multiple
917 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
918 	 * it is at 0 & 1.  It is rev 0x12.
919 	 */
920 	if (pci_get_vendor(dev) == DL_VENDORID &&
921 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
922 	    pci_get_revid(dev) == 0x12 )
923 		sc->ste_flags |= STE_FLAG_ONE_PHY;
924 
925 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
926 	    MTX_DEF);
927 	/*
928 	 * Map control/status registers.
929 	 */
930 	pci_enable_busmaster(dev);
931 
932 	/*
933 	 * Prefer memory space register mapping over IO space but use
934 	 * IO space for a device that is known to have issues on memory
935 	 * mapping.
936 	 */
937 	prefer_iomap = 0;
938 	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
939 		prefer_iomap = 1;
940 	else
941 		resource_int_value(device_get_name(sc->ste_dev),
942 		    device_get_unit(sc->ste_dev), "prefer_iomap",
943 		    &prefer_iomap);
944 	if (prefer_iomap == 0) {
945 		sc->ste_res_id = PCIR_BAR(1);
946 		sc->ste_res_type = SYS_RES_MEMORY;
947 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
948 		    &sc->ste_res_id, RF_ACTIVE);
949 	}
950 	if (prefer_iomap || sc->ste_res == NULL) {
951 		sc->ste_res_id = PCIR_BAR(0);
952 		sc->ste_res_type = SYS_RES_IOPORT;
953 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
954 		    &sc->ste_res_id, RF_ACTIVE);
955 	}
956 	if (sc->ste_res == NULL) {
957 		device_printf(dev, "couldn't map ports/memory\n");
958 		error = ENXIO;
959 		goto fail;
960 	}
961 
962 	/* Allocate interrupt */
963 	rid = 0;
964 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
965 	    RF_SHAREABLE | RF_ACTIVE);
966 
967 	if (sc->ste_irq == NULL) {
968 		device_printf(dev, "couldn't map interrupt\n");
969 		error = ENXIO;
970 		goto fail;
971 	}
972 
973 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
974 
975 	/* Reset the adapter. */
976 	ste_reset(sc);
977 
978 	/*
979 	 * Get station address from the EEPROM.
980 	 */
981 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
982 		device_printf(dev, "failed to read station address\n");
983 		error = ENXIO;
984 		goto fail;
985 	}
986 	ste_sysctl_node(sc);
987 
988 	if ((error = ste_dma_alloc(sc)) != 0)
989 		goto fail;
990 
991 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
992 	if (ifp == NULL) {
993 		device_printf(dev, "can not if_alloc()\n");
994 		error = ENOSPC;
995 		goto fail;
996 	}
997 
998 	/* Do MII setup. */
999 	phy = MII_PHY_ANY;
1000 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
1001 		phy = 0;
1002 	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1003 		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1004 	if (error != 0) {
1005 		device_printf(dev, "attaching PHYs failed\n");
1006 		goto fail;
1007 	}
1008 
1009 	ifp->if_softc = sc;
1010 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1011 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1012 	ifp->if_ioctl = ste_ioctl;
1013 	ifp->if_start = ste_start;
1014 	ifp->if_init = ste_init;
1015 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1016 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1017 	IFQ_SET_READY(&ifp->if_snd);
1018 
1019 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1020 
1021 	/*
1022 	 * Call MI attach routine.
1023 	 */
1024 	ether_ifattach(ifp, (uint8_t *)eaddr);
1025 
1026 	/*
1027 	 * Tell the upper layer(s) we support long frames.
1028 	 */
1029 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1030 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1031 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1032 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1033 	ifp->if_capenable = ifp->if_capabilities;
1034 #ifdef DEVICE_POLLING
1035 	ifp->if_capabilities |= IFCAP_POLLING;
1036 #endif
1037 
1038 	/* Hook interrupt last to avoid having to lock softc */
1039 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1040 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1041 
1042 	if (error) {
1043 		device_printf(dev, "couldn't set up irq\n");
1044 		ether_ifdetach(ifp);
1045 		goto fail;
1046 	}
1047 
1048 fail:
1049 	if (error)
1050 		ste_detach(dev);
1051 
1052 	return (error);
1053 }
1054 
1055 /*
1056  * Shutdown hardware and free up resources. This can be called any
1057  * time after the mutex has been initialized. It is called in both
1058  * the error case in attach and the normal detach case so it needs
1059  * to be careful about only freeing resources that have actually been
1060  * allocated.
