xref: /freebsd/sys/dev/ste/if_ste.c (revision 2a58b312)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #ifdef HAVE_KERNEL_OPTION_HEADERS
39 #include "opt_device_polling.h"
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/rman.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/ethernet.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/mii_bitbang.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 
76 #include <dev/ste/if_stereg.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 
81 MODULE_DEPEND(ste, pci, 1, 1, 1);
82 MODULE_DEPEND(ste, ether, 1, 1, 1);
83 MODULE_DEPEND(ste, miibus, 1, 1, 1);
84 
85 /* Define to show Tx error status. */
86 #define	STE_SHOW_TXERRORS
87 
88 /*
89  * Various supported device vendors/types and their names.
90  */
91 static const struct ste_type ste_devs[] = {
92 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
93 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
94 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
95 	{ 0, 0, NULL }
96 };
97 
98 static int	ste_attach(device_t);
99 static int	ste_detach(device_t);
100 static int	ste_probe(device_t);
101 static int	ste_resume(device_t);
102 static int	ste_shutdown(device_t);
103 static int	ste_suspend(device_t);
104 
105 static int	ste_dma_alloc(struct ste_softc *);
106 static void	ste_dma_free(struct ste_softc *);
107 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
108 static int 	ste_eeprom_wait(struct ste_softc *);
109 static int	ste_encap(struct ste_softc *, struct mbuf **,
110 		    struct ste_chain *);
111 static int	ste_ifmedia_upd(if_t);
112 static void	ste_ifmedia_sts(if_t, struct ifmediareq *);
113 static void	ste_init(void *);
114 static void	ste_init_locked(struct ste_softc *);
115 static int	ste_init_rx_list(struct ste_softc *);
116 static void	ste_init_tx_list(struct ste_softc *);
117 static void	ste_intr(void *);
118 static int	ste_ioctl(if_t, u_long, caddr_t);
119 static uint32_t ste_mii_bitbang_read(device_t);
120 static void	ste_mii_bitbang_write(device_t, uint32_t);
121 static int	ste_miibus_readreg(device_t, int, int);
122 static void	ste_miibus_statchg(device_t);
123 static int	ste_miibus_writereg(device_t, int, int, int);
124 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
125 static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
126 static void	ste_reset(struct ste_softc *);
127 static void	ste_restart_tx(struct ste_softc *);
128 static int	ste_rxeof(struct ste_softc *, int);
129 static void	ste_rxfilter(struct ste_softc *);
130 static void	ste_setwol(struct ste_softc *);
131 static void	ste_start(if_t);
132 static void	ste_start_locked(if_t);
133 static void	ste_stats_clear(struct ste_softc *);
134 static void	ste_stats_update(struct ste_softc *);
135 static void	ste_stop(struct ste_softc *);
136 static void	ste_sysctl_node(struct ste_softc *);
137 static void	ste_tick(void *);
138 static void	ste_txeoc(struct ste_softc *);
139 static void	ste_txeof(struct ste_softc *);
140 static void	ste_wait(struct ste_softc *);
141 static void	ste_watchdog(struct ste_softc *);
142 
143 /*
144  * MII bit-bang glue
145  */
146 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
147 	ste_mii_bitbang_read,
148 	ste_mii_bitbang_write,
149 	{
150 		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
151 		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
152 		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
153 		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
154 		0,			/* MII_BIT_DIR_PHY_HOST */
155 	}
156 };
157 
158 static device_method_t ste_methods[] = {
159 	/* Device interface */
160 	DEVMETHOD(device_probe,		ste_probe),
161 	DEVMETHOD(device_attach,	ste_attach),
162 	DEVMETHOD(device_detach,	ste_detach),
163 	DEVMETHOD(device_shutdown,	ste_shutdown),
164 	DEVMETHOD(device_suspend,	ste_suspend),
165 	DEVMETHOD(device_resume,	ste_resume),
166 
167 	/* MII interface */
168 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
169 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
170 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
171 
172 	DEVMETHOD_END
173 };
174 
175 static driver_t ste_driver = {
176 	"ste",
177 	ste_methods,
178 	sizeof(struct ste_softc)
179 };
180 
181 DRIVER_MODULE(ste, pci, ste_driver, 0, 0);
182 DRIVER_MODULE(miibus, ste, miibus_driver, 0, 0);
183 
184 #define STE_SETBIT4(sc, reg, x)				\
185 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
186 
187 #define STE_CLRBIT4(sc, reg, x)				\
188 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
189 
190 #define STE_SETBIT2(sc, reg, x)				\
191 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
192 
193 #define STE_CLRBIT2(sc, reg, x)				\
194 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
195 
196 #define STE_SETBIT1(sc, reg, x)				\
197 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
198 
199 #define STE_CLRBIT1(sc, reg, x)				\
200 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
201 
202 /*
203  * Read the MII serial port for the MII bit-bang module.
204  */
205 static uint32_t
206 ste_mii_bitbang_read(device_t dev)
207 {
208 	struct ste_softc *sc;
209 	uint32_t val;
210 
211 	sc = device_get_softc(dev);
212 
213 	val = CSR_READ_1(sc, STE_PHYCTL);
214 	CSR_BARRIER(sc, STE_PHYCTL, 1,
215 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
216 
217 	return (val);
218 }
219 
220 /*
221  * Write the MII serial port for the MII bit-bang module.
222  */
223 static void
224 ste_mii_bitbang_write(device_t dev, uint32_t val)
225 {
226 	struct ste_softc *sc;
227 
228 	sc = device_get_softc(dev);
229 
230 	CSR_WRITE_1(sc, STE_PHYCTL, val);
231 	CSR_BARRIER(sc, STE_PHYCTL, 1,
232 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
233 }
234 
235 static int
236 ste_miibus_readreg(device_t dev, int phy, int reg)
237 {
238 
239 	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
240 }
241 
242 static int
243 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
244 {
245 
246 	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
247 
248 	return (0);
249 }
250 
251 static void
252 ste_miibus_statchg(device_t dev)
253 {
254 	struct ste_softc *sc;
255 	struct mii_data *mii;
256 	if_t ifp;
257 	uint16_t cfg;
258 
259 	sc = device_get_softc(dev);
260 
261 	mii = device_get_softc(sc->ste_miibus);
262 	ifp = sc->ste_ifp;
263 	if (mii == NULL || ifp == NULL ||
264 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
265 		return;
266 
267 	sc->ste_flags &= ~STE_FLAG_LINK;
268 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
269 	    (IFM_ACTIVE | IFM_AVALID)) {
270 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
271 		case IFM_10_T:
272 		case IFM_100_TX:
273 		case IFM_100_FX:
274 		case IFM_100_T4:
275 			sc->ste_flags |= STE_FLAG_LINK;
276 		default:
277 			break;
278 		}
279 	}
280 
281 	/* Program MACs with resolved speed/duplex/flow-control. */
282 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
283 		cfg = CSR_READ_2(sc, STE_MACCTL0);
284 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
285 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
286 			/*
287 			 * ST201 data sheet says driver should enable receiving
288 			 * MAC control frames bit of receive mode register to
289 			 * receive flow-control frames but the register has no
290 			 * such bits. In addition the controller has no ability
291 			 * to send pause frames so it should be handled in
292 			 * driver. Implementing pause timer handling in driver
293 			 * layer is not trivial, so don't enable flow-control
294 			 * here.
