xref: /freebsd/sys/dev/ste/if_ste.c (revision 3157ba21)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/module.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 #include <net/if_vlan_var.h>
62 
63 #include <machine/bus.h>
64 #include <machine/resource.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 
72 #include <dev/ste/if_stereg.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 MODULE_DEPEND(ste, pci, 1, 1, 1);
78 MODULE_DEPEND(ste, ether, 1, 1, 1);
79 MODULE_DEPEND(ste, miibus, 1, 1, 1);
80 
81 /* Define to show Tx error status. */
82 #define	STE_SHOW_TXERRORS
83 
84 /*
85  * Various supported device vendors/types and their names.
86  */
87 static struct ste_type ste_devs[] = {
88 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91 	{ 0, 0, NULL }
92 };
93 
94 static int	ste_attach(device_t);
95 static int	ste_detach(device_t);
96 static int	ste_probe(device_t);
97 static int	ste_resume(device_t);
98 static int	ste_shutdown(device_t);
99 static int	ste_suspend(device_t);
100 
101 static int	ste_dma_alloc(struct ste_softc *);
102 static void	ste_dma_free(struct ste_softc *);
103 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
104 static int 	ste_eeprom_wait(struct ste_softc *);
105 static int	ste_encap(struct ste_softc *, struct mbuf **,
106 		    struct ste_chain *);
107 static int	ste_ifmedia_upd(struct ifnet *);
108 static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 static void	ste_init(void *);
110 static void	ste_init_locked(struct ste_softc *);
111 static int	ste_init_rx_list(struct ste_softc *);
112 static void	ste_init_tx_list(struct ste_softc *);
113 static void	ste_intr(void *);
114 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
115 static int	ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
116 static void	ste_mii_send(struct ste_softc *, uint32_t, int);
117 static void	ste_mii_sync(struct ste_softc *);
118 static int	ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
119 static int	ste_miibus_readreg(device_t, int, int);
120 static void	ste_miibus_statchg(device_t);
121 static int	ste_miibus_writereg(device_t, int, int, int);
122 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123 static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
124 static void	ste_reset(struct ste_softc *);
125 static void	ste_restart_tx(struct ste_softc *);
126 static int	ste_rxeof(struct ste_softc *, int);
127 static void	ste_rxfilter(struct ste_softc *);
128 static void	ste_setwol(struct ste_softc *);
129 static void	ste_start(struct ifnet *);
130 static void	ste_start_locked(struct ifnet *);
131 static void	ste_stats_clear(struct ste_softc *);
132 static void	ste_stats_update(struct ste_softc *);
133 static void	ste_stop(struct ste_softc *);
134 static void	ste_sysctl_node(struct ste_softc *);
135 static void	ste_tick(void *);
136 static void	ste_txeoc(struct ste_softc *);
137 static void	ste_txeof(struct ste_softc *);
138 static void	ste_wait(struct ste_softc *);
139 static void	ste_watchdog(struct ste_softc *);
140 
141 static device_method_t ste_methods[] = {
142 	/* Device interface */
143 	DEVMETHOD(device_probe,		ste_probe),
144 	DEVMETHOD(device_attach,	ste_attach),
145 	DEVMETHOD(device_detach,	ste_detach),
146 	DEVMETHOD(device_shutdown,	ste_shutdown),
147 	DEVMETHOD(device_suspend,	ste_suspend),
148 	DEVMETHOD(device_resume,	ste_resume),
149 
150 	/* bus interface */
151 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
152 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
153 
154 	/* MII interface */
155 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
156 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
157 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
158 
159 	{ 0, 0 }
160 };
161 
162 static driver_t ste_driver = {
163 	"ste",
164 	ste_methods,
165 	sizeof(struct ste_softc)
166 };
167 
168 static devclass_t ste_devclass;
169 
170 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
171 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
172 
173 #define STE_SETBIT4(sc, reg, x)				\
174 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
175 
176 #define STE_CLRBIT4(sc, reg, x)				\
177 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
178 
179 #define STE_SETBIT2(sc, reg, x)				\
180 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
181 
182 #define STE_CLRBIT2(sc, reg, x)				\
183 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
184 
185 #define STE_SETBIT1(sc, reg, x)				\
186 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
187 
188 #define STE_CLRBIT1(sc, reg, x)				\
189 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
190 
191 
192 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
193 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
194 
195 /*
196  * Sync the PHYs by setting data bit and strobing the clock 32 times.
197  */
198 static void
199 ste_mii_sync(struct ste_softc *sc)
200 {
201 	int i;
202 
203 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
204 
205 	for (i = 0; i < 32; i++) {
206 		MII_SET(STE_PHYCTL_MCLK);
207 		DELAY(1);
208 		MII_CLR(STE_PHYCTL_MCLK);
209 		DELAY(1);
210 	}
211 }
212 
213 /*
214  * Clock a series of bits through the MII.
215  */
216 static void
217 ste_mii_send(struct ste_softc *sc, uint32_t bits, int cnt)
218 {
219 	int i;
220 
221 	MII_CLR(STE_PHYCTL_MCLK);
222 
223 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224 		if (bits & i) {
225 			MII_SET(STE_PHYCTL_MDATA);
226                 } else {
227 			MII_CLR(STE_PHYCTL_MDATA);
228                 }
229 		DELAY(1);
230 		MII_CLR(STE_PHYCTL_MCLK);
231 		DELAY(1);
232 		MII_SET(STE_PHYCTL_MCLK);
233 	}
234 }
235 
236 /*
237  * Read an PHY register through the MII.
238  */
239 static int
240 ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
241 {
242 	int i, ack;
243 
244 	/*
245 	 * Set up frame for RX.
246 	 */
247 	frame->mii_stdelim = STE_MII_STARTDELIM;
248 	frame->mii_opcode = STE_MII_READOP;
249 	frame->mii_turnaround = 0;
250 	frame->mii_data = 0;
251 
252 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
253 	/*
254  	 * Turn on data xmit.
255 	 */
256 	MII_SET(STE_PHYCTL_MDIR);
257 
258 	ste_mii_sync(sc);
259 
260 	/*
261 	 * Send command/address info.
262 	 */
263 	ste_mii_send(sc, frame->mii_stdelim, 2);
264 	ste_mii_send(sc, frame->mii_opcode, 2);
265 	ste_mii_send(sc, frame->mii_phyaddr, 5);
266 	ste_mii_send(sc, frame->mii_regaddr, 5);
267 
268 	/* Turn off xmit. */
269 	MII_CLR(STE_PHYCTL_MDIR);
270 
271 	/* Idle bit */
272 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
273 	DELAY(1);
274 	MII_SET(STE_PHYCTL_MCLK);
275 	DELAY(1);
276 
277 	/* Check for ack */
278 	MII_CLR(STE_PHYCTL_MCLK);
279 	DELAY(1);
280 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
281 	MII_SET(STE_PHYCTL_MCLK);
282 	DELAY(1);
283 
284 	/*
285 	 * Now try reading data bits. If the ack failed, we still
286 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
287 	 */
288 	if (ack) {
289 		for (i = 0; i < 16; i++) {
290 			MII_CLR(STE_PHYCTL_MCLK);
291 			DELAY(1);
292 			MII_SET(STE_PHYCTL_MCLK);
293 			DELAY(1);
294 		}
295 		goto fail;
296 	}
297 
298 	for (i = 0x8000; i; i >>= 1) {
299 		MII_CLR(STE_PHYCTL_MCLK);
300 		DELAY(1);
301 		if (!ack) {
302 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
303 				frame->mii_data |= i;
304 			DELAY(1);
305 		}
306 		MII_SET(STE_PHYCTL_MCLK);
307 		DELAY(1);
308 	}
309 
310 fail:
311 
312 	MII_CLR(STE_PHYCTL_MCLK);
313 	DELAY(1);
314 	MII_SET(STE_PHYCTL_MCLK);
315 	DELAY(1);
316 
317 	if (ack)
318 		return (1);
319 	return (0);
320 }
321 
322 /*
323  * Write to a PHY register through the MII.
324  */
325 static int
326 ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
327 {
328 
329 	/*
330 	 * Set up frame for TX.
331 	 */
332 
333 	frame->mii_stdelim = STE_MII_STARTDELIM;
334 	frame->mii_opcode = STE_MII_WRITEOP;
335 	frame->mii_turnaround = STE_MII_TURNAROUND;
336 
337 	/*
338  	 * Turn on data output.