1061  */
1062 static int
1063 ste_detach(device_t dev)
1064 {
1065 	struct ste_softc *sc;
1066 	struct ifnet *ifp;
1067 
1068 	sc = device_get_softc(dev);
1069 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1070 	ifp = sc->ste_ifp;
1071 
1072 #ifdef DEVICE_POLLING
1073 	if (ifp->if_capenable & IFCAP_POLLING)
1074 		ether_poll_deregister(ifp);
1075 #endif
1076 
1077 	/* These should only be active if attach succeeded */
1078 	if (device_is_attached(dev)) {
1079 		ether_ifdetach(ifp);
1080 		STE_LOCK(sc);
1081 		ste_stop(sc);
1082 		STE_UNLOCK(sc);
1083 		callout_drain(&sc->ste_callout);
1084 	}
1085 	if (sc->ste_miibus)
1086 		device_delete_child(dev, sc->ste_miibus);
1087 	bus_generic_detach(dev);
1088 
1089 	if (sc->ste_intrhand)
1090 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1091 	if (sc->ste_irq)
1092 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1093 	if (sc->ste_res)
1094 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1095 		    sc->ste_res);
1096 
1097 	if (ifp)
1098 		if_free(ifp);
1099 
1100 	ste_dma_free(sc);
1101 	mtx_destroy(&sc->ste_mtx);
1102 
1103 	return (0);
1104 }
1105 
1106 struct ste_dmamap_arg {
1107 	bus_addr_t	ste_busaddr;
1108 };
1109 
1110 static void
1111 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1112 {
1113 	struct ste_dmamap_arg *ctx;
1114 
1115 	if (error != 0)
1116 		return;
1117 
1118 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1119 
1120 	ctx = (struct ste_dmamap_arg *)arg;
1121 	ctx->ste_busaddr = segs[0].ds_addr;
1122 }
1123 
1124 static int
1125 ste_dma_alloc(struct ste_softc *sc)
1126 {
1127 	struct ste_chain *txc;
1128 	struct ste_chain_onefrag *rxc;
1129 	struct ste_dmamap_arg ctx;
1130 	int error, i;
1131 
1132 	/* Create parent DMA tag. */
1133 	error = bus_dma_tag_create(
1134 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1135 	    1, 0,			/* alignment, boundary */
1136 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1137 	    BUS_SPACE_MAXADDR,		/* highaddr */
1138 	    NULL, NULL,			/* filter, filterarg */
1139 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1140 	    0,				/* nsegments */
1141 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1142 	    0,				/* flags */
1143 	    NULL, NULL,			/* lockfunc, lockarg */
1144 	    &sc->ste_cdata.ste_parent_tag);
1145 	if (error != 0) {
1146 		device_printf(sc->ste_dev,
1147 		    "could not create parent DMA tag.\n");
1148 		goto fail;
1149 	}
1150 
1151 	/* Create DMA tag for Tx descriptor list. */
1152 	error = bus_dma_tag_create(
1153 	    sc->ste_cdata.ste_parent_tag, /* parent */
1154 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1155 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1156 	    BUS_SPACE_MAXADDR,		/* highaddr */
1157 	    NULL, NULL,			/* filter, filterarg */
1158 	    STE_TX_LIST_SZ,		/* maxsize */
1159 	    1,				/* nsegments */
1160 	    STE_TX_LIST_SZ,		/* maxsegsize */
1161 	    0,				/* flags */
1162 	    NULL, NULL,			/* lockfunc, lockarg */
1163 	    &sc->ste_cdata.ste_tx_list_tag);
1164 	if (error != 0) {
1165 		device_printf(sc->ste_dev,
1166 		    "could not create Tx list DMA tag.\n");
1167 		goto fail;
1168 	}
1169 
1170 	/* Create DMA tag for Rx descriptor list. */
1171 	error = bus_dma_tag_create(
1172 	    sc->ste_cdata.ste_parent_tag, /* parent */
1173 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1174 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1175 	    BUS_SPACE_MAXADDR,		/* highaddr */
1176 	    NULL, NULL,			/* filter, filterarg */
1177 	    STE_RX_LIST_SZ,		/* maxsize */
1178 	    1,				/* nsegments */
1179 	    STE_RX_LIST_SZ,		/* maxsegsize */
1180 	    0,				/* flags */
1181 	    NULL, NULL,			/* lockfunc, lockarg */
1182 	    &sc->ste_cdata.ste_rx_list_tag);
1183 	if (error != 0) {
1184 		device_printf(sc->ste_dev,
1185 		    "could not create Rx list DMA tag.\n");
1186 		goto fail;
1187 	}
1188 
1189 	/* Create DMA tag for Tx buffers. */
1190 	error = bus_dma_tag_create(
1191 	    sc->ste_cdata.ste_parent_tag, /* parent */
1192 	    1, 0,			/* alignment, boundary */
1193 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1194 	    BUS_SPACE_MAXADDR,		/* highaddr */
1195 	    NULL, NULL,			/* filter, filterarg */
1196 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1197 	    STE_MAXFRAGS,		/* nsegments */
1198 	    MCLBYTES,			/* maxsegsize */
1199 	    0,				/* flags */
1200 	    NULL, NULL,			/* lockfunc, lockarg */
1201 	    &sc->ste_cdata.ste_tx_tag);
1202 	if (error != 0) {
1203 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1204 		goto fail;
1205 	}
1206 
1207 	/* Create DMA tag for Rx buffers. */
1208 	error = bus_dma_tag_create(
1209 	    sc->ste_cdata.ste_parent_tag, /* parent */
1210 	    1, 0,			/* alignment, boundary */
1211 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1212 	    BUS_SPACE_MAXADDR,		/* highaddr */