295 			 */
296 			cfg |= STE_MACCTL0_FULLDUPLEX;
297 		}
298 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
299 	}
300 }
301 
302 static int
303 ste_ifmedia_upd(if_t ifp)
304 {
305 	struct ste_softc *sc;
306 	struct mii_data	*mii;
307 	struct mii_softc *miisc;
308 	int error;
309 
310 	sc = if_getsoftc(ifp);
311 	STE_LOCK(sc);
312 	mii = device_get_softc(sc->ste_miibus);
313 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
314 		PHY_RESET(miisc);
315 	error = mii_mediachg(mii);
316 	STE_UNLOCK(sc);
317 
318 	return (error);
319 }
320 
321 static void
322 ste_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
323 {
324 	struct ste_softc *sc;
325 	struct mii_data *mii;
326 
327 	sc = if_getsoftc(ifp);
328 	mii = device_get_softc(sc->ste_miibus);
329 
330 	STE_LOCK(sc);
331 	if ((if_getflags(ifp) & IFF_UP) == 0) {
332 		STE_UNLOCK(sc);
333 		return;
334 	}
335 	mii_pollstat(mii);
336 	ifmr->ifm_active = mii->mii_media_active;
337 	ifmr->ifm_status = mii->mii_media_status;
338 	STE_UNLOCK(sc);
339 }
340 
341 static void
342 ste_wait(struct ste_softc *sc)
343 {
344 	int i;
345 
346 	for (i = 0; i < STE_TIMEOUT; i++) {
347 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
348 			break;
349 		DELAY(1);
350 	}
351 
352 	if (i == STE_TIMEOUT)
353 		device_printf(sc->ste_dev, "command never completed!\n");
354 }
355 
356 /*
357  * The EEPROM is slow: give it time to come ready after issuing
358  * it a command.
359  */
360 static int
361 ste_eeprom_wait(struct ste_softc *sc)
362 {
363 	int i;
364 
365 	DELAY(1000);
366 
367 	for (i = 0; i < 100; i++) {
368 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
369 			DELAY(1000);
370 		else
371 			break;
372 	}
373 
374 	if (i == 100) {
375 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
376 		return (1);
377 	}
378 
379 	return (0);
380 }
381 
382 /*
383  * Read a sequence of words from the EEPROM. Note that ethernet address
384  * data is stored in the EEPROM in network byte order.
385  */
386 static int
387 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
388 {
389 	int err = 0, i;
390 
391 	if (ste_eeprom_wait(sc))
392 		return (1);
393 
394 	for (i = 0; i < cnt; i++) {
395 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
396 		err = ste_eeprom_wait(sc);
397 		if (err)
398 			break;
399 		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
400 		dest++;
401 	}
402 
403 	return (err ? 1 : 0);
404 }
405 
406 static u_int
407 ste_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
408 {
409 	uint32_t *hashes = arg;
410 	int h;
411 
412 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) & 0x3F;
413 	if (h < 32)
414 		hashes[0] |= (1 << h);
415 	else
416 		hashes[1] |= (1 << (h - 32));
417 
418 	return (1);
419 }
420 
421 static void
422 ste_rxfilter(struct ste_softc *sc)
423 {
424 	if_t ifp;
425 	uint32_t hashes[2] = { 0, 0 };
426 	uint8_t rxcfg;
427 
428 	STE_LOCK_ASSERT(sc);
429 
430 	ifp = sc->ste_ifp;
431 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
432 	rxcfg |= STE_RXMODE_UNICAST;
433 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
434 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
435 	if (if_getflags(ifp) & IFF_BROADCAST)
436 		rxcfg |= STE_RXMODE_BROADCAST;
437 	if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
438 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
439 			rxcfg |= STE_RXMODE_ALLMULTI;
440 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
441 			rxcfg |= STE_RXMODE_PROMISC;
442 		goto chipit;
443 	}
444 
445 	rxcfg |= STE_RXMODE_MULTIHASH;
446 	/* Now program new ones. */
447 	if_foreach_llmaddr(ifp, ste_hash_maddr, hashes);
448 
449 chipit:
450 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
451 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
452 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
453 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
454 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
455 	CSR_READ_1(sc, STE_RX_MODE);
456 }
457 
458 #ifdef DEVICE_POLLING
459 static poll_handler_t ste_poll, ste_poll_locked;
460 
461 static int
462 ste_poll(if_t ifp, enum poll_cmd cmd, int count)
463 {
464 	struct ste_softc *sc = if_getsoftc(ifp);
465 	int rx_npkts = 0;
466 
467 	STE_LOCK(sc);
468 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
469 		rx_npkts = ste_poll_locked(ifp, cmd, count);
470 	STE_UNLOCK(sc);
471 	return (rx_npkts);
472 }
473 
474 static int
475 ste_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
476 {
477 	struct ste_softc *sc = if_getsoftc(ifp);
478 	int rx_npkts;
479 
480 	STE_LOCK_ASSERT(sc);
481 
482 	rx_npkts = ste_rxeof(sc, count);
483 	ste_txeof(sc);
484 	ste_txeoc(sc);
485 	if (!if_sendq_empty(ifp))
486 		ste_start_locked(ifp);
487 
488 	if (cmd == POLL_AND_CHECK_STATUS) {
489 		uint16_t status;
490 
491 		status = CSR_READ_2(sc, STE_ISR_ACK);
492 
493 		if (status & STE_ISR_STATS_OFLOW)
494 			ste_stats_update(sc);
495 
496 		if (status & STE_ISR_HOSTERR) {
497 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
498 			ste_init_locked(sc);
499 		}
500 	}
501 	return (rx_npkts);
502 }
503 #endif /* DEVICE_POLLING */
504 
505 static void
506 ste_intr(void *xsc)
507 {
508 	struct ste_softc *sc;
509 	if_t ifp;
510 	uint16_t intrs, status;
511 
512 	sc = xsc;
513 	STE_LOCK(sc);
514 	ifp = sc->ste_ifp;
515 
516 #ifdef DEVICE_POLLING
517 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
518 		STE_UNLOCK(sc);
519 		return;
520 	}
521 #endif
522 	/* Reading STE_ISR_ACK clears STE_IMR register. */
523 	status = CSR_READ_2(sc, STE_ISR_ACK);
524 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
525 		STE_UNLOCK(sc);
526 		return;
527 	}
528 
529 	intrs = STE_INTRS;
530 	if (status == 0xFFFF || (status & intrs) == 0)
531 		goto done;
532 
533 	if (sc->ste_int_rx_act > 0) {
534 		status &= ~STE_ISR_RX_DMADONE;
535 		intrs &= ~STE_IMR_RX_DMADONE;
536 	}
537 
538 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
539 		ste_rxeof(sc, -1);
540 		/*
541 		 * The controller has no ability to Rx interrupt
542 		 * moderation feature. Receiving 64 bytes frames
543 		 * from wire generates too many interrupts which in
544 		 * turn make system useless to process other useful
545 		 * things. Fortunately ST201 supports single shot
546 		 * timer so use the timer to implement Rx interrupt
547 		 * moderation in driver. This adds more register
548 		 * access but it greatly reduces number of Rx
549 		 * interrupts under high network load.
550 		 */
551 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
552 		    (sc->ste_int_rx_mod != 0)) {
553 			if ((status & STE_ISR_RX_DMADONE) != 0) {
554 				CSR_WRITE_2(sc, STE_COUNTDOWN,
555 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
556 				intrs &= ~STE_IMR_RX_DMADONE;
557 				sc->ste_int_rx_act = 1;
558 			} else {
559 				intrs |= STE_IMR_RX_DMADONE;
560 				sc->ste_int_rx_act = 0;
561 			}
562 		}
563 	}
564 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
565 		if ((status & STE_ISR_TX_DMADONE) != 0)
566 			ste_txeof(sc);
567 		if ((status & STE_ISR_TX_DONE) != 0)
568 			ste_txeoc(sc);
569 		if ((status & STE_ISR_STATS_OFLOW) != 0)
570 			ste_stats_update(sc);
571 		if ((status & STE_ISR_HOSTERR) != 0) {
572 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
573 			ste_init_locked(sc);
574 			STE_UNLOCK(sc);
575 			return;
576 		}
577 		if (!if_sendq_empty(ifp))
578 			ste_start_locked(ifp);
579 done:
580 		/* Re-enable interrupts */
581 		CSR_WRITE_2(sc, STE_IMR, intrs);
582 	}
583 	STE_UNLOCK(sc);
584 }
585 
586 /*
587  * A frame has been uploaded: pass the resulting mbuf chain up to
588  * the higher level protocols.