339 	 */
340 	MII_SET(STE_PHYCTL_MDIR);
341 
342 	ste_mii_sync(sc);
343 
344 	ste_mii_send(sc, frame->mii_stdelim, 2);
345 	ste_mii_send(sc, frame->mii_opcode, 2);
346 	ste_mii_send(sc, frame->mii_phyaddr, 5);
347 	ste_mii_send(sc, frame->mii_regaddr, 5);
348 	ste_mii_send(sc, frame->mii_turnaround, 2);
349 	ste_mii_send(sc, frame->mii_data, 16);
350 
351 	/* Idle bit. */
352 	MII_SET(STE_PHYCTL_MCLK);
353 	DELAY(1);
354 	MII_CLR(STE_PHYCTL_MCLK);
355 	DELAY(1);
356 
357 	/*
358 	 * Turn off xmit.
359 	 */
360 	MII_CLR(STE_PHYCTL_MDIR);
361 
362 	return (0);
363 }
364 
365 static int
366 ste_miibus_readreg(device_t dev, int phy, int reg)
367 {
368 	struct ste_softc *sc;
369 	struct ste_mii_frame frame;
370 
371 	sc = device_get_softc(dev);
372 
373 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0 && phy != 0)
374 		return (0);
375 
376 	bzero((char *)&frame, sizeof(frame));
377 
378 	frame.mii_phyaddr = phy;
379 	frame.mii_regaddr = reg;
380 	ste_mii_readreg(sc, &frame);
381 
382 	return (frame.mii_data);
383 }
384 
385 static int
386 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
387 {
388 	struct ste_softc *sc;
389 	struct ste_mii_frame frame;
390 
391 	sc = device_get_softc(dev);
392 	bzero((char *)&frame, sizeof(frame));
393 
394 	frame.mii_phyaddr = phy;
395 	frame.mii_regaddr = reg;
396 	frame.mii_data = data;
397 
398 	ste_mii_writereg(sc, &frame);
399 
400 	return (0);
401 }
402 
403 static void
404 ste_miibus_statchg(device_t dev)
405 {
406 	struct ste_softc *sc;
407 	struct mii_data *mii;
408 	struct ifnet *ifp;
409 	uint16_t cfg;
410 
411 	sc = device_get_softc(dev);
412 
413 	mii = device_get_softc(sc->ste_miibus);
414 	ifp = sc->ste_ifp;
415 	if (mii == NULL || ifp == NULL ||
416 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
417 		return;
418 
419 	sc->ste_flags &= ~STE_FLAG_LINK;
420 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
421 	    (IFM_ACTIVE | IFM_AVALID)) {
422 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
423 		case IFM_10_T:
424 		case IFM_100_TX:
425 		case IFM_100_FX:
426 		case IFM_100_T4:
427 			sc->ste_flags |= STE_FLAG_LINK;
428 		default:
429 			break;
430 		}
431 	}
432 
433 	/* Program MACs with resolved speed/duplex/flow-control. */
434 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
435 		cfg = CSR_READ_2(sc, STE_MACCTL0);
436 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
437 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
438 			/*
439 			 * ST201 data sheet says driver should enable receiving
440 			 * MAC control frames bit of receive mode register to
441 			 * receive flow-control frames but the register has no
442 			 * such bits. In addition the controller has no ability
443 			 * to send pause frames so it should be handled in
444 			 * driver. Implementing pause timer handling in driver
445 			 * layer is not trivial, so don't enable flow-control
446 			 * here.
447 			 */
448 			cfg |= STE_MACCTL0_FULLDUPLEX;
449 		}
450 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
451 	}
452 }
453 
454 static int
455 ste_ifmedia_upd(struct ifnet *ifp)
456 {
457 	struct ste_softc *sc;
458 	struct mii_data	*mii;
459 	struct mii_softc *miisc;
460 	int error;
461 
462 	sc = ifp->if_softc;
463 	STE_LOCK(sc);
464 	mii = device_get_softc(sc->ste_miibus);
465 	if (mii->mii_instance) {
466 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
467 			mii_phy_reset(miisc);
468 	}
469 	error = mii_mediachg(mii);
470 	STE_UNLOCK(sc);
471 
472 	return (error);
473 }
474 
475 static void
476 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
477 {
478 	struct ste_softc *sc;
479 	struct mii_data *mii;
480 
481 	sc = ifp->if_softc;
482 	mii = device_get_softc(sc->ste_miibus);
483 
484 	STE_LOCK(sc);
485 	if ((ifp->if_flags & IFF_UP) == 0) {
486 		STE_UNLOCK(sc);
487 		return;
488 	}
489 	mii_pollstat(mii);
490 	ifmr->ifm_active = mii->mii_media_active;
491 	ifmr->ifm_status = mii->mii_media_status;
492 	STE_UNLOCK(sc);
493 }
494 
495 static void
496 ste_wait(struct ste_softc *sc)
497 {
498 	int i;
499 
500 	for (i = 0; i < STE_TIMEOUT; i++) {
501 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
502 			break;
503 		DELAY(1);
504 	}
505 
506 	if (i == STE_TIMEOUT)
507 		device_printf(sc->ste_dev, "command never completed!\n");
508 }
509 
510 /*
511  * The EEPROM is slow: give it time to come ready after issuing
512  * it a command.
513  */
514 static int
515 ste_eeprom_wait(struct ste_softc *sc)
516 {
517 	int i;
518 
519 	DELAY(1000);
520 
521 	for (i = 0; i < 100; i++) {
522 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
523 			DELAY(1000);
524 		else
525 			break;
526 	}
527 
528 	if (i == 100) {
529 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
530 		return (1);
531 	}
532 
533 	return (0);
534 }
535 
536 /*
537  * Read a sequence of words from the EEPROM. Note that ethernet address
538  * data is stored in the EEPROM in network byte order.
539  */
540 static int
541 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
542 {
543 	int err = 0, i;
544 
545 	if (ste_eeprom_wait(sc))
546 		return (1);
547 
548 	for (i = 0; i < cnt; i++) {
549 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
550 		err = ste_eeprom_wait(sc);
551 		if (err)
552 			break;
553 		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
554 		dest++;
555 	}
556 
557 	return (err ? 1 : 0);
558 }
559 
560 static void
561 ste_rxfilter(struct ste_softc *sc)
562 {
563 	struct ifnet *ifp;
564 	struct ifmultiaddr *ifma;
565 	uint32_t hashes[2] = { 0, 0 };
566 	uint8_t rxcfg;
567 	int h;
568 
569 	STE_LOCK_ASSERT(sc);
570 
571 	ifp = sc->ste_ifp;
572 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
573 	rxcfg |= STE_RXMODE_UNICAST;
574 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
575 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
576 	if (ifp->if_flags & IFF_BROADCAST)
577 		rxcfg |= STE_RXMODE_BROADCAST;
578 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
579 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
580 			rxcfg |= STE_RXMODE_ALLMULTI;
581 		if ((ifp->if_flags & IFF_PROMISC) != 0)
582 			rxcfg |= STE_RXMODE_PROMISC;
583 		goto chipit;
584 	}
585 
586 	rxcfg |= STE_RXMODE_MULTIHASH;
587 	/* Now program new ones. */
588 	if_maddr_rlock(ifp);
589 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
590 		if (ifma->ifma_addr->sa_family != AF_LINK)
591 			continue;
592 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
593 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
594 		if (h < 32)
595 			hashes[0] |= (1 << h);
596 		else
597 			hashes[1] |= (1 << (h - 32));
598 	}
599 	if_maddr_runlock(ifp);
600 
601 chipit:
602 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
603 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
604 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
605 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
606 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
607 	CSR_READ_1(sc, STE_RX_MODE);
608 }
609 
610 #ifdef DEVICE_POLLING
611 static poll_handler_t ste_poll, ste_poll_locked;
612 
613 static int
614 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
615 {
616 	struct ste_softc *sc = ifp->if_softc;
617 	int rx_npkts = 0;
618 
619 	STE_LOCK(sc);
620 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
621 		rx_npkts = ste_poll_locked(ifp, cmd, count);
622 	STE_UNLOCK(sc);
623 	return (rx_npkts);
624 }
625 
626 static int
627 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
628 {
629 	struct ste_softc *sc = ifp->if_softc;
630 	int rx_npkts;
631 
632 	STE_LOCK_ASSERT(sc);
633 
634 	rx_npkts = ste_rxeof(sc, count);
635 	ste_txeof(sc);
636 	ste_txeoc(sc);
637 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
638 		ste_start_locked(ifp);
639 
640 	if (cmd == POLL_AND_CHECK_STATUS) {
641 		uint16_t status;
642 
643 		status = CSR_READ_2(sc, STE_ISR_ACK);
644 
645 		if (status & STE_ISR_STATS_OFLOW)
646 			ste_stats_update(sc);
647 
648 		if (status & STE_ISR_HOSTERR) {
649 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
650 			ste_init_locked(sc);
651 		}
652 	}
653 	return (rx_npkts);
654 }
655 #endif /* DEVICE_POLLING */
656 
657 static void
658 ste_intr(void *xsc)
659 {
660 	struct ste_softc *sc;
661 	struct ifnet *ifp;
662 	uint16_t intrs, status;
663 
664 	sc = xsc;
665 	STE_LOCK(sc);
666 	ifp = sc->ste_ifp;
667 
668 #ifdef DEVICE_POLLING
669 	if (ifp->if_capenable & IFCAP_POLLING) {
670 		STE_UNLOCK(sc);
671 		return;
672 	}
673 #endif
674 	/* Reading STE_ISR_ACK clears STE_IMR register. */
675 	status = CSR_READ_2(sc, STE_ISR_ACK);
676 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
677 		STE_UNLOCK(sc);
678 		return;
679 	}
680 
681 	intrs = STE_INTRS;
682 	if (status == 0xFFFF || (status & intrs) == 0)
683 		goto done;
684 
685 	if (sc->ste_int_rx_act > 0) {
686 		status &= ~STE_ISR_RX_DMADONE;
687 		intrs &= ~STE_IMR_RX_DMADONE;
688 	}
689 
690 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
691 		ste_rxeof(sc, -1);
692 		/*
693 		 * The controller has no ability to Rx interrupt
694 		 * moderation feature. Receiving 64 bytes frames
695 		 * from wire generates too many interrupts which in
696 		 * turn make system useless to process other useful
697 		 * things. Fortunately ST201 supports single shot
698 		 * timer so use the timer to implement Rx interrupt
699 		 * moderation in driver. This adds more register
700 		 * access but it greatly reduces number of Rx
701 		 * interrupts under high network load.