1213 	    NULL, NULL,			/* filter, filterarg */
1214 	    MCLBYTES,			/* maxsize */
1215 	    1,				/* nsegments */
1216 	    MCLBYTES,			/* maxsegsize */
1217 	    0,				/* flags */
1218 	    NULL, NULL,			/* lockfunc, lockarg */
1219 	    &sc->ste_cdata.ste_rx_tag);
1220 	if (error != 0) {
1221 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1222 		goto fail;
1223 	}
1224 
1225 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1226 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1227 	    (void **)&sc->ste_ldata.ste_tx_list,
1228 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1229 	    &sc->ste_cdata.ste_tx_list_map);
1230 	if (error != 0) {
1231 		device_printf(sc->ste_dev,
1232 		    "could not allocate DMA'able memory for Tx list.\n");
1233 		goto fail;
1234 	}
1235 	ctx.ste_busaddr = 0;
1236 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1237 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1238 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1239 	if (error != 0 || ctx.ste_busaddr == 0) {
1240 		device_printf(sc->ste_dev,
1241 		    "could not load DMA'able memory for Tx list.\n");
1242 		goto fail;
1243 	}
1244 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1245 
1246 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1247 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1248 	    (void **)&sc->ste_ldata.ste_rx_list,
1249 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1250 	    &sc->ste_cdata.ste_rx_list_map);
1251 	if (error != 0) {
1252 		device_printf(sc->ste_dev,
1253 		    "could not allocate DMA'able memory for Rx list.\n");
1254 		goto fail;
1255 	}
1256 	ctx.ste_busaddr = 0;
1257 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1258 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1259 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1260 	if (error != 0 || ctx.ste_busaddr == 0) {
1261 		device_printf(sc->ste_dev,
1262 		    "could not load DMA'able memory for Rx list.\n");
1263 		goto fail;
1264 	}
1265 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1266 
1267 	/* Create DMA maps for Tx buffers. */
1268 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1269 		txc = &sc->ste_cdata.ste_tx_chain[i];
1270 		txc->ste_ptr = NULL;
1271 		txc->ste_mbuf = NULL;
1272 		txc->ste_next = NULL;
1273 		txc->ste_phys = 0;
1274 		txc->ste_map = NULL;
1275 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1276 		    &txc->ste_map);
1277 		if (error != 0) {
1278 			device_printf(sc->ste_dev,
1279 			    "could not create Tx dmamap.\n");
1280 			goto fail;
1281 		}
1282 	}
1283 	/* Create DMA maps for Rx buffers. */
1284 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1285 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1286 		device_printf(sc->ste_dev,
1287 		    "could not create spare Rx dmamap.\n");
1288 		goto fail;
1289 	}
1290 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1291 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1292 		rxc->ste_ptr = NULL;
1293 		rxc->ste_mbuf = NULL;
1294 		rxc->ste_next = NULL;
1295 		rxc->ste_map = NULL;
1296 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1297 		    &rxc->ste_map);
1298 		if (error != 0) {
1299 			device_printf(sc->ste_dev,
1300 			    "could not create Rx dmamap.\n");
1301 			goto fail;
1302 		}
1303 	}
1304 
1305 fail:
1306 	return (error);
1307 }
1308 
1309 static void
1310 ste_dma_free(struct ste_softc *sc)
1311 {
1312 	struct ste_chain *txc;
1313 	struct ste_chain_onefrag *rxc;
1314 	int i;
1315 
1316 	/* Tx buffers. */
1317 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1318 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1319 			txc = &sc->ste_cdata.ste_tx_chain[i];
1320 			if (txc->ste_map != NULL) {
1321 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1322 				    txc->ste_map);
1323 				txc->ste_map = NULL;
1324 			}
1325 		}
1326 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1327 		sc->ste_cdata.ste_tx_tag = NULL;
1328 	}
1329 	/* Rx buffers. */
1330 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1331 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1332 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1333 			if (rxc->ste_map != NULL) {
1334 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1335 				    rxc->ste_map);
1336 				rxc->ste_map = NULL;
1337 			}
1338 		}
1339 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1340 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1341 			    sc->ste_cdata.ste_rx_sparemap);
1342 			sc->ste_cdata.ste_rx_sparemap = NULL;
1343 		}
1344 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1345 		sc->ste_cdata.ste_rx_tag = NULL;
1346 	}
1347 	/* Tx descriptor list. */
1348 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1349 		if (sc->ste_ldata.ste_tx_list_paddr != 0)
1350 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1351 			    sc->ste_cdata.ste_tx_list_map);