589  */
590 static int
591 ste_rxeof(struct ste_softc *sc, int count)
592 {
593         struct mbuf *m;
594         if_t ifp;
595 	struct ste_chain_onefrag *cur_rx;
596 	uint32_t rxstat;
597 	int total_len, rx_npkts;
598 
599 	ifp = sc->ste_ifp;
600 
601 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
602 	    sc->ste_cdata.ste_rx_list_map,
603 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
604 
605 	cur_rx = sc->ste_cdata.ste_rx_head;
606 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
607 	    cur_rx = cur_rx->ste_next) {
608 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
609 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
610 			break;
611 #ifdef DEVICE_POLLING
612 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
613 			if (count == 0)
614 				break;
615 			count--;
616 		}
617 #endif
618 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
619 			break;
620 		/*
621 		 * If an error occurs, update stats, clear the
622 		 * status word and leave the mbuf cluster in place:
623 		 * it should simply get re-used next time this descriptor
624 	 	 * comes up in the ring.
625 		 */
626 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
627 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
628 			cur_rx->ste_ptr->ste_status = 0;
629 			continue;
630 		}
631 
632 		/* No errors; receive the packet. */
633 		m = cur_rx->ste_mbuf;
634 		total_len = STE_RX_BYTES(rxstat);
635 
636 		/*
637 		 * Try to conjure up a new mbuf cluster. If that
638 		 * fails, it means we have an out of memory condition and
639 		 * should leave the buffer in place and continue. This will
640 		 * result in a lost packet, but there's little else we
641 		 * can do in this situation.
642 		 */
643 		if (ste_newbuf(sc, cur_rx) != 0) {
644 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
645 			cur_rx->ste_ptr->ste_status = 0;
646 			continue;
647 		}
648 
649 		m->m_pkthdr.rcvif = ifp;
650 		m->m_pkthdr.len = m->m_len = total_len;
651 
652 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
653 		STE_UNLOCK(sc);
654 		if_input(ifp, m);
655 		STE_LOCK(sc);
656 	}
657 
658 	if (rx_npkts > 0) {
659 		sc->ste_cdata.ste_rx_head = cur_rx;
660 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
661 		    sc->ste_cdata.ste_rx_list_map,
662 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
663 	}
664 
665 	return (rx_npkts);
666 }
667 
668 static void
669 ste_txeoc(struct ste_softc *sc)
670 {
671 	uint16_t txstat;
672 	if_t ifp;
673 
674 	STE_LOCK_ASSERT(sc);
675 
676 	ifp = sc->ste_ifp;
677 
678 	/*
679 	 * STE_TX_STATUS register implements a queue of up to 31
680 	 * transmit status byte. Writing an arbitrary value to the
681 	 * register will advance the queue to the next transmit
682 	 * status byte. This means if driver does not read
683 	 * STE_TX_STATUS register after completing sending more
684 	 * than 31 frames the controller would be stalled so driver
685 	 * should re-wake the Tx MAC. This is the most severe
686 	 * limitation of ST201 based controller.
687 	 */
688 	for (;;) {
689 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
690 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
691 			break;
692 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
693 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
694 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
695 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
696 #ifdef	STE_SHOW_TXERRORS
697 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
698 			    txstat & 0xFF, STE_ERR_BITS);
699 #endif
700 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
701 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
702 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
703 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
704 					sc->ste_tx_thresh = STE_PACKET_SIZE;
705 				device_printf(sc->ste_dev,
706 				    "TX underrun, increasing TX"
707 				    " start threshold to %d bytes\n",
708 				    sc->ste_tx_thresh);
709 				/* Make sure to disable active DMA cycles. */
710 				STE_SETBIT4(sc, STE_DMACTL,
711 				    STE_DMACTL_TXDMA_STALL);
712 				ste_wait(sc);
713 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
714 				ste_init_locked(sc);
715 				break;
716 			}
717 			/* Restart Tx. */
718 			ste_restart_tx(sc);
719 		}
720 		/*
721 		 * Advance to next status and ACK TxComplete
722 		 * interrupt. ST201 data sheet was wrong here, to
723 		 * get next Tx status, we have to write both
724 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
725 		 * Otherwise controller returns the same status
726 		 * as well as not acknowledge Tx completion
727 		 * interrupt.
728 		 */
729 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
730 	}
731 }
732 
733 static void
734 ste_tick(void *arg)
735 {
736 	struct ste_softc *sc;
737 	struct mii_data *mii;
738 
739 	sc = (struct ste_softc *)arg;
740 
741 	STE_LOCK_ASSERT(sc);
742 
743 	mii = device_get_softc(sc->ste_miibus);
744 	mii_tick(mii);
745 	/*
746 	 * ukphy(4) does not seem to generate CB that reports
747 	 * resolved link state so if we know we lost a link,
748 	 * explicitly check the link state.
749 	 */
750 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
751 		ste_miibus_statchg(sc->ste_dev);
752 	/*
753 	 * Because we are not generating Tx completion
754 	 * interrupt for every frame, reclaim transmitted
755 	 * buffers here.
756 	 */
757 	ste_txeof(sc);
758 	ste_txeoc(sc);
759 	ste_stats_update(sc);
760 	ste_watchdog(sc);
761 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
762 }
763 
764 static void
765 ste_txeof(struct ste_softc *sc)
766 {
767 	if_t ifp;
768 	struct ste_chain *cur_tx;
769 	uint32_t txstat;
770 	int idx;
771 
772 	STE_LOCK_ASSERT(sc);
773 
774 	ifp = sc->ste_ifp;
775 	idx = sc->ste_cdata.ste_tx_cons;
776 	if (idx == sc->ste_cdata.ste_tx_prod)
777 		return;
778 
779 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
780 	    sc->ste_cdata.ste_tx_list_map,
781 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
782 
783 	while (idx != sc->ste_cdata.ste_tx_prod) {
784 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
785 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
786 		if ((txstat & STE_TXCTL_DMADONE) == 0)
787 			break;
788 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
789 		    BUS_DMASYNC_POSTWRITE);
790 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
791 		KASSERT(cur_tx->ste_mbuf != NULL,
792 		    ("%s: freeing NULL mbuf!\n", __func__));
793 		m_freem(cur_tx->ste_mbuf);
794 		cur_tx->ste_mbuf = NULL;
795 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
796 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
797 		sc->ste_cdata.ste_tx_cnt--;
798 		STE_INC(idx, STE_TX_LIST_CNT);
799 	}
800 
801 	sc->ste_cdata.ste_tx_cons = idx;
802 	if (sc->ste_cdata.ste_tx_cnt == 0)
803 		sc->ste_timer = 0;
804 }
805 
806 static void
807 ste_stats_clear(struct ste_softc *sc)
808 {
809 
810 	STE_LOCK_ASSERT(sc);
811 
812 	/* Rx stats. */
813 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
814 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
815 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
816 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
817 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
818 	CSR_READ_1(sc, STE_STAT_RX_LOST);
819 	/* Tx stats. */
820 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
821 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
822 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
823 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
824 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
825 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
826 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
827 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
828 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
829 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
830 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
831 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
832 }
833 
834 static void
835 ste_stats_update(struct ste_softc *sc)
836 {
837 	if_t ifp;
838 	struct ste_hw_stats *stats;
839 	uint32_t val;
840 
841 	STE_LOCK_ASSERT(sc);
842 
843 	ifp = sc->ste_ifp;
844 	stats = &sc->ste_stats;
845 	/* Rx stats. */
846 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
847 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
848 	val &= 0x000FFFFF;
849 	stats->rx_bytes += val;
850 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
851 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
852 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
853 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
854 	/* Tx stats. */
855 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
856 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
857 	val &= 0x000FFFFF;
858 	stats->tx_bytes += val;
859 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
860 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
861 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
862 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
863 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
864 	stats->tx_single_colls += val;
865 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
866 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
867 	stats->tx_multi_colls += val;
868 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
869 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
870 	stats->tx_late_colls += val;
871 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
872 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
873 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
874 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
875 }
876 
877 /*
878  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
879  * IDs against our list and return a device name if we find a match.