702 		 */
703 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
704 		    (sc->ste_int_rx_mod != 0)) {
705 			if ((status & STE_ISR_RX_DMADONE) != 0) {
706 				CSR_WRITE_2(sc, STE_COUNTDOWN,
707 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
708 				intrs &= ~STE_IMR_RX_DMADONE;
709 				sc->ste_int_rx_act = 1;
710 			} else {
711 				intrs |= STE_IMR_RX_DMADONE;
712 				sc->ste_int_rx_act = 0;
713 			}
714 		}
715 	}
716 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
717 		if ((status & STE_ISR_TX_DMADONE) != 0)
718 			ste_txeof(sc);
719 		if ((status & STE_ISR_TX_DONE) != 0)
720 			ste_txeoc(sc);
721 		if ((status & STE_ISR_STATS_OFLOW) != 0)
722 			ste_stats_update(sc);
723 		if ((status & STE_ISR_HOSTERR) != 0) {
724 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
725 			ste_init_locked(sc);
726 			STE_UNLOCK(sc);
727 			return;
728 		}
729 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
730 			ste_start_locked(ifp);
731 done:
732 		/* Re-enable interrupts */
733 		CSR_WRITE_2(sc, STE_IMR, intrs);
734 	}
735 	STE_UNLOCK(sc);
736 }
737 
738 /*
739  * A frame has been uploaded: pass the resulting mbuf chain up to
740  * the higher level protocols.
741  */
742 static int
743 ste_rxeof(struct ste_softc *sc, int count)
744 {
745         struct mbuf *m;
746         struct ifnet *ifp;
747 	struct ste_chain_onefrag *cur_rx;
748 	uint32_t rxstat;
749 	int total_len, rx_npkts;
750 
751 	ifp = sc->ste_ifp;
752 
753 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
754 	    sc->ste_cdata.ste_rx_list_map,
755 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
756 
757 	cur_rx = sc->ste_cdata.ste_rx_head;
758 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
759 	    cur_rx = cur_rx->ste_next) {
760 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
761 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
762 			break;
763 #ifdef DEVICE_POLLING
764 		if (ifp->if_capenable & IFCAP_POLLING) {
765 			if (count == 0)
766 				break;
767 			count--;
768 		}
769 #endif
770 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
771 			break;
772 		/*
773 		 * If an error occurs, update stats, clear the
774 		 * status word and leave the mbuf cluster in place:
775 		 * it should simply get re-used next time this descriptor
776 	 	 * comes up in the ring.
777 		 */
778 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
779 			ifp->if_ierrors++;
780 			cur_rx->ste_ptr->ste_status = 0;
781 			continue;
782 		}
783 
784 		/* No errors; receive the packet. */
785 		m = cur_rx->ste_mbuf;
786 		total_len = STE_RX_BYTES(rxstat);
787 
788 		/*
789 		 * Try to conjure up a new mbuf cluster. If that
790 		 * fails, it means we have an out of memory condition and
791 		 * should leave the buffer in place and continue. This will
792 		 * result in a lost packet, but there's little else we
793 		 * can do in this situation.
794 		 */
795 		if (ste_newbuf(sc, cur_rx) != 0) {
796 			ifp->if_iqdrops++;
797 			cur_rx->ste_ptr->ste_status = 0;
798 			continue;
799 		}
800 
801 		m->m_pkthdr.rcvif = ifp;
802 		m->m_pkthdr.len = m->m_len = total_len;
803 
804 		ifp->if_ipackets++;
805 		STE_UNLOCK(sc);
806 		(*ifp->if_input)(ifp, m);
807 		STE_LOCK(sc);
808 	}
809 
810 	if (rx_npkts > 0) {
811 		sc->ste_cdata.ste_rx_head = cur_rx;
812 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
813 		    sc->ste_cdata.ste_rx_list_map,
814 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815 	}
816 
817 	return (rx_npkts);
818 }
819 
820 static void
821 ste_txeoc(struct ste_softc *sc)
822 {
823 	uint16_t txstat;
824 	struct ifnet *ifp;
825 
826 	STE_LOCK_ASSERT(sc);
827 
828 	ifp = sc->ste_ifp;
829 
830 	/*
831 	 * STE_TX_STATUS register implements a queue of up to 31
832 	 * transmit status byte. Writing an arbitrary value to the
833 	 * register will advance the queue to the next transmit
834 	 * status byte. This means if driver does not read
835 	 * STE_TX_STATUS register after completing sending more
836 	 * than 31 frames the controller would be stalled so driver
837 	 * should re-wake the Tx MAC. This is the most severe
838 	 * limitation of ST201 based controller.
839 	 */
840 	for (;;) {
841 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
842 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
843 			break;
844 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
845 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
846 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
847 			ifp->if_oerrors++;
848 #ifdef	STE_SHOW_TXERRORS
849 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
850 			    txstat & 0xFF, STE_ERR_BITS);
851 #endif
852 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
853 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
854 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
855 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
856 					sc->ste_tx_thresh = STE_PACKET_SIZE;
857 				device_printf(sc->ste_dev,
858 				    "TX underrun, increasing TX"
859 				    " start threshold to %d bytes\n",
860 				    sc->ste_tx_thresh);
861 				/* Make sure to disable active DMA cycles. */
862 				STE_SETBIT4(sc, STE_DMACTL,
863 				    STE_DMACTL_TXDMA_STALL);
864 				ste_wait(sc);
865 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
866 				ste_init_locked(sc);
867 				break;
868 			}
869 			/* Restart Tx. */
870 			ste_restart_tx(sc);
871 		}
872 		/*
873 		 * Advance to next status and ACK TxComplete
874 		 * interrupt. ST201 data sheet was wrong here, to
875 		 * get next Tx status, we have to write both
876 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
877 		 * Otherwise controller returns the same status
878 		 * as well as not acknowledge Tx completion
879 		 * interrupt.