1352 		if (sc->ste_ldata.ste_tx_list != NULL)
1353 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1354 			    sc->ste_ldata.ste_tx_list,
1355 			    sc->ste_cdata.ste_tx_list_map);
1356 		sc->ste_ldata.ste_tx_list = NULL;
1357 		sc->ste_ldata.ste_tx_list_paddr = 0;
1358 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1359 		sc->ste_cdata.ste_tx_list_tag = NULL;
1360 	}
1361 	/* Rx descriptor list. */
1362 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1363 		if (sc->ste_ldata.ste_rx_list_paddr != 0)
1364 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1365 			    sc->ste_cdata.ste_rx_list_map);
1366 		if (sc->ste_ldata.ste_rx_list != NULL)
1367 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1368 			    sc->ste_ldata.ste_rx_list,
1369 			    sc->ste_cdata.ste_rx_list_map);
1370 		sc->ste_ldata.ste_rx_list = NULL;
1371 		sc->ste_ldata.ste_rx_list_paddr = 0;
1372 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1373 		sc->ste_cdata.ste_rx_list_tag = NULL;
1374 	}
1375 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1376 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1377 		sc->ste_cdata.ste_parent_tag = NULL;
1378 	}
1379 }
1380 
1381 static int
1382 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1383 {
1384 	struct mbuf *m;
1385 	bus_dma_segment_t segs[1];
1386 	bus_dmamap_t map;
1387 	int error, nsegs;
1388 
1389 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1390 	if (m == NULL)
1391 		return (ENOBUFS);
1392 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1393 	m_adj(m, ETHER_ALIGN);
1394 
1395 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1396 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1397 		m_freem(m);
1398 		return (error);
1399 	}
1400 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1401 
1402 	if (rxc->ste_mbuf != NULL) {
1403 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1404 		    BUS_DMASYNC_POSTREAD);
1405 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1406 	}
1407 	map = rxc->ste_map;
1408 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1409 	sc->ste_cdata.ste_rx_sparemap = map;
1410 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1411 	    BUS_DMASYNC_PREREAD);
1412 	rxc->ste_mbuf = m;
1413 	rxc->ste_ptr->ste_status = 0;
1414 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1415 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1416 	    STE_FRAG_LAST);
1417 	return (0);
1418 }
1419 
1420 static int
1421 ste_init_rx_list(struct ste_softc *sc)
1422 {
1423 	struct ste_chain_data *cd;
1424 	struct ste_list_data *ld;
1425 	int error, i;
1426 
1427 	sc->ste_int_rx_act = 0;
1428 	cd = &sc->ste_cdata;
1429 	ld = &sc->ste_ldata;
1430 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1431 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1432 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1433 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1434 		if (error != 0)
1435 			return (error);
1436 		if (i == (STE_RX_LIST_CNT - 1)) {
1437 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1438 			ld->ste_rx_list[i].ste_next =
1439 			    htole32(ld->ste_rx_list_paddr +
1440 			    (sizeof(struct ste_desc_onefrag) * 0));
1441 		} else {
1442 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1443 			ld->ste_rx_list[i].ste_next =
1444 			    htole32(ld->ste_rx_list_paddr +
1445 			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1446 		}
1447 	}
1448 
1449 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1450 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1451 	    sc->ste_cdata.ste_rx_list_map,
1452 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1453 
1454 	return (0);
1455 }
1456 
1457 static void
1458 ste_init_tx_list(struct ste_softc *sc)
1459 {
1460 	struct ste_chain_data *cd;
1461 	struct ste_list_data *ld;
1462 	int i;
1463 
1464 	cd = &sc->ste_cdata;
1465 	ld = &sc->ste_ldata;
1466 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1467 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1468 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1469 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1470 		if (i == (STE_TX_LIST_CNT - 1)) {
1471 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1472 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1473 			    ld->ste_tx_list_paddr +
1474 			    (sizeof(struct ste_desc) * 0)));
1475 		} else {
1476 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1477 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1478 			    ld->ste_tx_list_paddr +
1479 			    (sizeof(struct ste_desc) * (i + 1))));
1480 		}
1481 	}
1482 
1483 	cd->ste_last_tx = NULL;
1484 	cd->ste_tx_prod = 0;
1485 	cd->ste_tx_cons = 0;
1486 	cd->ste_tx_cnt = 0;
1487 
1488 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1489 	    sc->ste_cdata.ste_tx_list_map,