880  */
881 static int
882 ste_probe(device_t dev)
883 {
884 	const struct ste_type *t;
885 
886 	t = ste_devs;
887 
888 	while (t->ste_name != NULL) {
889 		if ((pci_get_vendor(dev) == t->ste_vid) &&
890 		    (pci_get_device(dev) == t->ste_did)) {
891 			device_set_desc(dev, t->ste_name);
892 			return (BUS_PROBE_DEFAULT);
893 		}
894 		t++;
895 	}
896 
897 	return (ENXIO);
898 }
899 
900 /*
901  * Attach the interface. Allocate softc structures, do ifmedia
902  * setup and ethernet/BPF attach.
903  */
904 static int
905 ste_attach(device_t dev)
906 {
907 	struct ste_softc *sc;
908 	if_t ifp;
909 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
910 	int error = 0, phy, pmc, prefer_iomap, rid;
911 
912 	sc = device_get_softc(dev);
913 	sc->ste_dev = dev;
914 
915 	/*
916 	 * Only use one PHY since this chip reports multiple
917 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
918 	 * it is at 0 & 1.  It is rev 0x12.
919 	 */
920 	if (pci_get_vendor(dev) == DL_VENDORID &&
921 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
922 	    pci_get_revid(dev) == 0x12 )
923 		sc->ste_flags |= STE_FLAG_ONE_PHY;
924 
925 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
926 	    MTX_DEF);
927 	/*
928 	 * Map control/status registers.
929 	 */
930 	pci_enable_busmaster(dev);
931 
932 	/*
933 	 * Prefer memory space register mapping over IO space but use
934 	 * IO space for a device that is known to have issues on memory
935 	 * mapping.
936 	 */
937 	prefer_iomap = 0;
938 	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
939 		prefer_iomap = 1;
940 	else
941 		resource_int_value(device_get_name(sc->ste_dev),
942 		    device_get_unit(sc->ste_dev), "prefer_iomap",
943 		    &prefer_iomap);
944 	if (prefer_iomap == 0) {
945 		sc->ste_res_id = PCIR_BAR(1);
946 		sc->ste_res_type = SYS_RES_MEMORY;
947 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
948 		    &sc->ste_res_id, RF_ACTIVE);
949 	}
950 	if (prefer_iomap || sc->ste_res == NULL) {
951 		sc->ste_res_id = PCIR_BAR(0);
952 		sc->ste_res_type = SYS_RES_IOPORT;
953 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
954 		    &sc->ste_res_id, RF_ACTIVE);
955 	}
956 	if (sc->ste_res == NULL) {
957 		device_printf(dev, "couldn't map ports/memory\n");
958 		error = ENXIO;
959 		goto fail;
960 	}
961 
962 	/* Allocate interrupt */
963 	rid = 0;
964 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
965 	    RF_SHAREABLE | RF_ACTIVE);
966 
967 	if (sc->ste_irq == NULL) {
968 		device_printf(dev, "couldn't map interrupt\n");
969 		error = ENXIO;
970 		goto fail;
971 	}
972 
973 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
974 
975 	/* Reset the adapter. */
976 	ste_reset(sc);
977 
978 	/*
979 	 * Get station address from the EEPROM.
980 	 */
981 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
982 		device_printf(dev, "failed to read station address\n");
983 		error = ENXIO;
984 		goto fail;
985 	}
986 	ste_sysctl_node(sc);
987 
988 	if ((error = ste_dma_alloc(sc)) != 0)
989 		goto fail;
990 
991 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
992 	if (ifp == NULL) {
993 		device_printf(dev, "can not if_alloc()\n");
994 		error = ENOSPC;
995 		goto fail;
996 	}
997 
998 	/* Do MII setup. */
999 	phy = MII_PHY_ANY;
1000 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
1001 		phy = 0;
1002 	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1003 		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1004 	if (error != 0) {
1005 		device_printf(dev, "attaching PHYs failed\n");
1006 		goto fail;
1007 	}
1008 
1009 	if_setsoftc(ifp, sc);
1010 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1011 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1012 	if_setioctlfn(ifp, ste_ioctl);
1013 	if_setstartfn(ifp, ste_start);
1014 	if_setinitfn(ifp, ste_init);
1015 	if_setsendqlen(ifp, STE_TX_LIST_CNT - 1);
1016 	if_setsendqready(ifp);
1017 
1018 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1019 
1020 	/*
1021 	 * Call MI attach routine.
1022 	 */
1023 	ether_ifattach(ifp, (uint8_t *)eaddr);
1024 
1025 	/*
1026 	 * Tell the upper layer(s) we support long frames.
1027 	 */
1028 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1029 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1030 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1031 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
1032 	if_setcapenable(ifp, if_getcapabilities(ifp));
1033 #ifdef DEVICE_POLLING
1034 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
1035 #endif
1036 
1037 	/* Hook interrupt last to avoid having to lock softc */
1038 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1039 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1040 
1041 	if (error) {
1042 		device_printf(dev, "couldn't set up irq\n");
1043 		ether_ifdetach(ifp);
1044 		goto fail;
1045 	}
1046 
1047 fail:
1048 	if (error)
1049 		ste_detach(dev);
1050 
1051 	return (error);
1052 }
1053 
1054 /*
1055  * Shutdown hardware and free up resources. This can be called any
1056  * time after the mutex has been initialized. It is called in both
1057  * the error case in attach and the normal detach case so it needs
1058  * to be careful about only freeing resources that have actually been
1059  * allocated.