880 		 */
881 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
882 	}
883 }
884 
885 static void
886 ste_tick(void *arg)
887 {
888 	struct ste_softc *sc;
889 	struct mii_data *mii;
890 
891 	sc = (struct ste_softc *)arg;
892 
893 	STE_LOCK_ASSERT(sc);
894 
895 	mii = device_get_softc(sc->ste_miibus);
896 	mii_tick(mii);
897 	/*
898 	 * ukphy(4) does not seem to generate CB that reports
899 	 * resolved link state so if we know we lost a link,
900 	 * explicitly check the link state.
901 	 */
902 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
903 		ste_miibus_statchg(sc->ste_dev);
904 	/*
905 	 * Because we are not generating Tx completion
906 	 * interrupt for every frame, reclaim transmitted
907 	 * buffers here.
908 	 */
909 	ste_txeof(sc);
910 	ste_txeoc(sc);
911 	ste_stats_update(sc);
912 	ste_watchdog(sc);
913 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
914 }
915 
916 static void
917 ste_txeof(struct ste_softc *sc)
918 {
919 	struct ifnet *ifp;
920 	struct ste_chain *cur_tx;
921 	uint32_t txstat;
922 	int idx;
923 
924 	STE_LOCK_ASSERT(sc);
925 
926 	ifp = sc->ste_ifp;
927 	idx = sc->ste_cdata.ste_tx_cons;
928 	if (idx == sc->ste_cdata.ste_tx_prod)
929 		return;
930 
931 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
932 	    sc->ste_cdata.ste_tx_list_map,
933 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
934 
935 	while (idx != sc->ste_cdata.ste_tx_prod) {
936 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
937 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
938 		if ((txstat & STE_TXCTL_DMADONE) == 0)
939 			break;
940 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
941 		    BUS_DMASYNC_POSTWRITE);
942 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
943 		KASSERT(cur_tx->ste_mbuf != NULL,
944 		    ("%s: freeing NULL mbuf!\n", __func__));
945 		m_freem(cur_tx->ste_mbuf);
946 		cur_tx->ste_mbuf = NULL;
947 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
948 		ifp->if_opackets++;
949 		sc->ste_cdata.ste_tx_cnt--;
950 		STE_INC(idx, STE_TX_LIST_CNT);
951 	}
952 
953 	sc->ste_cdata.ste_tx_cons = idx;
954 	if (sc->ste_cdata.ste_tx_cnt == 0)
955 		sc->ste_timer = 0;
956 }
957 
958 static void
959 ste_stats_clear(struct ste_softc *sc)
960 {
961 
962 	STE_LOCK_ASSERT(sc);
963 
964 	/* Rx stats. */
965 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
966 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
967 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
968 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
969 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
970 	CSR_READ_1(sc, STE_STAT_RX_LOST);
971 	/* Tx stats. */
972 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
973 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
974 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
975 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
976 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
977 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
978 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
979 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
980 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
981 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
982 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
983 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
984 }
985 
986 static void
987 ste_stats_update(struct ste_softc *sc)
988 {
989 	struct ifnet *ifp;
990 	struct ste_hw_stats *stats;
991 	uint32_t val;
992 
993 	STE_LOCK_ASSERT(sc);
994 
995 	ifp = sc->ste_ifp;
996 	stats = &sc->ste_stats;
997 	/* Rx stats. */
998 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
999 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
1000 	val &= 0x000FFFFF;
1001 	stats->rx_bytes += val;
1002 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
1003 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
1004 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
1005 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
1006 	/* Tx stats. */
1007 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
1008 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
1009 	val &= 0x000FFFFF;
1010 	stats->tx_bytes += val;
1011 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
1012 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
1013 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
1014 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
1015 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
1016 	stats->tx_single_colls += val;
1017 	ifp->if_collisions += val;
1018 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
1019 	stats->tx_multi_colls += val;
1020 	ifp->if_collisions += val;
1021 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
1022 	stats->tx_late_colls += val;
1023 	ifp->if_collisions += val;
1024 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
1025 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
1026 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
1027 }
1028 
1029 /*
1030  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
1031  * IDs against our list and return a device name if we find a match.
1032  */
1033 static int
1034 ste_probe(device_t dev)
1035 {
1036 	struct ste_type *t;
1037 
1038 	t = ste_devs;
1039 
1040 	while (t->ste_name != NULL) {
1041 		if ((pci_get_vendor(dev) == t->ste_vid) &&
1042 		    (pci_get_device(dev) == t->ste_did)) {
1043 			device_set_desc(dev, t->ste_name);
1044 			return (BUS_PROBE_DEFAULT);
1045 		}
1046 		t++;
1047 	}
1048 
1049 	return (ENXIO);
1050 }
1051 
1052 /*
1053  * Attach the interface. Allocate softc structures, do ifmedia
1054  * setup and ethernet/BPF attach.
1055  */
1056 static int
1057 ste_attach(device_t dev)
1058 {
1059 	struct ste_softc *sc;
1060 	struct ifnet *ifp;
1061 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
1062 	int error = 0, pmc, rid;
1063 
1064 	sc = device_get_softc(dev);
1065 	sc->ste_dev = dev;
1066 
1067 	/*
1068 	 * Only use one PHY since this chip reports multiple
1069 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1070 	 * it is at 0 & 1.  It is rev 0x12.
1071 	 */
1072 	if (pci_get_vendor(dev) == DL_VENDORID &&
1073 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1074 	    pci_get_revid(dev) == 0x12 )
1075 		sc->ste_flags |= STE_FLAG_ONE_PHY;
1076 
1077 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1078 	    MTX_DEF);
1079 	/*
1080 	 * Map control/status registers.
1081 	 */
1082 	pci_enable_busmaster(dev);
1083 
1084 	/* Prefer memory space register mapping over IO space. */
1085 	sc->ste_res_id = PCIR_BAR(1);
1086 	sc->ste_res_type = SYS_RES_MEMORY;
1087 	sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1088 	    &sc->ste_res_id, RF_ACTIVE);
1089 	if (sc->ste_res == NULL) {
1090 		sc->ste_res_id = PCIR_BAR(0);
1091 		sc->ste_res_type = SYS_RES_IOPORT;
1092 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1093 		    &sc->ste_res_id, RF_ACTIVE);
1094 	}
1095 	if (sc->ste_res == NULL) {
1096 		device_printf(dev, "couldn't map ports/memory\n");
1097 		error = ENXIO;
1098 		goto fail;
1099 	}
1100 
1101 	/* Allocate interrupt */
1102 	rid = 0;
1103 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1104 	    RF_SHAREABLE | RF_ACTIVE);
1105 
1106 	if (sc->ste_irq == NULL) {
1107 		device_printf(dev, "couldn't map interrupt\n");
1108 		error = ENXIO;
1109 		goto fail;
1110 	}
1111 
1112 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
1113 
1114 	/* Reset the adapter. */
1115 	ste_reset(sc);
1116 
1117 	/*
1118 	 * Get station address from the EEPROM.
1119 	 */
1120 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
1121 		device_printf(dev, "failed to read station address\n");
1122 		error = ENXIO;
1123 		goto fail;
1124 	}
1125 	ste_sysctl_node(sc);
1126 
1127 	if ((error = ste_dma_alloc(sc)) != 0)
1128 		goto fail;
1129 
1130 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1131 	if (ifp == NULL) {
1132 		device_printf(dev, "can not if_alloc()\n");
1133 		error = ENOSPC;
1134 		goto fail;
1135 	}
1136 
1137 	/* Do MII setup. */
1138 	if (mii_phy_probe(dev, &sc->ste_miibus,
1139 	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1140 		device_printf(dev, "MII without any phy!\n");
1141 		error = ENXIO;
1142 		goto fail;
1143 	}
1144 
1145 	ifp->if_softc = sc;
1146 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1147 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1148 	ifp->if_ioctl = ste_ioctl;
1149 	ifp->if_start = ste_start;
1150 	ifp->if_init = ste_init;
1151 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1152 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1153 	IFQ_SET_READY(&ifp->if_snd);
1154 
1155 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1156 
1157 	/*
1158 	 * Call MI attach routine.
1159 	 */
1160 	ether_ifattach(ifp, (uint8_t *)eaddr);
1161 
1162 	/*
1163 	 * Tell the upper layer(s) we support long frames.