1490 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1491 }
1492 
1493 static void
1494 ste_init(void *xsc)
1495 {
1496 	struct ste_softc *sc;
1497 
1498 	sc = xsc;
1499 	STE_LOCK(sc);
1500 	ste_init_locked(sc);
1501 	STE_UNLOCK(sc);
1502 }
1503 
1504 static void
1505 ste_init_locked(struct ste_softc *sc)
1506 {
1507 	struct ifnet *ifp;
1508 	struct mii_data *mii;
1509 	uint8_t val;
1510 	int i;
1511 
1512 	STE_LOCK_ASSERT(sc);
1513 	ifp = sc->ste_ifp;
1514 	mii = device_get_softc(sc->ste_miibus);
1515 
1516 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1517 		return;
1518 
1519 	ste_stop(sc);
1520 	/* Reset the chip to a known state. */
1521 	ste_reset(sc);
1522 
1523 	/* Init our MAC address */
1524 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1525 		CSR_WRITE_2(sc, STE_PAR0 + i,
1526 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1527 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1528 	}
1529 
1530 	/* Init RX list */
1531 	if (ste_init_rx_list(sc) != 0) {
1532 		device_printf(sc->ste_dev,
1533 		    "initialization failed: no memory for RX buffers\n");
1534 		ste_stop(sc);
1535 		return;
1536 	}
1537 
1538 	/* Set RX polling interval */
1539 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1540 
1541 	/* Init TX descriptors */
1542 	ste_init_tx_list(sc);
1543 
1544 	/* Clear and disable WOL. */
1545 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1546 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1547 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1548 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1549 
1550 	/* Set the TX freethresh value */
1551 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1552 
1553 	/* Set the TX start threshold for best performance. */
1554 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1555 
1556 	/* Set the TX reclaim threshold. */
1557 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1558 
1559 	/* Accept VLAN length packets */
1560 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1561 
1562 	/* Set up the RX filter. */
1563 	ste_rxfilter(sc);
1564 
1565 	/* Load the address of the RX list. */
1566 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1567 	ste_wait(sc);
1568 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1569 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1570 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1571 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1572 
1573 	/* Set TX polling interval(defer until we TX first packet). */
1574 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1575 
1576 	/* Load address of the TX list */
1577 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1578 	ste_wait(sc);
1579 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1580 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1581 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1582 	ste_wait(sc);
1583 	/* Select 3.2us timer. */
1584 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1585 	    STE_DMACTL_COUNTDOWN_MODE);
1586 
1587 	/* Enable receiver and transmitter */
1588 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1589 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1590 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1591 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1592 
1593 	/* Enable stats counters. */
1594 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1595 	/* Clear stats counters. */
1596 	ste_stats_clear(sc);
1597 
1598 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1599 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1600 #ifdef DEVICE_POLLING
1601 	/* Disable interrupts if we are polling. */
1602 	if (ifp->if_capenable & IFCAP_POLLING)
1603 		CSR_WRITE_2(sc, STE_IMR, 0);
1604 	else
1605 #endif
1606 	/* Enable interrupts. */
1607 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1608 
1609 	sc->ste_flags &= ~STE_FLAG_LINK;
1610 	/* Switch to the current media. */
1611 	mii_mediachg(mii);
1612 
1613 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1614 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1615 
1616 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1617 }
1618 
1619 static void
1620 ste_stop(struct ste_softc *sc)
1621 {
1622 	struct ifnet *ifp;
1623 	struct ste_chain_onefrag *cur_rx;
1624 	struct ste_chain *cur_tx;
1625 	uint32_t val;
1626 	int i;
1627 
1628 	STE_LOCK_ASSERT(sc);
1629 	ifp = sc->ste_ifp;
1630 
1631 	callout_stop(&sc->ste_callout);
1632 	sc->ste_timer = 0;
1633 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1634 
1635 	CSR_WRITE_2(sc, STE_IMR, 0);
1636 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1637 	/* Stop pending DMA. */
1638 	val = CSR_READ_4(sc, STE_DMACTL);
1639 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1640 	CSR_WRITE_4(sc, STE_DMACTL, val);
1641 	ste_wait(sc);