1060  */
1061 static int
1062 ste_detach(device_t dev)
1063 {
1064 	struct ste_softc *sc;
1065 	if_t ifp;
1066 
1067 	sc = device_get_softc(dev);
1068 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1069 	ifp = sc->ste_ifp;
1070 
1071 #ifdef DEVICE_POLLING
1072 	if (if_getcapenable(ifp) & IFCAP_POLLING)
1073 		ether_poll_deregister(ifp);
1074 #endif
1075 
1076 	/* These should only be active if attach succeeded */
1077 	if (device_is_attached(dev)) {
1078 		ether_ifdetach(ifp);
1079 		STE_LOCK(sc);
1080 		ste_stop(sc);
1081 		STE_UNLOCK(sc);
1082 		callout_drain(&sc->ste_callout);
1083 	}
1084 	if (sc->ste_miibus)
1085 		device_delete_child(dev, sc->ste_miibus);
1086 	bus_generic_detach(dev);
1087 
1088 	if (sc->ste_intrhand)
1089 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1090 	if (sc->ste_irq)
1091 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1092 	if (sc->ste_res)
1093 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1094 		    sc->ste_res);
1095 
1096 	if (ifp)
1097 		if_free(ifp);
1098 
1099 	ste_dma_free(sc);
1100 	mtx_destroy(&sc->ste_mtx);
1101 
1102 	return (0);
1103 }
1104 
1105 struct ste_dmamap_arg {
1106 	bus_addr_t	ste_busaddr;
1107 };
1108 
1109 static void
1110 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1111 {
1112 	struct ste_dmamap_arg *ctx;
1113 
1114 	if (error != 0)
1115 		return;
1116 
1117 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1118 
1119 	ctx = (struct ste_dmamap_arg *)arg;
1120 	ctx->ste_busaddr = segs[0].ds_addr;
1121 }
1122 
1123 static int
1124 ste_dma_alloc(struct ste_softc *sc)
1125 {
1126 	struct ste_chain *txc;
1127 	struct ste_chain_onefrag *rxc;
1128 	struct ste_dmamap_arg ctx;
1129 	int error, i;
1130 
1131 	/* Create parent DMA tag. */
1132 	error = bus_dma_tag_create(
1133 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1134 	    1, 0,			/* alignment, boundary */
1135 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1136 	    BUS_SPACE_MAXADDR,		/* highaddr */
1137 	    NULL, NULL,			/* filter, filterarg */
1138 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1139 	    0,				/* nsegments */
1140 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1141 	    0,				/* flags */
1142 	    NULL, NULL,			/* lockfunc, lockarg */
1143 	    &sc->ste_cdata.ste_parent_tag);
1144 	if (error != 0) {
1145 		device_printf(sc->ste_dev,
1146 		    "could not create parent DMA tag.\n");
1147 		goto fail;
1148 	}
1149 
1150 	/* Create DMA tag for Tx descriptor list. */
1151 	error = bus_dma_tag_create(
1152 	    sc->ste_cdata.ste_parent_tag, /* parent */
1153 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1154 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1155 	    BUS_SPACE_MAXADDR,		/* highaddr */
1156 	    NULL, NULL,			/* filter, filterarg */
1157 	    STE_TX_LIST_SZ,		/* maxsize */
1158 	    1,				/* nsegments */
1159 	    STE_TX_LIST_SZ,		/* maxsegsize */
1160 	    0,				/* flags */
1161 	    NULL, NULL,			/* lockfunc, lockarg */
1162 	    &sc->ste_cdata.ste_tx_list_tag);
1163 	if (error != 0) {
1164 		device_printf(sc->ste_dev,
1165 		    "could not create Tx list DMA tag.\n");
1166 		goto fail;
1167 	}
1168 
1169 	/* Create DMA tag for Rx descriptor list. */
1170 	error = bus_dma_tag_create(
1171 	    sc->ste_cdata.ste_parent_tag, /* parent */
1172 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1173 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1174 	    BUS_SPACE_MAXADDR,		/* highaddr */
1175 	    NULL, NULL,			/* filter, filterarg */
1176 	    STE_RX_LIST_SZ,		/* maxsize */
1177 	    1,				/* nsegments */
1178 	    STE_RX_LIST_SZ,		/* maxsegsize */
1179 	    0,				/* flags */
1180 	    NULL, NULL,			/* lockfunc, lockarg */
1181 	    &sc->ste_cdata.ste_rx_list_tag);
1182 	if (error != 0) {
1183 		device_printf(sc->ste_dev,
1184 		    "could not create Rx list DMA tag.\n");
1185 		goto fail;
1186 	}
1187 
1188 	/* Create DMA tag for Tx buffers. */
1189 	error = bus_dma_tag_create(
1190 	    sc->ste_cdata.ste_parent_tag, /* parent */
1191 	    1, 0,			/* alignment, boundary */
1192 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1193 	    BUS_SPACE_MAXADDR,		/* highaddr */
1194 	    NULL, NULL,			/* filter, filterarg */
1195 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1196 	    STE_MAXFRAGS,		/* nsegments */
1197 	    MCLBYTES,			/* maxsegsize */
1198 	    0,				/* flags */
1199 	    NULL, NULL,			/* lockfunc, lockarg */
1200 	    &sc->ste_cdata.ste_tx_tag);
1201 	if (error != 0) {
1202 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1203 		goto fail;
1204 	}
1205 
1206 	/* Create DMA tag for Rx buffers. */
1207 	error = bus_dma_tag_create(
1208 	    sc->ste_cdata.ste_parent_tag, /* parent */
1209 	    1, 0,			/* alignment, boundary */
1210 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1211 	    BUS_SPACE_MAXADDR,		/* highaddr */
1212 	    NULL, NULL,			/* filter, filterarg */
1213 	    MCLBYTES,			/* maxsize */
1214 	    1,				/* nsegments */
1215 	    MCLBYTES,			/* maxsegsize */
1216 	    0,				/* flags */
1217 	    NULL, NULL,			/* lockfunc, lockarg */
1218 	    &sc->ste_cdata.ste_rx_tag);
1219 	if (error != 0) {
1220 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1221 		goto fail;
1222 	}
1223 
1224 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1225 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1226 	    (void **)&sc->ste_ldata.ste_tx_list,
1227 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1228 	    &sc->ste_cdata.ste_tx_list_map);
1229 	if (error != 0) {
1230 		device_printf(sc->ste_dev,
1231 		    "could not allocate DMA'able memory for Tx list.\n");
1232 		goto fail;
1233 	}
1234 	ctx.ste_busaddr = 0;
1235 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1236 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1237 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1238 	if (error != 0 || ctx.ste_busaddr == 0) {
1239 		device_printf(sc->ste_dev,
1240 		    "could not load DMA'able memory for Tx list.\n");
1241 		goto fail;
1242 	}
1243 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1244 
1245 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1246 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1247 	    (void **)&sc->ste_ldata.ste_rx_list,
1248 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1249 	    &sc->ste_cdata.ste_rx_list_map);
1250 	if (error != 0) {
1251 		device_printf(sc->ste_dev,
1252 		    "could not allocate DMA'able memory for Rx list.\n");
1253 		goto fail;
1254 	}
1255 	ctx.ste_busaddr = 0;
1256 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1257 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1258 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1259 	if (error != 0 || ctx.ste_busaddr == 0) {
1260 		device_printf(sc->ste_dev,
1261 		    "could not load DMA'able memory for Rx list.\n");
1262 		goto fail;
1263 	}
1264 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1265 
1266 	/* Create DMA maps for Tx buffers. */
1267 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1268 		txc = &sc->ste_cdata.ste_tx_chain[i];
1269 		txc->ste_ptr = NULL;
1270 		txc->ste_mbuf = NULL;
1271 		txc->ste_next = NULL;
1272 		txc->ste_phys = 0;
1273 		txc->ste_map = NULL;
1274 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1275 		    &txc->ste_map);
1276 		if (error != 0) {
1277 			device_printf(sc->ste_dev,
1278 			    "could not create Tx dmamap.\n");
1279 			goto fail;
1280 		}
1281 	}
1282 	/* Create DMA maps for Rx buffers. */
1283 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1284 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1285 		device_printf(sc->ste_dev,
1286 		    "could not create spare Rx dmamap.\n");
1287 		goto fail;
1288 	}
1289 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1290 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1291 		rxc->ste_ptr = NULL;
1292 		rxc->ste_mbuf = NULL;
1293 		rxc->ste_next = NULL;
1294 		rxc->ste_map = NULL;
1295 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1296 		    &rxc->ste_map);
1297 		if (error != 0) {
1298 			device_printf(sc->ste_dev,
1299 			    "could not create Rx dmamap.\n");
1300 			goto fail;
1301 		}
1302 	}
1303 
1304 fail:
1305 	return (error);
1306 }
1307 
1308 static void
1309 ste_dma_free(struct ste_softc *sc)
1310 {
1311 	struct ste_chain *txc;
1312 	struct ste_chain_onefrag *rxc;
1313 	int i;
1314 
1315 	/* Tx buffers. */
1316 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1317 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1318 			txc = &sc->ste_cdata.ste_tx_chain[i];
1319 			if (txc->ste_map != NULL) {
1320 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1321 				    txc->ste_map);
1322 				txc->ste_map = NULL;
1323 			}
1324 		}
1325 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1326 		sc->ste_cdata.ste_tx_tag = NULL;
1327 	}