1164 	 */
1165 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1166 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1167 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
1168 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1169 	ifp->if_capenable = ifp->if_capabilities;
1170 #ifdef DEVICE_POLLING
1171 	ifp->if_capabilities |= IFCAP_POLLING;
1172 #endif
1173 
1174 	/* Hook interrupt last to avoid having to lock softc */
1175 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1176 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1177 
1178 	if (error) {
1179 		device_printf(dev, "couldn't set up irq\n");
1180 		ether_ifdetach(ifp);
1181 		goto fail;
1182 	}
1183 
1184 fail:
1185 	if (error)
1186 		ste_detach(dev);
1187 
1188 	return (error);
1189 }
1190 
1191 /*
1192  * Shutdown hardware and free up resources. This can be called any
1193  * time after the mutex has been initialized. It is called in both
1194  * the error case in attach and the normal detach case so it needs
1195  * to be careful about only freeing resources that have actually been
1196  * allocated.
1197  */
1198 static int
1199 ste_detach(device_t dev)
1200 {
1201 	struct ste_softc *sc;
1202 	struct ifnet *ifp;
1203 
1204 	sc = device_get_softc(dev);
1205 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1206 	ifp = sc->ste_ifp;
1207 
1208 #ifdef DEVICE_POLLING
1209 	if (ifp->if_capenable & IFCAP_POLLING)
1210 		ether_poll_deregister(ifp);
1211 #endif
1212 
1213 	/* These should only be active if attach succeeded */
1214 	if (device_is_attached(dev)) {
1215 		ether_ifdetach(ifp);
1216 		STE_LOCK(sc);
1217 		ste_stop(sc);
1218 		STE_UNLOCK(sc);
1219 		callout_drain(&sc->ste_callout);
1220 	}
1221 	if (sc->ste_miibus)
1222 		device_delete_child(dev, sc->ste_miibus);
1223 	bus_generic_detach(dev);
1224 
1225 	if (sc->ste_intrhand)
1226 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1227 	if (sc->ste_irq)
1228 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1229 	if (sc->ste_res)
1230 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1231 		    sc->ste_res);
1232 
1233 	if (ifp)
1234 		if_free(ifp);
1235 
1236 	ste_dma_free(sc);
1237 	mtx_destroy(&sc->ste_mtx);
1238 
1239 	return (0);
1240 }
1241 
1242 struct ste_dmamap_arg {
1243 	bus_addr_t	ste_busaddr;
1244 };
1245 
1246 static void
1247 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1248 {
1249 	struct ste_dmamap_arg *ctx;
1250 
1251 	if (error != 0)
1252 		return;
1253 
1254 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1255 
1256 	ctx = (struct ste_dmamap_arg *)arg;
1257 	ctx->ste_busaddr = segs[0].ds_addr;
1258 }
1259 
1260 static int
1261 ste_dma_alloc(struct ste_softc *sc)
1262 {
1263 	struct ste_chain *txc;
1264 	struct ste_chain_onefrag *rxc;
1265 	struct ste_dmamap_arg ctx;
1266 	int error, i;
1267 
1268 	/* Create parent DMA tag. */
1269 	error = bus_dma_tag_create(
1270 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1271 	    1, 0,			/* alignment, boundary */
1272 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1273 	    BUS_SPACE_MAXADDR,		/* highaddr */
1274 	    NULL, NULL,			/* filter, filterarg */
1275 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1276 	    0,				/* nsegments */
1277 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1278 	    0,				/* flags */
1279 	    NULL, NULL,			/* lockfunc, lockarg */
1280 	    &sc->ste_cdata.ste_parent_tag);
1281 	if (error != 0) {
1282 		device_printf(sc->ste_dev,
1283 		    "could not create parent DMA tag.\n");
1284 		goto fail;
1285 	}
1286 
1287 	/* Create DMA tag for Tx descriptor list. */
1288 	error = bus_dma_tag_create(
1289 	    sc->ste_cdata.ste_parent_tag, /* parent */
1290 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1291 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1292 	    BUS_SPACE_MAXADDR,		/* highaddr */
1293 	    NULL, NULL,			/* filter, filterarg */
1294 	    STE_TX_LIST_SZ,		/* maxsize */
1295 	    1,				/* nsegments */
1296 	    STE_TX_LIST_SZ,		/* maxsegsize */
1297 	    0,				/* flags */
1298 	    NULL, NULL,			/* lockfunc, lockarg */
1299 	    &sc->ste_cdata.ste_tx_list_tag);
1300 	if (error != 0) {
1301 		device_printf(sc->ste_dev,
1302 		    "could not create Tx list DMA tag.\n");
1303 		goto fail;
1304 	}
1305 
1306 	/* Create DMA tag for Rx descriptor list. */
1307 	error = bus_dma_tag_create(
1308 	    sc->ste_cdata.ste_parent_tag, /* parent */
1309 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1310 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1311 	    BUS_SPACE_MAXADDR,		/* highaddr */
1312 	    NULL, NULL,			/* filter, filterarg */
1313 	    STE_RX_LIST_SZ,		/* maxsize */
1314 	    1,				/* nsegments */
1315 	    STE_RX_LIST_SZ,		/* maxsegsize */
1316 	    0,				/* flags */
1317 	    NULL, NULL,			/* lockfunc, lockarg */
1318 	    &sc->ste_cdata.ste_rx_list_tag);
1319 	if (error != 0) {
1320 		device_printf(sc->ste_dev,
1321 		    "could not create Rx list DMA tag.\n");
1322 		goto fail;
1323 	}
1324 
1325 	/* Create DMA tag for Tx buffers. */
1326 	error = bus_dma_tag_create(
1327 	    sc->ste_cdata.ste_parent_tag, /* parent */
1328 	    1, 0,			/* alignment, boundary */
1329 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1330 	    BUS_SPACE_MAXADDR,		/* highaddr */
1331 	    NULL, NULL,			/* filter, filterarg */
1332 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1333 	    STE_MAXFRAGS,		/* nsegments */
1334 	    MCLBYTES,			/* maxsegsize */
1335 	    0,				/* flags */
1336 	    NULL, NULL,			/* lockfunc, lockarg */
1337 	    &sc->ste_cdata.ste_tx_tag);
1338 	if (error != 0) {
1339 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1340 		goto fail;
1341 	}
1342 
1343 	/* Create DMA tag for Rx buffers. */
1344 	error = bus_dma_tag_create(
1345 	    sc->ste_cdata.ste_parent_tag, /* parent */
1346 	    1, 0,			/* alignment, boundary */
1347 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1348 	    BUS_SPACE_MAXADDR,		/* highaddr */
1349 	    NULL, NULL,			/* filter, filterarg */
1350 	    MCLBYTES,			/* maxsize */
1351 	    1,				/* nsegments */
1352 	    MCLBYTES,			/* maxsegsize */
1353 	    0,				/* flags */
1354 	    NULL, NULL,			/* lockfunc, lockarg */
1355 	    &sc->ste_cdata.ste_rx_tag);
1356 	if (error != 0) {
1357 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1358 		goto fail;
1359 	}
1360 
1361 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1362 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1363 	    (void **)&sc->ste_ldata.ste_tx_list,
1364 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1365 	    &sc->ste_cdata.ste_tx_list_map);
1366 	if (error != 0) {
1367 		device_printf(sc->ste_dev,
1368 		    "could not allocate DMA'able memory for Tx list.\n");
1369 		goto fail;
1370 	}
1371 	ctx.ste_busaddr = 0;
1372 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1373 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1374 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1375 	if (error != 0 || ctx.ste_busaddr == 0) {
1376 		device_printf(sc->ste_dev,
1377 		    "could not load DMA'able memory for Tx list.\n");
1378 		goto fail;
1379 	}
1380 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1381 
1382 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1383 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1384 	    (void **)&sc->ste_ldata.ste_rx_list,
1385 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1386 	    &sc->ste_cdata.ste_rx_list_map);
1387 	if (error != 0) {
1388 		device_printf(sc->ste_dev,
1389 		    "could not allocate DMA'able memory for Rx list.\n");
1390 		goto fail;
1391 	}
1392 	ctx.ste_busaddr = 0;
1393 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1394 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1395 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1396 	if (error != 0 || ctx.ste_busaddr == 0) {
1397 		device_printf(sc->ste_dev,
1398 		    "could not load DMA'able memory for Rx list.\n");
1399 		goto fail;
1400 	}
1401 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1402 
1403 	/* Create DMA maps for Tx buffers. */
1404 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1405 		txc = &sc->ste_cdata.ste_tx_chain[i];
1406 		txc->ste_ptr = NULL;
1407 		txc->ste_mbuf = NULL;
1408 		txc->ste_next = NULL;
1409 		txc->ste_phys = 0;
1410 		txc->ste_map = NULL;
1411 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1412 		    &txc->ste_map);
1413 		if (error != 0) {
1414 			device_printf(sc->ste_dev,
1415 			    "could not create Tx dmamap.\n");
1416 			goto fail;
1417 		}
1418 	}
1419 	/* Create DMA maps for Rx buffers. */
1420 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1421 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1422 		device_printf(sc->ste_dev,
1423 		    "could not create spare Rx dmamap.\n");
1424 		goto fail;
1425 	}
1426 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1427 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1428 		rxc->ste_ptr = NULL;
1429 		rxc->ste_mbuf = NULL;
1430 		rxc->ste_next = NULL;
1431 		rxc->ste_map = NULL;
1432 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1433 		    &rxc->ste_map);
1434 		if (error != 0) {
1435 			device_printf(sc->ste_dev,
1436 			    "could not create Rx dmamap.\n");