1642 	/* Disable auto-polling. */
1643 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1644 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1645 	/* Nullify DMA address to stop any further DMA. */
1646 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1647 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1648 	/* Stop TX/RX MAC. */
1649 	val = CSR_READ_2(sc, STE_MACCTL1);
1650 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1651 	    STE_MACCTL1_STATS_DISABLE;
1652 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1653 	for (i = 0; i < STE_TIMEOUT; i++) {
1654 		DELAY(10);
1655 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1656 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1657 			break;
1658 	}
1659 	if (i == STE_TIMEOUT)
1660 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1661 	/* Acknowledge any pending interrupts. */
1662 	CSR_READ_2(sc, STE_ISR_ACK);
1663 	ste_stats_update(sc);
1664 
1665 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1666 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1667 		if (cur_rx->ste_mbuf != NULL) {
1668 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1669 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1670 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1671 			    cur_rx->ste_map);
1672 			m_freem(cur_rx->ste_mbuf);
1673 			cur_rx->ste_mbuf = NULL;
1674 		}
1675 	}
1676 
1677 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1678 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1679 		if (cur_tx->ste_mbuf != NULL) {
1680 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1681 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1682 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1683 			    cur_tx->ste_map);
1684 			m_freem(cur_tx->ste_mbuf);
1685 			cur_tx->ste_mbuf = NULL;
1686 		}
1687 	}
1688 }
1689 
1690 static void
1691 ste_reset(struct ste_softc *sc)
1692 {
1693 	uint32_t ctl;
1694 	int i;
1695 
1696 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1697 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1698 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1699 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1700 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1701 	    STE_ASICCTL_EXTRESET_RESET;
1702 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1703 	CSR_READ_4(sc, STE_ASICCTL);
1704 	/*
1705 	 * Due to the need of accessing EEPROM controller can take
1706 	 * up to 1ms to complete the global reset.
1707 	 */
1708 	DELAY(1000);
1709 
1710 	for (i = 0; i < STE_TIMEOUT; i++) {
1711 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1712 			break;
1713 		DELAY(10);
1714 	}
1715 
1716 	if (i == STE_TIMEOUT)
1717 		device_printf(sc->ste_dev, "global reset never completed\n");
1718 }
1719 
1720 static void
1721 ste_restart_tx(struct ste_softc *sc)
1722 {
1723 	uint16_t mac;
1724 	int i;
1725 
1726 	for (i = 0; i < STE_TIMEOUT; i++) {
1727 		mac = CSR_READ_2(sc, STE_MACCTL1);
1728 		mac |= STE_MACCTL1_TX_ENABLE;
1729 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1730 		mac = CSR_READ_2(sc, STE_MACCTL1);
1731 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1732 			break;
1733 		DELAY(10);
1734 	}
1735 
1736 	if (i == STE_TIMEOUT)
1737 		device_printf(sc->ste_dev, "starting Tx failed");
1738 }
1739 
1740 static int
1741 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1742 {
1743 	struct ste_softc *sc;
1744 	struct ifreq *ifr;
1745 	struct mii_data *mii;
1746 	int error = 0, mask;
1747 
1748 	sc = ifp->if_softc;
1749 	ifr = (struct ifreq *)data;
1750 
1751 	switch (command) {
1752 	case SIOCSIFFLAGS:
1753 		STE_LOCK(sc);
1754 		if ((ifp->if_flags & IFF_UP) != 0) {
1755 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1756 			    ((ifp->if_flags ^ sc->ste_if_flags) &
1757 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1758 				ste_rxfilter(sc);
1759 			else
1760 				ste_init_locked(sc);
1761 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1762 			ste_stop(sc);
1763 		sc->ste_if_flags = ifp->if_flags;
1764 		STE_UNLOCK(sc);
1765 		break;
1766 	case SIOCADDMULTI:
1767 	case SIOCDELMULTI:
1768 		STE_LOCK(sc);
1769 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1770 			ste_rxfilter(sc);
1771 		STE_UNLOCK(sc);
1772 		break;
1773 	case SIOCGIFMEDIA:
1774 	case SIOCSIFMEDIA:
1775 		mii = device_get_softc(sc->ste_miibus);
1776 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1777 		break;
1778 	case SIOCSIFCAP:
1779 		STE_LOCK(sc);
1780 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1781 #ifdef DEVICE_POLLING
1782 		if ((mask & IFCAP_POLLING) != 0 &&
1783 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1784 			ifp->if_capenable ^= IFCAP_POLLING;
1785 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1786 				error = ether_poll_register(ste_poll, ifp);
1787 				if (error != 0) {
1788 					STE_UNLOCK(sc);