1328 	/* Rx buffers. */
1329 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1330 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1331 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1332 			if (rxc->ste_map != NULL) {
1333 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1334 				    rxc->ste_map);
1335 				rxc->ste_map = NULL;
1336 			}
1337 		}
1338 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1339 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1340 			    sc->ste_cdata.ste_rx_sparemap);
1341 			sc->ste_cdata.ste_rx_sparemap = NULL;
1342 		}
1343 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1344 		sc->ste_cdata.ste_rx_tag = NULL;
1345 	}
1346 	/* Tx descriptor list. */
1347 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1348 		if (sc->ste_ldata.ste_tx_list_paddr != 0)
1349 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1350 			    sc->ste_cdata.ste_tx_list_map);
1351 		if (sc->ste_ldata.ste_tx_list != NULL)
1352 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1353 			    sc->ste_ldata.ste_tx_list,
1354 			    sc->ste_cdata.ste_tx_list_map);
1355 		sc->ste_ldata.ste_tx_list = NULL;
1356 		sc->ste_ldata.ste_tx_list_paddr = 0;
1357 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1358 		sc->ste_cdata.ste_tx_list_tag = NULL;
1359 	}
1360 	/* Rx descriptor list. */
1361 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1362 		if (sc->ste_ldata.ste_rx_list_paddr != 0)
1363 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1364 			    sc->ste_cdata.ste_rx_list_map);
1365 		if (sc->ste_ldata.ste_rx_list != NULL)
1366 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1367 			    sc->ste_ldata.ste_rx_list,
1368 			    sc->ste_cdata.ste_rx_list_map);
1369 		sc->ste_ldata.ste_rx_list = NULL;
1370 		sc->ste_ldata.ste_rx_list_paddr = 0;
1371 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1372 		sc->ste_cdata.ste_rx_list_tag = NULL;
1373 	}
1374 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1375 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1376 		sc->ste_cdata.ste_parent_tag = NULL;
1377 	}
1378 }
1379 
1380 static int
1381 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1382 {
1383 	struct mbuf *m;
1384 	bus_dma_segment_t segs[1];
1385 	bus_dmamap_t map;
1386 	int error, nsegs;
1387 
1388 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1389 	if (m == NULL)
1390 		return (ENOBUFS);
1391 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1392 	m_adj(m, ETHER_ALIGN);
1393 
1394 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1395 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1396 		m_freem(m);
1397 		return (error);
1398 	}
1399 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1400 
1401 	if (rxc->ste_mbuf != NULL) {
1402 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1403 		    BUS_DMASYNC_POSTREAD);
1404 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1405 	}
1406 	map = rxc->ste_map;
1407 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1408 	sc->ste_cdata.ste_rx_sparemap = map;
1409 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1410 	    BUS_DMASYNC_PREREAD);
1411 	rxc->ste_mbuf = m;
1412 	rxc->ste_ptr->ste_status = 0;
1413 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1414 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1415 	    STE_FRAG_LAST);
1416 	return (0);
1417 }
1418 
1419 static int
1420 ste_init_rx_list(struct ste_softc *sc)
1421 {
1422 	struct ste_chain_data *cd;
1423 	struct ste_list_data *ld;
1424 	int error, i;
1425 
1426 	sc->ste_int_rx_act = 0;
1427 	cd = &sc->ste_cdata;
1428 	ld = &sc->ste_ldata;
1429 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1430 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1431 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1432 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1433 		if (error != 0)
1434 			return (error);
1435 		if (i == (STE_RX_LIST_CNT - 1)) {
1436 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1437 			ld->ste_rx_list[i].ste_next =
1438 			    htole32(ld->ste_rx_list_paddr +
1439 			    (sizeof(struct ste_desc_onefrag) * 0));
1440 		} else {
1441 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1442 			ld->ste_rx_list[i].ste_next =
1443 			    htole32(ld->ste_rx_list_paddr +
1444 			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1445 		}
1446 	}
1447 
1448 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1449 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1450 	    sc->ste_cdata.ste_rx_list_map,
1451 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1452 
1453 	return (0);
1454 }
1455 
1456 static void
1457 ste_init_tx_list(struct ste_softc *sc)
1458 {
1459 	struct ste_chain_data *cd;
1460 	struct ste_list_data *ld;
1461 	int i;
1462 
1463 	cd = &sc->ste_cdata;
1464 	ld = &sc->ste_ldata;
1465 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1466 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1467 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1468 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1469 		if (i == (STE_TX_LIST_CNT - 1)) {
1470 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1471 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1472 			    ld->ste_tx_list_paddr +
1473 			    (sizeof(struct ste_desc) * 0)));
1474 		} else {
1475 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1476 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1477 			    ld->ste_tx_list_paddr +
1478 			    (sizeof(struct ste_desc) * (i + 1))));
1479 		}
1480 	}
1481 
1482 	cd->ste_last_tx = NULL;
1483 	cd->ste_tx_prod = 0;
1484 	cd->ste_tx_cons = 0;
1485 	cd->ste_tx_cnt = 0;
1486 
1487 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1488 	    sc->ste_cdata.ste_tx_list_map,
1489 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1490 }
1491 
1492 static void
1493 ste_init(void *xsc)
1494 {
1495 	struct ste_softc *sc;
1496 
1497 	sc = xsc;
1498 	STE_LOCK(sc);
1499 	ste_init_locked(sc);
1500 	STE_UNLOCK(sc);
1501 }
1502 
1503 static void
1504 ste_init_locked(struct ste_softc *sc)
1505 {
1506 	if_t ifp;
1507 	struct mii_data *mii;
1508 	uint8_t val;
1509 	int i;
1510 
1511 	STE_LOCK_ASSERT(sc);
1512 	ifp = sc->ste_ifp;
1513 	mii = device_get_softc(sc->ste_miibus);
1514 
1515 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1516 		return;
1517 
1518 	ste_stop(sc);
1519 	/* Reset the chip to a known state. */
1520 	ste_reset(sc);
1521 
1522 	/* Init our MAC address */
1523 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1524 		CSR_WRITE_2(sc, STE_PAR0 + i,
1525 		    ((if_getlladdr(sc->ste_ifp)[i] & 0xff) |
1526 		     if_getlladdr(sc->ste_ifp)[i + 1] << 8));
1527 	}
1528 
1529 	/* Init RX list */
1530 	if (ste_init_rx_list(sc) != 0) {
1531 		device_printf(sc->ste_dev,
1532 		    "initialization failed: no memory for RX buffers\n");
1533 		ste_stop(sc);
1534 		return;
1535 	}
1536 
1537 	/* Set RX polling interval */
1538 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1539 
1540 	/* Init TX descriptors */
1541 	ste_init_tx_list(sc);
1542 
1543 	/* Clear and disable WOL. */
1544 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1545 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1546 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1547 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1548 
1549 	/* Set the TX freethresh value */
1550 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1551 
1552 	/* Set the TX start threshold for best performance. */
1553 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1554 
1555 	/* Set the TX reclaim threshold. */
1556 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1557 
1558 	/* Accept VLAN length packets */
1559 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1560 
1561 	/* Set up the RX filter. */
1562 	ste_rxfilter(sc);
1563 
1564 	/* Load the address of the RX list. */
1565 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1566 	ste_wait(sc);
1567 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1568 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1569 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1570 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1571 
1572 	/* Set TX polling interval(defer until we TX first packet). */
1573 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1574 
1575 	/* Load address of the TX list */
1576 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1577 	ste_wait(sc);
1578 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1579 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1580 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1581 	ste_wait(sc);
1582 	/* Select 3.2us timer. */
1583 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1584 	    STE_DMACTL_COUNTDOWN_MODE);
1585 
1586 	/* Enable receiver and transmitter */