1437 			goto fail;
1438 		}
1439 	}
1440 
1441 fail:
1442 	return (error);
1443 }
1444 
1445 static void
1446 ste_dma_free(struct ste_softc *sc)
1447 {
1448 	struct ste_chain *txc;
1449 	struct ste_chain_onefrag *rxc;
1450 	int i;
1451 
1452 	/* Tx buffers. */
1453 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1454 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1455 			txc = &sc->ste_cdata.ste_tx_chain[i];
1456 			if (txc->ste_map != NULL) {
1457 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1458 				    txc->ste_map);
1459 				txc->ste_map = NULL;
1460 			}
1461 		}
1462 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1463 		sc->ste_cdata.ste_tx_tag = NULL;
1464 	}
1465 	/* Rx buffers. */
1466 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1467 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1468 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1469 			if (rxc->ste_map != NULL) {
1470 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1471 				    rxc->ste_map);
1472 				rxc->ste_map = NULL;
1473 			}
1474 		}
1475 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1476 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1477 			    sc->ste_cdata.ste_rx_sparemap);
1478 			sc->ste_cdata.ste_rx_sparemap = NULL;
1479 		}
1480 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1481 		sc->ste_cdata.ste_rx_tag = NULL;
1482 	}
1483 	/* Tx descriptor list. */
1484 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1485 		if (sc->ste_cdata.ste_tx_list_map != NULL)
1486 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1487 			    sc->ste_cdata.ste_tx_list_map);
1488 		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1489 		    sc->ste_ldata.ste_tx_list != NULL)
1490 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1491 			    sc->ste_ldata.ste_tx_list,
1492 			    sc->ste_cdata.ste_tx_list_map);
1493 		sc->ste_ldata.ste_tx_list = NULL;
1494 		sc->ste_cdata.ste_tx_list_map = NULL;
1495 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1496 		sc->ste_cdata.ste_tx_list_tag = NULL;
1497 	}
1498 	/* Rx descriptor list. */
1499 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1500 		if (sc->ste_cdata.ste_rx_list_map != NULL)
1501 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1502 			    sc->ste_cdata.ste_rx_list_map);
1503 		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1504 		    sc->ste_ldata.ste_rx_list != NULL)
1505 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1506 			    sc->ste_ldata.ste_rx_list,
1507 			    sc->ste_cdata.ste_rx_list_map);
1508 		sc->ste_ldata.ste_rx_list = NULL;
1509 		sc->ste_cdata.ste_rx_list_map = NULL;
1510 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1511 		sc->ste_cdata.ste_rx_list_tag = NULL;
1512 	}
1513 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1514 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1515 		sc->ste_cdata.ste_parent_tag = NULL;
1516 	}
1517 }
1518 
1519 static int
1520 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1521 {
1522 	struct mbuf *m;
1523 	bus_dma_segment_t segs[1];
1524 	bus_dmamap_t map;
1525 	int error, nsegs;
1526 
1527 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1528 	if (m == NULL)
1529 		return (ENOBUFS);
1530 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1531 	m_adj(m, ETHER_ALIGN);
1532 
1533 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1534 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1535 		m_freem(m);
1536 		return (error);
1537 	}
1538 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1539 
1540 	if (rxc->ste_mbuf != NULL) {
1541 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1542 		    BUS_DMASYNC_POSTREAD);
1543 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1544 	}
1545 	map = rxc->ste_map;
1546 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1547 	sc->ste_cdata.ste_rx_sparemap = map;
1548 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1549 	    BUS_DMASYNC_PREREAD);
1550 	rxc->ste_mbuf = m;
1551 	rxc->ste_ptr->ste_status = 0;
1552 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1553 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1554 	    STE_FRAG_LAST);
1555 	return (0);
1556 }
1557 
1558 static int
1559 ste_init_rx_list(struct ste_softc *sc)
1560 {
1561 	struct ste_chain_data *cd;
1562 	struct ste_list_data *ld;
1563 	int error, i;
1564 
1565 	sc->ste_int_rx_act = 0;
1566 	cd = &sc->ste_cdata;
1567 	ld = &sc->ste_ldata;
1568 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1569 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1570 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1571 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1572 		if (error != 0)
1573 			return (error);
1574 		if (i == (STE_RX_LIST_CNT - 1)) {
1575 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1576 			ld->ste_rx_list[i].ste_next =
1577 			    htole32(ld->ste_rx_list_paddr +
1578 			    (sizeof(struct ste_desc_onefrag) * 0));
1579 		} else {
1580 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1581 			ld->ste_rx_list[i].ste_next =
1582 			    htole32(ld->ste_rx_list_paddr +
1583 			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1584 		}
1585 	}
1586 
1587 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1588 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1589 	    sc->ste_cdata.ste_rx_list_map,
1590 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1591 
1592 	return (0);
1593 }
1594 
1595 static void
1596 ste_init_tx_list(struct ste_softc *sc)
1597 {
1598 	struct ste_chain_data *cd;
1599 	struct ste_list_data *ld;
1600 	int i;
1601 
1602 	cd = &sc->ste_cdata;
1603 	ld = &sc->ste_ldata;
1604 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1605 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1606 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1607 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1608 		if (i == (STE_TX_LIST_CNT - 1)) {
1609 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1610 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1611 			    ld->ste_tx_list_paddr +
1612 			    (sizeof(struct ste_desc) * 0)));
1613 		} else {
1614 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1615 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1616 			    ld->ste_tx_list_paddr +
1617 			    (sizeof(struct ste_desc) * (i + 1))));
1618 		}
1619 	}
1620 
1621 	cd->ste_last_tx = NULL;
1622 	cd->ste_tx_prod = 0;
1623 	cd->ste_tx_cons = 0;
1624 	cd->ste_tx_cnt = 0;
1625 
1626 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1627 	    sc->ste_cdata.ste_tx_list_map,
1628 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1629 }
1630 
1631 static void
1632 ste_init(void *xsc)
1633 {
1634 	struct ste_softc *sc;
1635 
1636 	sc = xsc;
1637 	STE_LOCK(sc);
1638 	ste_init_locked(sc);
1639 	STE_UNLOCK(sc);
1640 }
1641 
1642 static void
1643 ste_init_locked(struct ste_softc *sc)
1644 {
1645 	struct ifnet *ifp;
1646 	struct mii_data *mii;
1647 	uint8_t val;
1648 	int i;
1649 
1650 	STE_LOCK_ASSERT(sc);
1651 	ifp = sc->ste_ifp;
1652 	mii = device_get_softc(sc->ste_miibus);
1653 
1654 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1655 		return;
1656 
1657 	ste_stop(sc);
1658 	/* Reset the chip to a known state. */
1659 	ste_reset(sc);
1660 
1661 	/* Init our MAC address */
1662 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1663 		CSR_WRITE_2(sc, STE_PAR0 + i,
1664 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1665 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1666 	}
1667 
1668 	/* Init RX list */
1669 	if (ste_init_rx_list(sc) != 0) {
1670 		device_printf(sc->ste_dev,
1671 		    "initialization failed: no memory for RX buffers\n");
1672 		ste_stop(sc);
1673 		return;
1674 	}
1675 
1676 	/* Set RX polling interval */
1677 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1678 
1679 	/* Init TX descriptors */
1680 	ste_init_tx_list(sc);
1681 
1682 	/* Clear and disable WOL. */
1683 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1684 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1685 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1686 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1687 
1688 	/* Set the TX freethresh value */
1689 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1690 
1691 	/* Set the TX start threshold for best performance. */
1692 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1693 
1694 	/* Set the TX reclaim threshold. */
1695 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1696 
1697 	/* Accept VLAN length packets */
1698 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1699 
1700 	/* Set up the RX filter. */
1701 	ste_rxfilter(sc);
1702 
1703 	/* Load the address of the RX list. */
1704 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1705 	ste_wait(sc);
1706 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1707 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1708 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1709 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1710 
1711 	/* Set TX polling interval(defer until we TX first packet). */
1712 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1713 
1714 	/* Load address of the TX list */