1789 					break;
1790 				}
1791 				/* Disable interrupts. */
1792 				CSR_WRITE_2(sc, STE_IMR, 0);
1793 			} else {
1794 				error = ether_poll_deregister(ifp);
1795 				/* Enable interrupts. */
1796 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1797 			}
1798 		}
1799 #endif /* DEVICE_POLLING */
1800 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1801 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1802 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1803 		STE_UNLOCK(sc);
1804 		break;
1805 	default:
1806 		error = ether_ioctl(ifp, command, data);
1807 		break;
1808 	}
1809 
1810 	return (error);
1811 }
1812 
1813 static int
1814 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1815 {
1816 	struct ste_frag *frag;
1817 	struct mbuf *m;
1818 	struct ste_desc *desc;
1819 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1820 	int error, i, nsegs;
1821 
1822 	STE_LOCK_ASSERT(sc);
1823 	M_ASSERTPKTHDR((*m_head));
1824 
1825 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1826 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1827 	if (error == EFBIG) {
1828 		m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
1829 		if (m == NULL) {
1830 			m_freem(*m_head);
1831 			*m_head = NULL;
1832 			return (ENOMEM);
1833 		}
1834 		*m_head = m;
1835 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1836 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1837 		if (error != 0) {
1838 			m_freem(*m_head);
1839 			*m_head = NULL;
1840 			return (error);
1841 		}
1842 	} else if (error != 0)
1843 		return (error);
1844 	if (nsegs == 0) {
1845 		m_freem(*m_head);
1846 		*m_head = NULL;
1847 		return (EIO);
1848 	}
1849 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1850 	    BUS_DMASYNC_PREWRITE);
1851 
1852 	desc = txc->ste_ptr;
1853 	for (i = 0; i < nsegs; i++) {
1854 		frag = &desc->ste_frags[i];
1855 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1856 		frag->ste_len = htole32(txsegs[i].ds_len);
1857 	}
1858 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1859 	/*
1860 	 * Because we use Tx polling we can't chain multiple
1861 	 * Tx descriptors here. Otherwise we race with controller.
1862 	 */
1863 	desc->ste_next = 0;
1864 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1865 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1866 		    STE_TXCTL_DMAINTR);
1867 	else
1868 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1869 	txc->ste_mbuf = *m_head;
1870 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1871 	sc->ste_cdata.ste_tx_cnt++;
1872 
1873 	return (0);
1874 }
1875 
1876 static void
1877 ste_start(struct ifnet *ifp)
1878 {
1879 	struct ste_softc *sc;
1880 
1881 	sc = ifp->if_softc;
1882 	STE_LOCK(sc);
1883 	ste_start_locked(ifp);
1884 	STE_UNLOCK(sc);
1885 }
1886 
1887 static void
1888 ste_start_locked(struct ifnet *ifp)
1889 {
1890 	struct ste_softc *sc;
1891 	struct ste_chain *cur_tx;
1892 	struct mbuf *m_head = NULL;
1893 	int enq;
1894 
1895 	sc = ifp->if_softc;
1896 	STE_LOCK_ASSERT(sc);
1897 
1898 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1899 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1900 		return;
1901 
1902 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1903 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1904 			/*
1905 			 * Controller may have cached copy of the last used
1906 			 * next ptr so we have to reserve one TFD to avoid
1907 			 * TFD overruns.
1908 			 */
1909 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1910 			break;
1911 		}
1912 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1913 		if (m_head == NULL)
1914 			break;
1915 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1916 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1917 			if (m_head == NULL)
1918 				break;
1919 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1920 			break;
1921 		}
1922 		if (sc->ste_cdata.ste_last_tx == NULL) {
1923 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1924 			    sc->ste_cdata.ste_tx_list_map,
1925 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1926 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1927 			ste_wait(sc);
1928 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1929 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1930 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1931 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1932 			ste_wait(sc);
1933 		} else {
1934 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1935 			    sc->ste_cdata.ste_last_tx->ste_phys;
1936 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1937 			    sc->ste_cdata.ste_tx_list_map,
1938 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1939 		}
1940 		sc->ste_cdata.ste_last_tx = cur_tx;
1941 
1942 		enq++;
1943 		/*
1944 		 * If there's a BPF listener, bounce a copy of this frame
1945 		 * to him.