1587 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1588 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1589 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1590 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1591 
1592 	/* Enable stats counters. */
1593 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1594 	/* Clear stats counters. */
1595 	ste_stats_clear(sc);
1596 
1597 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1598 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1599 #ifdef DEVICE_POLLING
1600 	/* Disable interrupts if we are polling. */
1601 	if (if_getcapenable(ifp) & IFCAP_POLLING)
1602 		CSR_WRITE_2(sc, STE_IMR, 0);
1603 	else
1604 #endif
1605 	/* Enable interrupts. */
1606 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1607 
1608 	sc->ste_flags &= ~STE_FLAG_LINK;
1609 	/* Switch to the current media. */
1610 	mii_mediachg(mii);
1611 
1612 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1613 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1614 
1615 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1616 }
1617 
1618 static void
1619 ste_stop(struct ste_softc *sc)
1620 {
1621 	if_t ifp;
1622 	struct ste_chain_onefrag *cur_rx;
1623 	struct ste_chain *cur_tx;
1624 	uint32_t val;
1625 	int i;
1626 
1627 	STE_LOCK_ASSERT(sc);
1628 	ifp = sc->ste_ifp;
1629 
1630 	callout_stop(&sc->ste_callout);
1631 	sc->ste_timer = 0;
1632 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING|IFF_DRV_OACTIVE));
1633 
1634 	CSR_WRITE_2(sc, STE_IMR, 0);
1635 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1636 	/* Stop pending DMA. */
1637 	val = CSR_READ_4(sc, STE_DMACTL);
1638 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1639 	CSR_WRITE_4(sc, STE_DMACTL, val);
1640 	ste_wait(sc);
1641 	/* Disable auto-polling. */
1642 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1643 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1644 	/* Nullify DMA address to stop any further DMA. */
1645 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1646 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1647 	/* Stop TX/RX MAC. */
1648 	val = CSR_READ_2(sc, STE_MACCTL1);
1649 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1650 	    STE_MACCTL1_STATS_DISABLE;
1651 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1652 	for (i = 0; i < STE_TIMEOUT; i++) {
1653 		DELAY(10);
1654 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1655 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1656 			break;
1657 	}
1658 	if (i == STE_TIMEOUT)
1659 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1660 	/* Acknowledge any pending interrupts. */
1661 	CSR_READ_2(sc, STE_ISR_ACK);
1662 	ste_stats_update(sc);
1663 
1664 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1665 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1666 		if (cur_rx->ste_mbuf != NULL) {
1667 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1668 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1669 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1670 			    cur_rx->ste_map);
1671 			m_freem(cur_rx->ste_mbuf);
1672 			cur_rx->ste_mbuf = NULL;
1673 		}
1674 	}
1675 
1676 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1677 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1678 		if (cur_tx->ste_mbuf != NULL) {
1679 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1680 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1681 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1682 			    cur_tx->ste_map);
1683 			m_freem(cur_tx->ste_mbuf);
1684 			cur_tx->ste_mbuf = NULL;
1685 		}
1686 	}
1687 }
1688 
1689 static void
1690 ste_reset(struct ste_softc *sc)
1691 {
1692 	uint32_t ctl;
1693 	int i;
1694 
1695 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1696 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1697 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1698 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1699 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1700 	    STE_ASICCTL_EXTRESET_RESET;
1701 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1702 	CSR_READ_4(sc, STE_ASICCTL);
1703 	/*
1704 	 * Due to the need of accessing EEPROM controller can take
1705 	 * up to 1ms to complete the global reset.
1706 	 */
1707 	DELAY(1000);
1708 
1709 	for (i = 0; i < STE_TIMEOUT; i++) {
1710 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1711 			break;
1712 		DELAY(10);
1713 	}
1714 
1715 	if (i == STE_TIMEOUT)
1716 		device_printf(sc->ste_dev, "global reset never completed\n");
1717 }
1718 
1719 static void
1720 ste_restart_tx(struct ste_softc *sc)
1721 {
1722 	uint16_t mac;
1723 	int i;
1724 
1725 	for (i = 0; i < STE_TIMEOUT; i++) {
1726 		mac = CSR_READ_2(sc, STE_MACCTL1);
1727 		mac |= STE_MACCTL1_TX_ENABLE;
1728 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1729 		mac = CSR_READ_2(sc, STE_MACCTL1);
1730 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1731 			break;
1732 		DELAY(10);
1733 	}
1734 
1735 	if (i == STE_TIMEOUT)
1736 		device_printf(sc->ste_dev, "starting Tx failed");
1737 }
1738 
1739 static int
1740 ste_ioctl(if_t ifp, u_long command, caddr_t data)
1741 {
1742 	struct ste_softc *sc;
1743 	struct ifreq *ifr;
1744 	struct mii_data *mii;
1745 	int error = 0, mask;
1746 
1747 	sc = if_getsoftc(ifp);
1748 	ifr = (struct ifreq *)data;
1749 
1750 	switch (command) {
1751 	case SIOCSIFFLAGS:
1752 		STE_LOCK(sc);
1753 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1754 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1755 			    ((if_getflags(ifp) ^ sc->ste_if_flags) &
1756 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1757 				ste_rxfilter(sc);
1758 			else
1759 				ste_init_locked(sc);
1760 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1761 			ste_stop(sc);
1762 		sc->ste_if_flags = if_getflags(ifp);
1763 		STE_UNLOCK(sc);
1764 		break;
1765 	case SIOCADDMULTI:
1766 	case SIOCDELMULTI:
1767 		STE_LOCK(sc);
1768 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1769 			ste_rxfilter(sc);
1770 		STE_UNLOCK(sc);
1771 		break;
1772 	case SIOCGIFMEDIA:
1773 	case SIOCSIFMEDIA:
1774 		mii = device_get_softc(sc->ste_miibus);
1775 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1776 		break;
1777 	case SIOCSIFCAP:
1778 		STE_LOCK(sc);
1779 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1780 #ifdef DEVICE_POLLING
1781 		if ((mask & IFCAP_POLLING) != 0 &&
1782 		    (IFCAP_POLLING & if_getcapabilities(ifp)) != 0) {
1783 			if_togglecapenable(ifp, IFCAP_POLLING);
1784 			if ((IFCAP_POLLING & if_getcapenable(ifp)) != 0) {
1785 				error = ether_poll_register(ste_poll, ifp);
1786 				if (error != 0) {
1787 					STE_UNLOCK(sc);
1788 					break;
1789 				}
1790 				/* Disable interrupts. */
1791 				CSR_WRITE_2(sc, STE_IMR, 0);
1792 			} else {
1793 				error = ether_poll_deregister(ifp);
1794 				/* Enable interrupts. */
1795 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1796 			}
1797 		}
1798 #endif /* DEVICE_POLLING */
1799 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1800 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1801 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1802 		STE_UNLOCK(sc);
1803 		break;
1804 	default:
1805 		error = ether_ioctl(ifp, command, data);
1806 		break;
1807 	}
1808 
1809 	return (error);
1810 }
1811 
1812 static int
1813 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1814 {
1815 	struct ste_frag *frag;
1816 	struct mbuf *m;
1817 	struct ste_desc *desc;
1818 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1819 	int error, i, nsegs;
1820 
1821 	STE_LOCK_ASSERT(sc);
1822 	M_ASSERTPKTHDR((*m_head));
1823 
1824 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1825 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1826 	if (error == EFBIG) {
1827 		m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
1828 		if (m == NULL) {
1829 			m_freem(*m_head);
1830 			*m_head = NULL;
1831 			return (ENOMEM);
1832 		}
1833 		*m_head = m;
1834 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1835 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1836 		if (error != 0) {
1837 			m_freem(*m_head);
1838 			*m_head = NULL;
1839 			return (error);
1840 		}
1841 	} else if (error != 0)
1842 		return (error);
1843 	if (nsegs == 0) {
1844 		m_freem(*m_head);
1845 		*m_head = NULL;
1846 		return (EIO);
1847 	}
1848 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1849 	    BUS_DMASYNC_PREWRITE);
1850 
1851 	desc = txc->ste_ptr;
1852 	for (i = 0; i < nsegs; i++) {
1853 		frag = &desc->ste_frags[i];
1854 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1855 		frag->ste_len = htole32(txsegs[i].ds_len);
1856 	}
1857 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1858 	/*
1859 	 * Because we use Tx polling we can't chain multiple
1860 	 * Tx descriptors here. Otherwise we race with controller.