1715 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1716 	ste_wait(sc);
1717 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1718 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1719 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1720 	ste_wait(sc);
1721 	/* Select 3.2us timer. */
1722 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1723 	    STE_DMACTL_COUNTDOWN_MODE);
1724 
1725 	/* Enable receiver and transmitter */
1726 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1727 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1728 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1729 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1730 
1731 	/* Enable stats counters. */
1732 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1733 	/* Clear stats counters. */
1734 	ste_stats_clear(sc);
1735 
1736 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1737 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1738 #ifdef DEVICE_POLLING
1739 	/* Disable interrupts if we are polling. */
1740 	if (ifp->if_capenable & IFCAP_POLLING)
1741 		CSR_WRITE_2(sc, STE_IMR, 0);
1742 	else
1743 #endif
1744 	/* Enable interrupts. */
1745 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1746 
1747 	sc->ste_flags &= ~STE_FLAG_LINK;
1748 	/* Switch to the current media. */
1749 	mii_mediachg(mii);
1750 
1751 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1752 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1753 
1754 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1755 }
1756 
1757 static void
1758 ste_stop(struct ste_softc *sc)
1759 {
1760 	struct ifnet *ifp;
1761 	struct ste_chain_onefrag *cur_rx;
1762 	struct ste_chain *cur_tx;
1763 	uint32_t val;
1764 	int i;
1765 
1766 	STE_LOCK_ASSERT(sc);
1767 	ifp = sc->ste_ifp;
1768 
1769 	callout_stop(&sc->ste_callout);
1770 	sc->ste_timer = 0;
1771 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1772 
1773 	CSR_WRITE_2(sc, STE_IMR, 0);
1774 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1775 	/* Stop pending DMA. */
1776 	val = CSR_READ_4(sc, STE_DMACTL);
1777 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1778 	CSR_WRITE_4(sc, STE_DMACTL, val);
1779 	ste_wait(sc);
1780 	/* Disable auto-polling. */
1781 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1782 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1783 	/* Nullify DMA address to stop any further DMA. */
1784 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1785 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1786 	/* Stop TX/RX MAC. */
1787 	val = CSR_READ_2(sc, STE_MACCTL1);
1788 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1789 	    STE_MACCTL1_STATS_DISABLE;
1790 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1791 	for (i = 0; i < STE_TIMEOUT; i++) {
1792 		DELAY(10);
1793 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1794 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1795 			break;
1796 	}
1797 	if (i == STE_TIMEOUT)
1798 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1799 	/* Acknowledge any pending interrupts. */
1800 	CSR_READ_2(sc, STE_ISR_ACK);
1801 	ste_stats_update(sc);
1802 
1803 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1804 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1805 		if (cur_rx->ste_mbuf != NULL) {
1806 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1807 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1808 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1809 			    cur_rx->ste_map);
1810 			m_freem(cur_rx->ste_mbuf);
1811 			cur_rx->ste_mbuf = NULL;
1812 		}
1813 	}
1814 
1815 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1816 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1817 		if (cur_tx->ste_mbuf != NULL) {
1818 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1819 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1820 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1821 			    cur_tx->ste_map);
1822 			m_freem(cur_tx->ste_mbuf);
1823 			cur_tx->ste_mbuf = NULL;
1824 		}
1825 	}
1826 }
1827 
1828 static void
1829 ste_reset(struct ste_softc *sc)
1830 {
1831 	uint32_t ctl;
1832 	int i;
1833 
1834 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1835 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1836 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1837 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1838 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1839 	    STE_ASICCTL_EXTRESET_RESET;
1840 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1841 	CSR_READ_4(sc, STE_ASICCTL);
1842 	/*
1843 	 * Due to the need of accessing EEPROM controller can take
1844 	 * up to 1ms to complete the global reset.
1845 	 */
1846 	DELAY(1000);
1847 
1848 	for (i = 0; i < STE_TIMEOUT; i++) {
1849 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1850 			break;
1851 		DELAY(10);
1852 	}
1853 
1854 	if (i == STE_TIMEOUT)
1855 		device_printf(sc->ste_dev, "global reset never completed\n");
1856 }
1857 
1858 static void
1859 ste_restart_tx(struct ste_softc *sc)
1860 {
1861 	uint16_t mac;
1862 	int i;
1863 
1864 	for (i = 0; i < STE_TIMEOUT; i++) {
1865 		mac = CSR_READ_2(sc, STE_MACCTL1);
1866 		mac |= STE_MACCTL1_TX_ENABLE;
1867 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1868 		mac = CSR_READ_2(sc, STE_MACCTL1);
1869 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1870 			break;
1871 		DELAY(10);
1872 	}
1873 
1874 	if (i == STE_TIMEOUT)
1875 		device_printf(sc->ste_dev, "starting Tx failed");
1876 }
1877 
1878 static int
1879 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1880 {
1881 	struct ste_softc *sc;
1882 	struct ifreq *ifr;
1883 	struct mii_data *mii;
1884 	int error = 0, mask;
1885 
1886 	sc = ifp->if_softc;
1887 	ifr = (struct ifreq *)data;
1888 
1889 	switch (command) {
1890 	case SIOCSIFFLAGS:
1891 		STE_LOCK(sc);
1892 		if ((ifp->if_flags & IFF_UP) != 0) {
1893 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1894 			    ((ifp->if_flags ^ sc->ste_if_flags) &
1895 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1896 				ste_rxfilter(sc);
1897 			else
1898 				ste_init_locked(sc);
1899 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1900 			ste_stop(sc);
1901 		sc->ste_if_flags = ifp->if_flags;
1902 		STE_UNLOCK(sc);
1903 		break;
1904 	case SIOCADDMULTI:
1905 	case SIOCDELMULTI:
1906 		STE_LOCK(sc);
1907 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1908 			ste_rxfilter(sc);
1909 		STE_UNLOCK(sc);
1910 		break;
1911 	case SIOCGIFMEDIA:
1912 	case SIOCSIFMEDIA:
1913 		mii = device_get_softc(sc->ste_miibus);
1914 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1915 		break;
1916 	case SIOCSIFCAP:
1917 		STE_LOCK(sc);
1918 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1919 #ifdef DEVICE_POLLING
1920 		if ((mask & IFCAP_POLLING) != 0 &&
1921 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1922 			ifp->if_capenable ^= IFCAP_POLLING;
1923 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1924 				error = ether_poll_register(ste_poll, ifp);
1925 				if (error != 0) {
1926 					STE_UNLOCK(sc);
1927 					break;
1928 				}
1929 				/* Disable interrupts. */
1930 				CSR_WRITE_2(sc, STE_IMR, 0);
1931 			} else {
1932 				error = ether_poll_deregister(ifp);
1933 				/* Enable interrupts. */
1934 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1935 			}
1936 		}
1937 #endif /* DEVICE_POLLING */
1938 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1939 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1940 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1941 		STE_UNLOCK(sc);
1942 		break;
1943 	default:
1944 		error = ether_ioctl(ifp, command, data);
1945 		break;
1946 	}
1947 
1948 	return (error);
1949 }
1950 
1951 static int
1952 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1953 {
1954 	struct ste_frag *frag;
1955 	struct mbuf *m;
1956 	struct ste_desc *desc;
1957 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1958 	int error, i, nsegs;
1959 
1960 	STE_LOCK_ASSERT(sc);
1961 	M_ASSERTPKTHDR((*m_head));
1962 
1963 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1964 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1965 	if (error == EFBIG) {
1966 		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1967 		if (m == NULL) {
1968 			m_freem(*m_head);
1969 			*m_head = NULL;
1970 			return (ENOMEM);
1971 		}
1972 		*m_head = m;
1973 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1974 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1975 		if (error != 0) {
1976 			m_freem(*m_head);
1977 			*m_head = NULL;
1978 			return (error);
1979 		}
1980 	} else if (error != 0)
1981 		return (error);
1982 	if (nsegs == 0) {
1983 		m_freem(*m_head);
1984 		*m_head = NULL;
1985 		return (EIO);
1986 	}
1987 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1988 	    BUS_DMASYNC_PREWRITE);
1989 
1990 	desc = txc->ste_ptr;
1991 	for (i = 0; i < nsegs; i++) {
1992 		frag = &desc->ste_frags[i];
1993 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1994 		frag->ste_len = htole32(txsegs[i].ds_len);
1995 	}
1996 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1997 	/*
1998 	 * Because we use Tx polling we can't chain multiple
1999 	 * Tx descriptors here. Otherwise we race with controller.