1946 	 	 */
1947 		BPF_MTAP(ifp, m_head);
1948 	}
1949 
1950 	if (enq > 0)
1951 		sc->ste_timer = STE_TX_TIMEOUT;
1952 }
1953 
1954 static void
1955 ste_watchdog(struct ste_softc *sc)
1956 {
1957 	struct ifnet *ifp;
1958 
1959 	ifp = sc->ste_ifp;
1960 	STE_LOCK_ASSERT(sc);
1961 
1962 	if (sc->ste_timer == 0 || --sc->ste_timer)
1963 		return;
1964 
1965 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1966 	if_printf(ifp, "watchdog timeout\n");
1967 
1968 	ste_txeof(sc);
1969 	ste_txeoc(sc);
1970 	ste_rxeof(sc, -1);
1971 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1972 	ste_init_locked(sc);
1973 
1974 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1975 		ste_start_locked(ifp);
1976 }
1977 
1978 static int
1979 ste_shutdown(device_t dev)
1980 {
1981 
1982 	return (ste_suspend(dev));
1983 }
1984 
1985 static int
1986 ste_suspend(device_t dev)
1987 {
1988 	struct ste_softc *sc;
1989 
1990 	sc = device_get_softc(dev);
1991 
1992 	STE_LOCK(sc);
1993 	ste_stop(sc);
1994 	ste_setwol(sc);
1995 	STE_UNLOCK(sc);
1996 
1997 	return (0);
1998 }
1999 
2000 static int
2001 ste_resume(device_t dev)
2002 {
2003 	struct ste_softc *sc;
2004 	struct ifnet *ifp;
2005 	int pmc;
2006 	uint16_t pmstat;
2007 
2008 	sc = device_get_softc(dev);
2009 	STE_LOCK(sc);
2010 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2011 		/* Disable PME and clear PME status. */
2012 		pmstat = pci_read_config(sc->ste_dev,
2013 		    pmc + PCIR_POWER_STATUS, 2);
2014 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2015 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2016 			pci_write_config(sc->ste_dev,
2017 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2018 		}
2019 	}
2020 	ifp = sc->ste_ifp;
2021 	if ((ifp->if_flags & IFF_UP) != 0) {
2022 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2023 		ste_init_locked(sc);
2024 	}
2025 	STE_UNLOCK(sc);
2026 
2027 	return (0);
2028 }
2029 
2030 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2031 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2032 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2033 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2034 
2035 static void
2036 ste_sysctl_node(struct ste_softc *sc)
2037 {
2038 	struct sysctl_ctx_list *ctx;
2039 	struct sysctl_oid_list *child, *parent;
2040 	struct sysctl_oid *tree;
2041 	struct ste_hw_stats *stats;
2042 
2043 	stats = &sc->ste_stats;
2044 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2045 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2046 
2047 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2048 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2049 	/* Pull in device tunables. */
2050 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2051 	resource_int_value(device_get_name(sc->ste_dev),
2052 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2053 
2054 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2055 	    NULL, "STE statistics");
2056 	parent = SYSCTL_CHILDREN(tree);
2057 
2058 	/* Rx statistics. */
2059 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2060 	    NULL, "Rx MAC statistics");
2061 	child = SYSCTL_CHILDREN(tree);
2062 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2063 	    &stats->rx_bytes, "Good octets");
2064 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2065 	    &stats->rx_frames, "Good frames");
2066 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2067 	    &stats->rx_bcast_frames, "Good broadcast frames");
2068 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2069 	    &stats->rx_mcast_frames, "Good multicast frames");
2070 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2071 	    &stats->rx_lost_frames, "Lost frames");
2072 
2073 	/* Tx statistics. */
2074 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2075 	    NULL, "Tx MAC statistics");
2076 	child = SYSCTL_CHILDREN(tree);
2077 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2078 	    &stats->tx_bytes, "Good octets");
2079 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2080 	    &stats->tx_frames, "Good frames");
2081 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2082 	    &stats->tx_bcast_frames, "Good broadcast frames");
2083 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2084 	    &stats->tx_mcast_frames, "Good multicast frames");
2085 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2086 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2087 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2088 	    &stats->tx_single_colls, "Single collisions");
2089 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2090 	    &stats->tx_multi_colls, "Multiple collisions");
2091 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2092 	    &stats->tx_late_colls, "Late collisions");
2093 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2094 	    &stats->tx_frames_defered, "Frames with deferrals");
2095 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2096 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2097 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2098 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2099 }
2100 
2101 #undef STE_SYSCTL_STAT_ADD32
2102 #undef STE_SYSCTL_STAT_ADD64
2103 
2104 static void
2105 ste_setwol(struct ste_softc *sc)
2106 {
2107 	struct ifnet *ifp;
2108 	uint16_t pmstat;
2109 	uint8_t val;
2110 	int pmc;
2111 
2112 	STE_LOCK_ASSERT(sc);
2113 
2114 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2115 		/* Disable WOL. */
2116 		CSR_READ_1(sc, STE_WAKE_EVENT);
2117 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2118 		return;
2119 	}
2120 
2121 	ifp = sc->ste_ifp;
2122 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2123 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2124 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2125 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2126 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2127 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2128 	/* Request PME. */
2129 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2130 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2131 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2132 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2133 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2134 }
2135