1861 	 */
1862 	desc->ste_next = 0;
1863 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1864 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1865 		    STE_TXCTL_DMAINTR);
1866 	else
1867 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1868 	txc->ste_mbuf = *m_head;
1869 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1870 	sc->ste_cdata.ste_tx_cnt++;
1871 
1872 	return (0);
1873 }
1874 
1875 static void
1876 ste_start(if_t ifp)
1877 {
1878 	struct ste_softc *sc;
1879 
1880 	sc = if_getsoftc(ifp);
1881 	STE_LOCK(sc);
1882 	ste_start_locked(ifp);
1883 	STE_UNLOCK(sc);
1884 }
1885 
1886 static void
1887 ste_start_locked(if_t ifp)
1888 {
1889 	struct ste_softc *sc;
1890 	struct ste_chain *cur_tx;
1891 	struct mbuf *m_head = NULL;
1892 	int enq;
1893 
1894 	sc = if_getsoftc(ifp);
1895 	STE_LOCK_ASSERT(sc);
1896 
1897 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1898 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1899 		return;
1900 
1901 	for (enq = 0; !if_sendq_empty(ifp);) {
1902 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1903 			/*
1904 			 * Controller may have cached copy of the last used
1905 			 * next ptr so we have to reserve one TFD to avoid
1906 			 * TFD overruns.
1907 			 */
1908 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1909 			break;
1910 		}
1911 		m_head = if_dequeue(ifp);
1912 		if (m_head == NULL)
1913 			break;
1914 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1915 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1916 			if (m_head == NULL)
1917 				break;
1918 			if_sendq_prepend(ifp, m_head);
1919 			break;
1920 		}
1921 		if (sc->ste_cdata.ste_last_tx == NULL) {
1922 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1923 			    sc->ste_cdata.ste_tx_list_map,
1924 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1925 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1926 			ste_wait(sc);
1927 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1928 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1929 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1930 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1931 			ste_wait(sc);
1932 		} else {
1933 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1934 			    sc->ste_cdata.ste_last_tx->ste_phys;
1935 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1936 			    sc->ste_cdata.ste_tx_list_map,
1937 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1938 		}
1939 		sc->ste_cdata.ste_last_tx = cur_tx;
1940 
1941 		enq++;
1942 		/*
1943 		 * If there's a BPF listener, bounce a copy of this frame
1944 		 * to him.
1945 	 	 */
1946 		BPF_MTAP(ifp, m_head);
1947 	}
1948 
1949 	if (enq > 0)
1950 		sc->ste_timer = STE_TX_TIMEOUT;
1951 }
1952 
1953 static void
1954 ste_watchdog(struct ste_softc *sc)
1955 {
1956 	if_t ifp;
1957 
1958 	ifp = sc->ste_ifp;
1959 	STE_LOCK_ASSERT(sc);
1960 
1961 	if (sc->ste_timer == 0 || --sc->ste_timer)
1962 		return;
1963 
1964 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1965 	if_printf(ifp, "watchdog timeout\n");
1966 
1967 	ste_txeof(sc);
1968 	ste_txeoc(sc);
1969 	ste_rxeof(sc, -1);
1970 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1971 	ste_init_locked(sc);
1972 
1973 	if (!if_sendq_empty(ifp))
1974 		ste_start_locked(ifp);
1975 }
1976 
1977 static int
1978 ste_shutdown(device_t dev)
1979 {
1980 
1981 	return (ste_suspend(dev));
1982 }
1983 
1984 static int
1985 ste_suspend(device_t dev)
1986 {
1987 	struct ste_softc *sc;
1988 
1989 	sc = device_get_softc(dev);
1990 
1991 	STE_LOCK(sc);
1992 	ste_stop(sc);
1993 	ste_setwol(sc);
1994 	STE_UNLOCK(sc);
1995 
1996 	return (0);
1997 }
1998 
1999 static int
2000 ste_resume(device_t dev)
2001 {
2002 	struct ste_softc *sc;
2003 	if_t ifp;
2004 	int pmc;
2005 	uint16_t pmstat;
2006 
2007 	sc = device_get_softc(dev);
2008 	STE_LOCK(sc);
2009 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2010 		/* Disable PME and clear PME status. */
2011 		pmstat = pci_read_config(sc->ste_dev,
2012 		    pmc + PCIR_POWER_STATUS, 2);
2013 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2014 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2015 			pci_write_config(sc->ste_dev,
2016 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2017 		}
2018 	}
2019 	ifp = sc->ste_ifp;
2020 	if ((if_getflags(ifp) & IFF_UP) != 0) {
2021 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2022 		ste_init_locked(sc);
2023 	}
2024 	STE_UNLOCK(sc);
2025 
2026 	return (0);
2027 }
2028 
2029 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2030 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2031 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2032 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2033 
2034 static void
2035 ste_sysctl_node(struct ste_softc *sc)
2036 {
2037 	struct sysctl_ctx_list *ctx;
2038 	struct sysctl_oid_list *child, *parent;
2039 	struct sysctl_oid *tree;
2040 	struct ste_hw_stats *stats;
2041 
2042 	stats = &sc->ste_stats;
2043 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2044 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2045 
2046 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2047 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2048 	/* Pull in device tunables. */
2049 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2050 	resource_int_value(device_get_name(sc->ste_dev),
2051 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2052 
2053 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2054 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "STE statistics");
2055 	parent = SYSCTL_CHILDREN(tree);
2056 
2057 	/* Rx statistics. */
2058 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2059 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2060 	child = SYSCTL_CHILDREN(tree);
2061 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2062 	    &stats->rx_bytes, "Good octets");
2063 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2064 	    &stats->rx_frames, "Good frames");
2065 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2066 	    &stats->rx_bcast_frames, "Good broadcast frames");
2067 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2068 	    &stats->rx_mcast_frames, "Good multicast frames");
2069 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2070 	    &stats->rx_lost_frames, "Lost frames");
2071 
2072 	/* Tx statistics. */
2073 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2074 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2075 	child = SYSCTL_CHILDREN(tree);
2076 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2077 	    &stats->tx_bytes, "Good octets");
2078 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2079 	    &stats->tx_frames, "Good frames");
2080 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2081 	    &stats->tx_bcast_frames, "Good broadcast frames");
2082 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2083 	    &stats->tx_mcast_frames, "Good multicast frames");
2084 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2085 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2086 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2087 	    &stats->tx_single_colls, "Single collisions");
2088 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2089 	    &stats->tx_multi_colls, "Multiple collisions");
2090 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2091 	    &stats->tx_late_colls, "Late collisions");
2092 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2093 	    &stats->tx_frames_defered, "Frames with deferrals");
2094 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2095 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2096 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2097 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2098 }
2099 
2100 #undef STE_SYSCTL_STAT_ADD32
2101 #undef STE_SYSCTL_STAT_ADD64
2102 
2103 static void
2104 ste_setwol(struct ste_softc *sc)
2105 {
2106 	if_t ifp;
2107 	uint16_t pmstat;
2108 	uint8_t val;
2109 	int pmc;
2110 
2111 	STE_LOCK_ASSERT(sc);
2112 
2113 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2114 		/* Disable WOL. */
2115 		CSR_READ_1(sc, STE_WAKE_EVENT);
2116 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2117 		return;
2118 	}
2119 
2120 	ifp = sc->ste_ifp;
2121 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2122 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2123 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2124 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2125 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2126 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2127 	/* Request PME. */
2128 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2129 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2130 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2131 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2132 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2133 }
2134