2000 	 */
2001 	desc->ste_next = 0;
2002 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
2003 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
2004 		    STE_TXCTL_DMAINTR);
2005 	else
2006 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
2007 	txc->ste_mbuf = *m_head;
2008 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
2009 	sc->ste_cdata.ste_tx_cnt++;
2010 
2011 	return (0);
2012 }
2013 
2014 static void
2015 ste_start(struct ifnet *ifp)
2016 {
2017 	struct ste_softc *sc;
2018 
2019 	sc = ifp->if_softc;
2020 	STE_LOCK(sc);
2021 	ste_start_locked(ifp);
2022 	STE_UNLOCK(sc);
2023 }
2024 
2025 static void
2026 ste_start_locked(struct ifnet *ifp)
2027 {
2028 	struct ste_softc *sc;
2029 	struct ste_chain *cur_tx;
2030 	struct mbuf *m_head = NULL;
2031 	int enq;
2032 
2033 	sc = ifp->if_softc;
2034 	STE_LOCK_ASSERT(sc);
2035 
2036 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2037 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
2038 		return;
2039 
2040 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2041 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
2042 			/*
2043 			 * Controller may have cached copy of the last used
2044 			 * next ptr so we have to reserve one TFD to avoid
2045 			 * TFD overruns.
2046 			 */
2047 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2048 			break;
2049 		}
2050 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2051 		if (m_head == NULL)
2052 			break;
2053 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
2054 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
2055 			if (m_head == NULL)
2056 				break;
2057 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2058 			break;
2059 		}
2060 		if (sc->ste_cdata.ste_last_tx == NULL) {
2061 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2062 			    sc->ste_cdata.ste_tx_list_map,
2063 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2064 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
2065 			ste_wait(sc);
2066 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
2067 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
2068 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
2069 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
2070 			ste_wait(sc);
2071 		} else {
2072 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
2073 			    sc->ste_cdata.ste_last_tx->ste_phys;
2074 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2075 			    sc->ste_cdata.ste_tx_list_map,
2076 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2077 		}
2078 		sc->ste_cdata.ste_last_tx = cur_tx;
2079 
2080 		enq++;
2081 		/*
2082 		 * If there's a BPF listener, bounce a copy of this frame
2083 		 * to him.
2084 	 	 */
2085 		BPF_MTAP(ifp, m_head);
2086 	}
2087 
2088 	if (enq > 0)
2089 		sc->ste_timer = STE_TX_TIMEOUT;
2090 }
2091 
2092 static void
2093 ste_watchdog(struct ste_softc *sc)
2094 {
2095 	struct ifnet *ifp;
2096 
2097 	ifp = sc->ste_ifp;
2098 	STE_LOCK_ASSERT(sc);
2099 
2100 	if (sc->ste_timer == 0 || --sc->ste_timer)
2101 		return;
2102 
2103 	ifp->if_oerrors++;
2104 	if_printf(ifp, "watchdog timeout\n");
2105 
2106 	ste_txeof(sc);
2107 	ste_txeoc(sc);
2108 	ste_rxeof(sc, -1);
2109 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2110 	ste_init_locked(sc);
2111 
2112 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2113 		ste_start_locked(ifp);
2114 }
2115 
2116 static int
2117 ste_shutdown(device_t dev)
2118 {
2119 
2120 	return (ste_suspend(dev));
2121 }
2122 
2123 static int
2124 ste_suspend(device_t dev)
2125 {
2126 	struct ste_softc *sc;
2127 
2128 	sc = device_get_softc(dev);
2129 
2130 	STE_LOCK(sc);
2131 	ste_stop(sc);
2132 	ste_setwol(sc);
2133 	STE_UNLOCK(sc);
2134 
2135 	return (0);
2136 }
2137 
2138 static int
2139 ste_resume(device_t dev)
2140 {
2141 	struct ste_softc *sc;
2142 	struct ifnet *ifp;
2143 	int pmc;
2144 	uint16_t pmstat;
2145 
2146 	sc = device_get_softc(dev);
2147 	STE_LOCK(sc);
2148 	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2149 		/* Disable PME and clear PME status. */
2150 		pmstat = pci_read_config(sc->ste_dev,
2151 		    pmc + PCIR_POWER_STATUS, 2);
2152 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2153 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2154 			pci_write_config(sc->ste_dev,
2155 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2156 		}
2157 	}
2158 	ifp = sc->ste_ifp;
2159 	if ((ifp->if_flags & IFF_UP) != 0) {
2160 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2161 		ste_init_locked(sc);
2162 	}
2163 	STE_UNLOCK(sc);
2164 
2165 	return (0);
2166 }
2167 
2168 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2169 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2170 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2171 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2172 
2173 static void
2174 ste_sysctl_node(struct ste_softc *sc)
2175 {
2176 	struct sysctl_ctx_list *ctx;
2177 	struct sysctl_oid_list *child, *parent;
2178 	struct sysctl_oid *tree;
2179 	struct ste_hw_stats *stats;
2180 
2181 	stats = &sc->ste_stats;
2182 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2183 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2184 
2185 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2186 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2187 	/* Pull in device tunables. */
2188 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2189 	resource_int_value(device_get_name(sc->ste_dev),
2190 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2191 
2192 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2193 	    NULL, "STE statistics");
2194 	parent = SYSCTL_CHILDREN(tree);
2195 
2196 	/* Rx statistics. */
2197 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2198 	    NULL, "Rx MAC statistics");
2199 	child = SYSCTL_CHILDREN(tree);
2200 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2201 	    &stats->rx_bytes, "Good octets");
2202 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2203 	    &stats->rx_frames, "Good frames");
2204 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2205 	    &stats->rx_bcast_frames, "Good broadcast frames");
2206 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2207 	    &stats->rx_mcast_frames, "Good multicast frames");
2208 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2209 	    &stats->rx_lost_frames, "Lost frames");
2210 
2211 	/* Tx statistics. */
2212 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2213 	    NULL, "Tx MAC statistics");
2214 	child = SYSCTL_CHILDREN(tree);
2215 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2216 	    &stats->tx_bytes, "Good octets");
2217 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2218 	    &stats->tx_frames, "Good frames");
2219 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2220 	    &stats->tx_bcast_frames, "Good broadcast frames");
2221 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2222 	    &stats->tx_mcast_frames, "Good multicast frames");
2223 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2224 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2225 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2226 	    &stats->tx_single_colls, "Single collisions");
2227 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2228 	    &stats->tx_multi_colls, "Multiple collisions");
2229 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2230 	    &stats->tx_late_colls, "Late collisions");
2231 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2232 	    &stats->tx_frames_defered, "Frames with deferrals");
2233 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2234 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2235 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2236 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2237 }
2238 
2239 #undef STE_SYSCTL_STAT_ADD32
2240 #undef STE_SYSCTL_STAT_ADD64
2241 
2242 static void
2243 ste_setwol(struct ste_softc *sc)
2244 {
2245 	struct ifnet *ifp;
2246 	uint16_t pmstat;
2247 	uint8_t val;
2248 	int pmc;
2249 
2250 	STE_LOCK_ASSERT(sc);
2251 
2252 	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2253 		/* Disable WOL. */
2254 		CSR_READ_1(sc, STE_WAKE_EVENT);
2255 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2256 		return;
2257 	}
2258 
2259 	ifp = sc->ste_ifp;
2260 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2261 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2262 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2263 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2264 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2265 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2266 	/* Request PME. */
2267 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2268 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2269 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2270 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2271 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2272 }
2273